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Abstract 

Background:  Longitudinal single-cell sequencing experiments of patient-derived 
models are increasingly employed to investigate cancer evolution. In this context, 
robust computational methods are needed to properly exploit the mutational profiles 
of single cells generated via variant calling, in order to reconstruct the evolutionary 
history of a tumor and characterize the impact of therapeutic strategies, such as the 
administration of drugs. To this end, we have recently developed the LACE framework 
for the Longitudinal Analysis of Cancer Evolution.

Results:  The LACE 2.0 release aimed at inferring longitudinal clonal trees enhances the 
original framework with new key functionalities: an improved data management for 
preprocessing of standard variant calling data, a reworked inference engine, and direct 
connection to public databases.

Conclusions:  All of this is accessible through a new and interactive Shiny R graphical 
interface offering the possibility to apply filters helpful in discriminating relevant or 
potential driver mutations, set up inferential parameters, and visualize the results. The 
software is available at: github.com/BIMIB-DISCo/LACE.
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Background
We present LACE 2.0, a new R package to analyze single-cell (SC) mutational pro-
files generated from longitudinal sequencing experiments of cancer samples, which 
are increasingly becoming available due to the continuous advances in biotechnology. 
Robust computational frameworks for SC sequencing data are needed to mitigate the 
impact of technology-related errors, as well as that of sampling limitations, so as to 
deliver a fine characterization of intra-tumor heterogeneity and to possibly cast a light 
on the mechanisms underlying drug resistance and relapse under a variety of condi-
tions and experimental setups. In recent years, excellent tools for the inference of clonal/
mutational trees for SC experiments, but incapable of handling longitudinal data [1, 2], 
or longitudinal bulk data[3] have been proposed to investigate the mutational evolution 
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of cancer. LACE 2.0 embraces the possibility to analyze the development of the disease 
using SC data from longitudinal studies and is capable of deriving a clonal tree tagged 
with time coordinates coherent with the sampling temporal order.

In this context, the original version of LACE was designed to exploit binarized muta-
tional profiles, generated via the application of standard pipelines for variant calling to 
either DNA- or (full-length) RNA- single-cell sequencing experiments, performed at 
multiple time points. To do so, LACE maximizes a weighted likelihood function by solv-
ing a Boolean matrix factorization problem via MCMC sampling [4], and proved to be 
accurate and robust even with high rates of noise and data-specific errors.

Compared to the former release of LACE, this version introduces the possibility to use 
standard VCF and BAM formats as input of the clonal analyses. Previously, the whole 
pipeline for retrieving putative driver mutations and producing the phylogenetic matrix, 
or performing all sanity checks including time order logic to avoid spurious longitudinal 
clonal tree, was left to the discretion of the users.

The latest LACE version (2.0) extends and enhances the original version in several 
ways. Thanks to a completely new Shiny app interface [5], LACE 2.0 includes: (a) an 
easy-to-use module for data preprocessing and organization, which allows one to test 
and adjust quality and relevance filters, and to annotate gene variants; (b) a module for 
the interactive visualization of the inferred cancer evolution models, which returns both 
the longitudinal clonal tree and the fishplot, and allows one to inspect the model results 
(i.e., clones, temporal relations and prevalences), as well as to query the external data-
base Ensembl for further information [6]. Importantly, LACE 2.0 requires a limited set 
of parameters, which are sufficient to mitigate the source of noise and infer reliable mod-
els of cancer evolution (see [4] and [7] for further details).

Implementation
LACE 2.0 exploits binarized mutational profiles (1 if a mutation is present in a given cell, 
0 if it is absent, NA for low coverage) generated by calling variants from SC DNA- or 
full-length RNA-seq experiments of cancer samples collected at multiple time points, 
usually before and after therapy. LACE 2.0 returns as output a longitudinal clonal tree 
[4], in which nodes represent clones, i.e., groups of single cells with the same genotype, 
and edges represent either parental relations, e.g., clone B originates from clone A 
thanks to the acquisition of a new mutation, or persistence relations, e.g., clone C is pre-
sent at both time points 1 and 2.

LACE 2.0 is built as a shiny app allowing the user to apply filters, perform operations 
on the data and visualize the results.

