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1 Introduction

Conformal field theories on spaces with boundaries (BCFTs) and their holographic du-
als have been studied extensively in string theory, starting with [1, 2] (see also [3, 4]).
AdS/BCFT dualities have featured prominently in recent studies of the black hole informa-
tion paradox, where the holographic duals of BCFTs provide fruitful models for information
transfer from black holes [5–11], and in models for cosmology [12, 13].

Holographic duals for BCFTs are often modeled in a bottom-up fashion: an AdSd+1
bulk is cut off by an end-of-the-world (ETW) brane, so that a half space remains of the
conformal boundary of AdS, on which the d-dimensional BCFT is defined (figure 13a). The
ETW brane represents (d− 1)-dimensional boundary degrees of freedom coupled to the d-
dimensional ambient CFT. A related construction is the wedge holography proposal of [14].
It introduces a second ETW brane ending at the same point of the conformal boundary
as the first one and cutting off the remaining half of the AdS5 conformal boundary. This
leaves a wedge of AdSd+1 (figure 13b). These setups realize holographic duals for 3d CFTs
composed of two sectors represented by the two ETW branes.

The simplicity of these braneworld models makes them ideal for extracting qualitative
lessons. But a microscopic understanding ultimately needs proper AdS/CFT dualities,
with concrete and well-defined gravity theories and QFTs. Such dualities can be derived
from brane constructions in string theory. 4d BCFTs can be realized by D3-branes ending
on D5 and NS5 branes [15, 16]. The associated Type IIB supergravity solutions were
constructed, based on the groundwork of [17, 18], in [19]. The full 10d solutions, though
more complicated than the bottom-up models, have the advantage of being defined in a
UV-complete string theory setting and having concrete QFT duals, in the form of N = 4
SYM coupled to the IR fixed points of 3d N = 4 quiver gauge theories. Holographic duals
for pure 3d SCFTs can also be derived from these constructions, by considering D3-branes
suspended between D5 and NS5 branes. The holographic duals were constructed in [20],
based on the general solutions of [17, 18]. This in particular allows to realize string theory
versions of wedge holography [11]. We focus on the 10d Type IIB solutions in this work.

The 10d string theory duals for BCFTs can be framed in a language which incorporates
the braneworld model intuition: an asymptotic AdS5×S5 region — the dual of the 4dN = 4
SYM ambient CFT — connects smoothly to a region where the geometry becomes an AdS4
solution, which is the dual of the 3d boundary degrees of freedom. This latter part of the
geometry is the 10d uplift of the ETW brane. Instead of being cut off by an ETW brane,
the geometry ends smoothly by cycles in the internal space of the AdS4 solution collapsing.
Recent studies of these solutions include [11, 21–29].

In this work we make this intuitive picture for the 10d Type IIB solutions associated
with systems of D3, D5 and NS5 branes quantitative. The geometry of the supergravity
solutions is a warped product of AdS4 and two spheres, S2

1 and S2
2, over a strip, Σ. In

one asymptotic region of the strip the geometry becomes AdS5×S5; in the other direction
the geometry closes off smoothly. Based on the study of Wilson loop and vortex loop
operators using holography and supersymmetric localization, we identify regions on Σ
which are naturally associated with 3d degrees of freedom, corresponding to the ETW
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brane in the braneworld models, and regions which are associated with 4d degrees of
freedom, corresponding to the AdS5 bulk. More broadly speaking, we study 3d SCFTs, 4d
BCFTs, and Janus interface CFTs, and use loop operators to map out the internal space
in the associated supergravity solutions.

We now introduce the results in more detail. The 3d SCFTs we are interested in
arise from D3-branes suspended between NS5 branes, augmented by additional D5 branes
(figure 1a). The 4d BCFTs arise from D3-branes ending on combinations of D5 and NS5
branes (figure 2), and the Janus CFTs arise from D3-branes intersecting and partly ending
on D5 and NS5 branes. The planar limit of the 3d SCFTs corresponds to the IR fixed
points of 3d N = 4 quiver gauge theories with a large number of nodes. Building on
similar studies in 5d [30, 31], these 3d theories were studied in [23, 25]. The 4d BCFTs are
4dN = 4 SYM on a half space coupled to 3d SCFTs arising from long quiver gauge theories.
The ‘boundary free energy’ was studied in [24]. Finally, the Janus interface CFTs we are
interested in can be described as two 4d N = 4 SYM nodes on half spaces separated by an
interface which hosts a 3d long quiver SCFT. In these theories we will study Wilson loops
associated with individual 3d gauge nodes. We focus on 3d SCFTs for supersymmetric
localization computations, building on our earlier work [25]. On the holographic side we
study generic solutions, dual to 3d SCFTs, 4d BCFTs and Janus interface CFTs.

We identify the holographic representation of 1
2 -BPS Wilson loops in antisymmetric

representations associated with individual 3d gauge nodes as 1
2 -BPS probe D5′-branes,

embedded in the AdS4 × S2 × S2 × Σ solutions in such a way that they wrap a curve in
Σ. The choice of curve encodes which gauge node the Wilson loop is associated with. How
far the D5′ extends along the curve encodes the rank of the representation. Mirror-dual
vortex loops are correspondingly represented by NS5′ branes embedded along curves in Σ.
For 3d SCFTs we match the expectation values obtained holographically to field theory
calculations using supersymmetric localization, and demonstrate perfect agreement. The
identification of curves in Σ with individual gauge nodes connects to recent work in [28],
where certain boundary conditions on Σ were identified with the rank function in the dual
3d gauge theory. Here the identification based on loop operators extends through Σ and
is directly connected to a brane picture. The D5′-branes carry D3-brane and F1 charges,
identifying, respectively, the gauge node and representation of the dual Wilson loop. The
space of charges carved out by the D5′ embeddings yields the rank function.1

For the BCFT and Janus solutions there is a region in Σ which is swept out by loop
operator D5′ and NS5′ embeddings. There is also a region which does not host any such
loop operator embeddings, and instead hosts surface operators associated with 4d N = 4
SYM nodes (to be discussed shortly). We propose to identify the former region as the 3d
part of the geometry and the latter as the 4d part. A transition region between them hosts
certain 3d loop operators but not their mirror duals. The first region then corresponds
to the ETW brane region in braneworld models and the second to the AdSd+1 bulk. The
results are illustrated in figure 14 for BCFT duals and in figure 15 for duals of Janus

1The local identification of the internal space with individual gauge nodes has a precendent in
AdS6/CFT5, where Wilson loops are represented by D3-branes and their study identifies points in the
internal space with faces in the 5-brane web construction of the 5d SCFTs [31].
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interface CFTs, where the 3d region is sandwiched between two 4d regions. For duals of
3d SCFTs the loop operator embeddings sweep out all of Σ (e.g. figure 12), identifying all
of Σ as 3d region, as one would expect.

A special case of the general AdS4 × S2 × S2 × Σ solutions is the AdS5×S5 solution
of Type IIB dual to the 4d N = 4 SYM theory on R1,3. For this solution the 16 super-
symmetries preserved by generic AdS4 × S2 × S2 × Σ solutions are enhanced to 32. The
probe D5′-brane embeddings with D3-brane and F1 charges found here, which preserve 8
supersymmetries, can be studied in this solution. They describe surface operators in N = 4
SYM which themselves have a boundary (figure 4b). By combining two such operators one
can realize planar surface operators with an interface on the surface. We leave more de-
tailed studies of these operators for the future. Similar surface operator embeddings exist
for BCFT and Janus solutions. They are associated with 4d degrees of freedom in these
solutions, and are the D5′ embeddings associated with 4d nodes alluded to in the previous
paragraph (the blue curves leading to the 4d regions e.g. in figure 14).

Outline. In section 2 we review the brane construction of 3d T σρ [SU(N)] theories, BCFTs
based on 4d N = 4 SYM coupled to such 3d theories, and Janus interface CFTs, as well as
the representation of Wilson loops in these theories. In section 3 we compute the expecta-
tion values of antisymmetric Wilson loops in 3d long quiver SCFTs using supersymmetric
localization. In section 4 we discuss the holographic duals for the theories introduced in
section 2 and identify the holographic representation of antisymmetric Wilson loops. We
match the expectation values to field theory computations and identify, based on the Wil-
son loop discussion, regions in the holographic duals which are naturally associated with
either 3d or 4d degrees of freedom. Janus on the brane surface operators in AdS5×S5 are
discussed in section 4.3. In section 5 we connect the 10d supergravity solutions to the
language of braneworld models and propose a concrete notion of uplift for the ETW brane.
We close with a discussion in section 6. The derivation of the D5′ BPS conditions is given
in appendix A.

2 4d N = 4 SYM BCFTs & 3d T σρ [SU(N)]

The field theories we are interested in can be described as IR fixed points of 3d N = 4
linear quiver gauge theories with a large number of U(·) gauge nodes, possibly coupled to
4d N = 4 SYM on half spaces. The quiver diagrams take the following form,

̂SU(N0)−U(N1)−U(N2)− . . .−U(NL−1)−U(NL)− ̂SU(NL+1)
| | | | (2.1)

[k1] [k2] [kL−1] [kL]

The SU(·) nodes at the ends, which are distinguished by a hat, are 4d N = 4 SYM nodes
on a half space, while the U(·) nodes in the interior are 3d N = 4 nodes connected by
bifundamental hypermultiplets. If N0 and NL+1 are both zero the quiver describes a 3d
gauge theory, and the IR fixed point is a 3d SCFT. If one of N0 and NL+1 is zero and the
other non-zero, the quiver describes a 4d BCFT. If N0 and NL+1 are both non-zero the
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. . .

k1 k2 kL

N1 N2 NL

(a) (b) (c)

Figure 1. Left: brane setups for 3d quiver gauge theories. D3-branes are shown as horizontal lines,
NS5-branes as ellipses and D5-branes as vertical lines. Figure 1b: [2] − U(1) − U(2) − [3] theory.
Moving D5-branes to one side and NS5-branes to the other, taking into account Hanany-Witten
brane creation, leads to figure 1c, corresponding to ρ = [4, 2, 2] and σ = [2, 2, 2, 1, 1].

quiver describes a Janus CFT, i.e. two N = 4 SYM nodes on half spaces separated by a
3d interface. In the following we review the brane construction of these theories and the
brane representation of Wilson and vortex loop operators.

Brane construction. The theories in (2.1) can be engineered by configurations of D3-
branes ending on and suspended between D5 and NS5 branes, following [15, 16, 32]. We
start the discussion with 3d SCFTs, i.e. N0 = NL+1 = 0, and then discuss the generalization
to BCFTs and Janus CFTs. The brane orientations are given by the first three lines in the
following table:

0 1 2 3 4 5 6 7 8 9
D3 × × × ×
D5 × × × × × ×
NS5 × × × × × ×
F1 × ×
D5′ × × × × × ×
D1 × ×
NS5′ × × × × × ×

(2.2)

Each 3d U(Nt) gauge node is represented by Nt D3-branes suspended between NS5 branes,
while D5-branes intersecting the D3-branes represent fundamental matter, as illustrated in
figure 1a.

An alternative characterization of the quiver can be obtained by moving all D5-branes
to one side and all NS5-branes to the other, as illustrated for an example in figures 1b
and 1c. The brane configuration is now characterized by two Young tableaux, ρ and σ,
which encode how the D3-branes end on the NS5-branes on one side and on the D5-branes
on the other. The theories are referred to as T σρ [SU(N)], where N denotes the total
number of D3-branes suspended (we use this to refer to the IR SCFT and to the UV gauge
theory). The gauge theories were classified into good, bad and ugly in [16]. We focus on
the good theories, which have well-behaved IR fixed points without decoupled sectors. For
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(a) (b) (c)

Figure 2. Left: BCFT with semi-infinite D3-branes ending on D5-branes, corresponding to Nahm-
pole boundary conditions. Center: S-dual configuration with semi-infinite D3-branes ending on NS5
branes, corresponding to 4d N = 4 SYM coupled to a non-trivial 3d SCFT. Right: configuration
with D3-branes ending on a combination of D5 and NS5 branes.

these theories the number of flavors at each node is at least twice the number of colors.
Expressions for the quiver data in terms of ρ and σ can be found in [33, 34]. Mirror
symmetry exchanges ρ and σ, and corresponds to taking the S-dual brane configuration.

BCFTs based on 4d N = 4 SYM can be realized by terminating semi-infinite D3-branes
on D5 and/or NS5 branes. The simplest cases correspond to D3-branes ending on only D5
branes or on only NS5 branes (figure 2a, 2b). For D3-branes ending on D5-branes the BCFT
can be described as a choice of boundary conditions for the N = 4 SYM fields. The 4d
N = 4 vector multiplet can be decomposed into two sets of fields such that one yields a 3d
N = 4 vector multiplet on the boundary and the other a 3d hypermultiplet. The boundary
conditions for the 3d vector multiplet are Dirichlet. The 3d hypermultiplet satisfies Nahm
pole boundary conditions, in which the scalars Xi behave as Xi ∼ ti/x3, where x3 is
the direction normal to the boundary and ti are SU(2) generators in a representation
determined by how the D3 branes end on the D5-branes (see [24, section 2.2] for a concise
review). The S-dual configurations are semi-infinite D3-branes ending on NS5-branes. This
realizes N = 4 SYM on a half space coupled to the IR fixed point of a 3d N = 4 gauge
theory. These two cases are illustrated in figure 2. More general boundary conditions
involve D5 and NS5 branes (figure 2c). We will discuss examples in section 4.5.

The brane configurations can be further generalized by allowing semi-infinite D3-branes
to emerge in both directions from the D5 and/or NS5 branes. This realizes Janus CFTs
with two N = 4 SYM nodes of possibly different ranks on half spaces separated by an
interface. Depending on the brane configuration the interface can amount to imposing
boundary conditions on part of the 4d N = 4 SYM fields or to a 3d SCFT on the interface
mediating between the two half spaces. An example will be discussed briefly in section 5.
A special case of these brane configurations is to simply have infinite D3-branes with no
D5 or NS5-branes, corresponding to the 4d N = 4 SYM theory on R1,3.

Wilson loops. The brane realization of line operators in the 3d T σρ [SU(N)] theories
was discussed in [35], including half-BPS Wilson loops which preserve a U(1)C × SU(2)H
subgroup of the SU(2)C×SU(2)H R-symmetry and their mirror-dual vortex loop operators
(see also [36, 37]). The discussion generalizes to Wilson loops associated with 3d gauge
nodes in 4d BCFTs or Janus CFTs. The corresponding branes and their orientations are
included in the table in (2.2).

– 6 –
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. . . . . .

NS5 NS5

(Nt) D3

D5′

(k) F1

(a)

. . . . . .

