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Abstract
Thanks to the ultrahigh flexibility of 2D materials and to their extreme sensitivity to applied strain, there is currently a
strong interest in studying and understanding how their electronic properties can be modulated by applying a uniform or
nonuniform strain. In this work, using density functional theory (DFT) calculations, we discuss how uniform biaxial strain
affects the electronic properties, such as ionization potential, electron affinity, electronic gap, and work function, of
different classes of 2D materials from X-enes to nitrides and transition metal dichalcogenides. The analysis of the states in
terms of atomic orbitals allows to explain the observed trends and to highlight similarities and differences among the
various materials. Moreover, the role of many-body effects on the predicted electronic properties is discussed in one of
the studied systems. We show that the trends with strain, calculated at the GW level of approximation, are qualitatively
similar to the DFT ones solely when there is no change in the character of the valence and conduction states near the gap.
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Introduction

Much of the emphases on 2D materials1–3 was born with the

discovery of graphene, for which the Nobel Prize in physics

was awarded to Novoselov and Geim in 2010.4 Graphene is

a 2D crystal made up of carbon atoms arranged in a

hexagonal honeycomb form; it is one million times thinner

than paper, almost transparent, and, at the same time, is the

strongest material in the world.5,6 Its electronic structure

can be easily derived from a simple tight-binding model,

which explains the presence of bands with conical disper-

sion intersecting at the Fermi level, thus making graphene a

semimetal.7 Massless Dirac fermions move in graphene as

fast as vF¼ 106 m=s at the Fermi level, and twisted bilayers

of graphene have even been shown to be superconductors

for very small twisting angles.8 This peculiar linear disper-

sion of low-energy carriers, which can be mapped to an

effective 2D Dirac Hamiltonian, is very different from the

usual parabolic dispersion of bulk semiconductors. This has

stimulated a lot of work to theoretically predict and experi-

mentally observe novel physical effects in this 2D material.

Nevertheless, despite the enormous interest both at the fun-

damental and applicative level, the lack of an electronic gap

limits graphene use in applications like digital electronics,
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field-effect transistors, and optoelectronics at visible

frequencies. For this reason, the last years have witnessed

growing efforts to find a way to open its gap, leaving unmo-

dified its peculiar electronic and mechanical properties, but

also to grow and characterize other novel metallic and semi-

conducting two-dimensional materials beyond graphene.

Following the route of graphene, broad families of 2D

materials are hence continuously developed and studied in

view of their interesting physical properties and of a large

number of their envisaged device-oriented applications.9,10

Because of their atomic-scale thickness, they are character-

ized by weak dielectric screening, strong light–matter inter-

action, and highly bound excitons. Moreover, atomic and

molecular doping,11–13 external fields,14 and also strain15–17

may have a very deep impact on their electronic and optical

properties. In particular, strain engineering is very exciting

since, differently from 3-D traditional materials, 2D mate-

rials can endure remarkably large mechanical strain (up to

10%), hence creating opportunities to modulate their

physical properties for interesting device applications.

Silicene,18–20 the silicon-based counterpart of graphene,

represents the first exciting material merging the excep-

tional physical properties of graphene with the simplicity

of easily integrating it in already existing and largely devel-

oped silicon-based technology.21,20 A field-effect transistor

has been reported at room temperature.22 Further interest in

silicene arises from its predicted nontrivial topological

properties.23 Freestanding ideal silicene presents a buckled

honeycomb structure.19 Like graphene, silicene has a semi-

metallic behavior and possesses (in the absence of spin–

orbit corrections) massless fermions at the k-point of the

brillouin zone (BZ).24,25

Other members of the so-called X-enes family (boro-

phene, germanene, stanene, phosphorene, arsenene, anti-

monene, bismuthene, and tellurene) are also of particular

interest for their excellent physical, chemical, electronic,

and optical properties.26

The evidence that bulk group-III nitrides are among the

most important materials for solid-state lighting, as wit-

nessed by the Nobel prize awarded in 2014 to Akasaki,

Amano, and Nakamura, stimulated in the last years several

theoretical27,28 and experimental29–31 studies on 2D honey-

comb III-N sheets. From the experimental side, their

growth is very challenging because, similar to the case of

silicene, no simple route to mechanical or chemical exfo-

liation can be used, due to their 3-D wurtzite structures

(only BN crystallizes in the hexagonal layered form in

bulk). However, several promising experimental attempts

to realize 2D III-nitrides have been reported so far.

