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We construct a model for the angular power spectrum of the instrumental noise in interferometer networks
mapping gravitational wave backgrounds (GWBs) as a function of detector noise properties, network configu-
ration and scan strategy. We use the model to calculate the noise power spectrum for current and future ground-
based experiments, as well as for planned space missions. We present our results in a language similar to that
used in cosmic microwave background and intensity mapping experiments, and connect the formalism with
the sensitivity curves that are common lore in GWB analyses. Our formalism is implemented in a lightweight
python module that we make publicly available at https://github.com/damonge/schNell.

I. INTRODUCTION

The Universe is permeated by a faint background of grav-
itational waves fuelled by different mechanisms and gener-
ated at different epochs in history [1, 2]. A hypothesized pe-
riod of accelerated expansion in the very early Universe will
have amplified quantum fluctuations in the metric to macro-
scopic scales. Phase transitions will have stirred up the cos-
mic plasma and seeded metric fluctuations, through, for ex-
ample, the collision of bubbles of different phases or through
the dynamics and collapse of topological defects. The non-
linear dynamics of cosmic fields such as primordial magnetic
fields will have generated metric perturbations, some of them
in the form of gravitational waves. More recently, the inspiral
and merger of binary systems, and the cataclysmic collapse of
massive objects through supernovae or gamma ray bursts, will
also make a substantial contribution to the gravitational wave
background (GWB). See e.g. for black hole and neutron star
mergers [3–9], [10] for supermassive black holes, for explod-
ing supernovae [11], neutron stars [12–14], and stellar core
collapse [15], population III binaries [16].

Measurements of the GWB are actively underway. At very
low frequencies and large scales, the focus is on the cos-
mic microwave background (CMB). Primordial gravitational
waves will distort the divergence-free component (the “B-
mode”) of the CMB polarization leading to a very distinct sig-
nature which can, hopefully, be isolated by current and future
CMB experiments [17, 18]. At higher frequencies, one hopes
that the exquisite timing of multiple millisecond pulsars will
pin down the presence of gravitational waves in the Galaxy
[19, 20].

In this paper we will concern ourselves with what we may
be able to learn in the Hz and mHz range of wavelengths from
gravitational wave interferometers, such as the Laser Inter-
ferometer Gravitational-Wave Observatory LIGO [21], Virgo
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[22] and their successors from the ground, or space mis-
sions such as the Laser Interferometer Space Antenna LISA
[23, 24]. While the primary focus of these instruments is to
detect and characterize individual events, they can also be de-
ployed to scan the sky for the GWB. In this way, they are
very much like other astrophysical survey instruments that are
used to measure diffuse backgrounds. Two notable examples
are the CMB experiments (already mentioned above) and in-
tensity mapping experiments at radio frequencies which are
used to look for integrated HI emission from radio galaxies
[25, 26].

The similarity between the quest for the GWB with interfer-
ometric experiments and other mapping experiments in cos-
mology and astrophysics is useful and has led to interesting
developments. In particular, the application of techniques,
first developed for the polarization of the CMB, to GWB has
been fruitful [27, 28], being used to clarify some conceptual
ambiguities [29], to develop a practical method for construct-
ing GWB maps [30] and applied to the LIGO O1 and O2 runs
[31]. A thorough and comprehensive description of multiple
aspects of GWB detection can be found in [32].

A key aspect in mapping diffuse backgrounds is the noise
properties of the apparatus and how they are mapped onto the
sky. A rough and often overly naive assumption is that the
noise is “white”, i.e. uncorrelated and homogeneous between
pixels. Clearly this is not the case for a number of reasons: the
noise in the time domain has a marked spectral dependence,
the scan strategy will not cover the sky uniformly and, of par-
ticular relevance to the case we will study here, the envisaged
networks of interferometers will only be able to reconstruct
the largest angular scales. To have a reasonable characteriza-
tion of the map-level noise properties in these experiments, a
number of important effects must be included: the frequency
(and potentially time) dependence of the detector noise, the
instrumental response to a given sky signal, the spin of the
quantity being mapped, and the geometric configuration of the
network of antennas mapping the sky.

In this paper we will attempt to do so by constructing a
semi-analytic model for the angular power spectrum of the
GWB instrumental noise (commonly labelled “N`”). The con-
struction of this model will mimic in many ways how this is
achieved for CMB and other diffuse mapping experiments and
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can be used for forecasting what one might expect with cur-
rent and future GWB observatories. The approach we use to
characterize the stochastic background signal projected onto
a 2D sphere corresponds to the spherical harmonic decompo-
sition method employed in present searches at LIGO-Virgo,
see e.g. [32] for a recent review on the topic. We will not
include, in the derivation of our instrumental noise model, the
shot noise that arises from discrete GW sources, a topic which
has been discussed elsewhere [33–36]. Nevertheless, it must
be included in the noise budget if one wishes to produce accu-
rate forecasts of the signal to noise for planned observations.

Much of the formalism and notation used in what follows
is based on previous work. In particular, in [37], the general
deconvolution problem of the sky signal, detector pattern and
scan strategy was presented for LIGO and LISA, in [38], a
maximum-likelihood estimator (and its corresponding covari-
ance matrix) was applied to a multi-baseline array of detec-
tors, in [27, 32] the phase coherent mapping of the gravita-
tional wave sky was analyzed in detail, with a focus on the re-
covery of both divergence-free and curl-free modes of gravita-
tional waves, and in [30] a complete, pixel based, map making
algorithm was proposed for recovering the gravitational wave
background from an array of interferometric detectors. In this
paper, we add to this body of knowledge by providing a fast
estimator of the noise angular power spectrum for a generic
network of interferometers that can be used to quantify the
detectability of different GWB models.

We structure this paper as follows. In Section II we present
the formalism that allows us to link the GWB sky to the data,
i.e. a time series associated to pairs of detectors. We then
build an optimal quadratic estimator for the GWB intensity
map, and use the map-level covariance of the estimator to
construct a model for the angular power spectrum of the
instrumental noise, N`. In Section III we use our model
to calculate different map-level noise properties, including
the N`, for a range of experiments: LISA, an extended
ground-based network made from the advanced Laser Inter-
ferometer Gravitational wave Observatories (LIGO) and their
combination with other currently operational ground-based
experiments, and the Einstein Telescope (ET). In Section IV
we summarize our results and discuss them in the context of
forecasts of the scientific returns of future GWB experiments.

