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Abstract

In this thesis, we will analyze the Hessian locus associated to a projective hypersurface. Interest in
this topic goes back centuries. For example, in 1876 Gordan and Noether showed that a hypersurface
X defined by a homogeneous polynomial f in a projective space of dimension at most 3 is a cone if
and only if the hessian polynomial of f (i.e. the determinant of the Hessian matrix of f) is identically
zero. In the first chapter of this thesis, we will give a new proof of this fundamental result by showing
an equivalent algebraic statement regarding the validity of Lefschetz properties for specific standard
Artinian Gorenstein algebras. The techniques used in this setting, for example the construction and
description of a geometric framework arising from the assumption of the failure of a specific Lefschetz
property, will then be improved and exploited in Chapter 2, where we will show these properties for
specific Gorenstein algebras, such as the Jacobian rings of smooth cubic hypersurfaces in projective
spaces of dimension 4 and 5 (i.e. cubic threefolds and cubic fourfolds). Finally, in Chapter 3, we
will analyze the Hessian hypersurface Hy associated to a smooth cubic hypersurface X = V(f), i.e.
the zero locus of the hessian polynomial of f. By exploiting properties coming from some Gorenstein
algebras and by using a natural identification between quadratic forms and points of the Hessian
hypersurface, we will study the singular loci of H; and a natural desingularization. We will finally
study the Hessian H ; associated to a generic smooth cubic fourfold by describing geometric properties
and birational invariants of the smooth surface over which Hy is singular. Moreover, for such a
surface, we will construct a natural connected unramified double cover, by using tools coming from

representation theory.
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Introduction

Hypersurfaces in projective space play a central role in algebraic geometry. Many mathematicians
have studied their geometric and algebraic properties, which are also reflected in the so called Hessian

locus.

Consider K an algebraically closed field of characteristic 0 and X = V' (f) C P", a hypersurface defined

by a homogeneous polynomial f € Klzg,- - ,zy]q of degree d. The Hessian matrix of f is the matrix

0% f
Hess(f) = [ ]
Ozi0x; 4,j=0, n
and the Hessian locus of X is the zero locus Hy := V (hess(f )), where hess(f) is the determinant of
Hess(f), which is either a homogeneous polynomial of degree (d —2)(n+1) or is identically zero. Note
that hess(f) is a homogeneous polynomial of degree (d —2)(n+1) if X is a smooth hypersurface. The
problem of characterizing the hypersurfaces X = V(f) for which the determinant hess(f) is identically

zero has a long history. Since the middle of the 19th

century, several authors have worked on this
problem: in the 1850’s, in both [Hes51] and [Hes59], Hesse proposed a remarkable equivalence, by
claiming that a hypersurface defined by a polynomial with vanishing hessian is a cone (the converse
is clearly true). This happens to be false and in a fundamental paper of 1876 ([GN76]) Gordan and

Noether proved the following;:

Theorem A. (Gordan-Noether)
Let X = V(f) C P™ be a hypersurface defined over a field of characteristic 0 and assume that hess(f) =
0. Then, if n <3, X is a cone.

Gordan and Noether introduced the fundamental restriction on the admissible dimension of the
projective space and provided counterexamples for n > 4. The so called Perazzo cubic 3-fold in P4
(introduced in [Per00]) is the simplest of such counterexamples, which will be analyzed in Section 1.5.
This theorem by Gordan and Noether still inspires many researchers (see [dBW20,C020,DS21, GR15,
Los04,Rus16]), who also have revisited the original proof in recent decades, trying to simplify it or to
interpret it in a more geometric way. Much work has also been done to improve our understanding
of the counterexamples for n > 4 and to provide a classification in every dimension (let us mention
[Rus16, Chapter 7.4] and also [GN76, Per00, Fra54, Per57, Per64, Los04, CRS08, GR15,dB18]).

The first result presented in this thesis is a direct proof of Theorem B, which is an algebraic
version of the theorem of Gordan and Noether. Before introducing Theorem B, let us present some

basic notions (see Section 1.1 for details). A standard Artinian Gorenstein K—algebra (SAGA) is an
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Artinian graded K—algebra R = @©X R, such that the vector spaces R’ are of finite dimension and
R is generated in degree 1 and satisfies the Poincaré-Gorenstein duality (i.e. RY ~ R? ~ K and the
pairing given by the multiplication map R’ x RV~" — RV is perfect).

Examples are given by the even cohomology ring of an oriented compact variety X of even dimension
which is generated in degree 2: if dim(X) = n then R = &7 H?*(X,C) is a SAGA. In this setting,

the following result is well known (see for example [Voi07a, Theorem 6.25)):

Theorem (Hard Lefschetz Theorem). If X is a compact Kdihler manifold of dimension n, then the cup
product of the r—th power of a Kdhler form induces an isomorphism between H"™"(X) and H" " (X).

A natural question is whether a general standard Artinian Gorenstein algebra satisfies an analogous
property and in the 80’s, inspired by the above theorem, the so-called Lefschetz properties for an
Artinian algebra were defined. The property described in the Hard Lefschetz theorem is roughly the
definition of the strong Lefschetz property for an Artinian algebra (for details see Definition 1.1.6).
Similarly, we say that an algebra R satisfies the weak Lefschetz property if the multiplication map
z-: R — RF*1 is of maximal rank for all £ > 0 and € R' general. One can refer to Section 1.1 for
rigorous definitions. For a comprehensive treatment of Lefschetz properties the interested reader can
refer to [HMM™13].

In the first part of this thesis, we will discuss the two seemingly unrelated subjects of Artinian algebras
and Hessian loci, which turn out to be strongly connected. In particular, we will consider standard
Artinian Gorenstein algebras R = @i]\iORi for which the strong Lefschetz property in degree 1 fails,
i.e. such that the multiplication 2V ~2.: R' — RV~! has non trivial kernel for every « € R'. To such

an algebra, as in [AR19], one can associate an incidence correspondence
= {([z], [y]) € P(R") x P(R") | 2%y = 0}.

By studying projective and differential properties of varieties arising in this framework, we will find
some constraints on their dimensions and on the dimensions of some of the graded parts of R. In

particular, we will prove the following:

Theorem B.
All standard Artinian Gorenstein K—algebras R with dim(R') < 4 satisfy the strong Lefschetz property
in degree 1, i.e. there exists an element x € R' such that the multiplication map =¥ ~2-: R* — RN—1

s an isomorphism.

Despite the algebraic nature of the statement, our approach to Theorem B is geometric and gives
as a byproduct a new proof of Theorem A.

The interesting and, in some sense, surprising equivalence between Theorem A and Theorem B
(see Section 1.4 or [HMM ™13, Rus16] for example) is realized by a connection between these different
settings based on Macaulay’s theory of inverse systems ([HMM™13, Theorem 2.71] or the original
[Mac94]), which allows to construct any standard Artinian Gorenstein algebra, from a homogeneous

form in a finite number of variables.

We would also like to highlight the analogue of the famous Gordan-Noether identity (see (1.2)) in the

world of Gorenstein Artinian algebras. This identity can be considered as the heart of the classical



treatment of the Gordan-Noether Theorem and its proof involves some delicate manipulations. From
our geometric (differential) approach, we derive what we will call the Gorenstein-Gordan-Noether
Identity (see Corollary 1.2.4), which has a very elementary treatment and, as the original Gordan-

Noether identity, is a key relation for proving Theorem B.

A natural question arising from our work is whether the methods used to prove Theorem B have
more applications and, in particular, if they could be applied to study problems related to other
strong or weak Lefschetz properties for Gorenstein rings. Let us stress that both the weak and the
strong Lefschetz properties are known for only a few Artinian algebras, as observed in Subsection
1.1.1. With this in mind, in Chapter 2, we will treat some open cases, focusing on Jacobian rings of
smooth hypersurfaces. Given X = V(f) C P", a smooth hypersurface of degree d, one can consider
the Jacobian ideal of f
e (2 )
0xg oxy,

and the Jacobian ring R = S/Jy. This is a particular example of standard Artinian Gorenstein
K—algebras. The importance of the Jacobian ring of a smooth hypersurface X lies in its geometric
relation to X itself. For example, building on works of Grothendieck, in the seminal works [CG80,
CGGHS83,GH83,Gri83], Carlson, Griffiths, Green and Harris proved that a portion of the primitive part
of the Dolbeault cohomology of X is codified in R and that R plays a crucial role in the infinitesimal
variation of Hodge structure of X.

We will focus on the case of smooth cubic hypersurfaces, which has captured the interest of many
mathematicians in relation to many different problems. In particular, we will deal with Jacobian rings

of smooth cubic threefolds in P* and smooth cubic fourfolds in P° and we will prove the following:

Theorem C.

The Jacobian ring R of a smooth cubic threefold satisfies the strong Lefschetz property, i.e. if x € R
is general the multiplication maps x3- : R' — R* and x- : R> — R® are isomorphisms.

The Jacobian ring R of a smooth cubic fourfold satisfies the strong Lefschetz property in degree 1, i.e.

given © € R' general the multiplication map x*- : R' — R® is an isomorphism.

Theorem C will follow from a more general statement for complete intersection Gorenstein algebras
presented by quadrics, i.e. quotients of K[xo,--- ,x,]| by ideals generated by a regular sequence of
homogeneous polynomials of degree 2 (see Definition 1.1.3). These results provide evidence for a
well known conjecture which states that complete intersection Gorenstein algebras in characteristic 0
should satisfy the Lefschetz properties (see for example [HMM ™13, Conjecture 3.46]).

In Section 2.4, we will extend our proof of some of the strong Lefschetz properties to complete inter-
section Gorenstein algebras presented by quadrics, when the dimension of R! is larger. In particular,

we will prove the following:

Theorem D.

Let R be a complete intersection standard Artinian Gorenstein K—algebra presented by quadrics with
dim(R') = n+ 1. Given k € {2,3,4}, if n > k + 1, then for x general in R' the multiplication map
zk. . RY — RYF is of mazimal rank.
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Since the Lefschetz properties hold for a general complete intersection Gorenstein algebras, it is
interesting to analyze special algebras exhibiting uncommon behaviors. In particular, for complete
intersection Gorenstein algebras presented by quadrics (such as Jacobian rings of smooth cubic hy-

persurfaces), we will study what we call the nihilpotent loci
N; == {[z] € P(R") | 2* = 0}

and the non-Lefschetz loci (see Definition 2.5.1), the subschemes parametrizing linear forms for
which the injectivity of the multiplication map fails (these were studied for example in [AR19] and
[BMMRN18]). While for general Gorenstein algebras these loci are empty (at least in low degree),
we will study their geometric and algebraic behaviour when this is not the case. For example, we
will obtain a characterization of the cubic Fermat hypersurface, by studying the cardinality of the
nihilpotent locus N> in its corresponding Jacobian ring (see Corollary 2.6.2). Moreover, by assuming
the non-emptiness of a suitable non-Lefschetz locus, in Section 2.5 we will derive a lifting criterion
for the weak Lefschetz property. This gives a sort of converse for results which prove that Lefschetz
properties are inherited by suitable quotients (see for example [HMM™13, Proposition 3.11] for the
strong Lefschetz property or [Guel9] for the weak one).

In Chapter 3, we continue the study of cubic hypersurfaces from the perspective of their Hessian loci.
As observed above, given a smooth cubic hypersurface X = V(f) C P", we can consider the associated

Hessian locus H ¢, which is a hypersurface of degree n + 1.

The geometry of cubic hypersurfaces in P™ and their Hessians has been studied by many authors (see for
example [CO20, GR15,Huy]). In particular, for n = 3, [DvG07] studies the classical case of the general
cubic surface and of the associated Hessian quartic surface, which is singular in exactly 10 isolated
points. Moreover, [AR96, Appendix IV] studies the case of cubic threefold in P*. In particular, the
author considers the Hessian quintic threefold H associated to a general cubic threefold and constructs
a correspondence variety over H, which is a desingularization of the Hessian hypersurface. Adler shows
that in the general case this Hessian hypersurface is singular along a curve and he also studies the
geometric properties of such a curve, such as smoothness and irreducibility, and computes its degree

and its genus.

With the aim of studying these Hessian loci and their singularities in higher dimension, we analyze
and generalize some constructions described in [AR96, Appendix IV]. In particular, given a cubic
hypersurface V(f), the fact that the Hessian matrix Hess(f) has linear forms as coefficients allows us,
via the evaluation map, to identify Hess(f)|,, for [v] € P™ with the quadric in J¢ (the Jacobian ideal
of f), defined as the partial derivative 0, f. We will consider the loci

Di(f) = {[z] € P" | Rank(Hess(f)[.) <k},

which will be identified with the intersections 9 N ]P’(J}%), where Q) is the locus of quadrics in P”
whose rank is at most k. By using the results described in [Har95], we can then get the expected

dimension and the degree (if they are non-empty) of the loci Dy. This can be seen as a first step in
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the analysis of the Hessian hypersurface #, since the loci Dj, are strongly related with the singularities
of H. Indeed, by generalizing one of the results presented in [AR96, Appendix IV], we will prove the

following:

Theorem E.
Given a smooth cubic hypersurfaces V(f) C P™, the varieties Dy_1(f) and Sing(H) coincide.

To prove the above result, we will consider a correspondence variety over H which can be described
as
Iy ={([v], [w]) € P" X P" | 8,0u(f) = 0}

which is equipped with a naturally defined involution. This variety I'; also has an important intrinsic

geometric meaning:

Theorem F.
Given a general smooth cubic hypersurface V(f), I't is smooth and the natural projection m : 'y — H

1 a desingularization of the Hessian hypersurface.

Let us stress here that by studying a particular kind of standard Artinian Gorenstein algebra
A, defined as the quotient of the ring of differential operators by the annihilator of a general cubic
form f, one can observe two interesting facts. Indeed, the correspondence I'; just defined coincides
with the incidence correspondence I' used to study the Lefschetz properties for specific Artinian
algebras. Moreover, the Hessian hypersurface Hy associated to a general cubic form f is exactly the

non-Lefschetz locus of A.

Returning to the analysis of the loci Dy (f), we will also show (see Theorem 3.4.1 and Corollary
3.4.2) that for a general smooth cubic hypersurface X = V(f) we have that Sing(Dy(f)) = Dr_1(f).

This means that for f general, the locus Dg(f) is smooth outside the points where the Hessian
matrix has rank strictly smaller than k. Since in [RV17] the authors show that for V(f) smooth and
general cubic fourfold in P%, the locus D3(f) is empty, we will get that in the general case the Hessian
hypersurface associated to a smooth cubic fourfold is singular along a smooth surface. On the other
hand, looking at the expected dimensions of these loci, one has that for bigger dimensions (namely
for Hessians associated to cubic hypersurfaces in P", with n > 6) the singular locus of the Hessian
hypersurface is itself singular. It is then natural to approach the study in the case of P°, the first open
and the last one with a smooth singular locus, for f general.

In [AR96, Appendix IV], Adler has developed the study of the curve along which the Hessian
hypersurface associated to a general cubic threefold is singular, by focusing on a specific case, namely
the Klein cubic threefold defined by the polynomial f = x3xy + 23z2 + 2323 + 2324 + 23w, He
obtains a complete description of this curve, by exploiting the properties of this polynomial and of
the associated hypersurface, such as the invariance under symmetric transformations. In the case of
the Klein cubic in P?, unfortunately, the singular locus of the associated Hessian hypersurface is itself
singular, with singularities arising also from the locus D3(f). Thus, we have not based our analysis
in the study of a specific cubic fourfold. Instead we exploit the nature and the properties of the loci
Dy.. In this last part, we will fix the field K = C, since we use singular cohomology, though some of

the results still hold in a more general setting. In general, given a vector bundle £ and a line bundle
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L over a projective variety X, one can consider a symmetric vector bundle morphism ¢ : E — E*® L
and define the loci
Di.(¢) = {z € X | Rank(p,) <k},

known as degeneraci loci. In the last decades this locus has been studied in several works (for example
in [FL81], [FL83], [HT84a|, [HT84b], [HT90], [Laz04], [Tu86], [Tu90], [Tu89)).

By considering the symmetric vector bundle map ¢ = Hess(f)- : (’)I’F.?;F 1 (’)g:r (1), given by the
multiplication by the Hessian matrix of a cubic hypersurface V(f), the loci Dy(f) considered above
coincide with the degeneraci loci Dj (Hess(f)-). Analyzing these loci from this perspective and using
results of [FL83, HT90, Tu89], one can show the non-emptiness and the connectedness of suitable loci
Dy, and, by using the approach presented in [HT84a], one can also calculate some Chern classes. In
the case of the Hessian locus H; associated to a general smooth cubic fourfold X = V(f) C P5, we
will compute that the canonical divisor of the surface Z = Dy(f) is Kz = 3H|z +n, where H is the
hyperplane class in P> and 7 a 2—torsion element of Pic’(Z). To compute invariants of the surface Z
and to better understand the nature of 7, we have constructed (see Subsection 3.5.1) an unramified
double cover of Z. We have done this by seeing the elements of such a surface as rank 4 quadrics and
by exploiting the existence of families of isotropic subspaces of these quadrics. Moreover, by using
tools coming from representation theory (see Appendix A), we will prove that this unramified double
cover is connected and that Z is a regular surface. Finally, by using some formulas of [Pra88] and
the software Magma, we will get that the 2—torsion element appearing in the canonical divisor is not
trivial and we will obtain the description of the locus Sing(H) in the case of a general smooth cubic
fourfold V(f) C P5:

Theorem G.
Let V(f) be a general smooth cubic fourfold. Then the singular locus of the associated Hessian hyper-
surface Z := Sing(Hy) is a smooth, irreducible, and minimal surface of general type with degree 35

and numerical invariants
o K? =315
e geometric genus py(Z) = 55
o irregularity ¢(Z) =0
e (topological) Euler characteristic e(Z) = 357

Moreover, its canonical divisor is Kz = 3H|z +n (where H is the hyperplane class in P5 and n is a

non-trivial 2-torsion element in Pic’(Z)) and Z is projectively normal.

Outline of the thesis.
In Chapter 1, we will set the basic definitions, we will prove Theorem B and recall the relation with
the Gordan-Noether Theorem. In Chapter 2, we will exploit the techniques introduced in the previous

chapter and we will prove Theorem C and Theorem D. Moreover, we will study the nihilpotent and
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non-Lefschetz loci arising from specific Artinian algebras. In Chapter 3, we will study in detail the
Hessian locus associated to a general cubic hypersurface and prove Theorems E and F. Finally, we
will focus on the case of a general smooth cubic fourfold in P° to prove Theorem G.

In appendices A and B, we will present technical proofs of two results used in Chapter 3.
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Chapter 1

Gordan and Noether Theorem and

Lefschetz properties

In this first chapter, we will introduce the first definitions concerning the theory around the theorem
of Gordan and Noether (Theorem A) and the theory of Gorenstein algebras and their Lefschetz
properties. We will also present (in Section 1.1) the most expressive examples and the first preliminary
results; in Subsection 1.1.1 we will point out some known results concerning the validity of the Lefschetz
properties, while in Subsection 1.1.2 we will set the preliminaries for Gordan-Noether theorem, by also
giving an idea of its classical proof. In Section 1.2 we will set our framework and our construction,
that will be studied and exploited to obtain the main results of this chapter and of the following one.
We will prove the first bounds on the dimensions of the varieties that will be involved and we will
present our strategy. In Section 1.3, we will prove Theorem B, also obtaining a new proof of Gordan
and Noether theorem. In Section 1.4, we will show the equivalence between Gordan-Noether theorem
and Theorem B and we will analyze the Gordan-Noether Identity with our language (in Subsection
1.4.1). Finally, in Section 1.5, we will use our techniques to study the Perazzo cubic in P4, one of the

first counterexamples to Hesse’s statement.

The results of this chapter appear in [BFP22] and [BF22].

In this chapter we will work on a field K, which will be an algebraically closed field of characteristic 0.

1.1 Preliminaries and definitions

Good references for the content of this introductory section are [HMM™13, Rus16, Voi07b].
First of all, let us define a standard Artinian Gorenstein algebra, (SAGA in short):

Definition 1.1.1. An Artinian graded K-algebra R = @ij\io R is a standard Artinian Gorenstein
algebra (SAGA) if:

e it is standard, i.e. if it is generated, as K-algebra, by R';

e it satisfies the Poincaré duality if RN ~ K and the multiplication map R* x RN~ — RN is a

perfect pairing whenever 0 < s < N.



2 CHAPTER 1. GORDAN AND NOETHER THEOREM AND LEFSCHETZ PROPERTIES

If R is a graded Artinian algebra, having the Poincaré duality is equivalent to ask that R is Gorenstein
so the above duality is also called Gorenstein duality.

Moreover, the codimension of R is the dimension of R' as K-vector space and RY is said to be the
socle of the SAGA R.

We basically recall that a ring is Artinian if it satisfies the descending chain condition and
the pairing above being perfect means that it induces an isomorphism (of K—vector spaces) R® =~
Hom(RN=*, RN).

Let us now present two ways to construct standard Artinian Gorenstein algebras which are relevant
for this work. Throughout this thesis, we will denote by S = Klzo,...,z,] = @jso 5", where
Sk = HO(Opn (k)), the polynomial ring in n + 1 > 2 variables with coefficient in the field K and by D
the ring of differential operators in the variables xg, ..., z,, i.e. D = Klyo,...,yn] where we denote

for brevity y; = 8%1-'

Example 1.1.2. Ifeg,...,e, > 1, let us consider a reqular sequence {qgo,...,gn} in S with g; € S
(we can think of a reqular sequence as a set of homogeneous polynomials for which the common zero
locus is trivial). If we set I = (go,...,gn), then R = S/I is a standard Artinian Gorenstein algebra
with socle in degree " (e; —1). Particular algebras obtained via this construction are Jacobian rings
associated to smooth hypersurfaces of degree d > 2 in P™. In this case, if X = V(f), with f € S¢,
one takes g; = Of /0x; € S¥1: the ideal J¢ = (gi)i=0,... n and the quotient S/J; are respectively the
Jacobian ideal and the Jacobian ring of f, with socle in degree N = (d — 2)(n +1).

Definition 1.1.3. According to example 1.1.2, if all the degrees of the homogenous polynomials of the
reqular sequence we are considering are equal to an integer e, we say that the corresponding SAGA is

a complete intersection SAGA presented by forms of degree e.

In particular, we have that the Jacobian ring associated to a smooth hypersurface V(f) C P" is a
complete intersection SAGA presented by forms of degree deg(f) — 1.

As second example, let us consider the following:

Example 1.1.4. If g € S = K]xo,...,x,] is any fired homogeneous polynomial of degree d > 1, one
can define the annihilator of g in D = Klyo, -+ ,yn] as the ideal

Annp(g) = {6 € D[é(g) = 0}.

One can see that the quotient A = D/ Annp(g) is a standard Artinian Gorenstein algebra with socle

i degree d.

A very important and interesting fact is that every standard Artinian Gorenstein algebra has a
description as in Example 1.1.4 by an important result of Macaulay and its theory of inverse systems
(see [Mac94] for a revisited reprint of original work by Macaulay of 1916). In particular, we have the

following (see for example [MW09, Theorem 2.1] for a statement proposed with a modern language):

Theorem 1.1.5. If R = @fZORi ~ Klzg,...,z,]/I is an Artinian standard graded K—algebra with
socle in degree d, then it is Gorenstein if and only if there exists a homogeneous polynomial g €

Klzo,...,zn] of degree d such that R ~ D/Annp(g).
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Let us now define the Lefschetz properties for a SAGA R.
Definition 1.1.6. A SAGA R = @ﬁio R is said to satisfy
e the weak Lefschetz property in degree k (W LPy in short), if there exists x € R' such that the

multiplication map x- : R¥ — R*1 has mazimal rank;

e the strong Lefschetz property in degree k at range s (SLPy(s) in short), if there exists x € R
such that the multiplication map z*- : R* — R*S has mazimal rank and the strong Lefschetz
property in degree k (SLPy) if SLPy(s) holds for all s.

Then we say that R satisfies the weak (strong) Lefschetz property - W LP (respectively SLP) -
if it satisfies W LPy, (respectively SLPy) for all k.

R is also said to satisfy the strong Lefschetz property in narrow sense, if SLP,(N — 2k) holds
for all k < N/2.

Remark 1.1.7. Let us stress that for SAGAs, the above two definitions of SLP and SLP in narrow
sense (when satisfied for every suitable k) are equivalent (see Definition 3.18 and subsequent discussion
in [HMM™13]). We will actually prove most of our results, by considering the definition in narrow
sense. Moreover, let us observe that for the strong Lefschetz property in narrow sense SLP,(N — 2k),
for an integer k < N/2, we are looking at the multiplication map x™¥=2F. : RF — RN=F_ where the
K—wvector spaces R and RN~F have the same dimension, by definition of SAGA and of Gorenstein
duality (see Definition 1.1.1). Hence, the property SLP,(N — 2k) is satisfied if the above map x™N =2

is an isomorphism (for x general).

In the following, we will often deal with kernels of the multiplication maps involved in the above
definitions, so it is convenient to set

K;‘] = ker (17' ‘R — RHh) for n € R".
(One can also write K}, = Annpgi(n).)
Finally, let us introduce the following subsets of the graded parts of a SAGA R:
N = {[z] € P(R") | 2* = 0}.

We will refer to N, kga) as nihilpotent loci of order k of P(R®). For brevity, we will set A, k(l) = N;.
Let us observe that, by construction, for suitable a and k we have N, ,Ea) C N, lgj-)l

Remark 1.1.8. If R is a standard K-algebra with socle in degree N, then N C P(RY) for allk < N.
Indeed, if Nj, = P(RY), we have that all k-th powers of elements of R' are equal to 0. Since R is
standard, these k-th powers of R generate R* as vector space, so R¥ =0. Then k > N.

Let us now recall a standard result concerning particular quotient Gorenstein rings that will be

used in the following of this thesis. For a simple proof one can refer to [FP21, Lemma 2.3].

Lemma 1.1.9. Let R = @Y (R' be a Gorenstein ring with socle in degree N. Fiz o € R\ {0} and

consider the ideal N
(0:a)= @ker(a- ' R' — R,
i=0

which is called conductor ideal of «.
We have that R := R/(0 : ) is a Gorenstein ring with socle in degree N = N — e.
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1.1.1 Lefschetz properties and state of the art

We would like to stress that the Lefschetz properties, both the strong and the weak one, are known to
hold only for very few examples of SAGAs. In this subsection, we would like to partially present and
summarize some known results and conjectures about such properties, which are relevant with respect
to the topics of this thesis. Since this subsection can’t be exhaustive, the interested reader can refer
to [HMM™13] and [MN13a] for a deeper and more rigorous treatment.

One of the first results in this direction is the following theorem (see [MN13a, Theorem 1.1]), proved

by different mathematicians, with different techniques:

Theorem 1.1.10. Let S = Kz, ..., zy], with K a field of characteristic 0 and let I be an Artinian
monomial complete intersection ideal, i.e. I = (zg°,...,x%). Then the complete intersection SAGA

R = S/I satisfies the strong Lefschetz property.

Let us now consider SAGAs R with low codimension, in particular such that dim(R!) = 2 or 3: in

this case we have

Theorem 1.1.11. [HMNWO03, Thm. 2.3, Prop. 4.4]
Let K be a field of characteristic 0. Any Artinian standard algebra of codimension 2 over K satisfies
the strong Lefschetz property.

Moreover, a complete intersection SAGA of codimension 3 over K satisfies the weak Lefschetz property.

If we consider Jacobian rings of smooth curves of degree d in P2, which are particular complete
intersection SAGAs of codimension 3 (see Example 1.1.2), the validity of the strong Lefschetz property
is known only up to d = 4. Let us observe here that the strong Lefschetz property for jacobian rings of
smooth cubic curves in P? coincides simply with the strong Lefschetz property in degree 1. Moreover,
in this case the validity of the SLP; follows directly from a famous theorem due to Gordan and Noether

(see Theorem A and B and Section 1.4). For jacobian rings of smooth quartic curves, we have:

Theorem 1.1.12. [DGI20, Prop.2.23]

Let {f = 0} be a smooth curve in P? of even degree d = 2d’ and let R = S/Jy be the associated jacobian
ring. If L € R is a general element of degree 1, then the multiplication map L?- : R3¥ —% — R3d'~2 jg
an isomorphism. In particular, if d = 4, then R satisfies the strong Lefschetz property.

In particular, nothing is known up to now for the validity of the strong Lefschetz property for
Jacobian rings of smooth curves with higher degree: quintic curves in P? are the first open case.