The interface is organized in 8 modules represented by tabs:

•	 Project Creation
•	 Metadata Info
•	 Gene Variant Annotations
•	 Quality Filters
•	 Single Cell Sampling Depth
•	 Variant Filters
•	 Inference
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•	 Longitudinal Display

Stepping through each of these modules one can select mutations according to distinct 
criteria in order to generate the input for the inferential routines, set parameters for the 
derivation of the longitudinal relations among clones and display the most likely clonal 
tree and hyper parameters describing the time evolution of the samples, see Table 1.

Inputs

LACE 2.0 requires as input the result of standard alignment and variant calling pipe-
lines, applied to either SC DNA-seq or (full-length) RNA-seq data. Concerning the for-
mer, even though whole-genome and whole-exome SC sequencing experiments may be 
appropriate for genotyping, they are rarely available due to the high costs, so targeted 
genome sequencing represents a more appropriate option to this end. Also full-length 
SC RNA-sequencing experiments (e.g., SmartSeq) can be employed in LACE 2.0, despite 
the known issues related to coverage, which is typically low and limited to transcribed 
regions [7]. Yet, this data type is extremely widespread and has the notable advantage 
of providing a natural mapping between the genotype and the gene expression of single 
cells. The first preprocessing step (not included in LACE 2.0) consists in aligning the 
library to a reference genome and performing variant calling. This can be done using 
any of the widely used pipelines (see [8]). Using LACE 2.0, single variants can be then 
annotated using Annovar [9] as a back-end. LACE 2.0 takes as input the BAM and the 
VCF files, and allows the user to set different quality and relevance filters with a simple 
interactive form of the Shiny interface.

Project creation

In order to organize analyses with different parameters and to store intermediary steps, 
each inferential experiment with all the setting are saved in a subfolder named after the 
project id which is selected by the user (Fig. 1 field 1.1 and field 1.2). At the moment a 

Fig. 1  LACE 2.0 Project. LACE 2.0 allows to create new or load former and recent opened projects
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project is created, default configuration settings are generated marking the subfolder as 
part of the LACE 2.0 analysis. If the selected subfolder is already a LACE 2.0 project, the 
app recognizes it and loads with the last configuration used. A project is saved after each 
user interaction with the interface, and it can be reloaded directly by selecting the pro-
ject folder or by the sidebar where the latest project names are displayed.

Metadata info

In order to perform clonal analyses, it is required to provide information relative to the 
experiment such as the cell IDs which are used to retrieve the VCF/BAM files and the 
sample name each cell belongs to (Fig. 2 field 2.1). This metadata is generally included 
with the experimental sequencing data as part of the library preparation. LACE 2.0 
accepts tsv/csv tabular formats with headers and rds files containing standard tabular 
data R format (convertible to a dataframe type). The metadata file can include more 
information relative to the experimental setup and the platform used.

After selecting the single cell ID (Fig. 2 field 2.2) and the sample name columns (Fig. 2 
field 2.3), the user can reorder the samples in chronological order Fig. 2 (field 2.4). This is 
the only step where time information is provided during the analysis, and it will be used 

Fig. 2  LACE 2.0  Metadata Info. Select the SC id and the experiments’ time coordinate and order
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in post inferential computation to generate the longitudinal clonal tree and the ordered 
sets of clonal prevalences.

Gene variant annotations

Under the infinite sites assumption (ISA), clonal analysis is performed by grouping cells 
in clades with sets of similar mutations and by linking them via inclusion relation of 
mutation sets. In order to avoid excessive partition of cells over variants with unspecified 
roles in the phenotypical cascade, as in diseases with high mutational rate, it is useful 
to annotate mutations so as to select only relevant classes. LACE 2.0 performs annota-
tions of variant calling data using Annovar as back-end. Each mutation of each cell is 
annotated based on the annotation database used. Annovar provides a database for the 
human species useful for tagging cancer mutations and, whenever possible, providing 
their functional effect.

If Annovar’s Perl scripts are available in the OS standard binary paths, LACE 2.0 auto-
matically detects them and sets their path; otherwise, the user should provide the folder 
containing the Perl scripts. The user should also provide the database to use for the 
annotation and the folder containing the variant calling files in VCF format obtained by 
standard pipelines.