II. CONSTRUCTING A MAP OF THE GRAVITATIONAL
WAVE BACKGROUND

A. Preliminaries

Let us consider a bath of gravitational waves, h(t,x). We
can use the plane-wave expansion [39] to write:

hi j(t,x) = ∑
p∈{+,×}

∫
d f
∫

dn̂2 hp( f , n̂)ei2π f (t−n̂·x) ep
i j(n̂) ,

(1)
where p labels the polarization states (p ∈ {+,×}), f is the
frequency, n̂ is the direction of propagation in the sky, given

in polar coordinates by,

n̂≡ (cosϕ sinθ ,sinϕ sinθ ,cosθ) , (2)

and ep
i j are the polarization tensors, constructed as follows:

l̂≡ (sinϕ,−cosϕ,0) , (3)
m̂≡ (cosϕ cosθ ,sinϕ cosθ ,−sinθ) , (4)

e+i j ≡ lil j−mim j , (5)

e×i j ≡ lim j +mil j . (6)

The second-order moments of hp are given by

〈hp( f , n̂)h∗p′( f ′, n̂′)〉 ≡ 1
2

δ
D( f − f ′)

δ D(n̂− n̂′)
4π

Wpp′( f , n̂) ,
(7)

where δ D(· · ·) is the Dirac delta function, and the matrix W is
related to the gravitational Stokes parameters through [30, 40]

W( f , n̂)≡
(

I( f , n̂)+Q( f , n̂) U( f , n̂)− iV ( f , n̂)
U( f , n̂)+ iV ( f , n̂) I( f , n̂)−Q( f , n̂)

)
. (8)

Before moving forward, it is worth clarifying the notation
we will use in the rest of the paper. Vectors are written as
boldface symbols (e.g. x), with unit vectors carrying a “hat”
(e.g. n̂). Matrices are written with a sans-serif font (e.g. W).
Denoting the typical frequency our observatory is sensitive to
f , τ will be the time scale over which we can approximate the
detector position to be constant in celestial coordinates, and T
will be the typical time scale on which Fourier transforms are
computed around a given time t. We have τ� T � 1/ f . The
Fourier transform of a quantity X(t) computed in the interval
T will be denoted by

XT (t, f ) =
∫ t+T/2

t−T/2
dt ′ e−2iπ f t ′X(t ′). (9)

We will also consider two different averaging procedures:

1. As implied by Eq. (7), gravitational waves can be mod-
elled as Gaussian random fields with a covariance given
by W. With this rationale, 〈X . . .Y 〉 (as in Eq. (7)) will
denote the ensemble average of the stochastic quantities
X . . .Y for a given underlying covariance W.

2. The Stokes parameters of the GWB will be considered
random fields themselves, and we will denote their en-
semble averages as 〈I1...IN〉W .

To simplify the notation, in what follows we will assume
that the background is unpolarized (Q = U = V = 0). We
will also assume that the scale and frequency dependence of
the background is factorisable, I( f , n̂) = I0(n̂)E f , where E f
is dimensionless and equal to 1 for a reference frequency
fref. It is common in the literature to express the GWB in
terms of the fractional energy density in gravitational waves
ΩGW. This is related to the intensity through ΩGW( f , n̂) =
(4π2 f 3)/(3H2

0 )I( f , n̂) [40], where H0 is the present value of
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the Hubble constant. We can therefore relate the power spec-
tra of both quantities through

CΩ
` ( f ) =

(
4π2

3H2
0

f 3 E f

)2

CI0
` . (10)

In what follows, we will assume that intensity has a power-law
frequency dependence, i.e.

E f =

(
f

fref

)αI

, (11)

hence ΩGW( f , n̂) ∝ ( f/ fref)
α with α = 3+αI . When work-

ing out noise curves for different networks and scan strategies,
we will focus on a fiducial spectrum with αI = −7/3, corre-
sponding to an astrophysical background of binary mergers.
Unless otherwise stated, all power spectra and intensity maps
shown here will be expressed in terms of ΩGW, and not I0.

B. Detector response

The response of a detector A at position xA to the gravity
wave in Eq. (1) can in general be written as

dA,T (t, f ) =
∫

d f ′δT (t, f − f ′)
∫

dn̂2
∑
p

F p
A ( f ′, n̂)hp( f ′, n̂)

+nA,T (t, f )

'
∫

dn̂2
∑
p

F p
A ( f , n̂)hp( f , n̂)+nA,T (t, f ). (12)

Here nA( f ) is a detector noise component, and we have de-
fined

F p
A ( f , n̂) = ai j

A ep
i j e−i2π f ′n̂·xA , (13)

where aA( f , n̂,xA) is the detector response tensor, which we
will specify in Section III for different cases. δT (t, f − f ′) is
defined as

δT (t, f − f ′)≡
∫ T/2

−T/2
dt ′e2πi( f− f ′)t ′

' δ
D( f − f ′), (14)

where in the last line (as in the last line in Eq. (12)) we have
taken the limit T � 1/ f .

In what follows we will use a discretized notation. The
frequency range is divided into intervals of width ∆ f = 1/T ,
where T is the observation time of a given timeframe, and the
celestial sphere is discretized into pixels labelled by an index
θ with area ∆Ω. Dirac delta functions δ D will get replaced by
Kronecker deltas:

δ
D( f − f ′)→

δ K
f f ′

∆ f
, δ

D(n̂− n̂′)→ δ K
θθ ′

∆Ω
. (15)

The discretized version of Eq. (12) is therefore

dA, f = ∑
p,θ

∆ΩF p
A, f θ

hp f θ +nA, f . (16)

In what follows, it will be useful to write the timestreams
of an array of detectors A ∈ {1, ...,N} as a vector d f =
(d1, f , ...,dN, f ), and likewise for its noise component.

C. Quadratic estimator

Since I0 is proportional to the variance of hi j, an optimal
quadratic estimator can be built for it with the form

Ĩ0,θ = ∑
A,B, f

d†
fEθ f d f −bθ , (17)

where Eθ f and bθ are free coefficients to be determined by
minimizing the variance of the estimator and eliminating its
bias [41].

To begin with, the ensemble average of the product of two
timestreams is

〈d f d†
f ′〉=

1
2

δ f f ′

∆ f

[
∑
θ

B f θ I0,θ +N f

]
(18)

≡ 1
2

δ f f ′

∆ f

[
S f +N f

]
≡ 1

2
δ f f ′

∆ f
C f , (19)

where we have defined

BAB
f θ ≡ ∆ΩE f ∑

p
F p

A, f θ
F p∗

B, f θ
, (20)

the noise power spectral density

〈n f n†
f ′〉 ≡

1
2

δ K
f f ′

∆ f
N f , (21)

and the frequency covariance C f (with a signal component
S f ). Note that Eq. (21) is only valid when the detector noise
is stationary, an approximation we assume here.

In what follows it will be convenient to write BAB
f θ

as:

BAB
f θ =

2
5

∆ΩE f A I
AB, f θ (22)

where A I
AB is the antenna pattern for the pair AB, in general

given by

A W
AB(n̂, f ) = γ

W
AB e−i2π f n̂·bAB . (23)

γW
AB are the overlap functions1. Although we have only con-

cerned ourselves with with the I component of the Stokes pa-
rameters, they are in general given by

γ
I
AB ≡

5
8π

[
Tr(aT

Ae
+)Tr(aT

Be
+)∗+Tr(aT

Ae
×)Tr(aT

Be
×)∗
]

γ
Q
AB ≡

5
8π

[
Tr(aT

Ae
+)Tr(aT

Be
+)∗−Tr(aT

Ae
×)Tr(aT

Be
×)∗
]

γ
U
AB ≡

5
8π

[
Tr(aT

Ae
+)Tr(aT

Be
×)∗+Tr(aT

Ae
×)Tr(aT

Be
+)∗
]

γ
V
AB ≡−i

5
8π

[
Tr(aT

Ae
+)Tr(aT

Be
×)∗−Tr(aT

Ae
×)Tr(aT

Be
+)∗
]
.