If we focus on the case of codimension 4, the validity of the strong Lefschetz property for the
Jacobian ring of a smooth cubic surface is again a direct consequence of Theorem A of Gordan and
Noether. Moreover, regarding the validity of the weak Lefschetz property, we have the following very

recent result:

Theorem 1.1.13. [BMMRNZ22, Prop. 5.2, Thm. 5.3, Coroll. 5.4]

Let R = S/(90,91,92,93) be a complete intersection SAGA of codimension 4. If deg(g;) < 5 for all
i, then R satisfies the weak Lefschetz property. In particular, this holds for Jacobian rings of smooth
surfaces in P3 of degree 4, 5, and 6.
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Let us now consider a complete intersection SAGA R presented by quadrics, i.e. R =5/(go,.--,9n),
where deg(g;) = 2 for every i = 0,...,n (e.g. R is the jacobian ring of a smooth cubic hypersurface).

In this case, the validity of the weak Lefschetz property in degree 1 is known, indeed we have:

Theorem 1.1.14. [MN13b, Prop. 4.3]
Let R be a complete intersection SAGA presented by quadrics with socle in degree N > 3 and defined
over a field of characteristic 0. If L is a general element in R, then the multiplication map L- : R* —

R? is injective.

Let us stress that this result holds in any codimension and that we will give a new proof of this fact
in Corollary 2.1.4. In [MN13b] the authors conjectured that an Artinian Gorenstein algebra presented
by quadrics satisfies the weak Lefschetz property, but in [GZ18] families (not complete intersection
algebras) of counterexamples to this conjecture have been given. Anyway, let us stress that such a
conjecture is still valid for complete intersection Aritinian Gorenstein algebras presented by quadrics
(see for example [HMM™13, Conjecture 3.46]).

If we now focus on the case of codimension 5, we have:

Theorem 1.1.15. [AR19, Theorem 1]
For a complete intersection SAGA (over the field of complex numbers C) presented by quadrics and
with codimension 5, the weak Lefschetz property holds.

In particular, we have that the jacobian ring of smooth cubic threefolds in P* satisfies the WLP.
Let us stress that in [AR19], the authors propose a strategy that we will present and exploit in the

following sections.

Let us observe that the cases of higher codimension or of jacobian rings of hypersurfaces with higher
degree are completely open up to now: in Chapter 2, we will consider complete intersection SAGAs
presented by quadrics and we will prove the SLP in the case where the codimension is 5 and the SLP;

for codimension 6.

To conclude this subsection, let us just mention some other papers, which treat problems related to
Lefschetz properties for Artinian algebras, as for example [BK07, MMRN11, MMRO13, Gonl7,Ilal8,
AATT22,DI22].

1.1.2 Hessians, cones and Gordan-Noether theorem

In this subsection, we will focus on the result proved by Gordan and Noether in 1876 (Theorem A):
after a preliminary part, for completeness, we will give, very briefly, an idea of the original proof.
The principal reference for this section is the book [Rusl6], by Francesco Russo. An even more

geometric proof of Gordan-Noether theorem has been presented in [GR09].

Let us start with some preliminaries and, first of all, let us take a projective hypersurface X = V'(f),

defined by a homogeneous polynomial f € S¢ of degree d > 1 (without multiple factors).
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Definition 1.1.16. The Hessian matrix of f, or of X, is the square symmetric matriz whose entries
are the second partial derivatives of f:
0% f

8:@895]] 0<i4,j<n

Hess() = |

The hessian (determinant) of f, or of X, is the determinant of the Hessian matriz of X :
hess(f) = det(Hess(f)).

Observe that we can suppose that the degree d of f is at least 2, since in the case where d = 1,
and only in this case, the Hessian matrix is the zero matrix.
Let us now recall some basic facts concerning the hessian (determinant) of a homogeneous polynomial
f of degree d > 2:

Remark 1.1.17. e FEither the hessian of f is a homogeneous polynomial of degree (n+ 1)(d — 2)

or it 1s identically zero.

o [If for some i € {0,--- ,n} the first partial derivative gg is zero, then hess(f) is identically zero.
. . af  of of . . )
o [f the partial derivatives Togr a0 Dy GTE linearly dependent, then hess(f) is identically zero.

Definition 1.1.18. Let X C P" be a closed (irreducible) subvariety. X is a cone if there exists a
point p € X such that for every other point x € X different from p, the line (p,z) is contained in X.

Let us now state a well-known characterization for a variety for being a cone:

Proposition 1.1.19. For a variety X = V(f) C P", with d = deg(f) > 2, being a cone is equivalent
to one of the following:

(a) the partial derivatives of f 37{), g—gfl, e ,% are linearly dependent

(b) there exists a point p of multiplicity d
(¢) up to a projective transformation, f depends on at most n variables

(d) X*, the dual variety of X, is degenerate, i.e. X* (which can be defined as the closure of the image

of the Gaussian map of X ) is contained in a proper projective linear subspace of (P™)*.

By the above Proposition 1.1.19, it is clear that if a variety X = V(f) is a cone, then hess(f) is
identically zero, since the partial derivatives of f are linearly dependent. Twice, both in 1851 and in
1859 ([Hes51] and [Hesb9]), Hesse stated that also the converse holds. In particular, he claimed that:

Claim 1.1.20 (Hesse). If a variety X =V (f) C P" is such that h(f) =0, then it is a cone.

In other words, he stated that for the partial derivatives of a homogeneous polynomial f of degree

d > 2 being algebraically dependent is equivalent to be linearly dependent.

Remark 1.1.21. Observe that for the casesn =1 and d =2,n > 2 the claim is trivially true.
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Thus, we can suppose from now on that n > 2 and d > 3.
In 1876, Gordan and Noether fixed Hesse’s statement and proved its validity for n < 3. They also
showed its failure as soon as n > 4: indeed they proposed some counterexamples, namely some

hypersurfaces, which are not cones, with determinant of the Hessian matrix identically zero.

Theorem 1.1.22 (Gordan and Noether, Theorem A). Let X =V (f) C P" be a hypersurface defined
over a field K of characteristic 0 and assume that X has vanishing hessian, i.e. hess(f) = 0. Then,
ifn <3, X is a cone.

Moreover, for every n > 4 and for every d > 3 there exist counterexamples to Hesse’s claim.

For completeness, let us now give an idea of the proof of the first statement (we refer to the proof

presented in [Rusl6]).

Sketch of the proof: Let us start by considering a reduced polynomial f € K[z, - ,zy]q of degree
d. Suppose that f has vanishing hessian (i.e. h(f) = 0) and let X = V(f) C P" be the degree d

hypersurface associated to f. Let us introduce the polar map

Vi=Vx:P"-- (Py* pi—)Vf(p): <§:lf0(p)§il(p)>

Now, let Z' = V¢(Pn) C (P™)* be the polar image of P" with respect to f. By considering the

restriction of the polar map to X, we get the Gauss map of X:

Gx :=Vyx: X — (P")"  Xreg 2 p+ Gx(p) = [TH(X)].

Hence, we have that X* := Gx(X) C Z' C (P™)*, where X* is the dual variety of X.
One can show that dim(Z’) = rk(H(f)) — 1 and, since rk(H(f)) = n+1 if and only if the determinant
of H(f) is not the zero polynomial, we get

hf)=0 < Z' C (P™)". (1.1)
One can also show (see [Rus16][Lemma 7.2.7]) that, in general, we have
dim(X*) < dim(Z’) — 1

(this is actually true for every irreducible component of X'). Hence, with our assumption (since f has
vanishing hessian) we have

From this we get that there exists an irreducible non-zero polynomial g € Klyo, - ,ynle (where
Y = %) such that g(Vf(x)) = 0 and, in particular, Z/ C W = V(g) C P" (with Z/ = W if

codim(Z") = 1). For g we can equivalently assume that either there exists an index ¢ such that
FL(V5(x)) # 0 or Z' L Sing(W).

Remark 1.1.23. One can observe that by taking for example as g a generator of minimal degree in

the homogeneous ideal I(Z'), these assumptions are satisfied.
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Under these hypotheses the map
g =Vgo VP —— P",

called the Gordan — Noether map associated to g, is well defined and one can also show that such a

map can be written as
g =(ho:-:hy): P"-——» P",

where the h;’s are suitable rational functions such that g.c.d.(hg,...,h,) = 1.

A very important step at this point of the proof is the following: by letting F' € K|z, ..., Zp]m, K 2 K
be a field extension and 14 be the Gordan-Noether map defined above, we have the Gordan-Noether
Identity:

n

Z ng ()hi(z) =0 <<= F(z)=F(z+\y(z) VYIeK,VzeK"
i=0 "

Actually, it turns out that the functions h;’s satisfy the Gordan-Noether identity and, with this key
formula, one can finally prove the (probably, most) important consequence of the Gordan-Noether
Identity.

Vg(2) =Ygz + Mpy(z)), VAEK, VzeK. (1.2)

In particular, one also gets that
Yg(P™) C V(ho,...,hn) = Bs(y,) C P".

Finally, by using all this machinery, one can prove Gordan-Noether Theorem, both in the case of P?
and P? (see [Rusl16, Corollaries 7.3.8, 7.3.9]).
O

To conclude, Gordan and Noether proved that Hesse’s claim is in general false, for hypersurfaces
in P™ with n > 4, but as a consequence of their theory, and in particular of Identity (1.2), that we call

again Gordan-Noether Identity, they also proved the following:

Theorem 1.1.24. [Rusl6, Theorem 7.1.6] Let X = V(f) C P™ be a hypersurface of degree d > 2 with

hess(f) = 0. Then there exists a Cremona transformation ® : P™ --» P" such that ®(X) is a cone.

In other words, we can say that Hesse’s claim is birationally true, despite the condition that the
determinant of the Hessian matrix of a homogeneous polynomial f is identically zero is not invariant

under birational transformation.

1.2 Constructions and strategy

Let us now present the construction that will be the key framework in the whole first half of this
thesis.
Let R = @Y R’ be a SAGA (i.e. a standard Artinian Gorenstein K-algebra) with socle in degree N

and assume it has codimension dim R = n + 1 with n > 1.
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For j € {1,---,N — 1}, we define
;= {(lz], [y]) € B(R') x B(R") |27y = 0} C P(R!) x P(R"),

where P(R') is the projectivization of the vector space R'. By construction, we have Iy €.
From now on, we fix an integer k such that 1 < k < N — 2 and, denoting by p; and po the

projections of I'y, on the two factors, we assume that the following condition holds:
(%) p1:Tx — P(R'Y) ~ P" is surjective.

After proving some general results that hold for every value of k in the above range, in the following
we will focus on the specific case k = N — 2, the most relevant one for our aims, as observed in the

following:

Remark 1.2.1. Notice that (x) is equivalent to asking that the multiplication map zF. . R — RFF1
is never injective for x € R', i.e. that R does not satisfy SLP at range k in degree 1. If k = N — 2
(as we will assume in the following), (x) holds if and only if R does not satisfy the strong Lefschetz
property (in narrow sense) in degree 1.

Indeed, if the first projection py is surjective, it means that for every element [x] € P(R') there ewists
[y] € P(RY) such that ¥y = 0: the multiplication map z*- : R' — R*! has non trivial kernel and
it can not be of mazimal rank (observe that since R is a SAGA we have that dim(R') < dim(R?) for
every 1 <i < N —1). But this fact denies the validity of the strong Lefschetz property in degree 1 at

range k. In the same exact way, one can show the converse.

Since, by assumption, p; : ', — P(R!) is surjective, there exists an irreducible component of
[}, that dominates P(R') via p;. We can easily observe that all the fibers of p; are irreducible (not
necessarily all of the same dimension): indeed the fiber by p1 over [z] € P(R') is [z] x P(K,) and so

it is isomorphic to a projective space. One can then easily obtain the following:

Lemma 1.2.2. Under assumption (%), there exists a unique irreducible component of 'y, which dom-

inates P(RY) wia first projection.

We will denote by © such a unique component of I'y, and by m; the restriction of p; to © for ¢ = 1, 2.
Set
Y :=m(0)

and V [y] € Y,
Fy:=m(my ([y]) = {[z] € B(R') | 2"y = 0 and ([z], [y]) € ©}.

The following diagram summarizes the framework we are going to focus on.

Fy x [yl\
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We stress that, in this case, since © is the unique irreducible component which dominates P(R')

via first projection, we have
7Y ([2)) = prM(a]) =[] x P(KL)  for general  [2] € P(RY).

On the contrary, for specific [z] € P(R'), it can happen that 77 '([2]) € py*([z]) and that 7 !([z]) is
x P

not a projective subspace of [z] (RY).

Let us now prove the following proposition which gives a collection of equations satisfied by the
points of ©. (We remark that this principle has already been used in [FP21] for studying the Jacobian
ring of a smooth plane curve in relation with the infinitesimal variation of the periods of the curve
itself.)

Proposition 1.2.3 (Ker-Coker principle). If p = ([z], [y]) € © then

foralli>0 and j > 1 such thati+j=k+ 1.

Proof. Let us consider a general point p = ([z], [y]) € ©, so ¥y = 0 by definition. We claim that p
satisfies also 2%~ 1y? = 0.

For any v € R' and t € K, let us take 2/ = x + tv € R'. By assumption (x), we have that
there exists y' in R'\ {0} such that (z')*y’ = 0. Then we can define 5(t) such that 5(0) = y and
(#")¥3(t) = 0 for all t € K. We can consider the expansion of 3 and write this relation as

0= (z+t)(y+tw+t*(---)) = 2™y + t(kve* Ly + wa®) + £2(-- ).
If we multiply by y both sides of the above relation, we get that
kva* 1% =0 Vv e RL.
Since the multiplication map R' x R¥t! — RF*2 is non degenerate we have that 2*~1¢%2 = 0 as

claimed. This proves that all the points of © satisfy also the relation ¢ 1y? = 0.

In the same way one shows that if all the points of O satisfy the relation z%y’ = 0 with i+j = k+1

and j > 1, then they also satisfy the relation z'~'y*t! = 0. This concludes the proof. O

As a consequence of Proposition 1.2.3, we obtain the following:

Corollary 1.2.4 (Gorenstein-Gordan-Noether identity). Let ([z],[y]) € ©. Then the following rela-
tions hold for allt € K and (X : p) € PL:

(x4 ty)PT! = 2F 1 ¢ RFH1 and [z + py)f ) = [ e P(RFTY) (if 2T £0). (1.3)

Proof. Let us show the first equality: the second one is simply the projective version of the first.
For t € K and [z], [y] € P(R!), we have

k+1
E+1\ . o
(w + ty)k—i-l — xk—i—l + Z < + >tzxk+1—zyz’
i=1 ¢

but, since ([z],[y]) € O, then by Proposition 1.2.3, we have that all the summands but the first one

(namely z**1) are zero. O
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The origin of the name we have given to these equalities lies in the classical Gordan-Noether
identity (1.2) presented as one of the key steps of the original proof of Gordan-Noether theorem (see

also Section 1.4, where we will analyze the relation between the two identities).

For completeness, let us now present the natural generalization of the previous construction, by
considering incidence varieties over the other possible pairs of graded parts of the SAGA R, defined
as above, with codimension n + 1 and socle in degree N.

For 1 <a,b < N we set

T = {([2], [y]) € P(R®) x B(R") | 'y’ = 0}.

As above, we will denote by p; and ps the standard projections from FEZ’I)) to P(R*) and P(RY),
respectively. Notice that, by setting a = b = j = 1 and ¢ = k, we obtain again the variety I'y

(1,1) )

. . . b
introduced above, i.e. I'; ] = I'y. Moreover, when we consider Fgal , we have

prt([2]) = {([2]. [y]) [ 2°y = 0} = [2] x P(K7:)

so all the fibers of p; are projective spaces.

In the same exact way as done before for the case of ', we can make the following considerations:

e Assume that b < N/2 and that SLP,(s) does not hold. Then, for all [z] € P(R') we have that
the multiplication map 2°- : R® — RY* is not injective. In particular, there exists [y] € P(R?)
such that 2%y = 0 in R***. This shows that the failure of SLPy(s) is equivalent to ask that
p1: ngb) — P(RY) is surjective.

e Assume that pp : Fg‘fl’b) — P(R%) is surjective. Then, as observed above, we have that all the

fibers of p; are projective spaces and this implies that there exists a unique irreducible component

O of Fg?l’b) which dominates P(R®) via p; and, again, we can set

T = pile, Y =p2(0) =m(O) and F, = mi(my ' ([y])) for all [y] € Y.

Construction 1.2.5. To summarize, if R is a SAGA of codimension n+1 and socle in degree N and
we assume that SLPy(s) does not hold for R, we can construct the loci I’g’ll’b), ©,Y and Fy, as above

and we have the following diagram

Fy x [y] = ] (1.4)

i

T g ll,b) D2 P (

F,C P(RY).

We present also the obvious generalisation of Ker-Coker principle (Proposition 1.2.3):
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Proposition 1.2.6. Let T be an irreducible variety in P(R®) x P(R?) such that pi|7 : T — P(R®) is
surjective. Assume that T C {z'y/ =0} = thg’b) with i,5 > 1. Then

1. For allv € R* one has va'~ 1yt = 0;
2. If a(i) + b(j + 1) < N, then all points of T satisfy also '~ 'y/+1 = 0.

Proof. Tt is enough to prove the claim for a general smooth point p = ([z],[y]) € T. For any v €
R% t € K consider 2/ = x + tv € R*. Since py : T — P(R®) is surjective by hypothesis, we have that
there exists ' in R’ \ {0} such that (z')*(y')) = 0. Then we can define 3(t) such that 3(0) = y and
(z +tv)!(B(t))? = 0 for all t € K. We can consider the expansion of 3 and write this relation as

0= (z+tv) (y+tw+t2(---)) =2y + tliva' 1yl + juwaty’ ™) +£2(---).

In particular we have vz’ ly/ + jwa’y’~t = 0 for all v € R* If we multiply by y we have

vz’ 1yt =0 for all v € R® which yields the first claim since i > 1 by hyphotesis.

For the second claim, consider the multiplication map R® x RU—Nat(+1)b _, Ria+ibtb and notice
that it is non degenerate by the assumption ia + bj + b < N. Hence, if va’~1ly/*1 = 0 for all v € R?,

then one has also z'~1y/*! = 0 as claimed. O

Let us now go back to the first construction and the study of I'y: let us present the first properties
of the varieties introduced so far. In particular, we now show that Y is contained in some nihilpotent
locus and that the general fiber Fy, is a connected cone. Moreover we prove the first bounds for the

dimension of these varieties.

Proposition 1.2.7. Let us consider the correspondence Ty, dominating P(R') via first projection,

and also the varieties ©, Y and F, introduced above. Then the following properties hold:

(a) Y C N = {[y] € P(R') : y* 1 = 0} S P(RY);

(b) If [yl € Y is general, then Fy is a cone with vertex [y]. Moreover, the general Fy is connected;
(c) dim Fy + dimY > dim(©) > n;

(d) 1<dimF,<n-1andl<dimY <n-—1.

Proof. By Proposition 1.2.3 we have that all the points of © of the form ([z],[y]) satisfy also the
equation y*T! = 0. Then, by definition, we have m3(©) =Y C N4 1. Since 1 < k < N —2, by Remark
1.1.8 we have N1 # P(R!): we have proved claim (a).

Before proving (b), notice the following properties. For brevity, denote by ©¢ the union of all the
irreducible components of I', different from ©. For any p = ([z], [y]) € © one can consider the curve
vp : Pt — P(R') x P(R!) defined by

(A ) = ([Ax + pyl, [y]).

Since z'y’ = 0 whenever i +j = k+ 1 and j > 1 we have (\z 4 uy)Fy = 0 so vp has image in I'.
Whenever p = ([z],[y]) € © \ ©°, we have that the curve v, has image in ©. In this case, the line

parametrized by 71 o, is contained in F, and it is spanned by [z] and [y].



1.2. CONSTRUCTIONS AND STRATEGY 13

Now, we will prove (b). If [y] € Y is general, we have that 7, ! ([y])N(©\©°) is an open dense subset
of Fyy x[y]. Let C be a connected component of F,, and consider any p = ([z], [y]) € (C x [y])N(O©\ O°),
then the image of the curve -, is contained in © and pass through ([y], [y]). So [y] € C and the line in
P(R!) passing through [z] and [y] is contained in C. Since [z] is general, we have that C is a cone with
vertex [y]. Moreover, if C’ is another connected component of F, we have [y] € CNC’ so C = C' = F,

and F}, is connected.

In order to prove (c) recall that © and Y are irreducible and 72 : © — Y is surjective. Then, for

all [y] € Y we have

dim(7, ! ([y])) > dim(©) — dim(Y).
Since dim(m, *([y])) = dim F,, by definition of F}, and since dim(0) > dim(P(R')) = n by hypothesis,
we get claim (c).

For the last point (d), fix [y] € Y. Assume, by contradiction, that dim(F,) = n, i.e. F, = P(R!).
Then, for all € R', we have zFy = 0. Since k-th powers of elements in R' generates R* (since
R is a standard algebra) we have that y - R¥ = 0. But this is impossible since R is Gorenstein and
R! x R* — RFF1 is non-degenerate. This proves that dim(F,) < n — 1. Using (c) we also get that
dim(Y) > 1. By (a) we have dim(Y) < dim(Ng41) < n so dim(Y) < n — 1. Then, using again (c), we
obtain dim(F,) > 1 as claimed. O

In particular, when we consider a SAGA R as above, for which the strong Lefschetz property in
degree 1 at range k (SLP;(k)) does not hold, we can construct the varieties ©, Y, F}, which satisfy the

properties described in Proposition 1.2.7.

Let us now present some geometric properties involving the incidence variety I'y, and, by assuming

condition (x), also the varieties ©, Y and F,.

Lemma 1.2.8. Let A be the diagonal in P(R') x P(R') and let us define 7 : P(R') x P(R') —
P(R') xP(RY) as the involution 7(([z], [y])) = ([y], [z]). Under assumption (x), the following properties
hold:

(a) There exists a component ©" of Ty, different from © with dim(©') > dim(0);
(b) mi(Tr NA) = Nii1;

(c) m(ONA)=Y;

(d) T(©®)NOCY xY.

(e) Assume that Y C Nyy1 and that Ty has pure dimension. Then, there exists an irreducible compo-
nent A of Ty with © # A # ©'.

(f) For ally € Y we have F,, C P(Kylk)

Proof. For (a), if p = ([z],[y]) € © then, by Proposition 1.2.3, ¥y = zy* = 0 hence 7(p) € Ty so

there exists a component ©’ such that 7(0) C ©’. On the other hand, by construction, © dominates
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P(R') via m; (by Lemma 1.2.2) and does not dominate P(R') via 7y (since m2(6) = Y, which is a
proper subvariety of P(R!), by Proposition 1.2.7(a)). Since 7(0) dominates P(R') via 7y the same
holds for ©' and this implies that © # ©’. For (b), if we take an element [y] € Nj11, we clearly have
that y*y = y**1 = 0, hence ([y],[y]) € Tx N A. On the other hand, an element in this intersection is
of the form ([y], [y]) such that y*y = 0, hence [y] € Ny41. Point (c) follows from Proposition 1.2.7: we
have m3(0) =Y so m(©@NA) CY and for [y] € Y general, [y] € Fy, so ([y], [y]) € ©. (d) is trivial. For
(e), let [w] € Njy1 \ Y. Then w*w = w**! = 0 by construction so ([w], [w]) € T'y. Since w ¢ Y we
have p = ([w], [w]) ¢ ©. If we assume ([w], [w]) € 7(©) we would also have 7 ([w], [w]) = [w] € Y as
7(©) = O’ (this follows since we are assuming that I'y has pure dimension). Then p € T\ (OUT(O)).
For (f), recall that F, = {[z] € P(R")|([z],[y]) € © and 2%y = 0}. By Proposition 1.2.3, [z] € F,

implies that also that zy* = 0 so we have the claim. O

To conclude this second section, let us present the strategy we will exploit in the following:

Strategy 1.2.9. In the next sections, we will consider a SAGA R not satisfying a specific (strong)
Lefschetz property. As we have done before, this assumption allows us to construct the wvarieties
©, Y, Fy. Our aim will then be the improvement of inequalities, as the ones in Proposition 1.2.7,
involving the dimensions of such varieties. With stricter bounds on these dimensions, under suitable
assumptions, we will be able to deny the existence of such wvarieties, in particular of the irreducible
component ©. But then, as specified in Remark 1.2.1, it is not possible for the first projection over

P(RY) to be surjective: the Lefschetz property under consideration can’t fail.

1.3 The SLP in degree 1 and the proof of Theorem B

The aim of this section is to prove Theorem B and so, as a byproduct, to give a new proof of Gordan-
Noether Theorem 1.1.22.

To do this, we consider a SAGA R and let us assume that it does not satisfy the strong Lefschetz
property (in narrow sense) in degree 1. According to the notation of the previous section, we then set

k = N — 2 and we consider the correspondence variety
Ty = {([a]. [y]) € P(R") x B(R") |27y = 0}.

By assumption, the first projection p; : I'y_o — P(R') is surjective (see Remark 1.2.1). We can then
consider the varieties ©, Y and F),, as defined in Section 1.2. By exploiting geometric properties of

these varieties, we will now follow the Strategy 1.2.9.

Let us start by constructing the dual variety of Y and by showing that ¥ C P(R!) ~ P" can’t be
linear and that its dimension is at most n — 2.
First of all, let us consider the map
gp:R1 — RNU g VT

and its projective version, that is clearly not defined on the nihilpotent locus of order N — 1,

Y P(RY\ Ny_1 = P(RNY)  [z] = [V
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Observe that, since R is a SAGA, we have that RVN~! is the dual vector space of R!, and so
dim(RY=1) =n + 1.
By setting Z := ¢(P(R!) \ Ny_1), we have that this subvariety Z of P(RV~!) ~ P is irreducible and

non-degenerate: indeed, if Z was degenerate, and so contained in a hyperplane, we would have that

the (N — 1)—th powers of elements of R' do not generate the whole RN~!, but this is not possible,

since R is a standard algebra.
For all [z] € P(R!), let us now define K, as the kernel of the differential

dmlﬂ : TP(Rl)’[z} — TZ7[1N71} w — (d[x]w)(w) = (N — 1)xN_2w
Le. Ky = ker(d,7).

Remark 1.3.1. Observe that the kernel IKCp just introduced coincides with the kernel K;N_Q of the
multiplication map x™¥ 2. : R — RN~1. Hence, the projectivization of ICy is isomorphic to the fibres
of the first projection py : Ty_o — P(RY) (see Section 1.2).

Now, let A be the diagonal of P(R') x P(R') and whenever p = ([z],[y]) € A let us set
Ly =A{[A\z + py) € P(R') | (A: ) € P}, (1.5)

the line in P(R') passing through [z] and [y].
We have the following:

Lemma 1.3.2. For p = ([z],[y]) € © general, the line Ly, is contracted by 1. Moreover, we have
dim(Z) =n —dim(;) <n—1.

Proof. Let p = ([x], [y]) € © be general: we can then assume that 2V =1 # 0, i.e. [v] € Ny_1. Indeed,
if zV=1 = 0 for p € © general, then © C Ny_1 x Y and thus Ny_; = P(R!) by (%). This is impossible
by Proposition 1.2.7(a). In particular, we have also that p = ([z],[y]) € 4, indeed, while 2V =1 # 0,
by Proposition 1.2.3 we have that y**! = 0, where, in this case, k = N — 2.

By using the Gorenstein-Gordan-Noether identity (see Corollary 1.2.4) we have

(A 4 py)) = [z + py) V1 = VN = @2V = ([a])
so the line L, is contracted by v (more precisely, L, \ Ny_1 is contracted to a point by ).
If we assume that [z] := ¥([z]) = [V '] € Zsmnootn, then we have dim(Z) = dim(7[]) so
dim(Z) = dim(P(RN 1)) — dim(K,) = n — dim(K,). (1.6)

Since Ly, is contracted by ¢ and [x] € Ly is not in Ny 1 we have that Ty, 1) = (y) € Ky so dim(K;) > 1

and we have the claim. O

Recall that, as said above, via Gorenstein duality we have a linear isomorphism R' ~ (RN—1)*
which induces an isomorphism P(RVN—1)* ~ P(RN-1)*) ~ P(R'). If H € P(R""1)* and a €

P((RN=1)*) correspond under the first isomorphism, we have that the hyperplane H contains a linear
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variety P(W) C P(RY~1) if and only if , a linear form on RV~!, annihilates all the vectors in W, i.e.

we have, by using the second isomorphism, oo € P(Anng: (W)).

