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1 Introduction

Quantum states differ from classical ones due to the presence of entanglement. In order to
characterize this entanglement, several measures were proposed, including the entanglement
and Rényi entropies. However, in systems with a global symmetry, it turns out that these
measures do not capture the intricate interplay between different charge sectors of the
theory. For this reason, a new measure was proposed — the charged Rényi entropy

Sn(µ) ≡ 1
1− n log Tr

[
ρA

eµQA

nA(µ)

]n
(1.1)

where ρA = TrĀ ρ is the reduced density matrix of the state of the full system ρ over a
region A, QA is the charge operator restricted to this region, µ is a chemical potential
conjugate to the charge QA and nA(µ) ≡ Tr

[
ρA e

µQA
]
is a normalization constant. We

assume that the (pure) state of the full system is an eigenstate of the charge operator, i.e.,
[ρ,Q] = 0 and therefore [ρA, QA] = 0. This means that the reduced density matrix can be
decomposed in blocks corresponding to the different charge sectors ρA = ⊕p(q)ρA(q), with
probabilities p(q) of finding an outcome q when measuring QA and Tr ρA(q) = 1.

The evaluation of charged Rényi entropies can be rephrased in terms of a partition
function

Sn(µ) = 1
n− 1 (n logZ1(µ)− logZn(µ)) , Zn(µ) ≡ Tr

[
ρAe

µQA
]n
. (1.2)

Then, the symmetry-resolved Rényi entropies

Sn(q) ≡ 1
1− n log Tr ρA(q)n (1.3)

within each given charge sector q, are obtained by performing a Laplace transform over this
partition function [1]1

Sn(q) = 1
n− 1 (n logZ1(q)− logZn(q)) Zn(q) ≡ −in

∫ iπ/n

−iπ/n

dµ

2πe
−qnµZn(µ), (1.4)

and the probability to be in a given charge sector is p(q) = Z1(q). Charged Rényi
entropies have recently gained a lot of attention within the condensed matter literature,
e.g., [1, 2, 4–9]. In particular, they were proposed as a useful tool for identifying symmetry-
protected topological (SPT) states [6, 10].2 This observation was used to detect SPT states
on the IBM quantum computer by implementing a protocol which measures the second
charged Rényi entropy [11].

1We see in this equation that µ ≡ iµE is a natural redefinition. In field theory situations the parameter
µ is typically imaginary, and in this case it simply produces a phase for charged fields as they go around the
entangling surface in the replicated geometry often used to define Rényi entropies [2]. On the other hand, in
holography it can be either real or imaginary. We have selected a convention consistent with the previous
holographic literature [3].

2SPT states are states which are connected to a product state by a local unitary transformation, but this
transformation breaks the symmetry of the system.
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In conformal field theories in d spacetime dimensions, the partition function in eq. (1.2)
can be evaluated by performing a Euclidean path integral on a replicated geometry with
twisted boundary conditions along the entangling surface. The twisted boundary conditions
can be implemented by inserting a d− 2 dimensional twist operator in the Euclidean path
integral [12–14]. For a charged theory, the twist operator is further dressed by a magnetic
flux fixed by the parameter µ.

When the entangling surface is spherical or planar, the charged Rényi entropies take a
particularly simple form and can be evaluated analytically in various examples of free and
holographic CFTs [3]. More generally, such a shape of the entangling surface preserves a
large subgroup of the original conformal symmetry, therefore turning our CFT to a defect
CFT (dCFT) [15, 16]. Since some of the symmetry has been broken, dCFTs are not as
powerful as CFTs. Nevertheless, many correlation functions are completely fixed by the
symmetry. For example, dCFTs are equipped with a primary operator living on the defect
— the displacement operator — which, when inserted in correlation functions, displaces the
defect locally. The kinematics of several correlation functions involving this operator are
completely fixed by symmetry and this fact will play a crucial role in our analysis.

The goal of the present paper is to study the shape dependence of the charged Rényi
entropy for small deformations away from a symmetric entangling surface — spherical or
planar — in theories with a holographic dual. In dCFTs, such deformations are completely
characterized in terms of a single coefficient CD, which appears in the two point function
of the displacement operator — see eq. (2.11) below. We will compute this coefficient for
holographic theories in various spacetime dimensions d, as a function of the Rényi index n
and the chemical potential µ. In order to achieve this goal, we employ the fact that CD also
appears in the one point function of the stress tensor in the presence of a deformed defect.

The holographic setup for studying charged Rényi entropies with a planar or spherical
entangling surface includes charged black holes with hyperbolic horizons. Indeed, this
quantity was studied extensively in holography, see e.g., [3, 10, 17–24]. Since we are
interested in small deformations of symmetric entangling surfaces, our background will
consist of a slightly deformed version of the charged hyperbolic black hole. The coefficient
CD will be extracted by evaluating the one point function of the stress tensor in this
deformed background.

The Rényi defect can be tuned such that it preserves supersymmetry (SUSY) and in
this case the charged Rényi entropies become supersymmetric. This particular case was
extensively studied in [25–29] and an interesting conjecture was made [30] suggesting that
the coefficient CD and the conformal weight of the twist operator hn are proportional, i.e.,

Cconj
D (n, µ) = dΓ

(
d+ 1

2

)( 2√
π

)d−1
hn(µ) . (1.5)

This was rigorously established in d = 4 [30] and, after the initial proposal of [31, 32], it has
been extensively checked for supersymmetric Wilson lines in d = 3 [33].3 In this paper we

3In the three-dimensional case the twist operator is a line defect, and we can extend to the supersymmetric
Rényi entropy the results that have been derived for supersymmetric Wilson lines using only the preserved
supersymmetry.
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demonstrate that this relation holds for holographic theories in all dimensions 3 ≤ d ≤ 7,
when the gravity solution is tuned to be supersymmetric.

Contrary to the uncharged case, we will find that the dCFT data CD(n, µ) and hn(µ)
will not vanish for n→ 1. This is expected because the presence of a magnetic flux along
a codimension-two surface, in the ordinary single-copy CFT, creates a non-trivial defect,
which is commonly known as monodromy defect [34–38]. Therefore, as a byproduct of our
analysis, we also study the shape dependence of holographic monodromy defects.

The paper is organized as follows. In section 2 we review the various defect-CFT
ingredients required to analyse the Rényi defects. In particular we evaluate the one point
function of the stress tensor and current in the presence of deformed defect and relate
it to CD. In section 3 we present the holographic study of the charged hyperbolic black
hole where we also evaluate the one point function of the stress tensor and extract CD in
different dimensions and for various values of the Rényi index and chemical potential. We
present analytic expansions along with numerical results and discuss the supersymmetric
case. Finally, in section 4, we summarize our findings and present some future directions.
We relegate several technical details to the appendices. Appendix A deals with the
simple example of deformations of a circular entangling surface in three dimensions. In
appendix B we compute the renormalized on-shell action for charged hyperbolic black holes
in Einstein-Maxwell gravity. Details of the holographic renormalization method are given
in appendix C. In appendix D we present the analytic and numerical computations for CD
in higher dimensions.

2 The QFT story

Here, we introduce the field theory ingredients required for evaluating charged Rényi
entropies in the presence of small shape deformations of a flat (or spherical) entangling
surface. We begin in section 2.1 by considering planar (or spherical) defects. We introduce
generalized twist operators and explain their relation to charged Rényi entropies. We write
the expectation values of the stress tensor and current in the presence of a planar defect.
In section 2.2, we describe how to perform small deformations of a planar (or spherical)
entangling surface. For this purpose, we introduce the displacement operator and review
its relevant correlation functions. We explain how to use the displacement operator to
derive the one-point functions of the stress tensor and current in the presence of a deformed
entangling surface. Finally, in section 2.3, we transform these expectation values to a
cylindrical coordinate system centered around the deformed entangling surface. This will
be convenient when comparing with holography in the next section.

2.1 Replica trick and twist operators

Consider a pure state described by a density matrix ρ on a given time slice of a CFT in d
spacetime dimensions. We split the system to a region A and its complement Ā along an
entangling surface Σ. We further assume that the CFT is invariant under a global U(1)
symmetry associated to a conserved charge Q and that the state ρ is an eigenstate of the
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charge operator. We would like to understand how the charged and symmetry-resolved
Rényi entropies (1.1)–(1.3) depend on the shape of the entangling surface.

In quantum field theory, charged Rényi entropies with integer Rényi index n can be
related to the Euclidean path integral on a replicated geometry, consisting of n copies
of the field theory, glued together with appropriate boundary conditions. The effect of
the chemical potential is taken into account by including a magnetic flux carried by the
entangling surface, see e.g., [3, 12]. More specifically, we can use the relation

Tr
[
ρA

eµQA

nA(µ)

]n
= Zn(µ)

(Z1(µ))n , (2.1)

where Zn(µ) is the grand canonical partition function, evaluated on an n-fold cover of flat
space. The geometry includes branch cuts introduced on the region A at the Euclidean
time where the state lives, which we can choose to be tE = 0, without loss of generality.
The branch cuts connect the i-th copy of the field theory to the (i± 1)-th copy as tE → 0∓.
The effect of the chemical potential µ, conjugate to the charge Q, is introduced using an
appropriate background gauge field Bµ. The gauge field is such that Wilson lines evaluated
over any loop C encircling the entangling surface are constant, i.e.,

∮
C B = −inµ.4 Note

that the constant nA(µ) = Tr
(
ρAe

µQA
)
in the denominator of eq. (2.1) was selected such

that the expression is normalized as n→ 1 for any µ.
The boundary conditions in the replicated geometry can be implemented by the insertion

of a codimension-two twist operator τn at the entangling surface [14, 39]. In the presence
of a chemical potential, τn can be dressed with a Dirac sheet carrying the magnetic flux
−inµ to produce a generalized twist operator τ̃n [3]. In fact, binding together the original
twist operator and the magnetic flux is natural from a field theory perspective, since they
both produce phases for charged fields as they go around the entangling surface. Inserting
τ̃n in correlation functions is then equivalent to evaluating them in the presence of the
charged Rényi defect. The expectation value of the generalized twist operator is related to
the grand canonical partition function as follows

〈τ̃n(µ)[A]〉 = Zn(µ)
(Z1(0))n , (2.2)

where of course, the normalization is such that the result is normalized in the absence of a
defect, i.e., when n = 1 and µ = 0. In order to simplify the notation, we will, from now
on, omit the explicit dependence of the generalized twist operators on the subregion A and
only keep track of their dependence on the chemical potential. We can express the charged
Rényi entropies (1.1) in terms of the generalized twist operator as

Sn(µ) = 1
1− n(log〈τ̃n(µ)〉 − n log〈τ̃1(µ)〉). (2.3)

4The factor of n comes from the n-sheeted geometry since the loop encircles the entangling surface
n times.
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To begin with, let us consider a planar entangling surface Σ.5 In this case, our
codimension-two defect is conformal and the relevant correlation functions are discussed
in [15, 16]. Let us denote the directions orthogonal to the defect by xa = {x1, x2}, while
the parallel coordinates will be denoted yi, with i ∈ {1, 2, . . . , d− 2}; we collectively denote
them as zµ = (xa, yi). We can place the defect at xa = 0, without loss of generality. In the
presence of the planar defect, the one-point function of the energy-momentum tensor is
fixed by conformal invariance up to a single constant as follows

〈Tij(z)〉n,µ = −hn(µ)
2πn

δij
|x|d

, 〈Tab(z)〉n,µ = hn(µ)
2πn

1
|x|d

(
(d− 1)δab − d

xaxb
x2

)
, (2.4)

where 〈· · · 〉n,µ = 〈· · · τ̃n(µ)〉 denotes correlation functions evaluated in the presence of
the generalized twist operator τ̃n(µ). The quantity hn(µ) is sometimes referred to as the
dimension of the twist operator since it provides a generalized notion of conformal weight
measured via the insertion of the stress tensor at a small perpendicular distance xa from
the defect. Assuming the validity of the Averaged Null Energy Condition it has been shown
that hn(µ) is positive in a unitary dCFT [40]. In equation (2.4), Tµν refers to the stress
tensor in a single copy of the CFT instead of the full replicated geometry. Therefore, the
one-point function contains an additional factor of n−1 compared to other references like
eq. (2.20) in [3]. Similarly, the one-point function of the global current in the presence of a
planar defect takes the form [3, 15]

〈Ja(z)〉n,µ = i an(µ)
2πn

εabx
b

|x|d
, 〈Ji(z)〉n,µ = 0 , (2.5)

where an(µ) is the magnetic response of the current to the flux carried by the generalized
twist operator. Here again, the factor of n−1 appears since we use Jµ to denote the current
in a single copy of the geometry. The Levi-Civita symbol in the above correlator originates
from the parity-odd magnetic flux carried by the twist operator. The parallel components
instead vanish, since nothing invariant under parallel translations can be constructed with
the required indices.