Among layered materials, for which exfoliation is possi-

ble, transition metal dichalcogenide (TMD) occupies a pro-

minent place in recent worldwide research.32–35 They are of

type MX2, where one layer of transition metal atoms (M) is

sandwiched between two layers of chalcogen (X) atoms,

crystallizing mainly in the hexagonal or rhombohedral forms

with metal atoms having octahedral or trigonal prismatic

coordination. Among this broad family, group-VI TMD

(MX2 with M ¼ Mo, W, and X ¼ S, selenium, tellurium

(Te)) has received a lot of attention due to their tunable

bandgap, strong light–matter interaction,36,37 large spin–

orbit effects, strong influence of doping, functionalization,

external field, and strain. In the hexagonal form, they are

direct gap semiconductors when monolayer (ML) while

exhibiting indirect gaps when BL and thicker multilayers,

being promising materials for flexible electronics, light

emission, energy storage, solar energy conversion, as well

as electrochemical catalysis and biosensors.38–41

In this article, we use first-principle DFT calculations to

study the role of biaxial uniform strain on the structural and

electronic properties of 2D materials beyond graphene: sili-

cene, group III-nitrides, and TMD. In particular, we focus on

the behavior of their band structure, electronic gap, work-

function (WF), ionization potential (IP), and electron affinity

(EA) and perform a comparative analysis for nonpolar (gra-

phene and silicene), polar (aluminum nitride (AlN) and gal-

lium nitride (GaN)) honeycomb lattices, and TMD

(molybdenum disulfide (MoS2) and molybdenum ditelluride

(MoTe2)) in the monolayer and bilayer form.

Methods and computational details

All the DFT calculations to obtain the structural and

electronic properties have been performed using the

Quantum-Espresso code42 within the local density approx-

imation (LDA),43 perdew becke ernzerhrof (PBE),44 XC

functional for nitrides (TMD). For the case of the two X-

enes (graphene and silicene), we performed calculations

using both LDA and PBE with the specific goal to look

at the effect of local or semilocal XC on the calculated

values of the work functions. The van der waals (vdW)

correction45 has been applied to take into account the inter-

action between the layers in TMD BL.

For X-enes and nitrides (TMD), we used scalar (fully)-

relativistic optimized norm-conserving46 pseudopotentials

from the quantum-espresso (QE) repository.

The self-consistent density for graphene and silicene was

computed using a 15� 15� 1 k-point sampling for the

ground state with plane wave cutoff of 100 Ry. For nitrides,

we used a nonshifted 18� 18� 1 k-point sampling for the

ground state and a plane wave cutoff of 100 (200) Ry for the

structural optimization and band structure of AlN (GaN). For

TMD, we sampled the BZ using a uniform 18� 18� 1

mesh and used a plane wave cutoff of 120 Ry.

To simulate isolated layers, vacuum sizes of 15 and 20 Å

have been chosen for X-enes and nitrides, respectively,

while 17.8 (16.5) Å has been used for TMD-ML (BL). The

geometry of each system has been relaxed at each value of

strain until the forces on the atoms were less than 10�2 eV

Å�1. The values of applied strain are reported in the form

e ¼ a�a0

a0
, where a0 is the equilibrium lattice constant. Pos-

itive values correspond to tensile strain, while negative

values correspond to compressive strain. The equilibrium
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geometries at zero strain are in very good agreement with

the existing literature47,48 and the main equilibrium struc-

tural parameters are reported in Table 1.

To assess the role of many-body effects, for one of the

studied systems, that is, the MoTe2 monolayer, we went

beyond the single-particle approach. On top of the DFT

simulations, we performed one-shot perturbative GW calcu-

lations at 2%; 0;�2% strain using the Yambo code.49,50 A

cutoff of 240 Ry has been used for the exchange part of the

quasiparticle corrections < Sx � Vxc >, while 8 Ry and 100

bands were employed for the correlation part of the self-

energy < Sc >. To speed up the convergence with respect

to the empty states, we adopted the technique described by

Bruneval F and Gonze.51 A plasmon–pole approximation for

the inverse dielectric matrix has been applied.52 Moreover,

to guarantee the simulation of isolated layers, a cutoff in the

bare Coulomb potential has also been used.50,53 The k-point

sampling was selected to be 42� 42� 1 in the BZ.

