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Abstract
We study the range of prices at which a rational agent should contemplate transact-
ing a financial contract outside a given market. Trading is subject to nonproportional
transaction costs and portfolio constraints, and full replication by way of market in-
struments is not always possible. Rationality is defined in terms of consistency with
market prices and acceptable risk thresholds. We obtain a direct and a dual description
of market-consistent prices with acceptable risk. The dual characterisation requires
an appropriate extension of the classical fundamental theorem of asset pricing where
the role of arbitrage opportunities is played by good deals, i.e., costless investment
opportunities with acceptable risk–reward tradeoff. In particular, we highlight the
importance of scalable good deals, i.e., investment opportunities that are good deals
regardless of their volume.

Keywords Arbitrage pricing · Good deal pricing · Transaction costs ·
Portfolio constraints · Risk measures
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1 Introduction

One of the fundamental goals of financial economics is to investigate at which price(s)
a rational agent should contemplate transacting a financial contract. The point of de-
parture for the classical theory of arbitrage pricing is the assumption that agents are
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wealth maximisers and have access to a market where a number of basic financial
assets are traded in an arbitrage-free way. In this setting, as is well known, the range
of rational prices coincides with the interval of arbitrage-free prices. Since the pio-
neering contributions of Black and Scholes [12], Merton [42], Cox and Ross [23],
Rubinstein [49], Ross [48], Harrison and Kreps [30], Kreps [39], this framework has
successfully been extended in several directions. A prominent line of research has
focused on the theory of good deal pricing, initiated by Cochrane and Saá-Requejo
[22] and Bernardo and Ledoit [9] and based on the idea of restricting the interval of
arbitrage-free prices by incorporating individual “preferences” into the pricing prob-
lem. This leads to tighter pricing bounds called good deal bounds. In this setting,
arbitrage opportunities are replaced by good deals, i.e., investment opportunities that
require no funding costs and deliver terminal payoffs that are sufficiently attractive
based on the agent’s “preferences”. Differently from arbitrage opportunities, good
deals may expose to downside risk, and the agent’s task is therefore that of deter-
mining acceptable risk thresholds. Several ways to define risk thresholds have been
considered in the literature, e.g. through Sharpe ratios in Cochrane and Saá-Requejo
[22], Björk and Slinko [11] and Bion-Nadal and Di Nunno [10], gain–loss ratios
in Bernardo and Ledoit [9], test probabilities in Carr et al. [14], utility functions in
Černý and Hodges [18], Černý [16], Klöppel and Schweizer [35] and Arai [2], ex-
pected shortfall in Černý [17], distance functions in Bondarenko and Longarela [13],
and acceptability indices in Madan and Černý [41]. A theory for general acceptance
sets has been developed by Jaschke and Küchler [32], Černý and Hodges [18], Staum
[50], Černý [17] and Cheridito et al. [20]. We also refer to Arai and Fukasawa [4]
and Arai [3] for a study of optimal good deal pricing bounds. One can broadly dis-
tinguish between two research directions in the field. A first strand of literature starts
by imposing suitable constraints on price deflators or, equivalently, martingale mea-
sures with the aim of restricting the interval of arbitrage-free prices. The resulting
good deal bounds can be therefore expressed in dual terms. The rationale for discard-
ing some arbitrage-free prices is that transacting at those prices would create good
deals with respect to a suitable acceptance set. The task is precisely to characterise
the corresponding acceptance set. A second strand of literature starts by tightening
the superreplication price through a suitable enlargement of the cone of positive ran-
dom variables which is replaced by a larger acceptance set. The task is to establish a
dual description of the resulting good deal bounds. This is achieved by extending the
fundamental theorem of asset pricing to a good deal pricing setting. In this paper, we
follow the latter approach.

Our goal is to contribute to the literature on good deal pricing in a static setting by
establishing a version of the fundamental theorem of asset pricing in incomplete mar-
kets with frictions where agents use general acceptance sets to define good deals. This
generality requires developing a new strategy as the standard change-of-numeraire
and exhaustion techniques employed in the classical proof of the fundamental theo-
rem can no longer be exploited. The highlights of our work are the following:

– The point of departure is a clear and economically motivated definition of ra-
tional prices that is missing in the good deal pricing literature with the exception of
Černý [17]. Our approach is different and inspired by Koch-Medina and Munari [37,
Definition 8.2.1]. We assume that an agent willing to purchase a financial contract
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outside of the market will never accept to buy at a price at which he or she could find
a better replicable payoff in the market. In the spirit of good deal pricing, the agent
is prepared to accept a suitable “replication error” which is formally captured by an
acceptance set. The corresponding rational prices are called market-consistent prices.
In a frictionless setting where agents accept no “replication error”, our notion boils
down to the classical notion of an arbitrage-free price.

– We work under general convex transaction costs and portfolio constraints, which
allows us to model both proportional and nonproportional frictions. The bulk of the
literature has focused on frictionless markets or markets with proportional transac-
tion costs. Portfolio constraints have been rarely considered. Moreover, instead of
focusing on the set of payoffs attainable at zero cost as a whole, we state our results
by explicitly disentangling the specific role played by transaction costs and portfolio
constraints.

– We introduce the notion of scalable good deals, i.e., payoffs that are good deals
independently of their size, which extends to a good deal pricing setting the notion
of a scalable arbitrage opportunity by Pennanen [43]. The absence of scalable good
deals is key to deriving our characterisations of market-consistent prices. This condi-
tion is weaker than the absence of good deals commonly stipulated in the literature.
In particular, there are situations where absence of arbitrage is sufficient to ensure
absence of scalable good deals. We also argue that absence of scalable good deals is
economically sounder than absence of good deals.

– We adapt the classical notion of a price deflator to our good deal setting with
frictions and introduce the class of strictly consistent price deflators, which corre-
spond to the Riesz densities of a pricing rule in a complete frictionless market where
the basic traded assets are “priced” in accordance with their (suitably adjusted, in the
presence of nonproportional frictions) bid–ask spreads and every nonzero acceptable
payoff has a strictly positive “price”. This is different from similar notions in the lit-
erature where no bid–ask spread adjustments are considered and acceptable payoffs,
including positive payoffs, are often assumed to have a nonnegative “price” only.

– We establish direct and dual characterisations of market-consistent prices. The
direct characterisation is based on the analysis of superreplication prices and extends
to a good deal pricing setting the classical findings of Bensaid et al. [8] in markets
with frictions. The dual characterisation is based on a general version of the funda-
mental theorem of asset pricing which establishes equivalence between absence of
scalable good deals and existence of strictly consistent price deflators under suitable
assumptions on the underlying model space. This extends to a good deal pricing set-
ting the static version of the fundamental theorem obtained by Pennanen [43]. We
provide a detailed comparison with the literature to highlight how our result extends
and sharpens the various formulations of the fundamental theorem in the good deal
pricing literature. The only work on good deal pricing featuring a strong result with
strictly consistent price deflators is Černý and Hodges [18]. In that paper, the mar-
ket is frictionless and the acceptance set is assumed to be boundedly generated, a
condition that often forces the underlying probability space to be finite.

The paper is organised as follows. In Sect. 2, we describe the market model and
the agent’s acceptance set, and we introduce the notion of market-consistent prices
with acceptable risk. In Sect. 3, we focus on good deals and show a number of suf-
ficient conditions for the absence of scalable good deals. In Sect. 4, we establish a
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direct and a dual characterisation of market-consistent prices with acceptable risk
(Propositions 4.4 and 4.19). The dual characterisation is based on our general version
of the fundamental theorem of asset pricing (Theorem 4.15) and the corresponding
superreplication theorem (Theorem 4.18), which are from a technical perspective the
highlights of the paper. Throughout, we prove sharpness of our results by means of
suitable examples which are always presented in the simplest possible setting, namely
that of a two-states model, to demonstrate their general validity.

2 The pricing problem

In this section, we describe the underlying mathematical framework for our pricing
problem. The bulk of the presentation is aligned with our reference literature on good
deal pricing; see e.g. Carr et al. [14], Jaschke and Küchler [32], Černý and Hodges
[18], Staum [50], Černý [17], Madan and Černý [41]. We highlight discrepancies
where needed.

2.1 The market model

We consider a one-period financial market, and we model uncertainty about the termi-
nal state of the economy by a probability space (�,F ,P). We denote by L1 the space
of integrable random variables modulo almost sure equality under P and equip it with
its canonical lattice and norm structure. Unless otherwise specified, every topological
property of subsets of L1 is with respect to the norm topology. The set of nonnegative
integrable random variables is denoted by L1+ and is referred to as the standard posi-
tive cone. Similarly, for L ⊆ L1, we define L+ := L ∩ L1+. The L1-norm is denoted
by ‖ · ‖1 and the expectation under P simply by E. The elements of L1 represent
payoffs of financial contracts at the terminal date. We identify the elements of R with
constant payoffs and refer to them as risk-free payoffs.

Throughout the paper, we consider an agent who has access to a financial market
where a finite number of basic assets are traded. We denote by S ⊆ L1 the (nonzero)
vector space spanned by the payoffs of the basic assets. The elements of S are called
replicable payoffs. Contrary to most of the good deal pricing literature, we do not
assume the existence of risk-free replicable payoffs. To each replicable payoff, we
associate an ask price via a pricing rule π : S → (−∞,∞]. In line with the literature,
we allow nonfinite prices to account for the existence of physical limitations in the
availability of replicable payoffs. These limitations affect every agent. Moreover, we
fix a nonempty set M ⊆ S consisting of those replicable payoffs that can be bought
by our agent. The elements of M are called attainable payoffs and account for the
existence of e.g. regulatory limitations in the purchase of replicable payoffs. These
limitations are specific to our agent. Even though the agent has access to a (possibly
strict) subset of S only, it is mathematically convenient to define π on the entire set S
to exploit its natural vector space structure. Throughout the paper, we work under
the following assumptions on the market primitives.
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Assumption 2.1 We assume that π is convex, lower semicontinuous and π(0) = 0.
Moreover, we assume that M is convex, closed and 0 ∈ M.

This setting is compatible with a variety of market models encountered in the lit-
erature. In particular, we refer to Jouini and Kallal [33] for examples of markets with
proportional frictions and to Çetin and Rogers [19] and Pennanen [43] for examples
of markets with nonproportional frictions. Recall that frictions are proportional when
both π and M are conic as defined in the Appendix.