The coefficients hn(µ) and an(µ) carry information about the defect. Of course, for
n = 1 and µ = 0 the defect is not present and all the one-point functions vanish, i.e.,
h1(0) = a1(0) = 0. More generally, the expansion around n = 1 is controlled by the modular
Hamiltonian, which corresponds, for our configuration, to the insertion of an integrated
stress tensor in the undeformed theory. This leads to a direct relation between the first-order
expansion of hn(0) around n = 1 and the stress tensor two-point function. Analogously,
expansions around µ = 0 are controlled by insertions of the current Jµ. To see this explicitly,
let us consider the two-point functions of the stress tensor and of the conserved current in
an ordinary CFT [41, 42]

〈Tµν(x)Tρσ(0)〉 = CT
x2d Iµν,ρσ(x) , 〈Jµ(x)Jν(0)〉 = CV

x2(d−1) Iµν(x) , (2.6)

5Planar and spherical defects are related by a conformal transformation. For definiteness, we will work
with a planar entangling surface. However, a similar discussion applies with minor modifications for the
spherical case. The coefficient CD which we will extract is relevant for both cases. An example with a
spherical entangling surface is discussed in appendix A.
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where
Iµν,ρσ ≡

1
2 (IµρIνσ + IµσIνρ)−

1
d
δµνδρσ , Iµν(x) ≡ δµν − 2xµxν

|x|2
, (2.7)

and where CT and CV are the corresponding central charges. Using the modular Hamiltonian
as outlined above, one finds [14, 39, 43]

∂nhn(0)|n=1 = 2π
d
2 +1 Γ (d/2)

Γ(d+ 2) CT . (2.8)

More generally, different correlation functions of the stress tensor and current govern the
different orders of the Taylor expansion of hn(µ) and an(µ) around n = 1 and µ = 0, see
section 2.3 of [3]. In the case of the holographic CFT studied in section 3 we present explicit
expressions for hn(µ) and an(µ), see eqs. (3.29) and (3.32) below.

2.2 Small deformations of a flat defect

The insertion of a twist operator breaks translational invariance in the directions orthogonal
to Σ, leading to the appearance of a contact term in the Ward identity corresponding to
the conservation of the energy-momentum tensor, i.e.,6

∂µT
µa
tot(x, y) = δΣ(x)Da(y) , (2.9)

where Da is the displacement operator. This is a local defect primary operator which
implements small deformations in the shape of the defect. Specifically, denoting with
Xµ = (0, yi) the location of the undeformed generalized twist operator, one can introduce
an infinitesimal deformation δXµ and the action of the displacement operator is defined
through the identity

〈Da · · · 〉n,µ = naµ
δ

δXµ
〈· · · 〉n,µ , (2.10)

where nµa are the unit normal vectors orthogonal to the defect.
One-point functions of the displacement operator vanish for a flat (or spherical) defect.

The first non-trivial correlator is the two-point function, which reads

〈Da(y)Db(y′)〉n,µ = δab
CD

(y − y′)2(d−1) . (2.11)

Since the normalization of the displacement operator is fixed by the Ward identity (2.9),
the coefficient CD(n, µ) is a physical piece of defect CFT data.7 Notice that CD is a norm
and therefore, in a unitary dCFT, it is positive. In the following, when possible, we leave
implicit the dependence of CD on both n and µ.

Let us consider the response of a defect to a perpendicular displacement of the form

δXµ = δµaf
a , (2.12)

6The notation Tµνtot refers to the stress tensor in the full replicated theory (CFT)n, which differs from the
one inserted in a single copy by a factor of n.

7The displacement two-point function determines also the coefficients of a term in the boundary Weyl
anomaly [44, 45].
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where fa(y) is the profile of the deformation. The physical response of the system is
measured by the variation of the partition function, according to

δ logZn(µ) = 1
2

∫
Σ
dw

∫
Σ
dw′ fa(w)f b(w′)〈Da(w)Db(w′)〉n,µ +O(f4) , (2.13)

where we discarded the first order term in the perturbation because the one-point function
of the displacement operator vanishes for a flat (or spherical) defect. The variation of the
charged Rényi entropy can then be expressed as

δSn(µ) = 1
n− 1 (n δ logZ1(µ)− δ logZn(µ)) . (2.14)

It then becomes clear that the second variation of the Rényi entropy under any shape
deformation is completely fixed in terms of the coefficient CD. Indeed, using eq. (2.11), we
obtain that the response of the charged Rényi entropy to the small deformation of a flat
entangling surface reads

δSn(µ) = nCD(1, µ)− CD(n, µ)
2(n− 1)

∫
Σ
dw

∫
Σ
dw′

fa(w)fa(w′)
(w − w′)2(d−1) +O(f4) . (2.15)

In particular, the variation is finite at n = 1, independently of the corresponding chemical
potential. We provide in appendix A a simple application of this procedure to determine
the variation of the partition function δ logZn(µ) in a three-dimensional case, where we
deform a circle into various shapes. The leading corrections in the chemical potential of
the uncharged entanglement entropy (n = 1) for a spherical entangling surface have been
recently studied in [46].

While it is possible to obtain CD from second-order perturbation theory applied to
the Rényi entropy (2.14) using eqs. (2.11)–(2.13), it is more convenient to consider other
observables such as the one-point functions of the currents. Indeed, they allow to extract
CD by working at first order in perturbation theory, according to the identities [15]

〈Tµν(z)〉n,µ,fΣ = 〈Tµν(z)〉n,µ −
∫
dd−2w〈Da(w)Tµν(z)〉n,µ fa(w) +O

(
f2
)
, (2.16)

〈Jµ(z)〉n,µ,fΣ = 〈Jµ(z)〉n,µ −
∫
dd−2w 〈Da(w)Jµ(z)〉n,µ fa(w) +O(f2) . (2.17)

The subscript fΣ refers to the background with a deformed entangling surface.
Let us start by focusing on the first order variation of current (2.17). Using the

technology developed in [15], we determine the two-point functions of the current with the
displacement operator:

〈Da(w)Ji(z)〉n,µ = ian(µ)
2n π−

d
2

Γ(d)
Γ(d/2)

2wiεabxb
(x2 + w2)d ,

〈Da(w)Jb(z)〉n,µ = ian(µ)
2n π−

d
2

Γ(d)
Γ(d/2)

1
(x2 + w2)d−1

(
εab −

2xbεacxc
x2 + w2

)
,

(2.18)

where an(µ) is the coefficient introduced in eq. (2.5). In the above expressions, we have set
yi = 0 inside z = (xa, yi). With those in hand, one could try to perform the integration in

– 7 –



J
H
E
P
0
6
(
2
0
2
2
)
0
6
8

eq. (2.17). While it cannot be performed in the general case, the singular terms in the short
distance expansion around x = 0 can be extracted explicitly. The method is to perform
the limit |x| → 0 in the weak sense, i.e., as an integration against a test function and
rephrase the outcome as an expansion over distributions with support at w = 0, specifically
delta functions and their derivatives. The technical details of the expansion can be found
in appendix A of [47]. Here we only report those identities (often referred to as kernel
formulas) needed for our purposes:

1
(x2 + w2)d−1 =

π
d−2

2 Γ
(
d
2

)
Γ(d− 1)

(
δd−2(w)
|x|d

+ ∂2δd−2(w)
2(d− 2)|x|d−2

)
+ . . . ,

1
(x2 + w2)d =

π
d−2

2 Γ
(
d
2

)
2Γ(d)

(
d δd−2(w)
|x|d+2 + ∂2δd−2(w)

2|x|d

)
+ . . . ,

wi

(x2 + w2)d = −
π
d−2

2 Γ
(
d
2

)
2Γ(d)

(
∂iδd−2(w)
|x|d

+ ∂i∂2δd−2(w)
2(d− 2)|x|d−2

)
+ . . . ,

(2.19)

where the ellipsis stand for less singular terms in the radial distance from the entangling
surface. Substituting those into eqs. (2.17)–(2.18) and using integration by parts, one
obtains the leading singularity in the one point function of the current.

The strategy to compute the first-order variation of the stress-tensor in eq. (2.16) is
similar. One starts from the two-point functions 〈TD〉 between the energy-momentum tensor
and the displacement operator, which can be derived using general results in dCFTs [15].
Such two-point functions depend explicitly on the coefficients CD, cf. eq. (2.11) and hn,
cf. eq. (2.4). One then extracts their leading singular behaviour by means of the kernel
formulas. This procedure is in fact unmodified compared to the case without a conserved
charge studied in [47] (cf. eqs. (2.8)-(2.9) and (2.12)-(2.13)). The only difference is the
addition of the µ dependence of the coefficient CD. We will therefore not repeat this part
here and we refer the reader to [47] for those expressions.

2.3 Currents in adapted coordinates

In preparation for the holographic computation of section 3, we move to cylindrical coordi-
nates adapted to the shape of the deformed defect. The idea is to send a congruence of
geodesics orthogonal to the entangling surface Σ. Let us start with a planar defect. In
this case we will denote the coordinates as (ρ, τ, yi), where ρ = |xa| is the radial distance
to the defect and τ is the angle in the plane perpendicular to the defect. Explicitly, the
coordinates ρ and τ are related to the Cartesian coordinates xa as

xa = ρ (cos[τ/R], sin[τ/R]) . (2.20)

Here, the arbitrary length scale R was introduced in order to keep the argument of the
trigonometric functions dimensionless. In this way, τ becomes a time coordinate with
periodicity τ ∼ τ + 2πR . In order to work in the replicated geometry, relevant to the
evaluation of the charged Rényi entropies, we extend the range of the time coordinate τ
such that it is periodic with period τ ∼ τ + 2πRn. This of course results in a conical
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excess at ρ = 0. Later on, we perform a Weyl transformation which turns our flat space
to S1 ×Hd−1, where R is the curvature radius of the hyperboloid. Since CD is a general
property of the CFT, it does not depend on R.8 The periodicity of the Euclidean time
coordinate introduces an effective temperature into our system T ≡ T0/n = (2πnR)−1, as
we will discuss in detail in section 3.1. For now, let us just point out that this fictitious
temperature is merely a tool in our calculation, and we are still computing the entanglement
entropy of a planer (or spherical) subregion of the CFT vacuum state.

For a defect deformed in an orthogonal direction by a function fa(yi), cf. eq. (2.12), we
can construct adapted coordinates (similar to Gaussian normal coordinates) in an expansion
in the distance ρ from the entangling surface. The new coordinates are related to the old
ones via the transformation

x′a = xa − fa(yi)− 1
d− 2

(
xaKbxb −

1
2K

ax2
)

+O(ρ4)

y′i = yi + ∂if
a(yi)xa −

1
2(d− 2)x

2∂iKaxa +O(ρ5) ,
(2.21)

where we defined the trace and the traceless parts of the extrinsic curvature as follows

Ka ≡ (Ka)ii , K̃a
ij ≡ Ka

ij −
Ka

d− 2δij , (2.22)

and the extrinsic curvature is related to the profile of the deformation as

Ka
ij = −∂i∂jfa +O(f2) . (2.23)

In terms of the new cylindrical coordinates x′a = ρ′ (cos[τ ′/R], sin[τ ′/R]), the metric
becomes9

ds2 =
(

1 + 2Kcxc
d− 2

)(
ρ2

R2 dτ
2 + dρ2 + [δij + 2K̃a

ijxa]dyidyj + 4
d− 2∂iK

b xbρdρdy
i

)
+ . . . .

(2.24)
In the above expression the dots stand for higher order terms in the distance ρ from the
entangling surface (see eq. (2.17) of [47] for a full specification of the orders in ρ which were
neglected in this expression). Further, note that we work at first order in the deformation
fa. It is remarkable that in the above metric the explicit dependence on the function fa
dropped, and we only remain with dependence on fa via the extrinsic curvature (2.23).
The reason for this cancellation is explained below eq. (2.25).