NS5 NS5

(Nt) D3

D5′

(b)

Figure 3. Brane realization of Wilson loops in the rank k antisymmetric representation of the
tth gauge node. For simplicity we show a gauge node with no D5-branes representing fundamental
matter. The Wilson loop is realized by k fundamental strings stretched between the D3 branes and
a D5′ brane, as shown on the left. Via Hanany-Witten moves, the D5′ can be brought inside the
D3 stacks, annihilating all the F1s, as shown on the right.

Wilson loops in the fundamental representation of the tth gauge node are realized by a
fundamental string ending on the stack of D3-branes associated with U(Nt). Wilson loops
in the antisymmetric representation of rank k of the U(Nt) gauge group are realized by
k fundamental strings stretching between D5′ branes and the D3-branes associated with
U(Nt), as illustrated in figure 3a. By the s-rule, the number of strings between the D5′

and each D3 is at most one. Alternatively, one may start with a D5′-brane within the
D3-brane stack (figure 3b) with no strings attached. Using Hanany-Witten transitions to
move it out of the D3-brane stack creates a fundamental string each time a D3-brane is
crossed. If the D5′ was initially separated from the asymptotic region by k D3-branes this
leads to configuration for a rank-k antisymmetric Wilson loop. In that case the rank k can
be interpreted as coordinate for the position of the D5′-brane within the D3-brane stack.

The gauge node which the Wilson loop represented by a D5′ is associated with is
determined by the pair of NS5 branes which the D5′ is in between. Labeling the NS5-
branes for a quiver with L nodes from 1 to L+ 1, Wilson loops associated with the gauge
node U(Nt) are represented by a D5′ between the NS5-branes labeled t and t+ 1. Moving
the D5′ past NS5 branes creates new D3-branes through the Hanany-Witten effect. These
D3-branes extend along the (0378) directions in the table (2.2). An alternative point of
view therefore is that the D5′ associated with the U(Nt) node has t D3-branes oriented
along (0378) ending on it. In that picture the number of D3-branes determines which gauge
node the corresponding Wilson loop is associated with. In the supergravity duals to be
discussed below we will identify probe D5′ branes with Wilson loops, and use F1 and D3
charges carried by the D5′ to identify the gauge node and representation of the Wilson
loop. This is similar to the identification of Wilson loops in 5d long quiver SCFTs in [31].

Under mirror symmetry Wilson loops are exchanged with vortex loops. Vortex loops
are represented in the brane construction by the S-duals of the branes representing Wilson
loops. We will be brief in the discussion of vortex loops and focus on Wilson loops, but
vortex loops will play a role in section 5. The orientations of D-strings, representing
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vortex loops dual to Wilson loops in the fundamental representation, and NS5′-branes,
representing vortex loops dual to Wilson loops in the antisymmetric representation, are
included in the table in (2.2). For a more detailed discussion we refer to [35].

3 Wilson loops in 3d long quivers

In this section we discuss Wilson loops in 3d T σρ [SU(N)] SCFTs using supersymmetric
localization. For Wilson loops in antisymmetric representations associated with individual
gauge nodes of the UV gauge theories we derive general expressions for the expectation
values and discuss concrete example theories.

3.1 Localization for long quivers

The three dimensional SCFTs obtained from the brane setups of the previous section are the
so called T σρ [SU(N)] theories [16]. This large class of 3d N = 4 SCFTs can be obtained as
infrared superconformal fixed points of three-dimensional N = 4 gauge theories described
by quiver diagrams of the generic form

U(N1)−U(N2)− . . .−U(NL−1)−U(NL)
| | | |

[k1] [k2] [kL−1] [kL]
(3.1)

This corresponds to (2.1) with N0 = NL+1 = 0. Using a variable t to denote the position
along the quiver, each node corresponds to a gauge group factor U(Nt) with kt hyper-
multiplets in the fundamental representation attached. Each node is associated with an
N = 4 vector multiplet and each line connecting two nodes with an N = 4 hypermultiplet
in the bifundamental representation. Our focus will be on the so-called good theories, in
which the number of flavors at each node is at least twice the number of colors, namely
Nt−1 +Nt+1 + kt ≥ 2Nt.

It is particularly interesting to consider T σρ [SU(N)] theories placed on a three-sphere
S3, as we will do from now on. Being on a compact space, the path integral does not suffer
from IR divergences and is well defined. Moreover, using supersymmetric localization, the
partition function can be reduced to a matrix model of the form [38]

ZS3 = 1
|W |

∫ ∏
Cartan

dλ

∏
α>0 (2 sinh(πα(λ)))2∏

hyper
in rep R

∏
ρ 2 cosh(πρ(λ)) ≡

1
|W |

∫
dλ e−F . (3.2)

Here |W | is the order of the Weyl group of the gauge group, α > 0 denotes the positive
roots of the gauge group and the denominator in the integrand takes into account the
presence of hypermultiplets in a representation R with weights ρ.

As discussed in detail in [25], the natural planar limit of the T σρ [SU(N)] theories
amounts to taking a large length of the quiver L� 1, the rank of the generic gauge group
as Nt = O(L2) and a large number of flavours. In this limit the path integral can be
evaluated via a saddle point approximation, using the formalism developed in [23, 25],
mimicking the 5d discussion of [30]. We now review the main ideas. Having large ranks,
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one can assume a continuous distribution for the eigenvalues of each node. This can be
realized by introducing, for each t, a normalized eigenvalue density ρt and substituting

Nt∑
i=1

→ Nt

∫
dλ ρt(λ) , (3.3)

in the matrix model (3.2). Then, since L � 1, it is convenient to replace the variable t
with a continuous coordinate

z = t

L
, z ∈ [0, 1] (3.4)

labelling the position along the quiver. In terms of z, the data of the quiver {Nt, kt} are
replaced by the continuous functions N(z) = NzL and k(z) = kzL. With these notations,
the scaling we consider can be written as

N(z) = O(L2) , lim
z→{0,1}

L−2N(z) = 0 , (3.5)

with N(z) a piecewise linear function. Fundamental hypermultiplets are attached to iso-
lated nodes zt and their total number is O(L). With the replacement (3.4), the possible
eigenvalue configurations can be conveniently written in terms of a density function ρ(z, λ)
of two continuous variables, with

ρzL(λ) ≡ ρ(z, λ) . (3.6)

In order to have a non-trivial saddle point configuration, the eigenvalues have to scale with
the length of the quiver as2

λ = xL ,

ρ̂(z, x) = Lρ(z, Lx) ,
(3.7)

with x of order one and where we also introduced a rescaled density ρ̂(z, x). With the
assumption (3.7), the exact form of the saddle point density can then be obtained by
solving a two dimensional electrostatics problem, uniquely determined by the form of the
quiver. Using this approach, the planar limit free energies on S3 were matched with
supergravity computations in [23]. The scaling of the free energies was found to be L4,
which is quadratic in terms of the ranks of individual 3d gauge groups and the familiar
N2 from a 4d N = 4 SYM perspective (viewing the 3d T σρ [SU(N)] theories as IR limit of
4d N = 4 SYM on an interval, figure 1c). Theories with the previously known N2 lnN
scaling [39] can be obtained as a particular limit, which modifies the conditions in (3.5)
such that the ranks of the 3d gauge groups are of the same order as the length of the quiver.

3.2 Localization and Wilson loops

The formalism just discussed can also be used to compute the expectation values of other
supersymmetric observables, such as supersymmetric Wilson loops. This has been carried
out for 5d long quiver theories in [31], whose discussion we will closely follow.

2Differently from [23, 25], we keep the chiral field R-charge r fixed to its canonical value r = 1/2.
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We want to compute the expectation value of Wilson loop operators associated with
the tth gauge node, which is given by

W
(t)
R = 1

dimRTrR
(
P exp

∮ (
iA(t)

µ ẋ
µ − |ẋ|σ(t)

)
dτ

)
, (3.8)

where x(τ) denotes the closed world-line of the Wilson loop and σ(t) and A(t)
µ are, respec-

tively, the scalar field and the gauge field of the N = 2 vector multiplet in the N = 4
vector multiplet associated with the tth node.3 In (3.8), we also used P to indicate the
path-ordering operator and R to denote a representation of the gauge group U(Nt). For a
3d N = 4 SCFT, one can place the Wilson loop (3.8) on a great circle on S3, preserving
half of the supersymmetries and U(1)C × SU(2)H of the original R-symmetry group. More
details can be found in [35, 40].

From supersymmetric localization techniques [38], the expectation value of BPSWilson
loop operators at the tth node can be obtained by inserting, in the integral of the matrix
model (3.2), an appropriate factor

〈W (t)
R 〉 = 1

ZS3

1
|W |

∫
dλ e−F

(
1

dim R

∑
w∈R

e2πw·λ(t)
)
, (3.9)

where w runs over the weights of the representation R of the gauge group. With the
assumption (3.6) on the scaling of the eigenvalues, one can argue that the insertion of the
Wilson loop operator in the matrix model does not affect the saddle point configurations
of the S3 free energy. The Wilson loop expectation value then becomes

〈W (t)
R 〉 = 1

dim R

∑
w∈R

e2πw·λ(t)
∣∣∣∣
saddle

. (3.10)

The saddle point configurations for a number of quivers can be directly read from [25].
A first application of this formula can be obtained for the fundamental representation

of the gauge group U(Nt). In the continuous limit, with the rescaling (3.7),

〈W (t)
f 〉 = 1

Nt

Nt∑
i=1

e2πλ(t)
i

∣∣∣∣
saddle

continuous−−−−−−−→
limit

〈Wf (z)〉 =
∫
dx ρ̂(z, x)e2πxL . (3.11)

In this case, the expectation value of the Wilson loops has a scaling determined by the
largest eigenvalue. For the theories to be discussed below, at the majority of nodes the
eigenvalue densities have exponential tails and are not bounded. This signals a logarith-
mically enhanced scaling of the fundamental Wilson loop expectation values. This was
discussed in section IIA of [31], to which we refer for more details.

In the rest of this section we focus on Wilson loops in antisymmetric representations
of rank k, denoted by ∧k, with k large. For such operators, eq. (3.10) becomes

〈W (t)
∧k 〉 =

Nt

k

−1 ∑
j1<j2<···<jk

e
2π
∑k

`=1 λ
(t)
j`

∣∣∣∣
saddle

. (3.12)

3We recall that an N = 4 vector multiplet consists of an N = 2 vector and an N = 2 adjoint chiral
multiplet. Similarly, an N = 4 hypermultiplet decomposes into a pair of chiral and anti-chiral multiplets.
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Note that this expression is invariant under the change k → Nt − k. For large representa-
tions, with k = O(Nt), the leading order contribution to the expectation value comes from
the k distinct largest eigenvalues, which we need to identify in the continuous formalism.
Let us recall that we introduced a density ρt to describe the distribution of the eigenvalues
for each node t. So, given an integer ` ≤ Nt, we can define a quantity bt,` such that [31]

Nt

∫ ∞
bt,`

dλ ρt(λ) = ` . (3.13)

This expression provides the cutoff bt,` to isolate the ` largest eigenvalues. In other words,
we can think of bt,1 as giving the value of the largest eigenvalue, bt,2 the value of the
second-largest and so on. This means that

ln〈W (t)
∧k 〉 = 2π

k∑
`=1

bt,` . (3.14)

It is interesting to observe that all the information of the original theory is now encoded in
the saddle point configuration and in the scaling of the eigenvalues, which determine bt,`
via (3.13). As noted in section VI of [25], some 3d theories share the same saddle point
configurations with the 5d theories studied in [30]. Hence, the Wilson loop expectation
value (3.14) for such theories can only differ from the 5d analogs by an overall factor,
depending on the different scaling of λ.

For a large representation, we can replace the sum in (3.14) with an integral. In order
to do that, let us make some redefinitions. First, introducing y = `/Nt and performing the
changes of variable λ = Lx and z = t/L, equation (3.13) becomes∫ ∞

b(z,y)
dx ρ̂(z, x) = y , (3.15)

where we also replaced bt,` with b(z, y), which is a function of two continuous variables.
Then we introduce another continuous parameter to encode the rank of the representation,

k ≡ k

Nt
, (3.16)

so that the expectation value (3.14) becomes

ln〈W∧(z,k)〉 = 2πLN(z)
∫ k

0
dy b(z, y) . (3.17)

Following the notation of [31], we redefined W∧(z,k) ≡ W
(z,L)
∧kN(z) on the left hand side.

Equation (3.17) can be rewritten as

ln〈W∧(z,k)〉 = 2πLN(z)
∫ b(z,k)

b(z,0)
y′(b)db b , (3.18)

which turns out to be more convenient from a computational perspective. This expression
is, up to an overall factor, equivalent to equation (2.18) in [31] for 5d Wilson loops.
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3.3 General balanced quivers

As a concrete realization of the previous discussion, we consider theories described by
balanced quivers, i.e. satisfying for each node t the condition Nt−1 +Nt+1 + kt = 2Nt. The
three-sphere free energy for such theories, with the scaling in (3.5), has been studied in [25]
and the saddle point densities are

ρ̂s(z, x) = − L

2πN(z)

L−1∑
t=2

kt ln
(cosh(2πx)− cos (π(z − zt))

cosh(2πx)− cos (π(z + zt))

)
, (3.19)

where zt denotes the positions of the flavours. The function b(z, y) defined in (3.15) is
determined by the equation

y = L

2π2N(z)

L−1∑
t=2

kt Re [Li2 (wτt)− Li2 (w/τt)] (3.20)

with
w = e−2πb(z,y)−iπz , τt = eiπzt . (3.21)

The expression for the expectation value of the Wilson loop from (3.18) is

ln〈W∧〉 = L2

2π2

L−1∑
t=2

kt Re [Li3 (wτt)− Li3 (w/τt)− ln |w| (Li2 (wτt)− Li2 (w/τt))]
∣∣∣∣∣
b(z,k)

b(z,0)

.