(24)

1 Note that it is also common in the literature to include the complex baseline
factor in Eq. (23) in the definition of γ . When focusing on measurements
of the GWB monopole, the term “overlap” is also used to denote the sky
average of these functions.
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The factor 5/8π is commonly introduced so that the overlap
functions integrate to unity over the sphere for two co-located
and perfectly aligned detectors with orthogonal arms.

Assuming Gaussian statistics for hp f θ and nA, f , the mean
and covariance of Ĩθ are

〈Ĩ0,θ 〉= ∑
θ ′

Mθθ ′ I0,θ ′ + b̃θ −bθ , (25)

Cov(Ĩ0,θ , Ĩ0,θ ′) =
1

2∆ f 2 ∑
f

Tr
(
Eθ fC fEθ ′ fC f

)
(26)

where we have defined the pixel-coupling matrix Mθθ ′ and the
noise bias b̃θ :

Mθθ ′ ≡
1

2∆ f ∑
f

Tr
(
B f θ ′E f θ

)
, b̃θ ≡

1
2∆ f ∑

f
Tr
(
Eθ fN f

)
.

(27)

The bias term is therefore bθ = b̃θ , and the coefficients that
minimize the variance are [41]

Eθ f = KC−1
f B f θC

−1
f , (28)

where K is an arbitrary constant2.
Using this result, the pixel-coupling matrix, the noise bias,

and the covariance of Ĩθ are

Mθθ ′ =
K

2∆ f ∑
f

Tr
(
C−1

f B f θ ′C
−1
f B f θ

)
, (29)

bθ =
K

2∆ f ∑
f

Tr
(
C−1

f B f θC
−1
f S f

)
, (30)

Cov(Ĩ0,θ , Ĩ0,θ ′) =
K
∆ f

Mθθ ′ . (31)

Finally, as shown by Eq. (25), a truly unbiased estimator
for I0,θ can be found by inverting M: Î0,θ ≡∑θ ′(M

−1)θθ ′ Ĩ0,θ ′ .
The inverse covariance of Î0,θ is therefore given by

Cov−1(Î0,θ , Î0,θ ′) =
1
2 ∑

f
Tr
(
C−1

f B f θ ′C
−1
f B f θ

)
. (32)

A quadratic estimator for GWB intensity maps based on the
full likelihood is implemented in [42].

D. Fast estimate of the noise power spectrum

We now use the results from the previous section to de-
rive an expression for the angular noise power spectrum of a
given GW experiment. We will assume we are in the noise-
dominated regime, in which case C f = N f .

2 K can be fixed, for example, by requiring Mθθ = 1, as done in [41].

First, let us rewrite Eq. (32) as

Cov−1
θθ ′

(∆Ω)2 =
T
2 ∑

ABCD

∫
d f
(

2E f

5

)2

(N−1
f )AB(N−1

f )CD

A I
BC( f , n̂)A I

DA( f , n̂), (33)

where we have used ∆ f = 1/T and taken the continuum limit
in f . Equation 33 corresponds to the inverse map covariance
of the intensity map originating from a timeframe with period
T . Integrating over several such timeframes, the final covari-
ance is

Cov−1
θθ ′

(∆Ω)2 =
∫

dt ∑
ABCD

1
2

∫
d f
(

2E f

5

)2

(N−1
f )AB(N−1

f )CD

A I
BC( f , n̂)A I

DA( f , n̂), (34)

Equation (34) provides an expression for the pixel-pixel
noise covariance of a given map of the GWB intensity.
In order to transform this into an estimate of the effective
harmonic-space noise power spectrum, we start by comput-
ing the signal-to-noise ratio of the intensity map as(

S
N

)2

=

〈
∑
θθ ′

Î0,θ Cov−1
θθ ′ Î0,θ ′

〉
. (35)

Expanding I0(n̂) in spherical harmonics I0(n̂) =
∑`m a`mY`m(n̂) and using the definition of the angular
power spectrum C` that 〈a`ma∗`′m′〉W ≡C` δ``′δmm′ , we obtain(

S
N

)2

= ∑
`

(2`+1)
C`

N`
, (36)

where we have defined the inverse noise power spectrum N−1
`

as

N−1
` ≡

1
2 ∑

ABCD

∫
d f
∫

dt GAB,CD
` (t, f ) , (37)

and where

GAB,CD
` (t, f )≡

(
2E f

5

)2(
N−1

f

)AB(
N−1

f

)CD

∑m Re
(
A I

BC,`m(t, f )A I∗
DA,`m(t, f )

)
2`+1

, (38)

A I
AB,`m(t, f )≡

∫
dn̂2Y ∗`m(n̂)A

I
AB(t, f , n̂) . (39)

These expressions are our main results and allow us to predict
the angular noise power spectrum of a given experiment and
scan strategy, Eq. (37) which is a function a the reference fre-
quency fref. Notice that the signal to noise (36) for a given
background component (i.e. for a given value αI of (11))
is frequency-independent by construction as signal and noise
parts scale in the same way with the reference frequency. A
key assumption made in obtaining this result is that the time-
integrated response of the instrument can be compressed into
an angular power spectrum. In practice this will not be the
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case, the scan strategy cannot be designed to isotropise the
noise over m-mode and the resulting estimator will be sub-
optimal. This is a necessary assumption for any analytical
estimate however, in practice, optimal estimators will have to
account for inhomogeneous noise in m-modes. Full likelihood
estimators [42] achieve this by a full time integration of the in-
homogeneous response.

1. Rigid networks

Eq. (37) involves a two-dimensional integral over t and f
where the integrand involves at least one computationally ex-
pensive spherical harmonic transform of the antenna pattern
A . This can be simplified further for experiments with a con-
stant configuration (e.g. constant arm lengths, angular sep-
arations between arms, relative detector positions). In this
limit, the network changes as a function of time as a rotat-
ing solid, and the antenna patterns at different times are re-
lated to each other through simple three-dimensional rotations
(i.e. A (t, f , n̂) = A ( f ,Rt n̂), where Rt is a time-dependent
rotation matrix). This is a good decription for fixed ground-
based detectors such as LIGO. Orbiting experiments such as
LISA experience small changes in configuration (e.g. “breath-
ing” variations in arm length and angles [43]), but the “solid-
rotation” approximation is still valid at first order (and adopted
here).

Since a rotation only mixes the m-modes for each fixed ` in
A`m, under the assumption that the detector noise properties
are stationary, G` does not depend on t. In this case, the noise
power spectrum is simply given by

N−1
` ≡

Tobs

2 ∑
ABCD

∫
d f GAB,CD

` ( f ), (40)

where Tobs is the total observing time. Of course, the noise
will never truly be stationary in GW detectors, and this can
have a strong impact on measurements (as discussed for ex-
ample in [44]).