Quality filters

All types of SC sequencing data is characterized by various sources of noise which 
depends on the technology used. Detected mutation might be characterized by low 
quality score or low statistical power. Some mutations can be neglected, while others 
might cause relevant effects, especially on exonic regions where variations can result in 
changes of the translational process and modify their functional form.

In order to avoid small and possibly spurious fluctuations on sequencing data, variants 
can be filtered if they have low supporting evidences (Fig. 3). The user can set the mini-
mum values for:

•	 The number of reads supporting the alternative alleles in a cell. Due to sampling 
noise, cells not showing enough alternate reads for a mutation are considered not 
mutated at that site and are not counted (Fig. 3 field 3.1).

•	 The frequency of the minor allele for each referenced SNP included in a default 
global population. To assess the significance of somatic mutations, if variants are 
absent in control subjects or the variants have very low MAF (e.g., < 0.05 ), they are 
marked as somatic mutations. In comparison, if the MAF in the general population 
is big enough ( e.g. > 0.01 ), they are considered possible deemed polymorphic or 
benign variants [10–12] (Fig. 3 field 3.2).

•	 The cell frequency per sample showing the mutation at the same site. Mutations 
which are not supported by a minimum amount of cells at each sample can be 
excluded, if necessary, due to heterogeneity and fluctuations (Fig. 3 field 3.3).

Furthermore, the user can choose which functional exonic variation should be consid-
ered or neglected. For example, there are cases in which unknown and synonymous 
mutations in exonic regions are disregarded because their effect cannot be explicitly 
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related to the experimental condition. All possible variant functions and their explana-
tions are resumed in Table 2.

At the end of this module, a time-indexed binarized matrix representing the remaining 
mutations for each the cell in each sample is generated. For any given cell, SNVs exceed-
ing the number of reads supporting the alternative alleles threshold will be set to 1, or 0 
otherwise.

Single cell sampling depth

The number of reads per variant site represents an optimal filter to retrieve relevant 
mutations with sufficient supporting evidence in the signal. Read depths along the 
sequences are usually not provided in standard alignment or variant calling pipelines. 
The user should provide the Samtools Suite [13] executable folder location in case LACE 
2.0 cannot find back-end in the OS standard folder. Furthermore, the folder with the lon-
gitudinal single cells aligned data should be provided as input for the computation. To 
be noted, aligned files must have a case insensitive “.bam” extension, and only filenames 
coinciding with the cell IDs provided in the metadata info are analyzed, while other files 
are neglected. Due to the fact that retrieving depth for all SC at variant sites is compu-
tationally expensive, the procedure is only performed on sites passing the quality filters 
previously set.

Fig. 3  LACE 2.0  Quality Filters. Mutation selection can be performed by setting thresholds for read variant 
based evidences and by selecting mutations with specific exonic functions
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Task manager

LACE 2.0 tries to limit time consuming steps using a task manager based on file times-
tamps specifically developed for the purpose of reducing unnecessary heavy computa-
tions. More precisely, a computation step is defined by the input files, the output files 
and the required parameters stored in a temporary configuration file. If a task is a bijec-
tive function, the task manager checks if input file timestamp < configuration file times-
tamp < output file timestamp, and only for those files for which the relations do not hold 
true, the task is recomputed. If a task is an injective or a surjective function, the task 
manager controls if all input file timestamps < configuration file timestamp < all output 
file timestamps, and the task is recomputed only if the relations do not hold true.

This is very useful when tasks are chained, and the user modified parameters of 
downstream steps or if the user decided to add new acquired samples in the analysis 
(e.g., annotation and depth at variant sites can require a long computational time).

Variant filters

Not all mutations are distinctive of the disease or experiment under study. Identifying 
relevant and driver variants allows to reproduce a more significant longitudinal clonal 
tree. The user can select a set of filters based on gold standards and other analyses 
such as:

•	 The minimum number of reads at given mutation site. Depth represents the strength 
of the signal measured, and this filter marks previously identified mutations based on 
read depth at the single cell level. Where the signal falls below a given threshold, the 
corresponding mutations in a cell are less reliable and set to ’NA’ (Fig. 4 field 4.1).

•	 The maximum number of missing data per gene. If a mutation is marked as ’NA’ in 
too many cells, the same knowledge on the supposed mutation site becomes more 
undefined; hence, it is prone to be marginal (Fig. 4 field 4.2).

