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Abstract

In this thesis, we will analyze the Hessian locus associated to a projective hypersurface. Interest in

this topic goes back centuries. For example, in 1876 Gordan and Noether showed that a hypersurface

X defined by a homogeneous polynomial f in a projective space of dimension at most 3 is a cone if

and only if the hessian polynomial of f (i.e. the determinant of the Hessian matrix of f) is identically

zero. In the first chapter of this thesis, we will give a new proof of this fundamental result by showing

an equivalent algebraic statement regarding the validity of Lefschetz properties for specific standard

Artinian Gorenstein algebras. The techniques used in this setting, for example the construction and

description of a geometric framework arising from the assumption of the failure of a specific Lefschetz

property, will then be improved and exploited in Chapter 2, where we will show these properties for

specific Gorenstein algebras, such as the Jacobian rings of smooth cubic hypersurfaces in projective

spaces of dimension 4 and 5 (i.e. cubic threefolds and cubic fourfolds). Finally, in Chapter 3, we

will analyze the Hessian hypersurface Hf associated to a smooth cubic hypersurface X = V (f), i.e.

the zero locus of the hessian polynomial of f . By exploiting properties coming from some Gorenstein

algebras and by using a natural identification between quadratic forms and points of the Hessian

hypersurface, we will study the singular loci of Hf and a natural desingularization. We will finally

study the Hessian Hf associated to a generic smooth cubic fourfold by describing geometric properties

and birational invariants of the smooth surface over which Hf is singular. Moreover, for such a

surface, we will construct a natural connected unramified double cover, by using tools coming from

representation theory.
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Introduction

Hypersurfaces in projective space play a central role in algebraic geometry. Many mathematicians

have studied their geometric and algebraic properties, which are also reflected in the so called Hessian

locus.

Consider K an algebraically closed field of characteristic 0 and X = V (f) ⊂ Pn, a hypersurface defined

by a homogeneous polynomial f ∈ K[x0, · · · , xn]d of degree d. The Hessian matrix of f is the matrix

Hess(f) =

[
∂2f

∂xi∂xj

]
i,j=0,··· ,n

and the Hessian locus of X is the zero locus Hf := V (hess(f)), where hess(f) is the determinant of

Hess(f), which is either a homogeneous polynomial of degree (d−2)(n+1) or is identically zero. Note

that hess(f) is a homogeneous polynomial of degree (d− 2)(n+1) if X is a smooth hypersurface. The

problem of characterizing the hypersurfaces X = V (f) for which the determinant hess(f) is identically

zero has a long history. Since the middle of the 19th century, several authors have worked on this

problem: in the 1850’s, in both [Hes51] and [Hes59], Hesse proposed a remarkable equivalence, by

claiming that a hypersurface defined by a polynomial with vanishing hessian is a cone (the converse

is clearly true). This happens to be false and in a fundamental paper of 1876 ([GN76]) Gordan and

Noether proved the following:

Theorem A. (Gordan-Noether)

Let X = V (f) ⊂ Pn be a hypersurface defined over a field of characteristic 0 and assume that hess(f) ≡
0. Then, if n ≤ 3, X is a cone.

Gordan and Noether introduced the fundamental restriction on the admissible dimension of the

projective space and provided counterexamples for n ≥ 4. The so called Perazzo cubic 3-fold in P4

(introduced in [Per00]) is the simplest of such counterexamples, which will be analyzed in Section 1.5.

This theorem by Gordan and Noether still inspires many researchers (see [dBW20,CO20,DS21,GR15,

Los04,Rus16]), who also have revisited the original proof in recent decades, trying to simplify it or to

interpret it in a more geometric way. Much work has also been done to improve our understanding

of the counterexamples for n ≥ 4 and to provide a classification in every dimension (let us mention

[Rus16, Chapter 7.4] and also [GN76,Per00,Fra54,Per57,Per64,Los04,CRS08,GR15,dB18]).

The first result presented in this thesis is a direct proof of Theorem B, which is an algebraic

version of the theorem of Gordan and Noether. Before introducing Theorem B, let us present some

basic notions (see Section 1.1 for details). A standard Artinian Gorenstein K−algebra (SAGA) is an

iii



iv

Artinian graded K−algebra R = ⊕Ni=0R
i, such that the vector spaces Ri are of finite dimension and

R is generated in degree 1 and satisfies the Poincaré-Gorenstein duality (i.e. RN ≃ R0 ≃ K and the

pairing given by the multiplication map Ri ×RN−i → RN is perfect).

Examples are given by the even cohomology ring of an oriented compact variety X of even dimension

which is generated in degree 2: if dim(X) = n then R = ⊕ni=0H
2i(X,C) is a SAGA. In this setting,

the following result is well known (see for example [Voi07a, Theorem 6.25]):

Theorem (Hard Lefschetz Theorem). If X is a compact Kähler manifold of dimension n, then the cup

product of the r−th power of a Kähler form induces an isomorphism between Hn−r(X) and Hn+r(X).

A natural question is whether a general standard Artinian Gorenstein algebra satisfies an analogous

property and in the 80’s, inspired by the above theorem, the so-called Lefschetz properties for an

Artinian algebra were defined. The property described in the Hard Lefschetz theorem is roughly the

definition of the strong Lefschetz property for an Artinian algebra (for details see Definition 1.1.6).

Similarly, we say that an algebra R satisfies the weak Lefschetz property if the multiplication map

x· : Rk → Rk+1 is of maximal rank for all k ≥ 0 and x ∈ R1 general. One can refer to Section 1.1 for

rigorous definitions. For a comprehensive treatment of Lefschetz properties the interested reader can

refer to [HMM+13].

In the first part of this thesis, we will discuss the two seemingly unrelated subjects of Artinian algebras

and Hessian loci, which turn out to be strongly connected. In particular, we will consider standard

Artinian Gorenstein algebras R = ⊕Ni=0R
i for which the strong Lefschetz property in degree 1 fails,

i.e. such that the multiplication xN−2· : R1 → RN−1 has non trivial kernel for every x ∈ R1. To such

an algebra, as in [AR19], one can associate an incidence correspondence

Γ = {([x], [y]) ∈ P(R1)× P(R1) | xN−2y = 0}.

By studying projective and differential properties of varieties arising in this framework, we will find

some constraints on their dimensions and on the dimensions of some of the graded parts of R. In

particular, we will prove the following:

Theorem B.

All standard Artinian Gorenstein K−algebras R with dim(R1) ≤ 4 satisfy the strong Lefschetz property

in degree 1, i.e. there exists an element x ∈ R1 such that the multiplication map xN−2· : R1 → RN−1

is an isomorphism.

Despite the algebraic nature of the statement, our approach to Theorem B is geometric and gives

as a byproduct a new proof of Theorem A.

The interesting and, in some sense, surprising equivalence between Theorem A and Theorem B

(see Section 1.4 or [HMM+13,Rus16] for example) is realized by a connection between these different

settings based on Macaulay’s theory of inverse systems ([HMM+13, Theorem 2.71] or the original

[Mac94]), which allows to construct any standard Artinian Gorenstein algebra, from a homogeneous

form in a finite number of variables.

We would also like to highlight the analogue of the famous Gordan-Noether identity (see (1.2)) in the

world of Gorenstein Artinian algebras. This identity can be considered as the heart of the classical
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treatment of the Gordan-Noether Theorem and its proof involves some delicate manipulations. From

our geometric (differential) approach, we derive what we will call the Gorenstein-Gordan-Noether

Identity (see Corollary 1.2.4), which has a very elementary treatment and, as the original Gordan-

Noether identity, is a key relation for proving Theorem B.

A natural question arising from our work is whether the methods used to prove Theorem B have

more applications and, in particular, if they could be applied to study problems related to other

strong or weak Lefschetz properties for Gorenstein rings. Let us stress that both the weak and the

strong Lefschetz properties are known for only a few Artinian algebras, as observed in Subsection

1.1.1. With this in mind, in Chapter 2, we will treat some open cases, focusing on Jacobian rings of

smooth hypersurfaces. Given X = V (f) ⊂ Pn, a smooth hypersurface of degree d, one can consider

the Jacobian ideal of f

Jf :=

(
∂f

∂x0
, · · · , ∂f

∂xn

)
and the Jacobian ring R = S/Jf . This is a particular example of standard Artinian Gorenstein

K−algebras. The importance of the Jacobian ring of a smooth hypersurface X lies in its geometric

relation to X itself. For example, building on works of Grothendieck, in the seminal works [CG80,

CGGH83,GH83,Gri83], Carlson, Griffiths, Green and Harris proved that a portion of the primitive part

of the Dolbeault cohomology of X is codified in R and that R plays a crucial role in the infinitesimal

variation of Hodge structure of X.

We will focus on the case of smooth cubic hypersurfaces, which has captured the interest of many

mathematicians in relation to many different problems. In particular, we will deal with Jacobian rings

of smooth cubic threefolds in P4 and smooth cubic fourfolds in P5 and we will prove the following:

Theorem C.

The Jacobian ring R of a smooth cubic threefold satisfies the strong Lefschetz property, i.e. if x ∈ R1

is general the multiplication maps x3· : R1 → R4 and x· : R2 → R3 are isomorphisms.

The Jacobian ring R of a smooth cubic fourfold satisfies the strong Lefschetz property in degree 1, i.e.

given x ∈ R1 general the multiplication map x4· : R1 → R5 is an isomorphism.

Theorem C will follow from a more general statement for complete intersection Gorenstein algebras

presented by quadrics, i.e. quotients of K[x0, · · · , xn] by ideals generated by a regular sequence of

homogeneous polynomials of degree 2 (see Definition 1.1.3). These results provide evidence for a

well known conjecture which states that complete intersection Gorenstein algebras in characteristic 0

should satisfy the Lefschetz properties (see for example [HMM+13, Conjecture 3.46]).

In Section 2.4, we will extend our proof of some of the strong Lefschetz properties to complete inter-

section Gorenstein algebras presented by quadrics, when the dimension of R1 is larger. In particular,

we will prove the following:

Theorem D.

Let R be a complete intersection standard Artinian Gorenstein K−algebra presented by quadrics with

dim(R1) = n + 1. Given k ∈ {2, 3, 4}, if n ≥ k + 1, then for x general in R1 the multiplication map

xk· : R1 → R1+k is of maximal rank.
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Since the Lefschetz properties hold for a general complete intersection Gorenstein algebras, it is

interesting to analyze special algebras exhibiting uncommon behaviors. In particular, for complete

intersection Gorenstein algebras presented by quadrics (such as Jacobian rings of smooth cubic hy-

persurfaces), we will study what we call the nihilpotent loci

Ni := {[x] ∈ P(R1) | xi = 0}

and the non-Lefschetz loci (see Definition 2.5.1), the subschemes parametrizing linear forms for

which the injectivity of the multiplication map fails (these were studied for example in [AR19] and

[BMMRN18]). While for general Gorenstein algebras these loci are empty (at least in low degree),

we will study their geometric and algebraic behaviour when this is not the case. For example, we

will obtain a characterization of the cubic Fermat hypersurface, by studying the cardinality of the

nihilpotent locus N2 in its corresponding Jacobian ring (see Corollary 2.6.2). Moreover, by assuming

the non-emptiness of a suitable non-Lefschetz locus, in Section 2.5 we will derive a lifting criterion

for the weak Lefschetz property. This gives a sort of converse for results which prove that Lefschetz

properties are inherited by suitable quotients (see for example [HMM+13, Proposition 3.11] for the

strong Lefschetz property or [Gue19] for the weak one).

In Chapter 3, we continue the study of cubic hypersurfaces from the perspective of their Hessian loci.

As observed above, given a smooth cubic hypersurface X = V (f) ⊂ Pn, we can consider the associated

Hessian locus Hf , which is a hypersurface of degree n+ 1.

The geometry of cubic hypersurfaces in Pn and their Hessians has been studied by many authors (see for

example [CO20,GR15,Huy]). In particular, for n = 3, [DvG07] studies the classical case of the general

cubic surface and of the associated Hessian quartic surface, which is singular in exactly 10 isolated

points. Moreover, [AR96, Appendix IV] studies the case of cubic threefold in P4. In particular, the

author considers the Hessian quintic threefold H associated to a general cubic threefold and constructs

a correspondence variety over H, which is a desingularization of the Hessian hypersurface. Adler shows

that in the general case this Hessian hypersurface is singular along a curve and he also studies the

geometric properties of such a curve, such as smoothness and irreducibility, and computes its degree

and its genus.

With the aim of studying these Hessian loci and their singularities in higher dimension, we analyze

and generalize some constructions described in [AR96, Appendix IV]. In particular, given a cubic

hypersurface V (f), the fact that the Hessian matrix Hess(f) has linear forms as coefficients allows us,

via the evaluation map, to identify Hess(f)|v, for [v] ∈ Pn with the quadric in Jf (the Jacobian ideal

of f), defined as the partial derivative ∂vf . We will consider the loci

Dk(f) = {[x] ∈ Pn | Rank(Hess(f)|x) ≤ k},

which will be identified with the intersections Qk ∩ P(J2
f ), where Qk is the locus of quadrics in Pn

whose rank is at most k. By using the results described in [Har95], we can then get the expected

dimension and the degree (if they are non-empty) of the loci Dk. This can be seen as a first step in
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the analysis of the Hessian hypersurface H, since the loci Dk are strongly related with the singularities

of H. Indeed, by generalizing one of the results presented in [AR96, Appendix IV], we will prove the

following:

Theorem E.

Given a smooth cubic hypersurfaces V (f) ⊂ Pn, the varieties Dn−1(f) and Sing(H) coincide.

To prove the above result, we will consider a correspondence variety over H which can be described

as

Γf = {([v], [w]) ∈ Pn × Pn | ∂v∂w(f) = 0}

which is equipped with a naturally defined involution. This variety Γf also has an important intrinsic

geometric meaning:

Theorem F.

Given a general smooth cubic hypersurface V (f), Γf is smooth and the natural projection π1 : Γf → H
is a desingularization of the Hessian hypersurface.

Let us stress here that by studying a particular kind of standard Artinian Gorenstein algebra

A, defined as the quotient of the ring of differential operators by the annihilator of a general cubic

form f , one can observe two interesting facts. Indeed, the correspondence Γf just defined coincides

with the incidence correspondence Γ used to study the Lefschetz properties for specific Artinian

algebras. Moreover, the Hessian hypersurface Hf associated to a general cubic form f is exactly the

non-Lefschetz locus of A.

Returning to the analysis of the loci Dk(f), we will also show (see Theorem 3.4.1 and Corollary

3.4.2) that for a general smooth cubic hypersurface X = V (f) we have that Sing(Dk(f)) = Dk−1(f).

This means that for f general, the locus Dk(f) is smooth outside the points where the Hessian

matrix has rank strictly smaller than k. Since in [RV17] the authors show that for V (f) smooth and

general cubic fourfold in P5, the locus D3(f) is empty, we will get that in the general case the Hessian

hypersurface associated to a smooth cubic fourfold is singular along a smooth surface. On the other

hand, looking at the expected dimensions of these loci, one has that for bigger dimensions (namely

for Hessians associated to cubic hypersurfaces in Pn, with n ≥ 6) the singular locus of the Hessian

hypersurface is itself singular. It is then natural to approach the study in the case of P5, the first open

and the last one with a smooth singular locus, for f general.

In [AR96, Appendix IV], Adler has developed the study of the curve along which the Hessian

hypersurface associated to a general cubic threefold is singular, by focusing on a specific case, namely

the Klein cubic threefold defined by the polynomial f = x20x1 + x21x2 + x22x3 + x23x4 + x24x0. He

obtains a complete description of this curve, by exploiting the properties of this polynomial and of

the associated hypersurface, such as the invariance under symmetric transformations. In the case of

the Klein cubic in P5, unfortunately, the singular locus of the associated Hessian hypersurface is itself

singular, with singularities arising also from the locus D3(f). Thus, we have not based our analysis

in the study of a specific cubic fourfold. Instead we exploit the nature and the properties of the loci

Dk. In this last part, we will fix the field K = C, since we use singular cohomology, though some of

the results still hold in a more general setting. In general, given a vector bundle E and a line bundle
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L over a projective variety X, one can consider a symmetric vector bundle morphism φ : E → E∗⊗L
and define the loci

D′
k(φ) = {x ∈ X | Rank(φx) ≤ k},

known as degeneraci loci. In the last decades this locus has been studied in several works (for example

in [FL81], [FL83], [HT84a], [HT84b], [HT90], [Laz04], [Tu86], [Tu90], [Tu89]).

By considering the symmetric vector bundle map φ = Hess(f)· : On+1
Pn → On+1

Pn (1), given by the

multiplication by the Hessian matrix of a cubic hypersurface V (f), the loci Dk(f) considered above

coincide with the degeneraci loci D′
k(Hess(f)·). Analyzing these loci from this perspective and using

results of [FL83,HT90,Tu89], one can show the non-emptiness and the connectedness of suitable loci

Dk and, by using the approach presented in [HT84a], one can also calculate some Chern classes. In

the case of the Hessian locus Hf associated to a general smooth cubic fourfold X = V (f) ⊂ P5, we

will compute that the canonical divisor of the surface Z = D4(f) is KZ = 3H|Z + η, where H is the

hyperplane class in P5 and η a 2−torsion element of Pic0(Z). To compute invariants of the surface Z

and to better understand the nature of η, we have constructed (see Subsection 3.5.1) an unramified

double cover of Z. We have done this by seeing the elements of such a surface as rank 4 quadrics and

by exploiting the existence of families of isotropic subspaces of these quadrics. Moreover, by using

tools coming from representation theory (see Appendix A), we will prove that this unramified double

cover is connected and that Z is a regular surface. Finally, by using some formulas of [Pra88] and

the software Magma, we will get that the 2−torsion element appearing in the canonical divisor is not

trivial and we will obtain the description of the locus Sing(Hf ) in the case of a general smooth cubic

fourfold V (f) ⊂ P5:

Theorem G.

Let V (f) be a general smooth cubic fourfold. Then the singular locus of the associated Hessian hyper-

surface Z := Sing(Hf ) is a smooth, irreducible, and minimal surface of general type with degree 35

and numerical invariants

• K2
Z = 315

• geometric genus pg(Z) = 55

• irregularity q(Z) = 0

• (topological) Euler characteristic e(Z) = 357

Moreover, its canonical divisor is KZ = 3H|Z + η (where H is the hyperplane class in P5 and η is a

non-trivial 2-torsion element in Pic0(Z)) and Z is projectively normal.

Outline of the thesis.

In Chapter 1, we will set the basic definitions, we will prove Theorem B and recall the relation with

the Gordan-Noether Theorem. In Chapter 2, we will exploit the techniques introduced in the previous

chapter and we will prove Theorem C and Theorem D. Moreover, we will study the nihilpotent and
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non-Lefschetz loci arising from specific Artinian algebras. In Chapter 3, we will study in detail the

Hessian locus associated to a general cubic hypersurface and prove Theorems E and F. Finally, we

will focus on the case of a general smooth cubic fourfold in P5 to prove Theorem G.

In appendices A and B, we will present technical proofs of two results used in Chapter 3.
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Chapter 1

Gordan and Noether Theorem and

Lefschetz properties

In this first chapter, we will introduce the first definitions concerning the theory around the theorem

of Gordan and Noether (Theorem A) and the theory of Gorenstein algebras and their Lefschetz

properties. We will also present (in Section 1.1) the most expressive examples and the first preliminary

results; in Subsection 1.1.1 we will point out some known results concerning the validity of the Lefschetz

properties, while in Subsection 1.1.2 we will set the preliminaries for Gordan-Noether theorem, by also

giving an idea of its classical proof. In Section 1.2 we will set our framework and our construction,

that will be studied and exploited to obtain the main results of this chapter and of the following one.

We will prove the first bounds on the dimensions of the varieties that will be involved and we will

present our strategy. In Section 1.3, we will prove Theorem B, also obtaining a new proof of Gordan

and Noether theorem. In Section 1.4, we will show the equivalence between Gordan-Noether theorem

and Theorem B and we will analyze the Gordan-Noether Identity with our language (in Subsection

1.4.1). Finally, in Section 1.5, we will use our techniques to study the Perazzo cubic in P4, one of the

first counterexamples to Hesse’s statement.

The results of this chapter appear in [BFP22] and [BF22].

In this chapter we will work on a field K, which will be an algebraically closed field of characteristic 0.

1.1 Preliminaries and definitions

Good references for the content of this introductory section are [HMM+13,Rus16,Voi07b].

First of all, let us define a standard Artinian Gorenstein algebra, (SAGA in short):

Definition 1.1.1. An Artinian graded K-algebra R =
⊕N

i=0R
i is a standard Artinian Gorenstein

algebra (SAGA) if:

• it is standard, i.e. if it is generated, as K-algebra, by R1;

• it satisfies the Poincaré duality if RN ≃ K and the multiplication map Rs ×RN−s → RN is a

perfect pairing whenever 0 ≤ s ≤ N .

1



2 CHAPTER 1. GORDAN AND NOETHER THEOREM AND LEFSCHETZ PROPERTIES

If R is a graded Artinian algebra, having the Poincaré duality is equivalent to ask that R is Gorenstein

so the above duality is also called Gorenstein duality.

Moreover, the codimension of R is the dimension of R1 as K-vector space and RN is said to be the

socle of the SAGA R.

We basically recall that a ring is Artinian if it satisfies the descending chain condition and

the pairing above being perfect means that it induces an isomorphism (of K−vector spaces) Rs ≃
Hom(RN−s, RN ).

Let us now present two ways to construct standard Artinian Gorenstein algebras which are relevant

for this work. Throughout this thesis, we will denote by S = K[x0, . . . , xn] =
⊕

k≥0 S
k, where

Sk = H0(OPn(k)), the polynomial ring in n+ 1 ≥ 2 variables with coefficient in the field K and by D

the ring of differential operators in the variables x0, . . . , xn, i.e. D = K[y0, . . . , yn] where we denote

for brevity yi =
∂
∂xi

.

Example 1.1.2. If e0, . . . , en ≥ 1, let us consider a regular sequence {g0, . . . , gn} in S with gi ∈ Sei

(we can think of a regular sequence as a set of homogeneous polynomials for which the common zero

locus is trivial). If we set I = (g0, . . . , gn), then R = S/I is a standard Artinian Gorenstein algebra

with socle in degree
∑n

i=0(ei−1). Particular algebras obtained via this construction are Jacobian rings

associated to smooth hypersurfaces of degree d ≥ 2 in Pn. In this case, if X = V (f), with f ∈ Sd,
one takes gi = ∂f/∂xi ∈ Sd−1: the ideal Jf = (gi)i=0,··· ,n and the quotient S/Jf are respectively the

Jacobian ideal and the Jacobian ring of f , with socle in degree N = (d− 2)(n+ 1).

Definition 1.1.3. According to example 1.1.2, if all the degrees of the homogenous polynomials of the

regular sequence we are considering are equal to an integer e, we say that the corresponding SAGA is

a complete intersection SAGA presented by forms of degree e.

In particular, we have that the Jacobian ring associated to a smooth hypersurface V (f) ⊂ Pn is a

complete intersection SAGA presented by forms of degree deg(f)− 1.

As second example, let us consider the following:

Example 1.1.4. If g ∈ S = K[x0, . . . , xn] is any fixed homogeneous polynomial of degree d ≥ 1, one

can define the annihilator of g in D = K[y0, · · · , yn] as the ideal

AnnD(g) = {δ ∈ D | δ(g) = 0}.

One can see that the quotient A = D/AnnD(g) is a standard Artinian Gorenstein algebra with socle

in degree d.

A very important and interesting fact is that every standard Artinian Gorenstein algebra has a

description as in Example 1.1.4 by an important result of Macaulay and its theory of inverse systems

(see [Mac94] for a revisited reprint of original work by Macaulay of 1916). In particular, we have the

following (see for example [MW09, Theorem 2.1] for a statement proposed with a modern language):

Theorem 1.1.5. If R = ⊕di=0R
i ≃ K[x0, . . . , xn]/I is an Artinian standard graded K−algebra with

socle in degree d, then it is Gorenstein if and only if there exists a homogeneous polynomial g ∈
K[x0, . . . , xn] of degree d such that R ≃ D/AnnD(g).
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Let us now define the Lefschetz properties for a SAGA R.

Definition 1.1.6. A SAGA R =
⊕N

i=0R
i is said to satisfy

• the weak Lefschetz property in degree k (WLPk in short), if there exists x ∈ R1 such that the

multiplication map x· : Rk → Rk+1 has maximal rank;

• the strong Lefschetz property in degree k at range s (SLPk(s) in short), if there exists x ∈ R1

such that the multiplication map xs· : Rk → Rk+s has maximal rank and the strong Lefschetz

property in degree k (SLPk) if SLPk(s) holds for all s.

Then we say that R satisfies the weak (strong) Lefschetz property - WLP (respectively SLP ) -

if it satisfies WLPk (respectively SLPk) for all k.

R is also said to satisfy the strong Lefschetz property in narrow sense, if SLPk(N − 2k) holds

for all k ≤ N/2.

Remark 1.1.7. Let us stress that for SAGAs, the above two definitions of SLP and SLP in narrow

sense (when satisfied for every suitable k) are equivalent (see Definition 3.18 and subsequent discussion

in [HMM+13]). We will actually prove most of our results, by considering the definition in narrow

sense. Moreover, let us observe that for the strong Lefschetz property in narrow sense SLPk(N − 2k),

for an integer k ≤ N/2, we are looking at the multiplication map xN−2k· : Rk → RN−k, where the

K−vector spaces Rk and RN−k have the same dimension, by definition of SAGA and of Gorenstein

duality (see Definition 1.1.1). Hence, the property SLPk(N − 2k) is satisfied if the above map xN−2k·
is an isomorphism (for x general).

In the following, we will often deal with kernels of the multiplication maps involved in the above

definitions, so it is convenient to set

Ki
η := ker

(
η· : Ri → Ri+h

)
for η ∈ Rh.

(One can also write Ki
η = AnnRi(η).)

Finally, let us introduce the following subsets of the graded parts of a SAGA R:

N (a)
k = {[x] ∈ P(Ra) |xk = 0}.

We will refer to N (a)
k as nihilpotent loci of order k of P(Ra). For brevity, we will set N (1)

k = Nk.
Let us observe that, by construction, for suitable a and k we have N (a)

k ⊆ N (a)
k+1.

Remark 1.1.8. If R is a standard K-algebra with socle in degree N , then Nk ⊊ P(R1) for all k ≤ N .

Indeed, if Nk = P(R1), we have that all k-th powers of elements of R1 are equal to 0. Since R is

standard, these k-th powers of R1 generate Rk as vector space, so Rk = 0. Then k > N .

Let us now recall a standard result concerning particular quotient Gorenstein rings that will be

used in the following of this thesis. For a simple proof one can refer to [FP21, Lemma 2.3].

Lemma 1.1.9. Let R = ⊕Ni=0R
i be a Gorenstein ring with socle in degree N . Fix α ∈ Re \ {0} and

consider the ideal

(0 : α) =

N⊕
i=0

ker(α· : Ri → Ri+e),

which is called conductor ideal of α.

We have that R̃ := R/(0 : α) is a Gorenstein ring with socle in degree Ñ = N − e.
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1.1.1 Lefschetz properties and state of the art

We would like to stress that the Lefschetz properties, both the strong and the weak one, are known to

hold only for very few examples of SAGAs. In this subsection, we would like to partially present and

summarize some known results and conjectures about such properties, which are relevant with respect

to the topics of this thesis. Since this subsection can’t be exhaustive, the interested reader can refer

to [HMM+13] and [MN13a] for a deeper and more rigorous treatment.

One of the first results in this direction is the following theorem (see [MN13a, Theorem 1.1]), proved

by different mathematicians, with different techniques:

Theorem 1.1.10. Let S = K[x0, . . . , xn], with K a field of characteristic 0 and let I be an Artinian

monomial complete intersection ideal, i.e. I = (xa00 , . . . , x
an
n ). Then the complete intersection SAGA

R = S/I satisfies the strong Lefschetz property.

Let us now consider SAGAs R with low codimension, in particular such that dim(R1) = 2 or 3: in

this case we have

Theorem 1.1.11. [HMNW03, Thm. 2.3, Prop. 4.4]

Let K be a field of characteristic 0. Any Artinian standard algebra of codimension 2 over K satisfies

the strong Lefschetz property.

Moreover, a complete intersection SAGA of codimension 3 over K satisfies the weak Lefschetz property.

If we consider Jacobian rings of smooth curves of degree d in P2, which are particular complete

intersection SAGAs of codimension 3 (see Example 1.1.2), the validity of the strong Lefschetz property

is known only up to d = 4. Let us observe here that the strong Lefschetz property for jacobian rings of

smooth cubic curves in P2 coincides simply with the strong Lefschetz property in degree 1. Moreover,

in this case the validity of the SLP1 follows directly from a famous theorem due to Gordan and Noether

(see Theorem A and B and Section 1.4). For jacobian rings of smooth quartic curves, we have:

Theorem 1.1.12. [DGI20, Prop.2.23]

Let {f = 0} be a smooth curve in P2 of even degree d = 2d′ and let R = S/Jf be the associated jacobian

ring. If L ∈ R1 is a general element of degree 1, then the multiplication map L2· : R3d′−4 → R3d′−2 is

an isomorphism. In particular, if d = 4, then R satisfies the strong Lefschetz property.

In particular, nothing is known up to now for the validity of the strong Lefschetz property for

Jacobian rings of smooth curves with higher degree: quintic curves in P2 are the first open case.

If we focus on the case of codimension 4, the validity of the strong Lefschetz property for the

Jacobian ring of a smooth cubic surface is again a direct consequence of Theorem A of Gordan and

Noether. Moreover, regarding the validity of the weak Lefschetz property, we have the following very

recent result:

Theorem 1.1.13. [BMMRN22, Prop. 5.2, Thm. 5.3, Coroll. 5.4]

Let R = S/(g0, g1, g2, g3) be a complete intersection SAGA of codimension 4. If deg(gi) ≤ 5 for all

i, then R satisfies the weak Lefschetz property. In particular, this holds for Jacobian rings of smooth

surfaces in P3 of degree 4, 5, and 6.
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Let us now consider a complete intersection SAGA R presented by quadrics, i.e. R = S/(g0, . . . , gn),

where deg(gi) = 2 for every i = 0, . . . , n (e.g. R is the jacobian ring of a smooth cubic hypersurface).

In this case, the validity of the weak Lefschetz property in degree 1 is known, indeed we have:

Theorem 1.1.14. [MN13b, Prop. 4.3]

Let R be a complete intersection SAGA presented by quadrics with socle in degree N ≥ 3 and defined

over a field of characteristic 0. If L is a general element in R1, then the multiplication map L· : R1 →
R2 is injective.

Let us stress that this result holds in any codimension and that we will give a new proof of this fact

in Corollary 2.1.4. In [MN13b] the authors conjectured that an Artinian Gorenstein algebra presented

by quadrics satisfies the weak Lefschetz property, but in [GZ18] families (not complete intersection

algebras) of counterexamples to this conjecture have been given. Anyway, let us stress that such a

conjecture is still valid for complete intersection Aritinian Gorenstein algebras presented by quadrics

(see for example [HMM+13, Conjecture 3.46]).

If we now focus on the case of codimension 5, we have:

Theorem 1.1.15. [AR19, Theorem 1]

For a complete intersection SAGA (over the field of complex numbers C) presented by quadrics and

with codimension 5, the weak Lefschetz property holds.

In particular, we have that the jacobian ring of smooth cubic threefolds in P4 satisfies the WLP.

Let us stress that in [AR19], the authors propose a strategy that we will present and exploit in the

following sections.

Let us observe that the cases of higher codimension or of jacobian rings of hypersurfaces with higher

degree are completely open up to now: in Chapter 2, we will consider complete intersection SAGAs

presented by quadrics and we will prove the SLP in the case where the codimension is 5 and the SLP1

for codimension 6.