While in dimensions d ≥ 4, it is sufficient to consider the traceless part of the extrinsic
curvature and set Ka = 0 to extract CD, this cannot be done in d = 3, where the traceless
part of the extrinsic curvature vanishes identically. Therefore, we keep Ka 6= 0 in our
expressions which allows us to treat the cases d ≥ 3 all at the same time. Of course, in
d = 2 the entangling surface consists of discrete points and so it has no extrinsic curvature
and its shape cannot be deformed.

8In cases where the planar defect originates from a spherical one via a coordinate transformation, see
e.g., section 2.2 of [3], R is the radius of the original sphere.

9Here and in the following, we neglect the primes in order to simplify the notation, but the metric and
the tensors are understood to be evaluated in the new adapted coordinate system.
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Next, we apply a Weyl transformations with conformal factor

Ω = Ω1Ω2 ≡
(

1− Kaxa
d− 2

)
R

ρ
. (2.25)

The first rescaling Ω1 simply eliminates the overall factor in eq. (2.24), and it is responsible
for making the deformation fa enter the metric only via the combinations K̃a

ij and ∂iKa.
This fact can be explained as follows. In the special case when fa implements a conformal
transformation, the change of coordinates to the adapted coordinate system introduced
in eq. (2.21) is the inverse transformation. Since the extrinsic curvature for a spherical
defect (which is conformally related to the planar case) satisfies K̃a

ij = ∂iK
a = 0, then we

correctly obtain that the metric after the conformal rescaling Ω1 becomes flat when fa

maps the planar defect to a sphere. The second Weyl rescaling Ω2 = R/ρ is introduced for
convenience, in view of the holographic computation in section 3.1. As earlier, the factor of
R in the numerator was introduced to preserve the length dimensions of the infinitesimal
line element. After the conformal transformation in eq. (2.25) is implemented, the metric
becomes10

ds2 = dτ2 + R2

ρ2

(
dρ2 + [δij + 2 K̃a

ijxa]dyidyj + 4
d− 2∂iK

bxb ρdρdy
i
)

+ . . . . (2.26)

This is a deformation of the hyperboloid S1×Hd−1, at first order in the extrinsic curvature
and for small values of the radial distance ρ to the defect. The curvature radius of the
deformed hyperbolic space Hd−1 is R, see discussion below eq. (2.20).

Under the conformal rescaling (2.25), the one-point functions of the stress tensor and
current transform as11

〈T̃µν〉n,µ,fΣ = Ω2−d〈Tµν〉n,µ,fΣ +Aµν , (2.27)
〈J̃µ〉n,µ,fΣ = Ω2−d〈Jµ〉n,µ,fΣ , (2.28)

where Aµν is an anomalous contribution, generalizing the Schwarzian derivative to the
higher-dimensional case. In these expressions, the correlation functions on the right-hand
side are taken in the presence of the deformed defect in the adapted coordinate system, while
those on the left-hand side are evaluated in the deformed hyperboloid background (2.26)
after the conformal rescaling.

The anomalous contribution Aµν in eq. (2.27) does not depend on the number of replicas
n and on the chemical potential µ. The reason for the former is that locally the n-fold
cover is identical to the original manifold, and therefore the anomaly functional, being a
local quantity, is independent of the Rényi index. Furthermore, the gauge invariance of the
Weyl anomaly guarantees that there is no explicit dependence on the chemical potential.12

10Here too, the dots represent higher orders in ρ. The explicit expression for the orders which have been
neglected can be found in eq. (2.19) of [47].

11The conformal factor is given by Ω
s−∆

2 , where s is the spin of the field and ∆ its scaling dimension. For
the stress tensor we have (s = 2,∆ = d), while for the gauge current we use (s = 1,∆ = d− 1).

12The change in the one-point function of the stress tensor due to the Weyl anomaly was computed
in [48, 49] for conformally flat spacetimes. In the presence of a gauge connection, the Weyl anomaly contains
an additional term proportional to F 2, which is gauge-invariant [50].
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Therefore, we can extract the anomalous contribution by evaluating eq. (2.27) for n = 1
and µ = 0, which corresponds to a case without any defect where the expectation value
of the stress tensor vanishes, i.e., 〈Tµν〉(n=1,µ=0) = 0 and therefore Aµν = 〈T̃µν〉(n=1,µ=0).
Evaluating the term Ω2−d〈Tµν〉n,µ,fΣ on the right hand side of eq. (2.27), we find

〈T̃ab(x)〉n,µ,fΣ = R2−d gn(µ)
ρ2

(
(d− 1)δab − d

xaxb
ρ2

)
+ . . . ,

〈T̃ai(x)〉n,µ,fΣ = R2−d xaxb
ρ2 ∂iK

bkn(µ)
d− 2 + . . . ,

〈T̃ij(x)〉n,µ,fΣ = R2−d 1
ρ2

(
−gn(µ)δij + kn(µ)K̃a

ijxa
)

+ . . . ,

(2.29)

where

kn(µ)− k1(0) =
(d− 1)Γ

(
d
2 − 1

)
π
d
2−2

2Γ(d+ 1)
CD
n
− 3d− 4

d− 2
hn(µ)
2πn , gn(µ)− g1(0) = hn(µ)

2πn .

(2.30)

As before, the ellipses denote the higher-order terms in ρ which we neglected.
Following eq. (2.28), we also find the transformed current, whose one-point function

(up to first order in the deformation fa and at leading order in ρ) reads

〈J̃i〉n,µ,fΣ = 0 , 〈J̃a〉n,µ,fΣ = R2−d ian(µ)
2πn

εabx
b

ρ2 , (2.31)

where in order to obtain this result we had to use the two-dimensional tensor identity
εbcx

cKaxa−xaxaεbcKc− εacKaxcxb = 0 which resulted in the non trivial cancellation of all
the extrinsic curvature contributions to Ja. An important consequence of the cancellation
of the linear order terms in the extrinsic curvature is that on the holographic side, we
do not need to introduce a deformation of the dual gauge field, but we only deform the
metric solution.

2.4 Supersymmetric Rényi entropy

Explicit examples of conformal field theories with a global symmetry group are very common
in supersymmetric theories. The superconformal group in any dimension 2 ≤ d ≤ 6 always
includes an R-symmetry group under which the supercharges are charged. Larger amount
of supersymmetry corresponds to higher-dimensional R-symmetry groups. One can select a
U(1) subgroup of the global R-symmetry and switch on the associated background gauge
field, giving rise to the Dirac sheet we introduced above in section 2.1. In this case,
the generalized twist operator τ̃n is a superconformal defect, i.e. it preserves part of the
original supersymmetry. For sufficiently large supersymmetry, one can use supersymmetric
localization to compute its spherical (or planar) expectation value and consequently the
supersymmetric Rényi entropy. Exact results for the spherical supersymmetric Rényi entropy
are available for N ≥ 2 SCFTs in three dimensions, N ≥ 2 SCFTs in four dimensions and
N = 1 SCFTs in five dimensions [25, 27, 28]. From a bottom up holographic perspective,
supersymmetry is implemented by requiring a specific relation between the charge and the
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mass of the hyperbolic black hole and this will be addressed in section 3.1.2. Here we focus
on the field-theoretical expectations.

An important feature of SCFTs in any dimensions is that the R-symmetry current and
the stress tensor operator belong to the same supermultiplet. Using supersymmetric Ward
identities under the preserved supersymmetry one can show that the magnetic response
an(µ) is proportional to the conformal weight hn(µ). The precise relation depends on the
spacetime dimension and on which U(1) subgroup of the full R-symmetry group is gauged.
An explicit example was given in [30] for N ≥ 1 SCFTs in four dimensions. For N = 1, for
instance, the R-symmetry is just U(1) and the stress tensor multiplet contains the U(1)
R-symmetry current Jµ, the supersymmetry currents J µα, J̃ µα̇ and the stress tensor Tµν .
Imposing that the supersymmetry variation of the fermionic one-point functions 〈δSUSYJ µα〉
and 〈δSUSYJ̃ µα̇ 〉 vanishes, one finds

an(µ) ∝ hn(µ) . (2.32)

The precise relation between the two depends on the precise form of the current that is
coupled to the background gauge field (for extended supersymmetry one has to choose a
U(1) subgroup of the total R-symmetry). Remarkably, in section 3.1.2 we will indeed find a
proportionality relation between an(µ) and hn(µ) which holds for supersymmetric Rényi
entropies in any dimension.

A more involved implication of superconformal symmetry is the relation between
the shape deformation of the entangling surface and the geometric deformation of the
background, i.e., the theory-independent proportionality relation (1.5) between CD(µ, n)
and hn(µ). A first evidence for the existence of such a relation appeared in [31, 32] in
the context of supersymmetric Wilson lines. For general, not necessarily supersymmetric
theories, the authors of [16] observed that the same relation holds at leading non-trivial
order in an expansion around n = 1. Away from n = 1, i.e., for general Rényi index,
the relation (1.5) holds for free field theories [37], but it does not hold in holographic
theories [47, 51]. This is in contrast to the case of superconformal theories, where it is
believed that the relation is valid in general. In fact, the relation was proven for any
superconformal defect in four dimensions [30, 52]. The derivation is based on the idea
that using superconformal Ward identities, one can relate the correlator 〈TµνDa〉 to a
correlator of operators with lower spin. While the correlator 〈TµνDa〉 is fixed in terms
of two independent coefficients CD(n, µ) and hn(µ) [15], the lower-spin correlator has a
reduced number of kinematic structures and is therefore fixed in terms of a single coefficient.
This implies that the relation (1.5) between CD and hn should hold for superconformal
defects in four dimensions and in particular for the supersymmetric Rényi entropies. We
refer the reader to [30, 52] for the full details of the derivation. In the next section, we
provide holographic evidence that the relation holds in any dimension, formally including
cases with d > 6 where there is no superconformal group and it is not even clear how a
supersymmetric defect should be defined.
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3 The holographic story

In this section, we show how to compute CD in holographic theories. We introduce the
holographic setting in section 3.1, which consists of a charged hyperbolic black hole in
Einstein-Maxwell gravity. We also discuss how to tune the black hole solution to become
supersymmetric. In section 3.2, we show how to deform the gravitational solution to
account for shape deformations of the entangling surface. We then compute the expectation
value of the stress tensor and the current in the deformed background using holographic
renormalization techniques in section 3.3. Finally, in sections 3.4 and 3.5, we present
analytical and numerical results for CD.

3.1 Holographic setup

Our previous discussion revolved around the charged Rényi entropy corresponding to a
planar (or spherical) entangling surface in a constant time slice of the vacuum state of a
d-dimensional CFT. As explained in [3, 39, 53], a conformal transformation can be used to
map the causal developments of the above regions to the hyperbolic cylinder S1 ×Hd−1,
where the Euclidean time coordinate τ becomes periodic on the Euclidean circle with period
τ → τ + 2πR.13 Under this map, the original reduced density matrix describing a subregion
of the CFT vacuum is mapped to a thermal density matrix in the hyperbolic background
with temperature T0 = (2πR)−1. Since we interpreted the Rényi entropies in terms of a
partition function in an n-fold cover of the original spacetime, see section 2.1, applying
the same conformal transformation to the replicated space results in a Euclidean time
coordinate with periodicity τ ∼ τ + 2πRn, and hence a thermal state with temperature of
T0/n = (2πRn)−1. The Rényi entropy can then be related to the thermal partition function
with this temperature.

In a holographic CFT, we can evaluate the thermal partition function on the hyperbolic
cylinder in terms of the horizon entropy of a hyperbolic AdS black hole solution see,
e.g., [3, 39, 53, 54]. In the presence of a background gauge field, like the one introduced in
our discussion of charged Rényi entropies below eq. (2.1), one must further supplement the
holographic setup with a background gauge field. Then, the gravitational setup consists of
a charged hyperbolic black hole solution to Einstein-Maxwell gravity [3].

