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a b s t r a c t 

We propose a general, accurate and fast econometric approach for the estimation of affine option pricing 

models. The algorithm belongs to the class of Laplace-Type Estimation (LTE) techniques and exploits Se- 

quential Monte Carlo (SMC) methods. We employ functions of the risk-neutral cumulants given in closed 

form to marginalize latent states, and we address parameter estimation by designing a density tempered 

SMC sampler. We test our algorithm on simulated data by tackling the challenging inference problem of 

estimating an option pricing model which displays two stochastic volatility factors, allows for co-jumps 

between price and volatility, and stochastic jump intensity. Furthermore, we consider real data and esti- 

mate the model on a large panel of option prices. Numerical studies confirm the accuracy of our estimates 

and the superiority of the proposed approach compared to its natural benchmark. 
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. Introduction 

Modern option pricing models can replicate important features 

f asset price dynamics, such as stochastic volatility, co-jumps, and 

tochastic jump intensity. These more realistic modeling assump- 

ions, however, come at a cost. The complexity of the models has 

ignificantly increased with many unobserved factors, which makes 

he econometric estimation a complicated task. Therefore, standard 

ethods often fail to produce accurate results, for example, the 

ull frequentist approach suffers from likelihood approximation and 

ifficulties with the optimization procedure (i.e. local maxima). 

oreover, from a Bayesian perspective, it is not easy to design a 

ood proposal distribution in a Markov Chain Monte Carlo (MCMC) 

etting (see e.g. Fulop and Li, 2019 ). In addition, increased model 

omplexity requires the usage of more informative data rather than 

nly spot returns, which are not sufficient to pin down all the 

arameters in sophisticated models (see Fulop et al., 2015 ). For 

his reason, many authors started using data from derivatives mar- 

ets to conduct proper inference. This, however, introduces addi- 

ional estimation complexity due to the highly non-linear relation- 
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hip between option prices, static parameters, and latent states. In- 

eed, for optimal statistical inference, the ideal would be to di- 

ectly consider option panel data. Filtering techniques, which al- 

ow to jointly estimate latent states and parameters based on ob- 

erved option prices, however, are computationally demanding and 

heir extension to multifactor models is not trivial. For exam- 

le, Hurn et al. (2015) propose a particle filter to estimate the 

eston (1993) option pricing model using large cross-sections of 

ption prices, but the implementation is feasible only thanks to 

he usage of two supercomputers. Du and Luo (2019) show that 

n unscented Kalman filter approach can be used to simultane- 

usly handle spot and option prices under affine model specifica- 

ions. Nonetheless, to reduce the computational burden, they are 

orced to reduce the dataset to only one randomly selected matu- 

ity and three option prices per day (weekly data) with a signif- 

cant loss of information. Furthermore, Dufays et al. (2022) build 

 particle MCMC algorithm (see Andrieu et al., 2010 ) for the esti- 

ation of several one-factor option pricing models. The likelihood 

valuations in this particle filter approach are much faster thanks 

o the usage of the quantiles of the filtering density, but still com- 

utationally very expensive and difficult to extend to multifactor 

odels. 

In recent years, estimation approaches have been developed 

hich exploit alternative observation variables that efficiently 

ummarize information from option markets. In this regard, a 
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ery appealing estimation approach proposed by Feunou and 

kou (2018) uses risk-neutral cumulants, which can be computed 

rom option prices ( Bakshi et al., 2003 ) and capture the bulk of

nformation embedded in option prices. Under affine model speci- 

cations (see Duffie et al., 2003 ) risk-neutral cumulants have a lin- 

ar relationship with the state variables. This allows us to compute 

he quasi-likelihood function through a modified Kalman filter and 

o obtain parameter estimates through maximum likelihood op- 

imization. Recently, Orlowski (2021) introduced a further refine- 

ent based on alternative portfolios of options, which can be seen 

s functions of risk-neutral cumulants. Both approaches are highly 

elated and have several merits: i ) they are very general in the 

ense that they are applicable to all the affine multifactor models; 

i ) they are fast because model implied cumulants can be com- 

uted analytically; iii ) they are extremely accurate because they 

ncorporate information from the option market, which is neces- 

ary to pin down parameters governing the jump structure of the 

odel. However, their methods also show some limitations. Firstly, 

tatistical inference is based on likelihood optimization, which is 

ery tricky for models involving many parameters due to the pres- 

nce of multiple troublesome local maxima. This means that the 

nal output strongly depends on the initial input. Moreover, the 

essian matrix is usually unstable, exacerbating the calculation of 

he information matrix and, consequently, the standard errors. 

In this paper, we present a Quasi-Bayesian (QB) extension 

f the methods proposed in Feunou and Okou (2018) and 

rlowski (2021) which inherits the aforementioned merits and al- 

ows surmounting limitations. More specifically, we first integrate 

ut latent states using the modified Kalman filter. We then target 

he posterior of static parameters by running a density tempered 

MC sampler in the spirit of Del Moral et al. (2006) and Duan and

ulop (2015) . Since we perform the marginalization step with a 

uasi-likelihood procedure, our econometric approach leads to a 

aplace-type Estimator (LTE), which has been studied in its general 

ormulation by Chernozhukov and Hong (2003) and proved to be 

seful in many applications (see e.g. Todorov, 2011; Ruge-Murcia, 

012 ). Compared to the method of Feunou and Okou (2018) our 

pproach can be considered as a more efficient global optimizer 

nd offers several advantages in estimating complex option pric- 

ng models. First, the SMC sampler favors likelihood tempering, 

hich means that the algorithm does not get stuck in local max- 

ma. Second, the calculation of any statistics of the posterior (e.g. 

tandard errors, confidence intervals, etc.) is straightforward since 

e can use results from Chernozhukov and Hong (2003) to give a 

lassical interpretation to our simulation-based output. 1 In partic- 

lar, from the quasi-posterior distribution we can provide consis- 

ent estimates of model parameters (through the quasi-posterior 

ean) and a sandwich estimator for the asymptotic variance- 

ovariance matrix. Third, given that we perform the marginal- 

zation step using a Kalman filter algorithm, we gain consider- 

ble computational speed compared with Bayesian alternatives like 

CMC methods (see e.g. Eraker, 2004 ) and SMC 

2 -type algorithms 

see e.g. Chopin et al., 2013; Fulop and Li, 2013; Fulop and Li, 

019 ). 

To illustrate our methodology, we consider an affine dynamic 

sset pricing model that allows for two stochastic volatility factors, 

tochastic jump intensity and co-jumps between price and volatil- 

ty. This model incorporates many popular models as special cases. 

e want to point out, however, that our proposed method is very 

eneral and can be potentially applied to any other affine multi- 

actor model. Before moving to real data applications we perform 
1 We remark that the resulting quasi-posterior is not a valid posterior distribu- 

ion. Consequently, we are not allowed to use the finite sample posterior as a mea- 

ure of uncertainty. However, we can follow Chernozhukov and Hong (2003) and 

erive the asymptotic distribution to conduct proper inference. 

p

a

q

m

m

2 
xtensive Monte Carlo studies to check the accuracy, efficiency, 

nd stability of the proposed approach. Compared to the classical 

uasi-likelihood optimization approach, our new global optimizer 

llows us to obtain more reliable and very stable parameter esti- 

ates. 

Then we apply our methodology to real data. We construct 

istorical time series ranging between 05 December 2007 and 

4 March 2021 of functions of risk-neutral cumulants of the log- 

eturns with maturity in 1 , 2 , 3 , 6 , 9 , and 12 months. We show that

he proposed estimation methodology works well in practice. It 

roduces realistic parameters and filtered factors. A comprehen- 

ive econometric analysis of our results highlights the great sta- 

ility of our methodology, as shown by the acceptance rates ob- 

ained during the resample-move steps. The quasi-posterior distri- 

utions of static parameters exhibit good convergence, with tight 

onfidence intervals, due to the efficient tempering procedure. 

ence, we find that condensing the information contained in op- 

ion prices into risk-neutral cumulants is an effective way to con- 

uct statistical inference on jump-diffusion option pricing mod- 

ls. It allows drastically reducing the computational effort (com- 

ared to competing methods that directly use option prices), with- 

ut loss of information. We then compare pricing errors obtained 

hrough the proposed methodology with those of the plain quasi 

og-likelihood optimization (used as a benchmark) and find that 

ur approach is more accurate with a sensible reduction of the root 

ean squared pricing errors across the various strikes and matu- 

ities. In summary, numerical results document that the proposed 

pproach outperforms the benchmark in several aspects: i ) accu- 

acy and ease of computation of the standard errors; ii ) accuracy 

n the parameter estimates; iii ) computing time; i v ) significant re- 

uction of the option pricing errors, even for a smaller computing 

ime. 

Additional empirical studies show that our main model specifi- 

ation outperforms a nested model in terms of log-likelihood and 

igher-order risk-neutral moments matching, which confirms the 

mportance of introducing more than one volatility factor. More- 

ver, we highlight the importance of including measures of the 

isk-neutral kurtosis as additional observed variables for parameter 

stimation to properly track observed time series of option prices; 

specially during periods of financial crises. Finally, we show how 

o estimate the evolution of implied risk premia based on our new 

pproach. 

The paper is organized as follows. In Section 2 we present the 

ption pricing model that we consider for numerical experiments 

hroughout the paper, and we detail our econometric approach. 

ection 3 contains an illustrative example on simulated data. In 

ection 4 we apply our methodology to a large panel of option 

rices, and we discuss the economic implications of the estimated 

arameters and latent factors. In Section 5 we compare the perfor- 

ance of our approach with its natural benchmark, i.e., the Quasi 

aximum Likelihood Estimation (QMLE) approach in Feunou and 

kou (2018) , and we present some additional empirical studies. 

ection 6 concludes the paper with some final remarks. 