To conclude this subsection, let us just mention some other papers, which treat problems related to

Lefschetz properties for Artinian algebras, as for example [BK07,MMRN11,MMRO13,Gon17, Ila18,

AAI+22,DI22].

1.1.2 Hessians, cones and Gordan-Noether theorem

In this subsection, we will focus on the result proved by Gordan and Noether in 1876 (Theorem A):

after a preliminary part, for completeness, we will give, very briefly, an idea of the original proof.

The principal reference for this section is the book [Rus16], by Francesco Russo. An even more

geometric proof of Gordan-Noether theorem has been presented in [GR09].

Let us start with some preliminaries and, first of all, let us take a projective hypersurfaceX = V (f),

defined by a homogeneous polynomial f ∈ Sd of degree d ≥ 1 (without multiple factors).
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Definition 1.1.16. The Hessian matrix of f , or of X, is the square symmetric matrix whose entries

are the second partial derivatives of f :

Hess(f) =

[
∂2f

∂xi∂xj

]
0≤i,j≤n

.

The hessian (determinant) of f , or of X, is the determinant of the Hessian matrix of X:

hess(f) = det(Hess(f)).

Observe that we can suppose that the degree d of f is at least 2, since in the case where d = 1,

and only in this case, the Hessian matrix is the zero matrix.

Let us now recall some basic facts concerning the hessian (determinant) of a homogeneous polynomial

f of degree d ≥ 2:

Remark 1.1.17. • Either the hessian of f is a homogeneous polynomial of degree (n+ 1)(d− 2)

or it is identically zero.

• If for some i ∈ {0, · · · , n} the first partial derivative ∂f
∂xi

is zero, then hess(f) is identically zero.

• If the partial derivatives ∂f
∂x0

, ∂f∂x1 , · · · ,
∂f
∂xn

are linearly dependent, then hess(f) is identically zero.

Definition 1.1.18. Let X ⊂ Pn be a closed (irreducible) subvariety. X is a cone if there exists a

point p ∈ X such that for every other point x ∈ X different from p, the line ⟨p, x⟩ is contained in X.

Let us now state a well-known characterization for a variety for being a cone:

Proposition 1.1.19. For a variety X = V (f) ⊂ Pn, with d = deg(f) ≥ 2, being a cone is equivalent

to one of the following:

(a) the partial derivatives of f ∂f
∂x0

, ∂f∂x1 , · · · ,
∂f
∂xn

are linearly dependent

(b) there exists a point p of multiplicity d

(c) up to a projective transformation, f depends on at most n variables

(d) X∗, the dual variety of X, is degenerate, i.e. X∗ (which can be defined as the closure of the image

of the Gaussian map of X) is contained in a proper projective linear subspace of (Pn)∗.

By the above Proposition 1.1.19, it is clear that if a variety X = V (f) is a cone, then hess(f) is

identically zero, since the partial derivatives of f are linearly dependent. Twice, both in 1851 and in

1859 ([Hes51] and [Hes59]), Hesse stated that also the converse holds. In particular, he claimed that:

Claim 1.1.20 (Hesse). If a variety X = V (f) ⊂ Pn is such that h(f) ≡ 0, then it is a cone.

In other words, he stated that for the partial derivatives of a homogeneous polynomial f of degree

d ≥ 2 being algebraically dependent is equivalent to be linearly dependent.

Remark 1.1.21. Observe that for the cases n = 1 and d = 2, n ≥ 2 the claim is trivially true.
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Thus, we can suppose from now on that n ≥ 2 and d ≥ 3.

In 1876, Gordan and Noether fixed Hesse’s statement and proved its validity for n ≤ 3. They also

showed its failure as soon as n ≥ 4: indeed they proposed some counterexamples, namely some

hypersurfaces, which are not cones, with determinant of the Hessian matrix identically zero.

Theorem 1.1.22 (Gordan and Noether, Theorem A). Let X = V (f) ⊂ Pn be a hypersurface defined

over a field K of characteristic 0 and assume that X has vanishing hessian, i.e. hess(f) ≡ 0. Then,

if n ≤ 3, X is a cone.

Moreover, for every n ≥ 4 and for every d ≥ 3 there exist counterexamples to Hesse’s claim.

For completeness, let us now give an idea of the proof of the first statement (we refer to the proof

presented in [Rus16]).

Sketch of the proof: Let us start by considering a reduced polynomial f ∈ K[x0, · · · , xn]d of degree

d. Suppose that f has vanishing hessian (i.e. h(f) ≡ 0) and let X = V (f) ⊂ Pn be the degree d

hypersurface associated to f . Let us introduce the polar map

∇f = ∇X : Pn 99K (Pn)∗ p 7→ ∇f (p) =
(
∂f

∂x0
(p) : · · · : ∂f

∂xn
(p)

)
.

Now, let Z ′ = ∇f (Pn) ⊆ (Pn)∗ be the polar image of Pn with respect to f . By considering the

restriction of the polar map to X, we get the Gauss map of X:

GX := ∇f |X : X 99K (Pn)∗ Xreg ∋ p 7→ GX(p) = [Tp(X)].

Hence, we have that X∗ := GX(X) ⊆ Z ′ ⊆ (Pn)∗, where X∗ is the dual variety of X.

One can show that dim(Z ′) = rk(H(f))−1 and, since rk(H(f)) = n+1 if and only if the determinant

of H(f) is not the zero polynomial, we get

h(f) ≡ 0 ⇐⇒ Z ′ ⊊ (Pn)∗. (1.1)

One can also show (see [Rus16][Lemma 7.2.7]) that, in general, we have

dim(X∗) ≤ dim(Z ′)− 1

(this is actually true for every irreducible component of X). Hence, with our assumption (since f has

vanishing hessian) we have

X∗ ⊊ Z ′ ⊊ (Pn)∗.

From this we get that there exists an irreducible non-zero polynomial g ∈ K[y0, · · · , yn]e (where

yi = ∂f
∂xi

) such that g(∇f (x)) = 0 and, in particular, Z ′ ⊆ W = V (g) ⊂ Pn (with Z ′ = W if

codim(Z ′) = 1). For g we can equivalently assume that either there exists an index i such that
∂g
∂yi

(∇f (x)) ̸= 0 or Z ′ ̸⊆ Sing(W ).

Remark 1.1.23. One can observe that by taking for example as g a generator of minimal degree in

the homogeneous ideal I(Z ′), these assumptions are satisfied.



8 CHAPTER 1. GORDAN AND NOETHER THEOREM AND LEFSCHETZ PROPERTIES

Under these hypotheses the map

ψg = ∇g ◦ ∇f : Pn 99K Pn,

called the Gordan −Noether map associated to g , is well defined and one can also show that such a

map can be written as

ψg = (h0 : · · · : hn) : Pn 99K Pn,

where the hi’s are suitable rational functions such that g.c.d.(h0, . . . , hn) = 1.

A very important step at this point of the proof is the following: by letting F ∈ K[x0, . . . , xn]m, K′ ⊇ K
be a field extension and ψg be the Gordan-Noether map defined above, we have the Gordan-Noether

Identity:

n∑
i=0

∂F

∂xi
(x)hi(x) = 0 ⇐⇒ F (x) = F (x+ λψg(x)) ∀ λ ∈ K′,∀ x ∈ Kn+1.

Actually, it turns out that the functions hi’s satisfy the Gordan-Noether identity and, with this key

formula, one can finally prove the (probably, most) important consequence of the Gordan-Noether

Identity.

ψg(x) = ψg(x+ λψg(x)), ∀ λ ∈ K, ∀ x ∈ Kn+1. (1.2)

In particular, one also gets that

ψg(Pn) ⊆ V (h0, . . . , hn) = Bs(ψg) ⊂ Pn.

Finally, by using all this machinery, one can prove Gordan-Noether Theorem, both in the case of P2

and P3 (see [Rus16, Corollaries 7.3.8, 7.3.9]).

To conclude, Gordan and Noether proved that Hesse’s claim is in general false, for hypersurfaces

in Pn with n ≥ 4, but as a consequence of their theory, and in particular of Identity (1.2), that we call

again Gordan-Noether Identity, they also proved the following:

Theorem 1.1.24. [Rus16, Theorem 7.1.6] Let X = V (f) ⊂ Pn be a hypersurface of degree d ≥ 2 with

hess(f) ≡ 0. Then there exists a Cremona transformation Φ : Pn 99K Pn such that Φ(X) is a cone.

In other words, we can say that Hesse’s claim is birationally true, despite the condition that the

determinant of the Hessian matrix of a homogeneous polynomial f is identically zero is not invariant

under birational transformation.

1.2 Constructions and strategy

Let us now present the construction that will be the key framework in the whole first half of this

thesis.

Let R = ⊕Ni=0R
i be a SAGA (i.e. a standard Artinian Gorenstein K-algebra) with socle in degree N

and assume it has codimension dimR1 = n+ 1 with n ≥ 1.
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For j ∈ {1, · · · , N − 1}, we define

Γj = {([x], [y]) ∈ P(R1)× P(R1) |xjy = 0} ⊂ P(R1)× P(R1),

where P(R1) is the projectivization of the vector space R1. By construction, we have Γj ⊆ Γj+1.

From now on, we fix an integer k such that 1 ≤ k ≤ N − 2 and, denoting by p1 and p2 the

projections of Γk on the two factors, we assume that the following condition holds:

(⋆) p1 : Γk → P(R1) ≃ Pn is surjective.

After proving some general results that hold for every value of k in the above range, in the following

we will focus on the specific case k = N − 2, the most relevant one for our aims, as observed in the

following:

Remark 1.2.1. Notice that (⋆) is equivalent to asking that the multiplication map xk· : R1 → Rk+1

is never injective for x ∈ R1, i.e. that R does not satisfy SLP at range k in degree 1. If k = N − 2

(as we will assume in the following), (⋆) holds if and only if R does not satisfy the strong Lefschetz

property (in narrow sense) in degree 1.

Indeed, if the first projection p1 is surjective, it means that for every element [x] ∈ P(R1) there exists

[y] ∈ P(R1) such that xky = 0: the multiplication map xk· : R1 → Rk+1 has non trivial kernel and

it can not be of maximal rank (observe that since R is a SAGA we have that dim(R1) ≤ dim(Ri) for

every 1 ≤ i ≤ N − 1). But this fact denies the validity of the strong Lefschetz property in degree 1 at

range k. In the same exact way, one can show the converse.

Since, by assumption, p1 : Γk → P(R1) is surjective, there exists an irreducible component of

Γk that dominates P(R1) via p1. We can easily observe that all the fibers of p1 are irreducible (not

necessarily all of the same dimension): indeed the fiber by p1 over [x] ∈ P(R1) is [x]× P(K1
xk
) and so

it is isomorphic to a projective space. One can then easily obtain the following:

Lemma 1.2.2. Under assumption (⋆), there exists a unique irreducible component of Γk which dom-

inates P(R1) via first projection.

We will denote by Θ such a unique component of Γk and by πi the restriction of pi to Θ for i = 1, 2.

Set

Y := π2(Θ)

and ∀ [y] ∈ Y ,

Fy := π1(π
−1
2 ([y])) = {[x] ∈ P(R1) |xky = 0 and ([x], [y]) ∈ Θ}.

The following diagram summarizes the framework we are going to focus on.

Fy × [y]

≃

��

� u

''

// [y]� _
��

Θ

π1
'' ''

π2 // //� t

''

Y � _
��

Γk
p2 //

p1����

P(R1)

Fy
� � // P(R1)
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We stress that, in this case, since Θ is the unique irreducible component which dominates P(R1)

via first projection, we have

π−1
1 ([x]) = p−1

1 ([x]) = [x]× P(K1
xk) for general [x] ∈ P(R1).

On the contrary, for specific [x] ∈ P(R1), it can happen that π−1
1 ([x]) ⊊ p−1

1 ([x]) and that π−1
1 ([x]) is

not a projective subspace of [x]× P(R1).

Let us now prove the following proposition which gives a collection of equations satisfied by the

points of Θ. (We remark that this principle has already been used in [FP21] for studying the Jacobian

ring of a smooth plane curve in relation with the infinitesimal variation of the periods of the curve

itself.)

Proposition 1.2.3 (Ker-Coker principle). If p = ([x], [y]) ∈ Θ then

xiyj = 0,

for all i ≥ 0 and j ≥ 1 such that i+ j = k + 1.

Proof. Let us consider a general point p = ([x], [y]) ∈ Θ, so xky = 0 by definition. We claim that p

satisfies also xk−1y2 = 0.

For any v ∈ R1 and t ∈ K, let us take x′ = x + tv ∈ R1. By assumption (⋆), we have that

there exists y′ in R1 \ {0} such that (x′)ky′ = 0. Then we can define β(t) such that β(0) = y and

(x′)kβ(t) = 0 for all t ∈ K. We can consider the expansion of β and write this relation as

0 ≡ (x+ tv)k(y + tw + t2(· · · )) = xky + t(kvxk−1y + wxk) + t2(· · · ).

If we multiply by y both sides of the above relation, we get that

kvxk−1y2 = 0 ∀v ∈ R1.

Since the multiplication map R1 × Rk+1 → Rk+2 is non degenerate we have that xk−1y2 = 0 as

claimed. This proves that all the points of Θ satisfy also the relation xk−1y2 = 0.

In the same way one shows that if all the points of Θ satisfy the relation xiyj = 0 with i+j = k+1

and j ≥ 1, then they also satisfy the relation xi−1yi+1 = 0. This concludes the proof.

As a consequence of Proposition 1.2.3, we obtain the following:

Corollary 1.2.4 (Gorenstein-Gordan-Noether identity). Let ([x], [y]) ∈ Θ. Then the following rela-

tions hold for all t ∈ K and (λ : µ) ∈ P1:

(x+ ty)k+1 = xk+1 ∈ Rk+1 and [(λx+ µy)k+1] = [xk+1] ∈ P(Rk+1) (if xk+1 ̸= 0). (1.3)

Proof. Let us show the first equality: the second one is simply the projective version of the first.

For t ∈ K and [x], [y] ∈ P(R1), we have

(x+ ty)k+1 = xk+1 +

k+1∑
i=1

(
k + 1

i

)
tixk+1−iyi,

but, since ([x], [y]) ∈ Θ, then by Proposition 1.2.3, we have that all the summands but the first one

(namely xk+1) are zero.
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The origin of the name we have given to these equalities lies in the classical Gordan-Noether

identity (1.2) presented as one of the key steps of the original proof of Gordan-Noether theorem (see

also Section 1.4, where we will analyze the relation between the two identities).

For completeness, let us now present the natural generalization of the previous construction, by

considering incidence varieties over the other possible pairs of graded parts of the SAGA R, defined

as above, with codimension n+ 1 and socle in degree N .

For 1 ≤ a, b ≤ N we set

Γ
(a,b)
i,j = {([x], [y]) ∈ P(Ra)× P(Rb) |xiyj = 0}.

As above, we will denote by p1 and p2 the standard projections from Γ
(a,b)
i,j to P(Ra) and P(Rb),

respectively. Notice that, by setting a = b = j = 1 and i = k, we obtain again the variety Γk

introduced above, i.e. Γ
(1,1)
k,1 = Γk. Moreover, when we consider Γ

(a,b)
s,1 , we have

p−1
1 ([x]) = {([x], [y]) |xsy = 0} = [x]× P(Kb

xs)

so all the fibers of p1 are projective spaces.

In the same exact way as done before for the case of Γk, we can make the following considerations:

• Assume that b ≤ N/2 and that SLPb(s) does not hold. Then, for all [x] ∈ P(R1) we have that

the multiplication map xs· : Rb → Rb+s is not injective. In particular, there exists [y] ∈ P(Rb)
such that xsy = 0 in Rb+s. This shows that the failure of SLPb(s) is equivalent to ask that

p1 : Γ
(1,b)
s,1 → P(R1) is surjective.

• Assume that p1 : Γ
(a,b)
s,1 → P(Ra) is surjective. Then, as observed above, we have that all the

fibers of p1 are projective spaces and this implies that there exists a unique irreducible component

Θ of Γ
(a,b)
s,1 which dominates P(Ra) via p1 and, again, we can set

πi = pi|Θ, Y = p2(Θ) = π2(Θ) and Fy = π1(π
−1
2 ([y])) for all [y] ∈ Y.

Construction 1.2.5. To summarize, if R is a SAGA of codimension n+1 and socle in degree N and

we assume that SLPb(s) does not hold for R, we can construct the loci Γ
(1,b)
s,1 ,Θ, Y and Fy as above

and we have the following diagram

Fy × [y]

≃

��

� u

((

π2 // [y]� _

��
Θ

π1

&& &&

π2 // //� t

''

Y � _

��
Γ
(1,b)
s,1

p2 //

p1����

P(Rb)

Fy
� � // P(R1).

(1.4)

We present also the obvious generalisation of Ker-Coker principle (Proposition 1.2.3):
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Proposition 1.2.6. Let T be an irreducible variety in P(Ra)× P(Rb) such that p1|T : T → P(Ra) is

surjective. Assume that T ⊆ {xiyj = 0} = Γ
(a,b)
i,j with i, j ≥ 1. Then

1. For all v ∈ Ra one has vxi−1yj+1 = 0;

2. If a(i) + b(j + 1) ≤ N , then all points of T satisfy also xi−1yj+1 = 0.

Proof. It is enough to prove the claim for a general smooth point p = ([x], [y]) ∈ T . For any v ∈
Ra, t ∈ K consider x′ = x + tv ∈ Ra. Since p1 : T → P(Ra) is surjective by hypothesis, we have that

there exists y′ in Rb \ {0} such that (x′)i(y′)j = 0. Then we can define β(t) such that β(0) = y and

(x+ tv)i(β(t))j = 0 for all t ∈ K. We can consider the expansion of β and write this relation as

0 ≡ (x+ tv)i(y + tw + t2(· · · ))j = xiyj + t(ivxi−1yj + jwxiyj−1) + t2(· · · ).

In particular we have ivxi−1yj + jwxiyj−1 = 0 for all v ∈ Ra. If we multiply by y we have

ivxi−1yj+1 = 0 for all v ∈ Ra which yields the first claim since i ≥ 1 by hyphotesis.

For the second claim, consider the multiplication map Ra ×R(i−1)a+(j+1)b → Ria+jb+b and notice

that it is non degenerate by the assumption ia+ bj + b ≤ N . Hence, if vxi−1yj+1 = 0 for all v ∈ Ra,
then one has also xi−1yj+1 = 0 as claimed.

Let us now go back to the first construction and the study of Γk: let us present the first properties

of the varieties introduced so far. In particular, we now show that Y is contained in some nihilpotent

locus and that the general fiber Fy is a connected cone. Moreover we prove the first bounds for the

dimension of these varieties.

Proposition 1.2.7. Let us consider the correspondence Γk, dominating P(R1) via first projection,

and also the varieties Θ, Y and Fy introduced above. Then the following properties hold:

(a) Y ⊆ Nk+1 = {[y] ∈ P(R1) : yk+1 = 0} ⊊ P(R1);

(b) If [y] ∈ Y is general, then Fy is a cone with vertex [y]. Moreover, the general Fy is connected;

(c) dimFy + dimY ≥ dim(Θ) ≥ n;

(d) 1 ≤ dimFy ≤ n− 1 and 1 ≤ dimY ≤ n− 1.

Proof. By Proposition 1.2.3 we have that all the points of Θ of the form ([x], [y]) satisfy also the

equation yk+1 = 0. Then, by definition, we have π2(Θ) = Y ⊆ Nk+1. Since 1 ≤ k ≤ N−2, by Remark

1.1.8 we have Nk+1 ̸= P(R1): we have proved claim (a).

Before proving (b), notice the following properties. For brevity, denote by Θc the union of all the

irreducible components of Γk different from Θ. For any p = ([x], [y]) ∈ Θ one can consider the curve

γp : P1 → P(R1)× P(R1) defined by

γp((λ : µ)) = ([λx+ µy], [y]).

Since xiyj = 0 whenever i + j = k + 1 and j ≥ 1 we have (λx + µy)ky = 0 so γp has image in Γk.

Whenever p = ([x], [y]) ∈ Θ \ Θc, we have that the curve γp has image in Θ. In this case, the line

parametrized by π1 ◦ γp is contained in Fy and it is spanned by [x] and [y].
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Now, we will prove (b). If [y] ∈ Y is general, we have that π−1
2 ([y])∩(Θ\Θc) is an open dense subset

of Fy× [y]. Let C be a connected component of Fy and consider any p = ([x], [y]) ∈ (C× [y])∩(Θ\Θc),

then the image of the curve γp is contained in Θ and pass through ([y], [y]). So [y] ∈ C and the line in

P(R1) passing through [x] and [y] is contained in C. Since [x] is general, we have that C is a cone with

vertex [y]. Moreover, if C ′ is another connected component of Fy we have [y] ∈ C ∩C ′ so C = C ′ = Fy

and Fy is connected.

In order to prove (c) recall that Θ and Y are irreducible and π2 : Θ → Y is surjective. Then, for

all [y] ∈ Y we have

dim(π−1
2 ([y])) ≥ dim(Θ)− dim(Y ).

Since dim(π−1
2 ([y])) = dimFy by definition of Fy and since dim(Θ) ≥ dim(P(R1)) = n by hypothesis,

we get claim (c).

For the last point (d), fix [y] ∈ Y . Assume, by contradiction, that dim(Fy) = n, i.e. Fy = P(R1).

Then, for all x ∈ R1, we have xky = 0. Since k-th powers of elements in R1 generates Rk (since

R is a standard algebra) we have that y · Rk = 0. But this is impossible since R is Gorenstein and

R1 × Rk → Rk+1 is non-degenerate. This proves that dim(Fy) ≤ n − 1. Using (c) we also get that

dim(Y ) ≥ 1. By (a) we have dim(Y ) ≤ dim(Nk+1) < n so dim(Y ) ≤ n− 1. Then, using again (c), we

obtain dim(Fy) ≥ 1 as claimed.

In particular, when we consider a SAGA R as above, for which the strong Lefschetz property in

degree 1 at range k (SLP1(k)) does not hold, we can construct the varieties Θ, Y, Fy which satisfy the

properties described in Proposition 1.2.7.

Let us now present some geometric properties involving the incidence variety Γk and, by assuming

condition (∗), also the varieties Θ, Y and Fy.

Lemma 1.2.8. Let ∆ be the diagonal in P(R1) × P(R1) and let us define τ : P(R1) × P(R1) →
P(R1)×P(R1) as the involution τ(([x], [y])) = ([y], [x]). Under assumption (⋆), the following properties

hold:

(a) There exists a component Θ′ of Γk different from Θ with dim(Θ′) ≥ dim(Θ);

(b) πi(Γk ∩∆) = Nk+1;

(c) πi(Θ ∩∆) = Y ;

(d) τ(Θ) ∩Θ ⊆ Y × Y .

(e) Assume that Y ⊊ Nk+1 and that Γk has pure dimension. Then, there exists an irreducible compo-

nent Λ of Γk with Θ ̸= Λ ̸= Θ′.

(f) For all y ∈ Y we have Fy ⊆ P(K1
yk
).

Proof. For (a), if p = ([x], [y]) ∈ Θ then, by Proposition 1.2.3, xky = xyk = 0 hence τ(p) ∈ Γk so

there exists a component Θ′ such that τ(Θ) ⊆ Θ′. On the other hand, by construction, Θ dominates
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P(R1) via π1 (by Lemma 1.2.2) and does not dominate P(R1) via π2 (since π2(Θ) = Y , which is a

proper subvariety of P(R1), by Proposition 1.2.7(a)). Since τ(Θ) dominates P(R1) via π2 the same

holds for Θ′ and this implies that Θ ̸= Θ′. For (b), if we take an element [y] ∈ Nk+1, we clearly have

that yky = yk+1 = 0, hence ([y], [y]) ∈ Γk ∩∆. On the other hand, an element in this intersection is

of the form ([y], [y]) such that yky = 0, hence [y] ∈ Nk+1. Point (c) follows from Proposition 1.2.7: we

have π2(Θ) = Y so π2(Θ∩∆) ⊆ Y and for [y] ∈ Y general, [y] ∈ Fy so ([y], [y]) ∈ Θ. (d) is trivial. For

(e), let [w] ∈ Nk+1 \ Y . Then wkw = wk+1 = 0 by construction so ([w], [w]) ∈ Γk. Since w ̸∈ Y we

have p = ([w], [w]) ̸∈ Θ. If we assume ([w], [w]) ∈ τ(Θ) we would also have π1([w], [w]) = [w] ∈ Y as

τ(Θ) = Θ′ (this follows since we are assuming that Γk has pure dimension). Then p ∈ Γk \ (Θ∪ τ(Θ)).

For (f), recall that Fy = {[x] ∈ P(R1) | ([x], [y]) ∈ Θ and xky = 0}. By Proposition 1.2.3, [x] ∈ Fy
implies that also that xyk = 0 so we have the claim.

To conclude this second section, let us present the strategy we will exploit in the following:

Strategy 1.2.9. In the next sections, we will consider a SAGA R not satisfying a specific (strong)

Lefschetz property. As we have done before, this assumption allows us to construct the varieties

Θ, Y, Fy. Our aim will then be the improvement of inequalities, as the ones in Proposition 1.2.7,

involving the dimensions of such varieties. With stricter bounds on these dimensions, under suitable

assumptions, we will be able to deny the existence of such varieties, in particular of the irreducible

component Θ. But then, as specified in Remark 1.2.1, it is not possible for the first projection over

P(R1) to be surjective: the Lefschetz property under consideration can’t fail.

1.3 The SLP in degree 1 and the proof of Theorem B

The aim of this section is to prove Theorem B and so, as a byproduct, to give a new proof of Gordan-

Noether Theorem 1.1.22.

To do this, we consider a SAGA R and let us assume that it does not satisfy the strong Lefschetz

property (in narrow sense) in degree 1. According to the notation of the previous section, we then set

k = N − 2 and we consider the correspondence variety

ΓN−2 = {([x], [y]) ∈ P(R1)× P(R1) |xjy = 0}.

By assumption, the first projection p1 : ΓN−2 → P(R1) is surjective (see Remark 1.2.1). We can then

consider the varieties Θ, Y and Fy, as defined in Section 1.2. By exploiting geometric properties of

these varieties, we will now follow the Strategy 1.2.9.

Let us start by constructing the dual variety of Y and by showing that Y ⊂ P(R1) ≃ Pn can’t be

linear and that its dimension is at most n− 2.

First of all, let us consider the map

φ : R1 → RN−1 x 7→ xN−1

and its projective version, that is clearly not defined on the nihilpotent locus of order N − 1,

ψ : P(R1) \ NN−1 → P(RN−1) [x] 7→ [xN−1].
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Observe that, since R is a SAGA, we have that RN−1 is the dual vector space of R1, and so

dim(RN−1) = n+ 1.

By setting Z := ψ(P(R1) \ NN−1), we have that this subvariety Z of P(RN−1) ≃ Pn is irreducible and

non-degenerate: indeed, if Z was degenerate, and so contained in a hyperplane, we would have that

the (N − 1)−th powers of elements of R1 do not generate the whole RN−1, but this is not possible,

since R is a standard algebra.

For all [x] ∈ P(R1), let us now define Kx as the kernel of the differential

d[x]ψ : TP(R1),[x] → TZ,[xN−1] w 7→ (d[x]ψ)(w) = (N − 1)xN−2w

i.e. Kx := ker(d[x]ψ).

Remark 1.3.1. Observe that the kernel Kx just introduced coincides with the kernel K1
xN−2 of the

multiplication map xN−2· : R1 → RN−1. Hence, the projectivization of Kx is isomorphic to the fibres

of the first projection p1 : ΓN−2 → P(R1) (see Section 1.2).

Now, let ∆ be the diagonal of P(R1)× P(R1) and whenever p = ([x], [y]) ̸∈ ∆ let us set

Lp = {[λx+ µy] ∈ P(R1) | (λ : µ) ∈ P1}, (1.5)

the line in P(R1) passing through [x] and [y].

We have the following:

Lemma 1.3.2. For p = ([x], [y]) ∈ Θ general, the line Lp is contracted by ψ. Moreover, we have

dim(Z) = n− dim(Kx) ≤ n− 1.

Proof. Let p = ([x], [y]) ∈ Θ be general: we can then assume that xN−1 ̸= 0, i.e. [x] ̸∈ NN−1. Indeed,

if xN−1 = 0 for p ∈ Θ general, then Θ ⊆ NN−1×Y and thus NN−1 = P(R1) by (⋆). This is impossible

by Proposition 1.2.7(a). In particular, we have also that p = ([x], [y]) ̸∈ ∆, indeed, while xN−1 ̸= 0,

by Proposition 1.2.3 we have that yk+1 = 0, where, in this case, k = N − 2.

By using the Gorenstein-Gordan-Noether identity (see Corollary 1.2.4) we have

ψ([λx+ µy]) = [(λx+ µy)N−1] = [λN−1xN−1] = [xN−1] = ψ([x])

so the line Lp is contracted by ψ (more precisely, Lp \ NN−1 is contracted to a point by ψ).

If we assume that [z] := ψ([x]) = [xN−1] ∈ Zsmooth, then we have dim(Z) = dim(TZ,[z]) so

dim(Z) = dim(P(RN−1))− dim(Kx) = n− dim(Kx). (1.6)

Since Lp is contracted by ψ and [x] ∈ Lp is not inNN−1 we have that TLp,[x] = ⟨y⟩ ⊆ Kx so dim(Kx) ≥ 1

and we have the claim.

Recall that, as said above, via Gorenstein duality we have a linear isomorphism R1 ≃ (RN−1)∗

which induces an isomorphism P(RN−1)∗ ≃ P((RN−1)∗) ≃ P(R1). If H ∈ P(RN−1)∗ and α ∈
P((RN−1)∗) correspond under the first isomorphism, we have that the hyperplane H contains a linear



16 CHAPTER 1. GORDAN AND NOETHER THEOREM AND LEFSCHETZ PROPERTIES

variety P(W ) ⊆ P(RN−1) if and only if α, a linear form on RN−1, annihilates all the vectors in W , i.e.

we have, by using the second isomorphism, α ∈ P(AnnR1(W )).

Let X be a proper projective subvariety of Pn and assume that [x] ∈ Xsmooth. We will denote with

(Pn)∗ the dual projective space of Pn (i.e. the projective variety parametrizing the hyperplanes of Pn)
and with T[x](X) the projective tangent space to [x] in X. If X̃ ⊆ Kn+1 is the affine cone associated

to X we have T[x](X) = P(TX̃,x). We recall that the dual variety of X (as subvariety of Pn) is

X∗ = {H ∈ (Pn)∗ | ∃ [x] ∈ Xsmooth such that T[x](X) ⊆ H}.

As one of the key results of this section, it turns out that the dual variety of such Z coincides

exactly with Y = π2(Θ):

Proposition 1.3.3. We have Y = Z∗.

Proof. First of all, notice that if [z] = [xN−1] = ψ([x]) ∈ Zsmooth, we have that the tangent (projective)
space to Z in [z] is described as

T[z](Z) = P(xN−2 ·R1) = P
(
{wxN−2 |w ∈ R1}

)
.

Assume that [y] ∈ Y is a general point. We claim that y ∈ Z∗. Since [y] ∈ Y is general, we can take

([x], [y]) ∈ Θ such that xN−1 ̸= 0 (recall that the nihilpotent loci are not the whole projective space)

and [z] = [xN−1] is a smooth point of Z. In particular xN−2y = 0 so [y] ∈ AnnR1(xN−2 ·R1). Hence,

by the above considerations, the hyperplane H of P(RN−1) corresponding to [y] contains T[z](Z) so

[y] ∈ Z∗. Since [y] was general in Y , we have proved Y ⊆ Z∗.