Let X be a proper projective subvariety of P" and assume that [z] € Xgno0tn. We will denote with
(P™)* the dual projective space of P™ (i.e. the projective variety parametrizing the hyperplanes of P™)
and with T},)(X) the projective tangent space to [z] in X. If X C K" is the affine cone associated
to X we have Tj,)(X) =P(T; ). We recall that the dual variety of X (as subvariety of P") is

X' = {H S (]Pm)* | = [fE] € Xsmooth such that T[:L"}(X) < H}

As one of the key results of this section, it turns out that the dual variety of such Z coincides
exactly with Y = m3(0©):

Proposition 1.3.3. We have Y = Z*.

Proof. First of all, notice that if [2] = [£V 1] = ¥([z]) € Zsmooth, We have that the tangent (projective)

space to Z in [z] is described as
T (2) =PV 2 R") =P ({wa""?|w e R'}).

Assume that [y] € Y is a general point. We claim that y € Z*. Since [y] € Y is general, we can take
([7],[y]) € © such that 2¥~! # 0 (recall that the nihilpotent loci are not the whole projective space)
and [z] = [¢V~1] is a smooth point of Z. In particular 2™V =2y = 0 so [y] € Anngi (zV~2 - R'). Hence,
by the above considerations, the hyperplane H of P(R™V~!) corresponding to [y] contains T} 2](Z) so
[y] € Z*. Since [y| was general in Y, we have proved Y C Z*.

For the other inclusion, let H be a general element in Z*. Let [y] € P(R!) be its corresponding
point. Since H € Z* (and H is general) we have that there exists [z] = [2V 7! € Zsnootn such that
H contains the tangent (projective) space T,;(Z). Then, equivalently, y annihilates zN=2. R, On
the other hand, since the product R' x RN~1 — RN is a perfect pairing, having 2% 2wy = 0 for all
w € R implies that ¥ =2y = 0 so ([z], [y]) € Ty_2. Since H was generic in Z* and, by Lemma 1.2.2,
© is the only component of I'y_ which dominates P(R!) via 71, we can assume that [z] is outside
11 (Tn_2 \ ©). Then, we have that ([z], [y]) € © so [y] € Y as claimed. O

Let us now recall that a variety X C Py is said to be reflexive if it coincides with the dual of its
dual variety. One has the following (see [Wal56, K1e86]):

Theorem 1.3.4. If K is a field of characteristic 0, an irreducible variety X C Py is reflexive.
As a consequence of Proposition 1.3.3, we can then prove:
Corollary 1.3.5. The variety Y C P(RY) is not linear.

Proof. Let us suppose by contradiction that Y is a proper linear subvariety of P(R!). Since K is a field
of characteristic 0 and Z is irreducible, by theorem 1.3.4, we have that Z = Z**. From Proposition
1.3.3, we have that Y = Z* and so Y* = Z. Since we are assuming that Y is linear, we have that
also Y* is linear: namely, it is the linear subspace of P(R') of the hyperplanes containing Y, which is
proper. Then Z is linear and thus degenerate, but this, as we have observed above, is not possible.
Then Y is not linear. O
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We are now going to improve the inequalities (d) in Proposition 1.2.7, by showing that Y cannot be
a hypersurface of P(R!) (see Corollary 1.3.7).

Let p = ([7],[y]) € © with = # y. As above, we will denote by L, the line in P(R!) joining the
points [z] and [y], i.e. the line L, = {\z + py | (A : p) € PL}.
Lemma 1.3.6. Let p = ([z], [y]) € © such that V1 #0. Then
(a) LyNY = [y;
(b) if p is general, L, is not tangent to Y at [y].

Proof. Let p = ([z], [y]) be as in the hypothesis and let us consider the line L, (since by assumption
eN=1 =£ 0, we have that p & A). Clearly, by construction, we have that [y] € L,NY. To show that
there are no other points in this intersection, let us recall, by Proposition 1.2.3 that a point [y] in ¥V
satisfies the condition 3™~ = 0. Then

WleL,NY CLnNy={Dz+pyl | (A:p)eP', Ao+ )V =0}
On the other hand, the Gorenstein-Gordan-Noether identity (see Corollary 1.2.4) yields (Az+puy)N =1 =
ANV=12N=1 " This is zero if and only if A = 0, so L, NY = [y] as claimed in (a).

To prove (b), let us take p = ([x], [y]) € © general. Then, we can assume that =¥ # 0 (since R
is a standard K-algebra, see Remark 1.1.8), that p is a smooth point for © and that the differential
dpma : Top — Ty, 1s surjective.

Assume by contradiction that L, meets Y non-transversely. Since the tangent in [y] to Ly is
spanned by z and since d, 73 is surjective, we have that there exists a tangent vector of the form (v, z)
in T . Hence, there is a curve () in ©, that we can write as v(t) = («(t), 5(t)), passing at ¢t = 0
through the point p = ([z], [y]) and such that o/(0) = v and #’(0) = x. As v has image in O, we have
that o and f3 satisfy the relation a(t)N~28(t) = 0. By considering the expansion of this relation, as

in Proposition 1.2.3, we obtain the equation
(N —2)zN 3oy + 2Nt = 0.

If we multiply by z, we get 2 = 0 which is impossible since we are assuming 2V # 0. Then L, and

Y meet transversely. O

Finally, we get new bounds for the dimensions of ¥ and of the fibers F:

Corollary 1.3.7. We have
1<dim(Y)<n-—2 and 2 <dim(Fy) <n-1

for any [y] €Y.
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Proof. Let us show the first claim: the second one is an immediate consequence, by Proposition
1.2.7(c). Assume by contradiction that dim(Y) = n — 1, so Y is an irreducible hypersurface in P(R!).
By Lemma 1.3.6, there is a line which meets Y transversely in one point, so Y is a hyperplane. On

the other hand, by Corollary 1.3.5, Y is not linear, so we have a contradiction. O

Our aim is now to show the following result, that will be a key step in the proof of Theorem B.
In particular, after ruling out the possibility for Y to be a hypersurface, we would like to find some

necessary condition to have dim(Y’) = 1:
Proposition 1.3.8. If dim(Y') =1 then n > 4.

Observe, first of all, that if the general [y] € Y is such that dim(Fy) = n — 1, then this equality
actually holds for all the fibers Fy’s, since the dimension of the fibres can only increase and, on the
other hand, there can not exist a fibre F}, of dimension n and so equal to P".

Before proving Proposition 1.3.8, we need two technical results.

Proposition 1.3.9. Assume that F, has dimension n — 1 for ally € Y. Then

(a) Y C(Nyey Fy:
(b) Sec(Y) C Ny_1.

Proof. Recall that ©¢ denotes the union of all the irreducible components of I'_o different from ©.
Let us take an element [y] € Y and fix [z] € P(R!) general, satisfying the following assumptions:

ey o, [z] € 11 (O \ O°) and N £ 0.

This can be done since R is a standard algebra and since © is the only component dominating P(R')

via first projection.

Since m is dominant, there exists [y1] € Y (which can be assumed general as for [z]), such that

p1 = ([2],[y1]) € ©\ ©°. In particular, we have z7V =2

N-2

y1 = 0 and [y1] # [y] since, otherwise, we would

have that £V ~2y = 2V ~2y; = 0 which gives a contradiction.

Let us now consider the line L,,, joining the points [z] and [y1], i.e.
Ly, = {1 +px] | (A:p) P}

As in point (b) of Proposition 1.2.7, we have L, C Fy, by the assumptions on [].

We claim now that L, N Fy, = [y1].
Since, by assumption, Fy, has dimension n — 1, the intersection L, N F, cannot be empty. We will

show now that (Ly, \ [y1]) N F, is empty.

Notice that Ly, \ [y1] is the affine line parametrized by z(t) = x4ty with ¢ € K. Suppose that the
intersection between F, and this affine line is not empty, i.e. there exists t € K such that x +ty; € F,.

This means that

(z+ty)N 2y =0 and multiplying by x z(z+ty) N 2y =0.
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By construction, we have that [z] € Fy, (equivalently, ([z], [y1]) € ©), and so by Proposition 1.2.3 we
know that a:ly{ =0forj>1andi+j=N —1. Then we get x(x + ty;)V =2 = 2V~! and finally, by

N-1

the above, x y = 0, that is impossible by our assumptions. In conclusion, L,, and F, meet each

other at a single point, namely [y1].

We have proved that for general [y;] € Y we have [y;] € F}. Then, by the irreducibility of Y, we

get Y C F,. Since, this is true for every choice of y € Y, we obtain claim (a).

For (b), let us consider two distinct points [y1], [y2] € Y. From (a) we have that [y2] € F}, and
then p = ([y2], [y1]) € ©. Let us now consider the projective line

Ly = {y1 + pya] | (A : ) € P}

so we have L, C Sec(Y'). By Proposition 1.2.3 we know that y%y{ = 0 for every 4,7 with 7 > 1 and
i+ 7 = N —1. On the other hand, we have that y» € F, so 0 = yéV_ng = yév_l. By the above
equations we get

1+ py2) V=0

so L, C Ny_1. Since every secant line is contained in Ny_1, we have claim (b). O

If we assume that F, has dimension n — 1 for all y € Y we can strengthen the results of Corollary
1.3.7:

Proposition 1.3.10. Assume that F, has dimension n—1 for ally € Y. Then 1 < dim(Y) <n — 3.

Proof. Recall that {[2]} x P(K;) (= {[z]} X P(K]x_,)) is the fiber of a general point [z] in P(R") with
respect to 71 : © — P(R'). Denote by r — 1 the dimension of the general fiber P(IC;).

{[z]} x P(Ky)C 2y < {lyl}

C
— >N N
{[=]}¢ P(R") Y {lv]}

Being in the above diagram P(R!), © and Y irreducible, m; dominant and o surjective by con-

struction, we have
dim(©) = dim(P(RY)) + dim(P(K,)) =n+r—1  dim(®) = dim(Y) + dim(F,) = dim(Y) + n — 1
so dim(Y) = r. By Corollary 1.3.7 we have

1 <dim(Y)<n-2

so it is enough to prove that dim(Y’) cannot be equal to n — 2. This is clearly true if n = 2 so we can
assume n > 3. By contradiction, assume that dim(Y) = r = n — 2. Denote by s the dimension of
Sec(Y'). By Proposition 1.3.9 we have that Y C Sec(Y) C NMy_1 € P(R!) so we haven—2 < s < n—1.

Notice, first of all, that s cannot be n — 2. Indeed, if dim(Sec(Y)) = dim(Y) = n — 2, we would

have that Y is linear. This is impossible by Corollary 1.3.5. Hence we can assume s =n — 1.
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Assume first that Y is non-degenerate. We have that Y and Sec(Y') have codimension 2 and 1
respectively in the smallest projective space that contains Y (and Sec(Y')). By considering the general
hyperplane section Y/ =Y N H and its secant variety Sec(Y’) = Sec(Y) N H, we preserve the above
properties and Y’ is as well non-degenerate (in H). We can then cut with n — 3 general hyperplanes
in order to obtain a curve C in P? and its secant variety which is a surface in P3. This is impossible

since, in this case, C would be a plane curve, and so degenerate.

The only remaining case to analyze is where Y is degenerate of dimension n—2, dim(Sec(Y)) = n—1
and the smallest projective subspace H containing Y is an hyperplane in P(R'). In particular, Y is

an hypersurface in H = Sec(Y') and its degree is at least 2 (otherwise ¥ would be linear).

First of all, we will prove that H C F, for [y] € Y general. Let [y] € Y be a general point. The
general line L through [y] in H cuts Y in at least another point [y;]. By Proposition 1.3.9 (a), we have
that [y], [y1] € F, and then, by point (b) of Proposition 1.2.7, L is contained in Fj. Since such lines
cover a dense open subset of H we have that H C F,. Then H x [y] C F, x [y] and then H x Y C ©.
Since they have the same dimension and they are both irreducible we have H x Y = ©. This is
impossible by (x): if H x Y = © we would have 71(0) = H # P(R'), which is impossible, since 7 is

dominant: dim(Y) < n — 3 as claimed. O
We can now prove Proposition 1.3.8:

Proof of Proposition 1.3.8. Assume, by contradiction, that n < 3. Since we are assuming dim(Y") = 1
we have that dim(F},) = n — 1 by Proposition 1.2.7. Then, by Proposition 1.3.10, we have 1 <
dim(Y) <n —3 <0, which is clearly impossible. O

To conclude this section, let us finally restate and prove Theorem B:

Theorem 1.3.11 (Theorem B). For all standard Artinian Gorenstein K-algebras of codimension at
most n + 1 = 4 there exists x € R' such that the multiplication map V72 : R* — RN~ is an

isomorphism, i.e. the strong Lefschetz property (in narrow sense) holds in degree 1.

Proof. Assume, by contradiction, that for all # € R' the multiplication map zV=2. : Rl — RNl is
not an isomorphism. Then we can construct the incidence variety I'y_2 and by Remark 1.2.1 we know
that the projection py : [y_o — P(R') is surjective. Under these assumptions, we can also construct
the varieties ©,Y and the fibers F’s, as done above. By Corollary 1.3.7 we have 1 < dim(Y) <n—2.
Since n < 3, the only possibility is that n is equal to 3 and dim(Y) = 1. But this is impossible by
Proposition 1.3.8. 0

1.4 Gordan-Noether and strong Lefschetz properties

In this section, for completeness, let us show the classical equivalence between Gordan-Noether theorem
1.1.22 (Theorem A), presented in Subsection 1.1.2 and Theorem 1.3.11 (Theorem B), proved in Section
1.3.

As done before, let K be an algebraically closed field of characteristic 0, S = K]z, ..., z,] the ring
of polynomials in n + 1 > 2 variables and D = K[y, ..., yn], with y; = 9/0z; the ring of differential



1.4. GORDAN-NOETHER AND STRONG LEFSCHETZ PROPERTIES 21

operators in the x;. Let us recall here that, by Macaulay’s inverse systems, every SAGA R can be

written as D/ Annp(g) for some homogeneous polynomial g € S (see Theorem 1.1.5).

Remark 1.4.1. The codimension of a SAGA A = D/Annp(g), i.e. the dimension of AL, is at most
n 4+ 1 and equality holds as long as (Annp(g))1 = {0}. This is equivalent to ask that the partial

derivatives of g are linearly independent, i.e.
dim(A')=n+1 < X =V(g9) CP" is not a cone.

Let us start with a strong connection between the non-vanishing of a hessian determinant and the
validity of the strong Lefschetz property in degree 1 for a SAGA as in example 1.1.4. For this, we
need the well known differential Euler Identity ([Rusl6, Lemma 7.2.19]):

Lemma 1.4.2. Let g € 5S¢ be a homogeneous polynomial of degree e and let L = aga%o 4+ 4 an%
be an element of D*. Then

Le(g) =el- g(CLOu e ’an)'

Lemma 1.4.3. Fiz g € S%\ {0} and consider the SAGA A = D/ Annp(g). Then A has the strong
Lefschetz property in degree 1 if and only if hess(g) Z 0.

Proof. For any fixed L =737, kia%i € A! we can consider the symmetric bilinear map
o Al x Al 5 AY ~ K

given by o (n,€) = (L2n¢)(g). Let B = {yo,...,yn} be a basis of A'. Denote with M}, the matrix

associated to ¢, with respect to B. Then we have My, = [aj]o<i j<n With

aij = (L %yy)(9) = L (yiy;(9)) = L% (Hess(g)s5)

where Hess(g) is the Hessian matrix of g. Since Hess(g);; is either 0 or has degree d —2, one can apply
the differential Euler Identity (Lemma 1.4.2) in order to obtain

Mp, = (d —2)!Hess(g)(ko, - .., kn)- (1.7)

Hence, having hess(g)(= det(Hess(g))) = 0 is equivalent to ask that ¢y, is degenerate, i.e. for all
L,z € Al there exists y € A\ {0} such that L9~2yz = 0. By Gorenstein duality, this is equivalent to
L42y =0, i.e. A does not satisfy the SLP in degree 1. O

We can now show the equivalence between Theorem A and Theorem B:

Proposition 1.4.4. Theorem A and Theorem B are equivalent.

Proof. Assume first that Theorem B holds. Let X = V(F') be a hypersurface of degree d > 2
in P* with n < 3 and we assume that X is not a cone. We have to show that hess(F’) # 0. Since
X is not a cone, the partial derivatives of F' are linearly independent. Hence, if we consider the
SAGA A = D/ Annp(F) as above, we have that A has codimention n + 1 < 4 and socle in degree
d. By Theorem B, the SAGA A has the strong Lefschetz property in degree 1 so, by Lemma 1.4.3,
hess(F') # 0 as claimed.
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Assume now that Theorem A holds. Let us consider a standard Artinian Gorenstein K-
algebra A of codimension n + 1, with n < 3, and socle in degree d. This algebra can be described

as

4D
Annp(F)
for a homogeneous polynomial F' of degree d in the variables xg,...,z,, by Macaulay’s theory. We

can suppose that F' is such that (Annp(F')); = 0, i.e. its partial derivatives are linearly independent.
Let us now assume by contradiction that A does not satisfy the SLP in degree 1. Then, by Lemma
1.4.3, we would have hess(F') = 0. This is impossible since, by Theorem A we would have that V (F')
is a cone: indeed, this would imply that the partial derivatives of F' are linearly dependent, which is

against our assumptions. O

1.4.1 The Gordan-Noether identity

In this subsection, let us rephrase in our setting the important consequence of the Gordan-Noether
Identity, the identity (1.2) (that, for brevity, we will call again Gordan-Noether Identity) and by
proving it in the framework described in the previous sections.

First of all, let us briefly recall that, given a homogeneous polynomial f € S¢ with d > 1 without
multiple factors, where S = K[zo, - - , ], then the closure Z’ of the image of V; in (P™)* is easily
seen to be a proper subvariety of (P™)* if and only if hess(f) = 0 (see (1.1)). In this case, for any

hypersurface W = V(g) containing Z’, we can consider the Gordan-Noether map associated to g
g :=VgyoVy : P" ——s P".

One of the key steps in the classical proof of Gordan-Noether theorem, as we have seen (see (1.2)), is

the following: if f has vanishing hessian, then the Gordan-Noether identity

gz + Mpg(2)) = Yg(2) (1.8)

holds for all A € K and for all z € K**1.

Let us now express the map 1), using the framework introduced in Sections 1.2, 1.3. Let R be
a standard Artinian Gorenstein algebra with socle in degree N and assume that the SLP; does not
hold. By Macaulay Theorem we can write R as D/ Annp(F') for some suitable F' € K[xzg, -, Zy]
with (Annp(F)); = (0) and (by Lemma 1.4.3) hess(F) = 0. By [HMM™'13, Lemma 3.74], F' can be

taken to be the function z — zV, via the isomorphism RV ~ K.

By considering this function, one can observe that Vp is exactly the map v : P(R') --» P(RVN™1)
introduced in Section 1.3, i.e. the map such that ¥ ([z]) = [#V7!] for [z] € P(R') \ Ny_1, so our
variety Z coincides with the variety Z’ introduced above. If W = V(g) is an hypersurface containing
Z, then the Gordan-Noether map v, defined above is the composition V, 0V = V4 01). Since the
image of V, lives in P(RY™1)* ~ P(R!) we interpret 1/, as a (rational) map from P(R!) to P(R').

Observe that the image of 1), = V0% is contained in Y. Indeed, if [z] € P(R!) is general, we can
assume that 9 ([z]) = [2] = [¢V 1] is smooth in Z (and so for W = V(g)). By definition, and since W
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is an hypersurface, V4([2]) is the point on P(R') corresponding to T,y (W). Since T},)(Z) C Tj,j(W)
we have that V,([z]) € Y as claimed.

Proposition 1.4.5. In this setting, the Gordan-Noether identity - Equation (1.8) - follows from the
Gorenstein- Gordan-Noether identity - Equation (1.3).

Proof. Let [r] € P(R') be a general point. Then we can assume that ¥([z]) = [zV 7! = [] is a
smooth point for Z. Set [y] = 14(]z]) and notice that [y] € Y, since we have seen that the image of
1y lies in Y. We claim that ([z],[y]) € ©. Indeed, [y] € Y C P(R!) corresponds to an hyperplane
H, of P(RN~1) tangent to V(g) containing the (projective) tangent space Ti,(2) = P(zN=2. R!) by
construction. This implies that y annihilates the vector space V=2 - R'. Since (zV%y)- R' = 0,

N—-2

by Gorenstein duality we have ™ ~“y = 0 so ([z], |y]) € I'nv—2. Since [z] was general and since ©

is the only component of I'y_5 dominating P(R!) via 71, we have that ([z],[y]) € ©. Then, by the
Gorenstein-Gordan-Noether identity (i.e. Equation (1.3)) we have

by([2] + Mg ([2])) = Yy([2 + Myl) = Vg (&([z + My])) = V(o ([2])) = vy ([2])

as claimed. 0

1.5 The analysis of the Perazzo cubic threefold

In this last section of the first chapter, we briefly study the Perazzo cubic threefold V(f) C P* and,
in particular, the standard Artinian Gorenstein algebra defined as A = D/ Annp(f). For this section
we will set K = C.

The Perazzo cubic (introduced by Perazzo in [Per00]) is the cubic threefold X = V (f) with
f= x0$§ + 2212374 + xgxi € Clzo, z1, 2, 3, 4]

and it is the first counterexample to Hesse’s claim 1.1.20: up to projective transformations, it is the
only cubic threefold with vanishing hessian in P4 which is not a cone. This follows from the work of
several authors which obtain a classification of the hypersurfaces in P* with vanishing hessian that
are not cones. A comprehensive treatment of this problem can be found in [Rusl6, Chapter 7.4]
whereas the original articles dealing with this classification problem (also in higher dimension) are
[GN76, Per00, Fra54, Per57, Per64, Los04, CRS08, GR09].

Fix the notations as in Example 1.1.4 with n = 4 and let f be the above cubic form. Then
A=D/Annp(f) =A@ Al @ A% A3

is a SAGA with codimension 5 and socle in degree N = deg(f) = 3. As recalled in Section 1.4 (see
Lemma 1.4.3), since X is not a cone and its hessian vanishes, A does not satisfy SLP (and WLP as
well). Notice that, in this case, since A has socle in degree 3, the whole strong Lefschetz property

coincides with the SLP in degree 1.

By recalling that y; = 8%1-7 one has that

(Annp (f))2 = (Y2, Yoy1, YoYUz, YoYa, Yo» Y1Y2, Yo, Y2Y3, YoU3 — Y1Y4, Y1Y3 — yaya) =~ KIO
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and, moreover, {yoyg,ylygyz;,ygyz} are the only monomials of degree 3 which are not 0 in A. More
precisely, using the above relations, one has A% = (¢) where 0 = yoy3 = y1y3ys = y2y3. From these

relations, one has that

By = {bi}1 = {y0,y1,¥2,¥3,y4} and  Bo = {c;i}i_1 = {¥3, Y3y4, Y3, Yoys, Y2ya }

are basis for A! and A? respectively. Moreover, it is easy to check that b; - ¢; = &;;0 so that By is
the dual basis of By (by choosing the isomorphism K — A3 such that 1 — o). Denote by {w;}?_,
and by {z}?_; the coordinates induced by B; and By on A! and A? respectively and by 7 the
involution 7([z],[y]) = ([y],[z]), introduced in Lemma 1.2.8. With these notations, we have that
Iy_o =11 = {([2],[y]) | zy = 0} C P(A!) x P(A!) has 3 irreducible components, ©,7(0) and A, all

of dimension 4. Using coordinates wy; and wo; on the two factors of P(A!) x P(A'), we have
2
© = V(wizwao + wiawa1, wigwa + wi4Wa2, Wy — WaoWa2, W3, wa4) and A = V (w13, w1, waz, was)

s0 Y = V(w? — wows, w3, wy) is a conic. In particular, for [y] € Y general, we have dim(F})) = 3. The

2

morphism ¢(z) = z* can be written in coordinates as

2= @(M) = (w?%v 2w3wy, wZa 2(w0w3 + w1w4)7 2(w1w3 + w2w4))

so Ny = V (w3, wys) ~ P? is the plane containing the conic Y - here we have taken the reduced structure
-and Z = V(4zgze — 2}) is a cone over a conic with vertex the line V' (zq, 21, 22). The polar map Vz
associate to Z is

Vz:lz]— [w] =422 : =221 : 420 : 0: 0]

and has image Y. The Gordan-Noether map 1, associated to g = 42922 — 22 can be written in
coordinates as
Yg(w) = [2w] : —2w3wy : 2w} : 0 : 0],

it is defined outside N5 and it defines a rational map from P* to Y. Finally, one can check that
ON7T(O)=Y xY and

A =Ny x Ns ONA=MNoyxY T(@)ﬂAZYXNQ

so®ONT(O)NA=Y xY.



Chapter 2

Complete intersection SAGAs
presented by quadrics

In this second chapter, we exploit the framework introduced in Chapter 1 and the construction de-
scribed in Sections 1.2 and 1.3, used to prove Theorem B. Here, we specialize this setting to complete
intersection SAGAs presented by homogeneous polynomials of the same degree, in particular presented
by quadrics, and their Lefschetz properties. In other words, we will analyze the validity of some Lef-
schetz properties for a SAGA R obtained as the quotient of the polynomial ring S = Klzg, - -+, z,] by

an ideal I = (go,...,gn) generated by a regular sequence of degree d — 1 polynomials:

N
K[zg, ..., z,] $ :
R: _— = R’L7
(.907 LI 7971) i=0

where deg(g;) = d — 1 for every i and the zero locus V' (gg, -, gn) is trivial.

In what follows, we will focus on the case where d = 3, i.e. on complete intersection SAGAs presented
by quadrics. Let us observe that in this specific setting the codimension of R is dim(R') = n + 1 and
the socle is in degree N = (n+ 1)(d — 2) = n + 1. Notice, moreover, that as a particular case of this

kind of SAGAs we have the Jacobian ring of a smooth cubic hypersurface.

After presenting in Section 2.1 some results and properties that hold for any SAGAs or for complete
intersection ones, in Section 2.2 we will focus on the case of complete intersection SAGAs presented
by quadrics. In particular, we will prove some technical results, which will allow us to improve the
bounds on the dimensions of the varieties arising in our construction, when we assume the failure of
some Lefschetz properties. By using these results, in Section 2.3, we will prove Theorem C. In Section
2.4, we will generalize some of the previous results to SAGAs with higher codimension. In Section
2.5 we will prove a lifting criterion for the weak Lefschetz property of complete intersection SAGAs
presented by quadrics. Finally, in Section 2.6, we will analyze, from a geometric point of view, the
nihilpotent loci N; introduced in Section 1.1: in the case of a Jacobian ring of a cubic hypersurface,

it turns out that these loci can reflect some properties of the cubic hypersurface itself.

The results of this second chapter appear in [BFP22 BF22].
In this chapter, as in the previous one, we will work on an algebraically closed field K of characteristic
0.

25



26 CHAPTER 2. COMPLETE INTERSECTION SAGAS PRESENTED BY QUADRICS

2.1 Some preliminary results

In this first section, we study some loci arising in a natural way inside a general SAGA. In particular,
we will analyze the nihilpotent loci A; and the kernels K}7 of suitable multiplication maps, introduced
in Section 1.1. In the case of a complete intersection SAGA presented by forms of degree d — 1, it is
possible to obtain some bounds for the dimensions of these loci, which will play, when for example

d = 3, an important role in proving the technical results of the following sections.

First of all, let us recall that, as stated in Section 1.1, if [5] is an element in P(R") we set
Kf? = ker <Ri A RHh) .
Moreover, for a suitable integer ¢ > 2, we have defined the nihilpotent loci in degree 1 as

N; = {[z] e P(RY) | z* = 0}.

Let us focus on the case of a complete intersection SAGA R = S/I = EBZ-]\LORi presented by forms of
degree d— 1. For this specific kind of SAGAs, let us start by showing a result which gives a description

of the kernels K}Y when ¢ = 1, by also giving an upper bound for their dimensions:

Proposition 2.1.1. Assume that 1 < h < N —1 and let R be a complete intersection SAGA as above,
presented by forms of degree d — 1 and with socle in degree N. Then the following properties hold:

(a) If n € R"\ {0}, then h > (d —2) dim(K%);

(b) Letn,¢ € R"\ {0} and assume h = (d — 2) dim(K}]) =(d—-2) dim(Kcl). Then K% = Kcl if and
only if [n] = [¢] in P(R").