Remark 2.2 It is worth highlighting the following basic facts about the space of repli-
cable payoffs. In our framework, the space S is naturally equipped with the relative
topology induced by the norm topology of L1. Because S is finite-dimensional, this
topology coincides with any other Hausdorff linear topology defined on S ; see e.g.
Aliprantis and Border [1, Theorem 5.21]. This makes it possible to apply to S the
entire range of notions and results from Euclidean spaces. In particular, we freely use
that any closed and bounded subset of S is compact and that for every vector subspace
N ⊆ S , there exists a vector subspace N⊥ ⊆ S , called the orthogonal complement
of N , such that N +N⊥ = S and N ∩N⊥ = {0}.
2.2 The acceptance set

To determine the range of rational prices for a financial contract to purchase outside
of the market, the agent compares its payoff with those attainable payoffs that are
“preferable” to it and uses the corresponding market prices to set an upper bound
on rational prices. In line with good deal pricing theory, we define said “preference”
relationship by means of an acceptance set A ⊆ L1. More precisely, we assume that
Z ∈ M is “preferable” to X ∈ L1 whenever Z − X ∈ A. It should be noted that the
relation induced by A is not a preference relation in a technical sense unless A is a
convex cone. The bulk of the good deal pricing literature has focused on this special
case. This is, however, unsatisfactory as there exist relevant acceptance sets that are
convex but fail to be conic, e.g. acceptance sets defined through utility functions
or stochastic dominance. To include these examples, we follow Černý and Hodges
[18] and Staum [50] and dispense with conicity. In this case, we find it necessary
to consequently dispense with the language of “preferences” and to provide a new,
more general interpretation to the acceptance set. In this paper, we interpret A as
the set of all replication errors that are deemed acceptable by the agent. In other
words, the agent tries to replicate X by means of attainable payoffs Z available in the
market and uses the acceptance set to determine whether the residual payoff Z − X

is acceptable or not. If A = L1+, the agent accepts no downside risk in the replication
procedure. This choice corresponds to the classical setting of arbitrage pricing. The
elements of A are called acceptable payoffs. We assume that every payoff dominating
an acceptable payoff is also acceptable and that convex combinations of acceptable
payoffs remain acceptable. The first property corresponds to the usual monotonicity
requirement from risk measure theory; see e.g. Artzner et al. [5].

Assumption 2.3 The set A is a strict, closed, convex subset of L1 and satisfies 0 ∈ A
as well as A+ L1+ ⊆ A.
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These assumptions are satisfied by all standard convex acceptance sets encoun-
tered in risk measure theory, including acceptance sets based on expected shortfall,
gain–loss ratios, test scenarios and test probabilities, utility functions and second-
order stochastic dominance. We refer to Levy [40], Bernardo and Ledoit [9], Carr
et al. [14], Černý and Hodges [18], Černý [16], Klöppel and Schweizer [35], Černý
[17] and Arai [2] for applications of the aforementioned acceptance sets in a pricing
context.

2.3 Market-consistent prices with acceptable risk

The agent’s problem is to determine the range of prices at which he or she should con-
template purchasing a financial contract outside of the market. The candidate prices
should satisfy the following rationality requirements. On the one hand, they should
be consistent with the market, i.e., the agent should not be willing to transact if the
market offers a better contract at a lower price. On the other hand, they should be
consistent with individual “preferences”, i.e., the agent should determine when a
marketed contract is better based on his or her pre-specified criterion of acceptability.
This leads to the following definition.

Definition 2.4 A number p ∈R is a market-consistent (buyer) price (with acceptable
risk) for X ∈ L1 if

(1) p < π(Z) for every Z ∈ M such that Z − X ∈A \ {0};
(2) p ≤ π(X) whenever X ∈ M.

We denote by MCP(X) the set of market-consistent prices for X.

The set of market-consistent prices for a payoff X ∈ L1 is an interval that is
bounded to the right. The upper bound is called superreplication price (with accept-
able risk) of X and is given by

π+(X) := inf{π(Z) : Z ∈ M,Z − X ∈ A}.

Remark 2.5 (i) The notion of a market-consistent price is formulated from a buyer’s
perspective, but can easily be adapted to a seller. One may thus wonder why, dif-
ferently from arbitrage pricing, we do not focus on prices that are simultaneously
market-consistent for both parties. From an economic perspective, this is because the
choice of the acceptance set is based on individual “preferences”, implying that the
general financial situation is that of a buyer and seller equipped with different accep-
tance sets. From a mathematical perspective, the buyer’s and seller’s problems are
related to each other and one can easily adapt our results to obtain the corresponding
results for seller prices.

(ii) In the good deal pricing literature, the focus is typically on superreplication
prices and the notion of a rational price is not explicitly discussed. The exception
is Černý [17] where, in line with classical arbitrage pricing theory, rational prices
are defined through extensions of the pricing rule preserving the absence of (suitably
defined) good deals. Even though the pricing rule is not linear, the extension is as-
sumed to be linear in the direction of the payoff that is “added” to the market. Our
definition, inspired by the notion of market-consistency in Koch-Medina and Munari
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[37, Definition 8.2.1] in a frictionless arbitrage pricing setting, is not based on market
extensions and does not require the absence of good deals, which, differently from
the absence of arbitrage opportunities, is a debatable requirement; see Sect. 3.

(iii) Note that in the definition of a market-consistent price, condition (1) need not
imply condition (2), which is a natural requirement for a market-consistent price of
an attainable payoff. The implication holds if for instance A and M have nonzero
intersection and π and M are both conic.

3 Good deals

A good deal is any nonzero acceptable payoff that is attainable and can be acquired
at zero cost. As such, a good deal constitutes a natural generalisation of an arbitrage
opportunity, which corresponds to the situation where the acceptance set reduces to
the standard positive cone. An important class of good deals is that of scalable good
deals, i.e., payoffs that are good deals independently of their size. The notion of a
good deal has appeared, sometimes with a slightly different meaning, under various
names in the literature, including good deal in Cochrane and Saá-Requejo [22], Černý
and Hodges [18], Björk and Slinko [11], Klöppel and Schweizer [35], Bion-Nadal
and Di Nunno [10] and Baes et al. [6], good deal of first kind in Jaschke and Küchler
[32], good opportunity in Bernardo and Ledoit [9], acceptable opportunity in Carr et
al. [14]. The notion of a scalable good deal is a direct extension of that of a scalable
arbitrage opportunity introduced by Pennanen [43] and appeared in a frictionless set-
ting in Baes et al. [6]. The formal notions are recorded in the next definition. Here,
we define the recession cones of M and A by

M∞ :=
⋂

λ>0

λM, A∞ :=
⋂

λ>0

λA.

Moreover, the recession map of π is the map π∞ : S → (−∞,∞] defined by

π∞(X) := sup
λ>0

π(λ)

λ
.

Note that M∞ and A∞ are the largest convex cones contained in M and A, respec-
tively. Similarly, π∞ is the smallest sublinear map defined on S such that π ≤ π∞
on S . We collect more properties of recession cones and maps in the Appendix.

Definition 3.1 We say that a nonzero replicable payoff X ∈ S is
(1) a good deal (with respect to A) if X ∈A∩M and π(X) ≤ 0;
(2) a scalable good deal (with respect to A) if X ∈A∞ ∩M∞ and π∞(X) ≤ 0;
(3) a strong scalable good deal (with respect to A) if X is a scalable good deal

while −X is not.
We replace the term “good deal” with “arbitrage opportunity” whenever A = L1+.

Remark 3.2 Note that if X ∈ L1 is a strong scalable good deal, then by definition,
there exists λ > 0 such that −λX is not a good deal. However, this “short” position
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can be completely offset at zero cost by acquiring the attainable payoff λX. This is
what makes the scalable good deal “strong”.

It is clear that every strong scalable good deal is a scalable good deal, which in
turn is a good deal. It is also clear that every (scalable) arbitrage opportunity is a
(scalable) good deal. The absence of scalable good deals will be key in what follows.
In the classical setting of arbitrage pricing, an arbitrage opportunity constitutes an
anomaly in the market because every rational agent will seek to exploit it, thereby
raising its demand until prices also rise and the arbitrage opportunity eventually van-
ishes. The situation is quite different when we consider good deals as there might be
no consensus across agents in the identification of a common criterion of acceptabil-
ity, thereby casting doubts on the economic foundation of the absence of good deals.
The key observation here is that to develop our theory, we only need the weaker con-
dition of absence of (strong) scalable good deals. As shown by the next proposition,
whose simple proof is omitted, this condition holds in a number of standard situations
and is sometimes implied by the absence of (scalable) arbitrage opportunities. More
precisely, the condition M∞ ⊆ S+ is typically implied by caps on short positions
(it holds if the payoffs of the basic assets are positive and short selling is possible,
but restricted for each asset). The condition π∞ = ∞ on M∞ \ {0} holds whenever
the pricing rule π is not sublinear on the cone generated by any nonzero element of
M∞. Finally, the condition M∞ = {0} is satisfied whenever there are caps on short
and long positions alike.

Proposition 3.3 Assume that one of the following conditions holds:
(i) A∞ = L1+ and there exists no scalable arbitrage opportunity.
(ii) M∞ ⊆ S+ and there exists no scalable arbitrage opportunity.
(iii) π∞(X) = ∞ for every nonzero X ∈M∞.
(iv) M∞ = {0}.

Then there exists no scalable good deal.

The next proposition records for ease of reference an equivalent condition for
the absence of strong scalable good deals, which is a one-period equivalent to the
condition in Pennanen [44, Theorem 8]. In that paper, the condition is expressed in
terms of portfolios instead of payoffs and the acceptance set is the standard positive
cone. The straightforward verification is omitted.

Proposition 3.4 There exists no strong scalable good deal if and only if the set
N := A∞ ∩ {X ∈ M∞ : π∞(X) ≤ 0} is a vector space.

4 Fundamental theorem of asset pricing

In this section, we establish a direct and a dual characterisation of market-consistent
prices. Most of this section is new and both extends and sharpens the corresponding
results in the good deal pricing literature. We refer to the dedicated remarks for a
detailed comparison with the literature.
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4.1 A key auxiliary set

It is immediate to see that for every payoff X ∈ L1, we can rewrite π+(X) as

π+(X) = inf{m ∈R : (X,m) ∈ C}, (4.1)

where the set C consists of all the payoff–price couples featuring payoffs that can be
superreplicated with acceptable risk by means of admissible payoffs available in the
market for that price. Formally, the set is given by

C := {(X,m) ∈ L1 ×R : ∃Z ∈ M with Z − X ∈ A and π(Z) ≤ m}.
This set plays the same role that in classical arbitrage pricing theory is played by
the set of payoffs that can be superreplicated at zero cost. To see the link, consider
a frictionless market, i.e., a market where π is linear and M = S , and assume that
A = L1+. The set of payoffs that can be superreplicated at zero cost is given by

K := {X ∈ L1 : ∃Z ∈ S with Z − X ∈ L1+ and π(Z) ≤ 0}.
It is easily verified that by taking any U ∈ S satisfying π(U) = 1, we can rewrite C as

C = {(X,m) ∈ L1 ×R : X − mU ∈K}.
In this classical setting, it is well known that the absence of arbitrage opportunities
implies closedness of K, and hence of C. This is key to establish the classical fun-
damental theorem of asset pricing; see e.g. Föllmer and Schied [24, Chap. 1]. The
closedness of C in our general framework will allow us to establish a general version
of the fundamental theorem in the next subsections.