(3.22)
This can be read as follows: one first fixes b ∈ R. Then k is given by the expression
in (3.20) by setting y = k and the Wilson loop expectation value is given by (3.22). More
precisely, from (3.15) we have b(z, 0) = ∞ (which can also be seen from (3.20)). As a
result, the contribution from the lower bound in (3.22) drops out. We arrive at

k = L

2π2N(z)

L−1∑
t=2

kt Re [Li2 (wτt)− Li2 (w/τt)] ,

ln〈W∧〉 = L2

2π2

L−1∑
t=2

kt Re [Li3 (wτt)− Li3 (w/τt)− ln |w| (Li2 (wτt)− Li2 (w/τt))] .
(3.23)

Example. Theories described by balanced quivers can be realized by partitions ρ, σ of
the schematic form

σ = [MN1
1 , . . . ,MNn

n ] , ρ = [M̂ N̂ ] , (3.24)

For the planar limit all the quantities involved are large and of the same order, as discussed
in more detail in [25]. Here we explicitly discuss the simple choice

σ = ρ =
[
N2N

]
. (3.25)

From the brane perspective this corresponds to D3-branes ending on one side on a single
group of D5-branes, with an equal number of D3-branes ending on each D5-brane, and on
the other side on a single group of NS5-branes, with an equal number of D3-branes ending
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on each NS5-brane. The corresponding quiver has 2N flavors at the central node of the
quiver and the rank of the gauge groups is encoded in the function

N(z) = 2N2
(1

2 −
∣∣∣∣z − 1

2

∣∣∣∣) . (3.26)

The saddle point density is

ρ̂s(z, x) = − 2N2

πN(z) ln
(cosh(2πx)− sin (πz)

cosh(2πx) + sin (πz)

)
. (3.27)

We can focus on the first half z ≤ 1
2 of the quiver since the results in the second half can be

obtained by symmetry, so that N(z) = 2N2z. Plugging this expression into (3.23) one finds

k = 1
π2z

Re [Li2 (iw)− Li2 (−iw)] , w = e−2πb−iπz ,

ln〈W∧〉 = 4N3

π2 Re [Li3 (iw)− Li3 (−iw)− ln |w| (Li2 (iw)− Li2 (−iw))] . (3.28)

3.3.1 T [SU(N)]

A limiting case of the theories discussed above amounts to considering the ranks of the
gauge groups of the same order as the length of the quivers and accumulating all flavors
at one end of the quiver. This leads to the theories with N2 lnN scaling of the free energy
discussed in [39]. A more complete discussion of the limit can be found in [25]. The simplest
example of such theories is T [SU(N)], described by the partitions

ρ = σ = [1N ] . (3.29)

We could obtain the expectation value of Wilson loops as a limiting case of (3.23). However,
we can take a short-cut. Indeed, T [SU(N)] has the same saddle point configuration as the
5d TN theory considered in [31], namely

ρ̂s(z, x) = sin(πz)
z

1
cosh(2πx) + cos(πz) . (3.30)

Hence, as argued before, we can import the 5d results of [31], adjusting the overall factors.
The function b(z, y) defined in (3.15) is given by

b(z, y) = 1
2π ln [sin(π(1− y)z) csc(πyz)] (3.31)

so that, using (3.17) or (3.18), we obtain

ln〈W∧(z,k)〉 = 1
π
N2D

(
e2πb(k,z)+iπ(1−z)

)
, (3.32)

where D is the Bloch-Wigner function, D(u) = Im(Li2(u) + ln |u| ln(1− u)).
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3.4 An unbalanced quiver

We conclude the field theory analysis with a discussion of the unbalanced quiver described
by the partitions

ρ = σ = [(2N −∆N)N , (∆N)N ] . (3.33)

This theory is a generalization of the balanced theory (3.25), which is recovered by choosing
∆ = 1. The quiver associated with the choice (3.33) has length L = 2N − 1 ∼ 2N with an
unbalanced node at t = N and fundamental flavors

k1 = N at z1 = ∆
2 ,

k2 = N at z2 = 1− z1 .
(3.34)

The explicit expression of the quiver is given in (4.78) below. The saddle point eigenvalue
density can be obtained from equation (96) in [25]

ρ̂s = − N2

πN(z)
∑

a∈{1,2}
ln
∣∣∣∣∣ i
√
−v − i

√
−va

i
√
−v + i

√
−v̄a)

∣∣∣∣∣
2

, (3.35)

with

v(u) = ue4πx1 + 1
u+ e4πx1

, u(x) = e4πx+2πiz , va = e2πizae4πx1 + 1
e2πiza + e4πx1

, (3.36)

and x1 determined by
i

2
∑

a∈{1,2}
ln
( √
−va + e2πx1

1 + e2πx1
√
−va

)
= πz1 . (3.37)

Before writing the solution of the previous equation, it is convenient to introduce a variable
δ such that

z1 = ∆
2 = 1

4 + 1
π

arctan e−2δ . (3.38)

This parameter will appear naturally in the supergravity description of section 4.6. With
this substitution, the solution of equation (3.37) is

x1 = − 1
2π ln

(
tanh

(
δ

2

))
. (3.39)

This solution holds in the interval z1 ∈ [1/4, 3/4], which actually represents the interval
of the possible values of z1, consistently with equation (3.38). In the limit δ → 0, in
which the quiver becomes balanced, the value of x1 goes to infinity, as expected for a
balanced quiver [25]. For generic δ, instead, the density (3.35) has compact support at
the unbalanced node z = 1/2, with x ∈ [−x1, x1]. With an eigenvalue density of compact
support, the leading behavior of Wilson loops at z = 1/2 in the fundamental representation
is given, from equation (3.11), by the largest eigenvalue

ln
〈
Wf

(1
2

)〉
= −2N ln tanh

(
δ

2

)
, δ 6= 0 . (3.40)
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For the other nodes with unbounded support, we expect the logarithmic enhancement
discussed below eq. (3.11).

The expectation values of large-rank antisymmetric Wilson loops can be obtained from
the general expressions (3.15), (3.18) with the eigenvalue density (3.35). This will be used
to numerically compare the expectation values to supergravity results in section 4.6.

4 Wilson loops in AdS/(B)CFT

We review in section 4.1 the AdS4×S2×S2×Σ supergravity solutions associated with the
brane setups of section 2, and discuss BPS string and D5′-brane embeddings in section 4.2,
before moving on to concrete examples and the discussion of Wilson loops. AdS5×S5 is dis-
cussed as a warm-up in section 4.3, where we also identify Janus on the brane D5-brane em-
beddings. For duals of balanced 3d SCFTs we compare the Wilson loop expectation values
obtained holographically with field theory calculations in section 4.4. BCFTs corresponding
to D3-branes terminating on a symmetric combination of D5 and NS5 branes are discussed
in section 4.5. In section 4.6 we discuss 3d SCFTs with an unbalanced central node, which
provide 10d realizations of wedge holography. The solutions of section 4.5 and section 4.6
were used in [11] to study information transfer from black holes and the entropy of Hawking
radiation; we will make connections to that discussion in section 4.6 and section 5.

4.1 Supergravity solutions

The geometry of the general type IIB supergravity solutions constructed in [17, 18] is a
warped product of AdS4×S2×S2 over a Riemann surface Σ. They preserve 16 supersym-
metries. The Einstein frame metric and dilaton are given by

ds2 = f2
4ds

2
AdS4 + f2

1ds
2
S2

1
+ f2

2ds
2
S2

2
+ 4ρ2|dz|2 , e4φ = N2

N1
, (4.1)

where we follow the dilaton convention of [17, 18] in using τ = χ+ ie−2φ. The 3-form and
5-form field strengths are

H(3) = volS2
1
∧ db1 , F(3) = volS2

2
∧ db2 ,

F(5) = −4 volAdS4 ∧ dj1 + 4f2
1 f

2
2 f
−4
4 volS2

1
∧ volS2

2
∧ ?2 dj1 , (4.2)

where ?2 denotes Poincaré duality on Σ and b1, b2, j1 are functions on Σ.
The solutions are parametrized by a pair of harmonic functions h1, h2 on Σ, which

may be written in terms of holomorphic functions A1, A2 as

h1 = −i(A1 − Ā1) , h2 = A2 + Ā2 ,

hD1 = A1 + Ā1 , hD2 = i(A2 − Ā2) . (4.3)

Composite quantities are defined as

W = ∂∂̄(h1h2) , Ni = 2h1h2|∂hi|2 − h2
iW . (4.4)
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The metric functions are

f8
4 = 16N1N2

W 2 , f8
1 = 16h8

1
N2W

2

N3
1

, f8
2 = 16h8

2
N1W

2

N3
2

, ρ8 = N1N2W
2

h4
1h

4
2

. (4.5)

The remaining quantities appearing in the field strengths (4.2) are functions b1, b2 and j1,
given by

b1 = 2h2
1h2
N1
Y + 2hD2 , b2 = 2h1h

2
2

N2
Y − 2hD1 , j1 = 3C + 3C̄ − 3D + h1h2

W
Y , (4.6)

where

Y = i(∂h1∂̄h2 − ∂̄h1∂h2) , D = Ā1A2 +A1Ā2 , (4.7)

and C is defined by

∂C = A1∂A2 −A2∂A1 . (4.8)

Harmonic functions. Depending on the choice of h1/2 and Σ, solutions with different
holographic interpretations can be constructed. We focus on duals for 3d SCFTs, 4d BCFTs
and 4d Janus interface CFTs of the type discussed in section 2. All solutions describe D3-
branes suspended between, ending on, or intersecting combinations of D5 and NS5 branes.
For these solutions the form of the harmonic functions h1, h2 on the strip

Σ =
{
z ∈ C | 0 ≤ Im(z) ≤ π

2

}
(4.9)

is

h1 = − iπα
′

4 (Kez − Le−z)− α′

4

A∑
a=1

N
(a)
D5 ln tanh

(
iπ

4 −
z − δa

2

)
+ c.c.

h2 = πα′

4 (Kez + Le−z)− α′

4

B∑
b=1

N
(b)
NS5 ln tanh

(
z − δb

2

)
+ c.c. (4.10)

These solutions describe A groups of D5-branes with N (a)
D5 D5-branes in the ath group and

B groups of NS5-branes with N (b)
NS5 NS5-branes in the bth group. D3-branes are suspended

between the 5-branes, as illustrated in figures 1, 2 for 3d SCFTs and BCFTs, respectively.
The numbers of semi-infinite D3-branes emerging on the left and right are controlled by
L and K, respectively. For L = K = 0 the solutions are dual to 3d SCFTs. If one of K
and L is zero and the other non-zero the solutions are dual to 4d BCFTs, and if K and
L are both non-zero the solutions are dual to 4d Janus interface CFTs. For the general
identification of the brane configurations and their linking numbers we refer to [19, 20] and
recent discussions in [24, 25]. We will discuss concrete examples and the associated brane
configurations below. We note that S-duality amounts to exchanging h1 and h2.

4.2 BPS strings and 5-branes

The BPS conditions for fundamental strings and D5′ branes relevant for the discussion of
Wilson loops are derived and partly solved in appendix A; here we summarize the results.
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4.2.1 Strings

Wilson loops in the fundamental representation are represented by fundamental strings
wrapping AdS2 in AdS4 and otherwise localized at a point in the internal space formed
out of Σ and the two spheres (such strings were studied in [41]). The induced metric is
g = f2

4ds
2
AdS2

. The action (with dilaton convention τ = χ+ ie−2φ) becomes

SF1 = −T VAdS2f
2
4 e
φ , (4.11)

where T = (2πα′)−1 and VAdS2 is the renormalized volume of AdS2. The BPS condition
for the string to preserve half of the 16 supersymmetries (cf. (A.34)) reads

h1 = 0 , ∂h2 = 0 . (4.12)

h1 = 0 implies that f2
1 = 0, i.e. the sphere S2

1 collapses and the associated isometries are
preserved. Since the string is localized on S2

2 , which does not collapse, the SU(2) symmetry
associated with S2

2 is broken to U(1).
For the supergravity solutions (4.10), h1 vanishes only on the boundary component

Im(z) = 0, where ∂h2 has poles. On that boundary component h2 satisfies the Neumann
boundary condition (∂ − ∂̄)h2 = 0. Supersymmetric string embeddings can be found at
points where in addition (∂ + ∂̄)h2 = 0.

The BPS string embeddings can be related to the brane configuration in (2.2) as follows.
In the solutions (4.10), the sphere S2

1 is associated with the (456) directions in (2.2), while
the sphere S2

2 is associated with the (789) directions: the sphere S2
1 in the geometry (4.1)

collapses on the boundary component Im(z) = 0, where h1 vanishes and ∂h2 has poles
corresponding to NS5 branes. The NS5-branes thus wrap S2

2 but not S2
1 . Likewise, on

the boundary component Im(z) = π
2 , where the D5 sources are, the sphere S2

2 collapses;
the D5-branes wrap S2

1 but not S2
2 . The BPS string embeddings satisfying (4.12) are in

line with this identification and the orientation of F1 strings in (2.2); they preserve the
symmetries of S2

1 , which is wrapped by the D5-branes, and break the symmetries of S2
2 ,

which is wrapped by the NS5-branes.
The circular Wilson loop expectation value is given by the on-shell action (4.11) with

AdS2 in global coordinates, such that VAdS2 = −2π. Noting that f8
4 e

4φ = 16N2
2W

−2 and
using the BPS conditions, the on-shell action simplifies to

SF1 = 4πT |h2| . (4.13)

The BPS conditions and action for D1-branes representing vortex loops can be obtained
by exchanging h2 and h1.

4.2.2 5-branes

Wilson loops in antisymmetric representations can be realized by D5′-branes, as discussed
in section 2. The appropriate embedding ansatz for the D5′ branes can be identified as
follows. As discussed for the BPS strings, the S2

1 in the supergravity solutions corresponds
to the (456) directions in (2.2), while the S2

2 corresponds to the (789) directions. The
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D5′-branes in table (2.2) should therefore wrap the entire S2
1 and a one-dimensional part of

S2
2 . To preserve the appropriate R-symmetry they have to wrap an S1 in S2

2 . They should
also wrap an AdS2 in AdS4. This leaves a curve in Σ.

For a D5′ wrapping AdS2 in AdS4, the S2
1 , a circle in S2

2 , and a curve in Σ, the entire
embedding can be parametrized by a complex function z(ξ) specifying a curve in Σ and a
real function θ(ξ) specifying the S1 in S2

2 with metric

ds2
S2

2
= dθ2 + sin2θ dφ2 . (4.14)

The induced metric on the D5′ becomes

g = (f2
2 θ
′2 + 4ρ2|z′|2)dξ2 + f2

1ds
2
S2

1
+ f2

4ds
2
AdS2 + f2

2 sin2θ ds2
S1 . (4.15)

We expect BPS configurations to carry D3 and F1 charges, and therefore include world-
volume electric fields on AdS2 and magnetic fields on S2

1 ,

F = Fel volAdS2 +F1 volS2
1
. (4.16)

We expect the D3-brane charge induced by F1 to control the embedding along Σ, following
the discussion in section 2. The general D5-brane action with the appropriate Wess-Zumino
terms reads

SD5 = TD5

∫
d6ξe−2φ

√
det(g̃ + F)−QD5

∫ (
C(4) ∧ F + 1

2C(2) ∧ F ∧ F
)
, (4.17)

where F = F −B2 and g̃ is the string frame induced metric g̃ = eφg (with τ = χ+ ie−2φ).
The tension is given by T−1

D5 = (2π)5α′3. We write the RR potentials corresponding to the
field strengths in (4.2) as

C(2) = t(θ)dφ ∧ db2 , C(4) = 4f2
1 f

2
2 volS2

1
∧t(θ)dφ ∧ ?2(f−4

4 dj1) + . . . , (4.18)

where

t′(θ) = sin θ . (4.19)

The omitted terms in C(4) are not relevant for the D5′ embedding. With the explicit
expressions for the background fields and the induced metric the action becomes

SD5 =TD5VAdS2VS2VS1

∫
dξ sinθe−φf2

√
(f4

4 e
2φ−F 2

el)(f4
1 e

2φ+(F1−b1)2)
(
f2

2 θ
′2 +4ρ2|z′|2

)
−QD5

∫ 4f2
1 f

2
2

f4
4

volS2
1
∧ t(θ)dφ∧(?2dj1)∧Fel volAdS2

−QD5

∫ 1
2 t(θ)dφ∧db2∧Fel volAdS2 ∧(F1−b1)volS2

1
, (4.20)

where db2 = ∂zb2dz + ∂z̄b2dz̄ and ?2dj1 = −idz∂zj1 + idz̄∂z̄j1.
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BPS configurations. The BPS conditions for the D5′ branes are derived and solved in
appendix A. They imply that, along the embedding,

hD2 = const , Fel = 2λh2 cos θ , F1 = 2hD2 , (4.21)

with λ = ±1. If these conditions are satisfied the embedding preserves half the supersym-
metries. The first equation fixes a curve in Σ along which the D5′-brane extends. The
second equation fixes θ in terms of the electric field and the location on Σ. The embedding
closes off smoothly with the S1 in S2

2 collapsing at the point where |2h2| = |Fel|. We veri-
fied in a number of examples that the BPS configurations satisfy the equations of motion
as well. The BPS conditions for NS5′-branes can be obtained by exchanging h1 and h2.