Proof. Assume that dim(K%) = k and chose 4o, ..., yr_1 linearly independent elements in K% We
can find g, ...,gn € 1% such that I = (Y0, -+ sYk—1,Jk, - - -, gn) 1s the irrelevant ideal (i.e. the set
{v0,-+,Yk—1,9k,---,9n} is a regular sequence). Then R = S/I~ is a standard Gorenstein Artinian
algebra with socle in degree N = (d —2)(n+1— k). In particular, any element of S of degree at least
N +1 belongs to I. We claim that 7 - RN+ =, Indeed, if g € SN+1 we have

k—1 n
A (z&yﬁzmgi) y
=0 i=k

since y; € K}] and g; € I. This is possible, by Gorenstein duality, if and only if N+h+1>N,ie. if
and only if h > (d — 2)k as claimed by (a).

For (b) assume that 7,¢ € R"\ {0} are such that K,% = KC1 and h = (d—2) dim(K,%). Then we can
proceed as before and construct the ideal I and the ring R with socle in degree N = N — h. We claim
that K,]]V*h = Kév_h. Let & be a representant of the socle of R. Then we can write SV —" = <6,IZN).
One can easily check that 7 - I C T and ¢-ICI. On the other hand, n, ¢ are not zero so - RV™"
and ¢ - RV=" are not 0, i.e. n-6,(-& # 0 in R. Hence, we have that K% = KC1 = IV and then n and
¢ are multiples. O
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Before proceeding, let us recall that if p is a smooth point of a variety X, we denote by T’x ), the
differential tangent space, while by 7},(X) the embedded Zariski tangent space in the projective space
where X lives; if X is the affine cone over X, then TX,ﬁ is the affine tangent space at the smooth point
pand T,(X) = P(TX@)'

As an easy application of the previous proposition 2.1.1, we have the following bound for the
dimension of the nihilpotent locus V; = {[y] € P(R!) |3* = 0}.

Corollary 2.1.2. We have
i—1

dim(Nf) < 2= -

1.

Proof. Take the general point [y] of any irreducible component C of N; of maximal dimension which
is not contained in N;_1. If such a component does not exist, set € > 0 to be the biggest integer such
that N; = N;—.. The bound for dim(N;_.) implies the one for the dimension of Nj;.

Let C be the associated affine cone. We claim that 7T, Oy = K;i,l. Indeed if v is a tangent vector
to C in g, we have a curve y(t) = y + tv + t2(- - - ) which is contained in Nj. Then, by expanding the
relation (¢)! = 0, one has vy' ! =0sowv € T¢, if and only if v € K;i_l. Then, by Proposition 2.1.1,

we have .
t—1

d—2
as claimed. 0

-1

dim(N;) = dim(C) — 1 = dim(K}; 1) — 1 <

Moreover, with the same idea of the above proof up to minimal changes, one has a sort of general-
isation of the previous result, that is valid for any SAGA (not necessarily complete intersection ones)

and that presents a description of the tangent spaces for the nihilpotent loci:

Corollary 2.1.3. Let R be any SAGA. Then for [n] € N,ia) general we have Ty (./\/'lga)) - P(ng_l).

If, moreover, n*~1 #+ 0, we have an equality.

As a consequence of this preliminary discussion, we have a new proof of the following result of
Migliore and Nagel ([MN13b, Proposition 4.3]).

Corollary 2.1.4. Let R = S/I be a standard Artinian Gorenstein algebra with I generated by a
reqular sequence of polynomials of degree e with e > 2. Then R has the weak Lefschetz property in

degree 1.

Proof. The result is clear if e > 3 since, in this case, R = S! and R? = S2. If e = 2 one can consider
the incidence variety Ty = {([z],[y]) € P(R') x P(R!)|xy = 0} introduced in Section 1.2 and its
projection p; on P(R!). By contradiction, assume that the weak Lefschetz property does not hold in
degree 1. This is equivalent to ask that p; is surjective. Proceeding as in Section 1.2 one has that there
exists a unique irreducible component © of I'; that dominates P(R') via first projection. Moreover
we have Y = m2(0) C Ny and dim(Y) > 1 (proceeding as in Proposition 1.2.7) so dim(N2) > 1. On
the other hand, by Corollary 2.1.2 we have dim(N2) < 0, which gives a contradiction. O

To conclude this section, let us focus on the case that will be treated in what follows: let us assume

that R is a complete intersection SAGA presented by forms of degree d—1 = 2 and with socle in degree
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N =n+ 1. For this specific case, let us make the point on what we can say about the dimensions of

nihilpotent loci and kernels presented above:

(1) If n € R"\ {0}, for 1 <h < N —1, then dim(K})) <h  (2) dim(N;) <i—2. (2.1)

2.2 Technical results: new dimension bounds

In this section we consider a SAGA R of codimension dim(R') = n + 1 and socle in degree N.
Moreover, in addition to what we have done in the previous Section 2.1, we will also assume that R
is a SAGA which does not satisfy the strong Lefschetz property in degree 1 at range k, i.e. SLP;(k),
with 2 < k < N — 2. Equivalently, the multiplication map z*- : R' — R**! is never injective. Hence,

we are in the situation described more generally in Section 1.2: let us recall that under the above

Fy X [y\ = [y] (2.2)
™ \V

@\ Y

m WH

F,f P(RY)

assumptions we have

where we have set Ty := F,E}il) = {([z],[y]) € P(R") x P(R") | 2¥y = 0}. We recall that © is the
unique irreducible component of I'y that dominates P(R!) via its first projection 71, Y = m(©) and
Fy = mi(my ' ([y])) for [y] € Y.

Remark 2.2.1. We recall that all complete intersection SAGAs presented in degree d — 1 satisfy
SLP(1) = WLP; (see [MN13b, Proposition 4.3] and 2.1.4). For this reason in this section we do not
consider k =1 since in this case it is possible to construct Iy, but py is never dominant (so ©,Y and

F, cannot be constructed).

First of all, let us show a technical result that holds for any SAGA when we deny the SLP; (k) for
some suitable k. The following lemma states properties, that will be used later, concerning the nature

of the tangent spaces to the varieties arising from denying some strong Lefschetz properties.

Lemma 2.2.2. With notations as above, if p = ([z], [y]) € © is a general point, we have:

(a) [y] € T, [z) and [x] & Ty [y);
(b) pr’x C K;Qyﬁ whenever a+ B =k and 8 > 1, where Fy denotes the affine cone over F,.

Proof. For (a), let p = ([z],[y]) € © be a general point. By Proposition 1.2.7 we have that F}, is a
cone and [y] is a vertex for it, so that the line ([z], [y]) is contained in Fj,. This means that [y] is a

tangent vector in [z], i.e. [y] € Tp, [z

For the second claim of (a), let us suppose by contradiction that [z] € Ty[,), where we can assume
that zFt1 £ 0, by the generality of p. Let © be the lifting to R! x R! of © C P(R!) x P(R") and let 7y
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be the projection on the second factor from ©. By construction, we have that © C {(z,y)|z*y = 0}.
Let Y be the affine cone of Y. Since mp : © — Y is surjective, we have 73(0©) = Y and that, for
p = (z,y) € O general,

dpTo Té,p — T{/’y

is surjective.

By assumption we have also that x € T y SO there exists a tangent vector to © at p of the form

(v,z). Since points of O satisfy zFy = 0 we have
0= (z+tvo+ 2 )y +te+(---)) (mod t?)

which yields z%*! = 0. But since this is impossible by the generality of z, we obtain that [z] & Ty [y

For (b), first of all, notice that by Proposition 1.2.3 we have , C {z € R'|z'y/ = 0} for all
i+j=k+1andi,j > 1. Hence, for p general, if an element v € R' belongs to Tﬁy , then the

following relation must be satisfied
0= (z+to+t2(---))y =itve '/ +£3(---) (mod t?).
Hence, we have that v € K;ayﬁ, with o+ 5 =k and g > 1. O

Let us now set R = EBZ»]\LORZ' as a complete intersection SAGA presented by forms of degree d — 1,
with codimension n 4+ 1 and socle in degree N = (n 4+ 1)(d — 2). Now we will prove some results
giving restrictions on the dimensions of Y and of the general fiber F;, with [y] € Y. We are ultimately
interested into the case where d = 3; nevertheless, let us stress that the following proposition (2.2.3)
holds for every d > 3.

Proposition 2.2.3. If we assume n > ﬁ, then
dim(Fy) <n —2.
In particular, if d = 3, then F, cannot be an hypersurface.

Proof. Recall that dim(F,) < n — 1 by Proposition 1.2.7(d) so we have to rule out only the case
dim(Fy) =n — 1.
Let us assume, by contradiction, that F, is an hypersurface. Hence, by denoting with Fy the affine

cone over Fy, we have dim(F,) = n.

Recall that © =: O, C T, = {([z], [y]) | z*y = 0} by assumption. We will show that the multipli-
cation map ¢~ 1. : Rl — R* is never injective so we can define, as we have done for Oy, an incidence
correspondence I'y_; with a unique irreducible component ©,_; which dominates P(R!) via its first
projection. Moreover, we will have ©; = ©_1 so F}, is also the fiber of the second projection from

Or_1 and we can iterate this process.

We claim now that © C T'y_;. If p = ([z], [y]) € © is general, by using Lemma 2.2.2 and Proposition
2.1.1 we can conclude

n:mm@@ngmmﬁ40ggt§
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unless ¥~y = 0. Since, by hypothesis, we have that n > k/(d — 2), the only possibility is that

z¥~1y = 0. In particular we have shown that © C {([z],[y]) | z* 'y = 0} = T'x_ as claimed.

Then, © is contained in ©;_; since it dominates P(R!). On the other hand, since I'y_; C Iy,
we have also the other inclusion: © = ©j_;. In particular, the varieties Y and Fj, defined for © are
the same as the ones defined for ©;_;. Then, by reasoning as before, we obtain n = dim(Tﬁ% 2) <
dim (K}, 2
n < (k—1)/(d—-2) < k/(d—2) which is, as before, incompatible with the hypothesis on n. Then

© C I'y_9 and we can iterate this process.

). If we assume that z¥~2y # 0 for p general in ©, by Proposition 2.1.1 we would obtain

By recursion, we reduce ourselves to the case with k = 1. We can then see © as a subvariety of I'y
which dominates P(R!) via its first projection. This implies the failure of the weak Lefschetz Property
in degree 1. Then, by Remark 2.2.1, we get a contradiction: Fy has dimension at most n — 2, as

claimed.

For the second statement, let us notice that if d = 3, the required condition comes to be n > k, which
is always satisfied since n = N — 1 and k is at most N — 2 by construction. Hence, we always have

that the dimension of the general fiber F, is at most n — 2. O

Let us observe that, from the above Proposition 2.2.3 and from Proposition 1.2.7, we automatically
obtain also a new lower bound for the dimension of Y, when the condition in the hypotheses is satisfied.
In particular, in the case where d = 3, we get that 2 < dim(Y).

Let us now show another result, which gives a new upper bound for the dimension of the variety Y,
when d = 3.

Proposition 2.2.4. Assume that d = 3. Then, the dimension of Y is at most n — 3.

Proof. First of all, let us notice that if & < N —3 = n—2, then by Proposition 1.2.7(a), Y is contained
in MViy1 € N,—1, whose dimension is at most n — 3 (see Corollary 2.1.2 and, in particular, Properties

(2.1)). Hence, we easily get that in this case dim(Y’) < n — 3 as claimed.

Let us now consider the remaining case: k = N —2 = n — 1. Recall that dim(Y) < n — 2 by
Corollary 1.3.7 so, to conclude the proof, we only have to rule out the case where dim(Y) = n — 2.
Assume by contradiction that dim(Y) = n — 2. Since k = n — 1, proceeding as above, we have that YV
is contained in N,,, which has dimension at most n — 2. Hence, we get that Y is a component of N,,.
Then, if [y] € Y is a general point (y"~! # 0, since Y € N,,_1, for dimension reasons), we can write
T,(Y) = Ty(N,) = P(K;n,l) by Lemma 2.1.3. However, by Proposition 1.2.3 we know that [z] € F,
belongs to P(Kyln_l) and then to T, (Y'), contradicting Lemma 2.2.2(a). O

Let us now conclude this section with another technical results for complete intersection SAGAs
presented by quadrics, which links the dimension of the general fiber F} to the "nihilpotent order” of

the variety Y, with which we mean the minimum integer 7 such that Y C Nj.
Proposition 2.2.5. Assume that d = 3. Then, the following conditions are not compatible:

(a) fory €Y general, dim(F,) =k —1;
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(b)Y L Ni-1.

Proof. Let us recall that by construction 2 < k < N — 2 and that by Proposition 1.2.3 we have that
z%y® = 0 for every a, 3 such that o+ 8 = k + 1 and 3 > 1; in particular (Proposition 1.2.7(a)) we
have y**1 =0 and Y C Njy.

Let us assume by contradiction that both conditions (a) and (b) hold. By (b) we have y*~! # 0
for y € Y general so for ([z],[y]) general in © we have xy*~1 5 0. Indeed, otherwise, F, would be
contained in P(Kylk,l), whose dimension is at most k — 2 (see Properties (2.1)), which is impossible

by assumption. As a consequence, we have that
for  ([z],[y]) €© general, z%° #0 for a+pB=Fk with a,f>1 (2.3)

since, otherwise, by using the same argument as the one in the proof of Proposition 1.2.3, we would
also obtain that zy*~! = 0.

By property (2.3) and since for y general dim(F,) = k — 1 by assumption, we also have
To(Fy) = P(KY 1) = P(KL s ) (2.4

by Lemma 2.2.2.

Let us now claim that

for  ([z],[y]) € © general, Ty(Y) C T,(Fy). (2.5)
To show this, first of all, recall that Y & Ny_1 and Y C Njy11. Let us now consider two cases:

1) Y ZNg and 2) Y CNg.

Assume that p = ([z], [y]) € © is general (so that [y] is general in Y and [z] is general in F})). In the
first case, since Y is contained in Nj1, we have T, (Y) C IP’(K;k) by Lemma 2.1.3. Moreover, we have
that ]P’(K;k) = T,(F,) since y* # 0 and dim(F,) = k — 1. Analogously, for the second case we have
T,(Y) C P(K;k_l) - ]P’(Kiyk_l) = T,(F,). Here, we have used that zy*~! # 0 since p is general (by
property (2.3)).

Consider, as in Lemma 2.2.2, the affine cone Y of Y, the lifting © of © ¢ P(R') x P(R') to R' x R!
and its projection 75 on the second factor. By construction, we have that © C {(z,y)|z%y® = 0} =
f‘awg whenever o+ 3 = k+1 and 8 > 1. As in Lemma 2.2.2, for p = (2,y) € © general, the differential
map

dp7r2 : T(:),p — Tf/,y

is surjective.

Let us take any w in Ty . By Property (2.5), we have that its class [w] belongs to Ty (Fy).
Moreover, by the surjectivity of d,72, we can take in Ty, an element of the form (v, w).

The tangent space to © in p is a subspace of the tangent space T;, g = Tfa,g,p to the locus I',, g in

p, so we have (v,w) € T, 3. Then, we have

0= (z+to+t3(-))*(y +tw+t*(---))? (mod %)
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for «, § as above. In particular, by taking (a, 8) equal to (k —1,2) and (k, 1) we obtain the following

relations satisfied by (v, w):

(k — DvzF=2y? + 22 tyw =0 kva* "ty + 2fw = 0.

k—

Since [w] € Ty(F,), by property (2.4), we have 2*"'yw = 0. Then, from the first equation we

get v € K;k,QyQ = K;k,ly (again by property (2.4)). Hence the second equation yields z*w = 0.
In conclusion, we have proved that T,(Y) C P(K,) = 7] L([z]). We stress that the last equality
holds since [z] is general and then, the whole fiber over [z] with respect to p; is contained in © so
P(KL,) = i ([#]) = 7 ().

This easily brings to a contradiction. Indeed, the above property implies that dim(Y) < dim(r; *([z]))
for [z] € P(R') general, and since

dim(0) = dim(Y) + dim(F,) = dim(x; ' ([z])) + n

we also get dim(Y') < dim(Y') + dim(F},) — n, which is impossible by Proposition 1.2.7. O

2.3 Proof of Theorem C

In this section we will prove Theorem C from the Introduction (see Theorems 2.3.2 and 2.3.4). In
particular, we will show that a complete intersection SAGA presented by quadrics satisfies the whole
strong Lefschetz property (both in degree 1 and in degree 2) if it has codimension 5 and, in the case of
codimension 6, it satisfies the strong Lefschetz property in degree 1. (Observe that here we are using

the definition of strong Lefschetz property in narrow sense (see definition 1.1.6).)

Let us firstly consider the former case, the one with codimension n 4+ 1 = 5. We have thus n = 4 and
d = 3: in particular, we are dealing with standard Artinian Gorenstein algebras which are quotients
of S = K]|xg, - ,z4] by ideals generated by a regular sequence of length 5 whose elements have degree

2. Under these assumptions we have I = (I?), N = 5 and
R=S/I=RoR' oRPoROR'OR

with (dim(R"))?_, = (1,5,10,10,5,1). For simplicity, if « € R¢, we will define by p;(c) to be the
multiplication map by a from R’ to R'™¢. In particular we have K¢, = ker(u;(a)).

Let us start with the following technical result we will need in what follows.

Proposition 2.3.1. Let [z] € P(R') and [q] € P(R?) such that qz = 0. Let W C K2 be a subspace
with dim(W) > 4. Then W N (x - RY) # {0}.

Proof. Consider the quotient R, = R/(0 : ), i.e. the quotient of R by the ideal J such that J* = Ké.
This is a SAGA with socle in degree N, = N — deg(q) = 3 by Lemma 1.1.9. Since z¢g = 0 by
hypothesis, we have K # 0. By Proposition 2.1.1 we have dim(K]) < 2 and so dim(R}) € {3,4}.
Since dim(K?) = dim(R?) — dim(R?) = 10 — dim(R}) we have that dim(K7) € {6,7}. In particular,
dim(Kg) < 7. Consider W C KZ of dimension 4 and the subspace V = z - R!. By Proposition 2.1.1
we have that V has dimension at least 5 — 1 = 4 and, by construction, is a subspace of K 3. Then

W NV has dimension at least 1 as claimed. O
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Let us now prove the first part of Theorem.

Theorem 2.3.2 (Theorem C). Let R be as above. Then R satisfies the strong Lefschetz property, i.e.

the general element x € R is such that
(SLPy) pi(z3) =23 : RY - R4
(SLPy) po(z) =2 : R?> - R3

are both isomorphisms.

Proof. The proof is organized in two steps: first of all we will prove that SLP; implies SLP, and then
that SLP; holds.

Step 1: SLP; = SLP,. We will proceed by contradiction by assuming that SLP, is false, i.e.
that for all x € R! we have K2 # {0}. We can consider the incidence variety

102 = 1" = {([2], [d)) € P(R) x P(R?) |xq = 0}

and its projections p; and py (see the general construction in Section 1.2). Since SL P, does not hold we
have that p; is dominant. Hence, as done in Section 1.2 one has that there exists a unique irreducible
component O of I'? that dominates P(R!) via the first projection. Again, let us call m; the restrictions
to © of such projections p; and let Y be the image of © via . Since 71 is dominant and P(R!) ~ P*,
we have that © has dimension at least 4. Moreover, if [¢] € P(R?), we have 7, ' ([q]) € P(K 4) % [q] so
its dimension is at most 1 by Proposition 2.1.1. Then, for [¢] € Y general,

dim(Y) = dim(©) — dim(© N7, ' ([¢])) >4 -1 = 3.

We claim now that Y C N2(2) = {[q] € P(R?)|¢*> = 0}. Let ([z],[g]) be a generic point in ©.
Proceeding as in Proposition 1.2.3, since 71 : © — P(R!) is dominant, for any v € R', we can find
B(t) = q+tw+t3(---) € Y C P(R?) such that (z + tv)B(t) = 0. Then, by considering the expansion

of this relation modulo t? we obtain
zw + qu =0 for all v € R. (2.6)

Then, by multiplying by ¢, one gets g>v = 0 for all v € R'. By Gorenstein duality we have ¢> = 0 so
Y C N2(2) as claimed.

Since p = ([z], [q]) was general, we can also assume that [g] is smooth for Y and NQ(Z) and that the
differential d,mo : T, — Ty,q is surjective. Then, as in Corollary 2.1.2, one can show that the Zarisky
tangent space to the affine cone /\72(2) of /\f2(2) at g is Tﬁéz)g ~ KZ. Since dim(Y) > 3 and Y C /\f2(2) we
can find three tangent vectors wy, we, w3 such that W = (wy, wa, ws, q) is a 4-dimensional subspace of
Ty, € K2, where Y is the affine cone of Y. Then, by Proposition 2.3.1, we have W N (z- R') # {0} so
we can find n € R!\ {0} such that xn € W. Notice that zn cannot be equal to ¢ since, otherwise, we
would have that for [z] € P(R!) general 0 = xq = 2?7 and then 237 = 0: this is impossible since we
are assuming SLP;. Then zn is not 0 as tangent vector in Ty ,. By the surjectivity of the differential

map d,me, there exists v € R! such that

(v,2n) € Top € Tp(r1),2) X Tp(R2),[q]
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so there is a curve («(t), 8(t)) C © passing through p with tangent vector (v, xn). By expanding at
the first order one gets a relation as the one in Equation (2.6): 227 + qu = 0. If we multiply by x we
have 231 = 0. However, this is only possible for 2 special since we are assuming SLP; and so it leads

to a contradiction.

Step 2: SLP; holds. Assume, by contradiction, that SLP; does not hold. Then, as in the
construction described in Section 1.2, we can consider I'y_o = I's = {([z], [y]) € P(R') x P(R) | 23y =
0} which dominates P(R!) via its projection p;. Let us consider © C T3, the unique irreducible
component that dominates P(R') via the first projection, let m; = pije, Y = m2(0) and F, the first
projection of the fiber through 75 over the point y € Y. By Proposition 1.2.7, we have some immediate

restrictions to the values of the dimensions of Y and of the general fiber Fy:

1 <dim(Y) <3 1 <dim(F,) <3 dim(Y') + dim(Fy) = dim(©) > 4.

Moreover, by Corollary 1.3.7 of Section 1.3 (observe that here we have k = N —2), we can improve

the above bounds, obtaining

1<dim(Y)<2 2<dim(F,) <3 dim(Y)+ dim(F,) = dim(©) > 4. (2.7)

Let us now list in the following table the possible values of the pairs (dim(Y"), dim(F})), for y € Y

general point:

dim(Y) VS dim(F,) | 2 | 3 |

1 (2.7) | 77
2 7 7

While the case (dim(Y"),dim(F,)) = (1,2) has been already ruled out by inequalities 2.7, we still
have three possibilities that could occur. However, let us observe that by Proposition 2.2.3 we know
that the general fiber F, can not be a hypersurface in P(R') ~ P4, hence it can not have dimension
3. Let us analyse the remaining case, namely dim(Y) = dim(F}) = 2. But by Proposition 2.2.4, we
have that dim(Y") #n —2 = 2.

In other words, we can get rid of all the possibilities in the above table, by using the results proved in

the previous sections:

dim(Y) VS dim(F,) | 2 | 3
1 (2.7) Prop. 2.2.3
2 Prop. 2.2.4 | Prop. 2.2.3

Hence, there are no possibilities for Y and F, to exists: this means that the first projection

71 : I's -—-» P(R') cannot be surjective, and so, equivalently (see Remark 1.2.1), that the strong
Lefschetz property in degree 1 holds.

O
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Since Jacobian rings of smooth cubic threefolds represent a special case of complete intersection
SAGAs presented by quadrics with codimension 5, we have the following obvious but important

consequence:

Corollary 2.3.3. The Jacobian ring of a smooth cubic threefold satisfies the strong Lefschetz property.

With the same idea of strategy we have followed to prove the previous theorem, we can deal with
the case of complete intersection SAGAs presented by quadrics of codimension 6. In this case we have
n =5 and d = 3: we are dealing with standard Artinian Gorenstein algebras, that are quotients of
S = K|xg, -+ ,x5] by ideals generated by a regular sequence of length 6 whose elements have degree
2. In this situation, we have I = (I?), N = 6 and

R=S/I=R°®@R'©oR*®R*®R*'® R°® R®
with (dim(R?))%_, = (1,6, 15,20, 15,6, 1).

Theorem 2.3.4 (Theorem C). Let R be a complete intersection SAGA presented by quadrics of
codimension 6. Then R satisfies the strong Lefschetz property in degree 1 (SLP;), i.e. the general
element x € R is such that the map p1(x?) : RY — R is an isomorphism.

Proof. Let us assume by contradiction that the statement does not hold: the map p1(z?) : Rt — R®
is never injective for x € R!. Then we are again in the situation described in the construction of
Section 1.2 with k = N —2 = 4 and Ty = I'{}" = {([z].[y]) € P(R") x P(R!) | a*y = 0}: since the
first projection from I'y is surjective by assumption, we can define ©,Y and F, as usual. Let us now
focus on the dimensions of Y and of F}, for general [y] € Y.

First of all, let us recall that, by Proposition 1.2.7 and Corollary 1.3.7, we have
1 <dim(Y) <3 2 < dim(Fy) <4 dim(Y') + dim(Fy) = dim(©) > 5. (2.8)

As we have done in the proof of the previous theorem 2.3.2, let us now list in the following table the
possible values of the pairs (dim(Y"), dim(F})). By using the constraints (2.8) and the various results
proved in the previous sections, we can rule out all the possibilities: in the table below we specify

which result excludes each pair.

dim(Y) VS dim(F,) | 2 | 3 | 4
1 (2.8) (2.8) Prop. 2.2.3
2 (2.8) Prop. 2.2.5 + bounds (2.1) | Prop. 2.2.3
3 Prop. 2.2.4 Prop. 2.2.4 Prop. 2.2.3

In particular, the case (dim(Y'),dim(F)) = (2,3) can’t be attended because of Proposition 2.2.5.
Indeed, if we assume that the dimension of the general fiber F, is n —2 = 3, we then have that Y has
to be contained in the nihilpotent locus N3, whose dimension by bounds (2.1) is at most 1: Y can’t
have dimension equal to 2.

Finally, since no pair as above is possible for our framework, we get a contradiction and this

concludes the proof. O
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As in the previous case, we have the following easy but important consequence.

Corollary 2.3.5. The jacobian ring of a smooth cubic fourfold satisfies the strong Lefschetz property

i degree 1.

Remark 2.3.6. Our techniques do not apparently allow us to show also the validity of the strong
Lefschetz property in degree 2 for complete intersection SAGA presented by quadrics with codimension
6. Indeed, if we for example proceed as we have done for the case of codimension 5, by supposing the
failure of such a property and consequently constructing the usual framework, we can not say almost
anything about the variety Y. For example, we can not obtain the inclusion of Y in any nihilpotent
locus. Indeed, the failure of the strong Lefschetz property in degree 2 means that the multiplication

map pz(z?) : R — R* is never injective for all x € R': we can then consider
1,2
L =155 = {([«),[q)) € P(R") x B(R?) | a%q = 0},

whose first projection over P(R') is surjective and where Y is defined as we have usually done. In
analogy with the case of codimension 5, we would like to show (and we also expect) that Y C /\/'3(2).
But if we try to apply the method used in the proof of Proposition 1.2.3 to this specific situation, we
can find that every point ([z],[q]) € T satisfies also the equation xq* = 0. At this point, we can say
that for all v € R' there exists an element w € R? such that

(z + tv)(q + tw)? = 0 mod >

and from this we can get

vg® + 2zqw = 0.

But now maultiplication by q does not make sense anymore: since vq> would be an element of RT and
hence naturally zero, we can not divide by v and obtain the desired equation. This fact seems to stop
any reasoning at the beginning, since we do not have apparently instruments to work with this variety

Y in an appropriate way, as we have done in the other case.

2.4 Some results in higher codimension

In this section, our aim is to obtain some results concerning Lefschetz properties for complete inter-
section SAGAs presented by quadrics with codimension equal to n 4+ 1 > 4 by using techniques and

results developed in the previous sections. In particular, we will show Theorem D:

Theorem 2.4.1 ((Theorem D)). Let R be a complete intersection SAGA of codimension n+ 1 pre-
sented by quadrics. Let k € {2,3,4}. If n > k + 1 we have that R satisfies SLP; (k).