Lemma 4.1 If there is no strong scalable good deal, then C is closed and (0,−n) /∈ C
for some n ∈N.

Proof Set N := {X ∈ A∞ ∩ M∞ : π∞(X) ≤ 0} and denote by N⊥ the orthogo-
nal complement of N in S ; see Remark 2.2. We claim that for every (X,m) ∈ C,
there exists Z ∈ M ∩ N⊥ such that Z − X ∈ A and π(Z) ≤ m. To see this,
note that we find W ∈ M such that W − X ∈ A and π(W) ≤ m. We can write
W = WN + WN⊥ for unique elements WN ∈ N and WN⊥ ∈ N⊥. Note that
WN belongs to −N because the set N is a vector space by Proposition 3.4.
Hence, setting Z := WN⊥ , we infer that Z = W − WN ∈M+M∞ ⊆ M as well
as Z − X = (W − X) − WN ∈A+A∞ ⊆ A by (A.1). Moreover, combining (A.1)
with (A.2) gives π(Z) = π(W − WN ) ≤ m. This shows the desired claim.

Next, we establish closedness. To this end, take a sequence (Xn,mn) ⊆ C and a
point (X,m) ∈ L1 ×R and assume that (Xn,mn) → (X,m). By assumption, we find
a sequence (Zn) ⊆ M such that Zn − Xn ∈ A and π(Zn) ≤ mn for every n ∈ N.
Without loss of generality, we can assume that (Zn) ⊆ N⊥. Now suppose that (Zn)

is unbounded. In this case, we find a subsequence of (Zn) consisting of nonzero
elements with diverging norms. For convenience, we still denote this subsequence
by (Zn). Since the unit sphere in S is compact, we can assume that Zn‖Zn‖1

→ Z for a
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suitable nonzero Z ∈ M∞ by (A.1). As Xn → X, we have Zn−Xn‖Zn‖1
→ Z. This implies

that Z ∈ A∞ again by (A.1). We claim that π∞(Z) ≤ 0. Otherwise, we can find λ > 0
such that π(λZ) > 0. Without loss of generality, we may assume that ‖Zn‖1 > λ for
every n ∈N. By lower semicontinuity and convexity of π , we derive the contradiction

0 < π(λZ) ≤ lim inf
n→∞ π

(
λZn

‖Zn‖1

)
≤ lim inf

n→∞
λπ(Zn)

‖Zn‖1
≤ lim

n→∞
λmn

‖Zn‖1
= 0.

This yields π∞(Z) ≤ 0. As a result, it follows that Z belongs to N . However, this is
not possible because Z is a nonzero element in N⊥. To avoid this contradiction, (Zn)

must be bounded and hence must admit a convergent subsequence, which we still
denote by (Zn) for convenience. By closedness of M, the limit Z also belongs to M.
As Zn − Xn → Z − X, it follows that Z − X ∈A by closedness of A. Moreover,

π(Z) ≤ lim inf
n→∞ π(Zn) ≤ lim

n→∞mn = m

by lower semicontinuity of π . This yields (X,m) ∈ C and establishes that C is closed.
Finally, we show that (0,−n) /∈ C for some n ∈ N. To this end, assume to

the contrary that for every n ∈ N, there exists Zn ∈ A ∩ M with π(Zn) ≤ −n.
If the sequence (Zn) is bounded, then we may assume without loss of general-
ity that Zn → Z for some Z ∈ A ∩ M. The lower semicontinuity of π implies
π(Z) ≤ lim infn→∞ π(Zn) = −∞, which cannot hold. Hence the sequence (Zn)

must be unbounded. As argued above, we can assume without loss of generality
that (Zn) is contained in N⊥ and has strictly positive divergent norms satisfying

Zn‖Zn‖1
→ Z for some nonzero Z belonging to A∞ ∩ M∞. Moreover, as above,

π∞(Z) ≤ 0. As a consequence, it follows that Z belongs to N as well. However,
this is not possible because Z is a nonzero element in N⊥. Hence we must have
(0,−n) /∈ C for some n ∈N, concluding the proof. �

4.2 Direct characterisation of market-consistent prices

To obtain a direct characterisation of market-consistent prices, we investigate when
the superreplication price, which is the upper bound of the set of market-consistent
prices, is itself a market-consistent price. In Example 4.5, we show that in general,
the superreplication price can be market-consistent or not, regardless of whether the
underlying payoff is attainable or not. This is based on the following simple charac-
terisation of market-consistency.

Proposition 4.2 For every X ∈ L1 with π+(X) ∈ R, we have π+(X) ∈ MCP(X) if
and only if (A+ X) ∩ {Z ∈ M : π(Z) = π+(X)} ⊆ {X}.

Proof First, assume that (A + X) ∩ {Z ∈ M : π(Z) = π+(X)} ⊆ {X}. Then for
every Z ∈ M satisfying Z − X ∈ A \ {0}, we must have π+(X) < π(Z). Since
π+(X) ≤ π(X) whenever X ∈ M, it follows that π+(X) ∈ MCP(X), proving the
“if” implication. Conversely, assume that π+(X) ∈ MCP(X) and take any payoff
Z ∈ (A+ X) ∩M. If we happen to have π(Z) = π+(X), then Z must be equal to X

by market-consistency of π+(X). This proves the “only if” implication. �
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Proposition 4.2 shows that market-consistency of the superreplication price is
strongly linked with the attainability of the infimum in the definition of superreplica-
tion price. We therefore target sufficient conditions for this to hold.

Proposition 4.3 If there exists no strong scalable good deal, then for every X ∈ L1

with π+(X) < ∞, there exists Z ∈ M such that Z − X ∈A and π(Z) = π+(X).

Proof First of all, we note that π+ is lower semicontinuous by (4.1) because C is
closed due to Lemma 4.1. Next, we claim that π+ does not attain the value −∞. To
this end, note first that π+(0) > −∞ by Lemma 4.1. Since π+(0) ≤ 0, it follows that
π+ is finite at 0. It is readily seen that π+ is convex. Hence, being lower semicon-
tinuous, π+ can never attain the value −∞ on the space L1. To show the assertion,
take a payoff X ∈ L1 such that π+(X) < ∞. Since π+(X) is finite, it follows from
the closedness of C established in Lemma 4.1 that the infimum in (4.1) is attained.
By the definition of C, this implies that π+(X) = π(Z) for a suitable Z ∈ M such
that Z − X ∈A, concluding the proof. �

The next result provides a characterisation of market-consistent prices under the
assumption that the market does not admit strong scalable good deals. In this case,
we show that for a payoff outside M, the superreplication price is never market-
consistent and hence the set of market-consistent prices is an open interval. For a
payoff in M, the superreplication price may or may not be market-consistent, so that
the corresponding set of market-consistent prices may or may not be a closed interval.

Proposition 4.4 If there exists no strong scalable good deal, then for every X ∈ L1,
we have MCP(X) �= ∅ and the following statements hold:

(i) If X ∈ M, then π+(X) ≤ π(X) and both alternatives π+(X) /∈ MCP(X) as
well as π+(X) ∈ MCP(X) can hold.

(ii) If X ∈ M and π+(X) /∈ MCP(X), then both alternatives π+(X) = π(X) as
well as π+(X) < π(X) can hold.

(iii) If X ∈ M and π+(X) ∈ MCP(X), then π+(X) = π(X).
(iv) If X /∈M, then π+(X) /∈ MCP(X).

The alternatives in (i) and (ii) can hold even if there exists no good deal.

Proof It follows from Proposition 4.3 that π+(X) > −∞ for every X ∈ L1, show-
ing that MCP(X) �= ∅. Now take X ∈ M and observe that π+(X) ≤ π(X). It is
shown in Example 4.5 that all the situations in (i) and (ii) may hold (even if there
exist no good deals). To establish (iii) and (iv), take an arbitrary X ∈ L1 and assume
that π+(X) ∈ MCP(X). By Proposition 4.3, (A + X) ∩ {Z ∈ M : π(Z) = π+(X)}
is not empty. It then follows from Proposition 4.2 that X must belong to M and
π+(X) = π(X), establishing the desired implications. �

Example 4.5 Let � = {ω1,ω2} and assume that F is the power set of � and that P is
specified by P[ω1] = P[ω2] = 1

2 . In this simple setting, we identify every element of
L1 with a vector of R2. Set S = R

2 and consider the acceptance set defined by

A = {
(x, y) ∈R

2 : y ≥ max{−x,0}}.
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(i) Set π(x, y) = max{2x + y, x + 2y} for (x, y) ∈ R
2 and M = R

2. It is im-
mediate to verify that no good deal exists. Set X = (−2,1) ∈ M and observe that
π+(X) = 0 and

(A+ X) ∩ {Z ∈ M : π(Z) = 0} = {X}.
It follows from Proposition 4.2 that π+(X) ∈ MCP(X). Now take Y = (1,−2) ∈M.
In this case, an explicit calculation shows that

π+(Y ) = inf
x∈Rmax

{
2x − 2 + max{1 − x,0}, x − 4 + 2 max{1 − x,0}} = −3

2
.

Moreover, setting W = (− 1
2 ,− 1

2 ) ∈M, we have

(A+ Y) ∩
{
Z ∈ M : π(Z) = −3

2

}
= {W }.

It follows from Proposition 4.2 that π+(Y ) /∈ MCP(Y ). Note also that π(X) = π+(X)

and π(Y ) > π+(Y ).
(ii) Set π(x, y) = max{x + y, x + 2y} on R

2 and M = {(x, y) ∈R
2 : x ≤ 1}. Ob-

serve that no good deal exists. Set X = (1,−1) ∈ M and Y = (2,−2) /∈ M. Then
π+(X) = π+(Y ) = 0 and

(A+ X) ∩ {Z ∈M : π(Z) = 0} = (A+ Y) ∩ {Z ∈M : π(Z) = 0}
= {λX : λ ∈ [0,1]}.

It follows from Proposition 4.2 that π+(X) /∈ MCP(X) and π+(Y ) /∈ MCP(Y ). Note
also that π(X) = 0 so that π(X) = π+(X).

(iii) Set π(x, y) = ex − 1 for every (x, y) ∈ R
2 and M = R × R+. Any X ∈ R

2

satisfies π+(X) = −1 and

(A+ X) ∩ {Z ∈ M : π(Z) = −1} = ∅.

It follows from Proposition 4.2 that π+(X) ∈ MCP(X) regardless of whether X be-
longs to M or not. Note that in this case, there exist strong scalable good deals.