•	 The minimum median depth per locus. This filter ensures the site is sufficiently 
measured given the set of experiments sampled (Fig. 4 field 4.3).

•	 The minimum median depth supporting the mutation. Similarly, the signal sup-
porting the mutation should be sufficiently measured in the whole set of cells 
included in the analysis (Fig. 4 field 4.4).

•	 Subset of known genes. If there are genes associated with treatments or are drivers 
for the disease or relevant for the understudied longitudinal experiment, they can be 
included directly by the user. The proposed list of gene names are obtained from the 
list of mutated genes which have passed the applied filters (Fig. 4 field 4.5).

The final set of variant sites passing all filters are used to subset the binarized matrix 
obtained in the former module (Fig.  4). Furthermore, values in the matrix corre-
sponding to mutations falling in a position with a coverage below the above threshold 
are set to ’NA’. This produces a time-indexed binarized mutational matrix, which is 
processed by the inference engine.

Finding the parameters to select variants is not an easy task, and the user might 
not know in advance how to choose the best set of filters. Hence, the user can apply 
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Fig. 4  LACE 2.0  Variant Filters. Relevant and driver variants among all the sample mutations can be selected 
by setting read depth filters per mutation site and interactively completed by the user
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the aforementioned filters and computations on VCF and BAM files to derive all the 
necessary aggregated information on the sampled cells. Afterward, the user is pre-
sented with an interactive live preview of variants passing the filters (including rel-
evant parameters which can help in the selection) while values are changed.

Inference

The inferential tab allows the user to set all the parameters to solve the boolean matrix 
factorization problem and estimate the model parameters of the model using a MCMC 
to maximize the likelihood (Fig.  5). The inferential step uses the following set of 
parameters:

•	 Learning rate (Fig. 5 field 5.1)
•	 False positive rates for each sample (Fig. 5 field 5.2)
•	 False negative rates for each sample (Fig. 5 field 5.3)
•	 Number of iterations in each MCMC search (Fig. 5 field 5.4)
•	 Number of restart for the MCMC (Fig. 5 field 5.5)
•	 Early stopping number of iterations with no growing likelihood (Fig. 5 field 5.6)
•	 Number of parallel processes (Fig. 5 field 5.7)
•	 Random seed to recreate simulations (Fig. 5 field 5.8)
•	 Initialize the clonal tree randomly (Fig. 5 field 5.9)
•	 Marginalize the cell attachment matrix (Fig. 5 field 5.10)
•	 Keep equivalent solutions and return all of them (Fig. 5 field 5.11)
•	 Check indistinguishable event and remove them (Fig. 5 field 5.12)
•	 Estimate error rates of MCMC moves (Fig. 5 field 5.12)

The user can insert more than one false positive rate and one false negative rate value for 
each sample. During the inferential step, the maximization of the likelihood for each set 
of rates is performed, and the best results are returned.

Longitudinal clonal tree

The model adopted in LACE 2.0 (see also [4]) describes the clonal
factorization of the underling evolutionary process based on experiments measured at 

sequential time points under the ISA assumption and subjected to different sources of 
noise derived from sampling single cells sequencing data.

The model can be explained by the following matrices:

•	 the single cell data matrix D where rows represent single cells, columns are all the 
mutations considered and entries are 1 when mutations are present and zero when 
absent,

•	 the cell attachment matrix C, where rows identify the single cells, columns are the 
clones and values are 1 for cells belonging to a clone,

•	 the phylogenetic matrix B, where rows are the clones, columns are the mutations, 
and it is a boolean triangular matrix equivalent to a tree with entries associating 
clones to mutations.
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Fig. 5  LACE 2.0  Inference. Set of parameters to perform longitudinal inference of mutational events. It 
is possible to set the learning rate, number of iterations, the number of false or negative rates of each 
experiment included in the project and more specific parameters to perform the MCMC inference
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These matrices can be related via tensorial product by the following relation:

which describes the model as a boolean factorization problem with constraints. The 
real sequenced data matrix G has the same shape of D and represents similar relations 
between sampled cells and measured variants such that values are 1 when a mutation is 
observed, zero when not or NA if there are no sufficient reads supporting the observa-
tions. Discrepancies between the optimal solution of the model describing the underly-
ing experiment D̃ and real data G,

are characterized by depth and sequencing tech limitations used to measure each sample 
s at time ts which generate false event occurrences with platform dependent false posi-
tive αs and false negative βs rates. Therefore, the Bayesian approach is determined by:

and the maximization of the likelihood with constraints on the arguments B, C is given 
by:

The model assumes that the longitudinal experiments are sampled from a unique gener-
ative phylogenetic matrix B; consequently, without further time and cellular cooperation 
constraints, the likelihood with sample (platform) specific weights can be completely fac-
torized by mutation and by single cell, rendering the model time agnostic and tractable:

where s is the sample, ns is the number of cells in s, ws is the sample specific weight 
depending on the number of cells in the sample and m is the index of the total set of 
mutations considered.

The clonal tree B and attachment matrix C maximizing the weighted likelihood 
function is computed on all time points, via a MCMC search scheme.

For each clonal matrix B exists one and only one clonal tree. The construction of the 
clonal tree from the clonal matrix B is given by the following set of operations: 

1	 a node of the clonal tree is generated for each row of B,
2	 a clone i is characterized by the acquired mutations which are the ones in the i-th 

row of B, Bi,
3	 the root of the clonal tree is the row k for which ||Bk ||1 = 1 holds true,
4	 given a clone i, its parent j among all the clones k with ||Bk ||1 < ||Bi||1 is given by 

j = arg min k(||Bi − Bk ||1).

The last point is a direct consequence of the ISA assumption which excludes the pos-
sibility of back mutations.

D = C · B

G ≈ D̃,

P(B,C|G) ∝ P(G|B,C)P(B,C),

P(G|B,C) = P(G|D̃).

P(G|B,C) =
s

ns

i=1

m

j=1

P(Gi,j|D̃i,j)

ws

,
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A longitudinal clonal tree is an augmented clonal tree where nodes are duplicated 
for each sampling time ts since the first time a clone has been observed, are labeled 
with increasing time tags going from ts to the final experimental sampling time and 
same clones with consecutive times are joined.

Reproducing a longitudinal clonal tree from B is not a straight forward procedure. 
First, it should be noticed that observing a clone implies the usage of the knowledge 
coming from the clonal prevalence C. Second, if clones i is parent of clone j, than there 
is no guarantee the first observation time tv of clone i and the first observation time tw of 
clone j satisfy the relation tv ≤ tw.

To avoid spurious appearance of child clones before parent clones, LACE 2.0 checks 
the time tags of the longitudinal clonal tree with the order of the sampling times. In case 
of time reversal among two time tagged nodes, it adds a node to the longitudinal tree 
representing the parent clone with prevalence zero and with the smallest time tag of the 
two considered nodes. Compared to LACE, LACE 2.0 returns the augmented longitudi-
nal clonal tree with time tagged nodes corresponding to the measured sequential time 
points of the experiment without time reversal among parent–child nodes.

Longitudinal display

After the inference, the Shiny interface of LACE 2.0 allows one to visualize and inter-
act with the output cancer evolution model (Fig. 6). In detail, LACE 2.0 returns: (a) the 
longitudinal clonal tree (generated via Cytoscape.js [14]), (b) the fishplot (generated 
via TimeScape [15]), (c) a summary table in which the optimal values of false positive 
α and false negative β rates, the number of selected mutations and the number of single 
cells are displayed, for each time point. All plots are interactive and the properties of the 
distinct clones at any time are shown via mouse-over (e.g., clonal prevalence, distinctive 
mutations, etc.). Importantly, the genes hit by the mutations present in any given clone 
are highlighted and, by selecting their names, LACE 2.0 performs a direct query to the 
Ensembl gene annotation database [6], so as to facilitate any downstream analyses.