When evaluating the on-shell action (4.20), the integration constant in t(θ) defined
in (4.19) has to be chosen judiciously. It has to be such that the two-form potential is
well defined with no sources in the hemisphere in which the S1 wrapped by the D5′-brane
collapses. This leads to

t(θ) = − cos θ ± 1 . (4.22)

The signs of Fel, λ and h2 in the BPS conditions determine the sign of the constant.
The D3-brane and F1 charges carried by the D5′ branes can be expressed concisely in

terms of the harmonic functions. The D3-brane charge is determined by F1 and given by

ND3 = 1
2π

∫
S2

1

(2πα′)−1F1 = 2
πα′

hD2 , (4.23)

where factors 2πα′ which had been absorbed into the definition of the worldvolume gauge
fields have been taken into account. For the F1 charge we find

NF1 = 2πα′
∫
δSD5
δFel

= 16πα′λTD5VS2VS1

∫
dξ h1(∂zh2)z′ . (4.24)

Upon expanding h1, h2 into holomorphic and anti-holomorphic components, and using that
hD2 is constant along the embedding, the integral can be expressed as

NF1 = 4λ
π2α′2

[Im (A1A2 + C)]z1
z0
, (4.25)

where z0 and z1 are the start and end points of the curve along which the D5′ extends in
Σ and C was defined in (4.8).

The Wilson loop expectation value is given by the Legendre-transformed on-shell ac-
tion, which is discussed in appendix A.3.1. We find

SD5 − Fel
δSD5
δFel

= 8
π2α′3

I , I =
∫
dξ h1h2(∂zh2)z′ . (4.26)

As shown in appendix A.3.1 the integral can be expressed in terms of a holomorphic
function W as

I =
[
Im
(
2A1A2

2 − 2W + ihD2 (A1A2 + C)
)]z1

z0
, (4.27)

– 19 –



J
H
E
P
0
3
(
2
0
2
2
)
1
2
7

where W is defined up to a constant by

∂W = A2
2∂A1 . (4.28)

Upon identifying the Legendre-transformed on-shell action as expectation value of the
antisymmetric Wilson loop we find

ln〈W∧〉 = 8
π2α′3

[
Im
(
2A1A2

2 − 2W + ihD2 (A1A2 + C)
)]z1

z0
. (4.29)

4.3 AdS5×S5 and Janus on the brane

As a warm-up example we start with AdS5 × S5, which corresponds to a particularly
simple choice of harmonic functions h1/2. We rephrase familiar results on Wilson loops
in N = 4 SYM in the language of the AdS4 × S2 × S2 × Σ solutions, and identify a new
class of D5′ embeddings which describe surface defects with boundaries or interfaces on
them. To our knowledge these embeddings have not been discussed before. They describe
supersymmetric versions of the Janus on the brane embeddings discussed in [42].

The AdS5 × S5 solution of Type IIB corresponds to K = L and N
(a)
D5 = N

(a)
NS5 = 0

in (4.10). The holomorphic functions A1/2 can then be taken as

A1 = πα′

2 K sinh z , A2 = πα′

2 K cosh z , (4.30)

and the function C defined up to a constant in (4.8) is given by

C = −π
2α′2

4 K2z + C0 . (4.31)

The metric (4.1) takes a simpler form in real coordinates z = x+ iy, which leads to

ds2 = 2πα′K
[
cosh2x ds2

AdS4 + sin2y ds2
S2

1
+ cos2y ds2

S2
2

+ dx2 + dy2
]
. (4.32)

This is AdS5×S5 with AdS5 in AdS4 slicing. The curvature radius is R4 = 4π2α′2K2 and
the number of D3-branes ND3 = K2/π.

For AdS5×S5 the 16 supersymmetries preserved by the general solutions (4.10) are
enhanced to 32. The BPS conditions for string and 5-brane embeddings derived in ap-
pendix A imply that 8 of the 16 supersymmetries present for all AdS4 × S2 × S2 × Σ
solutions are preserved. This does not capture all embeddings which preserve half of the
enhanced 32 supersymmetries in AdS5 × S5. We therefore do not expect to recover all
the half-BPS Wilson loop embeddings for N = 4 SYM (studied in [43–45]) from the BPS
conditions derived here. Indeed, the BPS conditions (4.12) for a fundamental string imply
x = 0 and y = π

2 , while in AdS5×S5 an F1 wrapping AdS2 is half-BPS at any point of the
S5. So only the condition x = 0 should be required for half-BPS strings and we recover a
subset of the N = 4 SYM Wilson loops, as expected.

The probe D5′ branes are more interesting, as we will find a new class of surface defects
for N = 4 SYM. The BPS conditions for D5′ embeddings in (4.21) become

hD2 = πα′K sinh x sin y = πα′Kc ,

Fel = 2πα′Kλ cos θ cosh x cos y , (4.33)
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-5 0 5
x

0.5

1.0

1.5

y

Σ

(a)

x = +∞x = −∞

x = 0

AdS5

∂ AdS5

x = sinh−1 c

D5′

(b)

Figure 4. Left: D5′ embeddings in AdS5×S5 on the strip. Half-BPS Wilson loop D5′-branes are
embedded along the red curve x = 0, corresponding to c = 0 in (4.33). The blue curves are Janus
on the brane embeddings. Right: schematic illustration of the embeddings in AdS5. Lines starting
at the conformal boundary are AdS4 slices, of which the D5′ wrap an AdS2. The angular coordinate
is x, with x = ±∞ corresponding to the conformal boundary and x = 0 to the vertical slice. The
shaded region is an example of a Janus on the brane D5′ embedding.

with a constant c. We start with embeddings without D3-brane charge, c = 0. A non-
degenerate embedding needs x = 0, otherwise the S2

1 wrapped by the D5′ collapses due to
the first condition. The second condition can then be solved for θ as function of y,

cos θ = Fel
2πα′Kλ cos y . (4.34)

This restricts Fel to |Fel| ≤ 2πα′K. On the lower boundary of Σ, where the S2
1 collapses,

cos y = 1. For Fel = 0 the D5′ wraps an equatorial S1 in S2
2 and reaches the upper boundary

of Σ, where the S2
2 collapses. More generally the D5′ reaches up to

y? = cos−1
( |Fel|

2πα′K

)
, (4.35)

where the S1 wrapped in S2
2 collapses. The c = 0 D5′ branes carry no D3 charge, while

the F1 charge is given via (4.25) by

NF1 = λK2 (sin y? cos y? − y?) , (4.36)

with λ = ±1 depending on the sign of Fel. The c = 0 embeddings correspond to the
AdS2×S4 D5-branes representing antisymmetric Wilson loops in 4d N = 4 SYM, discussed
in [45]. The embeddings are shown in red in figure 4a. The construction here implies that
they preserve 8 of the 16 supersymmetries present for all solutions (4.10). They preserve
half of the additional supersymmetries present for AdS5×S5 as well. For y? = π

2 the F1
charge is half the number of D3-branes and the rank of the representation is half the rank
of the gauge group. This is the ‘maximal’ antisymmetric Wilson loop.

Now to the embeddings with D3-brane charge, c 6= 0. From (4.33) and (4.23), ND3 =
2cK. The first equation in (4.33) fixes y in terms of x, leading to the blue curves shown
in figure 4a. The D5′ captures a range in x which is constrained by |c| < | sinh x| < ∞,
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with x positive/negative for positive/negative c. For |x| → ∞ we have y → 0. The second
equation in (4.33) fixes θ in terms of x,

cos θ = Fel
2πα′Kλ

1√
cosh2x− c2 coth2x

. (4.37)

For |x| → ∞ we have θ → π
2 and the D5′ wraps an equatorial S1 in S2

2 . For Fel = 0 the
D5′ wraps the equatorial S1 in S2

2 for all x, and the embedding reaches all the way to
sinh x = c, where y = π

2 . For Fel 6= 0, the S1 starts to slip towards a pole on S2
2 as |x|

is decreased, and the D5′ caps off with the S1 collapsing before reaching sinh x = c. The
limits x→ ±∞ lead to the boundary of AdS5 and the D5′ extend to one of these regions.
The embeddings thus describe a “half surface defect” of the form R+ ×R in N = 4 SYM,
as shown in figure 4b. The embeddings describe bound states of D5-branes, D3-branes
and fundamental strings; they preserve 8 supersymmetries by construction and we do not
expect a further enhancement from the additional supersymmetries of AdS5×S5.

We briefly compare these D5′ surface operators to the half-BPS surface operators
in N = 4 SYM studied in [46]. The latter can be realized holographically by D3-branes
wrapping AdS3 in AdS5 and an S1 in S5. They describe planar surface operators extending
along an entire R2 in R4, which preserve 16 supersymmetries. Non-supersymmetric Janus
versions of these surface operators, which have a 1d interface on the 2d surface, were studied
in [42]. The embeddings we find here, on the other hand, describe surface defect operators
which themselves have a boundary, and preserve 8 supersymmetries. Janus interfaces on
surfaces can be realized by combining two such D5′ embeddings, one with c > 0 and one
with c < 0, such that two half surface defects are joined along a 1d interface. We focus here
on line operators and leave a more detailed investigation of the surface operators for the
future. We will encounter similar surface-type D5′ embeddings for the Janus and BCFT
solutions below, where they are naturally associated with the 4d gauge nodes.

4.4 General balanced 3d T σρ [(SU(N)]

We now consider general balanced 3d quivers. The supergravity duals have 5-brane sources
but no asymptotic AdS5×S5 regions. We will discuss D5′ embeddings, compute the Wilson
loop expectation values holographically, and compare the results to the field theory analysis
of section 3. The brane configurations for general balanced quivers are illustrated in figure 5.
They involve one group of NS5 branes, with the same number of D3-branes ending on each
NS5-brane of the group, and an arbitrary number of D5-brane groups, where within each
group the numbers of D3-branes ending on each D5-brane are identical.

For the harmonic functions h1, h2 in (4.10), this amounts to K = L = 0 and only one
group of NS5 branes, B = 1. The NS5 source can then be placed at z = 0 without loss of
generality, leading to

h1 = −α
′

4

A∑
a=1

N
(a)
D5 ln tanh

(
iπ

4 −
z − δa

2

)
+ c.c.

h2 = −α
′

4 NNS5 ln tanh
(
z

2

)
+ c.c. (4.38)
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Figure 5. Brane configuration for a balanced quiver. It involves one group of 4 NS5-branes with
3 D3-branes ending on each, and three groups of D5-branes: a group of one D5-brane on which
3 D3-branes end, one group of 4 D5-branes with 2 D3-branes ending on each, and a group of one
D5-brane with one D3-brane ending on it. This corresponds to ρ = [34], σ = [31, 24, 11].

These supergravity solutions describe brane configurations with A groups of D5-branes,
with N

(a)
D5 D5-branes in each group and an equal number of D3-branes ending on each

D5-brane within a given group. The total number of D3-branes ending on each D5-brane
group is set by δa,

N
(a)
D3 = NNS5N

(a)
D5

2
π

arctan e−δa . (4.39)

The identification of the supergravity parameters with field theory data was spelled out
explicitly in section V.A of [25]. The dual is a quiver of the form (3.1) with NNS5−1 nodes
and N (a)

D5 flavors at gauge nodes ta with

ta = 2
π
NNS5 arctan eδa . (4.40)

Since all nodes are balanced and N0 = NL+1 = 0, the entire quiver can be reconstructed
from this information.

To simplify the discussion of D5′ embeddings we change coordinates as follows,

z = lnw , w − 1
w + 1 = −u . (4.41)

The first transformation maps the strip to the upper right quadrant in the complex plane.
The second maps the upper right quadrant to the upper half disc. The boundary component
Im(z) = 0, where ∂h2 has poles, becomes the diameter of the half disc; the boundary
component Im(z) = π

2 , where ∂h1 has poles, becomes the circumference. The harmonic
functions become

h1 = −α
′

4
∑
a

N
(a)
D5 ln

∣∣∣∣ u− σa1− σau

∣∣∣∣2 , h2 = −α
′

4 NNS5 ln |u|2 , (4.42)

where σa are phases determined from δa by

σa = ieδa − 1
ieδa + 1 . (4.43)

For the special case with one D5-brane pole at δ1 = 0 the solution is shown in figure 6. In
that case σ1 = i. The holomorphic functions A1/2 corresponding to (4.42) can be chosen

– 23 –



J
H
E
P
0
3
(
2
0
2
2
)
1
2
7

as

A1 = − iα
′

4
∑
a

N
(a)
D5 [ln(1− u/σa)− ln(1− σau)] ,

A2 = −α
′

4 NNS5 ln u . (4.44)

For the function C defined in (4.8) we find

C = iα′2

8 NNS5
∑
a

N
(a)
D5 [Li2(uσa)− Li2(u/σa)]−A1A2 + C0 . (4.45)

4.4.1 D5′ embeddings

The half-BPS D5′-brane embeddings are along curves with constant hD2 . In the u coordinate
the requirement simply becomes that arg(u) should be constant. The embeddings are
straight lines in the u-coordinate starting at the origin, and we introduce a parameter d
specifying the angle as

u = reiπd , d ∈ (0, 1) . (4.46)

The embeddings start at r = 0 and end at the point along the line where

|Fel| = 2|h2| = α′NNS5| ln |u|| = −α′NNS5 ln r . (4.47)

More explicitly, they end at u? given by

u? = exp
{
− |Fel|
α′NNS5

+ iπd

}
. (4.48)

These D5′ embeddings all correspond to line operators; there are no surface defect embed-
dings of the form discussed in section 4.3 since the AdS5×S5 regions are closed off.