3.1.1 Hyperbolic black holes in Einstein-Maxwell gravity

We consider the (Euclidean) Einstein-Maxwell action in d+ 1 dimensions [3, 55],

IEM = − 1
2`d−1
P

∫
dd+1x

√
g

(
R+ d(d− 1)

L2 − `2∗
4 FµνF

µν

)
, (3.1)

13Recall that for the planar entangling surface R is an arbitrary scale, which we introduced in order to
give dimensions of length to the time coordinates and dimensions of inverse length squared to the curvature
of the hyperboloid, as in [3]. For a spherical entangling surface, R is the radius of the sphere. Of course, CD
will not depend on this choice. See discussion below eq. (2.20).
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where `P is the Planck length, L is the curvature scale of AdS and `∗ is a coupling constant
of the gauge field. This action admits charged black hole solutions, whose metric is given by

ds2 = G(r)L
2

R2dτ
2 + dr2

G(r) + r2dΣ2
d−1 , (3.2)

where τ is the Euclidean time coordinate and dΣ2
d+1 = du2 + sinh2 u dΩ2

d−1 is the metric on
the hyperbolic space Hd−1 with unit curvature radius. In the above expression, we used
the blackening factor which reads

G(r) = r2

L2 − 1− M

rd−2 + Q2

r2(d−2) , (3.3)

where M and Q are the mass and charge of the black hole, respectively. The metric has a
horizon rh, defined as the largest root of G(rh) = 0. This can be used to express the mass
M in terms of the charge and the horizon radius of the black hole,

M = rd−2
h

L2

(
r2
h − L2

)
+ Q2

rd−2
h

. (3.4)

The gauge field solving the Einstein-Maxwell equations is14

A = −i

√2(d− 1)
d− 2

LQ

R`∗ rd−2 −
µ

2πR

 dτ , (3.5)

where the chemical potential µ is fixed by requiring that the gauge field vanishes at the
horizon, i.e.,

µ = 2π
√

2(d− 1)
d− 2

LQ

`∗ r
d−2
h

. (3.6)

The Hawking temperature of the black hole can be expressed as

T (rh, µ) = T0
2 LG

′(rh) = T0L

2rh

[
d
r2
h

L2 − (d− 2)− (d− 2)2

2(d− 1)

(
µ`∗
2πL

)2]
, (3.7)

where T0 = (2πR)−1 is the temperature introduced via the conformal mapping at the
beginning of section 3.1. In what follows, it will be useful to work in terms of a dimensionless
horizon radius, x ≡ rh/L. As explained above, the Rényi entropies are obtained by studying
a black hole with temperature T0/n. This requirement fixes the horizon radius to be

xn = 1
dn

+
√

1
d2n2 + d− 2

d
+ (d− 2)2

2d(d− 1)

(
µ`∗
2πL

)2
. (3.8)

We can consider both real or imaginary chemical potential. The latter case simply cor-
responds to analytically continuing µ → iµE and Q → iQE, where µE, QE ∈ R. The
requirement that the horizon radius xn is real bounds the Euclidean chemical potential
from above by

µ2
E ≤

8π2(d− 1)
d− 2

(
L

`∗

)2 (
1 + 1

d(d− 2)n2

)
. (3.9)

14Note that in Euclidean signature the gauge field becomes imaginary.
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In order to compute the Rényi entropy in a given charge sector of the theory, we need
to determine the partition function, see eq. (1.4). In the grand-canonical ensemble, the
partition function is determined from the grand potential G according to G = −T logZ(µ).
By evaluating the renormalized on-shell action, see appendix B, we obtain that

G = −VΣr
d−2
h

2`d−1
P

[
1 + d− 2

2(d− 1)

(
µ`∗
2πL

)2
+ r2

h

L2

]
, (3.10)

where VΣ ≡
∫
Hd−1 dΣd−1 denotes the dimensionless volume of the hyperbolic space Hd−1,

regulated with the introduction of a UV cutoff, see [39].15 Using eq. (1.2), we obtain the
corresponding Rényi entropy in terms of the grand potential,

Sn(µ) = n

1− n
1
T0

[
G(T0)− G

(
T0
n

)]
, (3.11)

and, using eq. (3.10), this becomes

Sn(µ) =πVΣ

(
L

`P

)d−1 n

n−1

[(
1+ d−2

2(d−1)

(
µ`∗
2πL

)2)(
xd−2

1 −xd−2
n

)
+xd1−xdn

]
. (3.12)

Finally, in order to match our gravity calculations with the CFT ones, it is useful to present
the expressions for the central charges CT and CV — defined in eq. (2.6) — in terms of
gravitational quantities [3, 39],

CT =
(
L

`P

)d−1 Γ(d+ 2)
πd/2(d− 1)Γ(d/2)

, CV = Γ(d)
2πd/2Γ

(
d
2 − 1

) `2∗Ld−3

`d−1
P

. (3.13)

3.1.2 Supersymmetric solution

In 3+1 bulk dimensions the black hole solution with blackening factor (3.3) can be embedded
in N = 2 gauged supergravity [56], whose Killing spinor equation reads [26][

∇µ + 1
2LΓµ −

i

L
Aµ + i

4FνρΓ
νρΓµ

]
ζ = 0 , (3.14)

where Γa = eµaΓµ are the Dirac matrices in the local Lorentz frame satisfying the Clifford
algebra {Γa,Γb} = 2δab, their antisymmetric combination is Γab = 1

2 [Γa,Γb] and ζ is the
Weyl spinor parametrizing the SUSY transformation. Eq. (3.14) corresponds to imposing
that the SUSY variation of the gravitino vanishes. One can show that its solution preserves
1/2 of the total supersymmetry when [57]

M = 2iQ . (3.15)

While eq. (3.15) is explicitly derived in 3+1 dimensions, it holds in arbitrary dimensions (see
e.g., [29] for the (5+1)-dimensional case). In our analysis, we will refer to the supersymmetric
solution whenever we impose the relation (3.15), independently of the spacetime dimensions.

15The divergence in the volume of the hyperbolic hyperplane is a reincarnation of the standard short-
distance divergences in Rényi entropies.
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In the supersymmetric case, the global charge is associated to the R-symmetry of the
underlying theory.

Using the identities (3.4) and (3.6) together with the relation (3.15), we can express
the R-charge and the chemical potential entirely in terms of the horizon radius as

Q = i rd−2
h

(
1− rh

L

)
, µ = 2πi

√
2(d− 1)
d− 2

L

`∗

(
1− rh

L

)
. (3.16)

Consequently, the temperature in (3.7) becomes

T = 1
2πR

[
(d− 1)rh

L
− (d− 2)

]
. (3.17)

Upon imposing the restriction T = (2πRn)−1 we obtain

xn = (d− 2)n+ 1
(d− 1)n . (3.18)

Given that xn is only a function of n, the mass, the charge and the chemical potential all
become functions of only n, for example, we find that

µSUSY = 2πi
√

2
(d− 1)(d− 2)

L

`∗

n− 1
n

. (3.19)

In the following section, we will work with a general chemical potential µ. The SUSY case
will be treated separately by imposing the relation (3.19).

3.2 Deformed background

So far we only discussed a flat (or spherical) entangling surface. Now, consider deforming
the entangling surface. For an arbitrary shape deformation, the dual bulk geometry is not
known. However, in the case without charge, for small deformations, a solution can be
constructed in an expansion in the distance ρ from the entangling surface [47, 51, 58]. Here
we extend this approach to include charge.

We consider an ansatz for the bulk metric such that when approaching the boundary,
we obtain — up to a conformal rescaling — the boundary metric (2.26). Furthermore, since
higher orders in the near boundary expansion of the metric encode the boundary stress
tensor, we introduce unknown functions in front of the coefficients corresponding to the
unknown function kn(µ) in eq. (2.29). Our ansatz for the bulk metric then reads

ds2
bulk = dr2

G(r) +G(r)L
2

R2dτ
2

+ r2

ρ2

(
dρ2 +

[
δij + 2k(r)K̃a

ijxa
]
dyidyj + 4

d− 2v(r)∂iKbxbρdρdy
i
)

+ . . . ,

(3.20)

where G(r) is the blackening factor (3.3) of the unperturbed black hole and the ellipses stand
for higher-order terms in ρ. This expansion is the same one as in the uncharged case [47],
except that now, the unknown functions will depend on the chemical potential. The metric
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corresponds to a deformed version of the hyperbolic cylinder S1 ×Hd−1 with curvature
radius R. The radial functions k(r), v(r) encode the effect of the traceless and trace parts
of the extrinsic curvature of the deformed entangling surface on the bulk geometry. The
requirement that close to the boundary we recover the boundary metric (2.26) imposes
k(r →∞) = v(r →∞)→ 1.

In addition, as usual in holography, we require the solution to be smooth at the horizon
r = rh. Notice that, in principle, the case d = 3 should be treated separately, since the
traceless part K̃a

ij of the extrinsic curvature vanishes and there is only one independent
function v(r). However, as we will explain soon, the two functions k(r) and v(r) are equal
to each other and so eventually, the d = 3 and d > 3 cases can be treated together.

In order to study charged Rényi entropy, we need to supplement the metric solution
with a gauge field. However, as shown in section 2.3, the one-point function of the dual
conserved current is not modified at first order in the extrinsic curvature by the deformation
of the flat (or spherical) defect, see eq. (2.31). For this reason, it is enough to just consider
the zeroth-order solution for the gauge field in eq. (3.5). However, the final result for CD
extracted via the boundary stress tensor will nevertheless be modified due to the presence
of the charge, as we will see below.

Using the metric ansatz (3.20) and the gauge field (3.5), we compute the Einstein
equations at first order in the deformation of the flat entangling surface. The equations
can be simplified by using the Gauss-Codazzi equation ∂kK

a
ij = ∂jK

a
ik, which is also a

direct consequence of eq. (2.23). For the function v(r) we obtain the following second-order
differential equation

v′′(r) + rG′(r) + (d− 1)G(r)
rG(r) v′(r)− (d− 3)L2G(r) + r2

L2r2G(r)2 v(r) = 0 . (3.21)

This equation is formally the same that was obtained in pure Einstein gravity [47], with
the difference that now the blackening factor is given by eq. (3.3), which depends on the
charge. Einstein’s equations also yield the algebraic equation

k(r) = v(r) . (3.22)

En passant, we observe that this identity provides a non-trivial consistency check of the
metric ansatz (3.20), whose expansion should yield the boundary stress tensor, since the
same coefficient kn appeared in the stress tensor (2.30) in front of both the traceless and
the trace parts of the extrinsic curvature.

We remind the reader that the case d = 3 is special since there is only one independent
function v(r) entering the bulk metric. However, one can easily check that this function
also satisfies eq. (3.21). This, together with the equality v(r) = k(r) in higher dimensions
means that we can consistently study solutions for all d ≥ 3 together, by solving eq. (3.21).

We still need to impose boundary conditions. It is straightforward to check that the
general form of the Laurent expansion of v(r) close to the boundary is not influenced by
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the presence of the gauge field. In dimensions d = 3, 4 the expansions read

d = 3 , v(r) = k(r) = 1− L2

2r2 + L3

r3 βn(µ) +O(r−4) ,

d = 4 , v(r) = k(r) = 1− L2

2r2 + L4

r4 βn(µ) +O(r−5) ,
(3.23)

while in a general number of dimensions, we have

general d , v(r) = k(r) = 1− L2

2r2 + · · ·+ Ld

rd
βn(µ) +O(r−(d+1)) , (3.24)

where βn(µ) is the first free coefficient in the expansion, i.e., it is not fixed by the boundary
conditions. This coefficient will be essential to compute CD, as we will show in section 3.3.
Note that we have written explicitly the βn-dependence on the chemical potential µ, since
it plays an important role in the subtraction of the anomalous contribution discussed above
eq. (2.29). We refer the reader to appendix D for the details of the calculation in d = 5, 6, 7.

Imposing regularity at the horizon, for any d ≥ 3, we obtain a similar series expansion
given by

k(r) = qn(µ)
(
r

L
− xn

)n
2

+ · · · , (3.25)

where xn is determined by eq. (3.8) and qn(µ) is the other free coefficient that specifies the
solution to the second-order differential equation.