For the other inclusion, let H be a general element in Z∗. Let [y] ∈ P(R1) be its corresponding

point. Since H ∈ Z∗ (and H is general) we have that there exists [z] = [xN−1] ∈ Zsmooth such that

H contains the tangent (projective) space T[z](Z). Then, equivalently, y annihilates xN−2 · R1. On

the other hand, since the product R1 × RN−1 → RN is a perfect pairing, having xN−2wy = 0 for all

w ∈ R1 implies that xN−2y = 0 so ([x], [y]) ∈ ΓN−2. Since H was generic in Z∗ and, by Lemma 1.2.2,

Θ is the only component of ΓN−2 which dominates P(R1) via π1, we can assume that [x] is outside

π1(ΓN−2 \Θ). Then, we have that ([x], [y]) ∈ Θ so [y] ∈ Y as claimed.

Let us now recall that a variety X ⊂ PnK is said to be reflexive if it coincides with the dual of its

dual variety. One has the following (see [Wal56,Kle86]):

Theorem 1.3.4. If K is a field of characteristic 0, an irreducible variety X ⊂ PnK is reflexive.

As a consequence of Proposition 1.3.3, we can then prove:

Corollary 1.3.5. The variety Y ⊂ P(R1) is not linear.

Proof. Let us suppose by contradiction that Y is a proper linear subvariety of P(R1). Since K is a field

of characteristic 0 and Z is irreducible, by theorem 1.3.4, we have that Z = Z∗∗. From Proposition

1.3.3, we have that Y = Z∗ and so Y ∗ = Z. Since we are assuming that Y is linear, we have that

also Y ∗ is linear: namely, it is the linear subspace of P(R1) of the hyperplanes containing Y , which is

proper. Then Z is linear and thus degenerate, but this, as we have observed above, is not possible.

Then Y is not linear.
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We are now going to improve the inequalities (d) in Proposition 1.2.7, by showing that Y cannot be

a hypersurface of P(R1) (see Corollary 1.3.7).

Let p = ([x], [y]) ∈ Θ with x ̸= y. As above, we will denote by Lp the line in P(R1) joining the

points [x] and [y], i.e. the line Lp = {λx+ µy | (λ : µ) ∈ P1}.

Lemma 1.3.6. Let p = ([x], [y]) ∈ Θ such that xN−1 ̸= 0. Then

(a) Lp ∩ Y = [y];

(b) if p is general, Lp is not tangent to Y at [y].

Proof. Let p = ([x], [y]) be as in the hypothesis and let us consider the line Lp (since by assumption

xN−1 ̸= 0, we have that p ̸∈ ∆). Clearly, by construction, we have that [y] ∈ Lp ∩ Y . To show that

there are no other points in this intersection, let us recall, by Proposition 1.2.3 that a point [y] in Y

satisfies the condition yN−1 = 0. Then

[y] ∈ Lp ∩ Y ⊆ Lp ∩NN−1 = {[λx+ µy] | (λ : µ) ∈ P1, (λx+ µy)N−1 = 0}

On the other hand, the Gorenstein-Gordan-Noether identity (see Corollary 1.2.4) yields (λx+µy)N−1 =

λN−1xN−1. This is zero if and only if λ = 0, so Lp ∩ Y = [y] as claimed in (a).

To prove (b), let us take p = ([x], [y]) ∈ Θ general. Then, we can assume that xN ̸= 0 (since R

is a standard K-algebra, see Remark 1.1.8), that p is a smooth point for Θ and that the differential

dpπ2 : TΘ,p → TY,[y] is surjective.

Assume by contradiction that Lp meets Y non-transversely. Since the tangent in [y] to Lp is

spanned by x and since dpπ2 is surjective, we have that there exists a tangent vector of the form (v, x)

in TΘ,p. Hence, there is a curve γ(t) in Θ, that we can write as γ(t) = (α(t), β(t)), passing at t = 0

through the point p = ([x], [y]) and such that α′(0) = v and β′(0) = x. As γ has image in Θ, we have

that α and β satisfy the relation α(t)N−2β(t) = 0. By considering the expansion of this relation, as

in Proposition 1.2.3, we obtain the equation

(N − 2)xN−3vy + xN−1 = 0.

If we multiply by x, we get xN = 0 which is impossible since we are assuming xN ̸= 0. Then Lp and

Y meet transversely.

Finally, we get new bounds for the dimensions of Y and of the fibers Fy:

Corollary 1.3.7. We have

1 ≤ dim(Y ) ≤ n− 2 and 2 ≤ dim(Fy) ≤ n− 1

for any [y] ∈ Y .
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Proof. Let us show the first claim: the second one is an immediate consequence, by Proposition

1.2.7(c). Assume by contradiction that dim(Y ) = n− 1, so Y is an irreducible hypersurface in P(R1).

By Lemma 1.3.6, there is a line which meets Y transversely in one point, so Y is a hyperplane. On

the other hand, by Corollary 1.3.5, Y is not linear, so we have a contradiction.

Our aim is now to show the following result, that will be a key step in the proof of Theorem B.

In particular, after ruling out the possibility for Y to be a hypersurface, we would like to find some

necessary condition to have dim(Y ) = 1:

Proposition 1.3.8. If dim(Y ) = 1 then n ≥ 4.

Observe, first of all, that if the general [y] ∈ Y is such that dim(Fy) = n − 1, then this equality

actually holds for all the fibers Fy’s, since the dimension of the fibres can only increase and, on the

other hand, there can not exist a fibre Fy of dimension n and so equal to Pn.
Before proving Proposition 1.3.8, we need two technical results.

Proposition 1.3.9. Assume that Fy has dimension n− 1 for all y ∈ Y . Then

(a) Y ⊆
⋂
y∈Y Fy;

(b) Sec(Y ) ⊆ NN−1.

Proof. Recall that Θc denotes the union of all the irreducible components of ΓN−2 different from Θ.

Let us take an element [y] ∈ Y and fix [x] ∈ P(R1) general, satisfying the following assumptions:

xN−1 · y ̸= 0, [x] ∈ π1(Θ \Θc) and xN ̸= 0.

This can be done since R is a standard algebra and since Θ is the only component dominating P(R1)

via first projection.

Since π1 is dominant, there exists [y1] ∈ Y (which can be assumed general as for [x]), such that

p1 = ([x], [y1]) ∈ Θ \Θc. In particular, we have xN−2y1 = 0 and [y1] ̸= [y] since, otherwise, we would

have that xN−2y = xN−2y1 = 0 which gives a contradiction.

Let us now consider the line Lp1 , joining the points [x] and [y1], i.e.

Lp1 = {[λy1 + µx] | (λ : µ) ∈ P1}.

As in point (b) of Proposition 1.2.7, we have Lp1 ⊆ Fy1 by the assumptions on [x].

We claim now that Lp1 ∩ Fy = [y1].

Since, by assumption, Fy has dimension n− 1, the intersection Lp1 ∩Fy cannot be empty. We will

show now that (Lp1 \ [y1]) ∩ Fy is empty.

Notice that Lp1 \ [y1] is the affine line parametrized by x(t) = x+ ty1 with t ∈ K. Suppose that the

intersection between Fy and this affine line is not empty, i.e. there exists t̃ ∈ K such that x+ t̃y1 ∈ Fy.
This means that

(x+ t̃y1)
N−2y = 0 and multiplying by x x(x+ t̃y1)

N−2y = 0.
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By construction, we have that [x] ∈ Fy1 (equivalently, ([x], [y1]) ∈ Θ), and so by Proposition 1.2.3 we

know that xiyj1 = 0 for j ≥ 1 and i+ j = N − 1. Then we get x(x+ t̃y1)
N−2 = xN−1 and finally, by

the above, xN−1y = 0, that is impossible by our assumptions. In conclusion, Lp1 and Fy meet each

other at a single point, namely [y1].

We have proved that for general [y1] ∈ Y we have [y1] ∈ Fy. Then, by the irreducibility of Y , we

get Y ⊂ Fy. Since, this is true for every choice of y ∈ Y , we obtain claim (a).

For (b), let us consider two distinct points [y1], [y2] ∈ Y . From (a) we have that [y2] ∈ Fy1 and

then p = ([y2], [y1]) ∈ Θ. Let us now consider the projective line

Lp = {[λy1 + µy2] | (λ : µ) ∈ P1}

so we have Lp ⊆ Sec(Y ). By Proposition 1.2.3 we know that yi2y
j
1 = 0 for every i, j with j ≥ 1 and

i + j = N − 1. On the other hand, we have that y2 ∈ Fy2 so 0 = yN−2
2 y2 = yN−1

2 . By the above

equations we get

(λy1 + µy2)
N−1 = 0

so Lp ⊆ NN−1. Since every secant line is contained in NN−1, we have claim (b).

If we assume that Fy has dimension n− 1 for all y ∈ Y we can strengthen the results of Corollary

1.3.7:

Proposition 1.3.10. Assume that Fy has dimension n− 1 for all y ∈ Y . Then 1 ≤ dim(Y ) ≤ n− 3.

Proof. Recall that {[x]}×P(Kx) (= {[x]}×P(K1
xN−2)) is the fiber of a general point [x] in P(R1) with

respect to π1 : Θ→ P(R1). Denote by r − 1 the dimension of the general fiber P(Kx).

{[x]} × P(Kx)

xxxx

� � // Θ

π2

�� ��

π1

}}}}

Fy × {[y]}? _oo

%% %%
{[x]} �

� // P(R1) Y {[y]}? _oo

Being in the above diagram P(R1), Θ and Y irreducible, π1 dominant and π2 surjective by con-

struction, we have

dim(Θ) = dim(P(R1)) + dim(P(Kx)) = n+ r − 1 dim(Θ) = dim(Y ) + dim(Fy) = dim(Y ) + n− 1

so dim(Y ) = r. By Corollary 1.3.7 we have

1 ≤ dim(Y ) ≤ n− 2

so it is enough to prove that dim(Y ) cannot be equal to n− 2. This is clearly true if n = 2 so we can

assume n ≥ 3. By contradiction, assume that dim(Y ) = r = n − 2. Denote by s the dimension of

Sec(Y ). By Proposition 1.3.9 we have that Y ⊆ Sec(Y ) ⊆ NN−1 ⊊ P(R1) so we have n−2 ≤ s ≤ n−1.

Notice, first of all, that s cannot be n − 2. Indeed, if dim(Sec(Y )) = dim(Y ) = n − 2, we would

have that Y is linear. This is impossible by Corollary 1.3.5. Hence we can assume s = n− 1.
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Assume first that Y is non-degenerate. We have that Y and Sec(Y ) have codimension 2 and 1

respectively in the smallest projective space that contains Y (and Sec(Y )). By considering the general

hyperplane section Y ′ = Y ∩H and its secant variety Sec(Y ′) = Sec(Y ) ∩H, we preserve the above

properties and Y ′ is as well non-degenerate (in H). We can then cut with n− 3 general hyperplanes

in order to obtain a curve C in P3 and its secant variety which is a surface in P3. This is impossible

since, in this case, C would be a plane curve, and so degenerate.

The only remaining case to analyze is where Y is degenerate of dimension n−2, dim(Sec(Y )) = n−1
and the smallest projective subspace H containing Y is an hyperplane in P(R1). In particular, Y is

an hypersurface in H = Sec(Y ) and its degree is at least 2 (otherwise Y would be linear).

First of all, we will prove that H ⊆ Fy for [y] ∈ Y general. Let [y] ∈ Y be a general point. The

general line L through [y] in H cuts Y in at least another point [y1]. By Proposition 1.3.9 (a), we have

that [y], [y1] ∈ Fy and then, by point (b) of Proposition 1.2.7, L is contained in Fy. Since such lines

cover a dense open subset of H we have that H ⊆ Fy. Then H × [y] ⊂ Fy × [y] and then H × Y ⊆ Θ.

Since they have the same dimension and they are both irreducible we have H × Y = Θ. This is

impossible by (⋆): if H × Y = Θ we would have π1(Θ) = H ̸= P(R1), which is impossible, since π1 is

dominant: dim(Y ) ≤ n− 3 as claimed.

We can now prove Proposition 1.3.8:

Proof of Proposition 1.3.8. Assume, by contradiction, that n ≤ 3. Since we are assuming dim(Y ) = 1

we have that dim(Fy) = n − 1 by Proposition 1.2.7. Then, by Proposition 1.3.10, we have 1 ≤
dim(Y ) ≤ n− 3 ≤ 0, which is clearly impossible.

To conclude this section, let us finally restate and prove Theorem B:

Theorem 1.3.11 (Theorem B). For all standard Artinian Gorenstein K-algebras of codimension at

most n + 1 = 4 there exists x ∈ R1 such that the multiplication map xN−2· : R1 → RN−1 is an

isomorphism, i.e. the strong Lefschetz property (in narrow sense) holds in degree 1.

Proof. Assume, by contradiction, that for all x ∈ R1 the multiplication map xN−2· : R1 → RN−1 is

not an isomorphism. Then we can construct the incidence variety ΓN−2 and by Remark 1.2.1 we know

that the projection p1 : ΓN−2 → P(R1) is surjective. Under these assumptions, we can also construct

the varieties Θ, Y and the fibers Fy’s, as done above. By Corollary 1.3.7 we have 1 ≤ dim(Y ) ≤ n− 2.

Since n ≤ 3, the only possibility is that n is equal to 3 and dim(Y ) = 1. But this is impossible by

Proposition 1.3.8.

1.4 Gordan-Noether and strong Lefschetz properties

In this section, for completeness, let us show the classical equivalence between Gordan-Noether theorem

1.1.22 (Theorem A), presented in Subsection 1.1.2 and Theorem 1.3.11 (Theorem B), proved in Section

1.3.

As done before, let K be an algebraically closed field of characteristic 0, S = K[x0, . . . , xn] the ring

of polynomials in n + 1 ≥ 2 variables and D = K[y0, . . . , yn], with yi = ∂/∂xi the ring of differential
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operators in the xi. Let us recall here that, by Macaulay’s inverse systems, every SAGA R can be

written as D/AnnD(g) for some homogeneous polynomial g ∈ S (see Theorem 1.1.5).

Remark 1.4.1. The codimension of a SAGA A = D/AnnD(g), i.e. the dimension of A1, is at most

n + 1 and equality holds as long as (AnnD(g))1 = {0}. This is equivalent to ask that the partial

derivatives of g are linearly independent, i.e.

dim(A1) = n+ 1 ⇐⇒ X = V (g) ⊆ Pn is not a cone.

Let us start with a strong connection between the non-vanishing of a hessian determinant and the

validity of the strong Lefschetz property in degree 1 for a SAGA as in example 1.1.4. For this, we

need the well known differential Euler Identity ([Rus16, Lemma 7.2.19]):

Lemma 1.4.2. Let g ∈ Se be a homogeneous polynomial of degree e and let L = a0
∂
∂x0

+ · · ·+ an
∂
∂xn

be an element of D1. Then

Le(g) = e! · g(a0, · · · , an).

Lemma 1.4.3. Fix g ∈ Sd \ {0} and consider the SAGA A = D/AnnD(g). Then A has the strong

Lefschetz property in degree 1 if and only if hess(g) ̸≡ 0.

Proof. For any fixed L =
∑n

i=0 ki
∂
∂xi
∈ A1 we can consider the symmetric bilinear map

φL : A1 ×A1 → Ad ≃ K

given by φL(η, ξ) = (Ld−2ηξ)(g). Let B = {y0, . . . , yn} be a basis of A1. Denote with ML the matrix

associated to φL with respect to B. Then we have ML = [αij ]0≤i,j≤n with

αij = (Ld−2yiyj)(g) = Ld−2(yiyj(g)) = Ld−2(Hess(g)ij)

where Hess(g) is the Hessian matrix of g. Since Hess(g)ij is either 0 or has degree d−2, one can apply

the differential Euler Identity (Lemma 1.4.2) in order to obtain

ML = (d− 2)! Hess(g)(k0, . . . , kn). (1.7)

Hence, having hess(g)(= det(Hess(g))) ≡ 0 is equivalent to ask that φL is degenerate, i.e. for all

L, z ∈ A1 there exists y ∈ A1 \ {0} such that Ld−2yz = 0. By Gorenstein duality, this is equivalent to

Ld−2y = 0, i.e. A does not satisfy the SLP in degree 1.

We can now show the equivalence between Theorem A and Theorem B:

Proposition 1.4.4. Theorem A and Theorem B are equivalent.

Proof. Assume first that Theorem B holds. Let X = V (F ) be a hypersurface of degree d ≥ 2

in Pn with n ≤ 3 and we assume that X is not a cone. We have to show that hess(F ) ̸= 0. Since

X is not a cone, the partial derivatives of F are linearly independent. Hence, if we consider the

SAGA A = D/AnnD(F ) as above, we have that A has codimention n + 1 ≤ 4 and socle in degree

d. By Theorem B, the SAGA A has the strong Lefschetz property in degree 1 so, by Lemma 1.4.3,

hess(F ) ̸= 0 as claimed.
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Assume now that Theorem A holds. Let us consider a standard Artinian Gorenstein K-

algebra A of codimension n + 1, with n ≤ 3, and socle in degree d. This algebra can be described

as

A =
D

AnnD(F )
,

for a homogeneous polynomial F of degree d in the variables x0, . . . , xn, by Macaulay’s theory. We

can suppose that F is such that (AnnD(F ))1 = 0, i.e. its partial derivatives are linearly independent.

Let us now assume by contradiction that A does not satisfy the SLP in degree 1. Then, by Lemma

1.4.3, we would have hess(F ) = 0. This is impossible since, by Theorem A we would have that V (F )

is a cone: indeed, this would imply that the partial derivatives of F are linearly dependent, which is

against our assumptions.

1.4.1 The Gordan-Noether identity

In this subsection, let us rephrase in our setting the important consequence of the Gordan-Noether

Identity, the identity (1.2) (that, for brevity, we will call again Gordan-Noether Identity) and by

proving it in the framework described in the previous sections.

First of all, let us briefly recall that, given a homogeneous polynomial f ∈ Sd with d ≥ 1 without

multiple factors, where S = K[x0, · · · , xn], then the closure Z ′ of the image of ∇f in (Pn)∗ is easily

seen to be a proper subvariety of (Pn)∗ if and only if hess(f) ≡ 0 (see (1.1)). In this case, for any

hypersurface W = V (g) containing Z ′, we can consider the Gordan-Noether map associated to g

ψg := ∇g ◦ ∇f : Pn 99K Pn.

One of the key steps in the classical proof of Gordan-Noether theorem, as we have seen (see (1.2)), is

the following: if f has vanishing hessian, then the Gordan-Noether identity

ψg(x+ λψg(x)) = ψg(x) (1.8)

holds for all λ ∈ K and for all x ∈ Kn+1.

Let us now express the map ψg using the framework introduced in Sections 1.2, 1.3. Let R be

a standard Artinian Gorenstein algebra with socle in degree N and assume that the SLP1 does not

hold. By Macaulay Theorem we can write R as D/AnnD(F ) for some suitable F ∈ K[x0, · · · , xn]
with (AnnD(F ))1 = (0) and (by Lemma 1.4.3) hess(F ) = 0. By [HMM+13, Lemma 3.74], F can be

taken to be the function x 7→ xN , via the isomorphism RN ≃ K.

By considering this function, one can observe that ∇F is exactly the map ψ : P(R1) 99K P(RN−1)

introduced in Section 1.3, i.e. the map such that ψ([x]) = [xN−1] for [x] ∈ P(R1) \ NN−1, so our

variety Z coincides with the variety Z ′ introduced above. If W = V (g) is an hypersurface containing

Z, then the Gordan-Noether map ψg defined above is the composition ∇g ◦ ∇F = ∇g ◦ ψ. Since the

image of ∇g lives in P(RN−1)∗ ≃ P(R1) we interpret ψg as a (rational) map from P(R1) to P(R1).

Observe that the image of ψg = ∇g ◦ψ is contained in Y . Indeed, if [x] ∈ P(R1) is general, we can

assume that ψ([x]) = [z] = [xN−1] is smooth in Z (and so for W = V (g)). By definition, and since W
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is an hypersurface, ∇g([z]) is the point on P(R1) corresponding to T[z](W ). Since T[z](Z) ⊆ T[z](W )

we have that ∇g([z]) ∈ Y as claimed.

Proposition 1.4.5. In this setting, the Gordan-Noether identity - Equation (1.8) - follows from the

Gorenstein-Gordan-Noether identity - Equation (1.3).

Proof. Let [x] ∈ P(R1) be a general point. Then we can assume that ψ([x]) = [xN−1] = [z] is a

smooth point for Z. Set [y] = ψg([x]) and notice that [y] ∈ Y , since we have seen that the image of

ψg lies in Y . We claim that ([x], [y]) ∈ Θ. Indeed, [y] ∈ Y ⊂ P(R1) corresponds to an hyperplane

Hy of P(RN−1) tangent to V (g) containing the (projective) tangent space T[z](Z) = P(xN−2 · R1) by

construction. This implies that y annihilates the vector space xN−2 · R1. Since (xN−2y) · R1 = 0,

by Gorenstein duality we have xN−2y = 0 so ([x], [y]) ∈ ΓN−2. Since [x] was general and since Θ

is the only component of ΓN−2 dominating P(R1) via π1, we have that ([x], [y]) ∈ Θ. Then, by the

Gorenstein-Gordan-Noether identity (i.e. Equation (1.3)) we have

ψg([x] + λψg([x])) = ψg([x+ λy]) = ∇g(ψ([x+ λy])) = ∇g(ψ([x])) = ψg([x])

as claimed.

1.5 The analysis of the Perazzo cubic threefold

In this last section of the first chapter, we briefly study the Perazzo cubic threefold V (f) ⊂ P4 and,

in particular, the standard Artinian Gorenstein algebra defined as A = D/AnnD(f). For this section

we will set K = C.

The Perazzo cubic (introduced by Perazzo in [Per00]) is the cubic threefold X = V (f) with

f = x0x
2
3 + 2x1x3x4 + x2x

2
4 ∈ C[x0, x1, x2, x3, x4]

and it is the first counterexample to Hesse’s claim 1.1.20: up to projective transformations, it is the

only cubic threefold with vanishing hessian in P4 which is not a cone. This follows from the work of

several authors which obtain a classification of the hypersurfaces in P4 with vanishing hessian that

are not cones. A comprehensive treatment of this problem can be found in [Rus16, Chapter 7.4]

whereas the original articles dealing with this classification problem (also in higher dimension) are

[GN76,Per00,Fra54,Per57,Per64,Los04,CRS08,GR09].

Fix the notations as in Example 1.1.4 with n = 4 and let f be the above cubic form. Then

A = D/AnnD(f) = A0 ⊕A1 ⊕A2 ⊕A3

is a SAGA with codimension 5 and socle in degree N = deg(f) = 3. As recalled in Section 1.4 (see

Lemma 1.4.3), since X is not a cone and its hessian vanishes, A does not satisfy SLP (and WLP as

well). Notice that, in this case, since A has socle in degree 3, the whole strong Lefschetz property

coincides with the SLP in degree 1.

By recalling that yi =
∂
∂xi

, one has that

(AnnD(f))2 = ⟨y20, y0y1, y0y2, y0y4, y21, y1y2, y22, y2y3, y0y3 − y1y4, y1y3 − y2y4⟩ ≃ K10
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and, moreover, {y0y23, y1y3y4, y2y24} are the only monomials of degree 3 which are not 0 in A. More

precisely, using the above relations, one has A3 = ⟨σ⟩ where σ = y0y
2
3 = y1y3y4 = y2y

2
4. From these

relations, one has that

B1 = {bi}5i=1 = {y0, y1, y2, y3, y4} and B2 = {ci}5i=1 = {y23, y3y4, y24, y0y3, y2y4}

are basis for A1 and A2 respectively. Moreover, it is easy to check that bi · cj = δijσ so that B2 is

the dual basis of B1 (by choosing the isomorphism K → A3 such that 1 7→ σ). Denote by {wi}5i=1

and by {zi}5i=1 the coordinates induced by B1 and B2 on A1 and A2 respectively and by τ the

involution τ([x], [y]) = ([y], [x]), introduced in Lemma 1.2.8. With these notations, we have that

ΓN−2 = Γ1 = {([x], [y]) |xy = 0} ⊆ P(A1) × P(A1) has 3 irreducible components, Θ, τ(Θ) and Λ, all

of dimension 4. Using coordinates w1i and w2i on the two factors of P(A1)× P(A1), we have

Θ = V (w13w20 + w14w21, w13w21 + w14w22, w
2
21 − w20w22, w23, w24) and Λ = V (w13, w14, w23, w24)

so Y = V (w2
1−w0w2, w3, w4) is a conic. In particular, for [y] ∈ Y general, we have dim(Fy)) = 3. The

morphism φ(x) = x2 can be written in coordinates as

z = φ̃(w) = (w2
3, 2w3w4, w

2
4, 2(w0w3 + w1w4), 2(w1w3 + w2w4))

so N2 = V (w3, w4) ≃ P2 is the plane containing the conic Y - here we have taken the reduced structure

- and Z = V (4z0z2 − z21) is a cone over a conic with vertex the line V (z0, z1, z2). The polar map ∇Z
associate to Z is

∇Z : [z] 7→ [w] = [4z2 : −2z1 : 4z0 : 0 : 0]

and has image Y . The Gordan-Noether map ψg associated to g = 4z0z2 − z21 can be written in

coordinates as

ψg(w) = [2w2
4 : −2w3w4 : 2w

2
4 : 0 : 0],

it is defined outside N2 and it defines a rational map from P4 to Y . Finally, one can check that

Θ ∩ τ(Θ) = Y × Y and

Λ = N2 ×N2 Θ ∩ Λ = N2 × Y τ(Θ) ∩ Λ = Y ×N2

so Θ ∩ τ(Θ) ∩ Λ = Y × Y .



Chapter 2

Complete intersection SAGAs

presented by quadrics

In this second chapter, we exploit the framework introduced in Chapter 1 and the construction de-

scribed in Sections 1.2 and 1.3, used to prove Theorem B. Here, we specialize this setting to complete

intersection SAGAs presented by homogeneous polynomials of the same degree, in particular presented

by quadrics, and their Lefschetz properties. In other words, we will analyze the validity of some Lef-

schetz properties for a SAGA R obtained as the quotient of the polynomial ring S = K[x0, · · · , xn] by
an ideal I = (g0, . . . , gn) generated by a regular sequence of degree d− 1 polynomials:

R =
K[x0, . . . , xn]

(g0, . . . , gn)
=

N⊕
i=0

Ri,

where deg(gi) = d− 1 for every i and the zero locus V (g0, · · · , gn) is trivial.
In what follows, we will focus on the case where d = 3, i.e. on complete intersection SAGAs presented

by quadrics. Let us observe that in this specific setting the codimension of R is dim(R1) = n+ 1 and

the socle is in degree N = (n+ 1)(d− 2) = n+ 1. Notice, moreover, that as a particular case of this

kind of SAGAs we have the Jacobian ring of a smooth cubic hypersurface.

After presenting in Section 2.1 some results and properties that hold for any SAGAs or for complete

intersection ones, in Section 2.2 we will focus on the case of complete intersection SAGAs presented

by quadrics. In particular, we will prove some technical results, which will allow us to improve the

bounds on the dimensions of the varieties arising in our construction, when we assume the failure of

some Lefschetz properties. By using these results, in Section 2.3, we will prove Theorem C. In Section

2.4, we will generalize some of the previous results to SAGAs with higher codimension. In Section

2.5 we will prove a lifting criterion for the weak Lefschetz property of complete intersection SAGAs

presented by quadrics. Finally, in Section 2.6, we will analyze, from a geometric point of view, the

nihilpotent loci Ni introduced in Section 1.1: in the case of a Jacobian ring of a cubic hypersurface,

it turns out that these loci can reflect some properties of the cubic hypersurface itself.

The results of this second chapter appear in [BFP22,BF22].

In this chapter, as in the previous one, we will work on an algebraically closed field K of characteristic

0.

25
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2.1 Some preliminary results

In this first section, we study some loci arising in a natural way inside a general SAGA. In particular,

we will analyze the nihilpotent loci Ni and the kernels Ki
η of suitable multiplication maps, introduced

in Section 1.1. In the case of a complete intersection SAGA presented by forms of degree d− 1, it is

possible to obtain some bounds for the dimensions of these loci, which will play, when for example

d = 3, an important role in proving the technical results of the following sections.

First of all, let us recall that, as stated in Section 1.1, if [η] is an element in P(Rh) we set

Ki
η = ker

(
Ri

·η→ Ri+h
)
.

Moreover, for a suitable integer i ≥ 2, we have defined the nihilpotent loci in degree 1 as

Ni := {[x] ∈ P(R1) | xi = 0}.

Let us focus on the case of a complete intersection SAGA R = S/I = ⊕Ni=0R
i presented by forms of

degree d−1. For this specific kind of SAGAs, let us start by showing a result which gives a description

of the kernels Ki
η when i = 1, by also giving an upper bound for their dimensions:

Proposition 2.1.1. Assume that 1 ≤ h ≤ N−1 and let R be a complete intersection SAGA as above,

presented by forms of degree d− 1 and with socle in degree N . Then the following properties hold:

(a) If η ∈ Rh \ {0}, then h ≥ (d− 2) dim(K1
η);

(b) Let η, ζ ∈ Rh \ {0} and assume h = (d − 2) dim(K1
η) = (d − 2) dim(K1

ζ ). Then K1
η = K1

ζ if and

only if [η] = [ζ] in P(Rh).

Proof. Assume that dim(K1
η) = k and chose y0, . . . , yk−1 linearly independent elements in K1

η . We

can find gk, . . . , gn ∈ Id−1 such that Ĩ = (y0, . . . , yk−1, gk, . . . , gn) is the irrelevant ideal (i.e. the set

{y0, . . . , yk−1, gk, . . . , gn} is a regular sequence). Then R̃ = S/Ĩ is a standard Gorenstein Artinian

algebra with socle in degree Ñ = (d− 2)(n+1− k). In particular, any element of S of degree at least

Ñ + 1 belongs to Ĩ. We claim that η ·RÑ+1 = 0. Indeed, if g ∈ SÑ+1 we have

η · g = η ·

(
k−1∑
i=0

λiyi +

n∑
i=k

µigi

)
∈ I

since yi ∈ K1
η and gi ∈ I. This is possible, by Gorenstein duality, if and only if Ñ + h+ 1 > N , i.e. if

and only if h ≥ (d− 2)k as claimed by (a).

For (b) assume that η, ζ ∈ Rh \ {0} are such that K1
η = K1

ζ and h = (d− 2) dim(K1
η). Then we can

proceed as before and construct the ideal Ĩ and the ring R̃ with socle in degree Ñ = N −h. We claim

that KN−h
η = KN−h

ζ . Let σ̃ be a representant of the socle of R̃. Then we can write SN−h = ⟨σ̃, ĨÑ ⟩.
One can easily check that η · Ĩ ⊆ I and ζ · Ĩ ⊆ I. On the other hand, η, ζ are not zero so η · RN−h

and ζ ·RN−h are not 0, i.e. η · σ̃, ζ · σ̃ ̸= 0 in R. Hence, we have that K1
η = K1

ζ = ĨÑ and then η and

ζ are multiples.
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Before proceeding, let us recall that if p is a smooth point of a variety X, we denote by TX,p the

differential tangent space, while by Tp(X) the embedded Zariski tangent space in the projective space

where X lives; if X̃ is the affine cone over X, then TX̃,p̃ is the affine tangent space at the smooth point

p̃ and Tp(X) = P(TX̃,p̃).

As an easy application of the previous proposition 2.1.1, we have the following bound for the

dimension of the nihilpotent locus Ni = {[y] ∈ P(R1) | yi = 0}.

Corollary 2.1.2. We have

dim(Ni) ≤
i− 1

d− 2
− 1.

Proof. Take the general point [y] of any irreducible component C of Ni of maximal dimension which

is not contained in Ni−1. If such a component does not exist, set ϵ > 0 to be the biggest integer such

that Ni = Ni−ϵ. The bound for dim(Ni−ϵ) implies the one for the dimension of Ni.
Let C̃ be the associated affine cone. We claim that TC̃,y = K1

yi−1 . Indeed if v is a tangent vector

to C̃ in y, we have a curve γ(t) = y + tv + t2(· · · ) which is contained in Ni. Then, by expanding the

relation γ(t)i = 0, one has vyi−1 = 0 so v ∈ TC̃,y if and only if v ∈ K1
yi−1 . Then, by Proposition 2.1.1,

we have

dim(Ni) = dim(C̃)− 1 = dim(K1
yi−1)− 1 ≤ i− 1

d− 2
− 1

as claimed.