LACE 2.0 constraints and computational performance

The purpose of LACE 2.0 is to retrieve from data the most likely longitudinal clonal tree 
where the genotypes and their respective changes in prevalences during longitudinal 
experiments are due to driver mutations. Many of the filters proposed in the app have 
the scope to limit the number of non-driver mutational events passed to the clonal infer-
ence process. Indeed, passenger mutations, even though relevant for phylogenetic pur-
poses, tend to increase the number of clones which can cause overfitting, and do not 
necessarily explain fitness variations. LACE 2.0 allows the user to reduce the number 
of putative passenger mutations which are less indicative of prevalence variations. It is 
worth noting that passenger mutations, under the ISA, will tend to clusterize affecting 
only partially the bifurcation and the main structure of the clonal tree. Another exam-
ple is synonymous mutations in exonic regions which may induce selective advantage 
relative to codon usage bias or play functional roles in splicing and folding of mRNA or 
protein folding. Whether the functional effects of these mutations, mostly related to the 
quantitative production of proteins, have driver roles in the experiment or evolution of 
diseases, it is parametrically decided by the user.
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During variant calling, germline mutations should be filtered using a WT/normal 
reference, when available. If it is not possible, mutations with sufficiently low values 
of MAF can be selected during the LACE 2.0 pipeline to reduce common polymor-
phisms and germline mutations.

Filtering mutational events based on the minimum number of reads would imply 
neglecting possible noisy sequencing effects as PCR duplication errors or select-
ing events with a more supporting evidence signal. Nevertheless, some cautions are 
required to avoid results biased toward regions characterized by higher copy num-
ber or overexpression by choosing the minimum number of reads well below half the 
mean mapped read depth.

Further filters on the rate of NA values or depth are computed to the whole set of 
cells per time point and are used to further select fewer relevant mutational events.

Fig. 6  LACE 2.0  output. (Left) The longitudinal clonal tree of the BRAF-inhibitor treated melanoma PDX 
described in [16] is displayed. Nodes represent clones and edges either persistence or parental relations, 
and node size is proportional to clonal prevalence. (Right) LACE 2.0 also returns the fishplot, in addition to 
the summary table. The Shiny interface is fully interactive with each element reactive and the possibility of 
obtaining information from external databases such as Ensembl [6]
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LACE 2.0 is composed by a frontend part which allows to manage projects, filters 
and displays graphical output and by a backend part which executes the pipeline steps 
and the sanity checks.

Table 1  Names, default values, and validity range of the interface parameters for a given mean 
mapped read depth C 

Field name Value Range Variation

Alternate counts (field 3.1) 2 1 < x ≪ C/2 Higher values select events with more support-
ing ALT reads and remove PCR errors, but bias the 
results toward high CN/expressed genes.

MAF (field 3.2) 0.01 0 ≤ x < 0.5 Smaller values imply more rare events compared 
to the reference population.

Variant Frequency (field 3.3) 0.01 0 < x ≤ 1 Smaller values include less common mutations 
among cells in the experiment.

Minimum depth (field 4.1) 3 0 ≤ x ≪ C Bigger values imply more NA sites per time point.

Max missing value (field 4.2) 0.4 0 ≤ x ≤ 1 Higher values keep mutational sites for which 
larger number of cells has an NA value.

Minimum median depth (field 4.3) 8 1 ≤ x � C Bigger values keep only loci with bigger median 
coverage among cells.

Minimum alt median depth (field 4.4) 4 1 ≤ x � C Bigger values keep only mutations with more sup-
porting reads in the cell population.

Learning rate (field 5.1) 1 Higher values permit to avoid local minima, but 
are less accurate.

False positive rates (field 5.2) 0 < x < 1 Lower values imply more constraining data values.

False negative rates (field 5.3) 0 < x < 1 Lower values imply more constraining data values.

MCMC iterations (field 4.4) 10000 x > 1

Number of restart (field 5.5) 50 x ≥ 1

Early stopping (field 5.6) 500 x > 1

Table 2  Variant calling types of annotation supported by the back-end [9]

Annotation Explanation

Frameshift insertion An insertion of one or more nucleotides that cause frameshift changes in 
protein coding sequence

Frameshift deletion A deletion of one or more nucleotides that cause frameshift changes in 
protein coding sequence

Frameshift block substitution A block substitution of one or more nucleotides that cause frameshift 
changes in protein coding sequence

Stopgain A nonsynonymous SNV, frameshift insertion/deletion, nonframeshift inser-
tion/deletion or block substitution that lead to the immediate creation of stop 
codon at the variant site. For frameshift mutations, the creation of stop codon 
downstream of the variant will not be counted as “stopgain”!