2. Uncorrelated detectors

If the different detectors forming the array are uncorrelated,
(N−1

f )AB = δAB/NA
f , where NA

f is the noise power spectral den-
sity (PSD) of detector A. In this case, the expressions for the
noise power spectrum simplify further

N−1
` ≡

Tobs

2 ∑
AB

∫
d f
(

2E f

5

)2 ∑m

∣∣∣A I
AB,`m( f )

∣∣∣2
NA

f NB
f (2`+1)

. (41)

Note that Eq. (41) can be broken up into two terms, corre-
sponding to the contributions from detector auto-correlations

and cross-correlations:

N−1
` =

Tobs

2 ∑
A

∫
d f

(
2E f

5NA
f

)2
∑m

∣∣∣A I
AA,`m( f )

∣∣∣2
(2`+1)

(42)

+Tobs ∑
A,B>A

∫
d f
(

2E f

5

)2 ∑m

∣∣∣A I
AB,`m( f )

∣∣∣2
NA

f NB
f (2`+1)

. (43)

It will often not be possible to model the detector noise prop-
erties accurately enough to reliably estimate the bias term of
the quadratic estimator, arising solely from the use of auto-
correlations. In that case, we can still map the GW intensity
using only data from detector cross-correlations. This is the
case, for instance, of the LIGO two-detector array and will
apply also to the extended ground-based network considered
in this paper. In such cases, the noise power spectrum can
be calculated by setting the first contribution in the previous
equation to zero.

3. The monopole

Let us now consider the case of an isotropic signal (i.e.
I0(n̂) = Īν ) in a narrow frequency interval (E f ,ν = ∆ f δ ( f −
ν)). Again in the noise-dominated regime, the noise on the
average signal Īν can be computed as:

σ−2
ν

∆ν
=

Tobs

2

(
8π

5

)2

∑
ABCD

(
N−1

ν

)AB
γ̄BC(ν)

(
N−1

ν

)CD
γ̄DA(ν),

where γ̄AB(ν) is the sky average of A (ν , n̂)

γ̄AB(ν)≡
∫ dn̂2

4π
AAB(ν , n̂). (44)

Using only the cross-correlation of two detectors, the equa-
tion above reduces to

σ
2
f =

1
∆ f Tobs

(
5

8π

)2 NA
f NB

f

γ̄2
AB( f )

, (45)

an expression that is commonly used in the GWB lore.

III. EXAMPLES: LISA, THE EXTENDED
GROUND-BASED NETWORK, AND THE EINSTEIN

TELESCOPE

We now proceed to model N` for a number of currently en-
visaged experiments. To do so, we need three main ingredi-
ents: the noise power spectral densities of the detectors, their
response tensors (aA in Eq. 12) and their motions as a function
of time.

In particular, we will consider the Laser Interferometer
Space Antenna, an extended ground-based network, and the
Einstein Telescope. Although the discussion will be carried
out in reverse chronological order, this will allow us to explore
the most general detector response first and then specialize the
discussion for simpler detectors.
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10−4 10−3 10−2 10−1 100

f [Hz]

10−41

10−39

10−37

10−35

10−33
N
f

[H
z−

1
]

f∗ N11
f

N12
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FIG. 1. Power spectral density of the LISA noise N f . The noise
variance (auto-correlation) is shown as solid black, while the cross-
detector covariance is shown as dashed red, with its negative com-
ponent in dotted red. Below the transfer frequency ( f∗, shown as a
vertical dashed blue line), the correlation coefficient (i.e. the ratio
N12

f /N11
f ) tends to −1/2.

A. LISA

The Laser Interferometer Space Antenna (LISA, [23, 24])
is a space mission led by the European Space Agency, in col-
laboration with NASA, which is expected to fly in ten years
time [23]. The current design of the LISA mission calls for
three identical spacecraft flying in an equilateral triangular
formation around the Sun, with arm length L = 2.5 · 109 m.
The center of mass of the detector (guiding center) is in a cir-
cular orbit at 1 AU and 20 degrees behind the Earth. In addi-
tion, the formation will also rotate in a retrograde motion with
a one year period.

1. Detector motion

To describe the coordinates of the detector we work in a he-
liocentric, ecliptic coordinate system, following [46]. In this
system the Sun is placed at the origin, the x-axis points in the
direction of the vernal equinox, the z-axis is parallel to the or-
bital angular momentum vector of the Earth, and the y-axis is
placed in the ecliptic to complete the right handed coordinate
system. The individual LISA spacecrafts will follow indepen-
dent Keplerian orbits. The spacecraft positions as a function
of time are derived e.g. in Appendix A of [46], and Eq. (1) of
this reference gives the cartesian coordinates as a function of
time up to second order in the eccentricity.

The arm lengths and angles undergo slow variations as a
function of time (commonly called “breathing”). We have
verified that this leads only to < 0.1% variations in the esti-
mated noise angular power spectrum, and therefore all results
presented here will assume a rigidly moving network of de-
tectors.

2. Detector response

The response tensor (introduced in Eq. (12)) of a Michelson
interferometer with two arms pointing along the unit vectors
û and v̂ to a gravitational wave propagating along the line of
sight n̂ is given by [46–48]

ai j( f , n̂)≡ 1
2
[
uiu jT (n̂ · û, f )− viv jT (n̂ · v̂, f )

]
, (46)

where the transfer function T is

T (µ, f ) = g( f )
1
2

[
sinc

(
f

2 f∗
(1−µ)

)
e−i f

2 f∗ (3+µ)

+sinc
(

f
2 f∗

(1+µ)

)
e−i f

2 f∗ (1+µ)
]
. (47)

Here f∗ ≡ c/(2πL)' 19mHz is the transfer frequency, corre-
sponding to the frequency of a GW with a wavelength given
by the arm length. f∗ marks a substantial change in the
behaviour of the detector response. GWs with frequencies
higher than f∗ undergo more than one oscillation within the
detector arm, leading to self-cancellation effects that reduce
the sensitivity to such waves. Below f∗, the transfer function
approaches unity.

The prefactor g( f ) depends on the time delay interferom-
etry (TDI) combination used. For simplicity we will use the
simplest TDI combination (referred to as TDI 1), for which
g( f ) = 1. Our results, however, are insensitive to this choice,
since the prefactor cancels out when using the noise PSD cor-
responding to the chosen TDI channel.

There are two equivalent approaches to find Eq. (47). The
first approach [46, 48] is to find the Doppler shift of the photon
emitted by the first spacecraft and received by the second. The
second approach is to integrate along the photon’s trajectory
to find the path length variation caused by the gravitational
wave [47]. The two approaches give equivalent results for
the response function at order O(vh) where v is the spacecraft
velocity.