We will show the above theorem by splitting up the proof in 3 cases, which will be treated in the
Propositions 2.4.2, 2.4.3 and 2.4.5 respectively, according to the value of k.

Proposition 2.4.2. Property SLP;(2) holds for every n > 3.
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Proof. Let us assume by contradiction that the multiplication map z?- : R! — R® is not injective for
[z] € P(R!). Then we can consider the locus 'y = {([z], [y]) € P(R') x P(R') | 2%y = 0}, with the
corresponding varieties ©, Y and Fj defined as we have usually done. By Proposition 1.2.7(a), we
obtain that Y C M3. Then, since by Corollary 2.1.2 we get that dim(N3) < 1 and by Proposition
1.2.7(d) we know that dim(Y') # 0, we have dim(Y’) = 1: hence for [y] € Y general F, must be a
hypersurface, which is not possible by Proposition 2.2.3. 0

Proposition 2.4.3. Property SLP;(3) holds for every n > 4.

Proof. Let us assume by contradiction that the multiplication map 23 : R' — R? is not injective for
[z] € P(R'). As in the proof of Proposition 2.4.2, let us construct I's, ©, Y and F,. In this case,
by Proposition 1.2.7 we have that Y C Ny so dim(Y') < 2, by Corollary 2.1.2. If [y] € YV is general,
then the only possible value for (dim(Y'),dim(Fy)) is (2,n — 2) since F, can not be a hypersurface
by Proposition 2.2.3. By dimension reasons, Y ¢ N3, thus we have that the general element [y] of Y’
is such that y3 # 0. Then, since by Proposition 1.2.3 we know that for every ([z], [y]) € © also the
equation zy? = 0 is satisfied, we get F, must be contained in IP’(K;3), whose dimension is at most 2,
by Proposition 2.1.1. Then we have proved that n — 2 = dim(F}) < 2 which is impossible for n > 5.

The case where n = 4 corresponds to the strong Lefschetz property (in narrow sense) for complete
intersection SAGAs presented by quadrics with codimension 5, which has already been proved in
Theorem 2.3.2 (Theorem C). O

Before showing the analogous result for the SLP;(4), let us prove the following:

Lemma 2.4.4. Let R be a complete intersection SAGA presented by quadrics of codimension n + 1
and consider 4 < k <n—1. Assume that R does not satisfy SLP; (k) so one can consider the varieties

I't,0,Y and F, constructed as in Section 1.2. For [y| € Y general we have the following properties:
(a) If R satisfies SLPy(k — 1), then dim(F,) <k —1;
(b) (dim(Y),dim(F,)) # (k- 1,k - 1).

Proof. For (a), let us assume by contradiction that for [y] € Y general, dim(F}) = h > k. Then, by

Lemma 2.2.2, we have that for [x] € F), general

YT

) - ]P(K;ayﬁ)v

where oo 4+ 8 = k, with § > 1 and Fy is the affine cone over Fy,. But since SLP;(k — 1) holds for R by
hypothesis, for ([z],[y]) € © general, we have that x*~!y # 0, and so

h = dim(F,) < dim(P(K ) <k -1,

where the last inequality comes from Proposition 2.1.1. This is clearly impossible by the assumptions

over h.

For (b), let us consider [y] € Y general and assume by contradiction that dim(Y') = dim(F},) = k—1.
By Proposition 1.2.7(a) we get that Y C Npi1, and by Corollary 2.1.2 we deduce that Y is an
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irreducible component of N}y, and for dimension reasons we have that ¥ ¢ N, hence y* # 0 for
[y] € Y general. By reasoning as in the proof of Proposition 2.4.3 and by Proposition 2.1.1, we get
F, = ]P’(K;k) Moreover, since [y] is general in Y and Y is an irreducible component of Ny, by
Corollary 2.1.3 we have T, (Y) = P(K;k) = F,. With these conditions, we can proceed as in the proof

of Proposition 2.2.5 and consider for example the equations
0= (z+tv)" 1 (y + tw)? (mod t?) 0= (x + tv)*(y + tw) (mod %),

where w € Ty and (v,w) € Tg In this way, we get that ¥ C Trfl([x]), where, as usual,

(z.y)”
7 : O C P(RY) x P(R') — P(R!) is the first projection. This leads to a contradiction as shown in

Proposition 2.2.5. ]

We can now show the last case we need to prove Theorem 2.4.1.
Proposition 2.4.5. Property SLP;(4) holds for every n > 5.

Proof. First of all, let us notice that the statement for n = 5 corresponds to the strong Lefschetz
property (in narrow sense) for complete intersection SAGAs presented by quadrics with codimension
6, which has already been proved in Theorem 2.3.4 (Theorem C). We have to prove SLP;(4) for
n > 6.

Let us assume that for € R!, the multiplication map 2*- : R — R’ is not injective. As usual,
we can then consider the incidence correspondence I'y = {([z],[y]) € P(R!) x P(R!) | 2%y = 0} and
the corresponding varieties ©, Y and F,, for [y] € Y general.

By Proposition 1.2.7(a), we get that Y C N5, so dim(Y") < 3 by Corollary 2.1.2. By using the bounds
of Proposition 1.2.7 and Proposition 2.2.3, the only possible cases for the values of (dim(Y'), dim(Fy))

are

(2,n —2) (3,n —2) (3,n — 3).

By Proposition 2.4.3, we know that SLP;(3) holds for n > 6. Then, by Lemma 2.4.4(a), we get that
dim(Fy) is at most 3: the cases (dim(Y'),dim(Fy)) = (2,7 — 2) and (dim(Y),dim(Fy)) = (3,n — 2)
can not occur for every n > 6. We also have that (dim(Y'), dim(F)) # (3,n — 3) for every n > 7.

The only case we have still to analyze is the one with n = 6 and dim(Y) = dim(F,) = 3. By
considering Lemma 2.4.4(b), we can rule out this last possibility too: SLP;(4) holds for R, for every
n > 5. O

We conclude this section by observing how much can be easily said, by using these methods, for
the SLP; (in narrow sense) for a complete intersection SAGA of codimension 7 (i.e. n = 6) presented

by quadrics (e.g. for the Jacobian ring of a smooth cubic fivefold).

Corollary 2.4.6. Let R be a complete intersection SAGA of codimension 7 presented by quadrics.
We have that SLP;(4) holds. Moreover, if SLPy(5) does not hold (i.e. if SLP; does not hold),
then one can construct the varieties I's,0,Y and F, as usual and we have, for ly] € Y general,

(dim(Y), dim(F,)) € {(2,4), (3,3)}.
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Proof. Property SLP;(4) holds by Theorem 2.4.1. Assume that SLP;(5) does not hold for R. Then.
by Proposition 1.2.7 and Corollary 1.3.7, we have

1<dim(Y) <4 2 <dim(Fy) <5 dim(Y) 4+ dim(F}) = dim(©) > 6. (2.9)

As in Theorem 2.3.4, we put in a table the possible values of the pairs (dim(Y’),dim(Fy)) and we

specify which result rules out the corresponding case.

dim(Y) VS dim(F,) | 2 | 3 | 4 | 5 |
1 (2.9) (2.9) (2.9) Prop. 2.2.3
2 (2.9) Prop. 2.2.3
3 (2.9) Prop. 2.2.5 + Bounds (2.1) | Prop. 2.2.3
4 Prop. 2.2.4 | Prop. 2.2.4 Prop. 2.2.4 Prop. 2.2.3
This concludes the proof. O

2.5 A lifting criterion for weak Lefschetz property

It is known (see, for example, [HMM™13, Proposition 3.11]) that, the SLP for a graded algebra is
inherited to its quotients by suitable conductor ideals. Let us recall that given an element o € R°\ {0}
we call conductor ideal of « the ideal (0 : a) = @Y ker(a- : R? — R™€), where R is any SAGA with
socle in degree N (see the definition in Lemma 1.1.9). In this section we prove a sort of converse
for the weak Lefschetz property in degree 2 (W LP,) for complete intersection SAGAs presented by
quadrics. More precisely, we will give a criterion to reduce the proof of W LP, for a SAGA R as above
to a suitable quotient of R, modulo the existence of a non-Lefschetz element. We stress, moreover,

that this criterion works for any codimension.

Elements of P(R!) for which the corresponding multiplication map is not of maximal rank play

here an important role, so it is convenient to introduce the following subschemes of P(R*!).

Definition 2.5.1. Let R be any SAGA with socle in degree N. For 1 < a < N — 1 we define the

Lefschetz locus in degree a to be
Ly :={[z] € P(RY) |z : R* = R has mazimal rank} C P(R").

An element [x] € P(R') is called Lefschetz element in degree a if [x] € L,. On the contrary,

elements not in L, are called non-Lefschetz elements (in degree a).
Geometric results on these loci can be found, for example, in [AR19] and [BMMRN18§].

Remark 2.5.2. Let us stress that if we consider a non-Lefschetz element in degree 1 [z], i.e. [z] €
P(RY) \ L1, we have that the multiplication map z- : R' — R? is not injective. Hence, we have a non
trivial kernel of such a map, i.e. K} # {0}. If R is a complete intersection SAGA presented by forms
of degree d — 1, by Proposition 2.1.1, we know that dim(K}) < ﬁ. If d > 4 the only possibility is
that dim(K}) = 0 and so K! = {0} (actually in this case the multiplication by z corresponds to the

multiplication map S' — S%, that is clearly always injective). If d = 3, we have dim(K}) < 1 and if
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2] is a non-Lefschetz element we get the equality and in particular there exists an element [w] € P(R')
such that P(K!) = [w], i.e. zw =0 and K! = (w). Clearly, [w] itself is a non-Lefschetz element in
degree 1 with P(K]) = [2].

Let us start by setting as usual S = K|z, ..., z,] and by proving the following result.

Lemma 2.5.3. Assume that R = S/I is a complete intersection SAGA of codimension n+1 presented
by quadrics (so the socle is in degree N = n+1). Assume that there exists a non-Lefschetz element in
degree 1 [2], such that zw = 0 for w # 0. Then (2) = (0 : w) and R = R/(2) is a complete intersection
SAGA of codimension n presented by quadrics. In particular, dim(K3) = dim(R*~!) — dim(K5™1).

Proof. By definition, we have (z) C (0 : w), so we can define an epimorphism of graded K-algebras

p:R:=R/(z) > R:=R/(0:w).

By Lemma 1.1.9, the latter is a SAGA of codimension n and socle in degree N = n. By considering
R, it is clearly an Artinian standard algebra of codimension n. We want to show that R is also a
complete intersection SAGA presented by quadrics. By hypothesis, we know that zw € I, so we
can complete {zw} to a regular sequence of the form {go, -, gn—1, 2w} spanning I. Notice that, by
construction, go, - -, gn—1 do not belong to the ideal (z) and the reductions g; of g; modulo (z) are a
regular sequence of quadrics in the polynomial ring S = S/(2).

Hence we have

N2 Y S
R=R/(z) = (2) ~ (G0, -+, Gn1)

so R is a complete intersection SAGA presented by quadrics. In particular, it has socle in degree

N =n=N.
Since ¢ is an epimorphism and preserve the degrees, the image of a generator & of R" is a non-zero
multiple of the generator ¢ of R™. This also implies the injectivity of (. Indeed, let us take a non-zero
element 2 € R'. There exists y € R" such that y = . Hence, we have
A = ¢(a) = p(zy) = o(x)e(y),

and so we get that ¢(x) can not be zero and ¢ is an isomorphism. In particular, for all s,

R 2=(2)s=(0:w)s = K3

w

then we clearly have
dim(K$) = dim(R*'2) = dim(R*™!) — dim(K:™1)

as claimed. 0
We can now prove the following ”lifting criterion”:

Theorem 2.5.4. Let R = S/I be a complete intersection SAGA of codimension n+ 1 > 6 presented
by quadrics and assume that z is a non-Lefschetz element (in degree 1) for R. If R = R/(z) satisfies
the W LPs, then the same holds for R.
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Proof. First of all, by Lemma 2.5.3, we have that R = R/(z) = R/(0 : w) is a complete intersection
SAGA presented by quadrics and K! = (w) . Let pr, be the projection R — R.

Assume, by contradiction, that W LP, holds for R but not for R. In particular, for all € R!,
the multiplication map z- : B2 — R3 has non trivial kernel, i.e. K2 # {0}. Consider the incidence
correspondence

L= {([z],[v]) € P(Rl) X P(Rl) | zvz =0}
with its projections p; and py on the factors.

We claim that p; is surjective. Since I is a closed subset, it is enough to show that for [z] € P(R!)
general there exists [v] € P(R!) such that xvz = 0. Let x be a general element of R'. As K2 # 0 we
have that there exists [¢] € P(R?) such that zq = 0 in R. Then we have also pr,(zq) = ¢ = 0 in R.
Since [z] is general in P(R!), then the same holds for [z] € P(R!), so we get ¢ = 0 in R?, as WLP;
holds for R by assumption. Then, by Lemma 2.5.3, we have ¢ € (0 : w)y = (2)2 = 2z - R! so there
exists [v] € P(R!) such that 0 = xq = vz as claimed.

In analogy with what happens for the construction described in Section 1.2, we have that there
exists a unique irreducible component ©' of I which dominates P(R!) via 71, where we set 7; to be
the restriction of p; to © for i = 1,2. We have that for [z] € P(R') general

m H([2]) = p1 ' ([2]) = [2] x P(KG)
so the general fiber of w1 has dimension at most 1 by Proposition 2.1.1.

Let us now show that the general fiber of 71 has dimension 1. Consider [z] € P(R!) general.
Firstly, let us observe that ([z], [w]) belongs to p;'([z]) = 7, '([z]) since zw = 0. As shown above,
there exists [q] € P(R?) such that z¢ = 0 and ¢ = zv for suitable [v] € P(R!). Moreover [v] # [w]

since, otherwise, [¢] would be zero, hence 7, *([z]) = ([w], [v]) as claimed.

By considering the second projection 7o, we have that for [v] general in Y/ = m5(©’), the fiber
75 1 ([v]) is such that

my ([0]) €y ([v]) = P(K,.) x [v],

which has dimension at most 1 by Proposition 2.1.1. Since 71 is dominant, for ([z], [v]) € ©’ general
we have

n+ 1 = dim(P(R")) + dim(7; ' ([2])) = dim(€') = dim(Y”) 4 dim(my * ([v])).

Since dim(Y”) < n and dim(7;, ' ([v])) < 1, for v general, the only possibility is to have dim(r, ' ([v])) =
1 and Y/ = P(RY).

We will show now that having Y’/ = P(R!) gives a contradiction. First of all, by reasoning as in

the proof of Proposition 1.2.3, one can prove that
Y' C {[v] € P(RY) | v?2 = 0}.

Since Y/ = P(R') and squares of elements of R' generates R? (as R is standard), we have that

z- R? = 0. This is impossible by Gorenstein duality, since z # 0. O
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In the statement of Theorem 2.5.4 we require n + 1 > 6 since for codimension 5 the W L P, has
already been proved (in [AR19] or as consequence of SLP proved in Theorem 2.3.2) and in even
smaller codimension, it easily follows from W LP; that is known to hold. From this, we get the

following consequence:

Corollary 2.5.5. Let R be a complete intersection SAGA of codimension 6 presented by quadrics
(e.g. R is the jacobian ring of a cubic fourfold). If Ly is not the whole P(R'), R satisfies W LP.

2.6 Nihilpotent loci and geometrical properties

In this section we will study geometric properties of the nihilpotent loci N}, C P(R!') where R is a
complete intersection SAGA of codimension n+1 presented by quadrics. We stress that we don’t make

any assumptions about the validity of any weak or strong Lefschetz property for R in this section.

We recall that the nihilpotent loci (in P(R')) are defined as N}, = {[z] € P(R') | ¥ = 0}. Moreover,
if X C P" is non-empty, we denote by Sec*(X) C P the k-secant variety associated to X, i.e.

Seck(X) := U (P15 pK)

pl)'“)kaX

where (py,...,px) is the linear span of the points pi,. .., pg. For brevity, we set Sec?(X) := Sec(X).
The interested reader can refer to [Rusl6, Chapter 1] for various properties of these classical loci

(although the definition considered is slightly different from the one adopted by us).

We stress that, like the non-Lesfschetz loci P(R') \ Ly, the nihilpotent loci AV} are expected to be
empty when k is small for R general. Hence it is interesting to study these loci when R is ”special”.

For example, these loci give a lot of information for SAGAs for which some Lefschetz properties do
not hold.

Let us start by analyzing the locus N C P(R') ~ P". We recall that by Corollary 2.1.2 and, in
particular, by bounds (2.1) we have that dim(MN2) < 0 so it is either empty or it is the union of a finite

number of points. These points have to satisfy the following:

Proposition 2.6.1. Assume that [t1],...,[ts] € Na are distinct points. Then TI¥_t; # 0 in R and
[t1], ..., [tx] are in general position in P(R'). In particular, #No <n+1= N.

Proof. The statement is trivially true for £k = 1. If £k = 2 the only statement one has to check is that
tita # 0. This is true since dim(K}) < 1 by Proposition 2.1.1 and ¢; € K}, hence K}, = (t1), but
[t1] # [t2]. We will then proceed by induction assuming that the claim is true till k£ — 1.

Let T' = {[t1], ..., [tx]} be a set of k distinct points of N3. By contradiction, let us assume that
either (A1) or (Az) holds, where

(A1) {ti1,...,tx} are linearly dependent

(Ag) TIF_;t; = 0.

1=
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First of all, we claim that (As) is equivalent to (A;). By induction hypothesis, for {z1,...,2x_1} C

{t1,...,tx} with [2;] # [2;] for all i # j, we have TI' 'z, # 0, so K} . .., has dimension at most k — 1
by Proposition 2.1.1. Since z7 = 0 by assumption, we have K} _ = (z1,...,2,-1). Then, (A1)
holds if and only if we have, up to a permutation of the elements, t;, € (t1,...,tx_1) = Ktll"'tk—l and

this is equivalent to IT¥_;¢; = 0, i.e. (As).

Hence, let us suppose that t € (t1,...,tk_1), SO we can write t; = Zf;ll a;t;. Then we have

0= ti =2 Z aia]’tit]’.

1<i<j<k—1
If k=3 we have 0 = t% = 2a1astits S0, since t1ty # 0 by induction hypothesis, we have either a; = 0
or ag = 0. This implies either {t1,t3} or {t2,¢3} linearly dependent, and we get a contradiction since
k—

this is against the induction hypothesis. If k£ > 4, by multiplying by szfti, we get

0= 2ak_2ak_1ﬂfz_llti.

Since Hf;llti % 0 by induction hypothesis, we have either ax_o = 0 or ax_; = 0 and we have a

contradiction as in the case k = 3. O

By considering the Fermat hypersurface X = V(F') in P", one can easily see that, for the Jacobian
ring R = S/J(F), the set N3 consists of exactly n + 1 independent points. However, also the converse

is true, as shown by the following:

Corollary 2.6.2. Assume that #/Ns = n+1. Then R is the Jacobian ring of a cubic hypersurface X

projectively equivalent to the Fermat cubic hypersurface in P™.

Proof. By assumption we have that No = {[to], ..., [tn]}. By Proposition 2.6.1, {tg,...,t,} are n +1
linearly independent forms so R = S/I with S = K[to, ...,t,]. On the other hand, in S we have t? € I

and {t3,...,t2} is a regular sequence which generates I as ideal of S. Then, if we set F = Y1 3,

we have that I is the Jacobian ideal of the Fermat cubic hypersurface X = V(F) as claimed. O

Remark 2.6.3. We have Sec®(N2) C Nyy1. Indeed, if [t1], ..., [tx] € Na we have t? = 0. In particular,
every monomial of degree k + 1 in the variables t; is identically 0. Then (Zle ait))*1 =0 for all
ai,...,ar € K so Seck(Ny) € Niyp1. More generally,

whenever v > k(a — 1) one has Sec®(N,) C N,

Indeed, consider [t1], ..., [tr] € Nu and let m = 7, t% with Y% a; = r. We have m = 0 if there
exists i such that a; > a. On the other hand, this always happens if r > k(a — 1): if a; < (a — 1) for

all i, we would have
k k
T:Zai§2(a71):k(a71)<r
i=1 i=1
which gives a contradiction.

With the following Lemma, let us study the geometry of the nihilpotent locus N3:
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Lemma 2.6.4. If L is a line contained in N3, then L C Sec(N3), i.e. a line in N3 is a line joining
two different points of Na.

Proof. Assume that L is a line in N3. Since the dimension of A3 is at most 1 by bounds (2.1), we
have that L is a component of N3. As dim(N3) < 0 and dim(K}) < 1 for any z € R! by Proposition
2.1.1(a), we can find [v],[w] € L such that [v] # [w], [v],[w] € N2 and vw # 0. By hypothesis, we
have that (v + tw)® = 0 for all t € K so v? = v?w = vw? = w3 = 0. Then, K;Q, Kiﬂ and K, contain
(v,w). On the other hand, these subspaces have dimension at most 2 by Proposition 2.1.1(a) so they
coincide with (v, w). By Proposition 2.1.1(b), there exist A\, u € K such that

v? = \w? and vw = pw? (2.10)

so we have (v + tw)? = v? + 2tvw + t2w? = W (t? + 2ut + ).

We claim that t? + 2ut + X has two distinct roots so L is indeed a line contained in Sec(N3).
Assume, on the contrary, that > + 2ut 4+ A is a square. This implies that u? = A. Then, from the
Equations (2.10), we obtain

v(v — pw) =0 w(v — pw) =0

so v — pw € K} N KL. By Proposition 2.1.1 we can conclude that [v] = [w] which is against our

assumptions. ]

We will generalize this result in Theorem 2.6.6 by considering suitable linear subspaces contained

in NVj,. We need first the following technical lemma.
Lemma 2.6.5. Let k > 2 and let T be an hypersurface in P* C P(R'). Assume either that
1. 0<s<k-—1or
2. s =k and the support of T is not contained in the union of 2 different hyperplanes.
Then there exist [xol, ..., [rs] € T which are linearly independent and such that 1I5_yx; # 0.

Proof. The statement of the lemma is clearly true for s = 0. We will proceed by induction on
s < k. Then let us assume that there are [x¢], ..., [rs—1] € T which are linearly independent and with
y =xo---xs 1 # 0. Consider the linear spaces 71 = (zo, ...,z 1) and 75 = P(K}). We are done if we
prove that U = T'\ (71 U7z) is not empty. By construction we have dim(71) = s—1 and dim(72) < s—1
by Proposition 2.1.1. Hence, if s < k, U is an open dense subset of T. If s = k and the support of
T is not contained in the union of 2 different hyperplanes, there exists an irreducible component C
of T which is different from 71 and 7. Then C'\ (71 U 72) is not empty so U is again not empty as

claimed. O
Theorem 2.6.6. Assume that 7 is a (k — 1)-plane contained in Nyy1. Then

(A) Tx, = 7 NNy is an hypersurface of degree k (with possible multiple components) in 7;

(B) there exist [xo), ..., |rx_1] in Ty which are linearly independent, TI¥ =)z}, # 0.

In particular, Ty, is non degenerate in © and ™ C Sec(N},).
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Proof. Notice, first of all, that dim(Ny;) < k — 2 by bounds (2.1), so 7 \ Ny # (. Then, we can find

{z0,...,zx_1} linearly independent which span 7 and such that xy_1 & N}. Since 7 C N1, we have
that

(a0x0+~--—|—ak_1xk_1)k+1 =0 Yag,...,ap_1 €K
and this is equivalent to say that all monomials of degree k£ + 1 in the variables xq,...,x;_1 are 0.
Then, if m is a monomial of degree k in these variables, either m = 0 or K} = (zo,...,7x_1), by

Proposition 2.1.1. In particular, we have that for each monomial of degree k there exists A\, € K with

m = )\ma:’lzfl (recall that we assumed zj_1 € Nj). Then
(a0 + -+ + ap—1zp-1)F = pe(@)zf_, (2.11)

where py(«) is a homogeneous polynomial of degree k in the variables «q, ..., ax_1. It is not 0 since
the coefficient of 0‘2—1 is 1 by construction. By Equation (2.11), Tp = m N N} is described by the

vanishing of pi(a). In particular, N} is not empty and we have also proved (A).

For (B), if T} has support which is not contained in 2 different hyperplanes, the thesis follows

directly from Lemma 2.6.5 so we have to discuss only the cases
(B1) : Supp(Ty) = HiUHy  and  (By): Supp(Tx) = Hi

where H; and H, are distinct hyperplanes.

In both cases (Bj) and (Bz), there is an hyperplane H; of 7 contained in Tj,. We recall that T}, is

contained in NV, by construction. By Lemma 2.6.5 applied to H; C 7 we can find [zg], ..., [zk—2] € Hi
which are linearly independent and such that y = Hf:_OQ x; # 0. Since H; = ([zo],...,|[rx—2]) and
Hy; C Nj; we have that all monomials of degree k in the variables zg,...,zp_o are 0. Then, by

Proposition 2.1.1, K = (o, ...,zx_2) so Hy = P(K}).

If we are in case (Bj) we can then choose z;_1 in He \ Hy and {zo,...,Zx_2,2x_1} iS a set
of points with the desired properties. We claim now that case (B3) can not occur. Assume, by
contradiction, that Supp(7%) is the hyperplane H; = IP)(K;) Then for any zp_1 in 7\ H; we have
that = = (zo,...,Tk—2,Tk_1), xi_l # 0 and yzp_1 # 0. With this choice of the x;’s, the polynomial
pr(a) of Equation (2.11) is proportional to aﬁ_l since T}, = m NN}, has support on H;. On the other
hand the coefficient of Hf;ol a; can not be zero since H;:Ol x; = yxp—1 # 0. O

We conclude this section by presenting some examples in order to make the phenomenology of the
nihilpotent loci clearer (some computations have been made by using the computer algebra software
Magma). We set S = Klzo,...,2n] = Py S* and we define {wo,...,w,} to be the projective
coordinates on P(R!) induced by the basis {:;0, o, xn} of Rt =81,

Example 2.6.7. Let X be the Fermat cubic in P™ and consider the Jacobian ring R of X. For any
2 <k < n we have (3, wiz;)* € J* if and only if all monomials in the {w;} of degree k without
multiple factors vanish. This is true whenever any set of n — k 4+ 1 variables is zero. With these

arguments one can prove that Ny is the union of the coordinated planes of dimension k — 2. In

particular, Ny = Sec®(N3) and Sing(Ny) = Nj_1 for k > 2.
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Example 2.6.8. Consider the smooth cubic surface X =V (f) with f = {L‘g +rd+ad+ xg + 6xgT172
and consider the Jacobian ring R of X. One has that there are 4 points in N3 so, by Corollary 2.6.2,
X is the Fermat cubic up to a projective transformation. Indeed, if A is a non trivial third root of 1,

we have
(zo + 1 4+ 22)> + (20 — (A + D)y + Az2)® + (2o + Azp — (A + 1)ag)® + 323 = 3.

Example 2.6.9. Consider the smooth cubic surface X = V(f) with f = x3 + 23 + 23 + 23 + 3wor172
and consider the Jacobian ring R of X. If P=1[0:0:0:1] and C = V(ws, g) is the smooth plane

cubic with g := w3 + w3 + wi — 6wowiws, we have (considering the reduced structure)
Ny ={P} N3 ={P}UC Ny =V (ws) UV (g).

In particular, Ny is the union of the plane containing the cubic curve C and the cone with vertex P

generated by C. Notice that N3 does not have pure dimension.

Example 2.6.10. Consider the smooth cubic surface X =V (f) with f = x§ + 23 + 23 + 23 + xo(2? +
r3 + x%) and let R be its Jacobian ring. One can show that, in this case, No and N3 are both empty

whereas Ny is a smooth quartic hypersurface.

Example 2.6.11. Consider the reqular sequence {z3,2%, 13,23 + 2xox1} in S = K[z, ..., x3], the
ideal J spanned by it and set R = S/J. Notice that J is not the Jacobian ideal of a cubic surface.
Let P; be the coordinated points and consider the conic C =V (wa, g) with g := wg — 3wowy. Then we
have

No ={Py, P, P} N3 =(< Py, Pl >)U(< Py, P, >)U(< P, P, >)UC

Ny =V (ws) UV (wy) UV (g).

In particular, Ny is the union of two planes (the first one - V(ws) - contains Py, Py and Py and the
lines joining these points whereas the second - V(ws) - is the plane containing the conic C' and the

line (Po, P1)) and V(g) (which is a quadric cone with vertex Py). Notice that, as varieties, we have
Sing(Ng) = Ni_1 for k= 2,3,4.