Proposition 4.4 unveils a stark contrast between our general setting and the clas-
sical frictionless setting, where the superreplication price of every replicable payoff
is market-consistent and coincides with the associated replication cost. In our case,
for an attainable payoff, the superreplication price may be strictly lower than the as-
sociated replication cost. This is in line with the findings in Bensaid et al. [8], where
the focus is on a multiperiod Cox–Ross–Rubinstein model with proportional transac-
tion costs and no portfolio constraints, and the acceptance set is the standard positive
cone. As explained in [8], the said discrepancy is a direct consequence of the fact that
trading is costly and it may therefore “pay to weigh the benefits of replication against
those of potential savings on transaction costs”. What also follows from the previous
result and was only implicitly highlighted in [8] is that contrary to the frictionless
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case, the superreplication price of an attainable payoff, and a fortiori its replication
cost, may fail to be market-consistent. This is another implication of transaction costs,
which allow the infimum in the definition of the superreplication price to be attained
by multiple replicable payoffs even if the market admits no good deals.

4.3 Consistent price deflators

In this section, we start our journey towards a dual characterisation of market-con-
sistent prices with acceptable risk. Our results are expressed in terms of suitable dual
elements called (strictly) consistent price deflators. These notions are encountered in
the literature under special assumptions on the market model and/or on the acceptance
set. In a frictionless setting, a consistent price deflator corresponds to a representative
state pricing function in Carr et al. [14] and to a Riesz density of a no-good-deal pric-
ing functional in Černý and Hodges [18]. In a market with proportional frictions, it
corresponds to a Riesz density of an underlying frictionless pricing rule in Jouini and
Kallal [33], to a consistent price system in Jaschke and Küchler [32], to a consistent
pricing kernel in Staum [50], and is related to a risk-neutral measure in Černý [17]. In
a market with nonproportional frictions, it corresponds to a marginal price deflator in
Pennanen [43]. Strictly consistent price deflators have been considered in Jouini and
Kallal [33], Černý and Hodges [18] and Pennanen [43]. Note that the acceptance set
in [33] and [43] is the standard positive cone. The formal definition of a price defla-
tor is as follows. We denote by L∞ the space of bounded random variables modulo
almost sure equality under P and by ‖ · ‖∞ its standard norm. It is also convenient to
introduce the maps γπ,M : L∞ → (−∞,∞] and γA : L∞ → [−∞,∞) defined by

γπ,M(Y ) := sup
X∈M

(
E[XY ] − π(X)

)
,

γA(Y ) := inf
X∈A

E[XY ].

Note that γπ,M coincides with the conjugate function of the restriction to M of the
pricing rule π , whereas γA is up to a sign the support function of the set −A.

Definition 4.6 We say that D ∈ L∞ is a price deflator if γπ,M(D) < ∞. In this case,
D is called

(1) weakly consistent (with A) if γA(D) > −∞;
(2) consistent (with A) if γA(D) ≥ 0;
(3) strictly consistent (with A) if E[DX] > 0 for every nonzero X ∈A.

We define the sets of weakly and strictly consistent price deflators by

D := {D ∈ L∞ : D is a weakly consistent price deflator},
Dstr := {D ∈ L∞ : D is a strictly consistent price deflator}.

A price deflator is a natural extension of a classical price deflator to our market
with frictions. To illustrate this, consider a price deflator D ∈ L∞ and define the
functional ψ(X) := E[DX] for X ∈ L1. By definition,

−π(−X) − γπ,M(D) ≤ ψ(X) ≤ π(X) + γπ,M(D), ∀X ∈M∩ (−M).
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The functional ψ can therefore be viewed as the pricing rule of an “artificial” fric-
tionless market where every payoff in L1 is “replicable” and the attainable payoffs
are “priced”, up to a suitable enlargement of size 2γπ,M(D), consistently with their
market bid–ask spread. No enlargement is needed, i.e., γπ,M(D) = 0, when ψ is al-
ready dominated from above by π . This happens for instance if both π and M are
conic in the first place. In particular, this holds if π is linear and M coincides with
the entire space S , in which case ψ is a linear extension of the pricing rule beyond the
space of replicable payoffs. Consistency with the acceptance set is of course specific
to good deal pricing theory. If D is weakly consistent, then

ψ(X) ≥ γA(D), ∀X ∈ A.

This means that the prices of acceptable payoffs in the “artificial” frictionless market
with pricing rule ψ cannot be arbitrarily negative. A simple situation where such
“artificial” prices are nonnegative is when A is a cone in the first place. In this case,
weak consistency is equivalent to consistency. In particular, if A is taken to be the
standard positive cone, then (strict) consistency boils down to the (strict) positivity
of ψ or, equivalently, of D. This shows that a (strictly) consistent price deflator is a
direct extension of a (strictly) positive price deflator in the classical theory.

Remark 4.7 In a market where some attainable payoff is frictionless, every price de-
flator can be represented in terms of a probability measure. In order to see this, let
D ∈ L∞ be a (strictly positive) price deflator and consider a strictly positive payoff
U ∈M∞ ∩ (−M∞) such that π is linear along U and satisfies π(U) > 0. It fol-
lows from the preceding discussion that E[DU ] = π(U). Then we find a probability
measure Q that is absolutely continuous with respect to (equivalent to) P and satisfies

E[DX]
π(U)

= EQ

[
X

U

]
, ∀X ∈ L1.

The probability Q plays the role of an (equivalent) pricing measure from arbitrage
pricing theory.

We now show that the existence of strictly consistent price deflators always implies
the absence of scalable good deals. However, contrary to the classical frictionless
setting, it does not generally imply the absence of good deals unless the price deflators
satisfy suitable extra assumptions.

Proposition 4.8 If there exists a strictly consistent price deflator D ∈ L∞, then there
exists no scalable good deal. If additionally E[DX] ≤ π(X) for every X ∈ M, then
there exists no good deal either.

Proof Take a nonzero payoff X ∈ A∩M∞. To prove that no scalable good deal ex-
ists, we show that π∞(X) > 0. To this end, note that by the definition of a price de-
flator,

sup
n∈N

(
n
(
E[DX] − π∞(X)

)) = sup
n∈N

(
E[D(nX)] − π∞(nX)

)

≤ sup
n∈N

(
E[D(nX)] − π(nX)

)
< ∞,
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where we used that π∞ dominates π . This is only possible if E[DX] − π∞(X) ≤ 0.
As a result, we obtain π∞(X) ≥ E[DX] > 0. Next, assume that E[DX] ≤ π(X) for
every payoff X ∈ M and take a nonzero payoff X ∈ A ∩ M. Then we obtain that
π(X) ≥ E[DX] > 0, showing that no good deal exists. �

Example 4.9 We work in the setting of Example 4.5 and take the same S and A. We
show that the existence of strictly consistent price deflators is not sufficient to rule out
good deals. In view of Proposition 4.8, this can occur only if either the pricing rule
or the set of attainable payoffs fails to be conic and the supremum in Definition 4.6
is strictly positive. We provide an example in both cases.

(i) Set π(x, y) = x + y2 on R
2 and M = R

2. Note that M is conic while π is not.
It is clear that D = (2,4) is a strictly consistent price deflator. In particular,

sup
X∈M

(
E[DX] − π(X)

) = sup
y∈R

(2y − y2) = 1.

However, X = (−1,1) ∈A∩M satisfies π(X) = 0 and is thus a good deal.
(ii) Set π(x, y) = x + y on R

2 and M = {(x, y) ∈ R
2 : x ≥ −1,0 ≤ y ≤ 1}. Note

that π is conic while M is not. It is clear that D = (2,4) is a strictly consistent price
deflator. In particular,

sup
X∈M

(
E[DX] − π(X)

) = sup
0≤y≤1

y = 1.

However, X = (−1,1) ∈A∩M satisfies π(X) = 0 and is thus a good deal.

4.4 Fundamental theorem of asset pricing

We now turn to the more challenging problem of investigating if and under which
assumptions the converse of Proposition 4.8 holds, i.e., the absence of scalable good
deals implies the existence of strictly consistent price deflators. A key role is again
played by the set C introduced in Sect. 4.1. We start with two preparatory results.
The first shows that price deflators appear naturally in the dual representation of C.
The second provides a useful equivalent condition for the absence of scalable good
deals in terms of C. When A = L1+, this condition corresponds to the “no scalable
arbitrage” condition in Pennanen [43]. We denote by cl(C) the closure of C with
respect to the natural product topology on L1 × R and define the (upper) support
function and barrier cone of C by

σC(Y, r) := sup
(X,m)∈C

(E[XY ] + mr), (Y, r) ∈ L∞ ×R,

bar(C) := {(Y, r) ∈ L∞ ×R : σC(Y, r) < ∞}.

In what follows, we freely use some basic properties of support functions and barrier
cones and refer to the Appendix for the necessary details.
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Lemma 4.10 The sets C and D are convex and the following statements hold:
(i) (−A×R+) ⊆ C and bar(C) ⊆ L∞+ × −R+.
(ii) σC(Y,−1) = γπ,M(Y ) − γA(Y ) for every Y ∈ L∞.
(iii) D = {Y ∈ L∞+ : σC(Y,−1) < ∞} = {Y ∈ L∞+ : (Y,−1) ∈ bar(C)}.
(iv) If (0,−n) /∈ cl(C) for some n ∈N, then we can represent cl(C) as

cl(C) =
⋂

Y∈D
{(X,m) ∈ L1 ×R : E[XY ] − m ≤ γπ,M(Y ) − γA(Y )}.

Proof The convexity of C and D is clear. Points (i)–(iii) follow easily once we observe
that C = {(Z,m) ∈ M × R : π(Z) ≤ m} + ((−A) × R+). Note that no problems
with nonfinite values arise as 0 ∈ M, π(0) = 0 and A contains the cone of positive
random variables. To show (iv), assume that cl(C) is strictly contained in L1 ×R. The
dual representation of closed convex sets in Aliprantis and Border [1, Theorem 7.51]
yields

cl(C) =
⋂

(Y,r)∈L∞×R

{(X,m) ∈ L1 ×R : E[XY ] + mr ≤ σC(Y, r)}. (4.2)

Here we have used that σcl(C) = σC . We claim that bar(C) ∩ (L∞ × (−∞,0)) �= ∅.
To show this, take n ∈ N such that (0,−n) /∈ cl(C). Then it follows from (4.2) that
there must exist (Y, r) ∈ bar(C) satisfying −nr = E[0Y ] − nr > σC(Y, r) ≥ 0. This
establishes the desired claim. Now recall from (i) that bar(C) ⊆ L∞+ × −R+. Since
σC is sublinear and bar(C) is a convex cone, it follows that

cl(C) =
⋂

Y∈L∞+

{(X,m) ∈ L1 ×R : E[XY ] − m ≤ σC(Y,−1)}.

The desired representation is now a direct consequence of (ii). �

As recalled in the Appendix, the acceptance set A is pointed if A∩ (−A) = {0}.

Lemma 4.11 Let A be a pointed cone. Then there exists no scalable good deal if and
only if for every nonzero X ∈A, there is λ > 0 such that (λX,0) /∈ C.