The D3 and F1 charges carried by the D5′-branes can be determined from (4.23)
and (4.25). For the D3-brane charge we find

ND3 = 2
πα′

hD2 = NNS5d . (4.49)

The remaining ingredient is the F1 charge. From (4.25) with C in (4.45) we find

NF1 = λNNS5
2π2

∑
a

N
(a)
D5 Re [Li2(u?σa)− Li2(u?/σa)] , (4.50)

with λ = ±1 depending on the sign of Fel.
There are no solutions to the BPS conditions for F1 strings, (4.12), at regular points

of ∂Σ. Instead, the fundamental strings representing Wilson loops in the fundamental
representation are all located at the NS5 pole. This can be seen as follows: for small rank
of the antisymmetric representations, the D5′ embeddings degenerate to points at the NS5
pole. This is the singular point where F1 strings can be embedded. The F1 action is
logarithmically divergent at the NS5 pole, which signals logarithmically enhanced scaling
of the fundamental Wilson loop expectation value, matching the field theory expectations
discussed below eq. (3.11). We focus here on the large-rank antisymmetric Wilson loops.
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Σ

NS5

D5
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NF1/N5
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Figure 6. Left: Σ as half disc in the u coordinate defined in (4.41), with D5′ Wilson loop
embeddings. For concreteness, NS5/D5 poles are shown at u = 0/u = i, corresponding to the
D5/NS5 theory. Right: space of (D3,F1) charges carved out by the D5′ embeddings for the D5/NS5
theory. The curves vary d for fixed Fel. From top to center the curves correspond to Fel increasing
from 0 to ∞. The bottom half of the curves corresponds, from bottom to center, to Fel decreasing
from 0 to −∞. The shape reproduces the shape of the quiver (4.58).

4.4.2 Wilson loop expectation values

To obtain the expectation values for the Wilson loops represented by the D5′ embeddings
from (4.29) we have to solve for W, defined by

∂uW = A2
2∂uA1 = − iα

′3

64
∑
a

N
(a)
D5N

2
NS5

ln2 u

u− σa
− (σa → 1/σa) . (4.51)

This leads to

W = iα′3

32 N2
NS5

∑
a

N
(a)
D5 [−Li3(σau) + ln uLi2(σau)− (σa → 1/σa)] +A1A2

2 . (4.52)

Noting that ihD2 = α′

4 NNS5(ln u − ln ū), the Wilson loop expectation value as defined
in (4.29) becomes

ln〈W∧〉 = N2
NS5

2π2

∑
a

N
(a)
D5 Re [Li3(σau?)− Li3(u?/σa)− ln |u?| (Li2(σau?)− Li2(u?/σa))] .

(4.53)
The expression for u? was given in (4.48), and from (4.40), (4.43) we have

σa = exp
{
− iπta
NNS5

}
. (4.54)

The remaining task is to identify which Wilson loop a D5′ with parameters d (specifying
the embedding on Σ) and Fel (the electric field on AdS2) corresponds to in the dual field
theory. From the discussion in section 2 we identify the D3-brane charge (4.49) with the
quiver coordinate labeling the gauge nodes. Indeed, the quiver has N5 − 1 nodes, which
is the range covered by the D3-brane charge in (4.49) for d ∈ (0, 1). The rank of the
representation of the Wilson loop is determined by the F1 charge, (4.50).
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Comparison to field theory. We now compare in more detail to the field theory com-
putation of section 3.3. In the field theory computations z = t/L ∈ (0, 1) was used as
coordinate on the quiver, and k = N(z)k was used to denote the rank of the representa-
tion. From the discussion in section 2 the D3-brane charge carried by the D5′ should be
related to the gauge node label t. This leads to t = ND3 or z = d. The labels zt appearing
e.g. in (3.21) for the gauge nodes with fundamental hypermultiplets attached correspond
on the supergravity side to ta in (4.40). So we have

z = d , zt = ta
NNS5

. (4.55)

The coordinate z along the quiver is proportional to the dual harmonic function hD2 . This
is in accordance with the identification in appendix B of [28], where the variable η plays
the role of our z.

In both calculations (holographic and field theory), the Wilson loop expectation value
is given implicitly: for a given gauge node (fixed by d or z) the representation k and the
expectation value are both given in terms of one real parameter, which is Fel in the holo-
graphic results (4.50), (4.53) and b in the field theory results (3.23). If the real parameters b
and Fel can be identified in a way which makes the representation and the expectation value
match simultaneously between field theory and supergravity, we will have demonstrated
perfect agreement. Indeed, the identification is simply

Fel
α′NNS5

= 2πb . (4.56)

For the quantities appearing in (4.50), (4.53) and (3.23) this leads to the identification

u?σ
±1
a = exp

{
− Fel
α′NNS5

+ iπ

(
d∓ ta

NNS5

)}
= e−2πb+iπ(z∓zt) = w τ∓1

t . (4.57)

There is a slight subtlety in the identification of the F1 charge NF1 with the representation
k. For 2πb > 0, corresponding to λ = 1, the identification (4.57) leads to a perfect
match between (4.50), (4.53) and (3.23), with NF1 = k = kN(z). Since the Wilson loop
expectation values are symmetric in k → 1 − k, which amounts to b → −b, this should
extend to a match for general b and Fel. The only subtlety is that the general identification
of NF1 and k has to take into account that the F1 charge (4.25) flips sign for Fel < 0
(λ = −1). This leads to the natural identification k = NF1 mod N(z), which indeed
results in a complete match between the holographic and field theory calculations.

4.4.3 D5/NS5 and D52/NS5 theories

To make the formulas concrete, and also compare in detail the space of (NF1, ND3) charges
carved out by the D5′ embeddings to field theory, we will discuss two simple examples.

The first is the ‘D5/NS5 theory’, which corresponds to having only one group of D5-
branes at δ1 = 0, with a number of D5-branes which equals the number of NS5 branes.
The brane configuration is symmetric under S-duality. The setup corresponds to A = 1,
δ1 = 0 and N (1)

D5 = NNS5 ≡ N5 in (4.38). This leads to σ1 = i. The quiver gauge theory has
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Figure 7. Left: Wilson loop embeddings for a balanced theory with two D5 poles, N (1)
D5 = N

(2)
D5 =

1
2NNS5 and σ2 = iσ1 = e3iπ/4. Right: space of (D3,F1) charges carved out by the embeddings.

N5 − 1 nodes with N5 flavors at the central node. The rank function was given in (3.26).
With N ≡ N5/2 the quiver is given by

U(N)−U(2N)−U(3N)− . . .−U(N2)−U((N − 1)N)− . . .−U(2N)−U(N)
| (4.58)

[2N ]

The D5′ embeddings and the space of charges carved out by the embeddings are shown in
figure 6. The charges carved out in figure 6b precisely match the shape of the quiver dia-
gram. In figure 6b, Fel = 0 is the maximal Wilson loop, with the rank of the representation
half that of the gauge group. The rank of the representation can be decreased/increased,
corresponding to positive/negative Fel, up to a maximum of half the rank. The F1 charge
and expectation value for this theory are given by

NF1 = λN2
5

2π2 Re (Li2(iu?)− Li2(−iu?)) ,

ln〈W∧〉 = N3
5

2π2 Re
[

Li3(iu1)− Li3(−iu?)− (Li2(iu?)− Li2(−iu?)) ln |u1|
]
. (4.59)

Comparing to field theory, d corresponds to z, as before, leading to the identification u? =
e−2πb+iπz = w̄. The holographic results then precisely match the field theory results (3.28)
with k = NF1 mod N(z).

As a further example we briefly discuss the case with one group of N5 NS5 branes
and two groups of D5 branes, with N5/2 branes in each group and δ1 = −δ2 = sinh−1(1)
in (4.38). We refer to this theory as D52/NS5 theory. The σa parameters are given by
σ1 = eiπ/4 and σ2 = e3iπ/4. The dual quiver has N5 − 1 nodes and from (4.40) we see that
there are N5/2 flavors at the t1 = 1

4N5 node and at the t2 = 3
4N5 node. With N ≡ N5/2

the complete quiver reads

U(N)−U(2N)− . . .− U(1
2N

2)− . . .−U(1
2N

2)− . . .−U(2N)−U(N)

| | (4.60)
[N ] [N ]
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2N5K

N5 D5

N5 NS5

N5K + N2
5

2

Figure 8. Brane configuration for semi-infinite D3-branes ending on a combination of N5 D5-
branes and N5 NS5-branes. These are the non-gravitating bath solutions of [11].

Along the first ellipsis the rank increases in steps of N , along the second ellipsis the rank
is constant, and along the third the rank decreases in steps of N . The charges carved out
by the D5′ branes are shown in figure 7. They again reproduce the quiver diagram.

4.5 D5/NS5 N = 4 SYM BCFT

As a third example we turn to a BCFT setup with a 3d SCFT coupled to 4d N = 4 SYM on
a half space. The brane setup comprises one group of N5 D5-branes, one group of N5 NS5-
branes, and 2N5K semi-infinite D3-branes ending on the 5-branes, as shown in figure 8.
This setup was used in [11] to realize a black hole coupled to a non-gravitating bath and
study the entropy of Hawking radiation, revealing a rich phase structure of entropy curves
which was recently also explored from the braneworld model perspective in [47].

The type of BCFT described by the setup in figure 8 depends on the value of K. For
each D5-brane the number of D3-branes to the right minus the number of D3-branes to
the left is K − N5/2. For K > N5/2, there are more D3-branes to the right of the D5-
branes than to the left. Of the 2N5K semi-infinite D3-branes, N5K − N2

5 /2 end on the
N5 D5-branes. This imposes Nahm pole boundary conditions on the corresponding parts
of the adjoint scalars of the 4d SU(N5K) N = 4 SYM node. The remaining N5K +N2

5 /2
D3-branes end on the NS5-branes. The corresponding part of the N = 4 SYM adjoint
fields is coupled to a 3d SCFT. The field theory is

U(R)−U(2R)− . . .−U((N5 − 1)R)− ̂SU(2N5K) (4.61)

where R = K + N5/2. For K < N5/2, on the other hand, the D5-branes have more D3-
branes ending on them from the left than from the right. Using Hanany-Witten transitions
the D5-branes can then be moved past NS5 branes until they have no more D3-branes
attached. They end up in the 3d SCFT part of the brane construction and describe
fundamental fields. We get a 3d SCFT with N5 flavors at the Rth 3d node from the left,

U(R)−U(2R)− . . .−U(R2)−U(R2 − S)− . . .−U(2N5K + S)− ̂SU(2N5K)
| (4.62)

[N5]
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where S = N5/2 − K. Along the first/second ellipsis the rank increases in steps of
R/decreases in steps of S. Instead of D5-brane boundary conditions for part of the N = 4
SYM fields, all 4d N = 4 SYM fields are now coupled at the boundary to a 3d SCFT,
which has larger-rank gauge groups and additional flavors compared to the previous case.
The transition value K = N5/2 will play a role in the supergravity duals as well.

The harmonic functions for the supergravity dual of the brane configuration in figure 8
are

h1 = − iπα
′

4 Kez − α′

4 N5 ln tanh
(
iπ

4 −
z

2

)
+ c.c.

h2 = πα′

4 Kez − α′

4 N5 ln tanh
(
z

2

)
+ c.c. (4.63)

The brane configuration and supergravity solution are invariant under S-duality. We will
find it convenient to again use the coordinate transformation (4.41), which leads to

h1 = − iπα
′

4 K

(1− u
1 + u

− c.c.
)
− α′

4 N5 ln
∣∣∣∣1− iu1 + iu

∣∣∣∣2 ,
h2 = πα′

4 K

(1− u
1 + u

+ c.c.
)
− α′

4 N5 ln |u|2 . (4.64)

As holomorphic functions we choose

A1 = πα′

4 K
1− u
1 + u

+ iα′

4 N5 [ln(1 + iu)− ln(1− iu)] ,

A2 = πα′

4 K
1− u
1 + u

− α′

4 N5 ln u . (4.65)

For the function C defined in (4.8) we then find

C = − iα
′2

8 N2
5 [Li2(iu)− Li2(−iu)]− πα′2

8 N5K
(
ln
(
1 + u2

)
+ ln u− 4 ln(1 + u)

)
−
(
πα′

4 K
1− u
1 + u

)2
−A1

(
A2 −

πα′

2 K
1− u
1 + u

)
. (4.66)

4.5.1 Fundamental Wilson loops

We start with the BPS conditions for fundamental strings in (4.12). The requirement
h1 = 0 restricts admissible embeddings to the real axis. The condition ∂h2 = 0 leads to

1
u

+ 2πK
N5(u+ 1)2 = 0 . (4.67)

For K 6= 0 this equation has exactly one real solution in the interval (−1, 1). The 3d
gauge nodes are all balanced; the fundamental Wilson loops associated with the 3d gauge
nodes have enhanced scaling as discussed below (3.11), and the corresponding strings are
located at the NS5 pole, similar to the discussion in section 4.4. The fundamental string
obtained from solving (4.67) represents the Wilson loop associated with the 4d N = 4
SYM node (within the half space on which the N = 4 SYM degrees of freedom propagate,
the corresponding Wilson loop is still located on the boundary).
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Figure 9. Wilson loop embeddings from left to right for K/N5 ∈ { 1
4 ,

1
2 , 1}. The D5/NS5 poles are

at u = 0/u = i. The semi-infinite D3-branes emerge at u = −1. The curves ending at the NS5 pole
correspond to φ0 in the range (0, π) and represent Wilson loop embeddings. The curves reaching
to the AdS5×S5 region emerging at u = −1 correspond to surface operator embeddings associated
with the N = 4 SYM node; they have φ0 > π.

4.5.2 D5′ embeddings

We now turn to antisymmetric Wilson loops represented by D5′-branes. The curves along
which the D5′-branes are embedded in Σ are determined from the constraint that hD2 be
constant, (4.21). We use a constant φ0 to parametrize the embedding,

hD2 = 1
2α
′N5φ0 . (4.68)

Using real coordinates this condition may be written as

u = reiφ ,
πK

2iN5

(
1− reiφ

1 + reiφ
− 1− re−iφ

1 + re−iφ

)
= φ− φ0 . (4.69)

One may solve this condition in closed form as a quadratic equation for r(φ). However,
we will only discuss limiting cases analytically. For r → 0, assuming that the embeddings
reach the origin, we find φ→ φ0. We therefore have 0 < φ0 < π for embeddings within Σ
which start at the origin. These embeddings will be identified with Wilson loops; additional
embeddings will be discussed below. For r → 1, (4.69) becomes

φ(r = 1) = φ0 −
πK

N5
tan

(
φ(r = 1)

2

)
. (4.70)

This condition implies that for the curve with the maximal value of φ at r → 0, φ0 = π, the
value of φ at r = 1 is less than π for non-zero K. There is thus a region of the boundary
at r = 1 which has no D5′-brane embeddings that start at the origin ending on it.