Chapter 3

From Gorenstein algebras to Hessian

hypersurfaces

In this third chapter we keep on analyzing SAGAs and also smooth cubic hypersurfaces. However, we
do this from a different perspective than the one characterizing the previous chapters. In particular,
in what follows we will change the kind of SAGA under analysis: we will not consider any more com-
plete intersection SAGAs presented by quadrics (and so, in particular, jacobian rings of smooth cubic
hypersurfaces). Instead, we will consider SAGAs defined as quotients of the differential operators
ring over the annihilator of a cubic polynomial (see Example 1.1.4). In this setting, by studying the
Lefschetz properties and, in particular, the non-Lefschetz loci (see Definition 2.5.1), it turns out that
the non-Lefschetz locus in degree 1 of such a SAGA coincides (up to isomorphism) to the Hessian
hypersurface associated to the cubic polynomial defining the SAGA, i.e. to the hypersurface defined
as the zero locus of the determinant of the Hessian matrix of such a cubic polynomial. After this com-
parison and analysis, we will start a deep study of these Hessian hypersurfaces associated to smooth
cubic hypersurfaces. We will analyze their singularities and desingularizations and we will describe

the singular locus of the Hessian hypersurfaces associated to a general smooth cubic fourfold.

In particular, in Section 3.1 we will present and describe the connection between the non-Lefschetz
locus of these particular Gorenstein algebras and the Hessian locus of a cubic hypersurface. In Section
3.2, we will put into the picture another natural connection between Hessians of cubic polynomial and
quadratic forms, which will be very useful in the following analysis. Moreover, we will present the
first results concerning the geometry of such Hessian hypersurfaces, like the expected dimension of
their singular loci. In Section 3.3, we will describe in a more detailed way these singular loci and we
will present a desingularization for the general Hessian hypersurface (we will prove Theorem E and
Theorem F from the Introduction). This analysis will move on in Section 3.4, while in Section 3.5 we
will look at these singularities as degeneracy loci of specific symmetric maps between vector bundles.
From this perspective and from the construction of suitable non-trivial covers over these loci, we will
get new geometric information, which, in particular, will be applied, in Section 3.6, for the description
of the singular locus of the Hessian hypersurface associated to a general smooth cubic fourfold: in this
last section we will prove Theorem G.

In this chapter, as we have done in the previous ones, we will work over an algebraically closed field
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K of characteristic 0 up to Section 3.4, while in the last two sections, we will work over the field C of

complex numbers.

3.1 Hessians and Gorenstein algebras

In this first section, we will show the natural connection between the non-Lefschetz locus of specific

SAGAs and the zero locus of the determinant of the Hessian matrix of cubic polynomials.

As done in Section 1.1 (see Example 1.1.4), we set

6 n n
Yi = axz = O and Oy = szaxl = Zviyi
i i=0 i=0
where v = Y ) uker € K" with {e;}i—0..n as the standard basis of K"*1. If one considers the
graded algebra D = K[yo, ..., yn] = D> D¥ . one has a natural pairing S x D — S where elements of

D act as differential operators on S = K|z, ..., z,]. Observe also that there is a natural identification

n

v = zn:vkek — Oy = Zviyi (3.1)
k=0

1=0

For each f € S¢ one can define the gradient V(f) = (i f)io

At

n € (S84 1)®n+1 and the Hessian

matrix of f and the hessian of f, i.e
Hess(f) = (yiy;f)ij=0,..n € M;%:?(Sd_z) and hess(f) = det(Hess(f)) € S("+1)(d_2),

where Mfffll(Sd_z) denotes the set of square symmetric matrices of order n + 1 whose entries are

homogeneous polynomials of degree d — 2 (eventually zero).

Definition 3.1.1. The zero locus of the determinant of the Hessian matriz of a polynomial [ is said
to be the Hessian hypersurface Hy associated to f, i.e. Hy = V(hess(f)).

(We will often write H, instead of Hy, when it is clear from the context which f € S we are
referring to.)

For any d > 2, one can consider the subloci of P(S%) given by
Csing = {[f11V(f) is singular}  Ceone = {[f]|V(f) is a cone} ~and Can = {[f]| hess(f) = 0}.
The latter is called the Gordan-Noether locus and it is well known that
Ceone € Can C Csing

and that Cgpg is a divisor in ]P’(Sd). Moreover, the first inclusion is strict unless d = 2 or, by the
Gordan-Nother’s Theorem 1.1.22, d > 3 and n < 3. The second inclusion is an equality for d = 2, but
is again strict for d > 3.

From now on, we will deal with the case of cubic polynomials, i.e. we will set d = 3.
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Let us recall the differential Euler identity (see Lemma 1.4.2), that we can now state in the following
way. Let v =Y, vpex € K" and consider 9, € D!, then

VG e S™ (0,)™(G) =m! - G(v). (3.2)
We have the following easy but useful result:
Lemma 3.1.2. Let f be an element in S®. Then the following hold:

(a) For all v,w € K" we have

f o »Pf
8a:i8xj ko 6x18mj(9xk

Hess(f)ijle, = (= viyjue(f))  and  Hess(f)l - w = V(0,0u(f))-

In particular, Hess(f)], - w = Hess(f)|w - v.

(b) For all v € K" one has 2V(f)|, = Hess(f)|y - v. In particular, assuming f # 0, [v] € P" is
singular for V(f) if and only if Hess(f)|, - v = 0.

(c) For all v,w € K" we have w - Hess(f)|y - w = 2(0p f)|w-

Proof. (a) Since f € 53, we have 0,0,(f) € S' and an element g € S* is identified by its gradient
V(g) by the differential Euler relation (3.2). More precisely, one can easily see that if g = >, arxy
then gle, = ar = yrg. This proves the first equality. By K-bilinearity, in order to prove the second

equality, it is enough to consider the case v = ¢; and w = e;. We have

Hess(f)le, - ¢j = (Hess(f)e,) = (Hess(f)rsle.)i=o = (Wigsun(f))izo = V(i ()

where, if M is a matrix, we set M7 to be its j-th column and M;; to be the i-th entry of M.
(b) From (a) we have

Hess(f)|v - v = V(8,°(f)) = (yes* im0 = (00> (41eS))i=o-

Now, since yf € S2, by the Euler differential identity (3.2) we have 8, (yxf) = 2yx(f)|v, which proves
the claim.
(c) Using (a), (b) and the symmetry of Hess(f), we obtain

w? - Hess(f)|y - w =w? - Hess(f)|w - v = v - Hess(f)]w - w = 207 - V(f)|w.
On the other hand, vT - V(f) = 9,(f), so we get the claim. O

In particular, a cubic V(f) C P" is a cone if and only if there exists [v] € P" such that Hess(f)|, = 0.

Let us now focus on the setting of SAGAs. Let us consider a homogeneous polynomial f of degree
deg(f) =3, i.e. f €S2, and let us take the SAGA A defined as

D

A= Annp(f)

=A% At g A% p A3,
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as described in Example 1.1.4. Let us recall that such a SAGA has socle in degree N = deg(f) = 3
and, moreover, that by Macaulay’s Inverse Systems for every SAGA R with socle in degree 3 there
exists a cubic polynomial g such that R can be written as the quotient D/Annp(g). Suppose now
that the polynomial f is such that the associated hypersurface V(f) C P" is smooth: in particular
it is not a cone and so (Annp(f)); = (0). In this case, by definition of SAGA (see Definition 1.1.3),
we have (dim(A%));—.. 3 = (1,n + 1,n + 1,1). Here, for the SAGA A the only Lefschetz property
which makes sense to define is the strong Lefschetz property (in degree 1). Then A satisfies the strong
(and weak) Lefschetz property if for v € A! general the multiplication map p1(v) = v-: A! = A? is a
bijection. (Here, for simplicity, we identify v with 9, as in (3.1).)

Let us then assume that [v] € P(A!) is such that the corresponding multiplication g1 (v) is not injective,
i.e. [v] € P(AY)\ L] is a non-Lefschetz element (in degree 1) (see Definition 2.5.1). Then there exists an
element (another non-Lefschetz element) [w] (= 8,,) in P(A!) such that v-w = 0in A2, i.e. vw(f) = 0.
Now, by Lemma 3.1.2(a) we have that Hess(f)|, - w = V(vw(f)), but since vw(f) is a homogeneous
polynomial of degree 1 we get that V(vw(f)) = 0 as a vector if and only if vw(f) = 0 as a polynomial.

In particular,

Hess(f)lp - w=0 <= wvw(f)=0.

In other words, we have proved that if an element [v] € P(A!) (seen as differential operator of degree
1) is a non-Lefschetz element for the SAGA A, then the corresponding v € K*™! (under identification
(3.1)) is such that the matrix Hess(f)|, has non-maximal rank, i.e. Rank(Hess(f)|,) < n. Finally, by
linear algebra, this happens if and only if [v] € H; = V (hess(f)).

Moreover, if the polynomial f is such that V(f) is smooth, than [f] & Cqn, hence the determinant
hess(f) is not identically zero. In this case, the general element in P doesn’t belong to the zero locus
V (hess(f)), then, by the above argument, we have also that the general element in P(A!) is a Lefschetz
element, i.e. A = D/Annp(f) satisfies the strong (and weak) Lefschetz property.

We have then proved the following:

Proposition 3.1.3. If f € S® is a homogeneous polynomial whose associated hypersurface V (f)
is smooth, then the SAGA A = D/Annp(f) satisfies the strong Lefschetz property. Moreover, the

non-Lefschetz locus (in degree 1) of A coincides (up to isomorphism) to the Hessian hypersurface Hy.

3.2 Hessians and quadrics

In this section, we describe another natural comparison: the one between quadratic forms and Hessian
matrices of cubic forms. Moreover, we derive the first results about, for example, the expected
dimension of the singular locus of the Hessian hypersurface associated to a cubic form.

First of all, let us observe that such a Hessian matrix is a symmetric square matrix of order n + 1
whose entries are homogeneous polynomials of degree 1: after evaluation in a point v € K"t it can
be seen as the matrix associated to a quadratic form over K"+, In particular, as a consequence of

the previous Section 3.1 and Lemma 3.1.2, we have that for any [f] & Csing we have a commutative
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%IP’”N /\ [v] \ (3.3)

POM;Y) (K)) (00 (f)] =————— [Hess(f)l]

diagram

where the diagonal arrows are linear embeddings of P”, while the horizontal map is the canonical iso-
morphism [M] + [#7 Mx] which identifies a symmetric matrix M with the quadratic form represented

by M. We are interested in studying the geometry of the loci
Di(f) = {[z] € P" | Rank(Hess(f)|.) < k} (3.4)

for a general [f] € P(S?), which give a natural stratification not only of the whole projective space P,
but also of the Hessian locus H = V' (hess(f)), which coincides, as observed in the previous Section
3.1, with Dy, (f). Since the rank of a matrix M € M;¥"}(K) and that of the quadratic form =¥ Mz are
the same, it can be useful to study the image of Dy, via the linear embedding 71 (or 72). Passing from
one map to the other will be useful to catch different features of the objects we want to study. If we
consider the Jacobian ideal J; given by f, we have that the image of 7 is exactly IP’(JJ%). Then, if we
define

Qr = {[q] € P(S*)| Rank(q) < k}

it is clear that 71 (Dg(f)) = IP’(J]%) N Q. In what follows, for brevity, we will not specify the linear
embedding 7; (for @ = 1,2) in the identification of the loci Dy with their images. Moreover, we
will write simply Dy instead of Dy(f) and J* instead of JJ]f when it is clear from the context which

[f] € P(S3) we are considering. In light of this, we recall some important facts about the geometry of
the loci Q.

Lemma 3.2.1. For any 1 <k <n+1, Qy is a closed subvariety of P(S?). Moreover

o We have codimp(g2) Qx = ("*57*) and dim Qj, = kn — W}.

e The degree of Qi as variety inside P(S?) is given by the formula

nfk( n+t+1 )

deg(Qk) — H n—k—t+1

= O

o For 1l <k <mn, the singular locus of Q. coincides with Qp_1.
Proof. See [Har95, Chapter 22] and [HT84b] for the formula of the degree of Q. O

Notice that from the above description, it is clear that Dy_; C Sing(Dj) and one might expect
that the equality holds. Actually, we will prove that this is true when f is general (see Theorem 3.4.1
and Corollary 3.4.2) although it does not hold for all [f] & Cying (see Remark 3.4.3).

Remark 3.2.2. Let us now observe that if we consider an element [f] € Can \ Ceone, Since in this
case hess(f) = 0, we have that D, (f) is the whole projective space P", i.e. P(J?) C Q,.

In other words, from the point of view of Section 3.1, in this case we have that every element [v] € P(A!)
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is a non-Lefschetz element (in degree 1) for the SAGA A = D/Annp(f), i.e. A does not satisfy the
strong Lefschetz property (in degree 1). Notice that this fact has already been stated (and proved) in
Lemma 1.4.5.

Let us then take [f] € P(S%) such that V(f) is smooth and consider the first level of the stratifi-
cation of H s presented above, i.e. the variety D,_1(f). We can immediately observe that in P(S?),
which has dimension (";2) — 1, we have the subspaces JP’(JJ%) and 9,1, whose dimension, are n and
(";2) — 4 respectively (from Lemma 3.2.1). Hence, we easily get that the expected dimension of

Dn—l(f) = ]P(J2) N Qn—l is

Edim(Dy_1) — <";2> 44n- ((”’;2> —1> —n 3.

Since D,,—1 C Sing(D,,) = Sing(H) and dim(D,,—1) > n — 3, we have the following:

Proposition 3.2.3. For all [f] € Csing we have that the Hessian hypersurface Hy has singular locus
of dimension at least n — 3 (i.e. Sing(H¢) has codimension at most 2 in Hy). In particular, if n > 3,

the Hessian variety is singular.

The inclusion D,,—1 C Sing(H ) can also be obtained by using Jacobi’s formula, which controls the
derivatives of the determinant of the Hessian matrix. We will show, generalizing a result in [AR96],
that for all [f] & Csing We actually have D,,_1 = Sing(H ) (see Theorem 3.3.5) and that D,_; has the

expected dimension, when [f] is general (see Section 3.4).
Remark 3.2.4. When n < 4, the above mentioned results are known. More precisely:

e Forn =2 it is well known that the Hessian curve associated to the general cubic plane curve is

smooth.

e Forn = 3, the Hessian surface H associated to the general cubic surface is singular in 10 points,
which are nodes for H (see [DvGOT]);

e Forn =4, in [AR96, Appendix IV] is proved that the Hessian hypersurface associated to the

general cubic threefold is singular along a curve.
We conclude this section with a remark about the expected dimension of the loci Dy(f).
Remark 3.2.5. As we have done above, one can argue that for [f] € P(S?),

paim(u(1) =n - (" 75 77

2

is the expected dimension of Di(f) = IP’(JJ%) N Q. In particular the expected codimension of Dy (f) is
ezactly the codimension of Q. in P(S?): Ecodimpn (Dy(f)) = codimp(g2)(Qk)-
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3.3 Singular loci and desingularizations

Set U = P(53) \ Csing, i-e. the open set parametrizing smooth cubics in P* and consider [f] € U. As
we have seen, for n > 3, the Hessian variety Hy of [f] is singular with dim(Sing(#y)) > n — 3. The
aim of this section is twofold. Firstly, we want to show that for all [f] € U the singular locus of H
coincides with D,,_1. Secondly, we want to describe a way to desingularize H ¢ for the general [f] € U.

For both results, it will be central the following variety.

For any [f] € P(S®) define
Iy ={([z], [y]) € P* x P" | Hess(f)|z -y = 0} (3.5)

and denote by m; and my the natural projections from I'y on the factors. For brevity, we will simply

write I' when it is clear from the context which [f] € P(S®) we are considering.

Lemma 3.3.1. The morphism 7([z], [y]) = ([y], [x]) induces a natural involution on T' which acts freely
on I' if and only if [f] & Csing. Moreover, the fiber over [v] € P" is P(Ker(Hess(f)|y)). In particular,

the image of m; is the Hessian locus H = Dy (f) and m; is an isomorphism over the open H \ Dp_1(f).

Proof. The involution 7 on P™ x P" descends to an involution on I" since Hess(f)|, - w = Hess(f)|w - v
as proved in Lemma 3.1.2(a). A point ([v],[w]) € T" is a fixed point if and only if [v] = [w] so T has
a fixed point if and only if there exists [v] € P" such that Hess(f)|, - v = 0, but by Lemma 3.1.2(b),
this happens if and only if V(f) is singular. The fiber of m; over [v] € P" is [v] x P(Ker(Hess(f)|»)) by
definition of I'. Then, clearly, 7 1([v]) is not empty if and only if we can find a non trivial element in
Ker(Hess(f)|y), i.e. if and only if the rank of Hess(f)|, is not maximal. This happens exactly when
[v] € H by definition of H. On H* = H \ D,—1 we have only points such that Rank(Hess(f)|,) = n so
Ker(Hess(f)[,) has dimension 1. Hence, 1|, —13s) : T Y(H®) — H? is an isomorphism. The claim for

the second projection follows since m; o 7 = w3_4, for i = 1, 2. ]

The variety I" has already been used by Adler in [AR96] in order to desingularize the Hessian locus
for n = 4. The approach used by Adler involved the study of a specific case, namely the case of the
Klein cubic fy = xoxi + 9:11:(2) + LITQ.’L’% + 58333% + z4x§, and to prove that I'z is smooth. Then, the result
holds also for [f] € U general. Unfortunately, this approach cannot be carried out completely for
any n. Nevertheless, the methods used in [AR96] can be used and generalised in order to prove that
Sing(H) = D,—1 as we will do in the next subsection 3.3.1. Instead, in subsection 3.3.2 we propose a

different approach in order to describe the desingularization of H for any n.

Let us now stress that some objects introduced above, as the Hessian hypersurface H; or the variety
I'¢, have another equivalent description (up to isomorphism). Indeed, from Sections 3.1, the pairing
S x D — S gives a duality (S')* = D' (where {yi}ti=0,...n is the dual basis of {z;}i=o . ») which

induces a canonical isomorphism (see identification (3.1))
a:P" - P(DY) [v] = a([v]) = [0y
Lemma 3.3.2. We have

My = {[v] € P"|0,(f) has rank at most n}, Ly ={([v], [w]) € P" x P"|0,0,(f) = 0}
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and

P(Ker(Hess(f)]v)) = {{w] € P* | 8,0, (f) = 0}.

Proof. Consider [v] € P". One has [v] € H <= det(Hess(f)|,) = hess(f)|, = 0 by definition. On
the other hand this is equivalent to say that Hess(f)|, has rank at most n. Using the identification
described in diagram (3.3), this is equivalent to ask that Rank(9,(f)) < m. The second and third
claim follow directly from Hess(f)|, - w = V(0,0 (f)) (see Lemma 3.1.2) since the vanishing of V(g)
for g € S' is equivalent to the vanishing of g. O

Remark 3.3.3. Let us observe that this description of the Hessian hypersurface is known, in literature,
as the Steinerian hypersurface (see [Doll2, Section 1.1.6]). Moreover, in the case of a smooth cubic
hypersurface V(f) the associated Hessian Hy and the Steinerian hypersurface coincide (see [Doll2,
Theorem 3.2.1] ).

One can then also observe that the variety I'; coincides exactly with the incidence correspondence
I'y (for k£ = 1) introduced in Section 1.2, with respect to the SAGA A = D/Annp(f) and that,
moreover, the involution 7 described in Lemma 3.3.1 has already been defined in Lemma 1.2.8.

In the following, we will use both the descriptions of the variety I's given so far.

3.3.1 Description of the singular locus

In this subsection we generalize the method used in [AR96] for n = 4, and we describe the singular

locus of the Hessian hypersurface associated to a smooth cubic polynomial [f] for any n. Recall that
Dy1(f) = {[z] € P" | Rank(Hess(f)|) <n — 1} C Sing(H).

We want to show that the other inclusion holds too, for any [f] € U.

We will use the following:

Lemma 3.3.4. Let A and B two symmetric matrices of order m with coefficients in a field K and
and consider the block matrizc M = (A|B). We have

Rank(M) <m <=  Ker(A4) NKer(B) # {0}.

Proof. Firstly, let us suppose that Ker(A) N Ker(B) # {0}, so that we can take a non trivial element
v € K™ in this intersection. Up to a change of coordinates, we can assume that v = e, the first
element of the canonical basis of K. Then we have A-e; = A' = B-e; = B! = 0 and, by symmetry,
also A; = By = 0, where, given a matrix C, C* and C; denote the i-th column and the j-th row of C
respectively. From this we get that M; = 0 and so the rank of M can not be maximal.

For the converse, let us assume that Rank(M) < m: this means that the subspace generated by the
rows of M has dimension strictly smaller than m. Then, there exists N € GL,,(K) such that N - M
has the first row (N - M); identically 0. Since N-M = (N-A|N-B) wehaveel -N-A=el-N.-B=0
thus, being A and B symmetric, we clearly have v = N7 - e; € Ker(A) N Ker(B) with v # 0. O

We can then prove Theorem E:
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Theorem 3.3.5 (Theorem E). For any [f] € U we have
Dp-1(f) = Sing(Dn(f)),

i.e. the singular locus of the Hessian variety Hy is Dyp—1(f).

Proof. As recalled before, it is enough to show that for every [f] € U the inclusion Sing(H) C D,,—1
holds (H = Hy).
First of all, let us define H* = H \ D,,—1, an open set of H that can be described as

H* = {[z] € P" | Rank(Hess(f)|s) = n}.

Since [f] € U, one can easily show that H?® is not empty. If we prove that each point in H? is a smooth
point for H, then we are done.

Let us now consider the variety I' defined in (3.5) with the two projections m;, ¢ = 1,2. By defining
¥ = 771_1(7-[3), we know by Lemma 3.3.1 that mi|ps : I'¥ — H® is an isomorphism with inverse map
given by [z] — ([z], P(Ker(Hess(f)|z))).

Then we have that a point [x] € H* is smooth in H* (so in H) if and only if the point 7, *([z]) =
([x], [y]) = ([x], P(Ker(Hess(f)|))) is smooth in I". We can now consider the bihomogeneous lifting of
I to KM x K™t je.

I'={(z,y) € K" x K" | Hess(f)|, -y = 0}.

For our aim, we can also check the smoothness of T in the point p = (z,y) € I'. We can easily describe

[ as the zero locus of a suitable function: indeed, we can write I' = V(F), where

F K" K S KD F((z,y) = Hess(f)]a - v

Let us now observe that, by Lemma 3.1.2(a), we have the equality Hess(f)|, - y = Hess(f)l, - z; from
this one easily gets that the Jacobian matrix of the map F in p = (z,y) € I can be described as

J(F)|p = (Hess(f)|y | Hess(f)l.),

a matrix in M(nH)XQ(nH)(K). Let us now assume, by contradiction, that p € [isa singular point:
this implies that the matrix J(F)|5 is not of maximal rank (i.e. it has rank smaller or equal than n).
Observe that, since p = (x,y) and [z] € H*, we have that Rank(Hess(f)|..) = n, and so Rank(J(F)|5) =
n. By Lemma 3.3.4, we get that the intersection Ker(Hess(f)|,) N Ker(Hess(f)|;) is not trivial and
in particular equal to (y), since Ker(Hess(f)|,;) = (y). Then we get that Hess(f)|, -y = 0, that is a
contradiction by Lemma 3.1.2(b), since we are considering [f] € U. Hence, § is a smooth point of T,

as claimed. O

The techniques used in [AR96, Appendix IV] can be further generalized in order to characterize
the cubics [f] € U such that I'f is singular. We report the method here for completion, generalising
it for any value of n.

Let us define, for any [z] € P,

u([z]) = P(Ker(Hess(f)lz))-

Notice that ¢([z]) # 0 if and only if [x] € H and that ¢([z]) C H since, for any [y] € ¢([z]), we have
[z] € [y] by Lemma 3.1.2(a).
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Definition 3.3.6. Let [f] € P(S%). We say that T = ([z],[y], [2]) € ’H? is a triangle (in Hy) if
[z] € «([y]) [y] € u([2]) and [2] € o([2]).

Notice that if T is a triangle in H, then any permutation of the triple 7" is so, by Lemma 3.1.2(a).
Moreover, two elements of 7' cannot be equal since V(f) is smooth, by 3.1.2(b), and also all ”vertices”
of T" actually belong to Sing(H).

Lemma 3.3.7. For any [f] € P(S®), we have that the point ([z],[y]) is singular for T if and only if
there exists [z| such that T = ([z], [y], [2]) is a triangle in Hy.

Proof. Let us consider again the bihomogeneous lifting I and let us assume that (x,y) € I is singular
for T, with x,y # 0. As observed in the proof of the previous Theorem 3.3.5, this is equivalent to
asking that Rank(Hess(f)|,, Hess(f)|.) < n and this happens exactly if there exists [2] € ¢([z])N¢([y]).
By Lemma 3.1.2(b), we also have that [z] € +([z]) and [y] € ¢([2]). But since (z,y) is a point of I we
also have that [z] € ¢([y]). Then, T' = ([z], [y], [2]) is a triangle in H. O

Adler in [AR96] uses this characterization of the singularities in I through the existence of some
triangle 7" in ‘H to show the smoothness for the variety I' associated to the Klein cubic. This has
been done by studying the rich and particular geometry of this specific cubic and by using also some
refined geometrical and algebraic techniques. However, we think that this approach can not be easily
exploited and generalized to any dimension. For this reason, in the next subsection we will present a

different strategy.

3.3.2 Desingularizing the general Hessian hypersurface

In this subsection, we will prove Theorem F from the Introduction. Here the description of I'y presented

in Lemma 3.3.2 will be used.

Theorem 3.3.8 (Theorem F). Let [f] € U be general. Then I'y is smooth and m; : 'y — H is a

desingularization of H.
Proof. Let us consider the incidence variety
W =A{([v], [w],[f]) e P" xP" x U | 9,0u(f) =0}
First of all, we want to show that W is smooth. In order to do this, it is enough to consider the lifting
W={(v,w, f) e K" x K" x U | wv,w#0, 3,0u(f) =0}

where U = {f € §%\ {0}|V(f) is smooth}, and to prove that W is smooth. To show that W is
smooth we will prove that the Zariski tangent space of W has constant dimension in any point of W.

Fix p = (v,w, f) € W. The Zariski tangent space of W in p is contained in Tp(K"+! x K"+ x ) =
K"+l x K"+ x $3 and it is described as the set of triples (v',w’, f’) such that

Dyttv Owrtw (f +1f) =0 mod #2.
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Expanding this relation we have
Ostv Ottt (f + 1f') = 0u0u(f) + t (0uOur (f) + O Ou(f) + 0o (1)) +£2(--+)
so, for any (v/,w’, f') € K"l x K"+ x $3 we have
W', f)eT,W = (1) 00w(f)+0wdu(f)+ 00u(f) =0. (3.6)

Let o : W — K"t x K" be the projection on the first two factors.

Claim (I): the image of o is the open subset
V ={(v,w) | v and w are neither proportional nor 0}.
Indeed, notice that the fiber of o over (v, w) with v,w # 0 is
o Y, w) = (v,w) x {f € U|d,0u(f) = 0}.

If v and w are proportional and f € o~ ! (v, w), we would have [f] € S% such that V(f) is smooth and
OvOy(f) = 0. This is impossible by Lemma 3.1.2(b), so the image of ¢ is in V. If v and w are not
proportional, one can change coordinates and assume (v, w) = (eg, e1). Then, the Fermat cubic Y, z3

is in the fiber which is, therefore, not empty.

Claim (II): for all p € W the differential d,o is surjective and Ker(d,o) has constant dimension.

Indeed, for any ', w’ € K", we have
(dpo) H(V',w')) = (W, ') x {f/ € 8% | (W, f) satisfies (x)}.
Notice that, for any v, w # 0, the sequence
0 — Anngs (9,8,) — §% 2% 51 0

is exact. Then, since 0,0,/ (f) + Oy O (f) is determined by the data p = (v,w, f) and (v',w’), the
surjectivity of 0,0, in the above sequence gives the surjectivity of d,o. The exactness of the above

sequence also implies that dim(Anngs(9,0,,)) is constant. By Equation (3.6) we have
Ker(dyo) = (0,0) x {f' € 5% | 0y0u(f") =0} = (0,0) x Anngs(9,0y)

so we have proved the claim.