. Econometric Method 

In this section we detail our econometric approach. We start 

y introducing the model setup which is used as an example 

hroughout this paper. Then we review the concept of replicat- 

ng risk-neutral moments (equivalently, cumulants) using suitable 

ortfolios of options and the computation of cumulants under 

ffine models. Based on this, we introduce a methodology for 

uasi-likelihood evaluation. Finally, we propose a new QB particle 

ethod which serves as an efficient global optimizer for the esti- 

ation of model parameters. 
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.1. Model 

To illustrate our econometric approach we consider 

n extension of the Double Heston model proposed in 

hristoffersen et al. (2009) , with simultaneous jumps in the 

ariance and price process, and stochastic jump intensity. We 

efer to this model as Double Jump Double Volatility Stochastic 

ntensity (DJDVSI) model. Let (�, F , (F t ) t∈ [0 ,T ] , Q ) be a filtered

robability space, which supports all the processes we encounter 

n the sequel. Under the risk-neutral measure Q the dynamics 

f the log-returns X t = ln (S t /S 0 ) , where S t is the asset price at

ime t , is defined by the following system of stochastic differential 

quations: 

X t = (r − 0 . 5(V 1 t + V 2 t ) − λt μ
� ) d t + 

√ 

V 1 t d W 

x 
1 t + 

√ 

V 2 t d W 

x 
2 t + J x d N t , (1) 

V 1 t = k 1 (θ1 − V 1 t ) dt + σ1 

√ 

V 1 t dW 

v 
1 t , (2) 

V 2 t = k 2 (θ2 − V 2 t ) dt + σ2 

√ 

V 2 t dW 

v 
2 t + J v dN t , (3) 

λt = k λ(θλ − λt ) dt + σλ

√ 

λt dW 

λ
t . (4) 

here r is the riskfree rate and μ� = e 
μJ +0 . 5 σ 2 

J − 1 is the convex- 

ty adjustment for the jump component. In this specification the 

og-return process (1) consists of three independent martingales: 

wo diffusive components and a jump component. In particular, V 1 t 
nd V 2 t are the two factors driving the instantaneous variance and 

hey evolve as CIR ( Cox et al., 1985 ) processes (with jumps in V 2 t )

ith E [ d W 

x 
t d W 

v 
1 t 

] = ρ1 d t , E [ d W 

x 
t d W 

v 
2 t 

] = ρ2 dt , which allow to cap-

ure the so-called leverage effect. In order to model abrupt changes 

e consider a compound Poisson process, where J x ∼ N (μJ , σ
2 
J ) 

ictates the amplitude of a price jump, while J v ∼ Exp (μv ) is an 

xponentially distributed random variable ( J x and J v are indepen- 

ent of all the other sources of randomness). The number of jumps 

s N t ∼ Poisson 

(∫ t 
0 λs ds 

)
, where λt denotes the stochastic jump in- 

ensity which is given by (4) . It is well documented in the liter-

ture (see Fulop et al., 2015; Fulop and Li, 2019; Bardgett et al., 

019 among others) that sudden changes in equity returns and 

arge movements in the variance are likely to occur at the same 

ime. In line with the literature, we therefore choose to gener- 

te asset and variance jumps from the same counting process. 

inally, the total variance of the stock returns is given by (cfr. 

hristoffersen et al., 2009 , Formula 6) 

 t d t = Var [ d S t /S t ] = (V 1 t + V 2 t ) dt + (μ2 
J + σ 2 

J ) λt dt. 

As we outline later in this section, in order to implement 

ur methodology we need to derive the risk-neutral Cumu- 

ant Generating Function (CGF) of log-returns. The following 

roposition 1 shows the Moment Generating Function (MGF) as the 

olution of a system of Ordinary Differential Equations (ODE). The 

GF is then simply obtained by taking the logarithm of the MGF. 

roposition 1. Given a final date T > t and the time to maturity τ =
 − t, the moment generating function of X T is 

 

Q [ e uX T |F t ] = exp { uX t + A (u, τ ) + B (u, τ ) V 1 t + C(u, τ ) V 2 t + D (u, τ ) λt } 
(5) 

here the functions A, B, C and D solve the system of ODEs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂A (u,τ ) 
∂τ

= ru + k 1 θ1 B (u, τ ) + k 2 θ2 C(u, τ ) + k λθλD (u, τ ) , 

∂B (u,τ ) 
∂τ

= − 1 
2 
(u − u 

2 ) − (k 1 − ρ1 σ1 u ) B (u, τ ) + 

1 
2 
σ 2 

1 B 

2 (u, τ ) , 

∂C(u,τ ) 
∂τ

= − 1 
2 
(u − u 

2 ) − (k 2 − ρ2 σ2 u ) C (u, τ ) + 

1 
2 
σ 2 

2 C 
2 (u, τ ) , 

∂D (u,τ ) 
∂τ

= −k λD (u, τ ) + 

1 
2 
σ 2 

λ
D 

2 (u, τ ) + 

(
e 

uμJ + u 2 σ2 
J 

/ 2 

1 −C(u,τ ) μv 
− 1 

)
−(e μJ + σ 2 

J / 2 − 1) u 

(6) 
3 
ith initial conditions A (u, 0) = B (u, 0) = C(u, 0) = D (u, 0) = 0 . 

roof. See Appendix A . �

This model specification incorporates as special cases many 

ffine specifications proposed in the option pricing literature (e.g. 

eston, 1993, Bates, 1996, Duffie et al., 20 0 0, Christoffersen et al., 

009, Wachter, 2013 ). However, in our econometric framework it is 

lso straightforward to consider other affine option pricing model 

pecifications such as pure jump variance processes ( Barndorff- 

ielsen and Shephard, 2001, Bernis et al., 2021 ), time changed Lévy 

rocesses ( Carr et al., 2003 ), stochastic interest rates and other 

ultifactor models (for example Andersen et al., 2015, Gonzato and 

garra, 2021 ). 

.2. Risk-Neutral Cumulants 

The proposed estimation methodology is based on the idea 

f condensing the information from option data into measures 

f risk-neutral variance, skewness, and kurtosis. To this aim, we 

rst show how such measures can be constructed in a model-free 

anner by using the informative option portfolios proposed by 

eunou and Okou (2018) and Orlowski (2021) . We then compute 

he corresponding measures in the present affine model. This pro- 

ides the basic tools for implementing the modified Kalman filter 

hich we introduce later in this section. 

First, we compute the following measures of the variance, 

kewness, and kurtosis of log-returns from option panels accord- 

ng to (cfr. Orlowski, 2021 ) 

ˆ 
 

var 
t,τ = −2 

∫ 10 S t 

0 

p t ( ̂  σIV (K , τ )) 
∂ 2 

∂K 

2 

(
log 

K 

F t 

)
dK , (7) 

ˆ 
 

skew 

t,τ = −3 

∫ 10 S t 

0 

p t ( ̂  σIV (K, τ )) 
∂ 2 

∂K 

2 

((
log 

K 

F t 

)2 

+ 2 log 
K 

F t 

)
dK, (8) 

ˆ 
 

kurt 
t,τ = −4 

∫ 10 S t 

0 

p t ( ̂  σIV (K, τ )) 
∂ 2 

∂K 

2 

((
log 

K 

F t 

)3 

+3 

((
log 

K 

F t 

)2 

+ 2 log 
K 

F t 

))
dK, (9) 

here τ is the option maturity, F t = S t e 
rτ is the forward index 

evel, and S t is the time t price of the underlying. ˆ σIV (K, τ ) and 

p t ( ̂  σIV (K, τ )) are the implied volatility and the corresponding price 

f a put (respectively, call) option with maturity τ and strike K ≤ F t 
 K > F t ). 

Next, we show how to compute model implied measures of 

ariance, skewness, and kurtosis. We consider model-implied cu- 

ulants which can be computed by taking the n -th derivative of 

he CGF of log-returns. Indeed, if we denote by V 1 t , V 2 t , and λt the

actors on which the distribution of X t depends in the model (1) –

4) , the conditional CGF of log-returns in the affine setting is 

(u ; τ ) = uX t + A (u, τ ) + B (u, τ ) V 1 t + C(u, τ ) V 2 t + D (u, τ ) λt , 

(10) 

here A (·) , B (·) , C(·) , and D (·) solve the system of ODEs given in

roposition 1 . It is then possible to retrieve model-implied cumu- 

ants by taking the corresponding derivatives evaluated at u = 0 . 

e get 

UM 

(n ) 
t,τ = 

∂ n ψ(u ; τ ) 

∂u 

n 

∣∣∣
u =0 

= IX t + 

∂ n A (u, τ ) 

∂u 

n 

∣∣∣
u =0 

+ 

∂ n B (u, τ ) 

∂u 

n 

∣∣∣
u =0 

V 1 t 

+ 

∂ n C(u, τ ) 

∂u 

n 

∣∣∣ V 2 t + 

∂ n D (u, τ ) 

∂u 

n 

∣∣∣ λt , (11) 

u =0 u =0 
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here I is equal to 1 when n = 1 and equal to 0 otherwise.

quation (11) can be solved explicitly in affine models. This fact 

s very important: model-implied cumulants are obtained through 

nalytical formulas, with the consequence that they are computed 

n few milliseconds (no numerical methods or special functions are 

nvolved) and exactly (no approximations are required at any step). 

his constitutes a significant advantage over alternative methods 

hich consider option prices as observations and involve time con- 

uming numerical techniques such as numerical solutions to ODE 

ystems or characteristic function inversion (e.g. the unscented 

alman filter proposed in Du and Luo, 2019 ). In this way, the fil-

ering procedure can be accelerated and is prevented from possible 

umerical malfunctions. 2 

To avoid illegible long mathematical expressions, we do not re- 

ort the analytical solution of (11) , but instead provide a Matlab®

ode for the (symbolic) calculation of the quantities ∂ n A (u,τ ) 
∂u n 

∣∣∣
u =0 

, 

∂ n B (u,τ ) 
∂u n 

∣∣∣
u =0 

, ∂ n C(u,τ ) 
∂u n 

∣∣∣
u =0 

and 

∂ n D (u,τ ) 
∂u n 

∣∣∣
u =0 

for the model (1) –(4) for 

 = { 1 , 2 , 3 } in Appendix B . In Appendix C , we discuss the possibil-

ty of extending this approach to the symbolic computation of the 

equired slopes to other affine option pricing models, with partic- 

lar attention to models with self-exciting jump intensity. Finally, 

odel implied measures of variance, skewness, and kurtosis are 

iven by: 

c var 
t,τ = −2 CUM 

(1) 
t,τ

 

skew 

t,τ = −3 

(
CUM 

(2) 
t,τ + 2 CUM 

(1) 
t,τ

)
, 

c kurt 
t,τ = −4 

(
CUM 

(3) 
t,τ + 3 

(
CUM 

(2) 
t,τ + 2 CUM 

(1) 
t,τ

))
. 

(12) 

.3. State-Space Formulation 

In this section we show how to cast the DJDVSI model into a 

iscrete time state-space model in a similar way as Feunou and 

kou (2018) . Let us define c t = (c var 
t,τ , c skew 

t,τ , c kurt 
t,τ ) � and c mkt 

t =
 ̂ c var 

t,τ , ̂  c skew 

t,τ , ̂  c kurt 
t,τ ) � . For a given day t we observe risk-neutral mea- 

ures of variance, skewness, and kurtosis at J different maturities. 

quations (11) and (12) imply that c t is linearly related to the 

 × 1 vector of latent factors F t = (V 1 t , V 2 t , λt ) 
� . Thus, the measure-

ent equation of our state-space model is 

 t = �0 + �1 F t + ηt , (13) 

here �0 and �1 are 3 J × 1 and 3 J × 2 matrices of coefficients de-

ending on the solution of the derivatives in (11) and the represen- 

ation in (12) . Further, ηt ∼ N (0 , �) where � is a 3 J × 3 J diagonal

ovariance matrix. 