Moreover, with the same idea of the above proof up to minimal changes, one has a sort of general-

isation of the previous result, that is valid for any SAGA (not necessarily complete intersection ones)

and that presents a description of the tangent spaces for the nihilpotent loci:

Corollary 2.1.3. Let R be any SAGA. Then for [η] ∈ N (a)
k general we have T[η](N

(a)
k ) ⊆ P(Ka

ηk−1).

If, moreover, ηk−1 ̸= 0, we have an equality.

As a consequence of this preliminary discussion, we have a new proof of the following result of

Migliore and Nagel ([MN13b, Proposition 4.3]).

Corollary 2.1.4. Let R = S/I be a standard Artinian Gorenstein algebra with I generated by a

regular sequence of polynomials of degree e with e ≥ 2. Then R has the weak Lefschetz property in

degree 1.

Proof. The result is clear if e ≥ 3 since, in this case, R1 = S1 and R2 = S2. If e = 2 one can consider

the incidence variety Γ1 = {([x], [y]) ∈ P(R1) × P(R1) |xy = 0} introduced in Section 1.2 and its

projection p1 on P(R1). By contradiction, assume that the weak Lefschetz property does not hold in

degree 1. This is equivalent to ask that p1 is surjective. Proceeding as in Section 1.2 one has that there

exists a unique irreducible component Θ of Γ1 that dominates P(R1) via first projection. Moreover

we have Y = π2(Θ) ⊆ N2 and dim(Y ) ≥ 1 (proceeding as in Proposition 1.2.7) so dim(N2) ≥ 1. On

the other hand, by Corollary 2.1.2 we have dim(N2) ≤ 0, which gives a contradiction.

To conclude this section, let us focus on the case that will be treated in what follows: let us assume

that R is a complete intersection SAGA presented by forms of degree d−1 = 2 and with socle in degree
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N = n+ 1. For this specific case, let us make the point on what we can say about the dimensions of

nihilpotent loci and kernels presented above:

(1) If η ∈ Rh \ {0}, for 1 ≤ h ≤ N − 1, then dim(K1
η) ≤ h (2) dim(Ni) ≤ i− 2. (2.1)

2.2 Technical results: new dimension bounds

In this section we consider a SAGA R of codimension dim(R1) = n + 1 and socle in degree N .

Moreover, in addition to what we have done in the previous Section 2.1, we will also assume that R

is a SAGA which does not satisfy the strong Lefschetz property in degree 1 at range k, i.e. SLP1(k),

with 2 ≤ k ≤ N − 2. Equivalently, the multiplication map xk· : R1 → Rk+1 is never injective. Hence,

we are in the situation described more generally in Section 1.2: let us recall that under the above

assumptions we have

Fy × [y]

≃

��

� u

''

π2 // [y]� _
��

Θ

π1
'' ''

π2 // //� t

''

Y � _
��

Γk
p2 //

p1����

P(R1)

Fy
� � // P(R1)

(2.2)

where we have set Γk := Γ
(1,1)
k,1 = {([x], [y]) ∈ P(R1) × P(R1) | xky = 0}. We recall that Θ is the

unique irreducible component of Γk that dominates P(R1) via its first projection π1, Y = π2(Θ) and

Fy = π1(π
−1
2 ([y])) for [y] ∈ Y .

Remark 2.2.1. We recall that all complete intersection SAGAs presented in degree d − 1 satisfy

SLP1(1) =WLP1 (see [MN13b, Proposition 4.3] and 2.1.4). For this reason in this section we do not

consider k = 1 since in this case it is possible to construct Γ1, but p1 is never dominant (so Θ, Y and

Fy cannot be constructed).

First of all, let us show a technical result that holds for any SAGA when we deny the SLP1(k) for

some suitable k. The following lemma states properties, that will be used later, concerning the nature

of the tangent spaces to the varieties arising from denying some strong Lefschetz properties.

Lemma 2.2.2. With notations as above, if p = ([x], [y]) ∈ Θ is a general point, we have:

(a) [y] ∈ TFy ,[x] and [x] ̸∈ TY,[y];

(b) TF̃y ,x
⊆ K1

xαyβ
whenever α+ β = k and β ≥ 1, where F̃y denotes the affine cone over Fy.

Proof. For (a), let p = ([x], [y]) ∈ Θ be a general point. By Proposition 1.2.7 we have that Fy is a

cone and [y] is a vertex for it, so that the line ⟨[x], [y]⟩ is contained in Fy. This means that [y] is a

tangent vector in [x], i.e. [y] ∈ TFy ,[x].

For the second claim of (a), let us suppose by contradiction that [x] ∈ TY,[y], where we can assume

that xk+1 ̸= 0, by the generality of p. Let Θ̃ be the lifting to R1×R1 of Θ ⊂ P(R1)×P(R1) and let π̃2
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be the projection on the second factor from Θ̃. By construction, we have that Θ̃ ⊆ {(x, y) |xky = 0}.
Let Ỹ be the affine cone of Y . Since π2 : Θ → Y is surjective, we have π̃2(Θ̃) = Ỹ and that, for

p = (x, y) ∈ Θ̃ general,

dpπ̃2 : TΘ̃,p → TỸ ,y

is surjective.

By assumption we have also that x ∈ TỸ ,y so there exists a tangent vector to Θ̃ at p of the form

(v, x). Since points of Θ̃ satisfy xky = 0 we have

0 ≡ (x+ tv + t2(· · · ))k(y + tx+ t2(· · · )) (mod t2)

which yields xk+1 = 0. But since this is impossible by the generality of x, we obtain that [x] ̸∈ TY,[y].

For (b), first of all, notice that by Proposition 1.2.3 we have F̃y ⊆ {x ∈ R1 |xiyj = 0} for all

i + j = k + 1 and i, j ≥ 1. Hence, for p general, if an element v ∈ R1 belongs to TF̃y ,x
then the

following relation must be satisfied

0 ≡ (x+ tv + t2(· · · ))iyj = itvxi−1yj + t2(· · · ) (mod t2).

Hence, we have that v ∈ K1
xαyβ

, with α+ β = k and β ≥ 1.

Let us now set R = ⊕Ni=0R
i as a complete intersection SAGA presented by forms of degree d− 1,

with codimension n + 1 and socle in degree N = (n + 1)(d − 2). Now we will prove some results

giving restrictions on the dimensions of Y and of the general fiber Fy with [y] ∈ Y . We are ultimately

interested into the case where d = 3; nevertheless, let us stress that the following proposition (2.2.3)

holds for every d ≥ 3.

Proposition 2.2.3. If we assume n > k
d−2 , then

dim(Fy) ≤ n− 2.

In particular, if d = 3, then Fy cannot be an hypersurface.

Proof. Recall that dim(Fy) ≤ n − 1 by Proposition 1.2.7(d) so we have to rule out only the case

dim(Fy) = n− 1.

Let us assume, by contradiction, that Fy is an hypersurface. Hence, by denoting with F̃y the affine

cone over Fy, we have dim(F̃y) = n.

Recall that Θ =: Θk ⊆ Γk = {([x], [y]) |xky = 0} by assumption. We will show that the multipli-

cation map xk−1· : R1 → Rk is never injective so we can define, as we have done for Θk, an incidence

correspondence Γk−1 with a unique irreducible component Θk−1 which dominates P(R1) via its first

projection. Moreover, we will have Θk = Θk−1 so Fy is also the fiber of the second projection from

Θk−1 and we can iterate this process.

We claim now that Θ ⊆ Γk−1. If p = ([x], [y]) ∈ Θ is general, by using Lemma 2.2.2 and Proposition

2.1.1 we can conclude

n = dim(TF̃y ,x
) ≤ dim(K1

xk−1y) ≤
k

d− 2
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unless xk−1y = 0. Since, by hypothesis, we have that n > k/(d − 2), the only possibility is that

xk−1y = 0. In particular we have shown that Θ ⊆ {([x], [y]) |xk−1y = 0} = Γk−1 as claimed.

Then, Θ is contained in Θk−1 since it dominates P(R1). On the other hand, since Γk−1 ⊆ Γk,

we have also the other inclusion: Θ = Θk−1. In particular, the varieties Y and Fy defined for Θ are

the same as the ones defined for Θk−1. Then, by reasoning as before, we obtain n = dim(TF̃y ,x
) ≤

dim(K1
xk−2y

). If we assume that xk−2y ̸= 0 for p general in Θ, by Proposition 2.1.1 we would obtain

n ≤ (k − 1)/(d − 2) ≤ k/(d − 2) which is, as before, incompatible with the hypothesis on n. Then

Θ ⊆ Γk−2 and we can iterate this process.

By recursion, we reduce ourselves to the case with k = 1. We can then see Θ as a subvariety of Γ1

which dominates P(R1) via its first projection. This implies the failure of the weak Lefschetz Property

in degree 1. Then, by Remark 2.2.1, we get a contradiction: Fy has dimension at most n − 2, as

claimed.

For the second statement, let us notice that if d = 3, the required condition comes to be n > k, which

is always satisfied since n = N − 1 and k is at most N − 2 by construction. Hence, we always have

that the dimension of the general fiber Fy is at most n− 2.

Let us observe that, from the above Proposition 2.2.3 and from Proposition 1.2.7, we automatically

obtain also a new lower bound for the dimension of Y , when the condition in the hypotheses is satisfied.

In particular, in the case where d = 3, we get that 2 ≤ dim(Y ).

Let us now show another result, which gives a new upper bound for the dimension of the variety Y ,

when d = 3.

Proposition 2.2.4. Assume that d = 3. Then, the dimension of Y is at most n− 3.

Proof. First of all, let us notice that if k ≤ N −3 = n−2, then by Proposition 1.2.7(a), Y is contained

in Nk+1 ⊆ Nn−1, whose dimension is at most n− 3 (see Corollary 2.1.2 and, in particular, Properties

(2.1)). Hence, we easily get that in this case dim(Y ) ≤ n− 3 as claimed.

Let us now consider the remaining case: k = N − 2 = n − 1. Recall that dim(Y ) ≤ n − 2 by

Corollary 1.3.7 so, to conclude the proof, we only have to rule out the case where dim(Y ) = n − 2.

Assume by contradiction that dim(Y ) = n− 2. Since k = n− 1, proceeding as above, we have that Y

is contained in Nn, which has dimension at most n− 2. Hence, we get that Y is a component of Nn.
Then, if [y] ∈ Y is a general point (yn−1 ̸= 0, since Y ̸⊆ Nn−1, for dimension reasons), we can write

Ty(Y ) = Ty(Nn) = P(K1
yn−1) by Lemma 2.1.3. However, by Proposition 1.2.3 we know that [x] ∈ Fy

belongs to P(K1
yn−1) and then to Ty(Y ), contradicting Lemma 2.2.2(a).

Let us now conclude this section with another technical results for complete intersection SAGAs

presented by quadrics, which links the dimension of the general fiber Fy to the ”nihilpotent order” of

the variety Y , with which we mean the minimum integer i such that Y ⊆ Ni.

Proposition 2.2.5. Assume that d = 3. Then, the following conditions are not compatible:

(a) for y ∈ Y general, dim(Fy) = k − 1;
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(b) Y ̸⊆ Nk−1.

Proof. Let us recall that by construction 2 ≤ k ≤ N − 2 and that by Proposition 1.2.3 we have that

xαyβ = 0 for every α, β such that α + β = k + 1 and β ≥ 1; in particular (Proposition 1.2.7(a)) we

have yk+1 = 0 and Y ⊆ Nk+1.

Let us assume by contradiction that both conditions (a) and (b) hold. By (b) we have yk−1 ̸= 0

for y ∈ Y general so for ([x], [y]) general in Θ we have xyk−1 ̸= 0. Indeed, otherwise, Fy would be

contained in P(K1
yk−1), whose dimension is at most k − 2 (see Properties (2.1)), which is impossible

by assumption. As a consequence, we have that

for ([x], [y]) ∈ Θ general, xαyβ ̸= 0 for α+ β = k with α, β ≥ 1 (2.3)

since, otherwise, by using the same argument as the one in the proof of Proposition 1.2.3, we would

also obtain that xyk−1 = 0.

By property (2.3) and since for y general dim(Fy) = k − 1 by assumption, we also have

Tx(Fy) = P(K1
xk−1y) = P(K1

xk−2y2) (2.4)

by Lemma 2.2.2.

Let us now claim that

for ([x], [y]) ∈ Θ general, Ty(Y ) ⊆ Tx(Fy). (2.5)

To show this, first of all, recall that Y ̸⊆ Nk−1 and Y ⊆ Nk+1. Let us now consider two cases:

1) Y ̸⊆ Nk and 2) Y ⊆ Nk.

Assume that p = ([x], [y]) ∈ Θ is general (so that [y] is general in Y and [x] is general in Fy). In the

first case, since Y is contained in Nk+1, we have Ty(Y ) ⊆ P(K1
yk
) by Lemma 2.1.3. Moreover, we have

that P(K1
yk
) = Tx(Fy) since yk ̸= 0 and dim(Fy) = k − 1. Analogously, for the second case we have

Ty(Y ) ⊆ P(K1
yk−1) ⊆ P(K1

xyk−1) = Tx(Fy). Here, we have used that xyk−1 ̸= 0 since p is general (by

property (2.3)).

Consider, as in Lemma 2.2.2, the affine cone Ỹ of Y , the lifting Θ̃ of Θ ⊂ P(R1)×P(R1) to R1×R1

and its projection π̃2 on the second factor. By construction, we have that Θ̃ ⊆ {(x, y) |xαyβ = 0} =
Γ̃α,β whenever α+β = k+1 and β ≥ 1. As in Lemma 2.2.2, for p = (x, y) ∈ Θ̃ general, the differential

map

dpπ̃2 : TΘ̃,p → TỸ ,y

is surjective.

Let us take any w in TỸ ,y. By Property (2.5), we have that its class [w] belongs to Tx(Fy).

Moreover, by the surjectivity of dpπ̃2, we can take in TΘ̃,p an element of the form (v, w).

The tangent space to Θ̃ in p is a subspace of the tangent space Tα,β = TΓ̃α,β ,p
to the locus Γ̃α,β in

p, so we have (v, w) ∈ Tα,β. Then, we have

0 ≡ (x+ tv + t2(· · · ))α(y + tw + t2(· · · ))β (mod t2)
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for α, β as above. In particular, by taking (α, β) equal to (k− 1, 2) and (k, 1) we obtain the following

relations satisfied by (v, w):

(k − 1)vxk−2y2 + 2xk−1yw = 0 kvxk−1y + xkw = 0.

Since [w] ∈ Tx(Fy), by property (2.4), we have xk−1yw = 0. Then, from the first equation we

get v ∈ K1
xk−2y2

= K1
xk−1y

(again by property (2.4)). Hence the second equation yields xkw = 0.

In conclusion, we have proved that Ty(Y ) ⊂ P(K1
xk
) = π−1

1 ([x]). We stress that the last equality

holds since [x] is general and then, the whole fiber over [x] with respect to p1 is contained in Θ so

P(K1
xk
) = p−1

1 ([x]) = π−1
1 ([x]).

This easily brings to a contradiction. Indeed, the above property implies that dim(Y ) ≤ dim(π−1
1 ([x]))

for [x] ∈ P(R1) general, and since

dim(Θ) = dim(Y ) + dim(Fy) = dim(π−1
1 ([x])) + n

we also get dim(Y ) ≤ dim(Y ) + dim(Fy)− n, which is impossible by Proposition 1.2.7.

2.3 Proof of Theorem C

In this section we will prove Theorem C from the Introduction (see Theorems 2.3.2 and 2.3.4). In

particular, we will show that a complete intersection SAGA presented by quadrics satisfies the whole

strong Lefschetz property (both in degree 1 and in degree 2) if it has codimension 5 and, in the case of

codimension 6, it satisfies the strong Lefschetz property in degree 1. (Observe that here we are using

the definition of strong Lefschetz property in narrow sense (see definition 1.1.6).)

Let us firstly consider the former case, the one with codimension n+ 1 = 5. We have thus n = 4 and

d = 3: in particular, we are dealing with standard Artinian Gorenstein algebras which are quotients

of S = K[x0, · · · , x4] by ideals generated by a regular sequence of length 5 whose elements have degree

2. Under these assumptions we have I = (I2), N = 5 and

R = S/I = R0 ⊕R1 ⊕R2 ⊕R3 ⊕R4 ⊕R5

with (dim(Ri))5i=0 = (1, 5, 10, 10, 5, 1). For simplicity, if α ∈ Rc, we will define by µi(α) to be the

multiplication map by α from Ri to Ri+c. In particular we have Ki
α = ker(µi(α)).

Let us start with the following technical result we will need in what follows.

Proposition 2.3.1. Let [x] ∈ P(R1) and [q] ∈ P(R2) such that qx = 0. Let W ⊂ K2
q be a subspace

with dim(W ) ≥ 4. Then W ∩ (x ·R1) ̸= {0}.

Proof. Consider the quotient Rq = R/(0 : q), i.e. the quotient of R by the ideal J such that J i = Ki
q.

This is a SAGA with socle in degree Nq = N − deg(q) = 3 by Lemma 1.1.9. Since xq = 0 by

hypothesis, we have K1
q ̸= 0. By Proposition 2.1.1 we have dim(K1

q ) ≤ 2 and so dim(R1
q) ∈ {3, 4}.

Since dim(K2
q ) = dim(R2) − dim(R2

q) = 10 − dim(R1
q) we have that dim(K2

q ) ∈ {6, 7}. In particular,

dim(K2
q ) ≤ 7. Consider W ⊆ K2

q of dimension 4 and the subspace V = x · R1. By Proposition 2.1.1

we have that V has dimension at least 5 − 1 = 4 and, by construction, is a subspace of K2
q . Then

W ∩ V has dimension at least 1 as claimed.
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Let us now prove the first part of Theorem.

Theorem 2.3.2 (Theorem C). Let R be as above. Then R satisfies the strong Lefschetz property, i.e.

the general element x ∈ R1 is such that

(SLP1) µ1(x
3) = x3· : R1 → R4

(SLP2) µ2(x) = x· : R2 → R3

are both isomorphisms.

Proof. The proof is organized in two steps: first of all we will prove that SLP1 implies SLP2 and then

that SLP1 holds.

Step 1: SLP1 =⇒ SLP2. We will proceed by contradiction by assuming that SLP2 is false, i.e.

that for all x ∈ R1 we have K2
x ̸= {0}. We can consider the incidence variety

Γ(1,2) := Γ
(1,2)
1,1 = {([x], [q]) ∈ P(R1)× P(R2) |xq = 0}

and its projections p1 and p2 (see the general construction in Section 1.2). Since SLP2 does not hold we

have that p1 is dominant. Hence, as done in Section 1.2 one has that there exists a unique irreducible

component Θ of Γ1,2 that dominates P(R1) via the first projection. Again, let us call πi the restrictions

to Θ of such projections pi and let Y be the image of Θ via π2. Since π1 is dominant and P(R1) ≃ P4,

we have that Θ has dimension at least 4. Moreover, if [q] ∈ P(R2), we have π−1
2 ([q]) ⊆ P(K1

q )× [q] so

its dimension is at most 1 by Proposition 2.1.1. Then, for [q] ∈ Y general,

dim(Y ) = dim(Θ)− dim(Θ ∩ π−1
2 ([q])) ≥ 4− 1 = 3.

We claim now that Y ⊆ N (2)
2 := {[q] ∈ P(R2) | q2 = 0}. Let ([x], [q]) be a generic point in Θ.

Proceeding as in Proposition 1.2.3, since π1 : Θ → P(R1) is dominant, for any v ∈ R1, we can find

β(t) = q + tw + t2(· · · ) ∈ Y ⊂ P(R2) such that (x+ tv)β(t) = 0. Then, by considering the expansion

of this relation modulo t2 we obtain

xw + qv = 0 for all v ∈ R1. (2.6)

Then, by multiplying by q, one gets q2v = 0 for all v ∈ R1. By Gorenstein duality we have q2 = 0 so

Y ⊆ N (2)
2 as claimed.

Since p = ([x], [q]) was general, we can also assume that [q] is smooth for Y and N (2)
2 and that the

differential dpπ2 : TΘ,p → TY,q is surjective. Then, as in Corollary 2.1.2, one can show that the Zarisky

tangent space to the affine cone Ñ (2)
2 of N (2)

2 at q is TÑ (2)
2 ,q
≃ K2

q . Since dim(Y ) ≥ 3 and Y ⊆ N (2)
2 we

can find three tangent vectors w1, w2, w3 such that W = ⟨w1, w2, w3, q⟩ is a 4-dimensional subspace of

TỸ ,q ⊆ K
2
q , where Ỹ is the affine cone of Y . Then, by Proposition 2.3.1, we have W ∩ (x ·R1) ̸= {0} so

we can find η ∈ R1 \ {0} such that xη ∈W . Notice that xη cannot be equal to q since, otherwise, we

would have that for [x] ∈ P(R1) general 0 = xq = x2η and then x3η = 0: this is impossible since we

are assuming SLP1. Then xη is not 0 as tangent vector in TY,q. By the surjectivity of the differential

map dpπ2, there exists v ∈ R1 such that

(v, xη) ∈ TΘ,p ⊆ TP(R1),[x] × TP(R2),[q]
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so there is a curve (α(t), β(t)) ⊆ Θ passing through p with tangent vector (v, xη). By expanding at

the first order one gets a relation as the one in Equation (2.6): x2η + qv = 0. If we multiply by x we

have x3η = 0. However, this is only possible for x special since we are assuming SLP1 and so it leads

to a contradiction.

Step 2: SLP1 holds. Assume, by contradiction, that SLP1 does not hold. Then, as in the

construction described in Section 1.2, we can consider ΓN−2 = Γ3 = {([x], [y]) ∈ P(R1)×P(R1) |x3y =

0} which dominates P(R1) via its projection p1. Let us consider Θ ⊆ Γ3, the unique irreducible

component that dominates P(R1) via the first projection, let πi = pi|Θ, Y = π2(Θ) and Fy the first

projection of the fiber through π2 over the point y ∈ Y . By Proposition 1.2.7, we have some immediate

restrictions to the values of the dimensions of Y and of the general fiber Fy:

1 ≤ dim(Y ) ≤ 3 1 ≤ dim(Fy) ≤ 3 dim(Y ) + dim(Fy) = dim(Θ) ≥ 4.

Moreover, by Corollary 1.3.7 of Section 1.3 (observe that here we have k = N −2), we can improve

the above bounds, obtaining

1 ≤ dim(Y ) ≤ 2 2 ≤ dim(Fy) ≤ 3 dim(Y ) + dim(Fy) = dim(Θ) ≥ 4. (2.7)

Let us now list in the following table the possible values of the pairs (dim(Y ), dim(Fy)), for y ∈ Y
general point:

dim(Y ) VS dim(Fy) 2 3

1 (2.7) ??

2 ?? ??

While the case (dim(Y ), dim(Fy)) = (1, 2) has been already ruled out by inequalities 2.7, we still

have three possibilities that could occur. However, let us observe that by Proposition 2.2.3 we know

that the general fiber Fy can not be a hypersurface in P(R1) ≃ P4, hence it can not have dimension

3. Let us analyse the remaining case, namely dim(Y ) = dim(Fy) = 2. But by Proposition 2.2.4, we

have that dim(Y ) ̸= n− 2 = 2.

In other words, we can get rid of all the possibilities in the above table, by using the results proved in

the previous sections:

dim(Y ) VS dim(Fy) 2 3

1 (2.7) Prop. 2.2.3

2 Prop. 2.2.4 Prop. 2.2.3

Hence, there are no possibilities for Y and Fy to exists: this means that the first projection

π1 : Γ3 99K P(R1) cannot be surjective, and so, equivalently (see Remark 1.2.1), that the strong

Lefschetz property in degree 1 holds.
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Since Jacobian rings of smooth cubic threefolds represent a special case of complete intersection

SAGAs presented by quadrics with codimension 5, we have the following obvious but important

consequence:

Corollary 2.3.3. The Jacobian ring of a smooth cubic threefold satisfies the strong Lefschetz property.

With the same idea of strategy we have followed to prove the previous theorem, we can deal with

the case of complete intersection SAGAs presented by quadrics of codimension 6. In this case we have

n = 5 and d = 3: we are dealing with standard Artinian Gorenstein algebras, that are quotients of

S = K[x0, · · · , x5] by ideals generated by a regular sequence of length 6 whose elements have degree

2. In this situation, we have I = (I2), N = 6 and

R = S/I = R0 ⊕R1 ⊕R2 ⊕R3 ⊕R4 ⊕R5 ⊕R6

with (dim(Ri))6i=0 = (1, 6, 15, 20, 15, 6, 1).

Theorem 2.3.4 (Theorem C). Let R be a complete intersection SAGA presented by quadrics of

codimension 6. Then R satisfies the strong Lefschetz property in degree 1 (SLP1), i.e. the general

element x ∈ R1 is such that the map µ1(x
4) : R1 → R5 is an isomorphism.

Proof. Let us assume by contradiction that the statement does not hold: the map µ1(x
4) : R1 → R5

is never injective for x ∈ R1. Then we are again in the situation described in the construction of

Section 1.2 with k = N − 2 = 4 and Γ4 = Γ
(1,1)
4,1 = {([x], [y]) ∈ P(R1) × P(R1) | x4y = 0}: since the

first projection from Γ4 is surjective by assumption, we can define Θ, Y and Fy as usual. Let us now

focus on the dimensions of Y and of Fy for general [y] ∈ Y .

First of all, let us recall that, by Proposition 1.2.7 and Corollary 1.3.7, we have

1 ≤ dim(Y ) ≤ 3 2 ≤ dim(Fy) ≤ 4 dim(Y ) + dim(Fy) = dim(Θ) ≥ 5. (2.8)

As we have done in the proof of the previous theorem 2.3.2, let us now list in the following table the

possible values of the pairs (dim(Y ), dim(Fy)). By using the constraints (2.8) and the various results

proved in the previous sections, we can rule out all the possibilities: in the table below we specify

which result excludes each pair.

dim(Y ) VS dim(Fy) 2 3 4

1 (2.8) (2.8) Prop. 2.2.3

2 (2.8) Prop. 2.2.5 + bounds (2.1) Prop. 2.2.3

3 Prop. 2.2.4 Prop. 2.2.4 Prop. 2.2.3

In particular, the case (dim(Y ), dim(Fy)) = (2, 3) can’t be attended because of Proposition 2.2.5.

Indeed, if we assume that the dimension of the general fiber Fy is n− 2 = 3, we then have that Y has

to be contained in the nihilpotent locus N3, whose dimension by bounds (2.1) is at most 1: Y can’t

have dimension equal to 2.

Finally, since no pair as above is possible for our framework, we get a contradiction and this

concludes the proof.
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As in the previous case, we have the following easy but important consequence.

Corollary 2.3.5. The jacobian ring of a smooth cubic fourfold satisfies the strong Lefschetz property

in degree 1.

Remark 2.3.6. Our techniques do not apparently allow us to show also the validity of the strong

Lefschetz property in degree 2 for complete intersection SAGA presented by quadrics with codimension

6. Indeed, if we for example proceed as we have done for the case of codimension 5, by supposing the

failure of such a property and consequently constructing the usual framework, we can not say almost

anything about the variety Y . For example, we can not obtain the inclusion of Y in any nihilpotent

locus. Indeed, the failure of the strong Lefschetz property in degree 2 means that the multiplication

map µ2(x
2) : R2 → R4 is never injective for all x ∈ R1: we can then consider

Γ = Γ
(1,2)
2,1 = {([x], [q]) ∈ P(R1)× P(R2) | x2q = 0},

whose first projection over P(R1) is surjective and where Y is defined as we have usually done. In

analogy with the case of codimension 5, we would like to show (and we also expect) that Y ⊂ N (2)
3 .

But if we try to apply the method used in the proof of Proposition 1.2.3 to this specific situation, we

can find that every point ([x], [q]) ∈ Γ satisfies also the equation xq2 = 0. At this point, we can say

that for all v ∈ R1 there exists an element w ∈ R2 such that

(x+ tv)(q + tw)2 = 0 mod t2

and from this we can get

vq2 + 2xqw = 0.

But now multiplication by q does not make sense anymore: since vq3 would be an element of R7 and

hence naturally zero, we can not divide by v and obtain the desired equation. This fact seems to stop

any reasoning at the beginning, since we do not have apparently instruments to work with this variety

Y in an appropriate way, as we have done in the other case.

2.4 Some results in higher codimension

In this section, our aim is to obtain some results concerning Lefschetz properties for complete inter-

section SAGAs presented by quadrics with codimension equal to n + 1 ≥ 4 by using techniques and

results developed in the previous sections. In particular, we will show Theorem D:

Theorem 2.4.1 ((Theorem D)). Let R be a complete intersection SAGA of codimension n + 1 pre-

sented by quadrics. Let k ∈ {2, 3, 4}. If n ≥ k + 1 we have that R satisfies SLP1(k).

We will show the above theorem by splitting up the proof in 3 cases, which will be treated in the

Propositions 2.4.2, 2.4.3 and 2.4.5 respectively, according to the value of k.

Proposition 2.4.2. Property SLP1(2) holds for every n ≥ 3.
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Proof. Let us assume by contradiction that the multiplication map x2· : R1 → R3 is not injective for

[x] ∈ P(R1). Then we can consider the locus Γ2 = {([x], [y]) ∈ P(R1) × P(R1) | x2y = 0}, with the

corresponding varieties Θ, Y and Fy defined as we have usually done. By Proposition 1.2.7(a), we

obtain that Y ⊆ N3. Then, since by Corollary 2.1.2 we get that dim(N3) ≤ 1 and by Proposition

1.2.7(d) we know that dim(Y ) ̸= 0, we have dim(Y ) = 1: hence for [y] ∈ Y general Fy must be a

hypersurface, which is not possible by Proposition 2.2.3.

Proposition 2.4.3. Property SLP1(3) holds for every n ≥ 4.

Proof. Let us assume by contradiction that the multiplication map x3· : R1 → R4 is not injective for

[x] ∈ P(R1). As in the proof of Proposition 2.4.2, let us construct Γ3, Θ, Y and Fy. In this case,

by Proposition 1.2.7 we have that Y ⊆ N4 so dim(Y ) ≤ 2, by Corollary 2.1.2. If [y] ∈ Y is general,

then the only possible value for (dim(Y ), dim(Fy)) is (2, n − 2) since Fy can not be a hypersurface

by Proposition 2.2.3. By dimension reasons, Y ̸⊆ N3, thus we have that the general element [y] of Y

is such that y3 ̸= 0. Then, since by Proposition 1.2.3 we know that for every ([x], [y]) ∈ Θ also the

equation xy3 = 0 is satisfied, we get Fy must be contained in P(K1
y3), whose dimension is at most 2,

by Proposition 2.1.1. Then we have proved that n− 2 = dim(Fy) ≤ 2 which is impossible for n ≥ 5.

The case where n = 4 corresponds to the strong Lefschetz property (in narrow sense) for complete

intersection SAGAs presented by quadrics with codimension 5, which has already been proved in

Theorem 2.3.2 (Theorem C).

Before showing the analogous result for the SLP1(4), let us prove the following:

Lemma 2.4.4. Let R be a complete intersection SAGA presented by quadrics of codimension n + 1

and consider 4 ≤ k ≤ n−1. Assume that R does not satisfy SLP1(k) so one can consider the varieties

Γk,Θ, Y and Fy constructed as in Section 1.2. For [y] ∈ Y general we have the following properties:

(a) If R satisfies SLP1(k − 1), then dim(Fy) ≤ k − 1;

(b) (dim(Y ), dim(Fy)) ̸= (k − 1, k − 1).