Summing up, o : W — V is a surjective morphism which is submersive and with Ker(d, (o)) which
has constant dimension. Since the target V is smooth, we have that the dimension of TpW is then

constant, so W (and W) is smooth as claimed.

Consider now the projection 73 : W — U C P(S3). Observe that the fiber of w3 over [f] € U is
exactly the variety I'f associated to [f] € U so 73 is surjective. Hence, by generic smoothness (see, for
example, [Har77, Corollary 10.7]) we have that the general fiber of 73 is smooth, i.e. T'f is smooth,
for [f] € U general. O



58 CHAPTER 3. FROM GORENSTEIN ALGEBRAS TO HESSIAN HYPERSURFACES

3.4 Smoothness of Dy(f) \ Dy_1(f) for [f] general

In this section we want to prove, under suitable assumptions, that for [f] € U = P(S?3) \ Csiny general,
Dr(f) \ Di—1(f) is smooth and has the expected dimension. The approach will be similar to the one

used in Section 3.3 in order to prove Theorem 3.3.8.

As recalled in Lemma 3.2.1, for any 1 < k < n, the variety Qp parametrizing quadrics in P" of
rank at most k is singular exactly along Qp_1. Hence, Qf = Qy \ Qi_1 is the smooth locus of Q.
Then,

Qr={g€ 5\ {0}| Rank(q) <k}  and  Q} = {g € Qx| Rank(q) = k}
are the affine cones (with the origin removed) of Q. and Q7 respectively and QZ is smooth. Set
i ={(g,;v,f) € Qe x K" xS | v, f#0 and 9,(f) =g}
and J = {(¢,v, ) € Ti|q € O} }-
Theorem 3.4.1. Set ¢, ), = codimp(g2)(Qx) = (n_§+2). For all 1 < k < n, the following hold:
(@) Ji and J? are irreducible of dimension dim(S3) +n — ¢, + 1;
(b) J; is smooth.

Set DY(f) = Di(f) \ Dr—1(f) for [f] € U. When [f] is general then either D;(f) =0 or the following
hold:

(c) D;(f) is smooth, i.e. Sing(Dx(f)) = Dr—1(f);

(d) We have that codimp(g2)(Qr) = codim(Dk(f)) = cnk. In particular, Di(f) has the expected

dimension;
(e) deg(Di(f)) = deg(Qi) =TT (2750 / (7).
Proof. First of all, consider the projection
o: T — Ok X (KTH'1 \ {0})
and observe that for any v # 0 we have an exact sequence
0 — Anngs(d,) — S3 2% 8% 5 0 (3.7)

since, given (g,v) with ¢ € S%, v # 0, one can simply "integrate” ¢ in the direction of v in order to
get an f such that 9,(f) = ¢. In particular, a, ) := dim(Anngs(8,)) = dim(S%) — dim(S?) does not
depend on wv.

Claim (a): Being 0, linear, the fiber of o over (g,v) is

o M g,v) = (¢,v) x {f19u(f) = a} = (q,v) x (fo + Anngs(3y)) \ {0}

where fj is any fixed primitive of ¢ in the direction of v. In particular c~!(g,v) is an affine space

of dimension a1, possibly with its origin removed. Thus, since the fibers of ¢ are irreducible and
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equidimensional and the target is irreducible (of dimension dim(S?) — ¢, +n + 1), we can conclude
that 7} is irreducible too and it has the desired dimension. Moreover, the same holds if we restrict

our attention to J; and use the same argument.

Claim (b): It is clear from the above discussion that o is surjective. Let p = (¢, v, f) be any point in

Jj;. The Zariski tangent space to J; in p is a subspace of
Tp(Q; x K™ x §3) = T,(Q5) x K" x §3
and (¢',v', f') € TpJ if and only if Oyyp (f +tf') = ¢ +t¢ mod t?, i.e. if and only if

(*) : av’(f) + av(f,) = q/

holds. The differential d,o is the map sending (¢’, 7', f') to (¢’,v"). By the description of the Zariski

tangent space it is easy to see that
(dpo) " H(d, ') = (¢, 0) x {f' € *10,(f') =d = 8u(f)}  and  Ker(dyo) =~ Anngs(d,)

so from exact sequence (3.7) we have that d,o is surjective and dim(Ker(dpo)) = ayp i is constant.

Hence, o|7s : T — Q; x (K™ \ {0}) is a surjective and submersive map on a smooth target
and its differential has kernel of constant dimension a,, . Hence, the Zariski tangent space of J;’ has
constant dimension equal to a, i + dlm(QZ) + dim(K"™) = dim(S3) + n — cpp + 1 = dim(F¢). In
particular, J; is smooth as claimed.

From now on, let us assume that D;(f) = Di(f) \ Dx—1(f) # 0 for [f] € U general.
Claim (c)+(d): Consider the map w3 : J — S2\ {0}. The fiber of 73 over f € S\ {0}, is

Vi=m3 ' () ={0u(f)v) | v#0, 8(f) €} = {f}

so, by the above assumption, 73 is dominant. By (b) J; is smooth so, by generic smoothness, the
general fiber of 73 is smooth, too. In particular, for [f] € U general we have that V; = w3 L
is smooth of dimension n — ¢, + 1 (by (a)). Fix a general [f] € U and consider the restriction
B: Vi — K"\ {0} of the second projection ma to Vy. We claim that 3 is an embedding and that
B(Vy) is the affine cone of Dj(f) with the origin removed.

Assume that 5(9,(f),v) = B(0w(f),w). Then v = w, so S is injective. The tangent in p = (q,v)
to V} is given by the vectors (¢/,v') such that ¢’ € 7,05, v € K" and 9,/(f) = ¢ (see (x)). If
dpB(q’,v") = 0 then (¢/,v') is such that v" = 0 and then ¢’ = 0. In particular, 3 is an embedding.
Hence (Vy) is smooth of dimension n — ¢, 1 + 1. On the other hand,

B(Vp) ={v e K"\{0} | 0u(f) € Qi}
is the affine cone of Dj(f) with the origin removed so D;(f) is smooth and has dimension n — ¢, .
In particular, Sing(Dg(f)) = Dr—1(f)-
Claim (e): This follows by Lemma 3.2.1 since Dy (f) = IP’(J]%) N Q. O

Corollary 3.4.2. Assume that Dy(f) is non-empty for [f] € U general. Then Dy(f) \ Drp-1(f) is
non-empty too for [f] € U general. In particular, for [f] € U general, Di(f) is reduced, has the
expected dimension and Sing(Dy(f)) = Dr_1(f).
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Proof. Let h =min{j | D;(f) #0 for general [f] € U} so h < k. The claim is clearly true for
k = h so for general [f] € U, Dy(f) is smooth and has the expected dimension. Let us then take h+1.
Then

dim(Dy(f)) = Edim(Dy(f)) < Bdim (D1 (f)) < dim (D1 (£)

where the strict inequality in the middle follows from Remark 3.2.5. Hence Dy11(f) \ Dp(f) # 0 for

[f] general. By recursion one has the thesis. O

Remark 3.4.3. Notice that, unless k = n (see Theorem 3.3.5), we don’t have Sing(Dy(f)) = Dx—1(f)
for all [f] € U. Indeed, for example, if we consider the Klein cubic fourfold (i.e. n =5 and f =
zizg + Z?:o z3wi41) we have that V(f) is smooth, Dy(f) \ D3(f) is not empty but it is not smooth.
The same holds for the expected dimension: for example, for all n > 2, the dimension of the singular

locus of the Hessian hypersurface associated to the Fermat cubic is 1 more than the expected dimension.

3.5 Degeneracy Loci

From this section, till the end of this thesis, we will work on the field C of complex numbers. In this
section, we will study these loci Dy from a different, although natural, perspective. In particular,
one can think of these varieties as of degeneracy loci of a specific vector bundle map. For a general

treatment of this subject, the reader can refer to [Tu86] and [Laz04].

Let X be a smooth variety of dimension n. We are interested in degeneracy loci of a symmetric

morphism between vector bundles (symmetric over each fiber) on X, i.e. a morphism
p:FE— E*®L suchthat ¢=¢"®]Idg,

where E and L are a vector bundle of rank e and a line bundle over X respectively. Then one can

define the degeneracy loci at order k for such a map as
D,.(p) = {z € X | Rank(yp,) < k}.

Let us summarize in the following theorem, some important results about the non-emptiness and the
connectedness of these degeneracy loci (see [FL83], [HT90] and [Tu89]).

Theorem 3.5.1. Let ¢ : E — E* ® L be a symmetric morphism of vector bundles of rank e and
consider k <e. Ifn > (efgﬂ), then D} (p) is non-empty.
Moreover, if (Sym?E*) ® L is ample, the following hold:

(a) if k is even and n — (67’;“) > 1, then D) (y) is connected;

(b) if k is odd and n — (efgﬂ) > e —k, then D} (p) is connected.

sym

97 (S1) and the symmetric homomor-

In particular, we can consider a symmetric matrix M € M
phism of vector bundles induced by M, namely
oar OB 2 opti (1),

By taking M = Hess(f) with [f] € P(S®), we have that the locus Dy (f) introduced in Section
3.2 is exactly the degeneracy locus D;g(SOHess( #)) introduced above. By Theorem 3.5.1, recalling that
Sing(H) = Dp—1 by 3.3.5, we then have
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Proposition 3.5.2. The following hold:
(a) if n >3, Sing(H) is non-empty for all [f] € P(S3). Moreover, if n > 4, it is also connected.
(b) if 3<n <5, for [f] € U general, Sing(H) is smooth of dimension n — 3.

Proof. Claim (a): the non-emptyness of D,,_1(f) follows directly from Theorem 3.5.1 or from the
argument about the expected dimension of Remark 3.2.5. The connectedness for n > 5 follows again
from Theorem 3.5.1 while the case n = 4 has been treated in [AR96]. For claim (b), if n = 3,4 the
result is already known (see Remark 3.2.4) so we can assume n = 5. In this case, by (a) we have that
Dy # . On the other hand, by [RV17, Lemma 2.1] we have that D3 = () when [f] is general. Then,

the claim follows from Theorem 3.4.1. O

Let us now consider the case k = n — 2: we know that D,,_s is contained in the singular locus of
Sing(H). By Theorem 3.5.1 we can easily see that in this case the condition n > ("Jrl*(gd)“) =6
tells us that for every n > 6 the singular locus of the Hessian hypersurface associated to any [f] € P(S%)
is itself singular. Then, by Proposition 3.5.2, the case n = 5 is the last one where the singular locus
of H is smooth generically. On the other hand, it is also the first one which has still to be analysed

(by Remark 3.2.4). We will focus on this specific case in Section 3.6.

Let us now consider again the map ¢y = M- where M € M,/[/(S?) as above. Let us observe
that by following the strategy presented with a more general flavour in [HT84a] one can compute the
odd Chern classes of Z := D) (¢n) assuming that Z is smooth. In this case, indeed one has that

D, _,(pn) is empty. We can then consider the following exact sequence on Z

0—B— 0 S04 1) —-C—0 (3.8)
where « is the restriction to Z of ¢jr, and B = ker(a) and C' = coker(a) are locally free (on Z) of
rank n + 1 — k. Since « is symmetric, by dualizing and tensoring with Oz(1) we get

C=B"® Oz(l).

Starting from this we derive an explicit relation satisfied by the canonical divisor Kz which will

be used in Section 3.6.

Proposition 3.5.3. Assume that Z = D} (pnm) is smooth. Then we have
2Kz =(n+1)(n—k)H|z

where H denotes the hyperplane class of P™.

Proof. As Ny pn = (Sym? B*) ® Oz(1) (see [HT84a]), we get

n+2—k

c1(Nz/pn) = Rank(Sym® B*)c1(Oz(1)) + c1(Sym?® B) = < 5

)H‘Z — (n+2—k)cl(B)

Since ¢1(Z) = c1(P")|z — c1(Nz/pn) by the normal exact sequence we have

n+2-—k
2

Since C' = B* ® Oz(1), we obtain ¢1(C) = (n+ 1 —k)H|z — c1(B). From this relation and from the
exact sequence (3.8), one easily gets that 2¢1(B) = —kH|z which allows us to conclude. O

KZ:—Cl(Z):—(n+1)H|Z+( )H|Z—(n—|—2—k)cl(B).
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Remark 3.5.4. Let us notice that Propositions 5.5.2,3.5.8 and Theorem 3.4.1 give a description of
Sing(H), where H is the Hessian hypersurface in P* associated to a general cubic threefold. Indeed,
one gets that it is a smooth, irreducible curve of degree 20 and genus 26, as shown in [AR96] with

different techniques.

In the next section 3.6, we will deal with the case n =5 and try to classify the surface Z = Dy(f)
arising as singular locus of the Hessian variety of a general smooth cubic fourfold V(f). In order to
do this we will need a construction related to degeneracy loci and covers, that we will develop in the
next subsections and that is inspired by a natural question coming from Proposition 3.5.3: one might

wonder whether in this case Kz = 3H|z or not, since we know that 2K, = 6H|.

3.5.1 Covers and connectedness

In this subsection we present a general construction that allows us to describe the existence of 2 : 1
covers for suitable degeneracy loci of symmetric maps between vector bundles.

Let us start by considering a vector bundle E of rank e 4+ 1 on an irreducible projective variety
X of dimension n and a symmetric map ¢ : £ — E* ® L where L is a line bundle. For any m with
1 <m < e+ 1 one can consider the relative Grassmannian 7 : G = G(m, E) — X associated to E, a
fiber bundle whose fiber over x is the Grassmannian G(m, E,) of m-dimensional subspaces of E,. We
will denote by S and @ the tautological bundle and the universal bundle of G respectively, which

fit into the exact sequence

0 Sp—>n*E Qr 0 (3.9)

where ay @ (Sg)w =~ W — (7" E)w =~ E ) is the natural inclusion of the subspace W C E )
for any W € G.

Denote by a* ® idg+, : 7(E* ® L) — S}, @ n*(L) the map obtained by dualizing o and then
tensoring by 7*(L). Then from the diagram

Oé*®id7‘.*(L>
0 Q7L ™ (E*® L) St @7 (L) ——0
W*(%)T j
( v
0 SE ™ E QE 0

one can define the morphism ¢ : Sp — S; @ 7*(L), as ¢ = (a* @ id«()) o 7 (¢) 0 .
Remark 3.5.5. As ¢ is symmetric, we have ¢* @ idy (1) = ¢, so ™(p* ® idﬂ*(L)) =7*p. Hence
B @ idpes = (0° @ ides(1)) © (7*(9)" @ idge(r)) 0@ = (@ @ idgo(ry) 0 () 0 @ =

so ¥ is a symmetric morphism of vector bundles on G. Notice, moreover, that we can interpret 1 as a
section of the bundle Hom®¥™ (S, St @ n*(L)) = Sym?(S%) @ n* (L), i.e. ¢ € HO(Sym?(S%) @7*(L)).

We fix now an integer k such that the degeneracy locus D) (¢) = Dj, is non-empty. If z € Dj then

pg By = EF ® L, ~ E7 is a symmetric morphism. Then, ¢, can be thought either as a symmetric
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bilinear form or as a polynomial of degree 2 which identifies a quadric ), C IP¢. By construction, ),
is a quadric of rank at most k. Recall that a linear subspace in P¢ is called isotropic with respect to

Q. if it is contained in Q..

Remark 3.5.6. Assume that Q; has rank exactly k. Then Q. contains either one or two families of

mazximal isotropic subspaces. More precisely, QQ, always contains:
o two irreducible (g) -dimensional families of mazimal isotropic (e — h)-planes if k = 2h;
e one irreducible (hgl)—dimensional family of mazximal isotropic (e — h — 1)-planes if k = 2h + 1.

In order to see this, notice that the vertex of Q, is a (e — k)-plane so, by cutting Q, with a general
(k — 1)-plane A, one has a smooth quadric of dimension equal to k — 2. Then Q, N A contains either
one family of dimension (h;rl) or two families of dimension (g) of (h — 1)-planes depending on the
parity of k (see [GH94, Chapter 6, page 735]). One then concludes by observing that families of linear
spaces in Q. NA and in Q, are in bijection via joint union with the vertex of Q.. If the rank of Q, is
strictly less than k, with the same method, one can show that Q. always contains (e — h)-planes when

k =2h or (e — h — 1)-planes when k = 2h + 1.

From now on set

e—h itk=2h+1
m =

e—h+1 if k=2h

so that, from Remark 3.5.6, the quadric @, contains (possibly non-maximal) isotropic subspaces of

dimension m — 1 for all z € D;.

Lemma 3.5.7. Let W € G = G(m, E) and set x = n(W), i.e. W C E is an m-dimensional linear
subspace of E,. Then P(W) is an isotropic subspace for Q. if and only if 1w = 0.

Proof. Recall that ay : W — E, is the inclusion of W in E,. Hence, (a*)w = (aw)* : Ef — W*
takes a linear form on FE, and restrict it to W. Since 7*(¢)w : By — E}® L, ~ E? is the map sending
v € E, to ¢, (v) one has that

VW eG(m,E) and Vv € (Sp)w =W  ¥w(v) = 0. (v)|w,

i.e. the linear form ¢,(v) on E, restricted to W. Since P(W) is an isotropic subspace for @, if
and only if Yu,v" € W one has ¢, (v)(v') = 0, we have that P(W) is isotropic for @, if and only if

Let us now define the zero locus of the symmetric morphism ¢ as T' = Z(¢) = {W € G |yw = 0}.

Remark 3.5.8. One can compute the expected dimension of T as

Edim(7T") = dim(G) — Rank(Sym?(S}) ® 7*(L)) = dim(X) + m(e + 1 —m) — <m2+ 1>

since T = Z (1)), where 1 is section of the bundle Sym?*(S%) ® n*(L) and Rank(S}) = m.
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By construction and, in particular, by Lemma 3.5.7, it is then clear that D) = D;(¢) C =(T).
Indeed, to any point = € Dj, corresponds a quadric @, which contains at least one family of isotropic
(m — 1)-planes: for every such plane W, which belongs to 7' by Lemma 3.5.7 we have that ¢y =0
and 7(W) = x.

Let us now consider the following easy result of linear algebra, which will allow us to have, in a

specific case, also the other inclusion:

Lemma 3.5.9. Let W C V be two vector spaces of dimension | and e + 1 respectively, o : W — V the
natural inclusion and let n : V. — V* be a linear map. If ( = 1*onpor: W — W™ is the zero map,
then the rank of n is at most 2(e +1 —1).

Proof. If we define 7 : W — V* to be the composition 7 o ¢, since ( = 0, we have that Im(7) C
Ker(¢*), which has dimension e + 1 — [, and so dim(Im(7)) < e + 1 — [ and also dim(Ker(7))

l—(e+1—1)=2l—e—1. Since ¢ is injective, we also have that dim(¢(Ker(7))) > 2l — e — 1, but
t(Ker(n7)) = WnNKer(n) C Ker(n). From this we get that Ker(n) has dimension at least 2l —e — 1 and
so Rank(n) < (e+1) — (2l — e — 1), so we get the claim. O

v

In particular, for £ = 2h even, by setting [ = e — h + 1 in the above Lemma 3.5.9, one also has
that 7(Z (1)) C Dy (e):

Corollary 3.5.10. Assume that k = 2h is even. Then 7(Z(v))) = D} (¢).

Assume, as above, that k = 2h is such that the degeneracy locus Dj (¢) = D), is non-empty and
denote by 7 : Z(1)) — D}.(p) also the restriction of m : G — P¢ and consider m = e — h + 1. The fiber
of m over [z] € D) is, by construction, a variety parametrizing the isotropic (m — 1)-planes in Q. If
[z] € D} \D,_,, 7~ ([z]) parametrizes maximal isotropic (m — 1)-planes in @, so it has two irreducible
disjoint components of dimension (}2‘) by Remark 3.5.6. One can consider the Stein factorization of m,
ie.

T=Z¢)—G (3.10)

o

Z ™ ™

T

Z =D (p)—P°

where a has connected fibers and [ is finite. From the above discussion, one can see that the map [
is a 2 : 1 morphism, whose possible ramification lies in 71(Dj,_,).

It is then interesting to focus on the case where Dj,_, is empty (this happens, for example, when
D, is smooth) and Z = Dj is connected: in this situation one can wonder whether the finite map
3, which is then an unramified 2 : 1 cover, is non-trivial. This covering is trivial if and only if Z
is not connected, i.e. if and only if T is not connected since a has connected fibers. Notice that,
even if we assume that F and k satisfy the hypotheses of Theorem 3.5.1(a) we cannot guarantee the

connectedness of T' = Z(¢) = Dj(v)) since (Sym? S%) ® 7*L is not ample in general.

Let us now propose a sufficient condition which allows us to obtain the connectedness of 7', under

suitable assumptions that will be satisfied in the case we will consider.
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Lemma 3.5.11. Assume that
)\p—l e

0 F 25 2 5 A 7 2% 7050

is an exact sequence of sheaves. Let k > 0 and assume that Hj+k_1(.7-"j) = 0 for all j such that
1 <j <p. Then one has H*(Fy) = 0.

Proof. Split the starting exact sequence into short exact sequences of the form
(%) : 0= K; =+F;, - K;j_1—0

for 1 <j <p—1with Ko = Fp and K,_1 = F:

\ fg\Kl/fl

K,
From exact sequence (x,—1) and by assumption we have

oo HPP2YR(E, ) = HP2PR(K, o) — HP 1R (E) — -+
—_———— —_——
=0 =0
so HP=2*F(K, 5) = 0. By a recursive argument we can show that if we have H/**(K;) = 0 and
HI=WE(F;) = 0 (the latter is true by assumption), then also H/~1*¥(K;_1) = 0 holds. This claim

follows easily from the long exact sequence in cohomology induced by (x;):

e V(T o FI () - H(G)

—_——
=0 =0
At the end of this process we get 0 = H*(Kq) = H*(F,) as desired. O

Corollary 3.5.12. Let X be a smooth connected variety and T a smooth subvariety of X which is the

zero locus of a non-trivial section 8 of a vector bundle P on X of rank p.

(a) For any M € Pic(X) and k > 0, if H*Y (M @ NVP*) = 0 for 1 < j < p, then one has
H*Zp/x @ M) = 0;

(b) If Hi(N P*) =0 for all §, then h°(Or) = 1;
(¢) For any k> 1, if B*(Ox) = 0 and HIT*(N? P*) =0 for all j, then h*(Op) = 0.
Proof. Since Z is smooth by assumption, the Koszul sequence induced by 6

1 )\2 )\1 )\0

00— \PPF 0 AP P*

Ir)x —0
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is exact (see for example [GH94, Chapter 5, pag. 687]). By tensoring with M € Pic(X), we preserve
the exactness of such sequence, so (a) follows directly from Lemma 3.5.11.

For (b), let us consider the exact sequence
0—Zr/x -+ Ox — Or — 0.
Since X is connected we have an exact sequence
0 — H°(Ox) = H(Or) — H'(Zr/x)

hence the vanishing of H'(Zy,x) implies the connectedness of T. But since HI(NP*) = 0 by
assumption, we can conclude, by using (a) (for k = 1).

For (c), from the same sequence, we have an injection
0=H"Ox) = H"(Or) = H"(Zr)x).

We can then conclude since, under our assumption, we get that H kH(IT/ x) is zero, again by using
(a). O

Hence, if we assume that the degeneracy locus Z = D} (¢) is connected and smooth, one can
show that the map 8 : Z — Z introduced above is a non-trivial unramified covering, by proving that
HI(NP*) = 0 with P = Sym?(S%) ® n* L whenever 1 < j < (™).

3.5.2 An application: the case n =5

As an application of the above discussion, let us set X = P® and S = C|xg, - - - , 25| and let us consider
© = ¢ou : 0% — Ops(1)® where M € M?™(S'). For example, one can take M = Hess(f) for
[f] € P(S?) general.

As we have done in the previous sections, the degeneracy locus Z = D)(p) is a surface. In
particular, let us assume that such a surface Z is smooth (this happens for M general by Proposition
3.5.2), so that D§(p) = (). Here with respect to the notations of Subsection 3.5.1 (and the objects
in Diagram (3.10)), we have k = 4 and h = 2, so Z is a smooth surface which is an unramified
double cover of Z. The fiber of o : T — Z over p € S~ !([z]) is a P! which parametrizes one of
the two irreducible families of maximal isotropic 3-planes contained in the quadric (),. Hence, a has
irreducible and equidimensional fibers so Z is a smooth threefold and we can apply Corollary 3.5.12
in order to study the connectedness of the covering 8. Indeed, we have that Z is connected if T is so
and this is equivalent to ask h%(Or) = 1.

Notice that since E = OF;, we have G = G(4, 05;) = G(3,P°) x P* so h'(Og) = 0. We denote by
71 and o the two natural projections. If F and G are sheaves on G(3,P%) and P® respectively, we set
71 (F) ® m5(G) := F W G for brevity. Recall that T is the zero locus of a section of the vector bundle
P = Sme(S(*g%) ® 7*Ops (1) which, in this case, can be written as P = Sym?(S*) X Ops (1) where S

is the tautological bundle of G(3,P°). Thus, we have

AP =\ (Sym?(S) ¥ Ops(—1)) = (/\ Sym2(5)> X Ops (—5) (3.11)
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so it is clear that the vanishing of the cohomology group Hi(A\’ P) strongly depends on the vanishing
of some cohomology groups of A\’ Sym?(S) on the Grassmannian G(3,P%). The latter can be tested
using Bott’s Theorem on homogeneous vector bundles on Grassmannians. The interested reader can
refer to [FHI1] and [Ott89]. An explicit and standard, but long computation (see Appendix A for a
detailed proof) shows the following:

Proposition 3.5.13. One has H{(N’ Sym>S) = 0 for all pairs (i,j) with i > 0, 0 < j < 10
except for the cases where (i,7) € {(2,2),(2,3),(2,4),(4,5),(4,6),(4,7),(6,9)}. For these cases,
Hi(N\ Sym? S) # 0.

For all d € Z, from Equation (3.11) and by Kiinnet’s Theorem we have

Hi (W;OPS(d> ®/]\P*> ~ @ (Ha (/]\ Sym2 S) ®Hb((9p5(d—j>)> . (312)

a+b=1

In particular, since for j > 1 the group H®(Ops(—j)) is trivial whenever b # 5, we have

I (/\p*) ~ HI75 </J\ Sym? S> ® H°(Ops (—j))-

Hence, by Proposition 3.5.13 and since H?(Ops(—j)) ~ H°(Ops(j — 6))* = 0 for j < 6, we obtain
HI (/\] 77*) = 0. Then, using Corollary 3.5.12(b) we have that 7" is connected and the same holds

for Z. With the same reasoning just used, we also get that Hj“(/\j P*) =0 for j > 1 so we can
conclude, again by Corollary 3.5.12(c), that h!(O7) = 0.

Similarly, for d > 0 one has
if j<d HI7H (AT Sym? ) @ HO(Ops (d - j)

HI7 | 75 (Ops (d jP* o
<2( oo (d)) ® \ ) ifj>d I (N Sym?S) @ H*(Ops(d - )

which is always trivial if d < 2 by Proposition 3.5.13. Hence, by Corollary 3.5.12(a), one has H° (Zr/c®
5O0ps(d)) =0 for d = 1,2.

Summing up, one has the following

Proposition 3.5.14. Assume that M € ngm(S’l) is general. Then the variety T constructed above is
a smooth connected threefold with h*(Or) = 0, h°(Zr/c @75 O0ps (1)) = 0 and h®(Zy /g @75 0ps(2)) = 0.

Moreover, Z is a connected surface so B : Z — Z is a non-trivial unramified double cover.

3.6 The case of a general smooth cubic fourfold

In this last section we will focus on the case n = 5 and we will study the properties of the singular
locus Z(=Dp—1=4(f)) of the Hessian variety H; associated to the general smooth cubic fourfold
X =V(f) Cc P for [f] € U = P(53)\ Csing, where S = Clxg,-- ,x5]: in particular, we will prove
Theorem G from the Introduction. For the topics of this section, the reader can refer for example to
[Bea96, GH94, Har77].

The starting point of this analysis is based on some results obtained more generally in the previous

sections which we sum up in this lemma:



68 CHAPTER 3. FROM GORENSTEIN ALGEBRAS TO HESSIAN HYPERSURFACES

Lemma 3.6.1. Assume that [f] € U is general and denote by H the hyperplane class of P°. We have
the following:

(a) Hy = Ds(f) has singular locus Z = Sing(H ) = Da(f) which has dimension 2;
(b) Z is connected, smooth and it is cut by 21 quintic hypersurfaces;

(c) As subvariety of P°, Z has degree 35;

(d) There exists n € Pic®(Z)[2] such that 3Hiz +n=Kgz.