Results

The main goal of this work is to describe how the electronic

properties of different classes of metallic and semiconduct-

ing 2D materials can be tuned via the application of a uni-

form biaxial strain with the aim to highlight similarities and

differences among the different systems.

For all the 2D materials, we have calculated the WF

obtained as the energy difference between the Fermi energy

EF and the vacuum potential E vac. For 2D semiconductors,

we report the electronic band structures and bandgap values

at several biaxial uniform compressive and tensile strains,

the IP ( IP ¼ E vac � E VBM) and the EA ( EA ¼
E vac � E CBM) to show their specific dependence on strain

and to understand which are the different effects leading to

the peculiar behaviors observed. For nitrides (TMD ML and

their homobilayers), the DFT band structures have been cal-

culated for applied strains ranging from �10% to 10%
(�7% to 7% for MoS2,�10% to 10% for MoTe2) but, here,

we report only those at zero strain and�4%, 4% (�5%, 5%
for MoS2 and MoTe2). For each atomic structure at a given

strain, all the quantities are determined self-consistently in a

ground-state electronic structure calculation. The vacuum

level is obtained as the asymptotic value of the electrostatic

potential in the direction perpendicular to the layer at a far

distance, 10 Å or more, from the system.

Graphene and silicene

For these two X-enes, we observe that for increasing com-

pressive strain, the WF decreases, whereas it increases for

increasing tensile strain (see Figure 1). For graphene, this

behavior is in substantial agreement with the existing liter-

ature54,55 and it has been explained in terms of a strain-

induced enhancement of the density of states (DOS) close

to the Fermi level.56,57 Results for silicene are qualitatively

similar to the ones obtained for graphene. In the tensile

region, the WF variation due to a 10% of strain is found to

be 0:15 eV, in good agreement with the results of Qin

et al.,58,59 where a change of about 0:2 eV has been obtained.

We observe that, for both the systems, a simple argu-

ment of plausibility of this behavior is based on the fact that

as long as the materials are stretched, the interaction among

the ions of the lattice decreases, thus approaching the beha-

vior of isolated atoms in the limit of infinite tensile defor-

mation. The ionization potentials for C and Si atoms are

11:2 and 8:1 eV, respectively, and these values are much

higher than the WF of their correspondent 2D forms at

equilibrium, 4:24 eV for graphene, and 4:35 eV for sili-

cene. For this reason, it is expected that the WF of these

materials, characterized by fully covalent bonds, should

grow with increasing uniform tensile deformation.

To test the possible dependence of our results on the

choice of the XC potential used to describe the various

systems, we have analyzed the strain dependence of the

WF of graphene and silicene both within the LDA and PBE

scheme for the XC term. The results of this analysis are

shown in Figure 1 in different colors. It is noted that the

Table 1. Equilibrium lattice constant a0, buckling for X-enes and
nitrides, and X-M-X angle for TMD.

a0 (Å) Buckling (Å)/angle (�) d1 (Å) d2 (Å)

Graphene 2.47 0 — —
Silicene 3.87 0.45 Å — —
GaN 3.17 0 — —
AlN 3.03 0 — —
MoS2-ML 3.18 81.0� 3.14 —
MoTe2-ML 3.56 82.6� 3.62 —
MoS2-BL 3.18 80.7� 3.12 3.05
MoTe2-BL 3.54 83.1� 3.62 3.46

d1: the vertical distance chalcogen–chalcogen; d2: vertical distance
between layers; TMD: transition metal dichalcogenide; GaN: gallium
nitride; AlN: aluminum nitride; MoTe2: molybdenum ditelluride; MoS2:
molybdenum disulfide.

Figure 1. Dependence of the WF by the strain value using PBE
and LDA XC potentials. Top panel: results for graphene. Bottom
panel: results for silicene.
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choice of the functional affects the value of the WF by

adding a constant shift of 0:24 eV for graphene and of

0:41 eV for silicene. In particular, the zero strain WF for

graphene ranges from 4:24 eV in PBE to 4:48 eV in LDA,

thus producing a spread of results, which is fully consistent

with values in the range from 4:28 eV to 4:5 eV found in

the literature.54,55,60–62 But, interestingly, we observe that

the functional induced variation turns out to be a constant

shift, which is independent of the strain value. Thus, we can

conclude that the strain-induced variations of the WF do

not depend on the choice of functional and can be assessed

unambiguously within the DFT framework.