The transition equation is obtained from a simple Euler approx- 

mation with step size 
t of the continuous-time system (2) –(4) 

nd it is defined as 

 t = �0 + �1 F t−1 + ε t , (14) 

here �0 and �1 are 3 × 1 and 3 × 3 matrices of coefficients. The 

ransition noise is ε t ∼ N (0 , �(F t−1 )) , where ε t is independent of

t and �(F t−1 ) = Cov (F t−1 ) is the conditional covariance of F t−1 . 

he complete expressions for � and � are 
0 1 

2 We remark that advanced particle filters considering option prices as observed 

ariables are also available. Nevertheless, the likelihood function depends on model 

mplied option prices, meaning that for each likelihood evaluation we have to cal- 

ulate option prices along three dimensions: for each option (with different strikes 

nd maturities), for each particle, and for each day. This is computationally infeasi- 

le due to the necessity of using time consuming numerical techniques to compute 

ption prices. 

a  

l

t

w

d

(

4 
0 = 
t 

[ 

k 1 θ1 

k 2 θ2 

k λθλ

] 

, �1 = I 2 + K 1 , K 1 = 
t 

[ −k 1 0 0 

0 −k 2 μv 
0 0 −k λ

] 

,

(15) 

here I 3 is a 3 × 3 identity matrix. Moreover, the transition noise 

as the following conditional covariance matrix 

(F t−1 ) = Cov (F t−1 ) 

= 
t 

⎡ 

⎢ ⎣ 

σ 2 
1 V 1 ,t−1 0 0 

0 σ 2 
2 V 2 ,t−1 + 2 μ2 

v λt−1 0 

0 0 σ 2 
λ
λt−1 

⎤ 

⎥ ⎦ 

. (16) 

Note that the standard Kalman filter is not optimal in this set- 

ing because the conditional covariance Cov (F t−1 ) depends on the 

tate itself. Hence, we implement a modified Kalman filter, where 

he transition noise at time t − 1 is used as an estimate for the 

ime t iteration. If we define F t| t = E [ F t ] and P t| t = Cov [ F t ] , the re-

ursions of the filter are 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F t+1 | t = �0 + �1 F t| t 
P t+1 | t = �1 P t| t �� 

1 + �(F t| t ) 
c t+1 | t = �0 + �1 F t+1 | t 
M t+1 | t = �1 P t+1 | t �� 

1 + �

F t +1 | t +1 = max 

(
F t+1 | t + P t+1 | t �� 

1 M 

−1 
t+1 | t 

(
c mkt 

t+1 
− c t+1 | t 

)
, 0 

)
P t +1 | t +1 = P t+1 | t − P t+1 | t �� 

1 M 

−1 
t+1 | t �1 P t+1 | t 

(17) 

nd the Gaussian quasi log-likelihood is given by 

1 

2 

T ∑ 

t=1 

ln 
(
(2 π) 3 J det (M t | t −1 ) 

)
+ 

(
c mkt 

t − c t | t −1 

)� 
M 

−1 
t | t −1 

(
c mkt 

t − c t | t −1 

)
. 

(18) 

he properties of the aforementioned modified Kalman filter are 

iscussed in Monfort et al. (2017) and the accuracy of the proposed 

ltering method is investigated in Appendix D . 

.4. A Quasi-Bayesian Particle Method 

To conduct inference, we rely on Sequential Monte Carlo (SMC) 

ethods. Denote the vector of model parameters by � and all ob- 

ervations and hidden states up to time t by y 1: t = { c mkt 
t } T 

t=1 
and

 1: t = { V 1 t , V 2 t , λt } T t=1 
, respectively. The joint posterior of parame-

ers and hidden states p(�, x 1: t | y 1: t ) can then be decomposed as 

ollows 

p(�, x 1: t | y 1: t ) = p(x 1: t | �, y 1: t ) p(� | y 1: t ) , (19)

here p(x 1: t | �, y 1: t ) results from the state filtering problem, and 

p(� | y 1: t ) enables parameter estimation. This suggests a hierar- 

hical structure in which the first task is solved using a modified 

alman filter (outlined in Section 2.3 ) and the second task is ad- 

ressed using simulation-based techniques, which we explain be- 

ow. Given the high information content of option data and the 

omplex structure of state of the art asset pricing models, there is 

 close link between latent states and fixed parameters. This means 

hat MCMC methods would lead to highly correlated draws and a 

ery slow mixing of the chain ( Fulop and Li, 2019 ). For this rea-

on we target the posterior distribution of static parameters with 

n SMC sampler as in Del Moral et al. (2006) and Duan and Fu-

op (2015) . Applying Bayes’ rule allows us to decompose the pos- 

erior distribution of static parameters as follows 

p(� | y 1: t ) ∝ p(y 1: t | �) p(�) , (20) 

here p(y 1: t | �) is the likelihood function, and p(�) is the prior 

ensity. This decomposition suggests that given a set of parameters 

obtained from a prior density) we get an approximation ˆ p (y | 
1: t 
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) of p(y 1: t | �) and ˆ p (x 1: t | �, y 1: t ) of p(x 1: t | �, y 1: t ) with the

odified Kalman filter. We then sample p(� | y 1: t ) by using a den- 

ity tempered SMC sampler. We start from an easy-to-sample dis- 

ribution, and we then gradually approach the target through a se- 

uence of densities. In particular, we construct a sequence of P 

ensities between the prior and the posterior using a tempering 

equence γi , i = 1 , . . . , P for γ1 = 0 and γP = 1 and 

i (�) = 

ηi (�, y 1: T ) ∫ 
ηi (�, y 1: T ) d�

, ηi (�) = 

ˆ p i (y 1: T | �) γi p(�) , (21) 

here πi (�) represents the intermediate posterior at iteration i , 

nd ˆ p i (y 1: T | �) γi is the (tempered) likelihood estimated by a mod- 

fied Kalman filter. To move from πi (�) to πi +1 (�) , we reweigh 

ach particle by ˆ p i (y 1: T | �(n ) ) γi +1 −γi for n = 1 , . . . , N . Here N is the

umber of parameter particles and to each particle corresponds a 

ifferent vector of parameters �(n ) . The tempering coefficients are 

hosen to ensure sufficient particle diversity. This can be done by 

 grid search, where the Effective Sample Size (ESS) 3 is evaluated 

t the grid points of γ , and the one with the ESS closest to a fixed

onstant is selected. At this stage, it is essential to avoid particle 

mpoverishment. First, we resample particles proportional to their 

eights to obtain an equally weighted set. Using a Markov kernel, 

e then shift the particles to enrich the support without changing 

he distribution of the particles. 

Since using an approximated filter yields a marginal quasi- 

ikelihood approximation, our approach departs from the pseudo- 

arginal framework. Instead, we assume a QB setting, also known 

s LTE. We emphasize again that we may not use the estimated 

uasi-posterior distribution to conduct inference. However, we can 

asily derive the asymptotic distribution for this purpose. In par- 

icular, to give our simulation results a classical interpretation, we 

ompute the quasi-posterior mean as a consistent estimate of true 

arameters and the sandwich covariance matrix as a measure of 

ncertainty. The asymptotic distribution of the estimator is then 

iven by 

˜ ∼ N 

(
ˆ �, J( ̂  �) −1 �( ̂  �) J( ̂  �) −1 

)
, (22) 

here ˆ � is the quasi-posterior mean. J( ̂  �) −1 is the inverse Hessian 

nd can be estimated from the covariance of the quasi-posterior 

istribution, and �( ̂  �) denotes the covariance of the scores which 

an be estimated by running the modified Kalman filter at the 

uasi-posterior mean (see Chernozhukov and Hong, 2003 for more 

etails). 

In the next section, we show that our QB-SMC sampler per- 

orms very well on a challenging problem from the option pricing 

iterature. 

. Illustrative Example on Simulated Data 

To illustrate the performances of our estimation approach, we 

roceed with a test on simulated data. For this experiment, we 

x model parameters close to those estimated in the literature on 

imilar models. We discretize the SDEs in (2) –(4) using the Euler 

cheme (see Section 2.3 ) with daily time steps. Based on this, we 

imulate 30 times the latent factors for a total of 3780 observa- 

ions, mimicking 15 = 3780 / 252 years of daily data. From the paths

f V 1 , V 2 and λ, we recover the (simulated) time series of the sec-

nd and third risk-neutral cumulants from (11) for the following 

ix maturities: τ ∈ { 1 , 2 , 3 , 6 , 9 , 12 } months. Next, following the lit-

rature (e.g. Li and Zinna, 2018; Fulop and Li, 2019; Du and Luo, 

019 ), we generate the observation error from a Gaussian random 

ariable with zero mean and diagonal covariance matrix � = σ 2 
e I 3 J , 
3 This quantity is defined by ESS = ( 
∑ N 

n =1 s 
(n ) 
i 

) 2 / 
∑ N 

n =1 (s (n ) 
i 

) 2 , where s (n ) 
i 

is the 

eight attached to the n -th particle at iteration i . c

5 
here σe is the standard deviation of the pricing error. At the end 

f this procedure, we have 30 simulated time series (for a 15-year 

eriod with daily observations) of risk-neutral cumulants for six 

ifferent maturities. 

For each dataset, we run our QB-SMC sampler and the QMLE 

ethod based on the numerical maximization in (18) for bench- 

ark comparison. We run our density tempered SMC sampler us- 

ng N = 20 0 0 particles. Given the complex form of the likelihood,

e simply give Normal priors to all parameters, but we consider 

runcated Normal priors to respect the domain of some parame- 

ers, see Table 1 . The hyperparameters of the prior distributions 

re chosen to be consistent with those estimated in the recent lit- 

rature (see e.g. Fulop and Li, 2019; Du and Luo, 2019 ). 

In the resample-move step, we use a Gaussian random 

alk proposal and move the parameters as one block using a 

etropolis-Hastings (MH) kernel. More precisely, after resampling, 

e rejuvenate the particles’ population by proposing new param- 

ters from a Gaussian random walk proposal. To compute the MH 

cceptance rate, we then run the modified Kalman filter for each 

ew set of parameters using all observations. The mean and covari- 

nce of the proposal distribution are fitted to the actual particles’ 

opulation. We further increase the efficiency of the MCMC step 

y adjusting the scale of the proposal to obtain an acceptance rate 

etween 0.2 and 0.4. The resample-move step is triggered when- 

ver the ESS is below N/ 2 , and we continue to move as long as the

umber of unique particles is below a threshold N/ 2 . 

To obtain reliable estimates for the QMLE method, we generate 

 = 30 0 0 0 random model parameters from the priors in Table 1 .

e compute the quasi log-likelihoods in (18) for each of them, and 

se the 5 sets of parameter with the highest quasi log-likelihood 

s initial points for the numerical maximization. Finally, the pa- 

ameter set with the highest quasi log-likelihood is used as final 

stimate of the QMLE method (this procedure is similar to that 

sed in Li and Yin, 2014 and Yeap et al., 2018 ). 4 The number of

andom model parameter sets and the number of initial points for 

he optimization are chosen so that the average execution time of 

MLE and QB-SMC methods is similar (see below), which allows a 

air comparison in terms of accuracy. More specifically, the average 

omputational time for one run of the QB-SMC algorithm in this 

xperiment is 24.78 minutes, while one run of the QMLE takes 27 

inutes. All computations were performed on a desktop HP Elit- 

Desk 800 G5 PC. 5 

We collect estimates from both methods and evaluate the accu- 

acy. Let us denote by ˆ �i the posterior mean of parameters for the 

 -th dataset and with �� the vector of the true parameters. Mean 

nd Root Mean Squared Error (RMSE) are computed as 

ean = 

1 

30 

30 ∑ 

i =1 

ˆ �i , RMSE = 

√ 

1 

30 

30 ∑ 

i =1 

( ̂  �i − �� ) 2 . 

Results are given in Table 2 along with the true parameter val- 

es. The results document that for our proposed method, the av- 

rage of the parameter estimates is close to the true value for 

ll the parameters. Hence, our QB-SMC method outperforms the 

MLE approach overall with superior performances in terms of 

ias (i.e. the difference between mean and true values) and RMSE 

or all parameters (except for σ1 , where the differences are small 

nyway). This is particularly evident for those parameters which 

re notoriously difficult to estimate, such as ρ1 , ρ2 , k λ, θλ, σλ, μJ 

nd σJ (see e.g. Eraker, 2004; Andersen et al., 2015 ). The QMLE 

ethod produces much higher RMSEs, which is due to the pres- 

nce of multiple local maxima. In fact, the gradient-based opti- 
4 Maximization is implemented using the built-in Matlab® function fmincon . 
5 In the QB-SMC algorithm, the modified Kalman filter runs in parallel on 8 CPU 

ores. 
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Table 1 

Priors specification. 