Proof. For (a), let us assume by contradiction that for [y] ∈ Y general, dim(Fy) = h ≥ k. Then, by

Lemma 2.2.2, we have that for [x] ∈ Fy general

T[x](Fy) = P(TF̃y ,x
) ⊆ P(K1

xαyβ ),

where α+ β = k, with β ≥ 1 and F̃y is the affine cone over Fy. But since SLP1(k− 1) holds for R by

hypothesis, for ([x], [y]) ∈ Θ general, we have that xk−1y ̸= 0, and so

h = dim(Fy) ≤ dim(P(K1
xk−1y)) ≤ k − 1,

where the last inequality comes from Proposition 2.1.1. This is clearly impossible by the assumptions

over h.

For (b), let us consider [y] ∈ Y general and assume by contradiction that dim(Y ) = dim(Fy) = k−1.
By Proposition 1.2.7(a) we get that Y ⊆ Nk+1, and by Corollary 2.1.2 we deduce that Y is an
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irreducible component of Nk+1 and for dimension reasons we have that Y ̸⊂ Nk, hence yk ̸= 0 for

[y] ∈ Y general. By reasoning as in the proof of Proposition 2.4.3 and by Proposition 2.1.1, we get

Fy = P(K1
yk
). Moreover, since [y] is general in Y and Y is an irreducible component of Nk+1, by

Corollary 2.1.3 we have T[y](Y ) = P(K1
yk
) = Fy. With these conditions, we can proceed as in the proof

of Proposition 2.2.5 and consider for example the equations

0 ≡ (x+ tv)k−1(y + tw)2 (mod t2) 0 ≡ (x+ tv)k(y + tw) (mod t2),

where w ∈ TỸ ,y and (v, w) ∈ TΘ̃,(x,y). In this way, we get that Y ⊆ π−1
1 ([x]), where, as usual,

π1 : Θ ⊆ P(R1) × P(R1) → P(R1) is the first projection. This leads to a contradiction as shown in

Proposition 2.2.5.

We can now show the last case we need to prove Theorem 2.4.1.

Proposition 2.4.5. Property SLP1(4) holds for every n ≥ 5.

Proof. First of all, let us notice that the statement for n = 5 corresponds to the strong Lefschetz

property (in narrow sense) for complete intersection SAGAs presented by quadrics with codimension

6, which has already been proved in Theorem 2.3.4 (Theorem C). We have to prove SLP1(4) for

n ≥ 6.

Let us assume that for x ∈ R1, the multiplication map x4· : R1 → R5 is not injective. As usual,

we can then consider the incidence correspondence Γ4 = {([x], [y]) ∈ P(R1) × P(R1) | x4y = 0} and

the corresponding varieties Θ, Y and Fy, for [y] ∈ Y general.

By Proposition 1.2.7(a), we get that Y ⊆ N5, so dim(Y ) ≤ 3 by Corollary 2.1.2. By using the bounds

of Proposition 1.2.7 and Proposition 2.2.3, the only possible cases for the values of (dim(Y ), dim(Fy))

are

(2, n− 2) (3, n− 2) (3, n− 3).

By Proposition 2.4.3, we know that SLP1(3) holds for n ≥ 6. Then, by Lemma 2.4.4(a), we get that

dim(Fy) is at most 3: the cases (dim(Y ),dim(Fy)) = (2, n − 2) and (dim(Y ), dim(Fy)) = (3, n − 2)

can not occur for every n ≥ 6. We also have that (dim(Y ), dim(Fy)) ̸= (3, n− 3) for every n ≥ 7.

The only case we have still to analyze is the one with n = 6 and dim(Y ) = dim(Fy) = 3. By

considering Lemma 2.4.4(b), we can rule out this last possibility too: SLP1(4) holds for R, for every

n ≥ 5.

We conclude this section by observing how much can be easily said, by using these methods, for

the SLP1 (in narrow sense) for a complete intersection SAGA of codimension 7 (i.e. n = 6) presented

by quadrics (e.g. for the Jacobian ring of a smooth cubic fivefold).

Corollary 2.4.6. Let R be a complete intersection SAGA of codimension 7 presented by quadrics.

We have that SLP1(4) holds. Moreover, if SLP1(5) does not hold (i.e. if SLP1 does not hold),

then one can construct the varieties Γ5,Θ, Y and Fy as usual and we have, for [y] ∈ Y general,

(dim(Y ),dim(Fy)) ∈ {(2, 4), (3, 3)}.
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Proof. Property SLP1(4) holds by Theorem 2.4.1. Assume that SLP1(5) does not hold for R. Then.

by Proposition 1.2.7 and Corollary 1.3.7, we have

1 ≤ dim(Y ) ≤ 4 2 ≤ dim(Fy) ≤ 5 dim(Y ) + dim(Fy) = dim(Θ) ≥ 6. (2.9)

As in Theorem 2.3.4, we put in a table the possible values of the pairs (dim(Y ), dim(Fy)) and we

specify which result rules out the corresponding case.

dim(Y ) VS dim(Fy) 2 3 4 5

1 (2.9) (2.9) (2.9) Prop. 2.2.3

2 (2.9) (2.9) Prop. 2.2.3

3 (2.9) Prop. 2.2.5 + Bounds (2.1) Prop. 2.2.3

4 Prop. 2.2.4 Prop. 2.2.4 Prop. 2.2.4 Prop. 2.2.3

This concludes the proof.

2.5 A lifting criterion for weak Lefschetz property

It is known (see, for example, [HMM+13, Proposition 3.11]) that, the SLP for a graded algebra is

inherited to its quotients by suitable conductor ideals. Let us recall that given an element α ∈ Re \{0}
we call conductor ideal of α the ideal (0 : α) = ⊕Ni=0 ker(α· : Ri → Ri+e), where R is any SAGA with

socle in degree N (see the definition in Lemma 1.1.9). In this section we prove a sort of converse

for the weak Lefschetz property in degree 2 (WLP2) for complete intersection SAGAs presented by

quadrics. More precisely, we will give a criterion to reduce the proof of WLP2 for a SAGA R as above

to a suitable quotient of R, modulo the existence of a non-Lefschetz element. We stress, moreover,

that this criterion works for any codimension.

Elements of P(R1) for which the corresponding multiplication map is not of maximal rank play

here an important role, so it is convenient to introduce the following subschemes of P(R1).

Definition 2.5.1. Let R be any SAGA with socle in degree N . For 1 ≤ a ≤ N − 1 we define the

Lefschetz locus in degree a to be

La := {[x] ∈ P(R1) |x· : Ra → Ra+1 has maximal rank} ⊂ P(R1).

An element [x] ∈ P(R1) is called Lefschetz element in degree a if [x] ∈ La. On the contrary,

elements not in La are called non-Lefschetz elements (in degree a).

Geometric results on these loci can be found, for example, in [AR19] and [BMMRN18].

Remark 2.5.2. Let us stress that if we consider a non-Lefschetz element in degree 1 [z], i.e. [z] ∈
P(R1) \ L1, we have that the multiplication map z· : R1 → R2 is not injective. Hence, we have a non

trivial kernel of such a map, i.e. K1
z ̸= {0}. If R is a complete intersection SAGA presented by forms

of degree d − 1, by Proposition 2.1.1, we know that dim(K1
z ) ≤ 1

d−2 . If d ≥ 4 the only possibility is

that dim(K1
z ) = 0 and so K1

z = {0} (actually in this case the multiplication by z corresponds to the

multiplication map S1 → S2, that is clearly always injective). If d = 3, we have dim(K1
z ) ≤ 1 and if
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[z] is a non-Lefschetz element we get the equality and in particular there exists an element [w] ∈ P(R1)

such that P(K1
z ) = [w], i.e. zw = 0 and K1

z = ⟨w⟩. Clearly, [w] itself is a non-Lefschetz element in

degree 1 with P(K1
w) = [z].

Let us start by setting as usual S = K[x0, . . . , xn] and by proving the following result.

Lemma 2.5.3. Assume that R = S/I is a complete intersection SAGA of codimension n+1 presented

by quadrics (so the socle is in degree N = n+1). Assume that there exists a non-Lefschetz element in

degree 1 [z], such that zw = 0 for w ̸= 0. Then (z) = (0 : w) and R̄ = R/(z) is a complete intersection

SAGA of codimension n presented by quadrics. In particular, dim(Ks
w) = dim(Rs−1)− dim(Ks−1

z ).

Proof. By definition, we have (z) ⊆ (0 : w), so we can define an epimorphism of graded K-algebras

φ : R̄ := R/(z)→ R̃ := R/(0 : w).

By Lemma 1.1.9, the latter is a SAGA of codimension n and socle in degree Ñ = n. By considering

R̄, it is clearly an Artinian standard algebra of codimension n. We want to show that R̄ is also a

complete intersection SAGA presented by quadrics. By hypothesis, we know that zw ∈ I, so we

can complete {zw} to a regular sequence of the form {g0, · · · , gn−1, zw} spanning I. Notice that, by

construction, g0, · · · , gn−1 do not belong to the ideal (z) and the reductions ḡi of gi modulo (z) are a

regular sequence of quadrics in the polynomial ring S̄ = S/(z).

Hence we have

R̄ = R/(z) =
S/I

(z)
≃ S̄

(ḡ0, · · · , ḡn−1)

so R̄ is a complete intersection SAGA presented by quadrics. In particular, it has socle in degree

N̄ = n = Ñ .

Since φ is an epimorphism and preserve the degrees, the image of a generator σ̄ of R̄n is a non-zero

multiple of the generator σ̃ of R̃n. This also implies the injectivity of φ. Indeed, let us take a non-zero

element x ∈ R̄i. There exists y ∈ R̄n−i such that xy = σ̄. Hence, we have

λσ̃ = φ(σ̄) = φ(xy) = φ(x)φ(y),

and so we get that φ(x) can not be zero and φ is an isomorphism. In particular, for all s,

Rs−1 · z = (z)s = (0 : w)s = Ks
w

then we clearly have

dim(Ks
w) = dim(Rs−1z) = dim(Rs−1)− dim(Ks−1

z )

as claimed.

We can now prove the following ”lifting criterion”:

Theorem 2.5.4. Let R = S/I be a complete intersection SAGA of codimension n+ 1 ≥ 6 presented

by quadrics and assume that z is a non-Lefschetz element (in degree 1) for R. If R̄ = R/(z) satisfies

the WLP2, then the same holds for R.
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Proof. First of all, by Lemma 2.5.3, we have that R̄ = R/(z) = R/(0 : w) is a complete intersection

SAGA presented by quadrics and K1
z = ⟨w⟩ . Let prz be the projection R→ R̄.

Assume, by contradiction, that WLP2 holds for R̄ but not for R. In particular, for all x ∈ R1,

the multiplication map x· : R2 → R3 has non trivial kernel, i.e. K2
x ̸= {0}. Consider the incidence

correspondence

Γ = {([x], [v]) ∈ P(R1)× P(R1) |xvz = 0}

with its projections p1 and p2 on the factors.

We claim that p1 is surjective. Since Γ is a closed subset, it is enough to show that for [x] ∈ P(R1)

general there exists [v] ∈ P(R1) such that xvz = 0. Let x be a general element of R1. As K2
x ̸= 0 we

have that there exists [q] ∈ P(R2) such that xq = 0 in R. Then we have also prz(xq) = xq = 0 in R̄.

Since [x] is general in P(R1), then the same holds for [x̄] ∈ P(R̄1), so we get q̄ = 0 in R̄2, as WLP2

holds for R̄ by assumption. Then, by Lemma 2.5.3, we have q ∈ (0 : w)2 = (z)2 = z · R1 so there

exists [v] ∈ P(R1) such that 0 = xq = xvz as claimed.

In analogy with what happens for the construction described in Section 1.2, we have that there

exists a unique irreducible component Θ′ of Γ which dominates P(R1) via π1, where we set πi to be

the restriction of pi to Θ′ for i = 1, 2. We have that for [x] ∈ P(R1) general

π−1
1 ([x]) = p−1

1 ([x]) = [x]× P(K1
xz)

so the general fiber of π1 has dimension at most 1 by Proposition 2.1.1.

Let us now show that the general fiber of π1 has dimension 1. Consider [x] ∈ P(R1) general.

Firstly, let us observe that ([x], [w]) belongs to p−1
1 ([x]) = π−1

1 ([x]) since zw = 0. As shown above,

there exists [q] ∈ P(R2) such that xq = 0 and q = zv for suitable [v] ∈ P(R1). Moreover [v] ̸= [w]

since, otherwise, [q] would be zero, hence π−1
1 ([x]) = ⟨[w], [v]⟩ as claimed.

By considering the second projection π2, we have that for [v] general in Y ′ = π2(Θ
′), the fiber

π−1
2 ([v]) is such that

π−1
2 ([v]) ⊆ p−1

2 ([v]) = P(K1
vz)× [v],

which has dimension at most 1 by Proposition 2.1.1. Since π1 is dominant, for ([x], [v]) ∈ Θ′ general

we have

n+ 1 = dim(P(R1)) + dim(π−1
1 ([x])) = dim(Θ′) = dim(Y ′) + dim(π−1

2 ([v])).

Since dim(Y ′) ≤ n and dim(π−1
2 ([v])) ≤ 1, for v general, the only possibility is to have dim(π−1

2 ([v])) =

1 and Y ′ = P(R1).

We will show now that having Y ′ = P(R1) gives a contradiction. First of all, by reasoning as in

the proof of Proposition 1.2.3, one can prove that

Y ′ ⊆ {[v] ∈ P(R1) | v2z = 0}.

Since Y ′ = P(R1) and squares of elements of R1 generates R2 (as R is standard), we have that

z ·R2 = 0. This is impossible by Gorenstein duality, since z ̸= 0.
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In the statement of Theorem 2.5.4 we require n + 1 ≥ 6 since for codimension 5 the WLP2 has

already been proved (in [AR19] or as consequence of SLP proved in Theorem 2.3.2) and in even

smaller codimension, it easily follows from WLP1 that is known to hold. From this, we get the

following consequence:

Corollary 2.5.5. Let R be a complete intersection SAGA of codimension 6 presented by quadrics

(e.g. R is the jacobian ring of a cubic fourfold). If L1 is not the whole P(R1), R satisfies WLP .

2.6 Nihilpotent loci and geometrical properties

In this section we will study geometric properties of the nihilpotent loci Nk ⊆ P(R1) where R is a

complete intersection SAGA of codimension n+1 presented by quadrics. We stress that we don’t make

any assumptions about the validity of any weak or strong Lefschetz property for R in this section.

We recall that the nihilpotent loci (in P(R1)) are defined asNk = {[x] ∈ P(R1) | xk = 0}. Moreover,

if X ⊂ Pr is non-empty, we denote by Seck(X) ⊆ Pr the k-secant variety associated to X, i.e.

Seck(X) :=
⋃

p1,...,pk∈X
⟨p1, . . . , pk⟩

where ⟨p1, . . . , pk⟩ is the linear span of the points p1, . . . , pk. For brevity, we set Sec2(X) := Sec(X).

The interested reader can refer to [Rus16, Chapter 1] for various properties of these classical loci

(although the definition considered is slightly different from the one adopted by us).

We stress that, like the non-Lesfschetz loci P(R1) \ Lk, the nihilpotent loci Nk are expected to be

empty when k is small for R general. Hence it is interesting to study these loci when R is ”special”.

For example, these loci give a lot of information for SAGAs for which some Lefschetz properties do

not hold.

Let us start by analyzing the locus N2 ⊆ P(R1) ≃ Pn. We recall that by Corollary 2.1.2 and, in

particular, by bounds (2.1) we have that dim(N2) ≤ 0 so it is either empty or it is the union of a finite

number of points. These points have to satisfy the following:

Proposition 2.6.1. Assume that [t1], . . . , [tk] ∈ N2 are distinct points. Then Πki=1ti ̸= 0 in R and

[t1], . . . , [tk] are in general position in P(R1). In particular, #N2 ≤ n+ 1 = N .

Proof. The statement is trivially true for k = 1. If k = 2 the only statement one has to check is that

t1t2 ̸= 0. This is true since dim(K1
t1) ≤ 1 by Proposition 2.1.1 and t1 ∈ K1

t1 , hence K
1
t1 = ⟨t1⟩, but

[t1] ̸= [t2]. We will then proceed by induction assuming that the claim is true till k − 1.

Let T = {[t1], . . . , [tk]} be a set of k distinct points of N2. By contradiction, let us assume that

either (A1) or (A2) holds, where

(A1) {t1, . . . , tk} are linearly dependent

(A2) Πki=1ti = 0.
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First of all, we claim that (A2) is equivalent to (A1). By induction hypothesis, for {z1, . . . , zk−1} ⊂
{t1, . . . , tk} with [zi] ̸= [zj ] for all i ̸= j, we have Πk−1

i=1 zi ̸= 0, so K1
z1···zk−1

has dimension at most k− 1

by Proposition 2.1.1. Since z2i = 0 by assumption, we have K1
z1···zk−1

= ⟨z1, . . . , zk−1⟩. Then, (A1)

holds if and only if we have, up to a permutation of the elements, tk ∈ ⟨t1, . . . , tk−1⟩ = K1
t1···tk−1

and

this is equivalent to Πki=1ti = 0, i.e. (A2).

Hence, let us suppose that tk ∈ ⟨t1, . . . , tk−1⟩, so we can write tk =
∑k−1

i=1 aiti. Then we have

0 = t2k = 2
∑

1≤i<j≤k−1

aiajtitj .

If k = 3 we have 0 = t23 = 2a1a2t1t2 so, since t1t2 ̸= 0 by induction hypothesis, we have either a1 = 0

or a2 = 0. This implies either {t1, t3} or {t2, t3} linearly dependent, and we get a contradiction since

this is against the induction hypothesis. If k ≥ 4, by multiplying by Πk−3
i=1 ti, we get

0 = 2ak−2ak−1Π
k−1
i=1 ti.

Since Πk−1
i=1 ti ̸= 0 by induction hypothesis, we have either ak−2 = 0 or ak−1 = 0 and we have a

contradiction as in the case k = 3.

By considering the Fermat hypersurface X = V (F ) in Pn, one can easily see that, for the Jacobian

ring R = S/J(F ), the set N2 consists of exactly n+1 independent points. However, also the converse

is true, as shown by the following:

Corollary 2.6.2. Assume that #N2 = n+1. Then R is the Jacobian ring of a cubic hypersurface X

projectively equivalent to the Fermat cubic hypersurface in Pn.

Proof. By assumption we have that N2 = {[t0], . . . , [tn]}. By Proposition 2.6.1, {t0, . . . , tn} are n+ 1

linearly independent forms so R = S/I with S = K[t0, . . . , tn]. On the other hand, in S we have t2i ∈ I
and {t20, . . . , t2n} is a regular sequence which generates I as ideal of S. Then, if we set F =

∑n
i=0 t

3
i ,

we have that I is the Jacobian ideal of the Fermat cubic hypersurface X = V (F ) as claimed.

Remark 2.6.3. We have Seck(N2) ⊆ Nk+1. Indeed, if [t1], . . . , [tk] ∈ N2 we have t
2
i = 0. In particular,

every monomial of degree k + 1 in the variables ti is identically 0. Then (
∑k

i=1 aiti)
k+1 ≡ 0 for all

a1, . . . , ak ∈ K so Seck(N2) ⊆ Nk+1. More generally,

whenever r > k(a− 1) one has Seck(Na) ⊆ Nr.

Indeed, consider [t1], . . . , [tk] ∈ Na and let m =
∏k
i=1 t

αi
i with

∑k
i=1 αi = r. We have m = 0 if there

exists i such that αi ≥ a. On the other hand, this always happens if r > k(a− 1): if αi ≤ (a− 1) for

all i, we would have

r =

k∑
i=1

αi ≤
k∑
i=1

(a− 1) = k(a− 1) < r

which gives a contradiction.

With the following Lemma, let us study the geometry of the nihilpotent locus N3:
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Lemma 2.6.4. If L is a line contained in N3, then L ⊆ Sec(N2), i.e. a line in N3 is a line joining

two different points of N2.

Proof. Assume that L is a line in N3. Since the dimension of N3 is at most 1 by bounds (2.1), we

have that L is a component of N3. As dim(N2) ≤ 0 and dim(K1
x) ≤ 1 for any x ∈ R1 by Proposition

2.1.1(a), we can find [v], [w] ∈ L such that [v] ̸= [w], [v], [w] ̸∈ N2 and vw ̸= 0. By hypothesis, we

have that (v + tw)3 = 0 for all t ∈ K so v3 = v2w = vw2 = w3 = 0. Then, K1
v2 ,K

1
w2 and K1

vw contain

⟨v, w⟩. On the other hand, these subspaces have dimension at most 2 by Proposition 2.1.1(a) so they

coincide with ⟨v, w⟩. By Proposition 2.1.1(b), there exist λ, µ ∈ K such that

v2 = λw2 and vw = µw2 (2.10)

so we have (v + tw)2 = v2 + 2tvw + t2w2 = w2(t2 + 2µt+ λ).

We claim that t2 + 2µt + λ has two distinct roots so L is indeed a line contained in Sec(N2).

Assume, on the contrary, that t2 + 2µt + λ is a square. This implies that µ2 = λ. Then, from the

Equations (2.10), we obtain

v(v − µw) = 0 w(v − µw) = 0

so v − µw ∈ K1
v ∩ K1

w. By Proposition 2.1.1 we can conclude that [v] = [w] which is against our

assumptions.

We will generalize this result in Theorem 2.6.6 by considering suitable linear subspaces contained

in Nk. We need first the following technical lemma.

Lemma 2.6.5. Let k ≥ 2 and let T be an hypersurface in Pk ⊂ P(R1). Assume either that

1. 0 ≤ s ≤ k − 1 or

2. s = k and the support of T is not contained in the union of 2 different hyperplanes.

Then there exist [x0], . . . , [xs] ∈ T which are linearly independent and such that Πsi=0xi ̸= 0.

Proof. The statement of the lemma is clearly true for s = 0. We will proceed by induction on

s ≤ k. Then let us assume that there are [x0], . . . , [xs−1] ∈ T which are linearly independent and with

y = x0 · · ·xs−1 ̸= 0. Consider the linear spaces τ1 = ⟨x0, . . . , xs−1⟩ and τ2 = P(K1
y ). We are done if we

prove that U = T \(τ1∪τ2) is not empty. By construction we have dim(τ1) = s−1 and dim(τ2) ≤ s−1

by Proposition 2.1.1. Hence, if s < k, U is an open dense subset of T . If s = k and the support of

T is not contained in the union of 2 different hyperplanes, there exists an irreducible component C

of T which is different from τ1 and τ2. Then C \ (τ1 ∪ τ2) is not empty so U is again not empty as

claimed.

Theorem 2.6.6. Assume that π is a (k − 1)-plane contained in Nk+1. Then

(A) Tk = π ∩Nk is an hypersurface of degree k (with possible multiple components) in π;

(B) there exist [x0], . . . , [xk−1] in Tk which are linearly independent, Πk−1
i=0 xk ̸= 0.

In particular, Tk is non degenerate in π and π ⊆ Seck(Nk).
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Proof. Notice, first of all, that dim(Nk) ≤ k − 2 by bounds (2.1), so π \ Nk ̸= ∅. Then, we can find

{x0, . . . , xk−1} linearly independent which span π and such that xk−1 ̸∈ Nk. Since π ⊆ Nk+1, we have

that

(α0x0 + · · ·+ αk−1xk−1)
k+1 ≡ 0 ∀α0, . . . , αk−1 ∈ K

and this is equivalent to say that all monomials of degree k + 1 in the variables x0, . . . , xk−1 are 0.

Then, if m is a monomial of degree k in these variables, either m = 0 or K1
m = ⟨x0, . . . , xk−1⟩, by

Proposition 2.1.1. In particular, we have that for each monomial of degree k there exists λm ∈ K with

m = λmx
k
k−1 (recall that we assumed xk−1 ̸∈ Nk). Then

(α0x0 + · · ·+ αk−1xk−1)
k = pk(α)x

k
k−1 (2.11)

where pk(α) is a homogeneous polynomial of degree k in the variables α0, . . . , αk−1. It is not 0 since

the coefficient of αkk−1 is 1 by construction. By Equation (2.11), Tk = π ∩ Nk is described by the

vanishing of pk(α). In particular, Nk is not empty and we have also proved (A).

For (B), if Tk has support which is not contained in 2 different hyperplanes, the thesis follows

directly from Lemma 2.6.5 so we have to discuss only the cases

(B1) : Supp(Tk) = H1 ∪H2 and (B2) : Supp(Tk) = H1

where H1 and H2 are distinct hyperplanes.

In both cases (B1) and (B2), there is an hyperplane H1 of π contained in Tk. We recall that Tk is

contained in Nk by construction. By Lemma 2.6.5 applied to H1 ⊂ π we can find [x0], . . . , [xk−2] ∈ H1

which are linearly independent and such that y =
∏k−2
i=0 xi ̸= 0. Since H1 = ⟨[x0], . . . , [xk−2]⟩ and

H1 ⊂ Nk we have that all monomials of degree k in the variables x0, . . . , xk−2 are 0. Then, by

Proposition 2.1.1, K1
y = ⟨x0, . . . , xk−2⟩ so H1 = P(K1

y ).

If we are in case (B1) we can then choose xk−1 in H2 \ H1 and {x0, . . . , xk−2, xk−1} is a set

of points with the desired properties. We claim now that case (B2) can not occur. Assume, by

contradiction, that Supp(Tk) is the hyperplane H1 = P(K1
y ). Then for any xk−1 in π \ H1 we have

that π = ⟨x0, . . . , xk−2, xk−1⟩, xkk−1 ̸= 0 and yxk−1 ̸= 0. With this choice of the xi’s, the polynomial

pk(α) of Equation (2.11) is proportional to αkk−1 since Tk = π ∩Nk has support on H1. On the other

hand the coefficient of
∏k−1
i=0 αi can not be zero since

∏k−1
i=0 xi = yxk−1 ̸= 0.

We conclude this section by presenting some examples in order to make the phenomenology of the

nihilpotent loci clearer (some computations have been made by using the computer algebra software

Magma). We set S = K[x0, . . . , xn] =
⊕

k≥0 S
k and we define {w0, . . . , wn} to be the projective

coordinates on P(R1) induced by the basis {x0, . . . , xn} of R1 = S1.

Example 2.6.7. Let X be the Fermat cubic in Pn and consider the Jacobian ring R of X. For any

2 ≤ k ≤ n we have (
∑

iwixi)
k ∈ Jk if and only if all monomials in the {wi} of degree k without

multiple factors vanish. This is true whenever any set of n − k + 1 variables is zero. With these

arguments one can prove that Nk is the union of the coordinated planes of dimension k − 2. In

particular, Nk = Seck(N2) and Sing(Nk) = Nk−1 for k ≥ 2.
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Example 2.6.8. Consider the smooth cubic surface X = V (f) with f = x30 + x31 + x32 + x33 + 6x0x1x2

and consider the Jacobian ring R of X. One has that there are 4 points in N2 so, by Corollary 2.6.2,

X is the Fermat cubic up to a projective transformation. Indeed, if λ is a non trivial third root of 1,

we have

(x0 + x1 + x2)
3 + (x0 − (λ+ 1)x1 + λx2)

3 + (x0 + λx1 − (λ+ 1)x2)
3 + 3x33 = 3f.

Example 2.6.9. Consider the smooth cubic surface X = V (f) with f = x30 + x31 + x32 + x33 + 3x0x1x2

and consider the Jacobian ring R of X. If P = [0 : 0 : 0 : 1] and C = V (w3, g) is the smooth plane

cubic with g := w3
0 + w3

1 + w3
2 − 6w0w1w2, we have (considering the reduced structure)

N2 = {P} N3 = {P} ∪ C N4 = V (w3) ∪ V (g).

In particular, N4 is the union of the plane containing the cubic curve C and the cone with vertex P

generated by C. Notice that N3 does not have pure dimension.

Example 2.6.10. Consider the smooth cubic surface X = V (f) with f = x30+x31+x32+x33+x0(x
2
1+

x22 + x23) and let R be its Jacobian ring. One can show that, in this case, N2 and N3 are both empty

whereas N4 is a smooth quartic hypersurface.

Example 2.6.11. Consider the regular sequence {x20, x21, x22, x23 + 2x0x1} in S = K[x0, . . . , x3], the

ideal J spanned by it and set R = S/J . Notice that J is not the Jacobian ideal of a cubic surface.

Let Pi be the coordinated points and consider the conic C = V (w2, g) with g := w2
3 − 3w0w1. Then we

have

N2 = {P0, P1, P2} N3 = ⟨< P0, P1 >⟩ ∪ ⟨< P0, P2 >⟩ ∪ ⟨< P1, P2 >⟩ ∪ C

N4 = V (w3) ∪ V (w2) ∪ V (g).

In particular, N4 is the union of two planes (the first one - V (w3) - contains P0, P1 and P2 and the

lines joining these points whereas the second - V (w2) - is the plane containing the conic C and the

line ⟨P0, P1⟩) and V (g) (which is a quadric cone with vertex P2). Notice that, as varieties, we have

Sing(Nk) = Nk−1 for k = 2, 3, 4.



Chapter 3

From Gorenstein algebras to Hessian

hypersurfaces

In this third chapter we keep on analyzing SAGAs and also smooth cubic hypersurfaces. However, we

do this from a different perspective than the one characterizing the previous chapters. In particular,

in what follows we will change the kind of SAGA under analysis: we will not consider any more com-

plete intersection SAGAs presented by quadrics (and so, in particular, jacobian rings of smooth cubic

hypersurfaces). Instead, we will consider SAGAs defined as quotients of the differential operators

ring over the annihilator of a cubic polynomial (see Example 1.1.4). In this setting, by studying the

Lefschetz properties and, in particular, the non-Lefschetz loci (see Definition 2.5.1), it turns out that

the non-Lefschetz locus in degree 1 of such a SAGA coincides (up to isomorphism) to the Hessian

hypersurface associated to the cubic polynomial defining the SAGA, i.e. to the hypersurface defined

as the zero locus of the determinant of the Hessian matrix of such a cubic polynomial. After this com-

parison and analysis, we will start a deep study of these Hessian hypersurfaces associated to smooth

cubic hypersurfaces. We will analyze their singularities and desingularizations and we will describe

the singular locus of the Hessian hypersurfaces associated to a general smooth cubic fourfold.

In particular, in Section 3.1 we will present and describe the connection between the non-Lefschetz

locus of these particular Gorenstein algebras and the Hessian locus of a cubic hypersurface. In Section

3.2, we will put into the picture another natural connection between Hessians of cubic polynomial and

quadratic forms, which will be very useful in the following analysis. Moreover, we will present the

first results concerning the geometry of such Hessian hypersurfaces, like the expected dimension of

their singular loci. In Section 3.3, we will describe in a more detailed way these singular loci and we

will present a desingularization for the general Hessian hypersurface (we will prove Theorem E and

Theorem F from the Introduction). This analysis will move on in Section 3.4, while in Section 3.5 we

will look at these singularities as degeneracy loci of specific symmetric maps between vector bundles.

From this perspective and from the construction of suitable non-trivial covers over these loci, we will

get new geometric information, which, in particular, will be applied, in Section 3.6, for the description

of the singular locus of the Hessian hypersurface associated to a general smooth cubic fourfold: in this

last section we will prove Theorem G.

In this chapter, as we have done in the previous ones, we will work over an algebraically closed field

47
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K of characteristic 0 up to Section 3.4, while in the last two sections, we will work over the field C of

complex numbers.

3.1 Hessians and Gorenstein algebras

In this first section, we will show the natural connection between the non-Lefschetz locus of specific

SAGAs and the zero locus of the determinant of the Hessian matrix of cubic polynomials.