Nitrides monolayers: AlN and GaN

The 2D nitrides have the same flat honeycomb structure as

graphene but with polar bonds due to the different electro-

negativity of the lattice atoms. To understand the trends of

the IP, WF, and EA under strain, it is important to analyze

their band structures. These are shown in Figure 2 for GaN

and AlN at 0, �4%, and 4% uniform strain. In agreement

with existing literature,27 we have found that at zero strain,

both AlN and GaN have an indirect bandgap Gc � Kv and

the gap (increases) decreases for (compressive) tensile uni-

form strain, as shown in Figure 2. Interestingly, an impor-

tant difference occurs between AlN and GaN.

While AlN remains an indirect gap material for all the

values of considered strain, GaN undergoes an indirect to

direct gap transition at the compressive strain of about

�4%. It is worth to mention that unstrained GaN has an

indirect gap only at the DFT level, which switches to direct

when the GW corrections are introduced.27,63 In the case of

strain, the VBM switches from K to G, because the state at

G goes up in energy under compressive strain, while the

corresponding eigenvalue at K does not show a big varia-

tion. This behavior can be explained by analyzing the char-

acter of the KS wavefunction at Kv and at Gv (see bottom

panel of Figure 3). While the main contribution of Kv is due

to pz N orbitals, Gv has a large contribution from px;y (VBM

and VBM-1 are degenerated) orbitals of N atoms. The

analysis of the corresponding states in AlN (see Figure 3,

top panel) reveals similar contributions for Kv and Gv, but

the more localized nature of the orbitals implies a smaller

sensitivity of the bonds to the applied strain and, in partic-

ular, a minor energetic variation of Gv in AlN under com-

pressive strain, with respect to the case of GaN. We report

in Figure 4, for 2D AlN and GaN, the dependence of

valence band maximum (VBM), conduction band mini-

mum (CBM), vacuum potential (left panel); IP, EA, WF

(center panel), and electronic gaps (right panel). In both

materials, the vacuum potential, as well as CBM and VBM,

decreases (increases) when increasing tensile (compres-

sive) strain (left panel). Looking at the central panel, we

note that the IP of GaN increases (decreases) with increas-

ing tensile (compressive) strain, showing similar behavior

to what observed for the WF of X-enes. The two different

slopes between �10% to �4% and between �4% to 10%
are related to the change of VBM from Gv to Kv, as dis-

cussed before.

It is worth to notice that the corresponding IP of AlN

shows an opposite trend, increasing (decreasing) when the

compressive (tensile) strain increases. This can be

explained, again, in terms of the stronger localization of

Figure 2. Band structrure of AlN (top) and GaN (bottom)
monolayers for biaxial uniform strain of �4% (blue), 0% (red),
and 4% (green). The dashed gray line indicates the VBM for the
unstrained material, set as zero energy.

Figure 3. Plot of jcj2 for Gv (left) and Kv (right) of AlN (top panel)
and GaN (bottom panel) monolayers at zero strain. In green, the
isosurfaces at 1%. The represented atoms are Al (orange), Ga
(magenta), and N (blue).
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the electronic charge near the nitrogen atoms that occurs in

AlN, with respect to the case of GaN, due to the larger

difference in the electronegativity between anion and

cation. The EA is given by the position of the conduction

bands bottom, and both materials show a similar behavior:

EA increases (decreases) for increasing tensile (compres-

sive) strain. The CBM is always at G and from the analysis

of the KS wave functions, it is due to a hybrid of s states of

the cation (Al/Ga) and anion (N), where the former gives a

larger contribution. Also, for GaN, a small contribution from

the d states appears. This analysis explains why the slope of

CBM and then of EA is steeper in GaN with respect to AlN.

The dependence of WF and gaps from strain is then a direct

consequence of the IP and EA behavior.