3. Noise PSDs

The current official model for the power spectral density
of the LISA noise N f is based on the Payload Description
Document, and is referenced in the LISA Strain Curves doc-
ument LISA-LCST-SGS-TN-001. The noise in the 3 LISA
spacecrafts is correlated, and therefore we need to character-
ize both the per-detector PSD and the correlation between de-
tectors (NAA

f and NAB
f in the language of Section II C). For

both, we use the fits provided in [40] (see also [49]). The two
main sources of noise are the so-called “acceleration noise”
and fluctuations in the optical path lengths between detectors
(with the former dominating over the latter at low frequen-
cies). Note that our calculation already accounts for the arm
length penalty in the detector response for frequencies f > f∗,
as well as the different normalization of the overlap functions
for 60◦ arm apertures compared with that of orthogonal arms,
and therefore we do not correct the noise PSDs to account
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|A11(f, n̂)|, f = 0.001 Hz |A12(f, n̂)|, f = 0.001 Hz

|A11(f, n̂)|, f = 0.01 Hz |A12(f, n̂)|, f = 0.01 Hz

20× |A11(f, n̂)|, f = 0.2 Hz 20× |A12(f, n̂)|, f = 0.2 Hz

100× |A11(f, n̂)|, f = 0.5 Hz

0 0.14

100× |A12(f, n̂)|, f = 0.5 Hz

0 0.07

FIG. 2. LISA antenna pattern for auto- and cross-correlations between detectors (left and right panels respectively). Results are shown for
different frequencies. A sharp transition in the antenna pattern, including a fast decrease in its amplitude, can be seen for f > f∗ ' 0.02Hz.

for this (as is sometimes done in the literature). The result-
ing auto-correlation and cross-correlation PSDs are shown in
Figure 1.

It is common in the LISA literature to make use of the linear
combinations of the detector signals that diagonalise the noise
covariance matrix. Our formalism automatically accounts for
cross-detector correlations, and therefore we do not need to do
so here, however, it will be instructive to explore the amount
of information carried by each of these linear combinations.
The normalized eigenvectors of the noise covariance give rise
to the following uncorrelated linear combinations, commonly

labelled the A, E and T channels:

dA, f =
1√
2
(d1, f −d3, f ), (48)

dE, f =
1√
2
(d1, f −2d2, f +d3, f ), (49)

dT, f =
1√
3
(d1, f +d2, f +d3, f ), (50)

with their associated uncorrelated noise PSDs:

NA
f = NE

f = N11
f −N12

f , NT
f = N11

f +2N12
f , (51)

where N11
f and N12

f denote the diagonal and off-diagonal noise
PSDs. As shown in Figure 1, the correlation coefficient of the
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Instantaneous

0 0.75σ−1
N [109 srad−1/2 s−1/2]

Integrated

0 0.4σ−1
N [109 srad−1/2 s−1/2]

FIG. 3. Square root of the map-level inverse noise variance for LISA across the sky. Results are shown for a single timeframe (left panel) and
for a full year of observation (right panel). The noise rms varies by less than 30% across the sky after a full orbit.
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FIG. 4. Angular noise power spectrum N` for different combinations
of the LISA detectors. The dot-dashed line shows the noise for a
map constructed only from a single detector. Due to the parity of the
antenna pattern for autocorrelations on low frequencies, odd `s can-
not be recovered, and we show results only for even multipoles. The
N` for the full LISA network is shown in solid black, again for the
even multipoles. The odd `s are shown as crosses connected by dot-
ted lines. Although the addition of cross-correlations improves the
noise for these modes, the sensitivity is still significantly poorer. Fi-
nally, the dashed line shows the N` for a map constructed only using
the A and E LISA channels, which dominate the overall sensitivity.
Note that the expected level of the anisotropies for an astrophysical
background is C` ∼ 10−30 at low ` [45].

noise PSDs tends to −1/2 at low frequencies, and therefore
one would expect the T channel to become noiseless in that
limit. However, it is possible to show (see e.g. [40]) that
the signal in that channel falls even faster with frequency, and
that in fact most of the signal-to-noise is carried by the A and
E channels. We will explore this in more detail in the next
section.

4. Map noise properties

With the various ingredients in hand we can now calculate
the map-level noise properties. We will present results for a
4-year observation period with a reference frequency fref =
0.01Hz. All maps are shown in Mollweide’s projection in
ecliptic coordinates.

Figure 2 shows the antenna patterns for the auto-correlation
of one of the LISA detectors (left column) and for the cross
correlation of two detectors (right column) at different fre-
quencies. The antenna pattern changes significantly for fre-
quencies f < f∗, decreasing fast in amplitude, due to the ef-
fect of the transfer function. The inverse noise variance across
the sky for a single timeframe and for a full year observing
time for LISA is shown in Figure 3. At any given time, the
network is sensitive to signals coming from two antipodal di-
rections, each covering an area of ∼ 10,000deg2. Within one
full orbit, the network sweeps the sky, achieving a reasonably
homogeneous coverage with < 30% fluctuations in the noise
standard deviation and an effective observed sky fraction of
fsky ∼ 0.97.

Figure 4 shows the resulting noise angular power spectrum
for a map constructed from different linear combinations of
the data from the three LISA detectors. The noise power spec-
trum for a map constructed from a single detector is shown as
a dot-dashed line. Due to the even parity of the antenna pat-
tern (A in Eq. (23)) for detector auto-correlations (i.e. in the
absence of the factor exp(−i2π f n̂ ·bAB)), it is impossible to
reconstruct the odd multipoles, and therefore we only show
the noise power spectrum for even `. The solid black line
shows the noise power spectrum using all the information in
the three LISA detectors. Data is again shown only for the
even `, with the odd `s shown separately as crosses connected
by a dotted line.

Even in the presence of cross-detector correlations, there
is a clear asymmetry between the sensitivity to even and odd
`s. This is understandable: in order to break the parity of the
antenna pattern and gain sensitivity to the odd `s, the factor
f n̂ · bAB/c should be of order ∼ 1. However, in the case of
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LISA, the baseline between detectors bAB is equal to the arm
length L and, as we described above, LISA’s sensitivity de-
creases fast for wavelengths smaller than L. The only way to
improve the noise for low odd multipoles would therefore be
to include data from a second constellation of detectors sep-
arated from LISA by a distance larger than L, for example
as proposed for the Advanced Laser Interferometer Antenna
(ALIA) project [50].

Finally, the dashed black line in Figure 4 shows the noise
power spectrum for a map constructed only from the A and
E LISA channels (i.e. discarding all information from the T
channel). As described in the previous section, most of the
information is carried by A and E, and T only becomes useful
on scales `& 6.

As shown in Fig. 4, LISA will only be sensitive to the
largest scales, with N` increasing by more than two orders of
magnitude between `= 0 and `= 4, and by an additional ∼ 6
orders of magnitude for ` = 6. Furthermore, our results indi-
cate that the noise level achieved by LISA will be above that
expected for an astrophysical background, which would cor-
respond to C`∼ 10−30 at `∼ 2 and fref = 0.01Hz [45], making
the detection of anisotropies challenging. Note that this does
not apply to the monopole, sky-averaged signal, the amplitude
of which is expected to be 4 to 5 orders of magnitude higher
[51, 52].