� Dist Support (μ0 , σ0 ) � Dist Support (μ0 , σ0 ) 

k 1 Tr. Normal (0 , ∞ ) (6.00, 3.00) θλ Tr. Normal (0 , ∞ ) (1.50, 2.00) 

θ1 Tr. Normal (0 , ∞ ) (0.01, 0.10) σλ Tr. Normal (0 , ∞ ) (2.00, 2.00) 

σ1 Tr. Normal (0 , ∞ ) (0.50, 1.00) μv Tr. Normal (0 , ∞ ) (0.025, 0.05) 

ρ1 Tr. Normal (−1 , 1) (-0.50, 0.50) μJ Normal (−∞ , ∞ ) (-0.02, 0.05) 

k 2 Tr. Normal (0 , ∞ ) (6.00, 3.00) σJ Tr. Normal (0 , ∞ ) (0.03, 0.05) 

θ2 Tr. Normal (0 , ∞ ) (0.01, 0.10) σe 1 Tr. Normal (0 , ∞ ) (0.10, 0.10) 

σ2 Tr. Normal (0 , ∞ ) (0.50, 1.00) σe 2 Tr. Normal (0 , ∞ ) (0.10, 0.10) 

ρ2 Tr. Normal (−1 , 1) (-0.50, 0.50) σe 3 Tr. Normal (0 , ∞ ) (0.10, 0.10) 

k λ Tr. Normal (0 , ∞ ) (6.00, 2.00) 

Table 2 

Mean and RMSE of the parameter estimates from 30 Monte 

Carlo simulations for the QB-SMC and QMLE. Values in green 

indicate the best performance, values in red denote the worst 

performance. 

QB-SMC QMLE 

� True Mean RMSE Mean RMSE 

k 1 10.50 10.3242 0.2709 10.2673 2.5466 

θ1 0.03 0.0295 0.0006 0.0450 0.0313 

σ1 0.40 0.3841 0.0185 0.3972 0.1373 

ρ1 -0.50 -0.5317 0.0354 -0.5503 0.2232 

k 2 1.10 1.1023 0.0046 0.8289 0.4419 

θ2 0.02 0.0219 0.0021 0.0472 0.0425 

σ2 0.15 0.1497 0.0023 0.1594 0.0539 

ρ2 -0.80 -0.8067 0.0146 -0.7012 0.1880 

μv 0.05 0.0502 0.0002 0.0649 0.0247 

k λ 0.65 0.6517 0.0071 0.9807 0.9229 

θλ 5.75 5.7220 0.0439 5.0754 1.8179 

σλ 2.66 2.6538 0.0085 1.7609 1.3153 

μJ -0.04 -0.0400 0.0001 -0.0555 0.0268 

σJ 0.05 0.0501 0.0001 0.0407 0.0188 
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Table 3 

Run-time accuracy profiles of QB-SMC and QMLE methods on simu- 

lated data. Time is expressed in minutes, the log-likelihood is computed 

given the estimated parameters. Both results correspond to the average 

across 10 repetitions on the same simulated dataset. The true quasi log- 

likelihood is 3.8840E+05. 

QB-SMC QMLE 

N time log-like M time log-like 

500 7.95 3.8827E + 05 10 000 11.23 3.4304E + 05 

1000 16.09 3.8830E + 05 20 000 19.97 3.4803E + 05 

1500 19.38 3.8836E + 05 30 000 27.01 3.5355E + 05 

2000 24.78 3.8838E + 05 40 000 35.37 3.5411E + 05 
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6 For more details on the implementation of these formulas we refer to Orlowski 

(2021 , Section 4.3). 
ization strongly depends on the initial point supplied. This trans- 

ates into a larger variance in the parameter estimates, which is 

eflected in the higher RMSEs. To reduce RMSEs, the number of 

ligible starting points would have to be increased, but this can 

nly be achieved at the cost of increased computational effort. In 

ontrast, the QB-SMC method does not suffer from the presence of 

ocal maxima, and the final parameter estimates are close to each 

ther across the 30 simulations (as indicated by the smaller RM- 

Es). As a consequence, this method appears to be more robust 

nd suitable for real data applications. 

Finally, to better illustrate the superior performances of the pro- 

osed method, we perform the following experiment. We gener- 

te a single simulated dataset as described above and compute the 

rue (quasi) log-likelihood as in (18) . Then we estimate the model 

n this single dataset 10 times for N ∈ { 50 0 , 10 0 0 , 150 0 , 20 0 0 }
or QB-SMC and M ∈ { 10 0 0 0 , 20 0 0 0 , 30 0 0 0 , 40 0 0 0 } for QMLE. For

he latter, we consider the 5 parameter sets with the highest log- 

ikelihood as initial points for the numerical optimization. We then 

ake the average (over the 10 repetitions) of the time required to 

erform the estimation and of the quasi log-likelihood in agree- 

ent with the estimated parameters. The difference between the 

rue (quasi) log-likelihood and the average estimated log-likelihood 

easures the accuracy of the methodology. The results are re- 

orted in Table 3 and are striking. The proposed QB-SMC approach 

utperforms the QMLE method in terms of both running time and 

ccuracy. 

. Empirical Estimation 

In this section, we apply the proposed methodology to esti- 

ate the model in (1) –(4) on real data. We start by describing 

ow the historical time series of observed risk-neutral measures of 
6 
ariance, skewness, and kurtosis are built from option quotes. We 

hen present estimation results and performances of the method 

n terms of parameter convergence, statistical efficiency, and latent 

actor filtering. A discussion on estimated parameters is deferred to 

he next section, where we compare our results to a nested model 

nd to a benchmark estimation method. 

.1. Data 

Our empirical analysis is based on the construction of model- 

ree risk-neutral measures of variance, skewness, and kurtosis for 

arious maturities. OptionMetrics® provides historical time series 

f implied volatility surfaces for the S&P 500. We consider daily 

bservations from 05 December 2007 to 04 March 2021 for a to- 

al of 3457 days and compute ˆ c var 
t,τ , ˆ c skew 

t,τ and ˆ c kurt 
t,τ as in (7) –(9) . 6 

ur dataset contains a similar number of observations as the one 

n Feunou and Okou (2018) but more recent data. This allows us 

o consider not only the 20 08/20 09 global financial crisis, but also 

ther important periods of financial turmoils like the European 

ebt crisis of 2009–2013 and the COVID pandemic of 2020–2021. 

onsidering the following fixed maturities τ ∈ { 1 , 2 , 3 , 6 , 9 , 12 } (ex-

ressed in months), we end up with 3457 observations of ˆ c var 
t,τ , 

ˆ  skew 

t,τ , ˆ c kurt 
t,τ on six different maturities, i.e., 3457 × 3 × 6 = 62226 to- 

al observations. Historical time series of the estimated risk-neutral 

umulants are reported in Figure 1 . We report summary statistics 

n Table 4 , where we display for each maturity the mean, stan- 

ard deviation, and the first-lagged autocorrelation of the observed 

easures of variance, skewness, and kurtosis. From Table 4 we can 

ee that the mean (in absolute value) and the standard deviatios 

f ˆ c var 
t,τ , ˆ c skew 

t,τ , and ˆ c kurt 
t,τ increase with maturity. We also notice that 

ˆ  var 
t,τ , ˆ c skew 

t,τ , and ˆ c kurt 
t,τ are highly persistent. 

A question that might arise is how much information is lost by 

sing the second, third, and fourth risk-neutral cumulants instead 

f the full option panel. To answer this question, we run the fol- 

owing regression: 

V 

mkt 
t,τ,K = α + β1 ̂  c var 

t,τ + β2 ̂  c skew 

t,τ + β3 ̂  c kurt 
t,τ + ε t,τ , (23) 
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Fig. 1. Historical time series of observed measures of variance, skewness, and kurtosis for 6 different maturities τ ∈ { 1 , 2 , 3 , 6 , 9 , 12 } months for the time period 05 December 

2007 to 04 March 2021. 

Table 4 

Summary statistics for the observed measures of variance, skewness, and kurtosis for 

6 different maturities τ ∈ { 1 , 2 , 3 , 6 , 9 , 12 } months for the period between 05 December 

2007 and 04 March 2021. 

ˆ c var 
t, 1 

ˆ c var 
t, 2 

ˆ c var 
t, 3 

ˆ c var 
t, 6 

ˆ c var 
t, 9 

ˆ c var 
t, 12 

Mean (in %) 0.4215 0.8012 1.2080 2.4453 3.6696 4.8967 

Std. dev. (in %) 0.5342 0.8550 1.1444 1.8767 2.4891 3.0591 

AR(1) 0.9606 0.9754 0.9800 0.9867 0.9893 0.9906 

ˆ c skew 
t, 1 

ˆ c skew 
t, 2 

ˆ c skew 
t, 3 

ˆ c skew 
t, 6 

ˆ c skew 
t, 9 

ˆ c skew 
t, 12 

Mean (in %) -0.0581 -0.1359 -0.2357 -0.6082 -1.0350 -1.5076 

Std. dev. (in %) 0.1131 0.2162 0.3277 0.6496 0.9476 1.2598 

AR(1) 0.9235 0.9586 0.9575 0.9670 0.9653 0.9782 

ˆ c kurt 
t, 1 

ˆ c kurt 
t, 2 

ˆ c kurt 
t, 3 

ˆ c kurt 
t, 6 

ˆ c kurt 
t, 9 

ˆ c kurt 
t, 12 

Mean (in %) 0.0276 0.0700 0.1345 0.4272 0.8384 1.3782 

Std. dev. (in %) 0.0779 0.1780 0.3064 0.7778 1.3348 2.0315 

AR(1) 0.9052 0.9321 0.9397 0.9633 0.9676 0.9792 
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here IV mkt 
t,τ,K 

denotes the market implied volatility for a maturity 

and strike price K, while ε is the error. The adjusted R 2 from 

his linear regressions are reported in Table 5 for different levels of 

oneyness and various maturities. Adjusted R 2 are extremely high, 

onfirming that the second, third, and fourth risk-neutral cumu- 

ants explain (on average) about 98% of the variation contained in 

he implied volatility. Therefore, condensing the information con- 

ained in option panels into risk-neutral cumulants represents a vi- 

ble method for conducting statistical inference. Compared to di- 

ectly considering option prices, the loss of information is small, 
7 
ut as we illustrate later, such an approach leads to a significant 

peedup in the calculations. 

.2. Econometric Performance 

Next, we move to the empirical results obtained by running the 

B-SMC sampler algorithm with N = 20 0 0 particles. We take the 

aussian random walk proposal and perform the resample-move 

tep whenever the ESS falls below the preselected threshold of 
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Table 5 

Adjusted R 2 from the regression in (23) for various levels of moneyness and maturities. 