Proof First, take a nonzero X ∈ A and let λ > 0 satisfy λX /∈ {Z ∈ M : π(Z) ≤ 0}.
This yields X /∈ {Z ∈ M∞ : π∞(Z) ≤ 0}. As a result, the “if” implication holds. To
prove the converse, assume that no scalable good deal exists. First, we claim that
{Z ∈ A ∩ M : π(Z) ≤ 0} is bounded. If this is not the case, for every n ∈ N, we
find Zn ∈ A∩M with π(Zn) ≤ 0 and ‖Zn‖1 ≥ n. As the unit sphere in S is com-
pact, there exists a nonzero Z ∈ S such that Zn‖Zn‖1

→ Z. Note that Z ∈ A∞ ∩ M∞
by (A.1). Note also that the lower semicontinuity and convexity of π yield

π(Z) ≤ lim inf
n→∞ π

(
Zn

‖Zn‖
)

≤ lim inf
n→∞

π(Zn)

‖Zn‖ ≤ 0.

This shows that Z is a scalable good deal, contradicting our assumption. Hence the
set {Z ∈A∩M : π(Z) ≤ 0} is indeed bounded. Now suppose that we find a nonzero
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X ∈A such that for every λ > 0, there is Zλ ∈M with π(Zλ) ≤ 0 and Zλ −λX ∈ A.
In particular, Zλ ∈ A and Zλ

λ
∈ A+X for every λ > 0. As (A+X)∩S is closed and

does not contain the zero payoff, ‖ · ‖1 must be bounded from below by a suitable
ε > 0 on the set (A + X) ∩ S . In particular, ‖Zλ‖1

λ
≥ ε for every λ > 0. This implies

that {Zλ : λ > 0} is unbounded, in contrast to what was proved above. As a result, for
every nonzero X ∈A, there must be λ > 0 such that (A+λX)∩{Z ∈ M : π(Z) ≤ 0}
is empty. This yields the “only if” implication. �

The key tool to establish existence of strictly consistent price deflators is the gen-
eral version of the classical results by Yan [52] and Kreps [39] recorded in Theo-
rem A.1 in the Appendix. The “conification” appearing there leads us to work with
the modified acceptance set

K(A) := cl({λX : λ ≥ 0,X ∈ A}),

where cl now denotes the closure in L1. A similar conification was considered in
Černý and Hodges [18] and Staum [50] and is necessary to obtain a version of the
fundamental theorem for nonconic acceptance sets. The next lemma records useful
information about this enlarged acceptance set. We omit the simple proof.

Lemma 4.12 The set K(A) is conic and satisfies the properties in Assumption 2.3 if
it is a strict subset of L1. In particular, if A is a cone, then K(A) = A.

We are finally in a position to state sufficient conditions for the existence of strictly
consistent price deflators. As a first step, we provide two sets of sufficient conditions
for the existence of consistent price deflators that are strictly positive. In order to
move from strict positivity to strict consistency, we need an additional assumption on
the model space L1, namely separability. We refer to the accompanying remark for a
detailed discussion about the proof strategy and the separability assumption.

Theorem 4.13 Assume that one of the following conditions holds:
(i) A is a pointed cone and there exists no scalable good deal.
(ii) K(A) is pointed and there exists no scalable good deal with respect to K(A).

Then there exists a strictly positive consistent price deflator D ∈ L∞. If in addition
L1 is separable with respect to its norm topology, then D can be taken to be strictly
consistent.

Proof It follows from Proposition 4.12 that K(A) is a closed conic acceptance set.
Note that every price deflator D ∈ L∞ that is (strictly) consistent with K(A) is also
(strictly) consistent with A. As a result, it suffices to prove the stated claims under
condition (i). To this end, assume that A is a pointed cone and there exists no scalable
good deal (with respect to A). To establish existence of strictly positive respectively
strictly consistent price deflators, we apply Theorem A.1 to L = L1+ respectively
L = A and L′ = D. Note that in the notation of that result, L′ ∩ (−bar(KL)) = D
in either case by Lemma 4.10. Throughout the proof, convergence in L∞ is always
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understood with respect to σ(L∞,L1). As a first step, we verify the completeness
property in Theorem A.1. More precisely, we show that

for every (Yn) ⊆ D, we find (λn) ⊆ (0,∞) and Y ∈D with
n∑

k=1

λkYk → Y . (4.3)

To this end, recall that D ⊆ L∞+ by Lemma 4.10 and note that σC(Y,−1) ≥ 0 for every
Y ∈ D. Let αn = (1 + ‖Yn‖∞)−1(1 + σC(Yn,−1))−12−n > 0 and Sn = ∑n

k=1 αkYk

for every n ∈ N. As a result, we find Z ∈ L∞ such that Sn → Z with respect to ‖ · ‖∞
and hence for σ(L∞,L1). To conclude the proof, note that

∑n
k=1 αk → r for some

r > 0 and σC(Z,−r) ≤ lim infn→∞
∑n

k=1 αkσC(Yk,−1) < ∞ by σ(L∞,L1)-lower
semicontinuity and sublinearity of σC . This yields (Z,−r) ∈ bar(C). The desired con-
vergence in (4.3) holds by setting λn = αn

r
> 0 for every n ∈N and Y = Z

r
∈D.

As a next step, we show that we can always find a strictly positive consistent
price deflator. In view of (4.3), it follows that it suffices to establish the countable
separation property in Theorem A.1. More precisely, it suffices to find a sequence
(Yn) ⊆ D such that

for every nonzero X ∈ L1+, there exists n ∈ N such that E[XYn] > 0. (4.4)

By Lemma 4.11, for every nonzero X ∈ L1+, there exists λ > 0 with (λX,0) /∈ C.
Since C is closed and (0,−n) /∈ C for some n ∈ N by Lemma 4.1, we can use the
representation of (the closure of) C in Lemma 4.10 to find an element YX ∈ D such
that E[λXYX] > σC(YX,1) ≥ 0. Equivalently, we have that

for every nonzero X ∈ L1+, there exists YX ∈D such that E[XYX] > 0. (4.5)

To establish (4.4), we start by showing that the family G = {{Y > 0} : Y ∈ D} is
nonempty and closed under countable unions. First, (4.5) yields G �= ∅. To show that
G is closed under countable unions, take a sequence (Yn) ⊆ D \ {0}. By (4.3), we find
a sequence (λn) ⊆ (0,∞) and an element Y ∈D such that Sn := ∑n

k=1 λkYk → Y . It
is easy to see that

{Y > 0} =
⋃

n∈N
{Yn > 0} P-almost surely. (4.6)

Indeed, consider first the event E = {Y > 0} ∩ ⋂
n∈N{Yn = 0}. We must have

P[E] = 0, for otherwise 0 < E[1EY ] = limn→∞ E[1ESn] = 0. As a result, the in-
clusion “⊆” in (4.6) holds. Next, we claim that P[Y ≥ Sn] = 1 for every n ∈ N. If
not, we find k ∈ N and ε > 0 such that with E = {Y ≤ Sk − ε}, we have

0 < εP[E] ≤ E[1E(Sk − Y)] ≤ lim
n→∞E[1E(Sn − Y)] = 0.

This delivers the inclusion “⊇” in (4.6) and shows that G is closed under countable
unions as desired. Now set s = sup{P[E] : E ∈ G}. Take any sequence (Yn) ⊆ D
such that P[Yn > 0] ↑ s. By closedness under countable unions, there must exist
Y ∗ ∈ D such that {Y ∗ > 0} = ⋃

n∈N{Yn > 0} P-almost surely. Take an arbitrary
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nonzero X ∈ L1+ and assume that E[XYn] = 0 for every n ∈ N. This would imply
that E[XY ∗] = 0, and thus the element 1

2Y ∗ + 1
2YX ∈D would satisfy

P

[
1

2
Y ∗ + 1

2
YX > 0

]
≥ P[Y ∗ > 0] + P[{Y ∗ = 0} ∩ {YX > 0}] > P[Y ∗ > 0] = s,

which cannot hold. Thus we must have E[XYn] > 0 for some n ∈ N, showing (4.4).
To conclude the proof, we show that there exists a strictly consistent price deflator

if we additionally assume that L1 is separable with respect to its norm topology. In
view of (4.3), it follows from Theorem A.1 that we only have to exhibit a sequence
(Yn) ⊆ D such that

for every nonzero X ∈A, there exists n ∈ N such that E[XYn] > 0. (4.7)

Repeating the argument that led to (4.5), we obtain that

for every nonzero X ∈ A, there exists YX ∈D such that E[XYX] > 0. (4.8)

For every nonzero X ∈ A, define ZX := YX‖YX‖∞ . By separability, the unit ball in
L∞ is σ(L∞,L1)-metrisable by Aliprantis and Border [1, Theorem 6.30]. Being
σ(L∞,L1)-compact by virtue of the Banach–Alaoglu theorem, see e.g. [1, Theo-
rem 6.21], the unit ball together with any of its subsets is therefore
σ(L∞,L1)-separable. In particular, this is true for {ZX : X ∈ A \ {0}}. Let
{ZXn : n ∈ N} be a countable σ(L∞,L1)-dense subset. Then for every nonzero
X ∈ A, it follows immediately from (4.8) that we must have E[XYXn] > 0 for some
n ∈N by σ(L∞,L1)-density. This delivers (4.7). �

Remark 4.14 (i) The pointedness condition, which is clearly necessary for the exis-
tence of strictly consistent price deflators, is satisfied by many standard acceptance
sets. For instance, by Bellini et al. [7, Proposition 5.9], pointedness holds whenever
A is a law-invariant cone such that A �= {X ∈ L1 : E[X] ≥ 0}. Incidentally, note that
under pointedness, the absence of scalable good deals is equivalent to the generally
weaker absence of strong scalable good deals.

(ii) A simple sufficient condition for separability of L1 is that F is countably
generated, e.g. if F is the σ -field generated by the basic payoffs spanning S . We refer
to Aliprantis and Border [1, Theorem 13.16] for a characterisation of separability in
the nonatomic setting.

(iii) To see that the “conification” of the acceptance set is necessary to ensure
existence of strictly consistent price deflators in the nonconic case, one can ob-
serve that every strictly consistent price deflator for A is automatically strictly con-
sistent for K(A). This is also true for the more natural “conified” acceptance set
{λX : λ ≥ 0,X ∈ A}, but closedness is necessary for our arguments.