As done in Section 1.1 (see Example 1.1.4), we set

yi := ∂xi =
∂

∂xi
and ∂v =

n∑
i=0

vi∂xi =
n∑
i=0

viyi

where v =
∑n

k=0 vkek ∈ Kn+1 with {ei}i=0,...,n as the standard basis of Kn+1. If one considers the

graded algebra D = K[y0, . . . , yn] =
⊕

k≥0D
k, one has a natural pairing S×D → S where elements of

D act as differential operators on S = K[x0, . . . , xn]. Observe also that there is a natural identification

v =

n∑
k=0

vkek ←→ ∂v =

n∑
i=0

viyi (3.1)

For each f ∈ Sd one can define the gradient ∇(f) = (yif)i=0,...,n ∈ (Sd−1)⊕n+1 and the Hessian

matrix of f and the hessian of f , i.e

Hess(f) = (yiyjf)i,j=0,...,n ∈ Msym
n+1(S

d−2) and hess(f) = det(Hess(f)) ∈ S(n+1)(d−2),

where Msym
n+1(S

d−2) denotes the set of square symmetric matrices of order n + 1 whose entries are

homogeneous polynomials of degree d− 2 (eventually zero).

Definition 3.1.1. The zero locus of the determinant of the Hessian matrix of a polynomial f is said

to be the Hessian hypersurface Hf associated to f , i.e. Hf = V (hess(f)).

(We will often write H, instead of Hf , when it is clear from the context which f ∈ S we are

referring to.)

For any d ≥ 2, one can consider the subloci of P(Sd) given by

Csing = {[f ] |V (f) is singular} Ccone = {[f ] |V (f) is a cone} and CGN = {[f ] | hess(f) = 0}.

The latter is called the Gordan-Noether locus and it is well known that

Ccone ⊆ CGN ⊆ Csing

and that Csing is a divisor in P(Sd). Moreover, the first inclusion is strict unless d = 2 or, by the

Gordan-Nother’s Theorem 1.1.22, d ≥ 3 and n ≤ 3. The second inclusion is an equality for d = 2, but

is again strict for d ≥ 3.

From now on, we will deal with the case of cubic polynomials, i.e. we will set d = 3.
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Let us recall the differential Euler identity (see Lemma 1.4.2), that we can now state in the following

way. Let v =
∑

k vkek ∈ Kn+1 and consider ∂v ∈ D1, then

∀G ∈ Sm (∂v)
m(G) = m! ·G(v). (3.2)

We have the following easy but useful result:

Lemma 3.1.2. Let f be an element in S3. Then the following hold:

(a) For all v, w ∈ Kn+1 we have

Hess(f)ij |ek =
∂2f

∂xi∂xj
|ek =

∂3f

∂xi∂xj∂xk
(= yiyjyk(f)) and Hess(f)|v · w = ∇(∂v∂w(f)).

In particular, Hess(f)|v · w = Hess(f)|w · v.

(b) For all v ∈ Kn+1 one has 2∇(f)|v = Hess(f)|v · v. In particular, assuming f ̸= 0, [v] ∈ Pn is

singular for V (f) if and only if Hess(f)|v · v = 0.

(c) For all v, w ∈ Kn+1 we have wT ·Hess(f)|v · w = 2(∂vf)|w.

Proof. (a) Since f ∈ S3, we have ∂v∂w(f) ∈ S1 and an element g ∈ S1 is identified by its gradient

∇(g) by the differential Euler relation (3.2). More precisely, one can easily see that if g =
∑

k akxk

then g|ek = ak = ykg. This proves the first equality. By K-bilinearity, in order to prove the second

equality, it is enough to consider the case v = ei and w = ej . We have

Hess(f)|ei · ej = (Hess(f)|ei)j = (Hess(f)kj |ei)nk=0 = (yiyjyk(f))
n
k=0 = ∇(yiyj(f))

where, if M is a matrix, we set M j to be its j-th column and Mij to be the i-th entry of M j .

(b) From (a) we have

Hess(f)|v · v = ∇(∂v2(f)) = (yk∂v
2f)nk=0 = (∂v

2(ykf))
n
k=0.

Now, since ykf ∈ S2, by the Euler differential identity (3.2) we have ∂v
2(ykf) = 2yk(f)|v, which proves

the claim.

(c) Using (a), (b) and the symmetry of Hess(f), we obtain

wT ·Hess(f)|v · w = wT ·Hess(f)|w · v = vT ·Hess(f)|w · w = 2vT · ∇(f)|w.

On the other hand, vT · ∇(f) = ∂v(f), so we get the claim.

In particular, a cubic V (f) ⊆ Pn is a cone if and only if there exists [v] ∈ Pn such that Hess(f)|v ≡ 0.

Let us now focus on the setting of SAGAs. Let us consider a homogeneous polynomial f of degree

deg(f) = 3, i.e. f ∈ S3, and let us take the SAGA A defined as

A =
D

AnnD(f)
= A0 ⊕A1 ⊕A2 ⊕A3,
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as described in Example 1.1.4. Let us recall that such a SAGA has socle in degree N = deg(f) = 3

and, moreover, that by Macaulay’s Inverse Systems for every SAGA R with socle in degree 3 there

exists a cubic polynomial g such that R can be written as the quotient D/AnnD(g). Suppose now

that the polynomial f is such that the associated hypersurface V (f) ⊂ Pn is smooth: in particular

it is not a cone and so (AnnD(f))1 = (0). In this case, by definition of SAGA (see Definition 1.1.3),

we have (dim(Ai))i=0,··· ,3 = (1, n + 1, n + 1, 1). Here, for the SAGA A the only Lefschetz property

which makes sense to define is the strong Lefschetz property (in degree 1). Then A satisfies the strong

(and weak) Lefschetz property if for v ∈ A1 general the multiplication map µ1(v) = v· : A1 → A2 is a

bijection. (Here, for simplicity, we identify v with ∂v as in (3.1).)

Let us then assume that [v] ∈ P(A1) is such that the corresponding multiplication µ1(v) is not injective,

i.e. [v] ∈ P(A1)\L1 is a non-Lefschetz element (in degree 1) (see Definition 2.5.1). Then there exists an

element (another non-Lefschetz element) [w] (= ∂w) in P(A1) such that v ·w = 0 in A2, i.e. vw(f) = 0.

Now, by Lemma 3.1.2(a) we have that Hess(f)|v · w = ∇(vw(f)), but since vw(f) is a homogeneous

polynomial of degree 1 we get that ∇(vw(f)) = 0 as a vector if and only if vw(f) = 0 as a polynomial.

In particular,

Hess(f)|v · w = 0 ⇐⇒ vw(f) = 0.

In other words, we have proved that if an element [v] ∈ P(A1) (seen as differential operator of degree

1) is a non-Lefschetz element for the SAGA A, then the corresponding v ∈ Kn+1 (under identification

(3.1)) is such that the matrix Hess(f)|v has non-maximal rank, i.e. Rank(Hess(f)|v) ≤ n. Finally, by
linear algebra, this happens if and only if [v] ∈ Hf = V (hess(f)).

Moreover, if the polynomial f is such that V (f) is smooth, than [f ] ̸∈ CGN , hence the determinant

hess(f) is not identically zero. In this case, the general element in Pn doesn’t belong to the zero locus

V (hess(f)), then, by the above argument, we have also that the general element in P(A1) is a Lefschetz

element, i.e. A = D/AnnD(f) satisfies the strong (and weak) Lefschetz property.

We have then proved the following:

Proposition 3.1.3. If f ∈ S3 is a homogeneous polynomial whose associated hypersurface V (f)

is smooth, then the SAGA A = D/AnnD(f) satisfies the strong Lefschetz property. Moreover, the

non-Lefschetz locus (in degree 1) of A coincides (up to isomorphism) to the Hessian hypersurface Hf .

3.2 Hessians and quadrics

In this section, we describe another natural comparison: the one between quadratic forms and Hessian

matrices of cubic forms. Moreover, we derive the first results about, for example, the expected

dimension of the singular locus of the Hessian hypersurface associated to a cubic form.

First of all, let us observe that such a Hessian matrix is a symmetric square matrix of order n + 1

whose entries are homogeneous polynomials of degree 1: after evaluation in a point v ∈ Kn+1, it can

be seen as the matrix associated to a quadratic form over Kn+1. In particular, as a consequence of

the previous Section 3.1 and Lemma 3.1.2, we have that for any [f ] ̸∈ Csing we have a commutative
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diagram

PncCτ1

		

|� τ2

��
P(S2) P(Msym

n+1(K))
≃oo

[v]$

��

�

��
[∂v(f)] [Hess(f)|v]�≃oo

(3.3)

where the diagonal arrows are linear embeddings of Pn, while the horizontal map is the canonical iso-

morphism [M ] 7→ [xTMx] which identifies a symmetric matrixM with the quadratic form represented

by M . We are interested in studying the geometry of the loci

Dk(f) = {[x] ∈ Pn | Rank(Hess(f)|x) ≤ k} (3.4)

for a general [f ] ∈ P(S3), which give a natural stratification not only of the whole projective space Pn,
but also of the Hessian locus H = V (hess(f)), which coincides, as observed in the previous Section

3.1, with Dn(f). Since the rank of a matrix M ∈ Msym
n+1(K) and that of the quadratic form xTMx are

the same, it can be useful to study the image of Dk via the linear embedding τ1 (or τ2). Passing from

one map to the other will be useful to catch different features of the objects we want to study. If we

consider the Jacobian ideal Jf given by f , we have that the image of τ1 is exactly P(J2
f ). Then, if we

define

Qk = {[q] ∈ P(S2) | Rank(q) ≤ k}

it is clear that τ1(Dk(f)) = P(J2
f ) ∩ Qk. In what follows, for brevity, we will not specify the linear

embedding τi (for i = 1, 2) in the identification of the loci Dk with their images. Moreover, we

will write simply Dk instead of Dk(f) and Jk instead of Jkf when it is clear from the context which

[f ] ∈ P(S3) we are considering. In light of this, we recall some important facts about the geometry of

the loci Qk.

Lemma 3.2.1. For any 1 ≤ k ≤ n+ 1, Qk is a closed subvariety of P(S2). Moreover

• We have codimP(S2)Qk =
(
n+2−k

2

)
and dimQk = kn− (k−1)(k−2)

2 ;

• The degree of Qk as variety inside P(S2) is given by the formula

deg(Qk) =
n−k∏
t=0

(
n+t+1

n−k−t+1

)(
2t+1
t

) .

• For 1 ≤ k ≤ n, the singular locus of Qk coincides with Qk−1.

Proof. See [Har95, Chapter 22] and [HT84b] for the formula of the degree of Qk.

Notice that from the above description, it is clear that Dk−1 ⊆ Sing(Dk) and one might expect

that the equality holds. Actually, we will prove that this is true when f is general (see Theorem 3.4.1

and Corollary 3.4.2) although it does not hold for all [f ] ̸∈ Csing (see Remark 3.4.3).

Remark 3.2.2. Let us now observe that if we consider an element [f ] ∈ CGN \ Ccone, since in this

case hess(f) ≡ 0, we have that Dn(f) is the whole projective space Pn, i.e. P(J2) ⊂ Qn.
In other words, from the point of view of Section 3.1, in this case we have that every element [v] ∈ P(A1)
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is a non-Lefschetz element (in degree 1) for the SAGA A = D/AnnD(f), i.e. A does not satisfy the

strong Lefschetz property (in degree 1). Notice that this fact has already been stated (and proved) in

Lemma 1.4.3.

Let us then take [f ] ∈ P(S3) such that V (f) is smooth and consider the first level of the stratifi-

cation of Hf presented above, i.e. the variety Dn−1(f). We can immediately observe that in P(S2),

which has dimension
(
n+2
2

)
− 1, we have the subspaces P(J2

f ) and Qn−1, whose dimension, are n and(
n+2
2

)
− 4 respectively (from Lemma 3.2.1). Hence, we easily get that the expected dimension of

Dn−1(f) = P(J2) ∩Qn−1 is

Edim(Dn−1) =

(
n+ 2

2

)
− 4 + n−

((
n+ 2

2

)
− 1

)
= n− 3.

Since Dn−1 ⊆ Sing(Dn) = Sing(H) and dim(Dn−1) ≥ n− 3, we have the following:

Proposition 3.2.3. For all [f ] ̸∈ Csing we have that the Hessian hypersurface Hf has singular locus

of dimension at least n− 3 (i.e. Sing(Hf ) has codimension at most 2 in Hf ). In particular, if n ≥ 3,

the Hessian variety is singular.

The inclusion Dn−1 ⊆ Sing(Hf ) can also be obtained by using Jacobi’s formula, which controls the

derivatives of the determinant of the Hessian matrix. We will show, generalizing a result in [AR96],

that for all [f ] ̸∈ Csing we actually have Dn−1 = Sing(Hf ) (see Theorem 3.3.5) and that Dn−1 has the

expected dimension, when [f ] is general (see Section 3.4).

Remark 3.2.4. When n ≤ 4, the above mentioned results are known. More precisely:

• For n = 2 it is well known that the Hessian curve associated to the general cubic plane curve is

smooth.

• For n = 3, the Hessian surface H associated to the general cubic surface is singular in 10 points,

which are nodes for H (see [DvG07]);

• For n = 4, in [AR96, Appendix IV] is proved that the Hessian hypersurface associated to the

general cubic threefold is singular along a curve.

We conclude this section with a remark about the expected dimension of the loci Dk(f).

Remark 3.2.5. As we have done above, one can argue that for [f ] ∈ P(S3),

Edim(Dk(f)) = n−
(
n− k + 2

2

)

is the expected dimension of Dk(f) = P(J2
f ) ∩ Qk. In particular the expected codimension of Dk(f) is

exactly the codimension of Qk in P(S2): EcodimPn(Dk(f)) = codimP(S2)(Qk).
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3.3 Singular loci and desingularizations

Set U = P(S3) \ Csing, i.e. the open set parametrizing smooth cubics in Pn and consider [f ] ∈ U . As

we have seen, for n ≥ 3, the Hessian variety Hf of [f ] is singular with dim(Sing(Hf )) ≥ n − 3. The

aim of this section is twofold. Firstly, we want to show that for all [f ] ∈ U the singular locus of H
coincides with Dn−1. Secondly, we want to describe a way to desingularize Hf for the general [f ] ∈ U .

For both results, it will be central the following variety.

For any [f ] ∈ P(S3) define

Γf = {([x], [y]) ∈ Pn × Pn | Hess(f)|x · y = 0} (3.5)

and denote by π1 and π2 the natural projections from Γf on the factors. For brevity, we will simply

write Γ when it is clear from the context which [f ] ∈ P(S3) we are considering.

Lemma 3.3.1. The morphism τ([x], [y]) = ([y], [x]) induces a natural involution on Γ which acts freely

on Γ if and only if [f ] ̸∈ Csing. Moreover, the fiber over [v] ∈ Pn is P(Ker(Hess(f)|v)). In particular,

the image of πi is the Hessian locus H = Dn(f) and πi is an isomorphism over the open H\Dn−1(f).

Proof. The involution τ on Pn × Pn descends to an involution on Γ since Hess(f)|v ·w = Hess(f)|w · v
as proved in Lemma 3.1.2(a). A point ([v], [w]) ∈ Γ is a fixed point if and only if [v] = [w] so τ has

a fixed point if and only if there exists [v] ∈ Pn such that Hess(f)|v · v = 0, but by Lemma 3.1.2(b),

this happens if and only if V (f) is singular. The fiber of π1 over [v] ∈ Pn is [v]×P(Ker(Hess(f)|v)) by
definition of Γ. Then, clearly, π−1

1 ([v]) is not empty if and only if we can find a non trivial element in

Ker(Hess(f)|v), i.e. if and only if the rank of Hess(f)|v is not maximal. This happens exactly when

[v] ∈ H by definition of H. On Hs = H\Dn−1 we have only points such that Rank(Hess(f)|v) = n so

Ker(Hess(f)|v) has dimension 1. Hence, π1|π−1
1 (Hs) : π

−1
1 (Hs)→ Hs is an isomorphism. The claim for

the second projection follows since πi ◦ τ = π3−i, for i = 1, 2.

The variety Γ has already been used by Adler in [AR96] in order to desingularize the Hessian locus

for n = 4. The approach used by Adler involved the study of a specific case, namely the case of the

Klein cubic f0 = x0x
2
4+x1x

2
0+x2x

2
1+x3x

2
2+x4x

2
3, and to prove that Γf0 is smooth. Then, the result

holds also for [f ] ∈ U general. Unfortunately, this approach cannot be carried out completely for

any n. Nevertheless, the methods used in [AR96] can be used and generalised in order to prove that

Sing(H) = Dn−1 as we will do in the next subsection 3.3.1. Instead, in subsection 3.3.2 we propose a

different approach in order to describe the desingularization of H for any n.

Let us now stress that some objects introduced above, as the Hessian hypersurface Hf or the variety

Γf , have another equivalent description (up to isomorphism). Indeed, from Sections 3.1, the pairing

S × D → S gives a duality (S1)∗ = D1 (where {yi}i=0,...,n is the dual basis of {xi}i=0,...,n) which

induces a canonical isomorphism (see identification (3.1))

α : Pn → P(D1) [v] 7→ α([v]) = [∂v].

Lemma 3.3.2. We have

Hf = {[v] ∈ Pn | ∂v(f) has rank at most n}, Γf = {([v], [w]) ∈ Pn × Pn | ∂w∂v(f) = 0}
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and

P(Ker(Hess(f)|v)) = {[w] ∈ Pn | ∂w∂v(f) = 0}.

Proof. Consider [v] ∈ Pn. One has [v] ∈ H ⇐⇒ det(Hess(f)|v) = hess(f)|v = 0 by definition. On

the other hand this is equivalent to say that Hess(f)|v has rank at most n. Using the identification

described in diagram (3.3), this is equivalent to ask that Rank(∂v(f)) ≤ n. The second and third

claim follow directly from Hess(f)|v · w = ∇(∂v∂w(f)) (see Lemma 3.1.2) since the vanishing of ∇(g)
for g ∈ S1 is equivalent to the vanishing of g.

Remark 3.3.3. Let us observe that this description of the Hessian hypersurface is known, in literature,

as the Steinerian hypersurface (see [Dol12, Section 1.1.6]). Moreover, in the case of a smooth cubic

hypersurface V (f) the associated Hessian Hf and the Steinerian hypersurface coincide (see [Dol12,

Theorem 3.2.1]).

One can then also observe that the variety Γf coincides exactly with the incidence correspondence

Γk (for k = 1) introduced in Section 1.2, with respect to the SAGA A = D/AnnD(f) and that,

moreover, the involution τ described in Lemma 3.3.1 has already been defined in Lemma 1.2.8.

In the following, we will use both the descriptions of the variety Γf given so far.

3.3.1 Description of the singular locus

In this subsection we generalize the method used in [AR96] for n = 4, and we describe the singular

locus of the Hessian hypersurface associated to a smooth cubic polynomial [f ] for any n. Recall that

Dn−1(f) = {[x] ∈ Pn | Rank(Hess(f)|x) ≤ n− 1} ⊆ Sing(H).

We want to show that the other inclusion holds too, for any [f ] ∈ U .

We will use the following:

Lemma 3.3.4. Let A and B two symmetric matrices of order m with coefficients in a field K and

and consider the block matrix M = (A|B). We have

Rank(M) < m ⇐⇒ Ker(A) ∩Ker(B) ̸= {0}.

Proof. Firstly, let us suppose that Ker(A) ∩Ker(B) ̸= {0}, so that we can take a non trivial element

v ∈ Km in this intersection. Up to a change of coordinates, we can assume that v = e1, the first

element of the canonical basis of Km. Then we have A · e1 = A1 = B · e1 = B1 = 0 and, by symmetry,

also A1 = B1 = 0, where, given a matrix C, Ci and Cj denote the i-th column and the j-th row of C

respectively. From this we get that M1 = 0 and so the rank of M can not be maximal.

For the converse, let us assume that Rank(M) < m: this means that the subspace generated by the

rows of M has dimension strictly smaller than m. Then, there exists N ∈ GLm(K) such that N ·M
has the first row (N ·M)1 identically 0. Since N ·M = (N ·A|N ·B) we have eT1 ·N ·A = eT1 ·N ·B = 0

thus, being A and B symmetric, we clearly have v = NT · e1 ∈ Ker(A) ∩Ker(B) with v ̸= 0.

We can then prove Theorem E:
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Theorem 3.3.5 (Theorem E). For any [f ] ∈ U we have

Dn−1(f) = Sing(Dn(f)),

i.e. the singular locus of the Hessian variety Hf is Dn−1(f).

Proof. As recalled before, it is enough to show that for every [f ] ∈ U the inclusion Sing(H) ⊆ Dn−1

holds (H = Hf ).
First of all, let us define Hs = H \ Dn−1, an open set of H that can be described as

Hs = {[x] ∈ Pn | Rank(Hess(f)|x) = n}.

Since [f ] ∈ U , one can easily show that Hs is not empty. If we prove that each point in Hs is a smooth

point for H, then we are done.

Let us now consider the variety Γ defined in (3.5) with the two projections πi, i = 1, 2. By defining

Γs = π−1
1 (Hs), we know by Lemma 3.3.1 that π1|Γs : Γs → Hs is an isomorphism with inverse map

given by [x] 7→ ([x],P(Ker(Hess(f)|x))).
Then we have that a point [x] ∈ Hs is smooth in Hs (so in H) if and only if the point π−1

1 ([x]) =

([x], [y]) = ([x],P(Ker(Hess(f)|x))) is smooth in Γ. We can now consider the bihomogeneous lifting of

Γ to Kn+1 ×Kn+1, i.e.

Γ̃ = {(x, y) ∈ Kn+1 ×Kn+1 | Hess(f)|x · y = 0}.

For our aim, we can also check the smoothness of Γ̃ in the point p̃ = (x, y) ∈ Γ̃. We can easily describe

Γ̃ as the zero locus of a suitable function: indeed, we can write Γ̃ = V (F̃ ), where

F̃ : Kn+1 ×Kn+1 → Kn+1 F̃ ((x, y)) = Hess(f)|x · y.

Let us now observe that, by Lemma 3.1.2(a), we have the equality Hess(f)|x · y = Hess(f)|y · x; from
this one easily gets that the Jacobian matrix of the map F̃ in p̃ = (x, y) ∈ Γ̃ can be described as

J(F̃ )|p̃ = (Hess(f)|y | Hess(f)|x),

a matrix in M(n+1)×2(n+1)(K). Let us now assume, by contradiction, that p̃ ∈ Γ̃ is a singular point:

this implies that the matrix J(F̃ )|p̃ is not of maximal rank (i.e. it has rank smaller or equal than n).

Observe that, since p̃ = (x, y) and [x] ∈ Hs, we have that Rank(Hess(f)|x) = n, and so Rank(J(F̃ )|p̃) =
n. By Lemma 3.3.4, we get that the intersection Ker(Hess(f)|y) ∩ Ker(Hess(f)|x) is not trivial and

in particular equal to ⟨y⟩, since Ker(Hess(f)|x) = ⟨y⟩. Then we get that Hess(f)|y · y = 0, that is a

contradiction by Lemma 3.1.2(b), since we are considering [f ] ∈ U . Hence, p̃ is a smooth point of Γ̃,

as claimed.

The techniques used in [AR96, Appendix IV] can be further generalized in order to characterize

the cubics [f ] ∈ U such that Γf is singular. We report the method here for completion, generalising

it for any value of n.

Let us define, for any [x] ∈ Pn,

ι([x]) = P(Ker(Hess(f)|x)).

Notice that ι([x]) ̸= ∅ if and only if [x] ∈ H and that ι([x]) ⊂ H since, for any [y] ∈ ι([x]), we have

[x] ∈ ι[y] by Lemma 3.1.2(a).
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Definition 3.3.6. Let [f ] ∈ P(S3). We say that T = ([x], [y], [z]) ∈ H3
f is a triangle (in Hf ) if

[x] ∈ ι([y]), [y] ∈ ι([z]) and [z] ∈ ι([x]).

Notice that if T is a triangle in H, then any permutation of the triple T is so, by Lemma 3.1.2(a).

Moreover, two elements of T cannot be equal since V (f) is smooth, by 3.1.2(b), and also all ”vertices”

of T actually belong to Sing(H).

Lemma 3.3.7. For any [f ] ∈ P(S3), we have that the point ([x], [y]) is singular for Γf if and only if

there exists [z] such that T = ([x], [y], [z]) is a triangle in Hf .

Proof. Let us consider again the bihomogeneous lifting Γ̃ and let us assume that (x, y) ∈ Γ̃ is singular

for Γ̃, with x, y ̸= 0. As observed in the proof of the previous Theorem 3.3.5, this is equivalent to

asking that Rank(Hess(f)|y, Hess(f)|x) < n and this happens exactly if there exists [z] ∈ ι([x])∩ι([y]).
By Lemma 3.1.2(b), we also have that [x] ∈ ι([z]) and [y] ∈ ι([z]). But since (x, y) is a point of Γ̃ we

also have that [x] ∈ ι([y]). Then, T = ([x], [y], [z]) is a triangle in H.

Adler in [AR96] uses this characterization of the singularities in Γ through the existence of some

triangle T in H to show the smoothness for the variety Γ associated to the Klein cubic. This has

been done by studying the rich and particular geometry of this specific cubic and by using also some

refined geometrical and algebraic techniques. However, we think that this approach can not be easily

exploited and generalized to any dimension. For this reason, in the next subsection we will present a

different strategy.

3.3.2 Desingularizing the general Hessian hypersurface

In this subsection, we will prove Theorem F from the Introduction. Here the description of Γf presented

in Lemma 3.3.2 will be used.

Theorem 3.3.8 (Theorem F). Let [f ] ∈ U be general. Then Γf is smooth and πi : Γf → H is a

desingularization of H.

Proof. Let us consider the incidence variety

W = {([v], [w], [f ]) ∈ Pn × Pn × U | ∂v∂w(f) = 0}.

First of all, we want to show that W is smooth. In order to do this, it is enough to consider the lifting

W̃ = {(v, w, f) ∈ Kn+1 ×Kn+1 × Ũ | v, w ̸= 0, ∂v∂w(f) = 0}

where Ũ = {f ∈ S3 \ {0} |V (f) is smooth}, and to prove that W̃ is smooth. To show that W̃ is

smooth we will prove that the Zariski tangent space of W̃ has constant dimension in any point of W̃ .

Fix p = (v, w, f) ∈ W̃ . The Zariski tangent space of W̃ in p is contained in Tp(Kn+1×Kn+1× Ũ) =

Kn+1 ×Kn+1 × S3 and it is described as the set of triples (v′, w′, f ′) such that

∂v+tv′∂w+tw′(f + tf ′) ≡ 0 mod t2.
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Expanding this relation we have

∂v+tv′∂w+tw′(f + tf ′) = ∂v∂w(f) + t
(
∂v∂w′(f) + ∂v′∂w(f) + ∂v∂w(f

′)
)
+ t2(· · · )

so, for any (v′, w′, f ′) ∈ Kn+1 ×Kn+1 × S3 we have

(v′, w′, f ′) ∈ TpW̃ ⇐⇒ (⋆) : ∂v∂w′(f) + ∂v′∂w(f) + ∂v∂w(f
′) = 0. (3.6)

Let σ : W̃ → Kn+1 ×Kn+1 be the projection on the first two factors.

Claim (I): the image of σ is the open subset

V = {(v, w) | v and w are neither proportional nor 0}.

Indeed, notice that the fiber of σ over (v, w) with v, w ̸= 0 is

σ−1(v, w) = (v, w)× {f ∈ Ũ | ∂v∂w(f) = 0}.

If v and w are proportional and f ∈ σ−1(v, w), we would have [f ] ∈ S3 such that V (f) is smooth and

∂v∂v(f) = 0. This is impossible by Lemma 3.1.2(b), so the image of σ is in V . If v and w are not

proportional, one can change coordinates and assume (v, w) = (e0, e1). Then, the Fermat cubic
∑

i x
3
i

is in the fiber which is, therefore, not empty.

Claim (II): for all p ∈ W̃ the differential dpσ is surjective and Ker(dpσ) has constant dimension.

Indeed, for any v′, w′ ∈ Kn+1, we have

(dpσ)
−1((v′, w′)) = (v′, w′)× {f ′ ∈ S3 | (v′, w′, f ′) satisfies (⋆)}.

Notice that, for any v, w ̸= 0, the sequence

0→ AnnS3(∂v∂w)→ S3 ∂v∂w−−−→ S1 → 0

is exact. Then, since ∂v∂w′(f) + ∂v′∂w(f) is determined by the data p = (v, w, f) and (v′, w′), the

surjectivity of ∂v∂w in the above sequence gives the surjectivity of dpσ. The exactness of the above

sequence also implies that dim(AnnS3(∂v∂w)) is constant. By Equation (3.6) we have

Ker(dpσ) = (0, 0)× {f ′ ∈ S3 | ∂v∂w(f
′) = 0} = (0, 0)×AnnS3(∂v∂w)

so we have proved the claim.

Summing up, σ : W̃ → V is a surjective morphism which is submersive and with Ker(dp(σ)) which

has constant dimension. Since the target V is smooth, we have that the dimension of TpW̃ is then

constant, so W̃ (and W ) is smooth as claimed.

Consider now the projection π3 : W → U ⊂ P(S3). Observe that the fiber of π3 over [f ] ∈ U is

exactly the variety Γf associated to [f ] ∈ U so π3 is surjective. Hence, by generic smoothness (see, for

example, [Har77, Corollary 10.7]) we have that the general fiber of π3 is smooth, i.e. Γf is smooth,

for [f ] ∈ U general.
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3.4 Smoothness of Dk(f) \ Dk−1(f) for [f ] general

In this section we want to prove, under suitable assumptions, that for [f ] ∈ U = P(S3) \ Csing general,
Dk(f) \ Dk−1(f) is smooth and has the expected dimension. The approach will be similar to the one

used in Section 3.3 in order to prove Theorem 3.3.8.

As recalled in Lemma 3.2.1, for any 1 ≤ k ≤ n, the variety Qk parametrizing quadrics in Pn of

rank at most k is singular exactly along Qk−1. Hence, Qsk = Qk \ Qk−1 is the smooth locus of Qk.
Then,

Q̃k = {q ∈ S2 \ {0} | Rank(q) ≤ k} and Q̃sk = {q ∈ Q̃k | Rank(q) = k}

are the affine cones (with the origin removed) of Qk and Qsk respectively and Q̃sk is smooth. Set

Jk = {(q, v, f) ∈ Q̃k ×Kn+1 × S3 | v, f ̸= 0 and ∂v(f) = q}

and J sk = {(q, v, f) ∈ Jk | q ∈ Q̃sk}.

Theorem 3.4.1. Set cn,k = codimP(S2)(Qk) =
(
n−k+2

2

)
. For all 1 ≤ k ≤ n, the following hold:

(a) Jk and J sk are irreducible of dimension dim(S3) + n− cn,k + 1;

(b) J sk is smooth.

Set Dsk(f) = Dk(f) \ Dk−1(f) for [f ] ∈ U . When [f ] is general then either Dsk(f) = ∅ or the following

hold:

(c) Dsk(f) is smooth, i.e. Sing(Dk(f)) = Dk−1(f);

(d) We have that codimP(S2)(Qk) = codim(Dk(f)) = cn,k. In particular, Dk(f) has the expected

dimension;

(e) deg(Dk(f)) = deg(Qk) =
∏n−k
t=0

(
n+t+1

n−k−t+1

)
/
(
2t+1
t

)
.

Proof. First of all, consider the projection

σ : Jk → Q̃k × (Kn+1 \ {0})

and observe that for any v ̸= 0 we have an exact sequence

0→ AnnS3(∂v)→ S3 ∂v−→ S2 → 0 (3.7)

since, given (q, v) with q ∈ S2, v ̸= 0, one can simply ”integrate” q in the direction of v in order to

get an f such that ∂v(f) = q. In particular, an,k := dim(AnnS3(∂v)) = dim(S3) − dim(S2) does not

depend on v.