3.3 Holographic renormalization

The next step to find CD is to compute the holographic expectation value for the stress tensor
in the deformed geometry. For this, we use the holographic renormalization method [59, 60],
which we quickly review here. We start from the metric in Fefferman-Graham (FG) form [61]

ds2
bulk = L2

z2

(
dz2 + hµν(z, x)dxµdxν

)
, (3.26)

where z = L2/r + . . . with the dots indicating higher orders in 1/r (the full expressions to
go to the FG gauge are specified in appendix C) and

hµν = h(0)
µν (x) + z2h(2)

µν (x) + · · ·+ zd
(
h(d)
µν (x) + h̃(d)

µν log z
)

+ . . . . (3.27)

The coefficient h̃(d)
µν only appears when d is even. The expectation value of the boundary

stress tensor is then given by

〈Tµν〉H̃n = d

2

(
L

`P

)d−1 (L
R

)d−2
h(d)
µν + Xµν [h(m)

µν , h̃
(d)
µν ]m<d , (3.28)

where the subscript H̃n indicates that we are computing the one-point function of the stress
tensor in the deformed hyperboloid background — see eq. (2.26). The term Xµν includes
lower order h(i)’s, which are local functions of the field theory source h

(0)
µν and therefore are

completely fixed by the boundary geometry. The coefficient h̃
(d)
µν is related to conformal
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anomalies and enters this term as well, but it is scheme dependent and therefore, can be
eliminated from the one-point function by introducing an appropriate counterterm. All the
contributions to Xµν will be independent of n and µ and therefore, their effect will cancel
in subtractions like (2.30). Therefore, to determine hn and CD, we will only include the
contribution of h(d)

µν to the above equation and ignore the rest.16

Applying the above prescription for the case without the deformation, i.e., with extrinsic
curvature set to zero in the bulk metric (3.20) and the field theory stress-tensor (2.29)–(2.30),
we are able to extract the conformal dimension of the twist operator

hn(µ) = πn

(
L

`P

)d−1
[
xd−2
n (1− x2

n)− d− 2
2(d− 1)

(
µ`∗
2πL

)2
xd−2
n

]
, (3.29)

which of course, matches with the one found in [3].

3.3.1 Holographic dictionary for the magnetic response

The gauge field obeys a similar near-boundary expansion, which can be used to find the
boundary value of the conserved current. The general expansion reads [60, 62, 63]

Aµ(x, z) = A(0)
µ + z2A(2)

µ + · · ·+ zd−2
(
A(d−2)
µ + Ã(d−2)

µ log z
)

+ . . . . (3.30)

The main difference with the metric expansion (3.27) is that the undetermined term
corresponds to the order zd−2, as a consequence of the different scaling dimension of the
dual current with respect to the energy-momentum tensor. This asymptotic behaviour
matches with the zeroth-order solution (3.5) of the Einstein-Maxwell equations. Working
in the gauge Az = 0, the previous expansion determines a dual current

〈Jµ〉H̃n = −d− 2
2

(
L

`P

)d−1 (`∗
L

)2 (L
R

)d−2
A(d−2)
µ . (3.31)

As mentioned at the beginning of the section, the gauge field solution (3.5) receives no
corrections at the first order in the deformation and leading order in ρ. This is consistent with
the absence of extrinsic curvature corrections in the field theory current in equation (2.31).
Using the above relation to the dual current fixes the magnetic response

an(µ) = d− 2
2

`2∗L
d−3

`d−1
P

nxd−2
n µ , (3.32)

which is, of course, in agreement with the result for the undeformed case, obtained previously
in [3].

Note that in the supersymmetric case, where the identities (3.18) and (3.19) hold, the
magnetic response becomes

aSUSY
n (µ) = i

`∗
L

√
(d− 1)(d− 2)

2 hn(µ) = i
√

2d(d+ 1)
√
CV
CT

hn(µ) , (3.33)

16The interested reader can find expressions for such terms in, e.g., [59].
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where CV and CT were defined in eq. (3.13). In a superconformal theory, the R-symmetry
currents and the stress energy tensor belong to the same supermultiplet, therefore their
vacuum two-point functions, CV and CT , are related by superconformal Ward identities.
The precise numerical factor depends on the specific U(1) subgroup associated to the
current Jµ in eq. (2.6) and our bottom-up holographic model is blind to this choice. In top-
down examples, the Einstein Maxwell gravitational action can be derived from appropriate
compactifications of 11d supergravity or of 10d type IIB supergravity. In that case, the
ratio `∗/L (and equivalently the ratio CV /CT ) is fixed [55] (for instance `∗/L = 2 for
the compactification of AdS5 × S5 and `∗/L = 4 for AdS4 × S7). As we mentioned in
section 2.4, a relation between aSUSY

n (µ) and hn(µ) is expected from supersymmetric Ward
identities, but again the numerical factor depends on the choice of the current. What we
find here, however, is that the ratio aSUSY

n (µ)/hn(µ) is fully determined by CV /CT , which
is a property of the CFT and, in particular, is certainly independent of n and µ. Notice
also that the relation (3.33) is independent of the normalizations of the stress tensor and
the current as it can be written in terms of the ratios hn(µ)√

CT
and an(µ)√

CV
.

3.3.2 Holographic dictionary for CD

Using eqs. (3.26) and (3.28), we obtain a holographic prediction for the field theory coeffi-
cients defined in eq. (2.29), i.e.,

gn(µ) = −
(
L

`P

)d−1 1
2

[
xdn + xd−2

n

(
d− 2

2(d− 1)

(
µ`∗
2πL

)2
− 1

)
+ g

(d)
0

]
,

kn(µ) =
(
L

`P

)d−1
[
xdn + xd−2

n

(
d− 2

2(d− 1)

(
µ`∗
2πL

)2
− 1

)
+ dβn(µ) + k

(d)
0

]
.

(3.34)

Recall that βn(µ) is the first undetermined coefficient in the Laurent expansion of the
function v(r) appearing in our metric, cf. eq. (3.24). The above relations are valid in any
dimension d ≥ 3 and for any value of the chemical potential µ. The coefficients g(d)

0 and k(d)
0

contain the anomalous contribution; they vanish in odd dimensions, and they do not depend
on the Rényi index nor on the chemical potential in even dimensions.17 To determine CD
and hn we only need differences of the coefficients gn, kn, (cf. eq. (2.30)) so these anomalous
contributions will not play any role in the remaining of the computation.

We can now use eq. (2.30) to determine the conformal weight of the twist operator hn
and the coefficient CD. The former turns out to be the same expression determined for the
undeformed case in eq. (3.29); the latter reads

CD(n, µ) = ndΓ(d+ 1)
(d− 1)πd/2−2Γ(d/2)

[
(d− 2)

(
L

`P

)d−1
(βn(µ)− β1(0)) + hn(µ)

2πn

]
. (3.35)

17The anomalous coefficients in even dimensions are g(4)
0 = 1/4, k(4)

0 = 3/4 in d = 4 and g(6)
0 = −3/8,

k
(6)
0 = 5/8 in d = 6. Their precise expression can be found by following the procedure outlined in appendix C

and including the anomalous contribution Xµν in eq. (3.28), which are specified explicitly in eqs. (3.15) and
(3.16) of [59].
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Note that formally, this expression resembles the one obtained for the uncharged case.
However, here the dependence on the charge enters through the constant βn(µ) as well as
through the µ dependence of hn(µ). The remaining step is to compute βn(µ). Once we
have βn(µ), it is straightforward to compute CD and check under which circumstances the
conjecture in eq. (1.5) holds.

3.4 Analytic expansions

It is not possible to solve in full generality the differential equation (3.21), but we can solve
it analytically, order-by-order in a double perturbative expansion around n = 1 and µ = 0.
For this purpose, it is convenient to introduce the change of variables r̃ = (xnL)/r, such
that the range of the radial coordinate becomes compact. The boundary is then located
at r̃ = 0, while the horizon sits at r̃ = 1. The solution to the differential equation (3.21)
at order zero around µ = 0 and up to second order near n = 1 was already found in [47].
Moving to higher orders in the chemical potential, one can similarly obtain solutions for
the functions v(r) and k(r) in the double series expansion around n = 1 and µ = 0. These,
in turn, determine βn(µ) perturbatively,

βn(µ) =
∑
A,B

βAB(n− 1)AµB . (3.36)

Using eqs. (3.13), (3.29) and (3.35), we can then determine the analytic expansions for CD
and the central charge CT . We present the analytic expansions in terms of the convenient
combination

µ̃ ≡ `∗
4πL µ . (3.37)

Below, we present the final results for d = 3, 4. We leave the details of the derivation and
the results for the higher-dimensional cases to appendix D. We assume that the perturbative
expansion is governed by a small parameter ε such that (n− 1) = c1ε and µ̃2 = c2ε for two
arbitrary order-one constants c1, c2. In the following, we present analytic expansions up
to order ε2.

In d = 3, we obtain for CD (conveniently normalized)

CD
CT

∣∣∣∣d=3
= −2

3π
2µ̃2 + π2

2 (n− 1)
(

1− 2 log 2 + 1
6 µ̃2

)
− 5

12π
2(n− 1)2 +O(ε3) . (3.38)

The conjectured value of Cconj
D in eq. (1.5) reads

Cconj
D

CT

∣∣∣∣d=3
= −3

4π
2µ̃2 + π2

2 (n− 1)
(

1− 3
8 µ̃

2
)
− 7

16π
2(n− 1)2 +O(ε3) . (3.39)

Subtracting the two expansions for CD and Cconj
D , we obtain

CD − Cconj
D

CT

∣∣∣∣d=3
= π2

12 µ̃
2 + π2

2
5− 8 log 2

24 µ̃2 + π2

48(n− 1)2 +O(ε3) . (3.40)

Note, that the agreement between CD and Cconj
D at first order in (n − 1) in the case

without charge (µ̃ = 0) was previously proven in broad generality in [64] and verified using
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holography in [47]. We can also fix n = 1, and expand around µ̃ = 0. This will be useful to
compare with our numerical results in the next section. In d = 3, we find

CD
CT

∣∣∣d=3

n=1
= −2

3π
2µ̃2 + π2

540 (255 log 2− 248) µ̃4 +O(µ̃6) . (3.41)

We can perform analogous computations in d = 4. For CD, we find

CD
CT

∣∣∣∣d=4
= −6

5π
2µ̃2 + π2

5

(
2− µ̃2

9

)
(n− 1)− 11π2

30 (n− 1)2 +O(ε3) , (3.42)

Cconj
D

CT

∣∣∣∣d=4
= −4

3π
2µ̃2 + π2

5

(
2 + 4µ̃2

27

)
(n− 1)− 17π2

45 (n− 1)2 +O(ε3) , (3.43)

and the difference

CD − Cconj
D

CT

∣∣∣∣d=4
= 2

15π
2µ̃2 − 7

135π
2µ̃2(n− 1) + π2

90(n− 1)2 +O(ε3) . (3.44)

In the uncharged case (µ̃ = 0), these expressions agree with the results of [47] and in
particular, the difference CD −Cconj

D starts at order (n− 1)2, in agreement with the general
proof of [64]. The inclusion of the chemical potential is responsible for a discrepancy between
CD and Cconj

D already when n = 1, as can be seen from the first term. This clearly shows
that in the presence of a gauge field, the conjecture (1.5) is violated even around n = 1.
This pattern holds for any dimensions, as we report explicitly in appendix D.

Let us comment on the sign of CD. For vanishing chemical potential, we recover the
result of [47], i.e., the displacement two-point function becomes negative for n < 1, violating
unitarity (it is unclear whether a non-unitary defect interpretation remains valid in that
regime). When the chemical potential is switched on, the zero of CD is no longer at n = 1
and only for imaginary values µ̃2 < 0 it moves to the left, leaving a unitarity defect for n ≥ 1.

We can also fix n = 1, and expand around µ̃ = 0. This will be useful to compare
with our numerical results in the next section. In d = 4, it turns out that we can reach a
remarkable precision,

CD
CT

∣∣∣d=4

n=1
= −6π2

5 µ̃2− 503π2

540 µ̃4 + 18011π2

145800 µ̃
6− 129908809π2

1763596800 µ̃
8 + 739450117π2

13604889600 µ̃
10 +O(µ̃12) .

(3.45)

3.4.1 Supersymmetric case

The supersymmetric case is special in that the chemical potential is completely fixed in
terms of the number of replicas and the dimensionality of the spacetime, see eq. (3.19). For
this reason, the series expansion looks different and the differential equation can be studied
by expanding the solution around n = 1. We report here the results for βn in d = 3, 4,

d = 3 , βn = 1
6(n− 1)− 1

4(n− 1)2 +O(n− 1)3 ,

d = 4 , βn = −1
8 + 1

12(n− 1)− 5
36(n− 1)2 +O(n− 1)3 ,

(3.46)
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which imply18

d = 3 , CD
CT

= Cconj
D

CT
= π2

2 (n− 1)− π2

4 (n− 1)2 +O(n− 1)3 ,

d = 4 , CD
CT

= Cconj
D

CT
= 2π2

5 (n− 1)− 4π2

15 (n− 1)2 +O(n− 1)3 .