B. Extended ground-based network

There are currently four operating ground-based GW de-
tectors at different locations around the Earth which probe
the same frequencies. There are two LIGO detectors in the
USA [53], one based in Hanford, Washington and one in Liv-
ingston, Louisiana; the Virgo detector based near Pisa, Italy
[22], and, most recently, the Kamioka Gravitational Wave De-
tector (KAGRA), set in the Kamioka mine, Japan [54]. In
what follows, we will consider a network made up of the
two US detectors, Virgo and KAGRA. The GEO600 detec-
tor based at Hannover, Germany [55] is not considered here
as it is notably smaller than the others and is mainly used as
a testing ground for new technologies. We will call the net-
work made up of these four sites the “extended ground-based
network” (XGN).

1. Network properties

We model the network as an array of detectors with orthog-
onal arms located at fixed positions on the Earth surface. Each
detector is defined by its latitude, longitude and orientation
angle ξ (i.e. the angle between the arm bisector and the local
parallel) [30, 56], as well as its noise power spectral density
N f . Table I lists the coordinates and orientations of all detec-
tors considered here.

In the case of these ground-based detectors, instrument
noise limits the operational frequency well below their trans-
fer frequency ( f∗ ' 12kHz for a 4-km arm), and therefore

Name Latitude (deg) Longitude (deg) ξ (deg)
Hanford 46.4 -119.4 171.8

Livingston 30.7 -90.8 243.0
Virgo 43.6 10.5 116.5

KAGRA 36.3 137.2 225.0
Einstein Telescope∗ 40.1 9.0 90

TABLE I. Coordinates and orientation angles for the ground-based
detectors considered here. The orientation angle ξ is defined as the
angle between the aperture bisector and the local parallel. See [56]
for further details. The Einstein Telescope is different from the other
experiments in several aspects. It is made up of three detectors in
an equilateral triangle pattern. The coordinates given above are for
the triangle’s barycenter, and correspond to an arbitrary location in
Sardinia, one of the possible sites for the experiment. The orientation
angle is also arbitrary, and defined as the angle between the bisector
of one of the vertices and the local parallel (i.e. the vertex is pointing
north from the barycenter).

101 102 103

f [Hz]

10−47

10−46

10−45

10−44

10−43

N
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z−
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]

LIGO
Virgo
KAGRA

FIG. 5. The sensitivity curves for the various detectors which consti-
tute the XGN. For the two LIGO detectors we consider the A+ ad-
vanced LIGO design sensitivity curve, for Virgo the O5-High curve,
and for KAGRA the sensitivity corresponding to a horizon at 128
Mpc. All curves are taken from [57].

their transfer function is 1. In this case, the response tensor is
simply ai j = (uiu j− viv j)/2.

The detector noise properties have a number of contribu-
tions – seismic, thermal and quantum – which lead to a non-
trivial frequency dependence. We obtain measured and fore-
cast noise PSDs for the different detectors from [57]. We plot
the N f for the different detectors in Fig 5. For the Hanford
and Livingston detectors, we use the Advanced LIGO design
curve [58], and we assume they have essentially equivalent
sensitivities. Under this assumption, they are the most com-
petitive across thw whole frequency range. The Virgo sensi-
tivity is comparable to the US detectors albeit with somewhat
a poorer sensitivity at high frequencies. KAGRA, as currently
envisioned has poorer sensitivity as compared to LIGO and
Virgo. All detectors are assumed to be uncorrelated. The PSD
curves used here, from [57], are based on forecasts and may
differ from the actual achieved sensitivities of these experi-
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Re(AHL(f, n̂)), f = 101 Hz

-0.18 0.0083

Re(AHV(f, n̂)), f = 101 Hz

-0.093 0.041
Re(AHL(f, n̂)), f = 102 Hz

-0.18 0.14

Re(AHV(f, n̂)), f = 102 Hz

-0.093 0.093
Re(AHL(f, n̂)), f = 103 Hz

-0.18 0.18

Re(AHV(f, n̂)), f = 103 Hz

-0.093 0.093
γHL(f, n̂)

-0.18 0.01

γHV(f, n̂)

-0.094 0.082

FIG. 6. Antenna pattern AAB for the Hanford-Livingston (HL) and Hanford-Virgo (HV) baselines of the XGN on different frequencies (left
and right columns respectively). Larger frequencies allow the network to probe increasingly smaller scales. The bottom panels show the
corresponding overlap functions γ I( f , n̂), defined in Eq. (24).

ments. We have however verified that we our implementation
is able to reproduce the sensitivities to the GWB monopole
presented in [59], and the anisotropy noise power spectrum
presented in [31] for the LIGO O1 and O2 runs using the cor-
responding sensitivity curves.

2. Map noise properties

As in the case of LISA, we start by inspecting the an-
tenna patterns and inverse noise variance maps of the ex-
periment. The antenna patterns for the Hanford-Livingston
and the Hanford-Virgo baselines are shown in Figure 6, to-
gether with their overlap functions (bottom row of the same
figure), to which the antenna patterns converge at low frequen-
cies ( f bAB � c). The corresponding instantaneous and 1-
day cumulative inverse noise variance maps for the Hanford-
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All, instantaneous

0 18.5σ−1
N [105 srad−1/2 s−1/2]

All, integrated

0 12σ−1
N [105 srad−1/2 s−1/2]

FIG. 7. Square root of the map-level inverse noise variance for the full XGN across the sky. Results are shown for a single timeframe (left)
and for a full year of observation (right).

Livingston baseline and for the full network are shown in Fig-
ure 7. After a full period, the sky coverage achieved by the
network is roughly homogeneous, with ∼ 10% level varia-
tions in noise variance across the sky. All maps are shown
in equatorial coordinates.

In Fig. 8 we plot, in dashed, dotted and solid lines, the an-
gular noise power spectra for three possible configurations of
the XGN, using solely the cross-correlation between the var-
ious instruments. We choose a pivot frequency fref = 63 Hz.
For the Hanford-Livingston baseline, the angular resolution
poor, and the noise power spectrum raises from N`=2 ∼ 10−19

by almost three orders of magnitude at `= 10, corresponding
to an angular scale of θ ∼ 20◦. The addition of the Virgo and
KAGRA baselines improves the sensitivity on smaller scales
(about a factor ∼ 4 at `= 10).

The noise properties of ground-based detectors are com-
plicated (e.g. non-stationary, non-Gaussian), and modelling
them accurately enough to be able to use auto-correlation data
to build GWB intensity maps is probably unfeasible. In spite
of that, it is instructive to explore what additional informa-
tion those auto-correlations would bring. As shown in Fig.
4 for the case of LISA, the angular dependence of the an-
tenna pattern for auto correlations is concentrated on low, even
multipoles ` . 6. This is even more so for ground-based de-
tectors with a trivial transfer function T = 1. The angular
noise power spectrum for the XGN after adding the auto-
correlations of all detectors is shown as a dot-dashed line in
Fig. 8. As expected, auto-correlations are mostly able to im-
prove the sensitivity to the ` = 2 and ` = 4 modes, for which
N` improves by a factor ∼ 10 and 2 respectively. At the refer-
ence frequency used here ( fref = 63Hz), the expected ampli-
tude of the astrophysical anisotropies is (`+ 1/2)C` ∼ 10−25

[34, 60], approximately four orders of magnitude lower than
the noise spectrum.