Claim (a): Being ∂v linear, the fiber of σ over (q, v) is

σ−1(q, v) = (q, v)× {f | ∂v(f) = q} = (q, v)× (f0 +AnnS3(∂v)) \ {0}

where f0 is any fixed primitive of q in the direction of v. In particular σ−1(q, v) is an affine space

of dimension an,k, possibly with its origin removed. Thus, since the fibers of σ are irreducible and
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equidimensional and the target is irreducible (of dimension dim(S2)− cn,k + n+ 1), we can conclude

that Jk is irreducible too and it has the desired dimension. Moreover, the same holds if we restrict

our attention to J sk and use the same argument.

Claim (b): It is clear from the above discussion that σ is surjective. Let p = (q, v, f) be any point in

J sk . The Zariski tangent space to J sk in p is a subspace of

Tp(Q̃sk ×Kn+1 × S3) = Tq(Q̃sk)×Kn+1 × S3

and (q′, v′, f ′) ∈ TpJk if and only if ∂v+tv′(f + tf ′) = q + tq′ mod t2, i.e. if and only if

(⋆) : ∂v′(f) + ∂v(f
′) = q′

holds. The differential dpσ is the map sending (q′, v′, f ′) to (q′, v′). By the description of the Zariski

tangent space it is easy to see that

(dpσ)
−1(q′, v′) = (q′, v′)× {f ′ ∈ S3 | ∂v(f ′) = q′ − ∂v′(f)} and Ker(dpσ) ≃ AnnS3(∂v)

so from exact sequence (3.7) we have that dpσ is surjective and dim(Ker(dpσ)) = an,k is constant.

Hence, σ|J s
k
: J sk → Q̃sk × (Kn+1 \ {0}) is a surjective and submersive map on a smooth target

and its differential has kernel of constant dimension an,k. Hence, the Zariski tangent space of J sk has

constant dimension equal to an,k + dim(Q̃sk) + dim(Kn+1) = dim(S3) + n − cn,k + 1 = dim(J sk ). In

particular, J sk is smooth as claimed.

From now on, let us assume that Dsk(f) = Dk(f) \ Dk−1(f) ̸= ∅ for [f ] ∈ U general.

Claim (c)+(d): Consider the map π3 : J sk → S3 \ {0}. The fiber of π3 over f ∈ S3 \ {0}, is

Vf = π−1
3 (f) = {(∂v(f), v) | v ̸= 0, ∂v(f) ∈ Q̃sk} × {f}

so, by the above assumption, π3 is dominant. By (b) J sk is smooth so, by generic smoothness, the

general fiber of π3 is smooth, too. In particular, for [f ] ∈ U general we have that Vf = π−1
3 (f)

is smooth of dimension n − cn,k + 1 (by (a)). Fix a general [f ] ∈ U and consider the restriction

β : Vf → Kn+1 \ {0} of the second projection π2 to Vf . We claim that β is an embedding and that

β(Vf ) is the affine cone of Dsk(f) with the origin removed.

Assume that β(∂v(f), v) = β(∂w(f), w). Then v = w, so β is injective. The tangent in p = (q, v)

to Vf is given by the vectors (q′, v′) such that q′ ∈ TqQ̃sk, v′ ∈ Kn+1 and ∂v′(f) = q′ (see (⋆)). If

dpβ(q
′, v′) = 0 then (q′, v′) is such that v′ = 0 and then q′ = 0. In particular, β is an embedding.

Hence β(Vf ) is smooth of dimension n− cn,k + 1. On the other hand,

β(Vf ) = {v ∈ Kn+1 \ {0} | ∂v(f) ∈ Qsk}

is the affine cone of Dsk(f) with the origin removed so Dsk(f) is smooth and has dimension n − cn,k.
In particular, Sing(Dk(f)) = Dk−1(f).

Claim (e): This follows by Lemma 3.2.1 since Dk(f) = P(J2
f ) ∩Qk.

Corollary 3.4.2. Assume that Dk(f) is non-empty for [f ] ∈ U general. Then Dk(f) \ Dk−1(f) is

non-empty too for [f ] ∈ U general. In particular, for [f ] ∈ U general, Dk(f) is reduced, has the

expected dimension and Sing(Dk(f)) = Dk−1(f).
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Proof. Let h = min{j | Dj(f) ̸= ∅ for general [f ] ∈ U} so h ≤ k. The claim is clearly true for

k = h so for general [f ] ∈ U , Dh(f) is smooth and has the expected dimension. Let us then take h+1.

Then

dim(Dh(f)) = Edim(Dh(f)) < Edim(Dh+1(f)) ≤ dim(Dh+1(f))

where the strict inequality in the middle follows from Remark 3.2.5. Hence Dh+1(f) \ Dh(f) ̸= ∅ for
[f ] general. By recursion one has the thesis.

Remark 3.4.3. Notice that, unless k = n (see Theorem 3.3.5), we don’t have Sing(Dk(f)) = Dk−1(f)

for all [f ] ∈ U . Indeed, for example, if we consider the Klein cubic fourfold (i.e. n = 5 and f =

x25x0 +
∑4

i=0 x
2
ixi+1) we have that V (f) is smooth, D4(f) \ D3(f) is not empty but it is not smooth.

The same holds for the expected dimension: for example, for all n ≥ 2, the dimension of the singular

locus of the Hessian hypersurface associated to the Fermat cubic is 1 more than the expected dimension.

3.5 Degeneracy Loci

From this section, till the end of this thesis, we will work on the field C of complex numbers. In this

section, we will study these loci Dk from a different, although natural, perspective. In particular,

one can think of these varieties as of degeneracy loci of a specific vector bundle map. For a general

treatment of this subject, the reader can refer to [Tu86] and [Laz04].

Let X be a smooth variety of dimension n. We are interested in degeneracy loci of a symmetric

morphism between vector bundles (symmetric over each fiber) on X, i.e. a morphism

φ : E → E∗ ⊗ L such that φ = φ∗ ⊗ IdL,

where E and L are a vector bundle of rank e and a line bundle over X respectively. Then one can

define the degeneracy loci at order k for such a map as

D′
k(φ) = {x ∈ X | Rank(φx) ≤ k}.

Let us summarize in the following theorem, some important results about the non-emptiness and the

connectedness of these degeneracy loci (see [FL83], [HT90] and [Tu89]).

Theorem 3.5.1. Let φ : E → E∗ ⊗ L be a symmetric morphism of vector bundles of rank e and

consider k ≤ e. If n ≥
(
e−k+1

2

)
, then D′

k(φ) is non-empty.

Moreover, if (Sym2E∗)⊗ L is ample, the following hold:

(a) if k is even and n−
(
e−k+1

2

)
≥ 1, then D′

k(φ) is connected;

(b) if k is odd and n−
(
e−k+1

2

)
≥ e− k, then D′

k(φ) is connected.

In particular, we can consider a symmetric matrix M ∈ Msym
n+1(S

1) and the symmetric homomor-

phism of vector bundles induced by M , namely

φM : On+1
Pn

M ·−−→ On+1
Pn (1).

By taking M = Hess(f) with [f ] ∈ P(S3), we have that the locus Dk(f) introduced in Section

3.2 is exactly the degeneracy locus D′
k(φHess(f)) introduced above. By Theorem 3.5.1, recalling that

Sing(H) = Dn−1 by 3.3.5, we then have
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Proposition 3.5.2. The following hold:

(a) if n ≥ 3, Sing(H) is non-empty for all [f ] ∈ P(S3). Moreover, if n ≥ 4, it is also connected.

(b) if 3 ≤ n ≤ 5, for [f ] ∈ U general, Sing(H) is smooth of dimension n− 3.

Proof. Claim (a): the non-emptyness of Dn−1(f) follows directly from Theorem 3.5.1 or from the

argument about the expected dimension of Remark 3.2.5. The connectedness for n ≥ 5 follows again

from Theorem 3.5.1 while the case n = 4 has been treated in [AR96]. For claim (b), if n = 3, 4 the

result is already known (see Remark 3.2.4) so we can assume n = 5. In this case, by (a) we have that

D4 ̸= ∅. On the other hand, by [RV17, Lemma 2.1] we have that D3 = ∅ when [f ] is general. Then,

the claim follows from Theorem 3.4.1.

Let us now consider the case k = n − 2: we know that Dn−2 is contained in the singular locus of

Sing(H). By Theorem 3.5.1 we can easily see that in this case the condition n ≥
(
n+1−(n−2)+1

2

)
= 6

tells us that for every n ≥ 6 the singular locus of the Hessian hypersurface associated to any [f ] ∈ P(S3)

is itself singular. Then, by Proposition 3.5.2, the case n = 5 is the last one where the singular locus

of H is smooth generically. On the other hand, it is also the first one which has still to be analysed

(by Remark 3.2.4). We will focus on this specific case in Section 3.6.

Let us now consider again the map φM = M · where M ∈ Msym
n+1(S

1) as above. Let us observe

that by following the strategy presented with a more general flavour in [HT84a] one can compute the

odd Chern classes of Z := D′
k(φM ) assuming that Z is smooth. In this case, indeed one has that

D′
k−1(φM ) is empty. We can then consider the following exact sequence on Z

0→ B → On+1
Z

α−→ On+1
Z (1)→ C → 0 (3.8)

where α is the restriction to Z of φM , and B = ker(α) and C = coker(α) are locally free (on Z) of

rank n+ 1− k. Since α is symmetric, by dualizing and tensoring with OZ(1) we get

C = B∗ ⊗OZ(1).

Starting from this we derive an explicit relation satisfied by the canonical divisor KZ which will

be used in Section 3.6.

Proposition 3.5.3. Assume that Z = D′
k(φM ) is smooth. Then we have

2KZ = (n+ 1)(n− k)H|Z

where H denotes the hyperplane class of Pn.

Proof. As NZ/Pn = (Sym2B∗)⊗OZ(1) (see [HT84a]), we get

c1(NZ/Pn) = Rank(Sym2B∗)c1(OZ(1)) + c1(Sym
2B∗) =

(
n+ 2− k

2

)
H|Z − (n+ 2− k)c1(B).

Since c1(Z) = c1(Pn)|Z − c1(NZ/Pn) by the normal exact sequence we have

KZ = −c1(Z) = −(n+ 1)H|Z +

(
n+ 2− k

2

)
H|Z − (n+ 2− k)c1(B).

Since C = B∗ ⊗OZ(1), we obtain c1(C) = (n+ 1− k)H|Z − c1(B). From this relation and from the

exact sequence (3.8), one easily gets that 2c1(B) = −kH|Z which allows us to conclude.
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Remark 3.5.4. Let us notice that Propositions 3.5.2,3.5.3 and Theorem 3.4.1 give a description of

Sing(H), where H is the Hessian hypersurface in P4 associated to a general cubic threefold. Indeed,

one gets that it is a smooth, irreducible curve of degree 20 and genus 26, as shown in [AR96] with

different techniques.

In the next section 3.6, we will deal with the case n = 5 and try to classify the surface Z = D4(f)

arising as singular locus of the Hessian variety of a general smooth cubic fourfold V (f). In order to

do this we will need a construction related to degeneracy loci and covers, that we will develop in the

next subsections and that is inspired by a natural question coming from Proposition 3.5.3: one might

wonder whether in this case KZ = 3H|Z or not, since we know that 2KZ = 6H|Z .

3.5.1 Covers and connectedness

In this subsection we present a general construction that allows us to describe the existence of 2 : 1

covers for suitable degeneracy loci of symmetric maps between vector bundles.

Let us start by considering a vector bundle E of rank e + 1 on an irreducible projective variety

X of dimension n and a symmetric map φ : E → E∗ ⊗ L where L is a line bundle. For any m with

1 ≤ m ≤ e+ 1 one can consider the relative Grassmannian π : G = G(m,E)→ X associated to E, a

fiber bundle whose fiber over x is the Grassmannian G(m,Ex) of m-dimensional subspaces of Ex. We

will denote by SE and QE the tautological bundle and the universal bundle of G respectively, which

fit into the exact sequence

0 // SE
α // π∗E // QE // 0 (3.9)

where αW : (SE)W ≃W → (π∗E)W ≃ Eπ(W ) is the natural inclusion of the subspace W ⊆ Eπ(W )

for any W ∈ G.

Denote by α∗ ⊗ idπ∗L : π∗(E∗ ⊗ L) → S∗
E ⊗ π∗(L) the map obtained by dualizing α and then

tensoring by π∗(L). Then from the diagram

0 // Q∗
E ⊗ π∗L // π∗(E∗ ⊗ L)

α∗⊗idπ∗(L) // S∗
E ⊗ π∗(L) // 0

π∗(φ)
OO

0 // SE α
//

ψ

OO

π∗E // QE // 0

one can define the morphism ψ : SE → S∗
E ⊗ π∗(L), as ψ = (α∗ ⊗ idπ∗(L)) ◦ π∗(φ) ◦ α.

Remark 3.5.5. As φ is symmetric, we have φ∗ ⊗ idπ∗(L) = φ, so π∗(φ∗ ⊗ idπ∗(L)) = π∗φ. Hence

ψ∗ ⊗ idπ∗L = (α∗ ⊗ idπ∗(L)) ◦ ((π∗(φ))∗ ⊗ idπ∗(L)) ◦ α = (α∗ ⊗ idπ∗(L)) ◦ π∗(φ) ◦ α = ψ

so ψ is a symmetric morphism of vector bundles on G. Notice, moreover, that we can interpret ψ as a

section of the bundle Homsym(SE , S
∗
E⊗π∗(L)) = Sym2(S∗

E)⊗π∗(L), i.e. ψ ∈ H0(Sym2(S∗
E)⊗π∗(L)).

We fix now an integer k such that the degeneracy locus D′
k(φ) = D′

k is non-empty. If x ∈ D′
k then

φx : Ex → E∗
x ⊗ Lx ≃ E∗

x is a symmetric morphism. Then, φx can be thought either as a symmetric
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bilinear form or as a polynomial of degree 2 which identifies a quadric Qx ⊆ Pe. By construction, Qx

is a quadric of rank at most k. Recall that a linear subspace in Pe is called isotropic with respect to

Qx if it is contained in Qx.

Remark 3.5.6. Assume that Qx has rank exactly k. Then Qx contains either one or two families of

maximal isotropic subspaces. More precisely, Qx always contains:

• two irreducible
(
h
2

)
-dimensional families of maximal isotropic (e− h)-planes if k = 2h;

• one irreducible
(
h+1
2

)
-dimensional family of maximal isotropic (e− h− 1)-planes if k = 2h+ 1.

In order to see this, notice that the vertex of Qx is a (e − k)-plane so, by cutting Qx with a general

(k − 1)-plane Λ, one has a smooth quadric of dimension equal to k − 2. Then Qx ∩ Λ contains either

one family of dimension
(
h+1
2

)
or two families of dimension

(
h
2

)
of (h − 1)-planes depending on the

parity of k (see [GH94, Chapter 6, page 735]). One then concludes by observing that families of linear

spaces in Qx ∩Λ and in Qx are in bijection via joint union with the vertex of Qx. If the rank of Qx is

strictly less than k, with the same method, one can show that Qx always contains (e− h)-planes when
k = 2h or (e− h− 1)-planes when k = 2h+ 1.

From now on set

m =

e− h if k = 2h+ 1

e− h+ 1 if k = 2h

so that, from Remark 3.5.6, the quadric Qx contains (possibly non-maximal) isotropic subspaces of

dimension m− 1 for all x ∈ D′
k.

Lemma 3.5.7. Let W ∈ G = G(m,E) and set x = π(W ), i.e. W ⊆ Ex is an m-dimensional linear

subspace of Ex. Then P(W ) is an isotropic subspace for Qx if and only if ψW ≡ 0.

Proof. Recall that αW : W → Ex is the inclusion of W in Ex. Hence, (α∗)W = (αW )∗ : E∗
x → W ∗

takes a linear form on Ex and restrict it toW . Since π∗(φ)W : Ex → E∗
x⊗Lx ≃ E∗

x is the map sending

v ∈ Ex to φx(v) one has that

∀ W ∈ G(m,E) and ∀ v ∈ (SE)W =W ψW (v) = φx(v)|W ,

i.e. the linear form φx(v) on Ex restricted to W . Since P(W ) is an isotropic subspace for Qx if

and only if ∀v, v′ ∈ W one has φx(v)(v
′) = 0, we have that P(W ) is isotropic for Qx if and only if

ψW ≡ 0.

Let us now define the zero locus of the symmetric morphism ψ as T = Z(ψ) = {W ∈ G |ψW ≡ 0}.

Remark 3.5.8. One can compute the expected dimension of T as

Edim(T ) = dim(G)− Rank(Sym2(S∗
E)⊗ π∗(L)) = dim(X) +m(e+ 1−m)−

(
m+ 1

2

)
since T = Z(ψ), where ψ is section of the bundle Sym2(S∗

E)⊗ π∗(L) and Rank(S∗
E) = m.



64 CHAPTER 3. FROM GORENSTEIN ALGEBRAS TO HESSIAN HYPERSURFACES

By construction and, in particular, by Lemma 3.5.7, it is then clear that D′
k = D′

k(φ) ⊆ π(T ).

Indeed, to any point x ∈ D′
k corresponds a quadric Qx which contains at least one family of isotropic

(m − 1)-planes: for every such plane W , which belongs to T by Lemma 3.5.7 we have that ψW ≡ 0

and π(W ) = x.

Let us now consider the following easy result of linear algebra, which will allow us to have, in a

specific case, also the other inclusion:

Lemma 3.5.9. Let W ⊆ V be two vector spaces of dimension l and e+1 respectively, ι :W → V the

natural inclusion and let η : V → V ∗ be a linear map. If ζ = ι∗ ◦ η ◦ ι : W → W ∗ is the zero map,

then the rank of η is at most 2(e+ 1− l).

Proof. If we define η̃ : W → V ∗ to be the composition η ◦ ι, since ζ ≡ 0, we have that Im(η̃) ⊆
Ker(ι∗), which has dimension e + 1 − l, and so dim(Im(η̃)) ≤ e + 1 − l and also dim(Ker(η̃)) ≥
l − (e + 1 − l) = 2l − e − 1. Since ι is injective, we also have that dim(ι(Ker(η̃))) ≥ 2l − e − 1, but

ι(Ker(η̃)) =W ∩Ker(η) ⊆ Ker(η). From this we get that Ker(η) has dimension at least 2l− e− 1 and

so Rank(η) ≤ (e+ 1)− (2l − e− 1), so we get the claim.

In particular, for k = 2h even, by setting l = e − h + 1 in the above Lemma 3.5.9, one also has

that π(Z(ψ)) ⊆ D′
k(φ):

Corollary 3.5.10. Assume that k = 2h is even. Then π(Z(ψ)) = D′
k(φ).

Assume, as above, that k = 2h is such that the degeneracy locus D′
k(φ) = D′

k is non-empty and

denote by π : Z(ψ)→ D′
k(φ) also the restriction of π : G→ Pe and consider m = e− h+ 1. The fiber

of π over [x] ∈ D′
k is, by construction, a variety parametrizing the isotropic (m − 1)-planes in Qx. If

[x] ∈ D′
k \D′

k−1, π
−1([x]) parametrizes maximal isotropic (m−1)-planes in Qx so it has two irreducible

disjoint components of dimension
(
h
2

)
by Remark 3.5.6. One can consider the Stein factorization of π,

i.e.

T = Z(ψ) �
� //

α

vv
π

����

G

π

����

Z̃

β ((
Z = D′

k(φ)
� � // Pe

(3.10)

where α has connected fibers and β is finite. From the above discussion, one can see that the map β

is a 2 : 1 morphism, whose possible ramification lies in β−1(D′
k−1).

It is then interesting to focus on the case where D′
k−1 is empty (this happens, for example, when

D′
k is smooth) and Z = D′

k is connected: in this situation one can wonder whether the finite map

β, which is then an unramified 2 : 1 cover, is non-trivial. This covering is trivial if and only if Z̃

is not connected, i.e. if and only if T is not connected since α has connected fibers. Notice that,

even if we assume that E and k satisfy the hypotheses of Theorem 3.5.1(a) we cannot guarantee the

connectedness of T = Z(ψ) = D′
0(ψ) since (Sym2 S∗

E)⊗ π∗L is not ample in general.

Let us now propose a sufficient condition which allows us to obtain the connectedness of T , under

suitable assumptions that will be satisfied in the case we will consider.
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Lemma 3.5.11. Assume that

0→ Fp
λp−1−−−→ · · · λ2−→ F2

λ1−→ F1
λ0−→ F0 → 0

is an exact sequence of sheaves. Let k ≥ 0 and assume that Hj+k−1(Fj) = 0 for all j such that

1 ≤ j ≤ p. Then one has Hk(F0) = 0.

Proof. Split the starting exact sequence into short exact sequences of the form

(⋆j) : 0→ Kj → Fj → Kj−1 → 0

for 1 ≤ j ≤ p− 1 with K0 = F0 and Kp−1 = Fp:

Kp−1� q

""

K2 � n

��

K0

=
��

0 // Fp
λp−1 //

=
>>

Fp−1
λp−2 //

� q

""

. . .
λ2 // F2

λ1 //

�� ��

F1
λ0 // //

@@ @@

F0
// 0.

Kp−2 K1

0�

@@

From exact sequence (⋆p−1) and by assumption we have

· · · → Hp−2+k(Fp−1)︸ ︷︷ ︸
=0

→ Hp−2+k(Kp−2)→ Hp−1+k(Fp)︸ ︷︷ ︸
=0

→ · · ·

so Hp−2+k(Kp−2) = 0. By a recursive argument we can show that if we have Hj+k(Kj) = 0 and

Hj−1+k(Fj) = 0 (the latter is true by assumption), then also Hj−1+k(Kj−1) = 0 holds. This claim

follows easily from the long exact sequence in cohomology induced by (⋆j):

· · · → Hj−1+k(Fj)︸ ︷︷ ︸
=0

→ Hj−1+k(Kj−1)→ Hj+k(Kj)︸ ︷︷ ︸
=0

→ · · · .

At the end of this process we get 0 = Hk(K0) = Hk(F0) as desired.

Corollary 3.5.12. Let X be a smooth connected variety and T a smooth subvariety of X which is the

zero locus of a non-trivial section θ of a vector bundle P on X of rank p.

(a) For any M ∈ Pic(X) and k ≥ 0, if Hj+k−1(M ⊗
∧j P∗) = 0 for 1 ≤ j ≤ p, then one has

Hk(IT/X ⊗M) = 0;

(b) If Hj(
∧j P∗) = 0 for all j, then h0(OT ) = 1;

(c) For any k ≥ 1, if hk(OX) = 0 and Hj+k(
∧j P∗) = 0 for all j, then hk(OT ) = 0.

Proof. Since Z is smooth by assumption, the Koszul sequence induced by θ

0 //
∧p P∗ λp−1 // . . .

λ2 //
∧2 P∗ λ1 // P∗ λ0 // // IT/X // 0
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is exact (see for example [GH94, Chapter 5, pag. 687]). By tensoring with M ∈ Pic(X), we preserve

the exactness of such sequence, so (a) follows directly from Lemma 3.5.11.

For (b), let us consider the exact sequence

0→ IT/X → OX → OT → 0.

Since X is connected we have an exact sequence

0→ H0(OX)→ H0(OT )→ H1(IT/X)

hence the vanishing of H1(IT/X) implies the connectedness of T . But since Hj(
∧j P∗) = 0 by

assumption, we can conclude, by using (a) (for k = 1).

For (c), from the same sequence, we have an injection

0 = Hk(OX)→ Hk(OT ) ↪→ Hk+1(IT/X).

We can then conclude since, under our assumption, we get that Hk+1(IT/X) is zero, again by using

(a).

Hence, if we assume that the degeneracy locus Z = D′
k(φ) is connected and smooth, one can

show that the map β : Z̃ → Z introduced above is a non-trivial unramified covering, by proving that

Hj(
∧j P∗) = 0 with P = Sym2(S∗

E)⊗ π∗L whenever 1 ≤ j ≤
(
m+1
2

)
.

3.5.2 An application: the case n = 5

As an application of the above discussion, let us set X = P5 and S = C[x0, · · · , x5] and let us consider

φ = φM : O6
P5 → OP5(1)6 where M ∈ Msym

6 (S1). For example, one can take M = Hess(f) for

[f ] ∈ P(S3) general.

As we have done in the previous sections, the degeneracy locus Z = D′
4(φ) is a surface. In

particular, let us assume that such a surface Z is smooth (this happens for M general by Proposition

3.5.2), so that D′
3(φ) = ∅. Here with respect to the notations of Subsection 3.5.1 (and the objects

in Diagram (3.10)), we have k = 4 and h = 2, so Z̃ is a smooth surface which is an unramified

double cover of Z. The fiber of α : T → Z̃ over p ∈ β−1([x]) is a P1 which parametrizes one of

the two irreducible families of maximal isotropic 3-planes contained in the quadric Qx. Hence, α has

irreducible and equidimensional fibers so Z is a smooth threefold and we can apply Corollary 3.5.12

in order to study the connectedness of the covering β. Indeed, we have that Z̃ is connected if T is so

and this is equivalent to ask h0(OT ) = 1.

Notice that since E = O6
P5 , we have G = G(4,O6

P5) = G(3,P5)× P5 so h1(OG) = 0. We denote by

π1 and π2 the two natural projections. If F and G are sheaves on G(3,P5) and P5 respectively, we set

π∗1(F)⊗ π∗2(G) := F ⊠ G for brevity. Recall that T is the zero locus of a section of the vector bundle

P = Sym2(S∗
O6

P5
) ⊗ π∗OP5(1) which, in this case, can be written as P = Sym2(S∗) ⊠OP5(1) where S

is the tautological bundle of G(3,P5). Thus, we have

j∧
P∗ =

j∧(
Sym2(S)⊠OP5(−1)

)
=

(
j∧
Sym2(S)

)
⊠OP5(−j) (3.11)
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so it is clear that the vanishing of the cohomology group H i(
∧j P) strongly depends on the vanishing

of some cohomology groups of
∧j Sym2(S) on the Grassmannian G(3,P5). The latter can be tested

using Bott’s Theorem on homogeneous vector bundles on Grassmannians. The interested reader can

refer to [FH91] and [Ott89]. An explicit and standard, but long computation (see Appendix A for a

detailed proof) shows the following:

Proposition 3.5.13. One has H i(
∧j Sym2 S) = 0 for all pairs (i, j) with i ≥ 0, 0 ≤ j ≤ 10

except for the cases where (i, j) ∈ {(2, 2), (2, 3), (2, 4), (4, 5), (4, 6), (4, 7), (6, 9)}. For these cases,

H i(
∧j Sym2 S) ̸= 0.

For all d ∈ Z, from Equation (3.11) and by Künnet’s Theorem we have

H i

(
π∗2OP5(d)⊗

j∧
P∗

)
≃
⊕
a+b=i

(
Ha

(
j∧
Sym2 S

)
⊗Hb(OP5(d− j))

)
. (3.12)

In particular, since for j ≥ 1 the group Hb(OP5(−j)) is trivial whenever b ̸= 5, we have

Hj

(
j∧
P∗

)
≃ Hj−5

(
j∧
Sym2 S

)
⊗H5(OP5(−j)).

Hence, by Proposition 3.5.13 and since H5(OP5(−j)) ≃ H0(OP5(j − 6))∗ = 0 for j < 6, we obtain

Hj
(∧j P∗

)
= 0. Then, using Corollary 3.5.12(b) we have that T is connected and the same holds

for Z̃. With the same reasoning just used, we also get that Hj+1(
∧j P∗) = 0 for j ≥ 1 so we can

conclude, again by Corollary 3.5.12(c), that h1(OT ) = 0.

Similarly, for d ≥ 0 one has

Hj−1

(
π∗2(OP5(d))⊗

j∧
P∗

)
≃

if j ≤ d Hj−1
(∧j Sym2 S

)
⊗H0(OP5(d− j))

if j > d Hj−6
(∧j Sym2 S

)
⊗H5(OP5(d− j))

which is always trivial if d ≤ 2 by Proposition 3.5.13. Hence, by Corollary 3.5.12(a), one hasH0(IT/G⊗
π∗2OP5(d)) = 0 for d = 1, 2.

Summing up, one has the following

Proposition 3.5.14. Assume that M ∈ Msym
6 (S1) is general. Then the variety T constructed above is

a smooth connected threefold with h1(OT ) = 0, h0(IT/G⊗π∗2OP5(1)) = 0 and h0(IT/G⊗π∗2OP5(2)) = 0.

Moreover, Z̃ is a connected surface so β : Z̃ → Z is a non-trivial unramified double cover.

3.6 The case of a general smooth cubic fourfold

In this last section we will focus on the case n = 5 and we will study the properties of the singular

locus Z(=Dn−1=4(f)) of the Hessian variety Hf associated to the general smooth cubic fourfold

X = V (f) ⊂ P5, for [f ] ∈ U = P(S3) \ Csing, where S = C[x0, · · · , x5]: in particular, we will prove

Theorem G from the Introduction. For the topics of this section, the reader can refer for example to

[Bea96,GH94,Har77].

The starting point of this analysis is based on some results obtained more generally in the previous

sections which we sum up in this lemma:
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Lemma 3.6.1. Assume that [f ] ∈ U is general and denote by H the hyperplane class of P5. We have

the following:

(a) Hf = D5(f) has singular locus Z = Sing(Hf ) = D4(f) which has dimension 2;

(b) Z is connected, smooth and it is cut by 21 quintic hypersurfaces;

(c) As subvariety of P5, Z has degree 35;

(d) There exists η ∈ Pic0(Z)[2] such that 3H|Z + η = KZ .

In particular, Z is a minimal surface of general type.

Proof. Most of the information for (a), (b) and (c) follows from Theorem 3.4.1 and Propositions 3.5.2.

The surface Z is the degeneracy locus at rank 4 of the Hessian matrix Hess(f), which is a symmetric

matrix of order 6, so it is defined by the vanishing of the 36 minors of Hess(f) of order 5. Each

minor gives a quintic equation and, by symmetry, it is enough to consider only 21 of them. For (d),

by Proposition 3.5.3 we have 2KZ = 6H|Z so there exists a possibly trivial torsion line bundle η of

order 2 such that KZ = 3H|Z + η. In particular, KZ is numerically equivalent to 3H|Z which is ample

since 3H is ample on P5 so KZ is ample too by Moishezon-Nakai criterion (see [Har77, Theorem 1.10,

pag.365]). Hence, Z is a minimal surface, since we don’t have (−1)-curves. Moreover, it is of general

type (see for example [Bea96, Prop. X.1]).

We stress that KZ is not linearly equivalent to 3H|Z as we will show later. Now, let us compute

the main invariants of the surface Z:

Proposition 3.6.2. Let Z be as above. Then

(a) The (topological) Euler characteristic of Z is e(Z) = 357;

(b) The Hilbert polynomial of Z is χ(OZ(n)) = 35
2 n

2 − 105
2 n+ 56;

(c) There exists a non-trivial unramified double covering Z̃ → Z;

(d) Z is regular (i.e. it has irregularity q(Z) = 0), its geometric genus is pg(Z) = 55 and h1,1(Z)(=

dim(H1(Z,Ω1
Z)) = 245;

(e) h0(IZ/P5(1)) = h0(IZ/P5(2)) = 0.

Proof. Let us start with the computation of e(Z). One can compute e(Z) by using a computer algebra

software (we will use this approach later in order to compute some cohomology groups), but actually

here we adapt a formula presented and proved in [Pra88, Proposition 7.13], which in our specific case

is

c2(Z) =
∑
(i1,i2)

(−1)i1+i2((i1 + 1, i2))Q(i1+2,i2+1)

(
O6

P5 (1/2)
)
c2−i1−i2(P5)

where (i1, i2) ranges in {(2, 0), (1, 1), (1, 0), (0, 0)} and where OP5(1/2) is a formal line bundle whose

square is OP5(1) (one can be more precise by invoking squaring principle). For brevity, we don’t

report the definition of the coefficients ((a, b)) and of the Q-Schur polynomial Q(a,b). Nevertheless, we
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give the values of the non-vanishing Q-Schur polynomial evaluated in O6
P5(1/2) and of the coefficients

((a, b)) appearing in the above formula:

Q2,1 = 35H3 Q3,1 = 105H4 Q4,1 =
777
4 H

5 Q3,2 =
483
4 H

5

((1, 0)) = 1 ((2, 0)) = 3 ((3, 0)) = 7 ((2, 1)) = 3

Summing up and developing the computation, one gets e(Z) = deg(c2(Z)) = 357.