TMD: MoTe2 and MoS2

Upon the application of strain, the electronic properties of

TMD show a more complicate behavior with respect to

those of X-enes and nitrides. Moreover, despite the simi-

larity in their atomic structures, the electronic properties of

MoS2 and MoTe2 monolayers and bilayers have similar but

not completely equivalent trends.64,65

MoTe2 and MoS2 monolayer. In agreement with the existing

literature, the two MoX2-ML studied here exhibits, at zero

strain, a direct bandgap with VBM and CBM located at the

six K points corners of the BZ (see the central panels of

Figure 5). The bandgap values of 1:61 eV for MoS2 and

0:93 eV for MoTe2 are in agreement with previous DFT

Figure 4. AlN (solid lines) and GaN (dashed lines). Left panel: vacuum level (black), CBM (blue), and VBM (red) dependence on the
strain. Center panel: IP (black), EA (blue), and WF (red) dependence on the strain. Right panel: gap dependence on the strain.

Figure 5. Electronic band structure of monolayer MoTe2 (top) and MoS2 (bottom): under compressive strain (left/blue), under tensile
strain (right/green), and with zero strain (center/red).
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calculations performed at the same level of theoretical

approximation.66 Beyond the K points also G and Q (where

a minimum of the CB is visible in the band structure, along

the G� K direction) critical points have to be mentioned,

because they are energetically close to Kv and Kc and, under

strain or in multilayers, Qc may become the global CBM

and Gv the global VBM. For all the group-VI TMD, it is

well-known that the edges of the conduction and valence

bands are composed predominantly by d metal (M) and p

chalcogen (X) orbitals.67 However, the types (symmetries)

and contributions of these orbitals vary with the chosen k-

point and with the constituent atoms. As shown in Figure 6

at K, the VB (CB) is mainly described by dxy; dx2�y2 (dz2 )

M-orbitals with a small contribution of px;y X-orbitals. At

G, the VB has mainly a M-dz2 character with a small X-pz

contribution.

The analysis of Qc shows a similar composition of Kv

with minor contribution from dz2 and px;y;z orbitals.68 Uni-

form tensile strain causes a general reduction of the direct

gap (at K), which can be understood, using a simple tight-

binding picture, as due to a minor overlap among orbitals.

Nevertheless, because of the different orbital composition,

the application of strain acts in a different way at the var-

ious high-symmetry k-points. In particular, due to the

dominant dxy; dx2�y2 contribution, a downward shift of Kv

is observed, while Gv, for its dz2 main composition, remains

essentially unshifted.69 This effect induces a direct-to-

indirect bandgap crossover (Gv � Kc) when tensile strain

is applied, which occurs at e < 1ð*5Þ% for MoS2

(MoTe2) monolayer. Indeed, the extreme delocalized

nature (see, for instance, Figure 7) of the p-orbitals of Te

with respect to those of sulfur makes MoTe2 less sensitive

to strain. This means that smaller amounts of tensile strain

are needed to shift down Kv in MoS2, as evident in the right

panels of Figure 5.

Interestingly, the behavior of MoS2 and MoTe2 under

uniform compressive strain is very different. In MoS2-

ML, the CBM moves from K to Q for strain above

�2%, hence inducing the formation of an indirect gap

Kv � Qc. On the other hand, in MoTe2-ML, when com-

pressive strain increases, the two CB minima, along the L
and S directions decrease their energies, while the valence

band at M increases in energy. These two facts lead to the

first transition from a direct gap Kc � Kv to an indirect gap

Qc � Kv at about �2% of strain and to a second transition

to another indirect gap, Qc �Mv, for strain of about �5%.

From the analysis of the wavefunctions at Mv, it results

that contributions come from dx2�y2 ,dz2 orbitals of the

metal atoms and more dominant contributions come from

px;y;z orbitals of chalcogen atoms. Again, due to the more

delocalized nature of the p orbitals of Te with respect to S,

Mv is much more sensitive to compressive strain in MoTe2

than in MoS2 (left panel of Figure 8). The calculated WF,

IP, EA, and electronic gap trends with strain for TMD

monolayers are shown in Figure 8. VBM, CBM, and

vacuum potential curves (left panel) are qualitatively sim-

ilar to those of 2D nitrides, but we note that the slopes are

very different. In particular, the vacuum potential

decreases more rapidly in MoTe2 with respect to the other

cases. For MoS2-ML, the IP (central panel in Figure 8)

decreases when compressive strain is applied with an

almost linear behavior due to the fact that the VBM

remains Kv. Also, in MoTe2, the IP decreases by applying

a compressive strain, but at approximately�5%, there is a

change in the slope, caused by the change of the VBM

from Kv to Mv.