In particular, Z is a minimal surface of general type.

Proof. Most of the information for (a), (b) and (¢) follows from Theorem 3.4.1 and Propositions 3.5.2.
The surface Z is the degeneracy locus at rank 4 of the Hessian matrix Hess(f), which is a symmetric
matrix of order 6, so it is defined by the vanishing of the 36 minors of Hess(f) of order 5. Each
minor gives a quintic equation and, by symmetry, it is enough to consider only 21 of them. For (d),
by Proposition 3.5.3 we have 2Kz = 6H|z so there exists a possibly trivial torsion line bundle n of
order 2 such that Kz = 3H|z +7. In particular, Kz is numerically equivalent to 3H|z which is ample
since 3H is ample on P° so Kz is ample too by Moishezon-Nakai criterion (see [Har77, Theorem 1.10,
pag.365]). Hence, Z is a minimal surface, since we don’t have (—1)-curves. Moreover, it is of general

type (see for example [Bea96, Prop. X.1]). O

We stress that Kz is not linearly equivalent to 3H,z as we will show later. Now, let us compute

the main invariants of the surface Z:

Proposition 3.6.2. Let Z be as above. Then

(a) The (topological) Euler characteristic of Z is e(Z) = 357;

(b) The Hilbert polynomial of Z is x(Oz(n)) = 2n? — 190 4 56;
(¢c) There exists a non-trivial unramified double covering Z — Z;

(d) Z is regular (i.e. it has irreqularity ¢(Z) = 0), its geometric genus is py(Z) = 55 and h*(Z)(=
dim(HY(Z, Q%)) = 245;

(e) hO(Izps(1)) = hO(Iz/ps(2)) = 0.

Proof. Let us start with the computation of ¢(Z). One can compute e(Z) by using a computer algebra
software (we will use this approach later in order to compute some cohomology groups), but actually
here we adapt a formula presented and proved in [Pra88, Proposition 7.13], which in our specific case
is
a(Z) = Y (=12 (i1 +1,82))Qi 42i511) (OF5 (1/2)) c2—iy—in (P)
(i1,i2)

where (i1,12) ranges in {(2,0),(1,1),(1,0),(0,0)} and where Ops(1/2) is a formal line bundle whose
square is Ops(1) (one can be more precise by invoking squaring principle). For brevity, we don’t

report the definition of the coefficients ((a, b)) and of the Q-Schur polynomial @, ). Nevertheless, we



3.6. THE CASE OF A GENERAL SMOOTH CUBIC FOURFOLD 69

give the values of the non-vanishing -Schur polynomial evaluated in (9](135,5 (1/2) and of the coefficients

((a,b)) appearing in the above formula:

Qo1 =35H® Qa1 =105H" Qu1=TTH® Qyy =220

(Lo) =1 (2,0)=3 (3,0)=7 ((21)=3

Summing up and developing the computation, one gets e(Z) = deg(c2(Z)) = 357.

By Lemma 3.6.1(c) we have that Z, as subvariety of P, has degree 35. Hence we have H, ‘22 = 35.

As Kz =pum 3H|; by Lemma 3.6.1(d), we have that K% =315 and K - H,z = 105. Then we have

e(Z)+ K% 357+315
X(0z) = == 5~ ===

by Noether’s formula (see for example [Bea96, 1.14]) and

56

35 , 105

We can apply the double cover construction of Subsections 3.5.1 and 3.5.2 to Z = D4(f) = D'(PHess(s))

X(O2(n) = 56+ & (nH)z)(nHiz — K7) = 56 + L (H)n® — (Hiz - Kz)n) =

in order to construct the threefold T', the unramified double covering £ : Z — Z and the morphisms 7
and « (see Diagram (3.10)). We can apply Proposition 3.5.14 in order to see that h'(Or) = 0 and that
B Z — Z is indeed a non-trivial unramified double covering. Since 7 : T — Z is surjective, we have
that 7 : HO(QL) — H°(QL) is injective. As h'(Or) = h%(QL) = 0 we have then ¢(Z) = h1(Oyz) = 0.
The last two invariants, namely h(Z) and py(Z), are easily computed knowing that x(Oz) = 56,
q(Z) = 0 and e(Z) = 357. Indeed, we have that 56 = x(Oz) = 1 — ¢(Z) + py(Z), from which we
get that py(Z) = 55; moreover, 357 = e(Z) = 2 — 4q(Z) + 2py(Z) + hH}(Z) and one obtains that
hbY(Z) = 245.

Claim (e) follows since a non-trivial section of Z ps(d) induces, via pullback, a non-trivial section
of T/ ® m5Ops (d) and we know by Proposition 3.5.14 that h°(Zy/g ® m5Ops (d)) = 0 for d = 0,1. O

The approach described in Subsection 3.5.2 is not powerful enough to prove the vanishing h°(Zp /GO
75 Ops (d)) = 0 for d = 3,4 and so we cannot use this method in order to conclude that h%(Z ps (d)) = 0
for d = 3,4. Nevertheless, by semicontinuity it is enough to establish the vanishing for a single example
in order to have it for the general one. With this approach, one can use a computer algebra software
(like Magma) in order to compute the Hilbert series hyz,(t) (see for example [Har95, Lecture 13])

associated to the surface Zj for a specific case, namely the Klein cubic fourfold
Xo={fo =0} where fy= :U(Q)azl + l’%l‘g + l’%l‘g + x§x4 + :L'i:xg, + :Bg:xo.

Defining, for brevity, ) = x; for any k € Z, i € {0,...,5} if and only if K =i mod 6, one has
2 5 5 1

3,3 3 2 3 2,2 2
hess(fo) = E T;T; 3 — TOT1T2X3L4T5 + E TP T3 — g TiTi 1 Ti42T5y 3 — g TiTG 9Ty 4.
i=0 i=0 i=0 =0

Let us observe that Zy = Dy(fp) has the expected dimension: this fact is proved directly in Appendix
B, by using the same reasoning presented in [AR96] for the case of the Klein threefold. By using

Magma, one obtains

15t + 1063 + 62 + 3t + 1
hZo(t) = (1— t)3

oo
= hGt = 146t+21£2 45613+ 126t +231¢°  mod 5. (3.13)
=0
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Remark 3.6.3. Let us recall that, by definition, the coefficients h(ZZ()) of the above Hilbert series rep-
resent the dimensions of S(Zlg, the degree i part of the homogeneous coordinate ring Sz, of Zy, i.e.

S/1y,ps. Moreover, let us observe that S(Zzg coincides also with the image of S* = H%(Ops(i)) in

H%(Og,(i)) via the map induced by the ezact sequence
0 — Ly, ps (i) = Ops (i) = Og,(i) = 0.

Actually, this is also the Hilbert series for Z, singular locus of H; for [f] € U general, since hz(t)
is constant for flat families (and we are considering degeneracy loci associated to a morphism of vector

bundles). This has several consequences.

Proposition 3.6.4. Let [f] € U be general and let Z be as above. Then
(a) The 2-torsion element 1 such that Kz = 3H|z +n is non-trivial;

(b) h2(Zzps(d)) =0 for d < 4 and h®(Zyps(5)) = 21.

Proof. In order to prove (a), notice that, by Remark 3.6.3 the coefficient hg’) of the Hilbert series of
Z is 56, which equals, by definition, the dimension of S(Zg), that is the image of S3 = H%(Ops(3)) in
H°(Oy(3)) via the map induced by the exact sequence

0= Zyzps(3) = Ops(3) = Oz(3) — 0.

Then, if Kz = 3H|; we would have a contradiction since we would obtain, by Proposition 3.6.2,
55 = py(Z) = h%(Oz(3)) > 56. Hence 1 is a non-trivial 2-torsion element of Pic(Z).

For (b), again by Remark 3.6.3, notice that h(Zd) = dim(S%) = h%(Ops(d)) for d < 4. Hence
HO(IZ/]Ps(d)), which equals the kernel of the map S? — H(Oz(d)), is trivial for d < 4. For d = 5 one
has h(Zs) = 231 = 252 — 21 = dim(S°) — 21 so hO(IZ/p5(5)) = 21 with the same argument as before.

O

Recall that we proved in Subsection 3.5.2 that Z has a natural non-trivial unramified double
cover. This corresponds to a 2-torsion line bundles ” on Z. An intriguing question is whether 7 and

n' coincide. We conjecture the following:
Conjecture 3.6.5. We have n =1’ for [f] € U general.

We conclude this section by exploiting again Magma in order to obtain the following data which
hold for Z associated to [f] € U general:

d o 1 2 3
RO(Oz(d) | 1 6 21 56
hY(Oz(d) |0 0 0 0
h?(Oz(d)) |55 15 0 0

(3.14)

By using this, we can show the following result, concerning the projective normality of Z (in the
general case). Let us recall that to prove this property we have to show that for every d > 0 the map
HO(P5, Ops(d)) — H°(Z,04(d)) is surjective, or equivalently, that the group HI(IZ/Ps(d)) is trivial
for every d > 0 (see for example [Har77, Ex. 5.14]).
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Proposition 3.6.6. Let [f] € U be general and let Z be as above. Then Z is projectively normal.

Proof. Recall that if Sz = S/I,/ps is the homogeneous coordinate ring of Z, we have, for each d > 0,

an exact sequence of vector spaces
0= S = H(O2(d)) = H' (Tzps(d)) — 0.

From these sequences one has

+oo +o00
> WOzt = hy(t) + Y B (T (d))te.
d=0 d=0
Since dH|z =pum Kz + (d — 3)H|z and (d — 3)H|z is ample for d > 4, by Kodaira vanishing, one
has HP(Oz(d)) = 0 for d > 4 and p = 1,2. In particular, using also Table (3.14), one has

—+o00 —+o00
dz_o WO (d)t = ; V(OZ(d))E — (55 + 15¢) = 7(18t<21__2$§ =8 5515t

One can easily check that the latter series coincides with hz(t) (see Equation (3.13)) so one can
conclude that h'(Z, /ps(d)) = 0 for all d > 0. This is equivalent to the projective normality of Z. [
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Appendix A

Cohomology on Grassmannians

The aim of this first appendix is to prove Proposition 3.5.13 from Section 3.5: in order to do this, we
will essentially use tools from representation theory. For this part we refer to notation and approach
used by G.Ottaviani in [Ott89], while for some basic definitions and a more detailed explanation of

these topics, one can refer to [FH91]. In this appendix, we work on the field C of complex numbers.

Even if we are interested on some cohomology groups over the Grassmannian of projective 3—planes
in P, before considering this specific case, let us introduce, in a more general setting, a possible strategy
to study cohomology groups over a Grassmannian G(k,n) of projective k—planes in P". As done in
[Ott89], we can think of G(k,n) as of the complex homogeneous manifold SLy41(C)/P where

h
p={|m 0
hs hy
We can then consider the simple Lie algebra sl,11(C) = {A € M,+1(C) | Tr(A) = 0} associated
to SLy+1(C) and p the one associated to P. We can also take

S SLn+1(C) | hyg € GLk+1((C)} .

h={Ae€sl,+1(C) | Ais diagonal} C sl,41(C),

as a Cartan subalgebra of sl,,;1(C).

In gl,,1(C) = M,41(C) (the Lie algebra associated to GL,1(C)), let us define E;; to be the
matrix with all trivial coefficients but the one at the entry (i, ) which is equal to 1 and let {¢; ;} be
the dual basis of {E; ;}. Then, as a basis of h we can take {z;}i—o,. n, Where ; := E;; — Ej 41,41
Let us call {\;}i=o,..n C b* the dual basis of {x;};. By setting «; := €;; — €;41,,+1 and by considering

L_(, ) to be the Killing form in b*, it is well known that

2(n+1)
0, if i £ j
(Aiy ) = 05 =
1, ifi=j
It is also well known that the set {aq, ..., a,} gives a basis of the root system ® of sl(n 4 1) with

respect to b, where ® = &+ U ®~ and
" ={a;+oip+-+a[1<i<j<n}

73
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is the set of positive roots and ®~ = —®*. Let us now recollect some definitions that will be very

useful in what follows:

Definition A.0.1. (a) Given a finite dimensional K—wvector space V' and a representation p : P —
GL(V) we say that X\ € h* is a weight for D(p) if the space

Vai={v €V | D(p(H)) v = A(H) vV H € b}
1s not trivial, where D denotes the operator of differentiation.
(b) A weight X =7 | n;\; with n; € Z is said to be singular if (A, ) = 0 for at least one o € ®.

(c) A weight X is said to be regular with index p if it is not singular and there are exactly p roots
a € &1 such that (A, a) < 0.

(d) If u and v are two distinct weights of the same representation, we say that 1 is higher than v
(uw > v) if u— v can be written as a linear combination Zj mjoij, where all the coefficients m;

are nmon-negative.
(e) A weight 1 is a highest weight if there do not exist other weights higher than p.

(f) A homogeneous vector bundle E, of rank r on G(k,n) ~ SL(n + 1)/P is a bundle arising
from a representation p : P — GL(r).

Since {a;}j=1,.. n is a collection of elements of h* and {\;}i=1,..n is a basis for h*, we can write «a;

as a linear combination of the \;’s:
o = Zai’in’ for a;j € K.
,J
Since {A;}; and {xy}i are dual to each other, if we apply «; to zy, we simply get a;. On the other
hand, we know by construction that a; = €;; — €;41,4+1 and that xy = Ejy — Epq1441. Hence, by
an easy calculation, one can write, in a compact way, o;j = —Aj_1 + 2\; — Aj;1, where we set A\g and
An+t1 to be zero.

Finally, by setting 6 := )" ; \;, we can now state the following theorem due to Bott, which will
be central in what follows (see [Ott89] or [Bot57, Theorem IV’] for the original statement):

Theorem A.0.2. Let E, be a homogeneous vector bundle on G(k,n) ~ SL(n+1)/P, defined by an
irreducible representation p and let A be the highest weight of D(p) : p — gl(r).

1. If \+ 0 is singular then H(G(k,n), E,) = 0 for all i.
2. If A+ is regular with index p then H'(G(k,n), E,) =0 for all i # p.

Actually, this theorem gives also the dimension of H?(G(k,n); E,) in the case where A+ 4 is regular

with index p, but now we are not interested in such a result, so we are skipping this part.

After all this general introduction, let us now focus on our specific case. Since we are working with
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bundles over the Grassmannian G(3,5), we are interested in the case where k = 3,n = 5, hence we

P—{F15165%wﬂhﬂxm4©}.

hs  hy

have

Let us now consider the tautological bundle S of the Grassmannian G(3,5), i.e. the bundle fitting
into the exact sequence
0—-5—>G3,5)—=>Q—=0

and such that for a 3—plane W, element of G(3,5), we have that Sy ~ W. This tautological bundle
S is associated to the standard representation, i.e. the representation p : P — GL(V'), such that for
A € P we have p(A) = hy.

We have actually to consider the representation D.(p) = D(p) (where e denotes the identity
element of P) over the associated Lie algebras: D(p) : p — gl(V'), where gl(V) = My(C) and p =

M= hi 0
hs hy

| Tr(M) = 0}, sending M € p to

lim p(I—i-tM) - p(I) . I4 +th4 - I4
t—0 t - t

= h47

so in this case actually D(p) = p.
Let us now look at the possible weights of D(p) = p: let us look at the spaces

Va={veV | D(p)(H)-v=AH)-v VH eb).
—hy

Since {z;}i=1,..5 is a basis for h, we can write H = Z?:l b;x; for some coefficients b; € K and so,
by definition of the z;’s one obtains that D(p)(H) = hy is of the form

hy = diag(bs — by, by — bs, bs — by, —bs)

and writing A = Z?Zl ni\i, since {\; }; is dual with respect to {z;};, we get also that A(H) = Z?:1 n;b;

and we can describe the space V) as the kernel, for every {b;};

(b3 — ba) — S°0_ nibs 0 0 0
K 0 (bs —b3) — >0_ nib; 0 0
er 5
0 0 (b5 - b4) — Zi:l nzbz 0
0 0 0 (=bs) — 300, nabs

To make this kernel not trivial for every b;, one of the elements on the diagonal of the above matrix

has to be zero. One can then easily see that the weights associated to such a representation are
p1i= Az — Ag, H2 = A1 — As, p3 = As — As, pa = —As.

Let us now look for the highest weight. It is known (see for example [FH91, Proposition 14.13]) that
for each irreducible component of a representation there exists a unique highest weight. Moreover
the standard representation is irreducible. Recalling that for all ¢ = 1,...,5 we can write o =
—Ai—1 + 2N — Xit1, where A\g = Ag = 0, let us observe that:
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® (13— fa = —Ag+ 2X5 = 5, SO i3 > fiyg
® 12 — 13 = —A3+ 2X4 — A5 = au, SO 2 > 13
® i1 — fi2 = —A2+2X3 — Ay = @3, SO i1 > 2.

From these relations, one can easily see that py is higher than any other uj;, with j = 2,3,4: pq is
the highest weight. Then, we can now apply Bott’s Theorem A.0.2: let us test the singularity of
p1 46 = A1+ 2X3 + Ay + As. Since, as we said above, (\j, ;) = 6;5, we can then easily see that

(1 +90,a2) = (A1 +2 3+ A+ A5, 2) =0 — py + 6 is singular,

so by Bott’s theorem we get that
H'(G(3,5),8) =0 Vi,

(recall that the tautological bundle S is the associated one to the standard representation we are
considering).

The next step is to calculate the cohomology groups of the bundle Sym?2S, which is associated
to the representation Sym?p, that we will denote by p). For the computation of the corresponding
weights, we can use the following result (see [FHI91, Chapter 13]):

Proposition A.0.3. If we consider the symmetric product Sym?p of a representation p, the corre-
sponding weights are given by the sums of the weights of D(p).

Moreover, if we consider the k-th exterior product /\kp the corresponding weights are given by the
sums of k distinct weights of D(p).

Let us then indicate with p;; = p; + p; with ¢, = 1,--- , 4 the weights of p?). By studying, as
done before, the differences between every couple of weights we can create a diagram with the rows
that describe the order relation we introduced in Definition A.0.1, i.e. p;; — ppr means that p;; > ppg,
(i.e. i+ — pon — pg is a linear combination of positive roots with non-negative coefficients). Clearly,
in such a diagram, the transitivity holds.

In particular, we have:

11 Al
K12 ~ Y

H13 ~ s 22
H14 ~ T 23 -

> 24 ~ s w33
T 34 =
T~

2zv

It is then clear that every weight is higher than p44 and that py; is higher than any other weight:
we then have one maximal weight for p(2), namely g1, so such a representation is irreducible. We
then have that g1 +9 = A1 — Ao + 3A3 + A4 + A5 and we can easily see that

(u11+5,a1+a2):(/\1—)\2+3)\3+/\4+)\5,a1+a2):1—1:0,



77

so the element pq7 + 0 is singular (see Definition A.0.1(b)), then by using again Bott’s theorem A.0.2
we get that

HY(G(3,5),Sym?S) =0V i.

Let us the consider the homogeneous bundles obtained as the exterior products of the symmetric
product Sym?S: they obviously correspond to the representations obtained as the exterior products of
the symmetric product representation p(® we have just considered. Let us refer to these representations

as
P p
op 1= /\ p(2), associated to the bundle /\ Sym?8S,

where D(a,) : p — gl(m), where m := dim(A? Sym?V').

Let us then start with the case p = 2: by Proposition A.0.3 we know that the weights associated to o9
are given by sums of two different weights corresponding to p(?), then they are of the form Mij + fnk,
with 4,7, h,k € {1,---,4} and (i,7) # (h, k). From diagram (A.1), it is then clear that in this case
the highest weight is given by v := p11 + p12 = 341 + p2. Then we have that

v+ =X —2 3+ 3A3+ 224 + A5.

One can observe that in this case, there exist no elements « in ® such that (v + d,«) = 0. Hence,
v + § is not singular: in order to compute its index, we are now supposed to find the cardinality of
the set of elements o in ®* such that (v + 4, ) is strictly negative. One can easily see that there only

two such a’s, namely as and a1 + ag:
(V +9, 042) = ()\1 —2X9 + 3A3 + 20 + /\5,042) = -2,

(V+5,a1+a2):()\1—2)\2—1—3)\3+2)\4—|—)\5,a1—|—a2):+1—2:—1.

By Definition A.0.1(c), we then have that v+ § is regular with index 2. Then by Bott’s theorem A.0.2,

we get
2
H' (G(s, 5), /\Sym25> =0 Vi#2

Let us now consider the case p = 3. From Proposition A.0.3, we know that the weights are sums
of three distinct weights of p(® and, from the diagram (A.1), we can see that in this case we do not

have a unique choice for the highest weight: we have two possibilities, namely

v1 = p11 + a2+ pag = 4pn + pe + ps and vo = p11 + paz2 + po2 = 3p1 + 3ua.

Indeed, v; and v» are higher than any other possible weight, but 11 and v are not comparable: if we
consider v; — vo we get p13 — pog = 1 — U2 + p3 — e = as — ay and obviously pgo — p13 = a4 — iz, SO
neither 13 > w92 nor the converse holds. Then, in this case, the representation o3 we are considering
splits up into two irreducible subrepresentations, with these as highest weights. We have then to

analyze both the components. For the first one, with 4 as highest weight, we have that

V140 =X — 33X +4A3 + Ay + 2)5.
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We can then easily see as above that v1 + § is not singular and that the elements o € ®* such that
(11 + 6,a) < 0 are exactly aq, ) + ag: v1 + 9§ is regular with index 2.

For the second component, with v5 as highest weight, we have
va+0=A1 —2 2+ A3+ 44X + A5,

which is singular, since (v + 0, a1 + ag + a3) = 0. Hence, by Bott’s Theorem A.0.2, we get that

3
H' (G(3,5),/\Sym25’> =0 Vi#?2.

Analogously, the same behavior arises in the cases where p = 4, 5,6, 7. Indeed, for these values of
p we have two different highest weights corresponding to two irreducible subresentations and one can

show:

(p=4) v1 = p11 + pa2 + p13 + p1a and vo = pyy + pr12 + p13 + pro2; moreover, vy + 6 is singular since
(va + 6, a1 + ag + az) = 0, while 11 + 6 is not singular with index 2 (one has (v; + J, a2) < 0 and
(1/1 + 0,01 + CVQ) < 0)

(p=5) v1 = p11 + pa2 + pa3 + p1a + po2 and vo = pa1 + pa2 + p13 + po2 + p23. One can easily show,
as done above, that vy + ¢ is singular, while 5 + § is regular with index 4

(p=6) v1 = p1 + p12 + pig + g + po2 + pog and vo = p + pa2 + pig + o2 + po3 + pas; here, we
have that 141 + ¢ is regular with index 4, while v + § is singular

(p=T7) v1 = p1 + pi2 + p13 + pia + po2 + pog + poa and vo = piy + pa2 + s + paa + poo + o3 + pss.
In this case, v + 9§ is regular with index 4, while vy 4 ¢ is singular.

By applying Bott’s Theorem A.0.2, we get:

4 5
H' (G(3,5),/\Sym25>20 Vi£2 H <G(3,5),/\Sym25>:0 Vi 4.

6 7
H' <G(3,5),/\Sym2>—0 Vitd H <G(3,5),/\Sym25>—0 Vi # 4.

Let us now consider p = 8. In this case, we have an irreducible representation, with only one

highest weight, namely

v =11+ p12 + p13 + pia + pog + posg + pog + p3s3.

And by taking
v+ =X —4Ay + A3+ 2X4 + 3)s5,

we have that it is singular, since (v + J, a1 + a2 + a3 + ay) = 0. Hence, by Bott’s Theorem A.0.2, we
get

8
H' (G(3,5),/\Sym25’> =0 Vi

Similarly, for p = 9,10 we have a unique highest weight v and, in particular, one gets
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(pP=9) v = pa1 + pa2 + p13 + p1a + p22 + p23 + p2g + p33 + p34 and v + 0 is not singular and the
elements o € ®T such that (v +§,a) < 0 are ag, a1 +as, as +as, a1 +as+az, as+as+ay
and a1 + as + ag + ay: v+ § is regular with index 6

(p=10) v =b5pu1 + dpa + Sz + Spa and v + 9§ is singular

By using Bott’s Theorem A.0.2, we get

9 10
H' (G(3,5),/\Sym25> =0 Vi#£6 H <G(3,5),/\Sym25> =0 Vi

By summing up all these results, we have thus proved Proposition 3.5.13, which describes the
cohomology of S and of its symmetric and exterior powers, where S is the tautological bundle to the

Grassmannian G(3,5):

Proposition. One has HZ(/\J Sym? S) = 0 for all pairs (i,4) with i >0, 0 < j < 10 except for the
cases where (i,7) € {(2,2),(2,3), (2,4), (4,5), (4,6), (4,7),(6,9)}. For these cases, H'(\’ Sym? S) # 0.
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Appendix B

The Klein cubic fourfold

In this appendix, we will consider the Klein cubic fourfold X = V(f) C P2, where
f=ade) + 2dey + 2des + 2ixy 4+ 2225 + 2220,

and its associated hessian hypersurface H = V' (det(Hess(f))). As stated in Section 3.6, we will prove
that H is singular along a surface, i.e. dim(Sing(#)) = Edim(Sing(#)) = 2. However, let us stress
than in this case such a surface is not smooth (as we showed for the general cubic form in 6 variables).
To this aim, here we use the same approach proposed in [AR96, Appendix IV], where Adler proves
that the Klein cubic threefold has associated Hessian hypersurface which is singular along a curve. To

avoid confusion, let us write (xo, x1, 2, T3, 24, z5) = (t,v,w,x,y, z). Let us consider the matrix

v t 0 0 0 2]

t w v 0 00

H:}Hess(f): 0O v 2z w 00
2 0 0wy z O

0 0 0 o« 2z vy

z 0 0 0 vy t_

We will prove our claim by showing that there exist two hyperplanes L, Lo such that H|p g,
has rank n — 1 = 4 only in finitely many points or, in other words, that there exist only finitely many
matrices of this kind with rank at most 4. Indeed, this would mean that the locus D4(f) = Sing(H)
has dimension 2: let us recall that such a dimension can’t be strictly smaller than 2, since we know
that dim(D4(f)) > 2, by the computation of the expected dimension of such locus (see Proposition
3.2.3).

Let us then consider Ly = {z = 0} and Ly = {z = 0}: on the intersection of these two hyperplanes

the Hessian matrix has the form

o O O O =+ <
o O o & «~
o O & O o
o ow g o o

@ O O O o O
+ « O O O O
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Since we want to analyze the case where the rank of such a matrix is 4, we have to study the vanishing
of minors of order 5. If, for example, we take H*2, i.e. the order 5 submatrix obtained by ruling out
the 4th row and the 2nd column of H, we see that its determinant is —y?wv? = 0. We thus get that
either y = 0 or w =0 or v = 0: if two coordinates (z and z) are 0, then a third one must be 0 too. If
we consider the symmetric action which f is invariant for, we can assume that either v = 0 or w = 0.

In the first case, where v = x = z = 0, we get the matrix

(0 ¢+ 0 0 0 0]
t w0 0 00
00 0 w00
) IT——
=r=2=0""10 0w oy 0 0
000 0 0 y
0000 y ¢

By considering, for example, the submatrix H3? and its determinant, we get that —t?y> = 0. In the

second case, where z =z = w = 0, we get

vt 0000
t 0 v 000
0 v 000 0
H. .. =
F=e=w=0" 00 0 0y 0 0
00000y
0000y ¢

and from the determinant of H** we get v3y? = 0. Thus, by supposing that two coordinates vanish,
actually at least four are zero and as above we can assume that we have z = z = v =t = 0 or

z=x=w =v = 0. In the first case, we get

0 0 0 0 0 0
0O w O 0 0 O
00 0 w 0 O

H____ pu—

F=e=v=t=0 "0 0w oy 000
00 0 0 0y
0000y O

and from H! we get that w3y? = 0. In the second case,
0t 00 0 0]
t 00 0 0 O
000 O0O0UO

H____ pu—

F=r=w=e=0""10 0 0 4 0 0
00000y
00 00 gy t

and from H33 we get that t2y® = 0. Thus, we get that at least five coordinates are actually zero. But

in P?, there are only 6 points with 5 coordinates equal to 0. Thus we have proved our claim.
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