By Lemma 3.6.1(c) we have that Z, as subvariety of P5, has degree 35. Hence we have H2
|Z = 35.

As KZ ≡num 3H|Z by Lemma 3.6.1(d), we have that K2
Z = 315 and KZ ·H|Z = 105. Then we have

χ(OZ) =
e(Z) +K2

Z

12
=

357 + 315

12
= 56

by Noether’s formula (see for example [Bea96, I.14]) and

χ(OZ(n)) = 56 +
1

2
(nH|Z)(nH|Z −KZ) = 56 +

1

2
((H2

|Z)n
2 − (H|Z ·KZ)n) =

35

2
n2 − 105

2
n+ 56.

We can apply the double cover construction of Subsections 3.5.1 and 3.5.2 to Z = D4(f) = D′(φHess(f))

in order to construct the threefold T , the unramified double covering β : Z̃ → Z and the morphisms π

and α (see Diagram (3.10)). We can apply Proposition 3.5.14 in order to see that h1(OT ) = 0 and that

β : Z̃ → Z is indeed a non-trivial unramified double covering. Since π : T → Z is surjective, we have

that π∗ : H0(Ω1
Z)→ H0(Ω1

T ) is injective. As h
1(OT ) = h0(Ω1

T ) = 0 we have then q(Z) = h1(OZ) = 0.

The last two invariants, namely h1,1(Z) and pg(Z), are easily computed knowing that χ(OZ) = 56,

q(Z) = 0 and e(Z) = 357. Indeed, we have that 56 = χ(OZ) = 1 − q(Z) + pg(Z), from which we

get that pg(Z) = 55; moreover, 357 = e(Z) = 2 − 4q(Z) + 2pg(Z) + h1,1(Z) and one obtains that

h1,1(Z) = 245.

Claim (e) follows since a non-trivial section of IZ/P5(d) induces, via pullback, a non-trivial section

of IT/G⊗π∗2OP5(d) and we know by Proposition 3.5.14 that h0(IT/G⊗π∗2OP5(d)) = 0 for d = 0, 1.

The approach described in Subsection 3.5.2 is not powerful enough to prove the vanishing h0(IT/G⊗
π∗2OP5(d)) = 0 for d = 3, 4 and so we cannot use this method in order to conclude that h0(IZ/P5(d)) = 0

for d = 3, 4. Nevertheless, by semicontinuity it is enough to establish the vanishing for a single example

in order to have it for the general one. With this approach, one can use a computer algebra software

(like Magma) in order to compute the Hilbert series hZ0(t) (see for example [Har95, Lecture 13])

associated to the surface Z0 for a specific case, namely the Klein cubic fourfold

X0 = {f0 = 0} where f0 = x20x1 + x21x2 + x22x3 + x23x4 + x24x5 + x25x0.

Defining, for brevity, xk = xi for any k ∈ Z, i ∈ {0, . . . , 5} if and only if k ≡ i mod 6, one has

hess(f0) =

2∑
i=0

x3ix
3
i+3 − x0x1x2x3x4x5 +

5∑
i=0

xix
3
i+1x

2
i+3 −

5∑
i=0

xixi+1xi+2x
3
i+3 −

1∑
i=0

x2ix
2
i+2x

2
i+4.

Let us observe that Z0 = D4(f0) has the expected dimension: this fact is proved directly in Appendix

B, by using the same reasoning presented in [AR96] for the case of the Klein threefold. By using

Magma, one obtains

hZ0(t) =
15t4 + 10t3 + 6t2 + 3t+ 1

(1− t)3
=

∞∑
i=0

h
(i)
Z0
ti = 1+6t+21t2+56t3+126t4+231t5 mod t6. (3.13)
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Remark 3.6.3. Let us recall that, by definition, the coefficients h
(i)
Z0

of the above Hilbert series rep-

resent the dimensions of S
(i)
Z0
, the degree i part of the homogeneous coordinate ring SZ0 of Z0, i.e.

S/IZ0/P5. Moreover, let us observe that S
(i)
Z0

coincides also with the image of Si = H0(OP5(i)) in

H0(OZ0(i)) via the map induced by the exact sequence

0→ IZ0/P5(i)→ OP5(i)→ OZ0(i)→ 0.

Actually, this is also the Hilbert series for Z, singular locus of Hf for [f ] ∈ U general, since hZ(t)

is constant for flat families (and we are considering degeneracy loci associated to a morphism of vector

bundles). This has several consequences.

Proposition 3.6.4. Let [f ] ∈ U be general and let Z be as above. Then

(a) The 2-torsion element η such that KZ = 3H|Z + η is non-trivial;

(b) h0(IZ/P5(d)) = 0 for d ≤ 4 and h0(IZ/P5(5)) = 21.

Proof. In order to prove (a), notice that, by Remark 3.6.3 the coefficient h
(3)
Z of the Hilbert series of

Z is 56, which equals, by definition, the dimension of S
(3)
Z , that is the image of S3 = H0(OP5(3)) in

H0(OZ(3)) via the map induced by the exact sequence

0→ IZ/P5(3)→ OP5(3)→ OZ(3)→ 0.

Then, if KZ = 3H|Z we would have a contradiction since we would obtain, by Proposition 3.6.2,

55 = pg(Z) = h0(OZ(3)) ≥ 56. Hence η is a non-trivial 2-torsion element of Pic(Z).

For (b), again by Remark 3.6.3, notice that h
(d)
Z = dim(Sd) = h0(OP5(d)) for d ≤ 4. Hence

H0(IZ/P5(d)), which equals the kernel of the map Sd → H0(OZ(d)), is trivial for d ≤ 4. For d = 5 one

has h
(5)
Z = 231 = 252 − 21 = dim(S5) − 21 so h0(IZ/P5(5)) = 21 with the same argument as before.

Recall that we proved in Subsection 3.5.2 that Z has a natural non-trivial unramified double

cover. This corresponds to a 2-torsion line bundles η′ on Z. An intriguing question is whether η and

η′ coincide. We conjecture the following:

Conjecture 3.6.5. We have η = η′ for [f ] ∈ U general.

We conclude this section by exploiting again Magma in order to obtain the following data which

hold for Z associated to [f ] ∈ U general:

d 0 1 2 3

h0(OZ(d)) 1 6 21 56

h1(OZ(d)) 0 0 0 0

h2(OZ(d)) 55 15 0 0

(3.14)

By using this, we can show the following result, concerning the projective normality of Z (in the

general case). Let us recall that to prove this property we have to show that for every d ≥ 0 the map

H0(P5,OP5(d)) → H0(Z,OZ(d)) is surjective, or equivalently, that the group H1(IZ/P5(d)) is trivial

for every d ≥ 0 (see for example [Har77, Ex. 5.14]).
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Proposition 3.6.6. Let [f ] ∈ U be general and let Z be as above. Then Z is projectively normal.

Proof. Recall that if SZ = S/IZ/P5 is the homogeneous coordinate ring of Z, we have, for each d ≥ 0,

an exact sequence of vector spaces

0→ S
(d)
Z → H0(OZ(d))→ H1(IZ/P5(d))→ 0.

From these sequences one has

+∞∑
d=0

h0(OZ(d))td = hZ(t) +

+∞∑
d=0

h1(IZ/P5(d))td.

Since dH|Z ≡num KZ + (d− 3)H|Z and (d− 3)H|Z is ample for d ≥ 4, by Kodaira vanishing, one

has Hp(OZ(d)) = 0 for d ≥ 4 and p = 1, 2. In particular, using also Table (3.14), one has

+∞∑
d=0

h0(OZ(d))td =
+∞∑
d=0

χ(OZ(d))td − (55 + 15t) =
7(18t2 − 21t+ 8)

(1− t)3
− 55− 15t.

One can easily check that the latter series coincides with hZ(t) (see Equation (3.13)) so one can

conclude that h1(IZ/P5(d)) = 0 for all d ≥ 0. This is equivalent to the projective normality of Z.
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Appendix A

Cohomology on Grassmannians

The aim of this first appendix is to prove Proposition 3.5.13 from Section 3.5: in order to do this, we

will essentially use tools from representation theory. For this part we refer to notation and approach

used by G.Ottaviani in [Ott89], while for some basic definitions and a more detailed explanation of

these topics, one can refer to [FH91]. In this appendix, we work on the field C of complex numbers.

Even if we are interested on some cohomology groups over the Grassmannian of projective 3−planes
in P5, before considering this specific case, let us introduce, in a more general setting, a possible strategy

to study cohomology groups over a Grassmannian G(k, n) of projective k−planes in Pn. As done in

[Ott89], we can think of G(k, n) as of the complex homogeneous manifold SLn+1(C)/P where

P =

{[
h1 0

h3 h4

]
∈ SLn+1(C) | h4 ∈ GLk+1(C)

}
.

We can then consider the simple Lie algebra sln+1(C) = {A ∈ Mn+1(C) | Tr(A) = 0} associated
to SLn+1(C) and p the one associated to P . We can also take

h = {A ∈ sln+1(C) | A is diagonal} ⊂ sln+1(C),

as a Cartan subalgebra of sln+1(C).
In gln+1(C) = Mn+1(C) (the Lie algebra associated to GLn+1(C)), let us define Ei,j to be the

matrix with all trivial coefficients but the one at the entry (i, j) which is equal to 1 and let {ϵi,j} be
the dual basis of {Ei,j}. Then, as a basis of h we can take {xi}i=0,...,n, where xi := Ei,i − Ei+1,i+1.

Let us call {λi}i=0,...,n ⊂ h∗ the dual basis of {xi}i. By setting αi := ϵi,i − ϵi+1,i+1 and by considering
1

2(n+1)( , ) to be the Killing form in h∗, it is well known that

(λi, αj) = δi,j =

0, if i ̸= j

1, if i = j
.

It is also well known that the set {α1, . . . , αn} gives a basis of the root system Φ of sl(n+ 1) with

respect to h, where Φ = Φ+ ∪ Φ− and

Φ+ = {αi + αi+1 + · · ·+ αj | 1 ≤ i ≤ j ≤ n}

73
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is the set of positive roots and Φ− = −Φ+. Let us now recollect some definitions that will be very

useful in what follows:

Definition A.0.1. (a) Given a finite dimensional K−vector space V and a representation ρ : P →
GL(V ) we say that λ ∈ h∗ is a weight for D(ρ) if the space

Vλ := {v ∈ V | D(ρ(H)) · v = λ(H) · v ∀ H ∈ h}

is not trivial, where D denotes the operator of differentiation.

(b) A weight λ =
∑n

i=1 niλi with ni ∈ Z is said to be singular if (λ, α) = 0 for at least one α ∈ Φ.

(c) A weight λ is said to be regular with index p if it is not singular and there are exactly p roots

α ∈ Φ+ such that (λ, α) < 0.

(d) If µ and ν are two distinct weights of the same representation, we say that µ is higher than ν

(µ ≥ ν) if µ − ν can be written as a linear combination
∑

jmjαj, where all the coefficients mj

are non-negative.

(e) A weight µ is a highest weight if there do not exist other weights higher than µ.

(f) A homogeneous vector bundle Eρ of rank r on G(k, n) ≃ SL(n + 1)/P is a bundle arising

from a representation ρ : P → GL(r).

Since {αj}j=1,··· ,n is a collection of elements of h∗ and {λi}i=1,···n is a basis for h∗, we can write αj

as a linear combination of the λi’s:

αj =
∑
i,j

ai,jλi, for ai,j ∈ K.

Since {λi}i and {xk}k are dual to each other, if we apply αj to xk, we simply get ak. On the other

hand, we know by construction that αj = ϵi,i − ϵi+1,i+1 and that xk = Ek,k − Ek+1,k+1. Hence, by

an easy calculation, one can write, in a compact way, αj = −λj−1 + 2λj − λj+1, where we set λ0 and

λn+1 to be zero.

Finally, by setting δ :=
∑n

i=1 λi, we can now state the following theorem due to Bott, which will

be central in what follows (see [Ott89] or [Bot57, Theorem IV’] for the original statement):

Theorem A.0.2. Let Eρ be a homogeneous vector bundle on G(k, n) ≃ SL(n+ 1)/P , defined by an

irreducible representation ρ and let λ be the highest weight of D(ρ) : p→ gl(r).

1. If λ+ δ is singular then H i(G(k, n), Eρ) = 0 for all i.

2. If λ+ δ is regular with index p then H i(G(k, n), Eρ) = 0 for all i ̸= p.

Actually, this theorem gives also the dimension of Hp(G(k, n);Eρ) in the case where λ+δ is regular

with index p, but now we are not interested in such a result, so we are skipping this part.

After all this general introduction, let us now focus on our specific case. Since we are working with
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bundles over the Grassmannian G(3, 5), we are interested in the case where k = 3, n = 5, hence we

have

P =

{[
h1 0

h3 h4

]
∈ SL6(C) | h4 ∈ GL4(C)

}
.

Let us now consider the tautological bundle S of the Grassmannian G(3, 5), i.e. the bundle fitting

into the exact sequence

0→ S → G(3, 5)→ Q→ 0

and such that for a 3−plane W , element of G(3, 5), we have that SW ≃ W . This tautological bundle

S is associated to the standard representation, i.e. the representation ρ : P → GL(V ), such that for

A ∈ P we have ρ(A) = h4.

We have actually to consider the representation De(ρ) = D(ρ) (where e denotes the identity

element of P ) over the associated Lie algebras: D(ρ) : p → gl(V ), where gl(V ) = M4(C) and p ={
M =

[
h1 0

h3 h4

]
| Tr(M) = 0

}
, sending M ∈ p to

lim
t→0

ρ(I + tM)− ρ(I)
t

=
I4 + th4 − I4

t
= h4,

so in this case actually D(ρ) = ρ.

Let us now look at the possible weights of D(ρ) = ρ: let us look at the spaces

Vλ = {v ∈ V | D(ρ)(H)︸ ︷︷ ︸
=h4

·v = λ(H) · v ∀ H ∈ h}.

Since {xi}i=1,...,5 is a basis for h, we can write H =
∑5

i=1 bixi for some coefficients bi ∈ K and so,

by definition of the xi’s one obtains that D(ρ)(H) = h4 is of the form

h4 = diag(b3 − b2, b4 − b3, b5 − b4, −b5)

and writing λ =
∑5

i=1 niλi, since {λi}i is dual with respect to {xi}i, we get also that λ(H) =
∑5

i=1 nibi

and we can describe the space Vλ as the kernel, for every {bi}i

Ker


(b3 − b2)−

∑5
i=1 nibi 0 0 0

0 (b4 − b3)−
∑5

i=1 nibi 0 0

0 0 (b5 − b4)−
∑5

i=1 nibi 0

0 0 0 (−b5)−
∑5

i=1 nibi

 .
To make this kernel not trivial for every bi, one of the elements on the diagonal of the above matrix

has to be zero. One can then easily see that the weights associated to such a representation are

µ1 := λ3 − λ2, µ2 = λ4 − λ3, µ3 = λ5 − λ4, µ4 = −λ5.

Let us now look for the highest weight. It is known (see for example [FH91, Proposition 14.13]) that

for each irreducible component of a representation there exists a unique highest weight. Moreover

the standard representation is irreducible. Recalling that for all i = 1, . . . , 5 we can write αi =

−λi−1 + 2λi − λi+1, where λ0 = λ6 = 0, let us observe that:
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• µ3 − µ4 = −λ4 + 2λ5 = α5, so µ3 ≥ µ4

• µ2 − µ3 = −λ3 + 2λ4 − λ5 = α4, so µ2 ≥ µ3

• µ1 − µ2 = −λ2 + 2λ3 − λ4 = α3, so µ1 ≥ µ2.

From these relations, one can easily see that µ1 is higher than any other µj , with j = 2, 3, 4: µ1 is

the highest weight. Then, we can now apply Bott’s Theorem A.0.2: let us test the singularity of

µ1 + δ = λ1 + 2λ3 + λ4 + λ5. Since, as we said above, (λi, αj) = δij , we can then easily see that

(µ1 + δ, α2) = (λ1 + 2λ3 + λ4 + λ5, α2) = 0 → µ1 + δ is singular,

so by Bott’s theorem we get that

H i(G(3, 5), S) = 0 ∀ i,

(recall that the tautological bundle S is the associated one to the standard representation we are

considering).

The next step is to calculate the cohomology groups of the bundle Sym2S, which is associated

to the representation Sym2ρ, that we will denote by ρ(2). For the computation of the corresponding

weights, we can use the following result (see [FH91, Chapter 13]):

Proposition A.0.3. If we consider the symmetric product Sym2ρ of a representation ρ, the corre-

sponding weights are given by the sums of the weights of D(ρ).

Moreover, if we consider the k-th exterior product
∧k ρ the corresponding weights are given by the

sums of k distinct weights of D(ρ).

Let us then indicate with µij := µi + µj with i, j = 1, · · · , 4 the weights of ρ(2). By studying, as

done before, the differences between every couple of weights we can create a diagram with the rows

that describe the order relation we introduced in Definition A.0.1, i.e. µij → µhk means that µij ≥ µhk,
(i.e. µi+µj−µh−µk is a linear combination of positive roots with non-negative coefficients). Clearly,

in such a diagram, the transitivity holds.

In particular, we have:

µ11
uu

µ12
uu ))

µ13
uu ))

µ22
uu

µ14
))

µ23
uu ))

µ24
))

µ33
uu

µ34
))
µ44

(A.1)

It is then clear that every weight is higher than µ44 and that µ11 is higher than any other weight:

we then have one maximal weight for ρ(2), namely µ11, so such a representation is irreducible. We

then have that µ11 + δ = λ1 − λ2 + 3λ3 + λ4 + λ5 and we can easily see that

(µ11 + δ, α1 + α2) = (λ1 − λ2 + 3λ3 + λ4 + λ5, α1 + α2) = 1− 1 = 0,
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so the element µ11 + δ is singular (see Definition A.0.1(b)), then by using again Bott’s theorem A.0.2

we get that

H i(G(3, 5),Sym2S) = 0 ∀ i.

Let us the consider the homogeneous bundles obtained as the exterior products of the symmetric

product Sym2S: they obviously correspond to the representations obtained as the exterior products of

the symmetric product representation ρ(2) we have just considered. Let us refer to these representations

as

σp :=

p∧
ρ(2), associated to the bundle

p∧
Sym2S,

where D(σp) : p→ gl(m), where m := dim(
∧p Sym2V ).

Let us then start with the case p = 2: by Proposition A.0.3 we know that the weights associated to σ2

are given by sums of two different weights corresponding to ρ(2), then they are of the form µij + µhk,

with i, j, h, k ∈ {1, · · · , 4} and (i, j) ̸= (h, k). From diagram (A.1), it is then clear that in this case

the highest weight is given by ν := µ11 + µ12 = 3µ1 + µ2. Then we have that

ν + δ = λ1 − 2λ2 + 3λ3 + 2λ4 + λ5.

One can observe that in this case, there exist no elements α in Φ such that (ν + δ, α) = 0. Hence,

ν + δ is not singular: in order to compute its index, we are now supposed to find the cardinality of

the set of elements α in Φ+ such that (ν+ δ, α) is strictly negative. One can easily see that there only

two such α’s, namely α2 and α1 + α2:

(ν + δ, α2) = (λ1 − 2λ2 + 3λ3 + 2λ4 + λ5, α2) = −2,

(ν + δ, α1 + α2) = (λ1 − 2λ2 + 3λ3 + 2λ4 + λ5, α1 + α2) = +1− 2 = −1.

By Definition A.0.1(c), we then have that ν+δ is regular with index 2. Then by Bott’s theorem A.0.2,

we get

H i

(
G(3, 5),

2∧
Sym2S

)
= 0 ∀ i ̸= 2.

Let us now consider the case p = 3. From Proposition A.0.3, we know that the weights are sums

of three distinct weights of ρ(2) and, from the diagram (A.1), we can see that in this case we do not

have a unique choice for the highest weight: we have two possibilities, namely

ν1 = µ11 + µ12 + µ13 = 4µ1 + µ2 + µ3 and ν2 = µ11 + µ12 + µ22 = 3µ1 + 3µ2.

Indeed, ν1 and ν2 are higher than any other possible weight, but ν1 and ν2 are not comparable: if we

consider ν1− ν2 we get µ13−µ22 = µ1−µ2+µ3−µ2 = α3−α4 and obviously µ22−µ13 = α4−α3, so

neither µ13 ≥ µ22 nor the converse holds. Then, in this case, the representation σ3 we are considering

splits up into two irreducible subrepresentations, with these as highest weights. We have then to

analyze both the components. For the first one, with ν1 as highest weight, we have that

ν1 + δ = λ1 − 3λ2 + 4λ3 + λ4 + 2λ5.
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We can then easily see as above that ν1 + δ is not singular and that the elements α ∈ Φ+ such that

(ν1 + δ, α) < 0 are exactly α1, α1 + α2: ν1 + δ is regular with index 2.

For the second component, with ν2 as highest weight, we have

ν2 + δ = λ1 − 2λ2 + λ3 + 4λ4 + λ5,

which is singular, since (ν2 + δ, α1 + α2 + α3) = 0. Hence, by Bott’s Theorem A.0.2, we get that

H i

(
G(3, 5),

3∧
Sym2S

)
= 0 ∀i ̸= 2.

Analogously, the same behavior arises in the cases where p = 4, 5, 6, 7. Indeed, for these values of

p we have two different highest weights corresponding to two irreducible subresentations and one can

show:

(p=4) ν1 = µ11 + µ12 + µ13 + µ14 and ν2 = µ11 + µ12 + µ13 + µ22; moreover, ν2 + δ is singular since

(ν2+ δ, α1+α2+α3) = 0, while ν1+ δ is not singular with index 2 (one has (ν1+ δ, α2) < 0 and

(ν1 + δ, α1 + α2) < 0)

(p=5) ν1 = µ11 + µ12 + µ13 + µ14 + µ22 and ν2 = µ11 + µ12 + µ13 + µ22 + µ23. One can easily show,

as done above, that ν1 + δ is singular, while ν2 + δ is regular with index 4

(p=6) ν1 = µ11 + µ12 + µ13 + µ14 + µ22 + µ23 and ν2 = µ11 + µ12 + µ13 + µ22 + µ23 + µ33; here, we

have that ν1 + δ is regular with index 4, while ν2 + δ is singular

(p=7) ν1 = µ11 + µ12 + µ13 + µ14 + µ22 + µ23 + µ24 and ν2 = µ11 + µ12 + µ13 + µ14 + µ22 + µ23 + µ33.

In this case, ν1 + δ is regular with index 4, while ν2 + δ is singular.

By applying Bott’s Theorem A.0.2, we get:

H i

(
G(3, 5),

4∧
Sym2S

)
= 0 ∀ i ̸= 2 H i

(
G(3, 5),

5∧
Sym2S

)
= 0 ∀ i ̸= 4.

H i

(
G(3, 5),

6∧
Sym2

)
= 0 ∀ i ̸= 4 H i

(
G(3, 5),

7∧
Sym2S

)
= 0 ∀ i ̸= 4.

Let us now consider p = 8. In this case, we have an irreducible representation, with only one

highest weight, namely

ν = µ11 + µ12 + µ13 + µ14 + µ22 + µ23 + µ24 + µ33.

And by taking

ν + δ = λ1 − 4λ2 + λ3 + 2λ4 + 3λ5,

we have that it is singular, since (ν + δ, α1 + α2 + α3 + α4) = 0. Hence, by Bott’s Theorem A.0.2, we

get

H i

(
G(3, 5),

8∧
Sym2S

)
= 0 ∀ i.

Similarly, for p = 9, 10 we have a unique highest weight ν and, in particular, one gets
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(p=9) ν = µ11 + µ12 + µ13 + µ14 + µ22 + µ23 + µ24 + µ33 + µ34 and ν + δ is not singular and the

elements α ∈ Φ+ such that (ν + δ, α) < 0 are α2, α1 + α2, α2 + α3, α1 + α2 + α3, α2 + α3 + α4

and α1 + α2 + α3 + α4: ν + δ is regular with index 6

(p=10) ν = 5µ1 + 5µ2 + 5µ3 + 5µ4 and ν + δ is singular

By using Bott’s Theorem A.0.2, we get

H i

(
G(3, 5),

9∧
Sym2S

)
= 0 ∀ i ̸= 6 H i

(
G(3, 5),

10∧
Sym2S

)
= 0 ∀ i.

By summing up all these results, we have thus proved Proposition 3.5.13, which describes the

cohomology of S and of its symmetric and exterior powers, where S is the tautological bundle to the

Grassmannian G(3, 5):

Proposition. One has H i(
∧j Sym2 S) = 0 for all pairs (i, j) with i ≥ 0, 0 ≤ j ≤ 10 except for the

cases where (i, j) ∈ {(2, 2), (2, 3), (2, 4), (4, 5), (4, 6), (4, 7), (6, 9)}. For these cases, H i(
∧j Sym2 S) ̸= 0.
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Appendix B

The Klein cubic fourfold

In this appendix, we will consider the Klein cubic fourfold X = V (f) ⊂ P5
C, where

f = x20x1 + x21x2 + x22x3 + x23x4 + x24x5 + x25x0,

and its associated hessian hypersurface H = V (det(Hess(f))). As stated in Section 3.6, we will prove

that H is singular along a surface, i.e. dim(Sing(H)) = Edim(Sing(H)) = 2. However, let us stress

than in this case such a surface is not smooth (as we showed for the general cubic form in 6 variables).

To this aim, here we use the same approach proposed in [AR96, Appendix IV], where Adler proves

that the Klein cubic threefold has associated Hessian hypersurface which is singular along a curve. To

avoid confusion, let us write (x0, x1, x2, x3, x4, x5) = (t, v, w, x, y, z). Let us consider the matrix

H =
1

2
Hess(f) =



v t 0 0 0 z

t w v 0 0 0

0 v x w 0 0

0 0 w y x 0

0 0 0 x z y

z 0 0 0 y t


.

We will prove our claim by showing that there exist two hyperplanes L1, L2 such that H|L1∩L2

has rank n− 1 = 4 only in finitely many points or, in other words, that there exist only finitely many

matrices of this kind with rank at most 4. Indeed, this would mean that the locus D4(f) = Sing(H)
has dimension 2: let us recall that such a dimension can’t be strictly smaller than 2, since we know

that dim(D4(f)) ≥ 2, by the computation of the expected dimension of such locus (see Proposition

3.2.3).

Let us then consider L1 = {x = 0} and L2 = {z = 0}: on the intersection of these two hyperplanes

the Hessian matrix has the form

H|x=z=0 =



v t 0 0 0 0

t w v 0 0 0

0 v 0 w 0 0

0 0 w y 0 0

0 0 0 0 0 y

0 0 0 0 y t


.
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Since we want to analyze the case where the rank of such a matrix is 4, we have to study the vanishing

of minors of order 5. If, for example, we take H4,2, i.e. the order 5 submatrix obtained by ruling out

the 4th row and the 2nd column of H, we see that its determinant is −y2wv2 = 0. We thus get that

either y = 0 or w = 0 or v = 0: if two coordinates (x and z) are 0, then a third one must be 0 too. If

we consider the symmetric action which f is invariant for, we can assume that either v = 0 or w = 0.

In the first case, where v = x = z = 0, we get the matrix

H|v=x=z=0 =



0 t 0 0 0 0

t w 0 0 0 0

0 0 0 w 0 0

0 0 w y 0 0

0 0 0 0 0 y

0 0 0 0 y t


.

By considering, for example, the submatrix H3,3 and its determinant, we get that −t2y3 = 0. In the

second case, where z = x = w = 0, we get

H|z=x=w=0 =



v t 0 0 0 0

t 0 v 0 0 0

0 v 0 0 0 0

0 0 0 y 0 0

0 0 0 0 0 y

0 0 0 0 y t


and from the determinant of H4,4 we get v3y2 = 0. Thus, by supposing that two coordinates vanish,

actually at least four are zero and as above we can assume that we have z = x = v = t = 0 or

z = x = w = v = 0. In the first case, we get

H|z=x=v=t=0 =



0 0 0 0 0 0

0 w 0 0 0 0

0 0 0 w 0 0

0 0 w y 0 0

0 0 0 0 0 y

0 0 0 0 y 0


and from H1,1 we get that w3y2 = 0. In the second case,

H|z=x=w=v=0 =



0 t 0 0 0 0

t 0 0 0 0 0

0 0 0 0 0 0

0 0 0 y 0 0

0 0 0 0 0 y

0 0 0 0 y t


and from H3,3 we get that t2y3 = 0. Thus, we get that at least five coordinates are actually zero. But

in P5, there are only 6 points with 5 coordinates equal to 0. Thus we have proved our claim.
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[BMMRN22] M. Boij, J. Migliore, R. M. Miró-Roig, and U. Nagel, On the Weak Lefschetz Property for height four

equigenerated complete intersections, Preprint available at arXiv:2212.09890v1 (2022).

[BMMRN18] , The non-Lefschetz locus, J. Algebra 505 (2018), 288–320, DOI 10.1016/j.jalgebra.2018.03.006.

[dB18] Michiel de Bondt, Quasi-translations and singular Hessians, Colloq. Math. 152 (2018), no. 2, 175–198, DOI

10.4064/cm6915-3-2017. MR3794325

[dBW20] M. de Bondt and J. Watanabe, On the theory of Gordan-Noether on homogeneous forms with zero Hessian

(improved version), Polynomial rings and affine algebraic geometry, Springer Proc. Math. Stat., vol. 319,

Springer, Cham, 2020, pp. 73–107, DOI 10.1007/978-3-030-42136-6 3.

[Bot57] Raoul Bott, Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203–248, DOI 10.2307/1969996.

MR89473

[BK07] H. Brenner and A. Kaid, Syzygy bundles on P2 and the weak Lefschetz property, Illinois J. Math. 51 (2007),

no. 4, 1299–1308.

[BF22] D. Bricalli and F. Favale, Lefschetz properties for jacobian rings of cubic fourfolds and other Artinian algebras,

Collectanea Mathematica, posted on 2022, DOI 10.1007/s13348-022-00382-5.

[BFP22] D. Bricalli, F. Favale, and G. P. Pirola, A theorem of Gordan and Noether via Gorenstein Rings, Preprint

available at arXiv:2201.07550 (2022).

[CG80] J. Carlson and P. A. Griffiths, Infinitesimal variations of Hodge structure and the global Torelli problem,
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semigroup, Ark. Mat. 57 (2019), no. 1, 85–106, DOI 10.4310/ARKIV.2019.v57.n1.a5.

[HMM+13] T. Harima, T. Maeno, H. Morita, Y. Numata, A. Wachi, and J. Watanabe, The Lefschetz properties, Lecture

Notes in Mathematics, vol. 2080, Springer, Heidelberg, 2013.

[HMNW03] T. Harima, J. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian

K-algebras, J. Algebra 262 (2003), no. 1, 99–126, DOI 10.1016/S0021-8693(03)00038-3.

[Har95] J. Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. A

first course; Corrected reprint of the 1992 original.

[HT84a] J. Harris and L. Tu, Chern numbers of kernel and cokernel bundles, Invent. Math. 75 (1984), no. 3, 467–475,

DOI 10.1007/BF01388639.

[HT84b] J. Harris and L. W. Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984),

no. 1, 71–84, DOI 10.1016/0040-9383(84)90026-0. MR721453



BIBLIOGRAPHY 85

[HT90] , The connectedness of symmetric degeneracy loci: odd ranks. Appendix to: “The connectedness of

degeneracy loci” [Topics in algebra, Part 2 (Warsaw, 1988), 235–248, PWN, Warsaw, 1990; MR1171274

(93g:14050a)] by Tu, Topics in algebra, Part 2 (Warsaw, 1988), Banach Center Publ., vol. 26, PWN, Warsaw,

1990, pp. 249–256.

[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-

Heidelberg, 1977. MR0463157
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