Sample embeddings are shown in figure 9. The plots show that the curves starting at
r = 0 discussed above do not reach to u = −1 (φ = π at r = 1). The end point u1 of the
D5′ embeddings along the curves is determined in terms of the electric field by

|Fel| = 2|h2(u1)| . (4.71)

– 30 –



J
H
E
P
0
3
(
2
0
2
2
)
1
2
7

0.2 0.4 0.6 0.8 1.0

ND3/N5

-0.2

-0.1

0.1

0.2

0.3

NF1/N5

(a)

0.2 0.4 0.6 0.8 1.0

ND3/N5

-0.4

-0.2

0.2

0.4

NF1/N5

(b)

0.2 0.4 0.6 0.8 1.0

ND3/N5

-0.5

0.5

NF1/N5

(c)

Figure 10. (ND3, NF1) charges for K/N5 ∈ { 1
4 ,

1
2 , 1} from left to right. For K/N5 <

1
2 the D5-

branes describe flavors in the (balanced) 3d quiver; for K/N5 >
1
2 they provide boundary conditions

for part of the 4d N = 4 SYM fields.

The figure shows additional embeddings which do not start at the origin and instead
reach to the D3-brane source at u = −1; these correspond to φ0 > π. These additional
embeddings are analogous to the surface defect embeddings discussed for AdS5×S5 in
section 4.3, and are associated with the 4d N = 4 SYM node. There is one embedding
which starts at a regular point on the real line — namely, at the location of the F1 string
obtained from (4.67). This curve describes the Wilson loop at the “last gauge node”, which
is the 4d N = 4 SYM node. The Wilson loop curve associated with the 4d node separates
the region around u = −1 which corresponds to 4d N = 4 SYM from the region around
the 5-brane sources which corresponds to the 3d SCFT. We may call the region with no
Wilson loop embeddings in it a Wilson loop shadow.4

The transition value N5 = 2K, at which the form of the field theories changes
from (4.61) to (4.62), plays a role here as well: for 2K > N5 the end points of the Wilson
loop D5′ embeddings on the half circle boundary component at r = 1 do not reach past
the D5-brane pole at u = i, while for 2K < N5 they do (as seen in figure 9).

For Fel = 0 the D5′ embeddings extend along the entire curves shown in figure 9. For
Fel 6= 0 they still start either at the NS5-brane pole at u = 0, at the location of the F1
string, or at the D3-brane sources at u = −1. But they cap off smoothly with the S1 in S2

2
collapsing before reaching the other end point of the curves.

4.5.3 Wilson loop expectation values

We now collect the expressions for the Wilson loop expectation values. The D3-brane and
F1 charges determined from (4.23), (4.25) are given by

ND3 = φ0
π
N5 ,

NF1 = 4λ
π2α′2

[Im (A1A2 + C)]u1
u0
, (4.72)

with C as given in (4.66) and the end point u1 determined by (4.71). The range of the
D3-brane charges for Wilson loop embeddings is ND3 ∈ (0, N5). This reflects the lengths
of the quivers in (4.61), (4.62). The space of (ND3, NF1) charges is shown for example
solutions in figure 10. They precisely carve out the shape of the quivers (4.61) and (4.62).

4The features resemble those of entanglement shadows, discussed e.g. in [48].
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To obtain the on-shell action we have to solve ∂W = A2
2∂A1 for W. We find

W = α′3

32

[
iN3

5 (L3(u, i)− L3(u,−i))

− πKN2
5

(
L2(u, i) + L2(u,−i)− 4L2(u,−1) + u ln2u

1 + u

)

+ π2K2N5

(
tan−1 u+ 2u ln u

(1 + u)2 + 4
1 + u

)
+ 1

6π
3K3

(1− u
1 + u

)3
]
, (4.73)

where

L2(u, σ) = Li2(uσ) + ln u ln(1− uσ) ,

L3(u, σ) = Li3(uσ)− ln uLi2(uσ)− 1
2 ln2u ln(1− uσ) . (4.74)

With that expression the Wilson loop expectation value is given by

ln〈W∧〉 = 8
π2α′3

[
Im
(
2A1A2

2 − 2W + ihD2 (A1A2 + C)
)]u1

u0
. (4.75)

The points u0 and u1 are the start and end points of the curves (4.68), with u1 determined
by (4.71). Together with the D3 and F1 charges in (4.72), which identify the gauge node
and rank of the representation as in the previous example, this gives the complete set of
1
2 -BPS Wilson loop expectation values.

4.6 3d D52/NS52 theories

As a last example we consider a class of 3d SCFTs with an unbalanced central node.
The supergravity duals were used to study information transfer from a black hole to a
gravitating bath in [11]. The solutions also serve as a string theory realization of the wedge
holography proposal of [14], as discussed in [11]. We will return to this discussion below.
The brane construction involves two groups of NS5 branes, with N branes in each, and two
groups of D5-branes with N branes in each. The brane configuration is shown in figure 11.
A total of 2N2 D3-branes is suspended between the 5-branes, with a parameter

∆ = 1
2 + 2

π
arctan e−2δ (4.76)

taking values in (1
2 , 1) controlling how the D3-branes terminate on the 5-branes. The

harmonic functions corresponding to this brane configuration are

h1 = −α
′

4 N
[
ln tanh

(
iπ

4 −
z − δ

2

)
+ ln tanh

(
iπ

4 −
z + δ

2

)]
+ c.c.

h2 = −α
′

4 N
[
ln tanh

(
z − δ

2

)
+ ln tanh

(
z + δ

2

)]
+ c.c. (4.77)

The 3d gauge theory engineered by this brane configuration has 2N − 1 nodes, with
N flavors at the node s = ∆N and N flavors at the node t = 2N − s = (2 − ∆)N . The
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Figure 11. D3-branes suspended between two groups of D5-branes and two groups of NS5-branes.
The associated supergravity solutions is given by (4.77).

quiver is given by

U(s)− . . .− U(s2)− . . .−U(X + s)−U(X)−U(X + s)− . . .−U(s2)− . . .−U(s)
| | (4.78)

[N ] [N ]

where X = s2 − (N − s)2 and U(X) is the central node. Along the first ellipsis the rank
increases in steps of s, along the second ellipsis it decreases in steps of N − s. The quiver
is symmetric under reflection across the central node. Along the third ellipsis the rank
increases in steps of N − s and along the fourth it decreases in steps of s.

With an unbalanced central node we expect a fundamental Wilson loop with regular
scaling at that node, following the comments below (3.11). There is indeed one embedding
for fundamental strings at a regular point on ∂Σ, namely at z = 0. The on-shell action
obtained from (4.13) evaluates to

ln〈WF 〉 = SF1 = −2N ln tanh
(
δ

2

)
. (4.79)

This matches the expectation value of the fundamental Wilson loop associated with the
central node of the quiver (4.78) obtained from supersymmetric localization, (3.40). The
F1 strings representing Wilson loops associated with all other gauge nodes are at the NS5
poles, and have logarithmically enhanced scaling, in line with the discussion below (3.11).

For the D5′ branes describing antisymmetric Wilson loops we will content ourselves
with a numeric discussion in this section. The Wilson loop D5′ branes are, as before,
embedded along curves with constant hD2 ,

hD2 = πα′Nc , (4.80)

with a constant c normalized such that the D3-brane charge from (4.23) is given by 2Nc.
Sample embeddings are shown in figure 12. Except for one curve, the embeddings start at
one of the two NS5 poles at z = ±δ, depending on the value of c. The central curve, along
Re(z) = 0, starts and ends at regular boundary points. On the lower boundary component
it starts at the point where the fundamental string with action (4.79) is located. For given
c one can choose the end point along the curve freely, and determine the corresponding
electric field from the BPS condition (4.21). The F1 charge, fixing the representation of

– 33 –



J
H
E
P
0
3
(
2
0
2
2
)
1
2
7

-0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

NS5 NS5

D5 D5

-0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

NS5 NS5

D5 D5

-0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

NS5 NS5

D5 D5

Figure 12. D5′ Wilson loop embeddings for the D52/NS52 theory on Σ, with tanh(Re(z)) on the
horizontal axis and Im(z) on the vertical axis, from left to right for δ ∈ {0.1, 0.28, 0.6}.

the Wilson loop, is then given by the integral in (4.24), and the expectation value by the
integral in (4.26).

For a sample of theories and Wilson loops we compared the holographic results to the
expectation values obtained from the general field theory expressions (3.15), (3.18) with
the eigenvalue density (3.35), and found the results to agree.

Information transfer between black holes. The D52/NS52 solutions (4.77) were used
in [11, section VI] to study information transfer between two black holes. We review the
basic logic briefly, to discuss the results obtained here in that context. In [11] the AdS4 fac-
tor in the geometry (4.1) was replaced with a black hole. Two subsystems were then defined
by splitting the strip Σ into the halves with Re(z) > 0 and Re(z) < 0. The entanglement
entropy arising from this split was used to quantify the information exchanged between the
two subsystems. This is a string theory version of the analysis in [49], where a braneworld
model as shown in figure 13b was studied, with the two subsystems corresponding to the
two ETW branes. The analysis in [11] identified a critical value δc, with δc ≈ 0.29, which
separates setups with δ < δc where the entanglement entropy is time-independent from
setups with δc > δc where the entropy follows a non-trivial Page curve.

The plots in figure 12 show that the curve Re(z) = 0, which divides Σ into the two
subsystems Re(z) > 0 and Re(z) < 0, corresponds to the central gauge node. This supports
the interpretation of splitting Σ put forth in [11], which is that splitting Σ along Re(z) = 0
corresponds to decomposing the quiver diagram (4.78) by cutting it at the central node.
The plots further visualize the qualitative difference between setups with small δ and those
with large δ: for small δ, splitting the quiver leads to two systems connected by a relatively
large number of ‘bridge’ degrees of freedom at the central node. For large δ, on other hand,
one obtains two sectors, with a large number of degrees of freedom in each sector, which
are linked by a relatively small number of bridge degrees of freedom. Correspondingly, in
the plots in figure 12 the curve Re(z) = 0 representing the central node gets more and
more isolated for larger δ. The geometry approaches the form of two separate solutions
connected by a small bridge. In the wedge holography picture in figure 13b the regime
with large/small δ corresponds to small/large brane angles.

For the holographic entanglement entropy computations Σ has to be split along an
extremal curve for corresponding minimal surfaces to exist (as a result of the general
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Figure 13. Left: braneworld realization of a holographic dual for a 4d BCFT. AdS5 is cut off by an
end-of-the-world brane, leaving a half space of the conformal boundary. Right: wedge holography
dual for a 3d CFT involving two end-of-the-world branes.

constraints found in [50]). This constrains admissible splits, and the split along the curve
Re(z) = 0 is one admissible choice. This curve is also distinguished from the perspective
of loop operators: for vortex loop operators represented by NS5′ branes, the corresponding
probe NS5′ embeddings can be obtained by a vertical reflection of the plots in figure 12.
The only Wilson loop D5′ whose mirror-dual NS5′ extends along the same curve on Σ is
the one associated with the central node, with the curve being Re(z) = 0. It would be
interesting to understand whether there is any connection.

Finally, we note that certain distinguished values for δ appear naturally from a ge-
ometric perspective. For example, the combination h1h2 is non-negative on Σ, with one
maximum for small δ and two maxima for large δ. The ‘critical value’ separating the two
cases is δ = csch−1√2, or ∆ = 2

3 . It would be interesting if the value δc separating the two
shapes of the entropy curves found in [11] could be understood from such a perspective.

5 Connection to braneworld models

We now use the Wilson loop discussion to make concrete connections between 10d super-
gravity duals for 4d BCFTs, Janus CFTs, and 3d CFTs on the one hand, and bottom-up
braneworld models dual to such field theories on the other. We start with braneworld
models for 4d BCFTs, figure 13a, in which an AdS5 bulk is cut off by an end-of-the-world
(ETW) brane, so that a half space remains of the conformal boundary. The ETW brane is
introduced as effective description for the 3d boundary degrees of freedom to which the 4d
ambient CFT is coupled. The brane angle θ is set by the brane tension, and encodes the
number of 3d defect degrees of freedom relative to the number of 4d ambient degrees of
freedom. The related construction of wedge holography, which realizes duals for 3d CFTs
with two separate sectors represented by two ETW branes, is shown in figure 13b.

The 10d BCFT solutions discussed in section 4.5 can be cast in a language which
reflects the qualitative features of braneworld models: starting point is an asymptotically
locally AdS5×S5 region, with a half space as conformal boundary. This region corresponds
to Re(z)→∞ on the strip in figure 14 or to u→ −1 in the u coordinate shown in figure 9.
This region may be seen as dual for the 4d ambient CFT degrees of freedom. In the
10d solutions the AdS5×S5 region is not cut off by an effective ETW brane, but instead
closes off smoothly by internal cycles collapsing. This is realized by the fact that on each
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Figure 14. Left: D5′-brane embeddings in the D5/NS5 N = 4 SYM BCFT (4.63) with Σ a strip,
from top to bottom for N5/K ∈ {4, 2, 1}. The horizontal axis is tanh(Re(z)), the vertical axis
Im(z). NS5′-brane embeddings are obtained by vertical reflection. Overlaying both leads to the
figures on the right: the 3d region hosts D5′ and NS′ loop operators and is the 10d version of the
ETW brane; the 4d region has no 3d loop operators and is the 10d version of the bulk in figure 13a.
The remaining transition regions host one type of 3d loop operator but not both.

boundary component of Σ one of the S2’s in the AdS4 × S2 × S2 × Σ geometry collapses.
Upon approaching the boundary of the half space on which the BCFT is defined, the 10d
solution interpolates smoothly between the AdS5×S5 region and an AdS4 solution, which is
the holographic dual for the 3d boundary degrees of freedom. This latter part corresponds
to the region around the 5-brane sources in figures 9, 14; it is the 10d version of the ETW
brane region in the braneworld models.

The discussion of loop operators allows us to make a more quantitative connection
between the top-down string theory duals for BCFTs and bottom-up braneworld models.
Based on the values of the harmonic functions hD1/2, we can identify the parts of Σ in the
10d solutions which correspond to the bulk region in the braneworld models and those
which correspond to the ETW brane (from the perspective of loop operators).