FIG. 8. The noise power spectra for three different configurations
of the XGB (solid, dotted and dashed lines), including only cross-
correlations between detectors. The addition of auto-correlations
(dot-dashed), improves the measurement of the ` = 2 and 4 modes.
For comparison, the current estimate of the anisotropic astrophys-
ical background power spectrum, Eq. (10), has an amplitude (`+
1/2)C` ∝ 10−25 for the reference frequency fref = 63 Hz [34, 60].

C. Einstein Telescope

The Einstein Telescope3 (ET, [62]) is a hypothetical, third
generation, ground based interferometer consisting of three
10-kilometre arms arranged in an equilateral triangle with two
detectors at each node (allowing it to measure polarization of
the incoming gravitational waves). The significantly larger
sensitivity of ET with respect to the other ground-based de-
tectors considered in the previous section makes exploring the
benefits of its addition to the global network of gravitational
wave detectors an instructive exercise.

3 http://www.et-gw.eu/

http://www.et-gw.eu/
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FIG. 9. Power spectral density of the ET-D noise N f [61] compared
to the A+ design sensitivity curve of LIGO [57].
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FIG. 10. The noise spectrum for the Hanford-Livingston-Virgo-
KAGRA configuration using only cross-correlations and including
autocorrelations, for a reference frequency fref = 63 Hz.

The site for ET has not yet been chosen, with several loca-
tions still under consideration. We arbitrarily choose a loca-
tion in Sardinia, close to one of the surveyed sites (the specific
coordinates and orientation angle of the triangular network are
shown in Table I).

The ET system will consist of a low frequency instrument
(which covers 1 to few×102 Hz) and a high frequency instru-
ment the spanning the 101−104 Hz range. To reduce gravity
gradient noise and seismic noise, and to extend significantly
the sensitivity toward low frequencies, ET will be built a few
hundred meters underground. Here, we use the sensitivity
curve of the instrument in the so-called D-configuration [63].
The expected improvement in strain sensitivity with respect
to the Advanced LIGO design sensitivity is expected to be
around a factor 10 (i.e a factor ∼ 100 in N f ), as shown in Fig-
ure 9. For simplicity, we will assume the noise in ET is 20%
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α = 0

FIG. 11. The noise angular power spectrum for the XGN with differ-
ent values of the spectral index α at a reference frequency fref = 63
Hz.

correlated between any two different detectors.
Since the use of auto-correlations to produce GWB inten-

sity maps may be challenging for ground-based detectors, we
have explored two different configurations for a future global
network including both XGN and ET. First, since the three de-
tectors in the ET triangle will have correlated noise properties,
we consider the case in which ET is only ever cross-correlated
with other detectors (i.e. all auto- and cross-correlations be-
tween ET detectors are discarded). Given the dependence of
N` on the product of detector PSDs, we would expect the re-
sulting angular noise power spectrum to decrease by a factor
O(100) with respect to the XGN-only case. This is indeed
the case, as shown in Figure 10, which displays, as dotted and
solid lines, the angular noise power spectra for the XGN with
and without the addition of cross-correlations with ET respec-
tively. Secondly, we explore the benefits of adding all of the
ET internal auto- and cross-correlations. Using the same argu-
ments, we would expect these to improve the sensitivity by an
additional two orders of magnitude on the scales they are sen-
sitive to. The resulting noise curve is shown as a dot-dashed
line in Fig. 10. Given the small size of the ET arms when com-
pared with the wavelengths it is most sensitive to (its transfer
frequency is f∗ ' 4kHz), ET itself mostly reduces the noise in
the ` = 0, 2 and 4 multipoles, for which N` sees an improve-
ment of roughly an additional two orders of magnitude.

IV. DISCUSSION

In this paper we have constructed a model of the angular
power spectrum of the noise which will arise in searches for
anisotropic gravitational wave backgrounds by networks of in-
terferometers. The formalism we have developed is general
and depends on a number of different factors: the noise spec-
tral density of the time series, the network configuration, and
its motion. It is, as we have shown, possible to put all these
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FIG. 12. Monopole power-law integrated sensitivity curve [64] for
different configurations of the XGN.

together to find an estimate of the noise imprinted on the sky
by the apparatus and compress it into a noise per multipole N`

that can be used to produce forecasts for the detectability of
different cosmological or astrophysical signals.

We have applied our formalism to three existing or planned
GW experiments: the four operating ground-based detectors
combined into an “extended ground-based network” XGN,
the combination of the XGN and the future Einstein Tele-
scope, and the LISA satellite network. The estimated N`s
for an astrophysical background of binaries are shown in Fig.
4 for LISA at a reference frequency of 0.01 Hz, and for the
different ground-based experiments in Figures 8 and 10 at
f = 63Hz.

In the case of LISA, we find that the instrument will mostly
be sensitive to the multipoles ` = 0, 2 and 4. The sensitivity
to odd multipoles is reduced due to the parity of the antenna
patterns, and the N` grows rapidly after ` = 4. We have also
shown that most of the sensitivity is contained in the so-called
“A” and “E” TDI channels, with the T channel (also called the
Sagnac signal) being mostly dominated by noise. In the case
of the XGN, the long baselines compared to the gravitational
wave wavelengths break the parity of the antenna patterns and
enable the measurement of both odd and even multipoles. The
angular resolution of the network however is still somewhat
limited to multipoles ` . 10. We have shown that, in both
cases, after a full rotation of the networks, they are able to
sweep the celestial sphere rather homogeneously, with rela-
tively small noise variations across the sky.

Our treatment has focused on the search of gravitational
waves with a factorisable frequency dependence. In particu-
lar, we have presented results for astrophysical GWBs arising
from binary mergers, since we expect this to be the dominant
signal (see e.g. [34, 36, 45, 60, 65–70]). This means that, in
our choice of E f we have chosen a power law with spectral
index αI = −7/3, corresponding to a slope in energy den-

sity ΩGW ∝ f α with α = 2/3 = −3+αI . It is however in-
structive to consider what the noise angular power spectrum
will look like for different choices of α . Figure 11 shows the
predicted noise for the XGN assuming a flat energy spectrum
α = 0, corresponding to the typical scaling of cosmological
backgrounds, and a flat intensity spectrum α = 3. The shape
of the N` therefore may depend crucially on the spectrum of
the signal being searched for, as well as on the reference fre-
quency at which the spectrum is evaluated. Both factors must
be taken into account when interpreting these noise curves.