Figure 6. Orbital projected band structure of MoTe2 ML: p-
orbitals of Te (top panel) and d-orbitals of Mo (bottom panel).

Figure 7. Plot of jcj2 for Qc of MoS2 (left) and MoTe2 (right)
bilayers at zero strain green isosurface at 5%. Mo (red), S (pink),
and Te (yellow).

6 Nanomaterials and Nanotechnology



For what concerns tensile strain, we see that the IP of

MoS2 decreases by increasing tensile strain. This can be

explained in the following way: from very small strain

values (less than 1%), the VBM moves from Kv to Gv and

it remains almost unaffected by the strain (see the blue

dots in the left panel of Figure 8); in this way, we can

attribute the IP variation to the decreasing behavior of the

vacuum potential. For MoTe2 (black triangles, center

panel in Figure 8), IP first increases until it reaches a

maximum around þ5% and then begins to decrease due

to the fact that the VBM shift from K to G at higher

tensile strains.

For both TMD-ML, EA decreases when reducing the

lattice parameter up to the crossover of the CBM from Kc

to Qc. Then, EA begins to increase with a very small rate

when Qc becomes the global conduction band minimum

(central panel of Figure 8).

From the analysis of the data shown in the central panel

of Figure 8, and similar to the case of nitrides, it is clear that

the behavior of the WF depends on both IP and EA curves

and shows an intermediate behavior. We can say that the

WF and EA values for the two TMD-ML have a qualita-

tively similar behavior: an increase with a change in the

slope that occurs when the direct to indirect bandgap cross-

over happens for low compressive strain. The linearity of

EA is due to the smoothness of the vacuum potential and

CBM (left panel), while the WF values are affected by the

more complex behavior of the VBM (left panel) with strain.

Finally, the bandgaps (Figure 8, right panel) have a totally

different trend for MoS2-ML and MoTe2-ML, showing a

Figure 8. Dependence on the strain of vacuum level (black), CBM (blue), VBM (red) (left panel); IP (black), EA (blue), WF (red) (central
panel); and (c) electronic gap (right panel) for monolayer MoS2 (solid lines) and MoTe2 (dashed lines).

Figure 9. Band structure of bilayer MoTe2 (top) and MoS2 (bottom): under compressive strain (left/blue), under tensile strain (right/
green), and with zero strain (center/red).

Postorino et al. 7



much more symmetrical behavior of MoTe2 for tensile and

compressive strain.

Beyond the monolayer. TMD bilayers and multilayers are

known to be indirect bandgap semiconductors. MoS2

(MoTe2) shows an indirect gap Gv � Kc of 1.1 eV

(Kv � Qc of 0:93 eV) in partial agreement with previous

results47 (see the central panels of Figure 9).

The p X-orbital composition at Qc and Gv plays an

important role in the crossover from the direct to indirect

bandgap from monolayer to bulk. Indeed, the close distance

between X-p orbitals from neighboring layers leads to large

hopping, which changes the energy of Qc and Gv substan-

tially.67 For this reason, the bandgap is very sensitive to

small changes in the interlayer distance, thus dependent on

the approximated vdW functional used.

In this regard, it is worth to mention that for MoTe2

bulk, we specifically tested how our simulated structural

parameters (a¼ 3.54 Å, Mo–Mo vertical distance between

two different layers 7.33 Å) are obtained using the selected

vdW functional, reproduce the experimental data (a ¼ 3.54

Å, Mo–Mo distance between two different layers 7.33 Å)

reported by Knop and MacDonald,70 finding a very good

agreement.

Moreover, always for MoTe2-BL, we also tested other

two vdW functionals taken from the study by Grimme71

and Barone et al.,72 respectively. In both cases, the final

optimized structures are very similar to the one reported in

Table 1, with lattice parameter a and Te–Te intralayer ver-

tical distance, which changes less than 0.3%. Only using

the second functional, we observe a reduction of 2.6% of

the interlayer vertical distance. The electronic band struc-

ture does not show relevant changes near the gap region

with the largest downshift of the VBM at G of 0.05 eV.