Stoploss A nonsynonymous SNV, frameshift insertion/deletion, nonframeshift inser-
tion/deletion or block substitution that lead to the immediate elimination of 
stop codon at the variant site

Nonframeshift insertion An insertion of 3 or multiples of 3 nucleotides that do not cause frameshift 
changes in protein coding sequence

Nonframeshift deletion A deletion of 3 or multiples of 3 nucleotides that do not cause frameshift 
changes in protein coding sequence

Nonframeshift block substitution A block substitution of one or more nucleotides that do not cause frameshift 
changes in protein coding sequence

Nonsynonymous SNV A single nucleotide change that cause an amino acid change

Synonymous SNV A single nucleotide change that does not cause an amino acid change

Unknown Unknown function (due to various errors in the gene structure definition in 
the database file)
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Because the computational time is interleaved by user interactions with the app, the 
runtime measurements were split in three major lapses: annotation, depth computation 
(see Table  3) and clonal inference (see Table  4). Each run was repeated 15 times and 
averaged values per number of cells and number of mutations was reported. The tests 
were performed using 1000 MCMC iterations and 5 restarts on an

Intel(R) Xeon(R) Gold 6240 2.60 GHz Linux machine with 1 TB of RAM.

Discussion
Former releases of LACE do not use standard VCF and BAM formats as input of the 
clonal analyses. LACE [4] input was a list of samples for each time point such that an 
element is a matrix of dimension given by the number of cells pooled in the sample 
times with all the mutations observed and entries equal to 1, 0 or NA for observed, non-
observed mutations or insufficient reads cases, respectively. On the other hand, LACE 
2.0 allows the user to infer the SC longitudinal clonal tree starting from largely avail-
able formats which are outputs of many SC gold standard alignment and variant calling 
pipelines. Formerly, the derivation of putative drivers and relevant mutations was left 
out from the important inferential step, and users needed to adopt external independent 
procedures. Similarly, assignment of mutations to cells as noisy values were derived in 
pre-quality check routines. In the present release, starting from variant annotations and 
depth computation, the user can adopt various filters and selection thresholds in order 
to set SC mutations with low number of reads as not available data and discriminate sig-
nificant mutations for the understudied longitudinal mutational process.

The output of LACE was the cell attachment matrix and the clonal tree for the longi-
tudinal experiment represented by zeros whether clonal prevalences are null or 1 oth-
erwise. This could have generated some problems in the reconstruction of a mutational 
tree with the relation imposed by the time constraints of the experiment.

Table 3  Average runtimes over 15 times repetitions for different numbers of cells and numbers of 
mutations in seconds for annotation and depth computation

# cells Annotation Depth comp

20 2.35 64.59

40 4.38 111.96

60 6.51 163.75

Table 4  Inference average runtimes over 15 times repetitions for different sizes of the data matrix D̃

D̃(# cells, # mutations) 5 10 15

1200 3.1 6.4 25.3

D̃(# cells, # mutations) 15

120 4.2

600 13.8

1200 25.3
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LACE 2.0 returns an augmented longitudinal clonal tree comprehensive of the time 
tagging and edges which takes into account the time order of the samples, hence cor-
recting for possible misrepresentations of clones’ first appearance when clonal preva-
lences are zero.

Conclusions
In this work, we have presented the LACE 2.0 R package for the inference and interac-
tive visualization of cancer evolution models from longitudinal single-cell sequencing 
experiments. This tool provides an important step in the direction of a wider diffu-
sion of scalable and easy-to-use methods for single-cell analyses in cancer research, 
especially thanks to its graphical interface and the extremely limited programming 
skills required to perform any analysis. In fact, in a few well-defined data processing 
steps, it is possible to generate a high-resolution picture of the evolutionary history of 
a tumor and, most of all, explicitly assess the impact of any given therapy. Overall, we 
advocate the use of LACE 2.0 with already existing and widely available SC RNA-seq 
datasets of patient-derived models, so as to naturally integrate current analyses on 
gene expression profiles with those on the underlying clonal evolution.

Abbreviations
SC	� Single cells
SNVs	� Single nucleotide variants
ISA	� Infinite allele assumptios
BAM	� Binary alignment map
VCF	� Variant call format
PCR	� Polymerase chain reaction
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