Although our discussion is mainly on the detectability of
GWB anisotropies, studies of the GWB have mostly focused
on the monopole, i.e. the sky-averaged mean, of the back-
ground. This is expected to be 4-5 orders of magnitude larger
than any anisotropic signal, and may be detectable with fu-
ture experiments. As described in Section II D 3, our formal-
ism can also be used to make predictions for the sensitivity
to the monpole of a given network. Fig. 12 shows the power-
law integrated (PI) sensitivity curves (as defined in [64]) for
different configurations of the XGN, in good agreement with
standard results in the literature (see e.g. [31, 59]).

We have implemented the formalism described here into a
software package, schNell, that we make publicly available4.
This code is able to provide fast estimates of the N` for arbi-
trary networks of detectors, as well as a variety of other GWB
noise properties, including noise variance maps and PI curves.

While we encourage the use of this numerical model to
make accurate precitions of N`, it is also instructive to find
approximate expressions for this quantity that describe how
the different factors play a role. For Earth-based detectors, an
analytic model for the inverse noise for the detector pair AB
which is O(1) accurate for an astrophysical and cosmological
background (α = 2/3 and α = 0) is given by:

(NAB)
−1
` = 1023(2π)−2α

(
NLIGO

f

NA
f

)(
NLIGO

f

NB
f

)

×
(

fref

100Hz

)−2α ( bAB

3000km

)−2α+5(Tobs

yr

)
×
∫

βmax

βmin

dβ β
−6+2α | j`(β )|2 , (52)

where β ≡ 2πbAB f and j`(x) is the spherical Bessel function.
We assumed that the noise spectral density is given by an in-
verse top hat function (i.e. N−1

f is constant in [ fmin, fmax] and 0
outside this interval). All quantities in (52) have been normal-
ized with respect to typical values for the two LIGO detectors
in the designed configuration and NLIGO

f ≡ 0.8 · 10−47 Hz−1,
βmin = 2π(bAB/3000km)( fmin/(100Hz)) and analogous for
βmax. A key simplifying assumption in Eq. (52) has been to
discard any angular dependence in the overlap function. For
a fixed α (i.e. a fixed background), Eq. (52) depends on dif-
ferent parameters: the observation time Tobs, the baseline bAB

4 The source can be found in https://github.com/damonge/schNell,
and its documentation, including installation instructions, can be found in
https://schnell.readthedocs.io

https://github.com/damonge/schNell
https://schnell.readthedocs.io
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FIG. 13. The noise spectrum for the Hanford-Livingston-Virgo-
KAGRA and α = 2/3 compared to the signal expected from a back-
ground of black hole mergers at f = 63 Hz. We choose two different
values for the threshold of detection of individual sources: 60 Mpc
(solid thick line) and 1 kpc (red dashed line). For each choice we
plot the contribution from clustering (∝ 1/`) and the contribution
from Poisson noise (flat off-set) [34, 36].

between detectors A and B and the features of the sensitivity
of the two detectors AB, i.e. the values of the plateaux NA
and NB, fmin and fmax. Unfortunately we have not been able
to find a similar approximate formula for LISA. This should
however not be a significant obstacle in producing forecasts
for this experiment since, as described in Section III A, the N`

is in practice characterized by three numbers: the values at
`= 0, 2 and 4.

Our predictions for the angular power spectrum of current
and future experiments can be readily compared with theoret-
ical predictions for different types of GWBs. Predictions for
the astrophysical background from binary mergers found in
the literature (e.g. [34, 45, 60, 69]) place the expected sig-
nal in the range (`+ 1/2)C` ∼ 10−25 at fref = 63 Hz, and
(`+ 1/2)C` ∼ 10−30 at f = 0.01 Hz. This is between 4 and
6 orders of magnitude lower than the expected noise spec-
trum for the XGN and LISA respectively, which would re-
duce to ∼ 2 orders of magnitude at `= 2 if the Einstein Tele-
scope was added to the XGN (see Figs. 4, 8, and 10). Based
on existing or projected sensitivities and astrophysical mod-
els, it therefore seems unlikely that we will be able to de-
tect the anisotropies of a gravitational-wave background with
a simple spherical harmonic decomposition approach without
major improvement of the detector designs or a substantial
change in the detection techniques. We can however ask our-
selves what it would take to achieve a detection of the GWB
anisotropies. Although N` scales steeply with the inverse of
the strain noise to the fourth power, this would still require an
improvement of the sensitivity of the XGN instruments [58]
by a factor of ∼ 30− 50 in order to achieve an N` compara-
ble with the signal one might expect from the astrophysical
background on large scales. The prospect for cosmological
backgrounds [1, 71] is probably more dire. With negligible
primary anisotropies, the typical size of the fluctuations in in-

tensity with respect to the monopole is ∼ 10−5. This means
that in a given frequency band the size of the monopole has
to be 106 times above the noise plateau to have detections of
first multipoles (ignoring cosmic variance contributions) with
SNR of 10.

As was shown in [33, 34, 36], in the frequency band of
ground-based interferometers, the astrophysical background
is dominated by a “pop-corn” component associated to the
discreteness in time of binary merger events, which has a
larger amplitude than the clustering component and depend
on the horizon for the detectability of resolvable events (see
[34, 36]). Figure 13 shows these two components of the power
spectrum for the astrophysical GWB for two different dis-
tance cutoffs d (i.e. the distance up to which all events are
detected and removed from the data) in dashed red (d = 1kpc)
and solid blue (d = 60Mpc). For each pair of curves, the
flat component with a higher amplitude corresponds to this
pop-corn contribution, while the sub-dominant curve shows
the smooth clustering component. One might argue that the
pop-corn contribution is a more viable target for anisotropic
GWB searches, given its higher amplitude. While this would
be interesting prospect as a first detection, it would effectively
only provide information on a single number, and therefore lit-
tle astrophysical information (i.e. about the source properties,
merger rates, etc.) would be gleaned from this measurement,
not adding much to a detection of the monopole of the same
background component or to direct measurements of resolved
sources. It is worth recalling that, in the mHz LISA band, the
only contribution to the anisotropy comes from clustering and
no popcorn component is present for a background of stellar
mass back holes.

While the future of GWB anisotropy detection seems bleak
there are a number of efforts aimed at integrating interfer-
ometric data more efficiently in order to access better con-
straints and defeat the noise levels with detector-specific
recipes. One possibility explored by the LIGO-Virgo collab-
oration is to perform narrow sky searches with a radiome-
ter method [72] informed by the light matter distribution.
This approach would not be able to measure the anisotropy
over the whole sky, but, if successful it would provide a lo-
calised measurement of the GWB. Cross-correlated searches
with large scale structure are expected to improve the SNR
of auto-correlation by typically a factor 10 [36]. The poten-
tial of cross-correlation, while not sufficient to get a detection
of the anisotropy for present and planned instrumental noise
levels, should be kept in mind when looking at new detec-
tion strategies. It is clear that more new ideas and techniques
need to be brought to the fore if we are to effectively measure
anisotropies in the gravitational wave background.
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