In Figure 7, we show the charge density plot of the

Qc state for MoS2 (left) and MoTe2 (right) bilayers,

where the important contribution coming from p-orbitals

of chalcogen atoms is evident. Similar to what discussed

above, the very delocalized nature of these orbitals for

the case of Te is evident from the figure. MoS2 and

MoTe2 bilayers show, already at zero strain, different

values of VBM and CBM due to the different hopping

between p of the two adjacent layers, as shown in Figure

7. When tensile strain is applied in both BL, Kc and Kv

go down in energy in agreement with the monolayer

behavior (right panels of Figure 9). For compressive

strain, similar to the monolayers, Qc goes down in

energy and, for MoTe2, Mv becomes the VBM when

�4% strain is applied (left panel).

In other words, trends previously discussed for mono-

layers remain qualitative similar for bilayers (see Figure 9),

but different values of strain are needed to obtain changes

in VBM and CBM with respect to the MLs. Moreover,

MoTe2-BL results are more sensitive to strain with respect

to MoS2-BL. This is also highlighted in Figure10, where

the IP curves of the monolayer and bilayer of MoS2 and

MoTe2 are reported, respectively, in the top and bottom

panels.

Role of many-body effects

Despite the DFT electronic properties of 2D materials that

are affected by the well-known bandgap problem, previous

works have suggested that their behavior under strain

reproduces, at least qualitatively, the one obtained with

more refined excited state methods, such as GW .65 In par-

ticular, for MoTe2, it has been shown73 that the response to

strain of CBM and VBM studied within DFT plus hybrid

functional HSE06 qualitatively agree. To confirm these

results, we have calculated, for MoTe2-ML, how CBM and

VBM change with strain, using the perturbative G0W0

method. The obtained G0W0 bandgap is 1.73 eV for the

unstrained structure. This value is in good agreement with

that one reported by Robert et al.74 and Rasmussen and

Thygesen75 of 1.72 eV.

Because of the heaviness of GW calculations, we have

limited our analysis to zero strain and to one value of com-

pressive (�2%) and tensile (2%) strain. In Figure 11, we

report the energy values of the CBM (red) and VBM (blue)

at both DFT and G0W0 levels of approximation. The VBM

and the CBM are at K for 0 and þ2% tensile strain, but the

Figure 10. IP versus strain for monolayer (red) and bilayer (blue)
of MoS2 (top panel) and MoTe2 (bottom panel).
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CBM moves at Q for �2% strain. While the KS eigenva-

lues (dashed lines) for Kc and Kv follow a trend with strain

qualitatively similar to the correct quasiparticle one (solid

lines), some deviation occurs for Qc. This is clearly due to

the fact that the quasiparticle correction of the state at Qc is

quite different from that of the state at Kc, due to the dif-

ferent contributions of atomic orbitals composing them.

Our analysis of many-body effects is clearly limited, hav-

ing considered only three values of strain, but it is clear that

some caution has to be taken when trends with strain of the

electronic gaps and work functions are extracted at the DFT

level if a change in the character of the valence and con-

duction states near the gap occurs.

Conclusions

We have presented a systematic study of the effect of uni-

form biaxial compressive and tensile strain on the elec-

tronic properties of several 2D materials ranging from

semimetallic ones, like the X-enes, to semiconductors like

nitrides and TMD.

Each material shows its own behavior strictly linked to

the changes in the band structures and to the orbital char-

acter of the CBM and VBM. In all monolayers, the WF

always increases with the lattice parameter, while the IP

and EA show material-dependent trends.

The slope of the IP versus strain is usually positive,

but exceptions arise for AlN (very small negative slope)

and MoS2 (where the right and left derivatives are dif-

ferent). The bilayers appear to be much more sensitive

to strain than the isolated layers, hence, the curves are

similar only in some regions. The difference in beha-

viors for nitrides and TMD is explained in terms of the

localization of the VBM and CBM wave functions. We

have also shown that the choice of the XC potential

while affecting the absolute value of the WF does not

change the general behavior of the electronic properties

with respect to the strain. Finally, we have demonstrated

that special care has to be used when the character of

the VBM or CBM changes with the strain, as the DFT

and G0W0 trends may not be equivalent.
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