(iv) The proof of existence of strictly positive consistent price deflators builds
on the exhaustion argument underpinning the classical result on equivalent probabil-
ity measures in Halmos and Savage [29]. In fact, a direct application of that result
provides an alternative proof of the countable separation property in (4.4). To see
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this, note that every element YX ∈ D in (4.5) is associated with a probability mea-
sure on (�,F) defined by dPX := YX

EP[YX] dP. Since the family of these probabil-
ity measures is dominated by P, it follows from [29, Lemma 7] that there exists a
sequence (Xn) ⊆ L1+ \ {0} such that for every E ∈ F , we have PXn[E] = 0 for ev-
ery n ∈ N if and only if PX[E] = 0 for every nonzero X ∈ L1+. For every nonzero
X ∈ L1+, we clearly have PX[X > 0] > 0, and hence there must exist n ∈ N such that
PXn[X > 0] > 0 or, equivalently, E[XYXn] > 0. The countable separation property is
thus fulfilled by the sequence (YXn). It is worth noting that neither this argument nor
the argument in the proof above can be used to ensure existence of strictly consistent
price deflators when the acceptance sets is strictly larger than the positive cone and
thus contains nonpositive payoffs. This is because controlling probabilities alone is
not sufficient to control the sign of expectations. To deal with strict consistency in the
general case, we therefore had to pursue a different strategy based on separability of
L1, which was inspired by the original work of Kreps [39] and by the related work of
Clark [21] in the setting of frictionless markets.

We are finally in a position to establish the announced version of the fundamen-
tal theorem of asset pricing for markets with frictions and general acceptance sets,
which we state in the usual form of an equivalence. The theorem follows at once by
combining Proposition 4.8 and Theorem 4.13 and is split into three parts. In the first
part, we focus on the situation where the acceptance set is the positive cone. In this
case, we obtain a different proof of the one-period version of the fundamental theo-
rem in markets with frictions established in Pennanen [43, Theorem 5.4]. As already
said, the absence of scalable arbitrage opportunities corresponds to the “no scalable
arbitrage” condition, and a price deflator corresponds to a marginal price deflator in
[43]. In the second and third parts, we focus on conic and nonconic acceptance sets
respectively. The corresponding versions of the fundamental theorem are new. We
refer to Example 4.16 below for a proof of the necessity of our assumptions on the
acceptance set.

Theorem 4.15 (i) There exists no scalable arbitrage opportunity if and only if there
exists a strictly positive price deflator in L∞.

(ii) Let L1 be separable with respect to its norm topology (e.g. if F is countably
generated).

(a) Let A be a pointed cone. Then there exists no scalable good deal if and only if
there exists a strictly consistent price deflator in L∞.

(b) Let K(A) be pointed. If there exists no scalable good deal with respect to
K(A), then there exists a strictly consistent price deflator in L∞. If there exists a
strictly consistent price deflator in L∞, then there exists no scalable good deal (with
respect to A).

Example 4.16 We prove necessity of our assumptions on A in the setting of Exam-
ple 4.5.

(i) Set M = R
2 and π(x, y) = max{x, y} on R

2 and define

A = R
2+ ∪ {(x, y) ∈R

2 : x < 0, y ≥ x2}.
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Note that A is not a cone and no scalable good deal exists. However, there exists no
strictly consistent price deflator D = (d1, d2). Indeed, for every λ > 0, we could oth-
erwise take Xλ = (−λ,λ2) ∈ A and note that E[DXλ] > 0 implies d2λ > d1, which
contradicts the strict positivity and hence the strict consistency of D. This shows that
if we remove conicity, the “only if” implication in Theorem 4.15 (a) generally fails.
It also shows that the converse of the second implication in (b) generally fails as well.

(ii) Set M = R
2 and π(x, y) = x + y on R

2 and define

A = R
2+ ∪ {(x, y) ∈R

2 : x < 0, y ≥ e−x − 1}.
Note that A is not a cone and K(A) = R

2+ ∪ {(x, y) ∈ R
2 : x < 0, y ≥ −x} is pointed.

Note also that D = (2,2) is a (in fact, the only) strictly consistent price deflator.
However, X = (−1,1) ∈ K(A) ∩ M satisfies π(X) = 0 and is therefore a scalable
good deal with respect to K(A). This shows that the converse of the first implication
in Theorem 4.15 (b) generally fails.

Remark 4.17 We now provide a detailed comparison of our version of the fundamen-
tal theorem of asset pricing with the various versions obtained in the good deal pricing
literature.

(i) The focus of Carr et al. [14] is on one-period frictionless markets. The reference
acceptance set is convex and defined in terms of finitely many test probabilities. The
reference probability space is finite. In Theorem 1, the authors establish a fundamen-
tal theorem under the absence of a special type of good deals that is specific to the
polyhedral structure of the acceptance set and stronger than the absence of scalable
good deals. The statement is in terms of representative state pricing functions, which
correspond to special (in general not strictly) consistent price deflators.

(ii) The focus of Jaschke and Küchler [32] is on multi-period markets with pro-
portional frictions and admitting a frictionless asset. The reference acceptance set is
assumed to be a convex cone. The reference probability space is general. In fact, the
payoff space is an abstract topological vector space. In Corollary 8, the authors es-
tablish a fundamental theorem under the assumption of absence of good deals of the
second kind. In our setting, this is equivalent to the absence of payoffs X ∈ A ∩ M
such that π(X) < 0. The statement is in terms of consistent (not strictly consistent)
price deflators. To deal with the infinite-dimensionality of M, which follows from
the multi-period nature of the market model, the fundamental theorem is stated un-
der an additional assumption that corresponds to the closedness of C. No sufficient
conditions for this are provided. It should be noted that the absence of good deals of
the second kind is not sufficient to ensure closedness of C even when M is finite-
dimensional. To show this, let � = {ω1,ω2,ω3} and assume that F is the power set
of � and P[ω1] = P[ω2] = P[ω3] = 1

3 . We identify every element of L1 with a vector
of R3. Let M coincide with S = {(x, y, z) ∈ R

3 : x = 0} and let π : S →R be defined
by π(x, y, z) = y for (x, y, z) ∈R

3. Consider the closed convex conic acceptance set

A = {(x, y, z) ∈ R
3 : x2 +y2 +6xy+2

√
6xz+2

√
6yz ≥ 0,

√
3x+√

3y+√
2z ≥ 0},

obtained by rotating the cone A′ = {(x, y, z) ∈ R
3 : x2 + y2 ≤ 3z2, z ≥ 0} by

π/3 around the direction (−1,1,0). It is easy to verify that if X ∈ A ∩ M, then
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π(X) ≥ 0, and hence there are no good deals of the second kind. We show that C
is not closed. For every n ∈ N, set Xn = (1 − 1

n
,−1,0) and note that (Xn,0) ∈ C

as Zn = (0,0, n2) ∈ M satisfies π(Zn) = 0 and Zn − Xn ∈ A. Clearly, we have
(Xn,0) → (X,0) with X = (1,−1,0). We conclude that C is not closed as (X,0) /∈ C.

(iii) The focus of Černý and Hodges [18] is on one-period frictionless markets and
convex acceptance sets. The reference probability space is general. In fact, the payoff
space is an abstract locally convex topological vector space. In Theorem 2.5, the au-
thors establish a fundamental theorem under the absence of good deals with respect
to the “conified” acceptance set. The statement is expressed in terms of strictly con-
sistent price deflators and is proved under the additional assumption that the payoff
space is an Lp-space for some 1 < p < ∞ and that A is boundedly generated, i.e.,
included in the cone generated by a bounded set. This condition typically fails when
the underlying probability space is not finite.

(iv) The focus of Staum [50] is on multi-period markets with convex frictions.
The reference acceptance set is convex. The reference probability space is general.
In fact, the payoff space is an abstract locally convex topological vector space. In
Theorem 6.2, the author establishes a fundamental theorem under the assumption
that for all payoffs X ∈ L1 and nonzero Z ∈ L1+,

inf{π(Z) : Z ∈M,Z − X ∈A} + inf{π(Z) : Z ∈M,Z − X ∈ L1+} > 0.

The link with the absence of good deals is not discussed. The statement is in terms
of strictly positive (not strictly consistent) price deflators. To deal with the infinite-
dimensionality of M, which follows from the multi-period nature of the market
model, the fundamental theorem is stated under the additional assumption that π+
is lower semicontinuous. Sufficient conditions for this are provided when the payoff
space is L∞ (with respect to the standard norm topology). Unfortunately, the proof
of Lemma 6.1, which is key to deriving the fundamental theorem, is flawed. On the
one side, Zorn’s lemma is evoked to infer that a family of sets that is closed under
countable unions admits a maximal element. However, this is not true as illustrated
for instance by the family of all countable subsets of R. On the other side, it is tacitly
assumed that for a generic dual pair (X ,X ′), the series

∑
n∈N 2−nYn converges in the

topology σ(X ′,X ) for every choice of (Yn) ⊆ X ′, which cannot hold unless special
assumptions are required of the pair (X ,X ′). The underlying strategy of reproduc-
ing the exhaustion argument used in the classical proof of the fundamental theorem
seems unlikely to work because it heavily relies on the existence of a (dominating)
probability measure and, as highlighted in Remark 4.14, breaks down in the presence
of nonpositive acceptable payoffs.

(v) The focus of Černý [17] is on one-period markets with convex frictions. The
reference acceptance set is a convex cone. The reference payoff space is tailored to the
chosen acceptance set by way of a duality construction which often delivers standard
Lp-spaces, for example when the acceptance set is based on expected shortfall. In
Theorem 3.1, the author establishes a version of the fundamental theorem under the
absence of special good deals. In our setting, they correspond to payoffs X ∈M with
π(X) ≤ 0 and

inf{m ∈R : X + m ∈A} < 0.
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The statement is in terms of a special class of (not necessarily strictly positive) price
deflators. The proof uses the additional assumption that the barrier cone of the accep-
tance set is compactly generated.

(vi) The focus of Madan and Černý [41] is on one-period frictionless markets. The
reference acceptance set is induced by an acceptability index. The reference payoff
space consists of suitably integrable random variables. In Theorem 1, the authors
provide a version of the fundamental theorem under the absence of good deals. The
statement is in terms of (not necessarily strictly positive) price deflators.

(vii) The focus of Cheridito et al. [20] is on multi-period markets with general fric-
tions and admitting a frictionless asset. The reference acceptance set is also general,
but is required to ensure convexity of a set that in our notation corresponds to

{X ∈ L1 : ∃Z ∈ M with π(Z) ≤ 0 and Z − X ∈A} = {X ∈ L1 : (X,0) ∈ C}.
The payoff space consists of suitably regular stochastic processes. Notably, no domi-
nating probability measure is assumed to exist. In Theorem 2.1, the authors establish
a fundamental theorem under the absence of a suitable class of strong good deals.
To deal with the infinite-dimensionality of M, which follows from the multi-period
nature of the market model, the fundamental theorem is stated under additional reg-
ularity assumptions on the market model and the acceptance set ensuring finiteness
of superreplication prices of special call options. The statement is in terms of (not
necessarily strictly) consistent price deflators.

(viii) We also highlight a link with the recent work by Herdegen and Khan [31].
The focus of that paper is on mean–risk portfolio problems in the context of a one-
period frictionless market. The authors establish a variety of conditions for the exis-
tence of optimal portfolios under the assumption of absence of “ρ-arbitrage”, where
ρ is a coherent risk measure. Under mild assumptions on the risk measure, this notion
is equivalent to that of a good deal provided the acceptance set consists of all payoffs
with nonpositive risk. In this sense, [31, Theorem 4.20] can be viewed as a version
of the fundamental theorem in a good deal pricing setting. The theorem is formulated
in our language in terms of consistent price deflators satisfying some special dual
conditions. As these conditions are only indirectly related to the risk measure and
hence to its acceptance set, it is not clear to which extent they are linked with strict
consistency of price deflators. We leave a full clarification of this to future research.