τ \ K 80 85 90 95 100 105 110 115 120 

1 0.8770 0.9293 0.9654 0.9805 0.9849 0.9850 0.9480 0.8560 0.8449 

2 0.9789 0.9876 0.9912 0.9900 0.9901 0.9919 0.9868 0.9633 0.9163 

3 0.9873 0.9918 0.9931 0.9915 0.9917 0.9913 0.9897 0.9750 0.9395 

6 0.9928 0.9941 0.9952 0.9942 0.9942 0.9912 0.9912 0.9883 0.9811 

9 0.9939 0.9944 0.9953 0.9944 0.9946 0.9917 0.9910 0.9890 0.9850 

12 0.9875 0.9948 0.9955 0.9938 0.9949 0.9920 0.9906 0.9890 0.9864 

Fig. 2. Acceptance rates (left panel) and ESS (right panel) with respect to γ . 
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/ 2 , and then move until the number of unique particles is greater 

han N/ 2 . The sampler is initialized with the priors in Table 1 . 

From an econometric point of view, two important statistics 

elated to the efficiency of our method are the ESS and the ac- 

eptance rate. In Figure 2 , we present the acceptance rate (left 

anel) and the ESS (right panel). A few comments are in order. 

irst, the acceptance rate optimally fluctuates between 0.2 and 0.45 

”Goldilocks Principle”, Rosenthal, 2011 ). This means that our al- 

orithm is able to efficiently incorporate the increasing degree of 

nformation content revealed by the data. The ESS is required to 

tay close to a constant, which is usually set equal to N/ 2 , where

 = 20 0 0 is the number of parameter particles. As expected, the

SS fluctuates around half of the number of parameter particles. 

econd, in Figure 3 we present the tempering procedure, which 

eads to the progressive shrinkage of confidence bands. More pre- 

isely, we see that at the beginning, when the tempering coeffi- 

ient is equal to 0, we only have the prior information, and the 

rior distributions have quite large standard errors. However, as 

he algorithm proceeds, the information contained in the data is 

eflected in the estimates. This can be seen in the shrinkage of the 

5 , 95)% confidence intervals (red lines). Results are reported for a 

ew selected parameters, and similar plots for the remaining pa- 

ameters can be found in Figure E.11 in the Appendix. Another im- 

ortant aspect related to the efficiency of the proposed methodol- 

gy is the impact of the prior distribution on the final estimation 

utput. To address this point, following Chopin et al. (2013 , Fig- 

re 1), Fulop et al. (2015 , Figure A1), Brix et al. (2018 , Figure 10),

e report the prior and quasi-posterior distributions in Figure 4 . 

gain, results are given only for a subset of the parameters. For 

he remaining, we refer to Figure E.12 in the Appendix. We observe 
8 
hat in our QB-SMC approach, the priors are flat in the regions of 

igh quasi-posterior density. This means that the prior specifica- 

ion does not impact the final result. Nevertheless, the dispersions 

f the posterior distributions are very small. 

In Figure 5 , we plot the filtered variance (central panel) and 

ump intensity (bottom panel). In periods when prices fall, we ob- 

erve a rise in variance which is in line with the well known 

everage effect. This is also confirmed by our estimates for ρ1 = 

0 . 9223 and ρ2 = −0 . 7834 (see Section 5 ). 

The grey bars in the bottom panel of Figure 5 represent the 

ump times in S&P 500 dynamics. Those jumps are detected us- 

ng the iterated re-weighted least squares technique developed in 

allegaro et al. (2017) . The algorithm detects 216 jumps in the S&P 

00 price in our sample. We note that the filtered jump inten- 

ity λt , displayed in Figure 5 , is high during turbulent periods with 

any jumps in close succession (e.g. during 20 08–20 09 and 2020–

021) and reverts to its long run mean in quiet periods. Moreover, 

e find that the jump intensity is close to 0 in the 2017–2018 pe- 

iod, which is consistent with the fact that the iterated reweighted 

east squares algorithm does not detect any jumps in this period. 

We conclude this section with a discussion of the variance 

actors and jump parameters. First, we obtain volatility fac- 

ors with very different statistical properties. V 2 is highly per- 

istent, while V 1 displays low persistent dynamics, as indicated 

y the estimated speed of mean reversion parameters k 1 = 

1 . 9764 and k 2 = 0 . 9672 . This result is consistent with findings in

hristoffersen et al. (2009) , who observe that one factor may ex- 

ibit fast mean reversion (describing short-run variance), while the 

econd factor may exhibit relatively low speed of mean reversion 

o describe long-run variance. Second, the jump parameters are 



R. Brignone, L. Gonzato and E. Lütkebohmert Journal of Banking and Finance 148 (2023) 106745 

Fig. 3. Bridging the priors and the quasi-posteriors: mean (blue line) and (5 , 95)% quantiles (red lines) of some selected parameters at each tempering step. 

Fig. 4. Full sample quasi-posterior distributions (blue line), obtained with a kernel density estimator, and prior distributions (red line) of some selected parameters. 
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uite large compared to what is typically found in the literature. 

s we illustrate later, this is not due to the estimation methodol- 

gy, as the benchmark QMLE approach yields similar results. An 

xplanation for such large (in absolute value) jump parameters is 

rovided in Section 5.3 . 

. Parameter Estimation and Benchmark Comparison 

In this section, we conduct several numerical experiments on 

eal data: i ) a benchmark comparison with the QMLE approach in 

erms of econometric fit, run-time speed, and option pricing er- 

ors; ii ) a comparison with a nested model in terms of cumulants 

atching; iii ) a study on the sensitivity of the parameter estimates 

and related option pricing errors) with respect to the choice of the 

ataset; i v ) a study of how to incorporate risk premia in our esti-

ation approach. More specifically, for point iii ) we consider three 

ifferent datasets: D 1 , D 2 and D 3 . The first one considers as ob-

ervation only { ̂ c var 
t,τ } , the second one considers { ̂ c var 

t,τ , ̂  c skew 

t,τ } , while

he third one considers { ̂ c var 
t,τ , ̂  c skew 

t,τ , ̂  c kurt 
t,τ } . The parameter estimates, 

aximized log-likelihoods, and related computational times are re- 

orted in Table 6 . The results are discussed below. 
9

.1. Benchmark Comparison 

We compare the performances of the proposed QB-SMC ap- 

roach with its natural benchmark, i.e., the QMLE approach based 

n the numerical maximization of (18) . Note that the main draw- 

ack of the numerical implementation of the QMLE method is the 

hoice of the starting points fed to the numerical optimizer. In fact, 

he objective function has multiple local maxima, so the choice of 

he starting points is crucial. This problem is exacerbated by the 

arge number of parameters to be estimated. The procedure we 

dopt to implement QMLE is as follows (compare with Li and Yin, 

014; Yeap et al., 2018 ): i ) we use the priors in Table 1 and gen-

rate 10 5 parameter sets; ii ) we evaluate the quasi log-likelihood 

or each parameter set as in (18) ; iii ) we take the 10 parame-

er sets with the highest quasi log-likelihood and run 10 differ- 

nt optimizations using these parameter sets as starting points; i v ) 
e take the parameters with the highest quasi log-likelihood as 

he final estimate. The results are reported in the fourth and fifth 

olumns of Table 6 . Several comments are in order. First, comput- 

ng standard errors for QMLE is very challenging. We have con- 

idered several numerical optimizers that provide different (nu- 



R. Brignone, L. Gonzato and E. Lütkebohmert Journal of Banking and Finance 148 (2023) 106745 

Fig. 5. Historical log-returns (top panel) of S&P 500 index, filtered variance (central panel), filtered jump intensity (bottom panel) along with jump times (indicated with 

light grey bars) in the S&P 500 price historical time series. 
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a

erical) estimates of the Hessian matrix. However, its numerical 

pseudo) inversion could not be determined, which precludes the 

omputation of standard errors. This is a first point in favour of our 

pproach, for which we have reliable estimates of the standard er- 

or (see 22 ). These are reported in parenthesis in Table 6 . Second,

ur QB-SMC offers a better trade-off between accuracy and compu- 
Table 6 

Parameters estimated through QB-SMC and QMLE approaches 

D 1 = { ̂ c var 
t,τ } , D 2 = { ̂ c var 

t,τ , ̂  c skew 
t,τ } , D 3 = { ̂ c var 

t,τ , ̂  c skew 
t,τ , ̂  c kurt 

t,τ } . Standard e

utes. Following Feunou and Okou (2018) we fix the pricing err

obtained through the QB-SMC approach. 

DJDVSI 

QB-SMC 

� \ D D 1 D 2 D 3 

k 1 13 . 9812 
(0 . 2277) 

12 . 6197 
(0 . 4218) 

11 . 9764 
(0 . 0139) 

θ1 0 . 0158 
(0 . 0 0 08) 

0 . 0133 
(0 . 0 0 08) 

0 . 0085 
(0 . 0 0 0 0) 

σ1 0 . 6622 
(0 . 0117) 

0 . 5787 
(0 . 0131) 

0 . 4505 
(0 . 0 0 01) 

ρ1 −0 . 9359 
(0 . 1280) 

−0 . 9858 
(0 . 0059) 

−0 . 9233 
(0 . 0 0 02) 

k 2 1 . 5739 
(0 . 1531) 

1 . 8667 
(0 . 0236) 

0 . 9672 
(0 . 0 0 03) 

θ2 0 . 0114 
(0 . 0018) 

0 . 0023 
(0 . 0 0 0 0) 

0 . 0126 
(0 . 0 0 0 0) 

σ2 0 . 1871 
(0 . 0019) 

0 . 0920 
(0 . 0 0 07) 

0 . 1559 
(0 . 0 0 01) 

ρ2 −0 . 9587 
(0 . 0736) 

−0 . 9206 
(0 . 0159) 

−0 . 7834 
(0 . 0 0 06) 

μv 0 . 0566 
(0 . 0122) 

0 . 1017 
(0 . 0041) 

0 . 1404 
(0 . 0 0 0 0) 

k λ 2 . 5593 
(0 . 0599) 

3 . 8644 
(0 . 0511) 

3 . 4321 
(0 . 0045) 

θλ 0 . 3257 
(0 . 0184) 

0 . 4759 
(0 . 0058) 

0 . 2244 
(0 . 0 0 01) 

σλ 1 . 2822 
(0 . 0293) 

1 . 9159 
(0 . 0202) 

1 . 2395 
(0 . 0 0 04) 

μJ −0 . 0119 
(0 . 0455) 

−0 . 1095 
(0 . 0022) 

−0 . 1263 
(0 . 0 0 0 0) 

σJ 0 . 002 
(0 . 0099) 

0 . 0722 
(0 . 0015) 

0 . 2145 
(0 . 0 0 01) 

σ (1) 
e 0 . 0026 

(0 . 0 0 06) 
0 . 0075 
(0 . 0 0 06) 

0 . 0130 
(0 . 0 0 0 0) 

σ (2) 
e – 0 . 0509 

(0 . 0165) 
0 . 0496 
(0 . 0 0 04) 

σ (3) 
e – – 0 . 1398 

(0 . 0 0 03) 

Log-Like 1.12E + 05 2.16E + 05 3.21E + 05

time 21.51 40.28 28.76 

10 
ational effort. For the above settings, QB-SMC is more accurate (as 

ndicated by the highest log-likelihood for both models) and also 

aster in terms of execution time. This fact gives confidence that 

he suggested methodology can be interpreted as a more efficient 

lobal optimizer that provides a considerably higher log-likelihood 

t lower computational cost. 
for DJDVSI and DJSVSI models and for different datasets 

rrors in parenthesis. Running time is expressed in min- 

ors for the QMLE approach and set them equal to those 

DJSVSI 

QMLE QB-SMC QMLE 

D 3 D 3 D 3 

13.5657 1 . 1311 
(0 . 0285) 