The discussion of Wilson loop D5′-brane embeddings in section 4.5 identified two re-
gions on Σ: the first region, around the D3-brane sources at u = −1 in figure 9, hosts D5′

embeddings which describe surface operators associated with the 4d N = 4 SYM node.
This region is separated, by the curve starting at the point marked F1, from the second
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region on Σ, which hosts the D5′ embeddings describing Wilson loops associated with 3d
gauge nodes. The analogous embeddings in the z coordinate on the strip are shown in the
left column of figure 14. This discussion suggests that — from the perspective of Wilson
loops — the second region is the 3d part of the holographic dual, corresponding to the
ETW brane in the braneworld model in figure 13a, while the first region is the 4d part of
the holographic dual corresponding to the AdS5 bulk in figure 13a.

Of course Wilson loops are not the only observables that can be used to probe the
geometry. We focus on vortex loops, which are related to Wilson loops by mirror symmetry,
as one further natural class of observables. Vortex loops are represented by NS5′ branes, as
discussed in section 2, and the BPS equations for the corresponding probe NS5′ branes in
the supergravity solutions can be obtained from those for D5′ branes by exchanging h1 and
h2. The NS5′ embeddings for the D5/NS5 BCFT can be obtained from the D5′ embeddings
shown in the left column of figure 14 by a vertical reflection.5 Similarly to the discussion
for the D5′-branes, there are NS5′ embeddings representing vortex loops associated with
3d gauge nodes and embeddings representing surface operators associated with 4d N = 4
SYM. One can then, similarly to the discussion for the D5′-branes, identify 3d regions and
4d regions on Σ from the perspective of vortex loops.

Overlaying the regions on Σ as identified from the perspective of Wilson loops and of
vortex loops leads to the figures in the right column of figure 14. We obtain a region (I)
which only hosts 3d loop operator embeddings (D5′ and NS5′) and no 4d surface operator
embeddings, a region (II) which hosts only 4d surface operator embeddings and no 3d loop
operators, and a region (III) which hosts both types of embeddings, one type of D5′ and the
other type of NS5′ branes. From the perspective of loop operators, region (I) is associated
with 3d degrees of freedom and the 10d version of the ETW brane region. Region (II) is
associated with 4d degrees of freedom and the 10d version of the bulk, while region (III)
is a transition region. The regions are marked accordingly in figure 14, which shows how
the 3d region grows at the expense of the 4d region as N5/K is increased, which increases
the number of 3d degrees of freedom relative to the 4d degrees of freedom.

The regions (I), (II) and (III) can be identified based on the values of hD1 and hD2 alone,
with no need for the actual D5′ or NS5′ embeddings: hD2 and hD1 have discontinuities at
the NS5 and D5 poles, respectively. Depending on the direction from which an NS5 pole is
approached, one obtains different limiting values for hD2 , and likewise for D5 poles and hD1 .
The region on Σ where hD2 is in the range of values that can be attained at the NS5 pole
is the region which hosts Wilson loop D5′-branes. This corresponds to 0 < hD2 < π

2α
′N5

for the D5/NS5 N = 4 SYM BCFT with the choice of A1/2 in (4.65). Likewise, the region
of Σ where hD1 is in the range of values that can be attained at the D5 pole hosts vortex
loop NS5′-branes. For A1/2 in (4.65), this corresponds to |hD1 | ≤ π

4α
′N5. The region where

hD1 and hD2 are both in the respective intervals is region (I); the region where neither are
in the respective intervals is region (II); the region of Σ where one and only one is in the
respective interval is the transition region (III).

5The solution (4.63) is invariant under S-duality, exchanging h1 and h2 combined with z → z̄ + iπ
2 .
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Figure 15. D5′ embeddings and identification of 3d and 4d regions for a Janus solution, with
harmonic functions (4.10) with N5 D5-branes at z = iπ

2 , N5 NS5-branes at z = 0, and the numbers
of semi-infinite D3-branes to the left and right fixed by L = 1

4N5 and K = 1
3N5.

A result of using the combination of probe D5′ and NS5′ branes to identify 3d and 4d
regions is that D5 and NS5 brane sources are both required in the background solution to
get proper 3d regions. If only one type of 5-brane source is present the above identification
only yields 4d and mixed regions. The requirement for both types of 5-brane sources to
be present in order to get a 3d region is in line with the fact that D5 and NS5 sources are
both needed to get a solution dual to a proper 3d SCFT (without AdS5×S5 regions).

In summary, the discussion above gives a quantitative identification of regions on Σ
with the ingredients in braneworld models. We note that the proposed identification of 3d
and 4d regions is based on the discussion of loop operators. Other observables may lead
to a different picture. However, we do not see a reason to expect drastic differences.

The discussion extends to duals of Janus interface CFTs, which have an additional
4d region. The D5′ embeddings and identification of 3d and 4d regions for an example
solution are shown in figure 15. The example solution is dual to a field theory composed
of two 4d N = 4 SYM nodes on half spaces with gauge groups of different ranks, joined
at an interface which hosts (the IR fixed point of) a 3d quiver gauge theory. Bottom-up
holographic duals for Janus CFTs may be constructed by joining two slices of AdS5 with
different radii along an effective “interface brane”, similar to the discussions in [51–53].
The result is a geometry with two 4d regions and one 3d region, as in figure 15.

The wedge holography picture, proposed in [14] in the context of braneworld models
and illustrated in figure 13b, is realized in 10d by the D52/NS52 solutions of section 4.6. The
two ETW brane regions correspond to Re(z) > 0 and Re(z) < 0 on the strip Σ in 10d, and
the perspective gained from Wilson loops on these solutions was discussed in section 4.6.

6 Discussion

In this work we studied Wilson and vortex loop operators in 3d SCFTs, 4d BCFTs based
on N = 4 SYM coupled to 3d SCFTs, and Janus interface CFTs using holography and
supersymmetric localization. The study of extended operators is of great interest in its
own right. Here we used Wilson loops and vortex loops to identify curves on Σ in the
general AdS4 × S2 × S2 × Σ solutions constructed in [17–20] with individual gauge nodes
in the 3d quiver gauge theories that are part of the dual field theories. The idenitification
is particularly interesting for BCFTs and Janus CFTs, since it gives a concrete notion of
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parts of the geometry which are associated with 3d degrees of freedom and parts which
are associated with 4d degrees of freedom. This identification allows for a quantitative
connection to the language used in bottom-up braneworld models.

For the duals of 3d SCFTs we matched the holographic results for the Wilson loop
expectation values to field theory computations using supersymmetric localization and
demonstrated perfect agreement. It would be interesting to extend the field theory compu-
tations to BCFTs. The boundary free energies for field theories engineered by D3-branes
ending on only D5 or only NS5 branes were obtained in [24], based on gluing 3d and 4d
results. As discussed in section 5, the solutions which have the clearest connection to
braneworld models involve both D5 and NS5 branes and it would be interesting to study
them. We expect that the formalism of [25], which underlies the localization results for
Wilson loops in 3d SCFTs of section 3, can also be extended to BCFTs.

On the supergravity side we identified the holographic representation of Wilson loops
in terms of D5′ branes. The BPS conditions and expressions for the on-shell action derived
here apply also to the holographic duals 3d circular quiver SCFTs [54] and to multi-Janus
solutions [18]. It would be interesting to study these theories in more detail as well.

The identification of curves on Σ with 3d gauge nodes is also of interest in the context
of the studies of information transfer between two black hole systems in [11]. A quantity
of interest is the entanglement entropy associated with decomposing Σ. For the theories
of section 4.6 there is a preferred split of Σ which one would expect to be associated with
cutting the quiver diagram in the dual field theory at the central node. This is supported by
the discussion in section 4.6. It would be interesting to study more general decompositions.
The entropy associated with a decomposition of the quiver can be understood as RG flow
from a geometric entanglement entropy, by starting with N = 4 SYM on an interval, with
boundary conditions such that the 3d gauge node at which the quiver is split arises from
the 4d N = 4 SYM degrees of freedom upon flowing to the IR. Splitting the interval then
leads to a geometric entropy in the UV which turns into an internal entropy in the IR. A
similar RG flow perspective was recently explored for a different class of theories in [55].
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A BPS conditions

In this appendix we explain how the fundamental strings and the D5′-branes, realizing
Wilson loops in fundamental and antisymmetric representations, can be placed on the
supergravity background, preserving the correct amount of supersymmetry.
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A.1 Notation

Clifford algebra. First of all, we need to review the conventions of [17, 18], introducing
gamma matrices adapted to the supergravity background AdS4 × S2 × S2 × Σ:

Γm = γm ⊗ 12 ⊗ 12 ⊗ 12 , m = 0, 1, 2, 3 , (A.1)
Γi1 = γ(1) ⊗ γi1 ⊗ 12 ⊗ 12 , i1 = 4, 5 , (A.2)
Γi2 = γ(1) ⊗ σ3 ⊗ γi2 ⊗ 12 , i2 = 6, 7 , (A.3)
Γa = γ(1) ⊗ σ3 ⊗ σ3 ⊗ γa , a = 8, 9 , (A.4)

with

iγ0 = σ2 ⊗ 12 , γ1 = σ1 ⊗ 12 , γ2 = σ3 ⊗ σ2 , γ3 = σ3 ⊗ σ1

γ4 = γ6 = γ8 = σ1 , γ5 = γ7 = γ9 = σ2 (A.5)

and the associated chirality matrices

γ(1) = σ3 ⊗ σ3 , γ(2) = σ3 , γ(3) = σ3 , γ(4) = σ3 . (A.6)

We also need the complex conjugation matrix B, satisfying

BB∗ = 1 ,
(
ΓM

)∗
= BΓMB−1 (A.7)

and given by

B = iγ(1)γ
2 ⊗ γ5 ⊗ γ6 ⊗ γ9 = iB(1) ⊗B(2) ⊗

(
γ(3)B(3)

)
⊗B(4) (A.8)

with
B(1) = iγ(1)γ

2 , B(2) = γ5 , B(3) = γ7 , B(4) = γ9 . (A.9)

Killing spinors and τ -formalism. The next ingredient we need are the Killing spinors.
The explicit forms of the S2

1/2 and AdS4 Killing spinors, with constant spinors εη2
S2

1/2,0
,

εη1
AdS4,0, can be chosen as

ds2
AdS4 = dr2 + e2rdxµdxµ , εη1

AdS4
= e

η1
2 rγr

(
1 + 1

2x
µγµ (η1 − γr)

)
εη1
AdS4,0 ,

ds2
S2

1
= dθ2 + sin2θ dφ2 , εη2

S2
1

= exp
(
iη2
2 θσ2

)
exp

(
− i2φσ3

)
εη2
S2

1 ,0
,

ds2
S2

2
= dθ2 + sin2θ dφ2 , εη3

S2
2

= exp
(
iη3
2 θσ2

)
exp

(
− i2φσ3

)
εη3
S2

2 ,0
, (A.10)

with η1, η2, η3 = ±1. Then, following [17, 18], we decompose the 32-component ten-
dimensional Killing spinor ε as

ε =
∑

η1,η2,η3

χη1,η2,η3 ⊗ ζη1,η2,η3 , χη1,η2,η3 = εη1
AdS4

⊗ εη2
S2

1
⊗ εη3

S2
2
, (A.11)

where ζη1,η2,η3 are 2-component Σ dependent spinors. We also choose a basis in which

B−1ε? =
∑

η1,η2,η3

χη1,η2,η3 ⊗ ?ζη1,η2,η3 , ?ζ = −iη1η3ζη1,−η2,−η3 . (A.12)
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All the details on the constrains on ζη1,η2,η3 can be found in [17]. Finally, we will use the
τ -formalism, defining

(τ (ijk)ζ)η1η2η3 ≡
∑
η′1η
′
2η
′
3

(τ i)η1η′1
(τ j)η2η′2

(τk)η3η′3
ζη′1η′2η′3 (A.13)

with i, j, k = 0, . . . , 3. As in [17], we will use two different basis. In the first one, τ0 is
chosen to be the identity and τ i to be the standard Pauli matrices. In the second one
instead, which we will call rotated basis, we take

τ0 = 12 , τ1 =

1 0
0 −1

 , τ2 =

0 −i
i 0

 , τ3 =

 0 −1
−1 0

 . (A.14)

The explicit components of ζ are given in (6.17) of [17], in this rotated basis. With e−iθ = i,

ζ+++ = iνζ+−− =

 0
αeiθ/2

 , ζ−−− = −iνζ−++ =

β̄eiθ/2
0

 ,

ζ+−+ = iνζ++− =

ᾱeiθ/2
0

 , ζ−+− = −iνζ−−+ =

 0
βeiθ/2

 . (A.15)

A.2 Fundamental strings

To realize the conformal defect symmetry, a F1 must wrap an AdS2 portion of the full
AdS4. We choose to place it at x1 = x2 = 0, so that the AdS4-Killing spinor becomes

εη1
AdS4

= e
η1
2 rγr

(
1 + 1

2x
0γ0 (η1 − γr)

)
εη1
AdS4,0 . (A.16)

Moreover, from the branes configuration, we see that an F1 should preserve the SU(2)H ∼=
SO(3)H group in the directions (456) wrapped by the D5, while it should break the
SU(2)C ∼= SO(3)C group related with the NS5 branes. These two different SO(3) groups
are associated with the spheres S1 and S2, respectively, in the background

ds2 = f2
4ds

2
AdS4 + f2

1dsS2
1

+ f2
2dsS2

2
+ ds2

Σ , (A.17)

where Σ is an infinite strip. Recalling that S1 collapses on the lower boundary of Σ, we find
that fundamental strings should sit on that boundary to preserve SO(3)H subgroup. Being
localized on the other S2, they preserve U(1)C . More precisely, we choose to place the
strings on S2 in the position given by θ = 0. In this way the S2-Killing spinor reduces to

εη3
S2

2
= exp

(
− i2φσ3

)
εη3
S2

2 ,0
. (A.18)

The remaining spacetime coordinates are then fixed by requiring to preserve half super-
symmetries. This can be done by solving a κ-symmetry condition. Using [56, 57] with the
convention for complex notation of [58] and incorporating a phase to accommodate the
SU(1, 1) conventions as discussed in [59], the condition imposed by κ-symmetry is

Γκε = eiθκΓ(0)B−1ε? = ε , e2iθκ = 1 + iτ̄

1− iτ , (A.19)
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with τ related to the axion χ and the dilaton φ via τ = χ + ie−2φ. For the solutions
considered here the axion vanishes (see section 6.4 of [17]) and e2iθκ = 1. With our
assumptions, we have

Γ(0) = Γ0Γ1 = γrγ0 ⊗ 12 ⊗ 12 ⊗ 12 . (A.20)

In order to solve (A.19) we require that the constant part of the Killing spinors satisfy

Γ2367
(
εη1
AdS4,0 ⊗ ε

η2
S2

1 ,0
⊗ εη3

S2
2 ,0

)
= −λ

(
εη1
AdS4,0 ⊗ ε

η2
S2

1 ,0
⊗ εη3

S2
2 ,0

)
, (A.21)

with λ2 = 1. On the entire Killing spinor, this becomes

Γ2367ε = −λε (A.22)

which can also be rewritten as

Γ0167ε = iλγ(1)ε ⇒ Γ01ε = λγ(1)γ(3)ε (A.23)