(3.47)

As explicitly written, the relation CD = Cconj
D holds at least to second order in perturbation

theory. Moreover, in higher dimensions the perturbative expansion of the supersymmetric
solution can be done at higher orders (see appendix D), and the matching continues to hold
order-by-order in the expansion. This contrasts with the uncharged (not-supersymmetric)
case where the matching only holds to first order around n = 1 [47]. In section 3.5, we will
show that, indeed, in the supersymmetric case the conjecture holds (at least to numerical
precision), for any value of n.

3.5 Numerical results

In order to solve eq. (3.21) numerically, we employ a shooting method. The two integration
constants arise from the boundary conditions at the horizon and at infinity. The former is
parametrized by qn(µ) in eq. (3.25), while the latter by βn(µ) in eq. (3.24).

Briefly, the numerical shooting method works as follows: we fix a specific value of
the chemical potential, and then, for each value of n, the differential equation is solved
numerically close to the horizon and close to the boundary. The integration constants are
determined by requiring that the two curves meet smoothly in the middle point. After this
numerical evaluation, we choose another fixed value of the chemical potential and we repeat
the procedure.

We present results for d = 3, 4 in the main text, while leaving the higher dimensional
cases for appendix D. We first plot the value of CD as a function of n. Within each plot, the
different coloured curves correspond to different values of the chemical potential. This is
shown in figure 1 for d = 3 and in figure 2, for d = 4. Qualitatively, the results are similar in
d = 3, 4. It is convenient to describe them in terms of µ̃2. Curves with µ̃2 < 0, correspond
to imaginary chemical potential, while curves with positive µ̃2 have real chemical potential.
In all dimensions, the chemical potential squared increases when going from the top curve
towards the bottom curve of each plot. An intermediate green curve, that corresponds to
the uncharged case (µ̃ = 0), separates curves with imaginary and real chemical potential.
This curve is the same one reported in [47]. In all cases shown, CD follows a linear trend
with respect to n for large enough n. Close to n = 1, for sufficiently small µ̃, the numerical
curves agree with the analytic expansions in the previous section. This is shown in the right
panel of each figure, where the analytic curves are shown in dashed lines. Furthermore,
the range of the Rényi index such that CD ≥ 0 — which is expected for a unitary dCFT
— increases when considering imaginary chemical potentials. In particular, for imaginary

18In fact, these expansions can be obtained from the general expansions which appeared earlier by using
the relation (3.19). However note that in this case the correct scaling is µ̃ ∼ (n − 1) ∼ ε and hence the
mixed term µ̃2(n− 1) will not contribute.
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Figure 1. Plots of CD/CT , defined in eqs. (3.13) and (3.35), as a function of n in d = 3. The colours
correspond to different fixed values of the chemical potential µ̃ in eq. (3.37) with `∗/L = 1. (a) The
different curves correspond to µ̃2 = ±0.04,±0.09,±0.16,±0.25, 0.36, 0.49, 0.64, with µ̃2 increasing
from top to bottom. We highlight in green the curve corresponding to µ̃ = 0. Note that µ̃2 can be
negative, as the chemical potential can take imaginary values. (b) Zoom of the same plot around the
region close to n = 1. The dashed lines correspond to the analytic expansions in eq. (3.38). Curves
with the same colours correspond to the same chemical potential.
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Figure 2. Plots of CD/CT , defined in eqs. (3.13) and (3.35), as a function of n in d = 4. The
colours correspond to different fixed values of the chemical potential µ̃ in eq. (3.37) with `∗/L = 1.
(a) The different curves correspond to µ̃2 = ±0.04,±0.09,±0.16,±0.25, 0.36, 0.49, with µ̃2 increasing
from top to bottom. We highlight in green the curve corresponding to µ̃ = 0. Note that µ̃2 can be
negative, as the chemical potential can take imaginary values. (b) Zoom of the same plot around the
region close to n = 1. The dashed lines correspond to the analytic expansions in eq. (3.42). Curves
with the same colours correspond to the same chemical potential.

chemical potential, CD is always positive for any Rényi index n ≥ 1 (including, of course,
all integer values of n); the case with imaginary chemical potential is the usual one which
appears in the condensed matter literature, see for example the integration in eq. (1.4);
in this case, the chemical potential simply produces phases for charged fields as they go
around the entangling surface. However, as pointed out by [3], in holography, one can also
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Figure 3. Relative difference (CD − Cconj
D )/(nCT ) as a function of n for fixed chemical potential

in d = 3 (left) and d = 4 (right). The different curves correspond to different chemical potentials,
µ̃2 = ±0.09,±0.16,±0.25, with µ̃2 increasing from bottom to top (we set `∗/L = 1). We plot
the curve with µ̃ = 0 in green. Note that µ̃2 can be negative, as the chemical potential can take
imaginary values. The red curve corresponds to evaluating the SUSY solution. As it can be seen, in
this case CD is exactly Cconj

D , at least up to numerical errors of the order 10−4 in d = 3 and 10−6

in d = 4.

have a real value for the chemical potential. We notice that, past a certain value of real µ̃,
the function CD becomes negative along all the range of the Rényi index.

In figure 3, we explicitly compare the numerical result with the conjectured value in
eq. (1.5), both for d = 3, 4. It is convenient to plot the following difference,

CD − Cconj
D

nCT
, (3.48)

where the factor of n in the denominator is chosen in order to have a constant value for
large Rényi index, and CT is the central charge, see eq. (2.6). Notice that curves with
real chemical potential do not intersect the horizontal axis, while curves with imaginary
chemical potential intersect it twice at two different values of n. The green curve, that
corresponds to µ̃ = 0, intersects at a single point given by n = 1.

In the plot, we observe that the conjectured result (1.5) does not hold for generic values
of the chemical potential. However, if we focus on the supersymmetric case, given by the
red curve, then we see that the conjectured result holds (at least up to errors of the order
10−4 in d = 3 and 10−6 in d = 4). It is interesting to note that the red curve is composed
by the intersections of all the curves at imaginary chemical potential with the horizontal
axis, plus the point at n = 1 which comes from the intersection of the µ̃ = 0 curve. The
reason is that the chemical potential in the supersymmetric case is purely imaginary and a
function of n, see eq. (3.19).

Going back to the case of non-supersymmetric theories, we could try to quantify how
badly is the conjecture (1.5) violated at generic chemical potential. One way to asses
the level of violation is to look at the relative error (CD − Cconj

D )/CD. However, it turns
out that since the numerator and denominator have zeros at different values of n, this

– 25 –



J
H
E
P
0
6
(
2
0
2
2
)
0
6
8

0.0 0.2 0.4 0.6 0.8 1.0

-20

-10

0

10

20

(a)

0.0 0.2 0.4 0.6

-30

-20

-10

0

10

20

(b)

Figure 4. Numerical results for CD/CT , defined in eqs. (3.13) and (3.35), as a function of µ̃2,
introduced in eq. (3.37), in d = 3 (left) and d = 4 (right). We set `∗/L = 1. Different colours
correspond to different values of n. The black curve corresponds to n = 1, while the upper orange
curve corresponds to n = 10. In between, the curves go in increasing order of n taking values of
n = 1.5, 2, 3, 4, 6, 8. Note that µ̃2 can be negative, as the chemical potential can take imaginary values.

function is divergent. Nevertheless, focusing on the regime n > 1 and µ̃2 < 0 (which is the
relevant regime for a unitary conformal field theory, see footnote 1 and comments below
equation (3.44)) we find that the conjecture is only mildly violated for a wide range of n.
This is similar to what was found in the uncharged case in [47]. For instance, for the values
that we have studied numerically, the relative error approaches values smaller than 0.1 for
n ≥ 4 and imaginary chemical potentials. On the other hand, for real chemical potential it
seems that we can reach large violations.

Instead of fixing µ̃, in figure 4 we fix n and plot CD for different values of µ̃2 for d = 3,
4. Starting from the upper left side of each plot, n decreases in each curve, until reaching
the black curve that corresponds to n = 1, which, as expected, passes through the origin.
We notice that CD is always a decreasing function of µ̃2, but there is an intersection point
after which the behaviour of the curves at different Rényi indices changes.

Finally, in figure 5, we concentrate on the case of n = 1 and plot CD as a function of µ̃ in
different dimensions. The dots correspond to numerical results, while the continuous curves
are the analytic expansions found in section 3.4. We observe that there is a remarkably
precise agreement with the analytic expansion, which also holds for larger values of the
chemical potential. All of these curves pass through the origin, since the defect disappears
when n = 1 and µ̃ = 0, and then, of course, there is no effect to its deformation.

4 Discussion

In this work, we used holography to evaluate the coefficient CD appearing in the two-point
function of the displacement operator (2.11). This coefficient completely fixes the change of
charged (1.1) and symmetry-resolved (1.3) Rényi entropies under small shape deformations
of a flat or spherical entangling surface.
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Figure 5. CD/CT (n = 1) as a function of the chemical potential µ̃2 in eq. (3.37) for different
spacetime dimensions. We set `∗/L = 1. The dots correspond to numerical results; the solid curves
correspond to the analytic expansions determined in eqs. (3.38), (3.45), (D.8) and (D.10). The plot
contains both real and imaginary chemical potentials such that µ̃2 = ±0.16,±0.09,±0.04,±0.01, 0.

We first summarize the main results of our investigation. Following the methods
of [3, 47], an appropriate conformal transformation can be used to map the vacuum state
with a slightly deformed flat entangling surface to a grand canonical ensemble on a deformed
version of the manifold S1 ×Hd−1. In that case the dual gravitational setup corresponds to
a deformed black hole solution with hyperbolic horizon and a non-trivial gauge connection.
We computed the corresponding equations of motion for the deformed background and
solved them both numerically and in an analytic expansion around n = 1 and µ = 0. By
using holographic renormalization, we then extracted CD from the one point function of
the stress-energy tensor in the deformed background.

Our numerical analysis and analytic expansions around n = 1 and µ = 0 show that, for
generic values of the chemical potential and of the Rényi index, CD does not generically obey
the conjectured relation (1.5), originally proposed in [16]. This is similar to what happens
in the case without charge [47], however, here the conjecture is already violated at order 0
in (n− 1) due to the presence of the chemical potential. However, for unitary quantum field
theories in the regime µ2 < 0 and for n > 1, the violation is mild for a large range of chemical
potentials and replica numbers. It would be interesting to understand the reason for this.

On the other hand, we demonstrated that in the supersymmetric case, once the
chemical potential is related to the number of replicas via eq. (3.19), the conjecture (1.5)
holds identically for all values of the Rényi index in various dimensions.19 We proved
this numerically in dimensions 3 ≤ d ≤ 6, and analytically in an expansion around n = 1
and µ = 0 (up to the order where we truncate the series) in dimensions 3 ≤ d ≤ 7.
The holographic setup is similar in different dimensions, and we therefore view this as
an indication that the conjecture holds in holography in general dimensions d ≥ 3. This
includes cases with d > 6 where there is no dual superconformal field theory.

19This claim was proven rigorously in d = 4 in [30]. In higher dimensions it is believed to be true, but it
has not been proven.
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Once we know CD, the variation of the charged Rényi entropy (1.1), evaluated at
fixed chemical potential, is given in eqs. (2.13)–(2.15). An example of how to implement
this variation for a deformation of a spherical entangling surface in 3 dimensions can be
found in appendix A. Similarly, the variation of the symmetry-resolved Rényi entropy (1.3),
evaluated at fixed charge, reads

δSn(q) = 1
n− 1

(
n
δZ1(q)
Z1(q) −

δZn(q)
Zn(q)

)
, δZn(q) ≡ −in

∫ iπ/n

−iπ/n

dµ

2πe
−qnµδZn(µ) . (4.1)

To evaluate this variation, we need, in addition to the variation of δ logZn(µ) (which is
fully fixed in terms of the coefficient CD, see eq. (2.13)), also the partition function Zn(µ)
itself. In the grand-canonical ensemble, the partition function is simply fixed in terms of
the grand potential G in eq. (3.10) by means of the identity G = −T logZ(µ). In this way,
we can extract the charged Rényi entropy and its variation for a fixed chemical potential or
for a fixed charge.

The investigations considered in this work open the possibility for several future
directions, both from the gravity and the quantum perspective.