1.2877 

0.0065 0 . 0282 
(0 . 0 0 01) 

0.0134 

0.2509 0 . 2518 
(0 . 0 0 04) 

0.1859 

-0.6219 −0 . 9748 
(0 . 0079) 

-0.984 

1.5561 – –

0.0092 – –

0.1691 - - 

-0.5929 – –

0.1686 0 . 1005 
(0 . 0034) 

0.1237 

3.2843 5 . 8298 
(0 . 0637) 

5.1551 

0.2426 0 . 2649 
(0 . 0030) 

0.3218 

1.2602 1 . 7533 
(0 . 0067) 

1.7237 

-0.1463 −0 . 0806 
(0 . 0 0 01) 

-0.0955 

0.2143 0 . 1829 
(0 . 0025) 

0.1986 

– 0 . 0687 
(0 . 0012) 

–

– 0 . 0552 
(0 . 0060) 

–

– 0 . 0851 
(0 . 0112) 

–

 3.15E + 05 3.10E + 05 3.07E + 05 

130.79 29.85 79.87 
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Fig. 6. Implied volatilities comparison. Blue lines represent the time series of at-the-money market implied volatilities, while orange lines represents the model implied 

volatilities for τ = { 2 , 6 , 12 } months. Model implied volatilities are computed from the DJDVSI model using the QB-SMC approach, the parameter estimates are given in the 

fourth column of Table 6 . 
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Finally, we show how the estimated parameters in Table 6 per- 

orm in pricing options. More specifically, we take the model pa- 

ameters and re-filter the latent states. Using the model parame- 

ers and the filtered latent states, we then compute model implied 

olatility surfaces for each day in our sample. To do this, we first 

ompute the option price and invert the Black-Scholes formula. The 

ption price is computed using the Fourier-Cosine series expan- 

ion method (COS) of Fang and Oosterlee (2008) . First, we con- 

ider the estimates of our QB-SMC approach for the DJDVSI model 

nd show in Figure 6 the time series of market and model im- 

lied volatilities (for three different maturities). The two time se- 

ies are very close, which means that parameters estimated by our 

roposed approach are highly realistic and can correctly replicate 

he time series of market implied volatility surfaces. In Table 7 , 

e report the Root Mean Squared Pricing Errors (RMSPEs) for both 

stimation methods. In the bottom panel of this table, we report 

he ratio between the RMSPEs of QB-SMC and QMLE approaches. 

 value less than 1 (highlighted in green) indicates that the QB- 

MC performs better than the benchmark, and vice versa when 

he value is greater than 1. We find that the parameters estimated 

ith QB-SMC perform much better than the benchmark in valu- 

ng options. This is quite evident across all maturities and strikes. 

B-SMC always outperforms the benchmark except in ten (out of 

6) cases, which are highlighted in red in Table 7 . The average of

he ratios is 0.9190, indicating a generally superior performance of 

B-SMC. 

To sum up, we have shown that the proposed approach pro- 

ides parameter estimates that better explain the observed market 

ata, both in terms of log-likelihood and root mean squared pric- 

ng errors. 
t

11 
.2. Comparison with a Nested Model 

Next, we compare the performances of the DJDVSI model with 

 nested specification. More specifically, we consider a two-factor 

odel that results from (1) –(4) with one of the two variance fac- 

ors turned off. We refer to this model as Double Jump Stochas- 

ic Volatility Stochastic Intensity (DJSVSI) model because it features 

umps both in the variance and spot returns processes and allows 

or stochastic jump intensity. First, the QB-SMC also performs very 

ell in estimating this nested model. Our approach yields higher 

og-likelihood compared to the QMLE approach, as is visible from 

he sixth and seventh columns of Table 6 . Second, we find that pa-

ameters describing the variance factor confirm what was recently 

bserved in Dufays et al. (2022 , Figure 7): The volatility is very 

ersistent and the leverage effect is really strong. These findings 

ontrast with those of previous studies by Fulop and Li (2019) ; 

u and Luo (2019) , where the variance factor is not very persis- 

ent and the leverage effect is much less pronounced. The reason 

or the different results is the use of less informative data (i.e. 

ariance swaps in Fulop and Li, 2019 ) and a reduced option panel 

which ensures that the estimation in Du and Luo, 2019 is compu- 

ationally tractable). Even in case of the nested model, jump size 

arameters are quite large in absolute value. We discuss this is- 

ue in Section 5.3 . Third, the nested model specification fits the 

ata worse compared to the full model, as indicated by the lower 

og-likelihood. To better illustrate this point, we present a compari- 

on between market- and model-implied risk-neutral cumulants in 

erms of RMSEs in Table 8 . The table shows that the DJDVSI model 

utperforms the nested one in 15 out of 18 cases. Therefore, the 

ddition of a second variance factor is crucial in order to fit the 

ime series of market risk-neutral cumulants. 
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Table 7 

Root Mean Squared Pricing Errors (RMSPEs) in the DJDVSI model. 

QB-SMC 

τ \ K 80 85 90 95 100 105 110 115 120 

1 0.0444 0.0389 0.0319 0.0211 0.0240 0.0264 0.0290 0.0360 0.0442 

2 0.0221 0.0236 0.0218 0.0164 0.0150 0.0221 0.0270 0.0330 0.0381 

3 0.0259 0.0265 0.0237 0.0180 0.0130 0.0185 0.0245 0.0316 0.0378 

6 0.0327 0.0304 0.0263 0.0201 0.0132 0.0147 0.0204 0.0275 0.0357 

9 0.0323 0.0294 0.0255 0.0202 0.0131 0.0140 0.0198 0.0267 0.0339 

12 0.0316 0.0279 0.0243 0.0200 0.0132 0.0144 0.0203 0.0269 0.0334 

QMLE 

τ \ K 80 85 90 95 100 105 110 115 120 

1 0.0443 0.0425 0.0414 0.0268 0.0248 0.0325 0.0306 0.0354 0.0435 

2 0.0238 0.0292 0.0298 0.0204 0.0141 0.0278 0.0319 0.0341 0.0360 

3 0.0275 0.0311 0.0298 0.0213 0.0115 0.0219 0.0296 0.0341 0.0375 

6 0.0337 0.0330 0.0296 0.0225 0.0127 0.0147 0.0237 0.0311 0.0375 

9 0.0337 0.0320 0.0286 0.0229 0.0138 0.0133 0.0211 0.0293 0.0362 

12 0.0341 0.0312 0.0279 0.0234 0.0150 0.0137 0.0204 0.0282 0.0351 

QB-SMC/QMLE 

τ \ K 80 85 90 95 100 105 110 115 120 

1 1.0021 0.9146 0.7699 0.7866 0.9663 0.8122 0.9455 1.0159 1.0159 

2 0.9294 0.8079 0.7305 0.8018 1.0585 0.7946 0.8476 0.9685 1.0586 

3 0.9412 0.8522 0.7962 0.8432 1.1250 0.8445 0.8255 0.9260 1.0073 

6 0.9718 0.9224 0.8873 0.8950 1.0426 0.9993 0.8625 0.8850 0.9522 

9 0.9571 0.9208 0.8917 0.8833 0.9479 1.0495 0.9389 0.9099 0.9381 

12 0.9278 0.8951 0.8687 0.8556 0.8827 1.0502 0.9955 0.9546 0.9521 

Table 8 

Root Mean Squared Errors of model implied risk-neutral cumulants for the DJDVSI model (top panel) and for the DJDVSI 

model (middle panel). In the bottom panel we report the ratio between the RMSEs obtained with the DJDVSI and DJSVSI 

models, respectively. Values in green (respectively, red) denote best performance for DJDVSI (DJSVSI) model. 

DJDVSI 

τ = 1 τ = 2 τ = 3 τ = 6 τ = 9 τ = 12 

c var 
t,τ 1.33E-03 2.37E-03 3.28E-03 5.65E-03 7.80E-03 1.01E-02 

c skew 
t,τ 3.33E-04 3.15E-04 4.84E-04 1.25E-03 2.50E-03 3.87E-03 

c kurt 
t,τ 3.40E-04 5.52E-04 8.62E-04 1.91E-03 3.87E-03 7.45E-03 

DJSVSI 

τ = 1 τ = 2 τ = 3 τ = 6 τ = 9 τ = 12 

c var 
t,τ 1.61E-03 2.83E-03 4.17E-03 7.52E-03 1.02E-02 1.29E-02 

c skew 
t,τ 3.34E-04 3.80E-04 6.11E-04 1.63E-03 3.34E-03 5.44E-03 

c kurt 
t,τ 2.63E-04 3.13E-04 5.76E-04 1.99E-03 4.51E-03 8.27E-03 

DJDVSI/DJSVSI 

τ = 1 τ = 2 τ = 3 τ = 6 τ = 9 τ = 12 

c var 
t,τ 0.826 0.838 0.788 0.752 0.764 0.787 

c skew 
t,τ 0.996 0.831 0.792 0.767 0.750 0.711 

c kurt 
t,τ 1.294 1.765 1.497 0.958 0.858 0.901 
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.3. Sensitivity of parameter estimates to the choice of the dataset 

To investigate why the absolute values of the jump parame- 

ers are higher than those in the existing literature, we conducted 

he following experiment. We implemented our QB-SMC based on 

hree different datasets: (i) D 1 = { ̂ c var 
t,τ } considers only the mea- 

ure of variance as observed variable; (ii) a dataset that also in- 

ludes the measure of skewness D 2 = { ̂ c var 
t,τ , ̂  c skew 

t,τ } , and (iii) the full

ataset D 3 = { ̂ c var 
t,τ , ̂  c skew 

t,τ , ̂  c kurt 
t,τ } . Parameter estimates are reported in 

he second, third, and fourth columns of Table 6 . First, with the 

xception of jump sizes, most parameters remain relatively simi- 

ar for the different datasets. However, differences in the magni- 

ude of jump sizes are evident. More specifically, when using D 1 , 

he jump sizes are relatively small in absolute terms and are con- 

istent with the literature (e.g. Fulop and Li, 2019 ). When using 

 , the size of the jumps increases considerably. Finally, when us- 
2 

12 
ng the full dataset D 3 , the jump sizes increase again in absolute 

alue. This is particularly evident for the parameter σJ . We show 

hat these values of the jump parameters are necessary to match 

igher order cumulants time series. More specifically, we plotted 

n Figure 7 market and model implied cumulants for the various 

atasets considered. We find that using only D 1 , the time series of 

 ̂ c var 
t,τ } matches perfectly, but the fit for the observed measures of 

igher order cumulants is very poor. Using D 2 , the model is able 

o reproduce both market variance and skewness, but the perfor- 

ance in reproducing the market kurtosis is quite poor. Therefore, 

n order to match all observed measures of market variance, skew- 

ess, and kurtosis, it seems necessary to increase the size of the 

umps. In this case, the proposed methodology reproduces the ob- 

erved time series very well. In summary, the fit of the market im- 

lied cumulants improves gradually. Thus, we conclude that large 

ump sizes are necessary to correctly match the observed time 



R. Brignone, L. Gonzato and E. Lütkebohmert Journal of Banking and Finance 148 (2023) 106745 

Fig. 7. Cumulants matching for different choices of the dataset: D 1 (first column), D 2 (second column) and D 3 (third column). Blue lines represent the time series of the 

market implied risk-neutral cumulants, while orange lines represents the model implied risk-neutral cumulants for τ = 2 months. Model implied cumulants are computed 

from the DJDVSI model using the QB-SMC approach, the parameter estimates are given in Table 6 . 
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eries of risk-neutral cumulants. In addition, the third column of 

igure 7 provides further evidence of the high precision of our es- 

imates: market- and model-implied cumulants are very close. This 

rovides confidence that the proposed approach performs well and 

hat the DJDVSI is flexible enough to match the time series of risk- 

eutral cumulants. To keep the paper compact, we report only the 

esults for the case of two months maturity; additional results are 

vailable upon request. Next, we examine the impact of the choice 

f dataset on option pricing. To this end, we compute the RMSPEs 

or all the estimated parameters for each day of the dataset. Over- 

ll, the final RMSPE is 0.0313 for D 1 , 0.0274 for D 2 , 0.0256 for D 3 .