4.5 Superreplication duality

In this section, we derive a dual representation of superreplication prices based on
consistent price deflators. We refer to Jaschke and Küchler [32, Corollary 8], Staum
[50, Theorem 4.1] and Cheridito et al. [20, Theorem 2.1] for similar representations
under the assumption of absence of good deals. We also refer to Frittelli and Scan-
dolo [25, Proposition 3.9] for a similar representation in a risk measure setting. These
representations were obtained under the assumption of lower semicontinuity of π+.
As mentioned in the proof of Proposition 4.3, a sufficient condition for this to hold is
the absence of strong scalable good deals. In a second step, we improve the dual rep-
resentation by replacing consistency with strict consistency. In a frictionless setting
where the acceptance set is the standard positive cone, this is equivalent to moving
from price deflators to strictly positive price deflators. This sharper result thus extends
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the classical result on superreplication duality to markets with frictions and general
acceptance sets.

Theorem 4.18 The following statements hold:
(i) If there exists no strong scalable good deal, then for every X ∈ L1,

π+(X) = sup
D∈D

(
E[DX] − γπ,M(D) + γA(D)

)
.

(ii) If there exists no scalable good deal and if either A = L1+ or A is a pointed
cone and L1 is separable with respect to its norm topology, then for every X ∈ L1,

π+(X) = sup
D∈Dstr

(
E[DX] − γπ,M(D)

)
. (4.9)

Proof Assume the market is free of strong scalable good deals. It follows from
Lemma 4.1 that C is closed and (0,−n) /∈ C for some n ∈ N. Now take an arbi-
trary X ∈ L1. From (4.1) and from the representation of (the closure of) C obtained
in Lemma 4.10, we infer that

π+(X) = inf{m ∈R : E[DX] − m − γπ,M(D) + γA(D) ≤ 0,∀D ∈ D}
= inf{m ∈R : m ≥ E[DX] − γπ,M(D) + γA(D),∀D ∈D}
= sup{E[DX] − γπ,M(D) + γA(D) : D ∈D}.

This proves (i). Now let the assumptions in (ii) hold. It follows from Theorem 4.13
that Dstr is nonempty. Moreover, by Lemma 4.1, C is closed and (0,−n) /∈ C for some
n ∈ N. We claim that the representation in Lemma 4.10 for (the closure of) C can be
rewritten as

C =
⋂

Y∈Dstr

{(X,m) ∈ L1 ×R : E[XY ] − m ≤ γπ,M(Y )}. (4.10)

Note that γA(Y ) = 0 for every Y ∈ D by conicity of A. Clearly, we only need to
establish the inclusion “⊇” in (4.10). To this end, take any (X,m) ∈ L1 ×R such that
E[XY ] − m ≤ γπ,M(Y ) for every Y ∈ Dstr. Fix Y ∗ ∈ Dstr and take any Y ∈ D. For
every λ ∈ (0,1), we have λY ∗ + (1 − λ)Y ∈ Dstr so that

λ(E[XY ∗] − m) + (1 − λ)(E[XY ] − m) = E
[
X

(
λY ∗ + (1 − λ)Y

)] − m

≤ γπ,M
(
λY ∗ + (1 − λ)Y

)

≤ λγπ,M(Y ∗) + (1 − λ)γπ,M(Y ).

Letting λ ↓ 0 delivers E[XY ] − m ≤ γπ,M(Y ) and shows the desired inclusion. Now
take any payoff X ∈ L1. It follows from (4.1) and (4.10) that

π+(X) = inf{m ∈R : E[DX] − m ≤ γπ,M(D),∀D ∈Dstr}
= inf{m ∈R : m ≥ E[DX] − γπ,M(D),∀D ∈Dstr}
= sup{E[DX] − γπ,M(D) : D ∈Dstr}.

This establishes (ii) and concludes the proof. �
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4.6 Dual characterisation of market-consistent prices

The fundamental theorem also allows us to derive a dual characterisation of market-
consistent prices with acceptable risk, which extends the classical characterisation of
arbitrage-free prices in terms of strictly positive price deflators. We complement this
by showing that contrary to the standard frictionless setting, for an attainable payoff
with market-consistent superreplication price, the supremum in the dual representa-
tion of the corresponding superreplication price need not be attained. Interestingly,
this implies that a dual characterisation of market-consistent prices for replicable
payoffs in terms of strictly consistent price deflators is not always possible.

Proposition 4.19 If there exists no scalable good deal and if either A = L1+ or A is a
pointed cone and L1 is separable with respect to its norm topology, then the following
statements hold for every X ∈ L1:

(i) If π+(X) ∈ MCP(X) and the supremum in (4.9) is attained or if we have
π+(X) /∈ MCP(X), then

MCP(X) = {p ∈ R : ∃D ∈Dstr with p ≤ E[DX] − γπ,M(D)}. (4.11)

(ii) If π+(X) ∈ MCP(X) and the supremum in (4.9) is not attained, then only the
inclusion “⊇” in (4.11) always holds. The inclusion “⊆” in (4.11) can fail to hold
even if both π and M are conic and there exists no good deal.

Proof It follows from Theorem 4.13 that Dstr is nonempty. First, we show the inclu-
sion “⊇” in (4.11). Let D ∈ Dstr. Note that for every attainable payoff Z ∈ M such
that Z − X ∈A \ {0}, we have

π(Z) ≥ E[DZ] − γπ,M(D) = E[D(Z − X)] +E[DX] − γπ,M(D)

> E[DX] − γπ,M(D)

by strict consistency. Note also that E[DX] − γπ,M(D) ≤ π(X) if X ∈ M. This
shows that E[DX] − γπ,M(D) is a market-consistent price for X and yields the
desired inclusion. Now recall that π+(X) is the supremum of the set MCP(X). If
π+(X) belongs to MCP(X), then the inclusion “⊇” in (4.11) is an equality if and
only if the supremum in (4.9) is attained. We refer to Example 4.20 below for a
concrete situation where the latter condition fails even if both π and M are conic
and the market admits no good deals. Finally, assume that π+(X) does not be-
long to MCP(X). To complete the proof we only have to show the inclusion “⊆”
in (4.11). To this end, take an arbitrary market-consistent price p ∈ MCP(X) and
note that we must have p < π+(X). Hence it follows from the representation (4.9)
that p < E[DX] − γπ,M(D) for a suitable D ∈Dstr. This concludes the proof. �

Example 4.20 We work in the setting of Example 4.5. Take A = R
2+ and S = R

2, and
define M = {(x, y) ∈R

2 : 0 ≤ y ≤ −x} and

π(x, y) =
{

−√
x2 + xy if (x, y) ∈M,

∞ otherwise.
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Note that π is convex because it is continuous on M and its Hessian matrix in the
interior of M has nonnegative eigenvalues, namely 0 and 1

4 (x2 + y2)(x2 + xy)−3/2.
Both A and M are cones and π is conic. Moreover, there exists no good deal.
A direct inspection shows that strictly consistent price deflators D ∈ R

2 exist, e.g.
D = (2,1), and satisfy γπ,M(D) = 0 by conicity. Now set X = (−1,1) ∈ M. We
have π+(X) = π(X) = 0 since (A+X)∩M= {X}. This also yields 0 ∈ MCP(X) by
Proposition 4.2. We show that there is no D = (d1, d2) ∈ Dstr such that E[DX] = 0.
Indeed, we should otherwise have d1 = d2 and taking Zλ = (−1, λ) ∈ M for
λ ∈ (0,1) would deliver

sup
0<λ<1

(
E[DZλ] − π(Zλ)

) ≤ 0 =⇒ d1 ≥ sup
0<λ<1

2√
1 − λ

= ∞.

As a result, the supremum in (4.9) is not attained.

The next example shows that conicity is necessary for both Theorem 4.18 and
Proposition 4.19 to hold.

Example 4.21 We work in the setting of Example 4.5. Define π(x, y) = max{x, x+y}
on R

2 and set M = {(x, y) ∈ R
2 : y ≥ 0} and

A = {
(x, y) ∈R

2 : y ≥ max{−2x,0}, x ≥ −1
}
.

Note that π and M are both conic while A is not. Note also that there exists no good
deal. It is not difficult to verify that strictly consistent price deflators exist. Indeed,
for a strictly positive D = (d1, d2),

{
sup{E[DX] − π(X) : X ∈ M} < ∞,

E[DX] > 0 for every nonzero X ∈A
⇐⇒

{
d1 = 2,

1 < d2 ≤ 2.

Set X = (2,−4). Since (A + X) ∩ M = {(x, y) ∈ R
2 : x ≥ 1, y ≥ 0}, we see that

π+(X) = π(1,0) = 1. As X does not belong to M, we have MCP(X) = (−∞,1)

by Proposition 4.4. Both (4.9) and (4.11) fail, since for every strictly consistent price
deflator D = (d1, d2), we have γπ,M(D) = 0 by conicity and

sup
D∈Dstr

(
E[DX] − γπ,M(D)

) = sup
1<d2≤2

(2 − 2d2) = 0.

5 Conclusions

In this paper, we have established a version of the fundamental theorem of asset pric-
ing in incomplete markets with frictions where agents use general acceptance sets
to define good deals based on their individual “preferences”. The basic result states
that absence of scalable good deals is equivalent to the existence of strictly consistent
price deflators. This extends and sharpens the existing versions of the fundamental
theorem in the good deal pricing literature and allows deriving an appropriate ver-
sion of the classical superreplication duality. Even though our focus is on one-period
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models, we have to cope with technical challenges as the standard techniques used in
arbitrage pricing, e.g. changes of numeraire and exhaustion arguments, break down
in the presence of general acceptance sets. We conclude by collecting some gen-
eral remarks about possible extensions of our results beyond the setting of integrable
payoffs and beyond one-period market models. Here, we denote by L0 the space of
random variables modulo almost sure equality under P and equip it with its canonical
vector and lattice structure.