Field-theoretic outlook. It would be insightful to test our general results and calculate
CD in explicit quantum field theories. The computation of charged Rényi entropies has
been performed in 1+1 dimensional systems, involving free scalars or fermions, both in
the relativistic and in the non-relativistic scenario [1, 3, 65, 66]. It would be interesting to
generalize those studies to higher dimensions where deformations of the entangling surface
can be performed. Recall, that in the case without a global symmetry, free theories respect
the conjecture (1.5), as demonstrated in specific models in d = 3, 4 [16, 67, 68] and it would
be interesting to check if this persists when including the effect of a global charge.

Furthermore, we could try to construct supersymmetric examples by tuning the chemical
potential, similarly to what we did in holography in eq. (3.19). In particular, in dimensions
d ≥ 3, we could check if the conjecture (1.5) is satisfied due to supersymmetry. If it is indeed
the case, it is worth considering weakly-coupled field theories to confirm that the conjecture
is satisfied due to supersymmetry and not because of working with free field theories.

In the present work, we used holography to prove that the conjecture (1.5) holds for
supersymmetric black holes dual to field theories in dimensions 3 ≤ d ≤ 7. The field-
theoretical proof of this statement is only known in dimension d = 4 (in addition, there are
further checks in d = 3), so one can be tempted to further generalize these results to other
dimensions, following the approach of [30].

Gravity outlook. We considered a grand-canonical ensemble at constant chemical po-
tential. From the gravitational perspective, this is because the action (3.1) provides a well
defined variational principle if we fix the dual gauge field at the boundary. Therefore, our
setup gives easy access to the charged Rényi entropies Sn(µ). On the other hand, it might
be easier to determine the symmetry-resolved Rényi entropies Sn(q) by considering an
ensemble where the charge is fixed. This can be obtained in the gravitational theory with
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the addition of a boundary term to the action [55, 62, 69]

`2∗
2`d−1

P

∫
∂M

√
hnaFabA

b , (4.2)

where the indices a, b run over the coordinates of the codimension-one boundary. It would
be interesting to develop this formalism further.

In the present work, we discussed shape deformations of a flat entangling surface from
holography in Einstein-Maxwell gravity. We could enlarge the investigation to Gauss-
Bonnet gravity or other higher-derivative theories [70–72]. In the case without charge, the
conjecture (1.5) can be satisfied up to second order around n = 1 when the coupling λ
of the higher-derivative term is tuned to saturate the unitarity bound [47, 73]. A natural
direction would be to check if the discrepancy between CD and Cconj

D , which we observed in
the case with non-vanishing chemical potential, can be improved around n = 1 for specific
values of the Gauss-Bonnet coupling. We would also like to check whether the conjecture in
the supersymmetric case holds in Gauss-Bonnet gravity.

Finally, as briefly discussed in [3], another possible generalization of the Rényi entropies
involves the case of a spherical entangling surface, where the states are labelled by their
angular momenta instead of the charge. The dual gravitational configuration would be a
spinning hyperbolic black hole, with an associated rotating Rényi entropy. We could also
study shape deformations of spherical defects in this context.

Experimental outlook. While Rényi entropies may naively appear as abstract quantities,
they have some recent concrete applications. For example, the second Rényi entropy was
measured in an experiment involving ultra-cold bosonic atoms in optical lattices [74].
Essentially, the idea is the following. One prepares two identical copies of a state composed
by N particles and interferes them using a double well potential. By measuring the
probability of finding an even/odd number of the particles in one copy or the other after
the interference, one determines the overlap between the two systems, which is related to
the second Rényi entropy. A generalization of this procedure including an Aharonov-Bohm
flux was discussed in [2]. The proposal is to realize the same experimental set-up, but now
restricting to sectors of fixed charge and averaging between them.

The measure of charged Rényi entropies allows to distinguish symmetry-protected
topological states from other phases of matter, thanks to the degeneracies that are present
in their entanglement spectrum [11]. As an example, the authors of [11] demonstrated how
to implement a protocol on the IBM quantum computer to identify the symmetry-protected
nature of the ground state of a one-dimensional cluster Ising Hamiltonian. By making two
copies of the system and performing certain swap operations between them, it is possible
to extract the second Rényi entropy and its restriction to the charge sectors. It would
be interesting to perform similar simulations in higher dimensions where the entangling
surface can be deformed, which might bring the fascinating possibility of being able to test
quantum field theory and/or gravitational results in quantum simulations.
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A Explicit example in 3 dimensions: deformation of a circle

In this appendix, we consider the shape deformation of a circular entangling surface in a
three-dimensional CFT to provide a simple example where CD can be explicitly related
to the variation of the Rényi entropy. Let us consider a timeslice of three-dimensional
spacetime parametrized by polar coordinates (r, θ). The entangling surface lies at r = R

and we can consider a θ-dependent deformation in the radial direction

δXr = Rεf(θ) , (A.1)

where ε is a small dimensionless parameter and f(θ) is a generic periodic function of θ.
Comparing with equation (2.12) one notices that this is not the most general deformation
since we have two orthogonal directions, the radial and the time direction. Nevertheless,
for concreteness, we focus here on the most natural shape deformation for an entangling
surface, i.e., the one that does not extend in the time direction. Furthermore, we expand
the deformation f(θ) as

f(θ) =
∑
m

fm cos (mθ) , (A.2)

with m ∈ N. For instance, the case where the circle is deformed into an ellipse corresponds
to fm = δm,2. The changes of the shape for various choices of m are depicted in figure 6.

Using the identity (2.13), we obtain the variation of the partition function

d2 logZn(µ)
dε2

∣∣∣
ε=0

=R4 ∑
m,m′

fmfm′
∫ 2π

0
dθ

∫ 2π

0
dθ′ cos(mθ)cos(m′θ′)〈Dr(θ)Dr(θ′)〉 , (A.3)

where Dr is the radial component of the displacement operator and the overall factor of
R4 comes from the normalization in eq. (A.1) and the integration along the dimensionful
coordinate w = Rθ. The two-point function of Dr can be easily obtained with the
appropriate conformal transformation in (2.11),

〈Dr(θ)Dr(0)〉n,µ = CD(n, µ)
4R4 (1− cos θ)2 . (A.4)
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Figure 6. (a) Deformation of a circle (dashed gray) into an ellipse (blue). (b) Deformations from
the circle (dashed gray) to other curves, using a deformation δXr = Rε cos(mθ). Here we fixed
ε = 0.1 and R = 1. The red curve corresponds to m = 1. Since it is simply a shift of the original
circle, it does not contribute to the deformation of the partition function in eq. (A.5).

Substituting this into eq. (A.3) one can easily check that the integral vanishes unless m = m′

and we get the universal contribution
d2 logZn(µ)

dε2

∣∣∣
ε=0

=
∑
m

f2
mCD(n, µ)

∫ 2π

0
dθ

∫ 2π

0
dθ′

cos(mθ) cos(mθ′)
4 (1− cos (θ − θ′))2

=
∑
m

f2
mCD(n, µ) π4

∫ 2π

0
dθ

cos (mθ)
(1− cos θ)2

= π2

6 CD(n, µ)
∑
m

f2
mm(m2 − 1) .

(A.5)

In going from the first to the second line, we made use of the prosthaphaeresis formula
cos(mθ) cos(mθ′) = 1

2 (cos(m(θ + θ′))− cos(m(θ − θ′))). The former term vanishes because
it reduces to an odd integral along an even interval. The latter term is evaluated explicitly.
The expression is formally divergent, but its finite part is universal, because in odd spacetime
dimensions there is no logarithmic divergence. After subtracting the divergence, we obtain
the contribution reported above.20 Equation (A.5) shows that CD precisely accounts for
the second-order shape deformation of the entangling surface. For instance for the elliptic
deformation

d2 logZn(µ)
dε2

∣∣∣ellipse

ε=0
= π2

3 CD(n, µ) . (A.6)

In order to get the variation of the Rényi entropy δSn(µ), one has to take the value of CD
computed at the desired Rényi index and chemical potential looking at the d = 3 analysis
in section 3.5. Then one plugs it inside eq. (2.14) using the result (A.5).

20We use a cutoff regularization: introducing the infinitesimal parameter δ, we perform the integration
along the region θ ∈ [δ, 2π − δ] and then we perform a Laurent-expansion around δ = 0 to isolate the
divergence. Alternatively, one can use dimensional regularization, which is blind to power-law divergences.
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B On-shell action for charged hyperbolic black holes

In this appendix, we evaluate the regularized on-shell action I0 for hyperbolic charged black
holes in Einstein-Maxwell gravity in general spacetime dimensions. This computes the
grand-canonical partition function Z(µ) according to

I0 = − logZ(µ) . (B.1)

We start from the gravitational action IEM in eq. (3.1),

IEM = − 1
2`d−1
P

∫
M
dd+1x

√
g

(
R+ d(d− 1)

L2 − `2∗
4 FµνF

µν

)
, (B.2)

supplemented by the usual boundary Gibbons-Hawking-York (GHY) term,

IGHY = − 1
`d−1
P

∫
B
ddx
√
hK , (B.3)

where hab denotes the induced metric on the boundary B = ∂M of the bulk manifold, and
K is the trace of the extrinsic curvature.

As we will see, the bare on-shell action I0 + IGHY is divergent due to contributions close
to the AdS boundary. We will regulate the on-shell action by the standard holographic
method of adding local boundary counterterms to the action [75, 76].21 The counterterm
action is then given by

Ict = 1
`d−1
P

∫
B
ddx
√
h

[
d− 1
L

+ L

2(d− 2)RB

+ L3

2(d− 4)(d− 2)2

(
RabRab −

d

4(d− 1)R
2
B

)
+ . . .

]
,

(B.4)

where Rab is the Ricci tensor for the boundary metric and RB the corresponding Ricci
scalar. The ellipsis denote additional terms which need to be included to subtract the
divergences when d > 7. The renormalized on-shell action is then given by the sum of all
the previous terms, i.e.,

I0 = IEM + IGHY + Ict . (B.5)

Next, we provide details of the explicit calculation in d = 3. We parametrize the metric
in terms of (τ, r, ρ, y) coordinates as

ds2 = L2

R2 G(r)dτ2 + dr2

G(r) + r2

ρ2

(
dρ2 + dy2

)
, (B.6)

where G(r) is the blackening factor in eq. (3.3). By plugging the solutions for the metric
and the gauge connection (3.5) in the bulk action (B.2), we find

IEM = 1
`2P

∫
M
ddx

3r4 − L2Q2

LRr2ρ2 = 1
LR `2P

VΣ
T

∫ rmax

0
dr

3r4 − L2Q2

r2

= 1
LR `2P

VΣ
T

[
r3

max −
(
L2Q2 + r4

h

)]
+O(r−1

max) .
(B.7)

21Earlier in the literature, these divergences were regulated by background subtraction, see e.g., [55, 77].
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In the first line we performed explicitly the integration along the hyperbolic space H2,
giving the regulated dimensionless volume VΣ, and we integrated along the Euclidean time
direction, which brings a factor of T−1 due to the periodicity of the thermal circle. In the
second line we performed the integral along the radial coordinate and expanded the solution
around a UV cutoff r = rmax. Indeed, the bulk action is divergent as rmax →∞.

In order to evaluate the GHY contribution and the counterterm, we need to specify the
induced metric data on the boundary identified by the surface at constant r = rmax. The
induced metric and the outgoing normal one-form to this surface are given by

ds2
ind = L2

R2 g(rmax)dτ2 + r2
max
ρ2

(
dρ2 + dy2

)
, n = dτ√

G(r)
. (B.8)

These data are sufficient to determine the extrinsic curvature, the induced metric determinant
and the Ricci tensor on the boundary. By direct computation, we find

IGHY = 1
LR `2P

VΣ
T

[
−3r3

max + 2L2rmax + 3L2M
]

+O(r−1
max) , (B.9)

Ict = 1
LR `2P

VΣ
T

[
2r3

max − 2L2rmax − L2M
]

+O(r−1
max) . (B.10)

We point out that the contribution in the second line in eq. (B.4) does not modify the
result in d = 3, but it plays an important role to modify the constant term in d = 4, and to
cancel the divergences in d ≥ 5. Summing all the terms entering the renormalized action
and using eqs. (3.4) and (3.6), we see that all the divergences cancel and we obtain

I0 = −VΣrh
`2P

1
T

[
1 + 1

4

(
µ`∗
2πL

)
+ r2

h

L2

]
, (B.11)

which is finite. Now it is easy to obtain the grand potential, since

G = −T logZ(µ) = TI0 . (B.12)

One can perform the same computation in any dimension d ≤ 7. The general result reads

G = −VΣr
d−2
h

2`d−1
P

[
1 + d− 2

2(d− 1)

(
µ`∗
2πL

)2
+ r2

h

L2

]
, (B.13)

which is precisely eq. (3.10).