rom this, it is evident that conducting inference using the risk- 

eutral variance alone is not sufficient to correctly match the time 

eries of option prices. However, comparing D 2 with D 3 , the over- 

ll reduction in RMSPE is rather small. Figure 8 shows the running 

ean of the RMSPE. The main benefit of including the risk-neutral 

urtosis in the dataset arises during turbulent periods, such as the 

008 global financial crisis and the recent COVID-19 outbreak. In- 

eed, during these periods we observe spikes in the time series 

f ˆ c kurt 
t,τ (see e.g. Figure 1 ) that cannot be properly replicated when 

sing D 2 for the estimation. Therefore, ˆ c kurt 
t,τ is far from being 0 in 

hese periods and plays a crucial role in option pricing. In partic- 

lar, we observe that during calm periods the difference between 

sing D 2 and D 3 is very small, while during financial crises the in- 

rease of RMSPE is much more pronounced. The loss of accuracy is 

xacerbated for the shortest maturity (1 month). 

.4. Risk Premia 

In this subsection, we study how to incorporate risk premia 

nto our estimation framework. To this end, we follow Feunou and 

kou (2018) and assume that, in the inferential procedure, the 

easurement equation (13) is defined under the risk-neutral mea- 
13 
ure, while the transition equation (14) evolves under the histor- 

cal measure. Therefore, to move from one measure to the other, 

e perform a structure-preserving change of measure by shifting 

he parameters k 1 , θ1 , k 2 , θ2 , k λ, θλ and leaving the other parame- 

ers unchanged (see the fourth column of Table 6 ). More precisely, 

his is an application of Girsanov’s theorem, which translates in the 

ollowing relationships: 

k 1 = k P 1 + σ1 φ
v 
1 , θ1 = k P 1 θ

P 
1 /k 1 , 

k 2 = k P 2 + σ2 φ
v 
2 , θ2 = k P 2 θ

P 
2 /k 2 , 

 λ = k P λ + σλφλ, θλ = k P λθ
P 
λ /k λ, 

here the parameters with superscript P refer to the correspond- 

ng coefficients when the dynamics (1) –(4) evolve under the his- 

orical measure. φv 
1 

, φv 
2 

and φλ denote the risk premia of the 

rst and second variance factor and the jump intensity, respec- 

ively. To estimate φv 
1 , φv 

2 and φλ, we run our QB-SMC us- 

ng N = 20 0 0 particles and with the following independent trun- 

ated normal priors �φ ∼ T N 

(
μφ, I 3 

)
, where μφ = [ −0 . 5 , 2 , −0 . 5]

nd I 3 is a 3 × 3 identity matrix. In line with the existing lit- 

rature (see for example Feunou and Okou, 2018; Fulop and 

i, 2019 ), we truncate the domain of the prior such that φv 
1 

∈ 

−∞ , 0) , φv 
2 ∈ (0 , ∞ ) and φλ ∈ (−∞ , 0) . We find the following pa-

ameter estimates, which are statistically significant at the 5% 

evel (standard error in parenthesis): φv 
1 

= −0 . 1373 (0 . 0221) , φv 
2 

=
 . 2522 (0 . 3779) and φλ = −0 . 0929 (0 . 0466) . Given the estimated
v 
1 , φ

v 
2 , φλ, we compute the implied risk-neutral and historical 

ariance, skewness, and kurtosis, and take their difference (com- 

are with Feunou and Okou, 2018 , Figure 7). In this way, we ob- 

ain a dynamic representation of the risk premia implied by higher 

rder moments. In Figure 9 , we show the time series of vari- 

nce, skewness, and kurtosis risk premia for τ = 1 month, de- 

ned as the difference between the risk-neutral and the histori- 

al series. We find that the implied variance risk premium is pos- 
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Fig. 8. Running mean of the RMSPE for three selected maturities calculated using D 2 (blue line) and D 3 (orange line). 

Fig. 9. Model-implied moment risk premia. 

14 
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tive. This is in line with the results in Bollerslev et al. (2009) ,

eunou and Okou (2018) and Li and Zinna (2018) . The skew- 

ess risk premia is negative, confirming the empirical evidence in 

ozhan et al. (2013) ; Feunou et al. (2017) ; Feunou and Okou (2018) .

inally, we obtain that the kurtosis risk premium is mostly positive. 

his result differs somewhat from Feunou and Okou (2018) , who 

nd more mixed evidence. However, kurtosis risk premium should 

e positive, as discussed in Rauch and Alexander (2016) . This gives 

s confidence that our estimation approach can be exploited to ad- 

quately analyze risk premia and their financial implications. 

. Conclusions 

In this paper, we propose a new Quasi-Bayesian method based 

n a modified Kalman filter and a density tempered SMC sam- 

ler for estimating affine option pricing models using informa- 

ive portfolios of weighted options (i.e., the risk-neutral cumulants 

f log-returns). Through extensive Monte Carlo studies, we show 

hat the new approach can be viewed as an efficient global op- 

imizer that makes the estimation of complex state-space models 

elatively simple and fast. The method provides accurate param- 

ter estimates thanks to the efficiency of density tempered SMC 

amplers. We apply our methodology to estimate a state-of-the-art 

ffine option pricing model on real data. Numerical results confirm 

he accuracy and computational efficiency of the method. We com- 

are our method to maximum likelihood estimation approaches 

nd find that it is superior in terms of pricing errors. Moreover, our 

mpirical results confirm the importance of a second variance fac- 

or in accurately fitting the time series of higher order risk-neutral 

umulants. Finally, we find that the inclusion of kurtosis allows for 

 more accurate estimation of the model, for both real and simu- 

ated data, than when only variance and skewness are used. In ad- 

ition, this allows to reduce option pricing errors, especially during 

eriods of market stress. 
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ppendix A. Moment Generating Function 

We define the MGF of log-returns as follows 

(u, X t , V 1 t , V 2 t , λt , t, T ) = E 

Q [ e uX T |F t ] . (A.1) 

y exploiting the Feynman-Kac theorem we get the following par- 

ial differential equation for τ = T − t

− �τ + 

(
r − 1 

2 
(V 1 t + V 2 t ) − λt μ

� 

)
�x + 

1 

2 
(V 1 t + V 2 t )�xx + k 1 (θ1 − V 1 t )�v 1 +

+ 

1 

2 
σ 2 

1 V 1 t �v 1 v 1 + ρ1 σ1 V 1 t �x v 1 + k 2 (θ2 − V 2 t )�v 2 + 

1 

2 
σ 2 

2 V 2 t �v 2 v 2 

+ ρ2 σ2 V 2 t �x v 2 + k λ(θλ − λt )�λ + 

1 

2 
σ 2 

λ λt �λλ

+ λt 

∫ ∞ 

−∞ 

∫ ∞ 

0 
[ �(u, X t + J x , V 1 t , V 2 t + J v , λt , τ ) 

−�(u, X t , V 1 t , V 2 t , λt , τ ) ] ν(d J x , d J v ) = 0 . (A.2) 

ince the model is affine we can guess a solution of the form 

(u, X t , V 1 t , V 2 t , λt , τ ) 

= exp 

(
uX t + A (u, τ ) + B (u, τ ) V 1 t + C(u, τ ) V 2 t + D (u, τ ) λt 

)
. 

or the jump transform we guess 

(u, X t + J x , V 1 t , V 2 t + J v , λt , τ ) − �(u, X t , V 1 t , V 2 t , λt , τ ) = 

= �(u, X t , V 1 t , V 2 t , λt , τ ) 
[
e uJ x + J v C(u,τ ) − 1 

]
. 

ow, we need the partial derivatives of �

�τ = �(A τ (u, τ ) + B τ (u, τ ) V 1 t + C τ (u, τ ) V 2 t + D τ (u, τ ) λt ) , 

�x = �u, �v 1 = �B (u, τ ) , �v 1 v 1 = �B (u, τ ) 2 , 

�x v 1 = �uB (u, τ ) , �xx = �u 

2 , �v 2 = �C(u, τ ) , 

v 2 v 2 = �C(u, τ ) 2 , �x v 2 = �uC(u, τ ) , �λ = �D (u, τ ) , 

�λλ = �D (u, τ ) 2 . 

y substituting the partial derivatives into (A.2) we obtain the fol- 

owing expression 

− ( A τ (u, τ ) + B τ (u, τ ) V 1 t + C τ (u, τ ) V 2 t + D τ (u, τ ) λt ) 

+ ( r − 0 . 5(V 1 t + V 2 t ) − λt μ
� ) u 

+ 

1 

2 
V 1 t u 

2 + k 1 (θ1 − V 1 t ) B (u, τ ) + 

1 

2 
σ 2 

1 V 1 t B (u, τ ) 2 + ρ1 σ1 V 1 t B (u, τ ) u 

+ 

1 

2 
V 2 t u 

2 + k 2 (θ2 − V 2 t ) C(u, τ ) + 

1 

2 
σ 2 

2 V 2 t C(u, τ ) 2 

+ ρ2 σ2 V 2 t C(u, τ ) u + k λ(θλ − λt ) D (u, τ ) 

+ 

1 

2 
σ 2 

λλt D (u, τ ) 2 + λt 

∫ ∞ 

−∞ 

∫ ∞ 

0 

[
e uJ x + J v C(u,τ ) − 1 

]
ν(d J x , d J v ) = 0 , (A.3) 

here 
∫ ∞ 

−∞ 

∫ ∞ 

0 

[
e uJ x + J v C(u,τ ) − 1 

]
ν(d J x , d J v ) = 

e 
uμJ + u 2 σ2 

J 
/ 2 

1 −C(u,τ ) μv 
− 1 . Finally, 

eparation of variables leads to the ODE system (6) . 

ppendix B. Analytic Solution for (11) : Matlab® Codes 

In what follows we present a Matlab® code for computing the 

umulants in (11) for the model (1) –(4) . By simply modifying the 

xpression of the functional characteristics (i.e. the right hand side 

f the equations in (6) , see Hubalek et al., 2017 and the references

herein) it is possible to get the expression for cumulants in other 

-factor affine models. 
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% define functional characteristics 

syms F(u,tau) R(u,tau) Z(u,tau) Y(u,tau) 

% define auxiliary functions 

syms B(u,tau) C(u,tau) D(u,tau) 

% define symbolic variables 

syms k1 th1 sg1 rho1 k2 th2 sg2 rho2 muv kL thL sgL muJ sgJ V10 V20 L0 

syms t 

F(u, tau) = k1*th1*B(u,tau) + k2*th2*C(u, tau) + kL*thL*D(u, tau) ; 

R(u, tau) = -1/2*(u - u2) - (k1 - rho1*sg1*u)*B(u, tau) + 1/2*sg12*B(u, tau)2; 

Z(u, tau) = -1/2*(u - u2) - (k2 - rho2*sg2*u)*C(u, tau) + 1/2*sg22*C(u, tau)2; 

Y(u, tau) = -kL*D(u, tau) + 1/2*sgL2*D(u, tau)2 + (exp(u*muJ + u2*sgJ2/2)/... 