– In the paper, the reference payoff space is L1. One may wonder whether a simple
change of probability would not allow working in the more natural space L0. Indeed,
assume that S ⊆ L0 and define

dQ

dP
:= S

E[S] , S :=
(

1 +
N∑

i=1

|Si |
)−1

,

where S1, . . . , SN ∈ L0 are the payoffs of the basic assets. It is immediate to see that
the probability Q is equivalent to P and every payoff in S is integrable with respect
to Q. As a consequence, it is possible to apply our results to the model space L1(Q)

of Q-integrable random variables. This is reminiscent of what is done in arbitrage
pricing theory; see e.g. Föllmer and Schied [24, proof of Theorem 1.7]. The prob-
lem with this approach is that the acceptance set A often depends explicitly on the
natural probability P and its (topological) properties are typically lost after we pass
to Q. Most importantly, the set A∩ L1(Q) is seldom closed with respect to the norm
topology of L1(Q). Interestingly, this issue does not arise in arbitrage pricing theory
because the acceptance set used there, namely the set of positive random variables,
is invariant with respect to changes of equivalent probability. More generally, the
change of probability would not be problematic if the acceptance set were invariant
with respect to changes of the numeraire. Unfortunately, as shown in Koch-Medina et
al. [38], numeraire-invariance is only satisfied by acceptance sets based on test sce-
narios, which are not pointed (unless they coincide with the canonical positive cone)
and hence do not admit strictly consistent price deflators; see Remark 4.14.

– The results in Sects. 2, 3, 4.1 and 4.2 continue to hold if L1 is replaced by any
real vector space X ⊆ L0 equipped with a linear Hausdorff topology. In particular,
we may take X = L0 equipped with the usual topology of convergence in proba-
bility. (Note that having finite dimension, the space S of replicable payoffs remains
normable regardless of the choice of X .)

– The results in Sects. 4.3–4.6 continue to hold if the pair (L1,L∞) is replaced
by any pair (X ,X ′) of real vector spaces satisfying L∞ ⊆ X ,X ′ ⊆ L1 that are in
separating duality through the bilinear form (X,Y ) �→ E[XY ] and that are equipped
with the weak topologies σ(X ,X ′) and σ(X ′,X ). Moreover, the space X ′ must be
the norm dual of a normed space Y ⊆ L1 (which need not coincide with X ), and
the topology σ(X ′,X ) must be weaker than the weak-star topology σ(X ′,Y). For
concreteness, the payoff space X could be any Lebesgue space or more generally any
Orlicz space and we could take X ′ = L∞ and Y = L1. The separability assumption
for L1 in Sects. 4.4–4.6 is replaced by separability of Y with respect to its norm
topology. This is important because in the example above, Y = L1 may be separable
while the Orlicz space X may fail to be separable, both with respect to the respective
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norm topologies; see e.g. Rao and Ren [45, Theorem 1 in Sect. 3.5]. In the abstract
setting, the acceptance set must be σ(X ,X ′)-closed. For the common payoff spaces
and acceptance sets, this requirement is fulfilled even in the (generally restrictive)
situation where X ′ is a small space. For concreteness, let (�,F ,P) be nonatomic
and let X be an Orlicz space. Moreover, let X ′ = L∞. The set A is closed with
respect to σ(X ,X ′) in any of the following cases:

(a) A is closed with respect to the norm topology of L1.
(b) A is law-invariant (under P) or surplus-invariant (see below) and for all

(Xn) ⊆ A∩X and X ∈ X with Xn → X P-almost surely and supn∈N |Xn| ∈ X , we
have X ∈ A.
The condition in (a) clearly implies σ(X ,X ′)-closedness of A. In (b), law-invariance
is standard and stipulates that acceptability is only driven by the probability distribu-
tion of a payoff, while surplus-invariance, introduced in Koch-Medina et al. [36] and
studied more thoroughly in Koch-Medina et al. [38], stipulates that acceptability is
only driven by the downside profile of a payoff. The closedness under dominated
P-almost sure convergence is sometimes referred to as Fatou closedness. In these
cases, the desired σ(X ,X ′)-closedness of A follows from the results in Svindland
[51] and Gao et al. [26] under law-invariance and from those in Gao and Munari [27]
under surplus-invariance.

– Our mathematical formulation of the pricing problem is also compatible with
multi-period (both discrete and continuous) market models. The only difference is
that being the space of terminal values of self-financing trading strategies, S is never
finite-dimensional in the multi-period case (unless we restrict attention to buy-and-
hold strategies only). A direct inspection shows that our key results can be easily
extended to a multi-period setting (in fact, the proofs remain identical) provided that
Lemma 4.1 on closedness of C and Lemma 4.11 featuring an equivalent formulation
of the absence of scalable good deals can be also extended. The current proofs of
those results explicitly rely on the finite-dimensionality of S . Recalling that C plays
the role of the set of payoffs that can be superreplicated at zero cost in arbitrage pric-
ing theory, one may wonder whether classical arguments of Komlós or randomised
Bolzano–Weierstrass type could not be used to achieve the desired extension. The
problem with these arguments is that they rely on closedness with respect to point-
wise convergence, which is fulfilled by the acceptance set underlying arbitrage pric-
ing theory, namely the set of positive random variables, but fails to hold for most
acceptance sets encountered in good deal pricing theory. Closedness of the positive
cone with respect to pointwise convergence is also crucial in the proof of the funda-
mental theorem in Pennanen [43]. A possible way to overcome this issue is to replace
the set C with its closure. In view of Lemma 4.11, this would mean replacing absence
of scalable good deals with a stronger condition that is reminiscent of the “no-free
lunch” condition used in arbitrage pricing in continuous time. We leave this investi-
gation for future research.

Appendix

In this appendix, we recall some standard notions from functional analysis and refer
to e.g. Aliprantis and Border [1, Chaps. 5–7] and Zălinescu [53, Chap. 1] for the
necessary mathematical background.
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We use the convention 0 · ∞ = 0. Let X be a real vector space equipped with
a linear Hausdorff topology. A set C ⊆ X is pointed if C ∩ (−C) = {0}, convex if
λC + (1 − λ)C ⊆ C for every λ ∈ (0,1), and conic (or a cone) if λC ⊆ C for every
λ ∈ [0,∞). If C is convex and 0 ∈ C, its recession cone is

C∞ :=
⋂

λ>0

λC.

The set C∞ is the largest convex cone contained in C. If C is additionally closed, then
C∞ is also closed. In this case, we can equivalently express C∞ as

C∞ = {X ∈ X : ∃ nets (Xα) ⊆ C with (λα) ⊆ [0,∞)

and λα → 0, λαXα → X}. (A.1)

A map ϕ : X → (−∞,∞] is convex if ϕ(λX+ (1−λ)Y ) ≤ λϕ(X)+ (1−λ)ϕ(Y ) for
all X,Y ∈ X and λ ∈ [0,1], conic if ϕ(λX) = λϕ(X) for all X ∈ X and λ ∈ [0,∞),
sublinear if ϕ is both convex and conic, and lower semicontinuous if for every net
(Xα) ⊆ X and every X ∈ X with Xα → X, we have ϕ(X) ≤ lim infα ϕ(Xα). This is
equivalent to {X ∈ X : ϕ(X) ≤ m} being closed for every m ∈ R. If ϕ is convex and
ϕ(0) = 0, its recession map ϕ∞ :X → (−∞,∞] is

ϕ∞(X) := sup
λ>0

ϕ(λX)

λ
.

The map ϕ∞ is the smallest sublinear map dominating ϕ from above in a pointwise
sense. If ϕ is additionally lower semicontinuous, then ϕ∞ is also lower semicontinu-
ous and for every m ∈ R, we have

{X ∈ X : ϕ(X) ≤ m}∞ = {X ∈ X : ϕ∞(X) ≤ 0}. (A.2)

Let X ′ be another real vector space. Given a bilinear mapping 〈 · , · 〉 : X ×X ′ → R,
we say that X and X ′ are in separating duality if we have 〈X,Y 〉 = 0 for every
Y ∈ X ′ if and only if X = 0 and, similarly, 〈X,Y 〉 = 0 for every X ∈X if and only if
Y = 0. We denote by σ(X ,X ′) the weakest linear topology on X such that 〈 · , Y 〉 is
continuous for every Y ∈ X ′. Similarly, σ(X ′,X ) is the weakest linear topology on
X ′ such that 〈X, · 〉 is continuous for every X ∈ X . The (upper) support functional
and the barrier cone of a (nonempty) set C ⊆ X are the map σC : X ′ → (−∞,∞]
and the set given by

σC(Y ) := sup
X∈C

〈X,Y 〉, bar(C) := {Y ∈X ′ : σC(Y ) < ∞}.

The map σC is sublinear and σ(X ′,X )-lower semicontinuous. The set bar(C) is a
convex cone that, unless C is a cone, may fail to be σ(X ′,X )-closed. The following
result records a general version of the classical results by Yan [52] and Kreps [39].
We refer to Clark [21], Jouini et al. [34], Rokhlin [46], Cassese [15], Rokhlin [47]
and Gao and Xanthos [28] for a variety of versions of the same principle.
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Theorem A.1 Let X and X ′ be real topological vector spaces which are in sep-
arating duality through 〈 · , · 〉 : X × X ′ → R. Let L ⊆ X and L′ ⊆ X ′ and set
KL := {λX : λ ≥ 0,X ∈ L}. Assume that the following properties hold:

(i) (Completeness) For every sequence (Yn) ⊆ L′, there exist a sequence (λn) in
(0,∞) and Y ∈ L′ such that

∑n
k=1 λkYk → Y with respect to σ(X ′,X ).

(ii) (Countable separation) There exists a sequence (Yn) ⊆ L′ ∩ (−bar(KL)) such
that for every nonzero X ∈ L, we have 〈X,Yn〉 > 0 for some n ∈ N.
Then there exists Y ∈ L′ such that 〈X,Y 〉 > 0 for every nonzero X ∈ L.

Proof By (ii), there exists a sequence (Yn) ⊆ L′ ∩ (−bar(KL)) such that for ev-
ery nonzero X ∈ L, we have 〈X,Yn〉 > 0 for some n ∈ N. In particular, note that
〈X,Yn〉 ≥ 0 for all X ∈ L and n ∈ N because (Yn) ⊆ −bar(KL). Moreover, by (i),
there exist a sequence (λn) ⊆ (0,∞) and Y ∈ L′ such that

∑n
k=1 λkYk → Y . It is

immediate to see that 〈X,Y 〉 > 0 for every nonzero X ∈ L. �

Remark A.2 The preceding theorem extends the abstract version of the Kreps–Yan
theorem from Jouini et al. [34]. In that paper, L was assumed to be a pointed convex
cone satisfying L−L= X and L′ was taken to coincide with −bar(L). Incidentally,
note that pointedness is automatically implied by the countable separation property
(regardless of the special choice of L).
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16. Černý, A.: Generalised Sharpe ratios and asset pricing in incomplete markets. Rev. Finance 7, 191–233

(2003)
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53. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Fundamental theorem of asset pricing with acceptable risk in markets with frictions
	Abstract
	Introduction
	The pricing problem
	The market model
	The acceptance set
	Market-consistent prices with acceptable risk

	Good deals
	Fundamental theorem of asset pricing
	A key auxiliary set
	Direct characterisation of market-consistent prices
	Consistent price deflators
	Fundamental theorem of asset pricing
	Superreplication duality
	Dual characterisation of market-consistent prices

	Conclusions
	Appendix
	Acknowledgements
	References