C Details of the holographic renormalization

In order to determine the precise dictionary between βn(µ) introduced in the expan-
sions (3.23) and CD, we apply the holographic renormalization procedure explained in
section 3.3. In this appendix we add further details of the derivation. The first step is to
put the metric in the FG form (3.27). This is achieved by performing a double change of
variables

r = L2

z̃
, z̃ = z

(
1 + c1

z

L
+ c2

z2

L2 + · · ·+ cd
zd

Ld
+ . . .

)
, (C.1)
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where the coefficients ci are determined order by order in the expansion by imposing that
the radial part of the metric is

dr2

G(r) = L4dz2 (∂z̃/∂z)2

z̃4G(r(z)) = L2

z2 dz
2
(
1 +O(zd+1)

)
. (C.2)

The resulting transformations in various dimensions are given by

d= 3 , z̃= z

[
1− z2

4L2−
1
6xn

(
x2
n−1+

(
µ`∗
2πL

)2) z3

L3 +O(z4)
]
, (C.3)

d= 4 , z̃= z

[
1− z2

4L2−
1
48

(
6x2

(
x2
n−1

)
+2x2

n

(
µ`∗
2πL

)2
−3
)
z4

L4 +O(z5)
]
,

d= 5 , z̃= z

[
1− z2

4L2 + z4

16L4−
1
20x

3
n

(
2
(
x2
n−1

)
+3
(
µ`∗
2πL

)2) z5

L5 +O(z6)
]
,

d= 6 , z̃= z

[
1− z2

4L2 + z4

16L4−
1

960

(
80x4

n

(
x2
n−1

)
+128x4

n

(
µ`∗
2πL

)2
+15

)
z6

L6 +O(z7)
]
,

d= 7 , z̃= z

[
1− z2

4L2 + z4

16L4−
z6

64L6−
1
42x

5
n

(
3
(
x2
n−1

)
+5
(
µ`∗
2πL

)2) z7

L7 +O(z8)
]
.

We notice that the chemical potential enters explicitly these transformations, and they
reduce to the expressions listed in appendix B of [47] when µ = 0. The dependence on
both the chemical potential and the number n of replicas (via the quantity xn) starts only
at order zd. Therefore, all the lower-order terms h(m) in the expansion of the boundary
metric (3.27) will not depend on either µ and n, and the same reasoning applies to the
functional Xµν defined in eq. (3.28) as well.

Now, we apply the changes of variables (C.3) to the metric (3.20). We find

hµνdx
µdxν = G(r(z))R

2

L2 dτ
2 + L2

(
z

z̃

)2 dρ2

ρ2 +
[

4L2

d− 2

(
z

z̃

)2
v (r(z))

]
(xa ∂iKa) dρ

ρ
dyi

+ L2

ρ2

[(
z

z̃

)2
δij + 2

(
z

z̃

)2
k(r(z)) K̃a

ijxa

]
dyidyj . (C.4)

By identifying the order d terms in the previous expansion, we determine the coefficients
entering the one-point function of the stress tensor defined in eq. (2.30). The solutions
for the lower-order terms are not needed for the holographic determination of CD. The
interested reader can find their expressions in [47, 59].22

D Solutions to the differential equations in higher dimensions

In this appendix, we provide further details on the calculation of the analytic and numerical
solutions to the differential equations (3.21) in d = 5, 6, 7. The techniques used to derive
these results are the same outlined in sections 3.4 and 3.5.

22Since the lower-order terms do not depend on the chemical potential, the same results as in the case
without charge hold.
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D.1 Analytic expansions

In higher dimensions, the asymptotic expansions of the solution to the differential equa-
tion (3.21) read

d = 5 , k(r) = v(r) = 1− L2

2r2 −
L4

8r4 + L5

r5 βn(µ) +O(r−6) ,

d = 6 , k(r) = v(r) = 1− L2

2r2 −
L4

8r4 + L6

r6 βn(µ) +O(r−7) ,

d = 7 , k(r) = v(r) = 1− L2

2r2 −
L4

8r4 −
L6

16r6 + L7

r7 βn(µ) +O(r−8) .

(D.1)

We can obtain an analytic expression around n = 1 and µ = 0 for the undetermined coef-
ficient βn by considering the following analytic expansion of the solution to the differential
equation, i.e.,

k(r̃) =
∑
A,B

kAB(r̃)(n− 1)AµB . (D.2)

The functions kAB at order 0 in the chemical potential and up to first in the Rényi index
are [47]

k00(r̃) =
√

1− r̃2 , k10(r̃) =
(d− 1)(r̃2 − 1)r̃d 2F1

(
1, d2 ,

d+2
2 , r̃2

)
+ d(r̃d − r̃2)

(d− 1)d
√

1− r̃2
, (D.3)

while the expression for k20(r̃) is cumbersome and we will not report it explicitly.
We series-expand the coefficient βn(µ) entering the asymptotic expansions according to

eq. (3.36). In various dimensions, it turns out that all the terms entering βn(µ) linear in
the chemical potential vanish. More generally, we observe that

∀m,n ∈ N βm,2n+1 = 0 . (D.4)

At order 0 in the chemical potential, the lowest orders in the expansion around n = 1 have
a simple closed form [47]

β00 =

−
Γ( d−1

2 )
2
√
π Γ( d2 +1) if d ∈ 2N

0 if d ∈ 2N + 1
(D.5)

β10 = 1
d(d− 1) , β20 = −4d3 − 8d2 + d+ 2

2d2(d− 1)3 . (D.6)

It is difficult to determine generic higher-order terms in a general number of dimensions,
but it turns out that we can work out the higher-order terms in µ at exactly n = 1. They

– 35 –



J
H
E
P
0
6
(
2
0
2
2
)
0
6
8

correspond to the coefficients of kind βm0 with m ∈ N. We list the results:

d = 3 , β02 = − 5
36 , β04 = 16320 log 2− 11417

25920 ,

d = 4 , β02 = − 7
36 , β04 = − 815

7776 ,

d = 5 , β02 = − 81
400 , β04 = 118863360 log 2− 107796391

98560000 ,

d = 6 , β02 = − 44
225 , β04 = − 730484

1771875 ,

d = 7 , β02 = − 325
1764 , β04 = 5(21907005120 log 2− 25207810051)

90774395712 .

(D.7)

In dimensions d = 3, 4 the previous expressions are used to find eqs. (3.41) and (3.45). In
higher dimensions, they determine the expansions of CD and Cconj

D at n = 1 in terms of the
rescaled chemical potential (3.37). We list the main results:

• Case d = 5

CD
CT

∣∣∣
n=1

= −8
5π

2µ̃2 + 1857240 log 2− 2800969
616000 π2µ̃4 +O(µ̃6) , (D.8)

Cconj
D

CT

∣∣∣
n=1

= −7
4π

2µ̃2 − 1485
512 π

2µ̃4 +O(µ̃6) . (D.9)

• Case d = 6

CD
CT

∣∣∣
n=1

= −40
21π

2µ̃2 − 750496
165375π

2µ̃4 +O(µ̃6) , (D.10)

Cconj
D

CT

∣∣∣
n=1

= −72
35π

2µ̃2 − 22784
4375 π

2µ̃4 +O(µ̃6) . (D.11)

• Case d = 7

CD
CT

∣∣∣
n=1

= −15
7 π

2µ̃2 + 25 (912791880 log 2− 1846809649)
4322590272 π2µ̃4 +O(µ̃6) , (D.12)

Cconj
D

CT

∣∣∣
n=1

= −55
24π

2µ̃2 − 81875
10368π

2µ̃4 +O(µ̃6) . (D.13)

It is clear that the value of CD and Cconj
D differ at n = 1 in all dimensions, starting at second

order in the chemical potential. This extends the results discussed in section 3.4 for d = 3, 4.
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In the supersymmetric scenario, the chemical potential is related to the number of
replicas via eq. (3.19) and therefore we only need to specify the order in the expansion
around n = 1. It turns out that we can investigate more easily the higher-order terms
compared to dimensions d = 3, 4. We find

d= 5 , βn = 1
20(n−1)− 7

80(n−1)2+ 43
320(n−1)3+O(n−1)4 ,

d= 6 , βn =− 1
16 + 1

30(n−1)− 3
50(n−1)2+ 71

750(n−1)3− 173
1250(n−1)4+O(n−1)5 ,

d= 7 , βn = 1
42(n−1)− 11

252(n−1)2+ 53
576(n−1)3− 473

4536(n−1)4+O(n−1)5 , (D.14)

which imply

• Case d = 5

CD
CT

= Cconj
D

CT
= π2

3 (n− 1)− π2

4 (n− 1)2 + 5π2

16 (n− 1)3 +O(n− 1)4 . (D.15)

• Case d = 6

CD
CT

= Cconj
D

CT
= 2π2

7 (n−1)− 8π2

35 (n−1)2 + 52π2

175 (n−1)3− 328π2

875 (n−1)4 +O(n−1)5 .

(D.16)

• Case d = 7

CD
CT

= Cconj
D

CT
= π2

4 (n− 1)− 5π2

24 (n− 1)2 + 5π2

18 (n− 1)3− 155π2

432 (n− 1)4 +O(n− 1)5 .

(D.17)

As can be observed, in the supersymmetric case, we find a match between CD and Cconj
D at

all the orders considered around n = 1.

D.2 Numerical results

The numerical results in higher dimensions confirm the picture that we outlined in section 3.5
in d = 3, 4. The plots of CD as a function of the Rényi index at fixed µ̃, depicted in figure 7
and 8 for d = 5, 6 respectively, show that an imaginary chemical potential increases the
value of CD, while a real chemical potential decreases it compared to the case without a
global symmetry in the system (µ̃ = 0). Furthermore, past a certain value of real µ̃, the
function CD becomes negative along all the range of the Rényi index.

In figure 9 we test explicitly the conjecture (1.5). Again, we clearly observe that
it is violated at generic values of n, µ̃, while it is respected in the supersymmetric case,
represented by the red curve. We point out that the numerics becomes more involved for
small values of the chemical potential in d = 7. Therefore, we avoid to report such plots,
but the qualitative behaviour is exactly the same as in the other dimensions.
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Figure 7. Plots of CD/CT , defined in eqs. (3.13) and (3.35), as a function of n in d = 5. The
colours correspond to different fixed values of the chemical potential µ̃ in eq. (3.37) with `∗/L = 1.
(a) The different curves correspond to µ̃2 = ±0.04,±0.09,±0.16, 0.25, with µ̃2 increasing from top
to bottom. We highlight in green the curve corresponding to µ̃ = 0. Note that µ̃2 can be negative,
as the chemical potential can take imaginary values. (b) Zoom of the same plot around the region
close to n = 1. The dashed lines correspond to the analytic expansions in eq. (D.8). Curves with
the same colours correspond to the same chemical potential.
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Figure 8. Plots of CD/CT , defined in eqs. (3.13) and (3.35), as a function of n in d = 6. The
colours correspond to different fixed values of the chemical potential µ̃ in eq. (3.37) with `∗/L = 1.
(a) The different curves correspond to µ̃2 = ±0.04,±0.09,±0.16, with µ̃2 increasing from top to
bottom. We highlight in green the curve corresponding to µ̃ = 0. Note that µ̃2 can be negative,
as the chemical potential can take imaginary values. (b) Zoom of the same plot around the region
close to n = 1. The dashed lines correspond to the analytic expansions in eq. (D.10). Curves with
the same colours correspond to the same chemical potential.
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Figure 9. Relative difference (CD − Cconj
D )/(nCT ) as a function of n for fixed chemical potential

in d = 5 (left) and d = 6 (right). The different curves correspond to different chemical potentials,
µ̃2 = ±0.04,±0.09, with µ̃2 increasing from bottom to top (we set `∗/L = 1). We plot the curve
with µ̃ = 0 in green. Note that µ̃2 can be negative, as the chemical potential can take imaginary
values. The red curve corresponds to evaluating the SUSY solution. As it can be seen, in this case
CD is exactly Cconj

D , at least up to numerical errors of the order 10−4 in d = 5, 6.
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