(1-C(u,tau)*muv)-1) - (exp(muJ + sgJ2/2) - 1)*u; 

% Number of needed cumulants 

M = 3; 

% define auxiliary functions for solving ODEs 

syms x(t) y(t) z(t) q(t) 

for i=1:M 

% Compute i - th derivative of R with respect to u 

Rprime = diff(R(u,tau),u,i); 

% Prepare the output for the ODE solution setting i - th derivative 

% value equal to generic x(t) 

Rprime = subs(Rprime, diff(B(u, tau), u, i), x(t)); 

% Substitute all the precedently computed derivatives with respect to u 

for j=1:i-1 

Rprime = subs(Rprime, diff(B(u, tau), u, j), DB(j)); 

end 

% Substitute B(0, tau) - > 0 

Rprime = subs(Rprime, B(u, tau),0); 

% and u - > 0 

Rprime = subs(Rprime, u, 0); 

% Solve the ODE analytically 

eqn = diff(x,t) == Rprime; % define equation 

cond = x(0) == 0; % initial condition 

DB(i) = dsolve(eqn,cond, ′ MaxDegree ′ ,2); % solve ODE 

% Compute i - th derivative of R with respect to u 

Zprime = diff(Z(u,tau),u, i); 

% Prepare the output for the ODE solution setting i - th derivative 

% value equal to generic y(t) 

Zprime = subs(Zprime, diff(C(u, tau), u, i), y(t)); 

% Substitute i-th derivative value with its value computed before 

Zprime = subs(Zprime, diff(B(u, tau), u, i), DB(i)); 

% Substitute all the precedently computed derivatives with respect to u 

for j=1:i-1 

Zprime = subs(Zprime, diff(B(u, tau), u, j), DB(j)); 

Zprime = subs(Zprime, diff(C(u, tau), u, j), DC(j)); 

end 

% Substitute B(0, tau) - > 0 

Zprime = subs(Zprime, B(u, tau),0); 

% Substitute C(0, tau) - > 0 

Zprime = subs(Zprime, C(u, tau),0); 

% and u - > 0 

Zprime = subs(Zprime, u, 0); 

% Solve the ODE analytically 

eqn = diff(y,t) == Zprime; % define equation 

cond = y(0) == 0; % initial condition 

DC(i) = dsolve(eqn,cond, ′ MaxDegree ′ ,2); % solve ODE 

% Compute i - th derivative of R with respect to u 

Yprime = diff(Y(u,tau),u, i); 

% Prepare the output for the ODE solution setting i - th derivative 

% value equal to generic y(t) 

Yprime = subs(Yprime, diff(D(u, tau), u, i), q(t)); 

% Substitute i-th derivative value with its value computed before 

Yprime = subs(Yprime, diff(C(u, tau), u, i), DC(i)); 

% Substitute all the precedently computed derivatives with respect to u 

for j=1:i-1 

Yprime = subs(Yprime, diff(B(u, tau), u, j), DB(j)); 

Yprime = subs(Yprime, diff(C(u, tau), u, j), DC(j)); 

Yprime = subs(Yprime, diff(D(u, tau), u, j), DD(j)); 

end 

% Substitute B(0, tau) - > 0 

Yprime = subs(Yprime, B(u, tau),0); 

% Substitute C(0, tau) - > 0 

Yprime = subs(Yprime, C(u, tau),0); 

% Substitute D(0, tau) - > 0 

Yprime = subs(Yprime, D(u, tau),0); 

% and u - > 0 

Yprime = subs(Yprime, u, 0); 

% Solve the ODE analytically 

eqn = diff(q,t) == Yprime; % define equation 

cond = q(0) == 0; % initial condition 

DD(i) = dsolve(eqn,cond, ′ MaxDegree ′ ,2); % solve ODE 

% Compute i - th derivative of F with respect to u 

Fprime = diff(F(u,tau), u, i); 

% Substitute i-th derivative of B and C with its value computed before 

Fprime = subs(Fprime, diff(D(u, tau), u, i), DD(i)); 

Fprime = subs(Fprime, diff(C(u, tau), u, i), DC(i)); 

Fprime = subs(Fprime, diff(B(u, tau), u, i), DB(i)); 

% Solve ODE analytically 

eqn = diff(z,t) == Fprime; % define equation 

cond = z(0) == 0; % initial condition 

DA(i) = dsolve(eqn,cond); % solve ODE 

end 
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ppendix C. Computation of Risk-Neutral Cumulants with 

elf-exciting Jumps 

We tested our proposed econometric approach on many differ- 

nt models. Obviously, all the affine option pricing models nested 

n our formulation (1) –(4) can be estimated through our QB-SMC 

lgorithm (e.g. the Double Heston model in Christoffersen et al., 

009 or Model IV in Fulop and Li, 2019 ). However, we encountered 

ome technical difficulty when applying our methodology to mod- 

ls which allow for self-excitation, an important stylized feature 

f financial returns. More specifically, we tried to estimate Model 

II in Fulop and Li (2019) , which is a two-factor model allowing 

or a self-exciting jump intensity and co-jumps between price and 

olatility. For this model (using the same notation as Fulop and 

i, 2019 ) the related functional characteristics 7 are given by: 

∂A (u, τ ) 

∂τ
= ru + k λθλC(u, τ ) + k v θv B (u, τ ) , 

∂B (u, τ ) 

∂τ
= −0 . 5(u − u 

2 ) − (k v − ρσv u ) B (u, τ ) + 0 . 5 σ 2 
v B (u, τ ) 2 , 

∂C(u, τ ) 

∂τ
= −k λC(u, τ ) + 0 . 5 σ 2 

λC(u, τ ) 2 + ( exp (uμJ + u 

2 σ 2 
J / 2+ 

C(u, τ ) β) / (1 − B (u, τ ) μv ) − 1) − ( exp (μJ + σ 2 
J / 2) − 1) u, 

(C.1) 

here β > 0 controls the level of self-excitation. In this case, we 

ere not able to obtain the symbolic closed form expression for 
∂ 3 A (0 ,τ ) 

∂u 3 
. Indeed, Matlab® failed in solving analytically the last or- 

inary differential equation due to memory problems. This is pri- 

arily just a numerical issue, because the calculation should be 

heoretically possible ( Feunou and Okou, 2018 , Propositions 1–2). 

he problem is that the mathematical expressions needed to solve 

he ODE 

∂ 
[ 

∂ 3 A (0 ,τ ) 
∂u 3 

] 
∂τ

= k λθλ
∂ 3 C(0 , τ ) 

∂u 

3 
+ k v θv 

∂ 3 B (0 , τ ) 

∂u 

3 
(C.2) 

ecome extremely long and the computation failed on our stan- 

ard PCs. The difficulty arises from the term exp (uμJ + u 2 σ 2 
J 
/ 2 + 

(u, τ ) β) / (1 − B (u, τ ) μv ) in (C.1) , which makes the ODE for

C.2) very cumbersome and complicated to solve. We do not re- 

ort the above mentioned expression here as it is illegibly long, 

ut it is available upon request. To investigate this aspect further, 

e considered the special case μv = 0 and found that the analytic 

xpressions for all necessary quantities ∂ n A (u,τ ) 
∂u n 

∣∣∣
u =0 

, ∂ n B (u,τ ) 
∂u n 

∣∣∣
u =0 

, 

∂ n C(u,τ ) 
∂u n 

∣∣∣
u =0 

for n = { 1 , 2 , 3 } can be computed in approximately 2

inutes. Thus, to avoid the computational problems we encoun- 

ered when estimating Model III in Fulop and Li (2019) , we de- 

ided to specify another model without self-excitation, but which 
7 See for example Hubalek et al. (2017) for a definition of functional characteris- 

ics. 
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s still flexible enough and which allows an easy calculation of risk- 

eutral cumulants. Therefore, instead of self-excitation we added 

nother volatility factor that allows for jumps. However, as ex- 

lained above, we stress that the main problem is not directly 

he self-excitation property, but the simultaneous presence of self- 

xcitation and co-jumps, which complicates the symbolic compu- 

ations. In simpler models with self-excitation (e.g. Hainaut and 

oraux, 2018; Bernis et al., 2021 ), we were able to obtain analytic 

xpressions for slopes coefficients, as also found in Brignone and 

garra (2020 , Section 3.2). 

ppendix D. Accuracy of the Filtering Method 

To assess the accuracy of the modified Kalman filter, we per- 

orm the following experiment. First, using the parameters esti- 

ated on real data, we conducted a single experiment on simu- 

ated data (15 years of daily data) to show that solving the filtering 

roblem with this modified Kalman filter results in negligible bias. 

ore precisely, in Figure D.10 we compare the true (simulated) tra- 

ectories of the total variance and the jump intensity with their 

ltered counterparts. The two trajectories are nearly indistinguish- 

ble, suggesting that using this approximated technique together 

ith risk-neutral cumulants yields very good results, even in the 
Fig. D1. Latent states on simulated data. Parameters as those in Table 6 . The solid blue

Fig. E1. Bridging the priors and the quasi-posteriors: mean (blue line) and (5 , 95)

17 
resence of very pronounced jumps. Second, following Du and 

uo (2019) we computed the RMSE between the true and filtered 

tates by running 100 repetitions of the algorithm on 100 different 

ynthetic datasets and we calculated the mean and standard devi- 

tion of the RMSE. We conclude that the bias induced by the mod- 

fied Kalman filter is very small. Indeed, for the total variance pro- 

ess the RMSE mean is 8 . 55 × 10 −4 and the standard deviation is 

 . 11 × 10 −4 , while the RMSE mean for the jump intensity is equal

o 0.0047 with a standard deviation of 0.0012. Overall, we found 

hat their magnitude is comparable to some other results reported 

n the literature, e.g. Du and Luo (2019 , Appendix C). 

ppendix E. Additional Results 

In this section, we report some additional results for 

ections 4 and 5 . Figures E.11 and E.12 complement Figures 3 and 

 showing, respectively, the bridge between priors and quasi pos- 

eriors and the comparison between full sample quasi posteriors 

nd the prior distribution for the remaining parameters. Also in 

his case, the results show good convergence for all parameters. It 

s also clear from the prior/posterior comparison that the prior is 

ot informative for the final output. 
 and dashed red lines represent, respectively, the filtered and true latent states. 

% quantiles (red lines) of some selected parameters at each tempering step. 
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Fig. E2. Full sample quasi-posterior distributions (blue line), obtained with a kernel density estimator, and prior distributions (red line) of some selected parameters. 
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