(slight abuse of notation: by γ(1)γ(3) we mean γ(1) ⊗ 12 ⊗ γ(3) ⊗ 12). Note that, to derive
this expression, we used that Γ2367 commutes with the spatial dependent part of the
Killing spinors, as can be seen from the explicit expressions (A.16) and (A.18). Hence,
writing the κ-symmetry condition as

eiθκB−1ε∗ = Γ01ε , (A.24)

we have

eiθκ
∑

η1,η2,η3

χη1,η2,η3 ⊗ ?ζη1,η2,η3 = λγ(1)γ(3)
∑

η1,η2,η3

χη1,η2,η3 ⊗ ζη1,η2,η3 . (A.25)

Recalling now that [17]
γ(1)χ

η1,η2,η3 = χ−η1,η2,η3 ,

γ(2)χ
η1,η2,η3 = χη1,−η2,η3 ,

γ(3)χ
η1,η2,η3 = χη1,η2,−η3 ,

(A.26)

the κ-symmetry condition becomes∑
η1,η2,η3

χη1,η2,η3 ⊗
(
−ieiθκη1η3ζη1,−η2,−η3 − λζ−η1,η2,−η3

)
= 0 . (A.27)

Since the χη1,η2,η3 are linearly independent, we must require the square brackets to vanish:

− iλeiθκη1η3ζη1,−η2,−η3 = ζ−η1,η2,−η3 ⇒ λeiθκτ (312)ζ = τ (101)ζ . (A.28)

Using the rotated basis (A.14) we obtain

iλeiθκη2η3ζ−η1,η2,−η3 = η1η3ζη1,η2,η3 (A.29)

namely
iλeiθκη1η2ζ−η1,η2,−η3 = ζη1,η2,η3 . (A.30)
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Substituting the explicit components of ζ (A.15), one finds that (A.30) is solved for each
choice of η1, η2, η3 by requiring

α = iλβeiθκ . (A.31)

In order to interpret this condition, let us recall that the functions in the metric (A.17)
can be written as (see equation (6.26) in [17])

f4 = αᾱ+ ββ̄ ,

f1 = −ν(αβ̄ + βᾱ) ,
f2 = i(βᾱ− αβ̄) .

(A.32)

Using the condition (A.31) we obtain αβ̄ = −βᾱ, which implies f1 = 0 and h1 = 0 (see
discussion in section 3.4 of [18]). Also, from (9.31) of [17],

νρᾱ2 = −ieφ∂h1 − e−φ∂h2 , νρβ̄2 = +ieφ∂h1 − e−φ∂h2 (A.33)

we have
h1 = 0 , ∂h2 = 0 . (A.34)

This conclusion is consistent with our expectations. Indeed, we expect the fundamental
string to be placed on the lower boundary, on which

h1 = 0 , ∂⊥h2 = 0 . (A.35)

These conditions are actually implied in (A.34). In addition, equation (A.34) also requires
the derivative tangent to the lower boundary to vanish, identifying the point(s) of the
boundary on which fundamental strings can be placed preserving the correct symmetries.

A.3 D5′-branes

Adding a D5′-branes we should be able to preserve the same symmetries preserved by the
fundamental string. From the supergravity perspective, this means that the D5′ should
wrap AdS2, the full S2

1 to preserve SU(2)H and a one dimensional circumference on S2
2

to preserve U(1)C . This leaves one last direction on the Riemann surface Σ. Introducing
coordinates on S2

2 and Σ

ds2
S2

2
= dθ2 + sin2 θdφ2 , ds2

Σ = 4ρ2|dz|2 , (A.36)

the induced metric (in Einstein frame) on the D5’ brane reads

g = f2
4ds

2
AdS2 + f2

1ds
2
S1 + f2

2 sin2 θ(ξ)dφ2 +
(
f2

2 θ
′2 + 4ρ2(x′2 + y′2)

)
dξ2 , (A.37)

where z = x + iy and the derivative is with respect to the worldvolume coordinate ξ. As
for the fundamental string, the position of the D5′-branes on the spacetime can be derived
requiring to preserve the correct amount of supersymmetry. The general worldvolume flux
we can turn on for the D5′-brane, preserving the desired symmetries, is

F = FelvolAdS2 + F1volS2
1

+ F2(ξ)dξ ∧ dφ , (A.38)
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with volAdS2 and volS2
1
worldvolume forms with unitary radius. Resolving the κ-symmetry

condition for this general ansatz, one finds that

F2(ξ) = 0 . (A.39)

So, for the ease of reading, we will assume (A.39) from the beginning and we will check
the consistency of our solution at the end.

Calling Ea the vielbein in 10 dimensions and denoting ea = Eaµ (∂iXµ) dxi their pull-
back to the D5’ worldvolume, we have

ea = Ea , a = 0, 1, 4, 5 (A.40)
e2 = e3 = 0 (A.41)
e6 = f2 sin θdφ e7 = f2θ

′dξ e8 = 2ρx′dξ e9 = 2ρy′dξ . (A.42)

Note that, in case of explicit values, we use an underline to denote Lorentz indices. Formulas
that will be used from now on are in the string frame with g̃ = eφg. The form of Γκ in our
case is

Γκε = −i√
det(1 +X)

(
eiθκΓ(0)B−1ε? − 1

2γ
ijXijΓ(0)ε+ eiθκ

8 γijklXijXklΓ(0)B−1ε?
)
, (A.43)

where γi = eai Γa, Xi
j = g̃ikFkj and

Γ(0) = 1
6!
√
− det g̃

εi1...i6γi1...i6 = 1√
f2

2 θ
′2 + 4ρ2(x′2 + y′2)

Γ01456Γξ , (A.44)

where we introduced
Γξ ≡ f2θ

′Γ7 + 2ρx′Γ8 + 2ρy′Γ9 . (A.45)

Let us now write explicitly the terms in (A.43):

1
2γ

ijXij = Γ01X01 + Γ45X45 , (A.46)
1
8γ

ijklXijXkl = Γ0145X01X45 (A.47)

so that we can rewrite the condition Γκε = ε as

eiθκΓ01456ΓξB−1ε? −
(
Γ456ΓξX01 − Γ016ΓξX45

)
ε− eiθκΓ6ΓξX01X45B−1ε? = hε , (A.48)

where we defined
h ≡ i

√
det(1 +X)

√
f2

2 θ
′2 + 4ρ2(x′2 + y′2) . (A.49)

We would like to solve (A.48) imposing only the projection (A.21), already used for
the fundamental string. In this case however the situation is a bit different. Indeed now,
from the condition on the constant part of the killing spinor

Γ2367
(
εη1
AdS4,0 ⊗ ε

η2
S2

1 ,0
⊗ εη3

S2
2 ,0

)
= −λ

(
εη1
AdS4,0 ⊗ ε

η2
S2

1 ,0
⊗ εη3

S2
2 ,0

)
, (A.50)
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we obtain

Γ2367ε = −λe−iη3θσ2ε , (A.51)

where σ2 = 14 ⊗ 12 ⊗ σ2 ⊗ 12 is the matrix present in the expression of the S2-Killing
spinor (A.10), which anticommutes with Γ67 = 14 ⊗ 12 ⊗ (−iσ3) ⊗ 12. Starting from the
expression (A.48) and using Γ01 = −iΓ23γ(1), we rewrite the κ-symmetry condition as

eiθκγ(1)γ(2)Γ236ΓξB−1ε? −
(
iγ(2)Γ6ΓξX01 + iγ(1)Γ236ΓξX45

)
ε (A.52)

−eiθκΓ6ΓξX01X45B−1ε? − hε = 0 .

We now collect the terms involving B−1ε? and those involving ε, introducing the expan-
sions (A.12) and (A.11):

eiθκ
(
γ(1)γ(2)Γ236Γξ − Γ6ΓξX01X45

) ∑
η1,η2,η3

χη1,η2,η3 ⊗ (−iη1η3)ζη1,−η2,−η3+ (A.53)

−
(
iγ(2)Γ6ΓξX01 + iγ(1)Γ236ΓξX45 + h

) ∑
η1,η2,η3

χη1,η2,η3 ⊗ ζη1,η2,η3 = 0 .

From (A.51), we obtain

Γ23χη1,η2,η3 = iλeiη3θσ2χη1,η2,−η3 (A.54)

so that, by expanding Γξ, we can rewrite (A.53) as

iλeiθκΓ6
(
f2θ
′Γ7 +2ρx′Γ8 +2ρy′Γ9

) ∑
η1,η2,η3

e−iη3θ2σ2χη1,η2,η3⊗(−iη1η3)ζ−η1,η2,η3+

−eiθκX01X45Γ6
(
f2θ
′Γ7 +2ρx′Γ8 +2ρy′Γ9

) ∑
η1,η2,η3

χη1,η2,η3⊗(−iη1η3)ζη1,−η2,−η3+

−iΓ6
(
f2θ
′Γ7 +2ρx′Γ8 +2ρy′Γ9

)
X01

∑
η1,η2,η3

χη1,η2,η3⊗ζη1,−η2,η3+ (A.55)

+λΓ6
(
f2θ
′Γ7 +2ρx′Γ8 +2ρy′Γ9

)
X45

∑
η1,η2,η3

e−iη3θσ2χη1,η2,η3⊗ζ−η1,η2,−η3+

−h
∑

η1,η2,η3

χη1,η2,η3⊗ζη1,η2,η3 = 0 .

Using now that,

e−iη3θσ2 = cos (η3θ) + sin (η3θ) Γ6γ(1)γ(2)γ(3) = cos(θ) + η3 sin(θ)Γ6γ(1)γ(2)γ(3) , (A.56)
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we obtain

λeiθκΓ6
(
f2θ
′Γ7 + 2ρx′Γ8 + 2ρy′Γ9

)
cos θ

∑
η1,η2,η3

χη1,η2,η3 ⊗ η1η3ζ−η1,η2,η3

+λeiθκ
(
f2θ
′Γ7 + 2ρx′Γ8 + 2ρy′Γ9

)
sin θ

∑
η1,η2,η3

χη1,η2,η3 ⊗ η1ζη1,−η2,−η3+

+ieiθκX01X45Γ6
(
f2θ
′Γ7 + 2ρx′Γ8 + 2ρy′Γ9

) ∑
η1,η2,η3

χη1,η2,η3 ⊗ η1η3ζη1,−η2,−η3+

−iΓ6
(
f2θ
′Γ7 + 2ρx′Γ8 + 2ρy′Γ9

)
X01

∑
η1,η2,η3

χη1,η2,η3 ⊗ ζη1,−η2,η3+ (A.57)

+λΓ6
(
f2θ
′Γ7 + 2ρx′Γ8 + 2ρy′Γ9

)
X45 cos θ

∑
η1,η2,η3

χη1,η2,η3 ⊗ ζ−η1,η2,−η3+

+λX45
(
f2θ
′Γ7 + 2ρx′Γ8 + 2ρy′Γ9

)
sin θ

∑
η1,η2,η3

χη1,η2,η3 ⊗ η3ζη1,−η2,η3+

−h
∑

η1,η2,η3

χη1,η2,η3 ⊗ ζη1,η2,η3 = 0 .

The previous equation can be simplified with some observations. First of all, from the
explicit expressions of the gamma matrices, we see that

(x′Γ8 +y′Γ9)
∑

η1,η2,η3

χη1,η2,η3⊗ζη1,η2,η3 =
∑

η1,η2,η3

χη1,η2,η3⊗ (x′σ1 +y′σ2)ζ−η1,−η2,−η3 (A.58)

and
Γ67 ∑

η1,η2,η3

χη1,η2,η3 ⊗ ζη1,η2,η3 = i
∑

η1,η2,η3

χη1,η2,η3 ⊗ ζη1,η2,−η3 , (A.59)

where we used that Γ67 = iγ(3). What we miss is the knowledge of the action of Γ6

and Γ7 = iΓ6γ(3) on the spinors. Since we do not want to introduce a further projection
condition, we require all the terms involving Γ6 and Γ7 to vanish together:

∑
η1,η2,η3

χη1,η2,η3⊗
[
2ρλcosθ(x′σ1+y′σ2)

(
eiθκη1η3ζη1,−η2,−η3+X45ζη1,−η2,η3

)
(A.60)

−2iρ(x′σ1+y′σ2)X01ζ−η1,η2,−η3+2iρ(x′σ1+y′σ2)eiθκX01X45η1η3ζ−η1,η2,η3

+iλf2θ
′sinθ

(
eiθκη1ζη1,−η2,η3−X45η3ζη1,−η2,−η3

)]
=0.

Since the χη1,η2,η3 are linearly independent, we must require the square brackets to vanish
for each choice of η1, η2, η3. Using the τ -formalism in the Pauli matrices basis, we then have

2ρλ cos θ(x′σ1 + y′σ2)
(
ieiθκτ (312)ζ +X45τ

(010)ζ
)
− 2iρ(x′σ1 + y′σ2)X01τ

(101)ζ+ (A.61)

−2ρ(x′σ1 + y′σ2)eiθκX01X45τ
(203)ζ + iλf2θ

′ sin θ
(
eiθκτ (310)ζ − iX45τ

(012)ζ
)

= 0 .

In the rotated basis (A.14) this gives

2ρλ cos θ(x′σ1 + y′σ2)
(
−eiθκη2η3ζ−η1,η2,−η3 +X45η2ζη1,η2,η3

)
−2iρ(x′σ1 + y′σ2)

(
X01η1η3ζη1,η2,η3 + eiθκX01X45η1ζ−η1,η2,−η3

)
+iλf2θ

′ sin θ
(
−eiθκη2ζ−η1,η2,η3 −X45η2η3ζη1,η2,−η3

)
= 0 .

(A.62)
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Substituting the explicit expressions (A.15) of the spinors ζ, it turns out that only two
equations are linear independent, and the others can be obtained by complex conjugation.
The resulting system coming from (A.62) is



f2λθ
′ sin θ

(
−X45α

∗ + eiθκβ∗
)

+
+2ρν(x′ − iy′)

(
−iX01(α+X45βe

iθκ) + (X45α− βeiθκ)λ cos θ
)

= 0
f2λθ

′ sin θ
(
eiθκα+X45β

)
+

+2ρν(x′ + iy′)
(
−iX01(β∗ −X45α

∗eiθκ)− (α∗eiθκ +X45β
∗)λ cos θ

)
= 0 .

(A.63)

The previous equations arise setting to zero the terms in multiplied by Γ6 and
Γ7 (A.57). Requiring also the other terms in (A.57) to vanish and following steps analogous
to those just shown, one obtains, in the rotated basis, the equation

−2ρλ sin θ
(
x′σ1 + y′σ2

) (
X45η1η3ζη1,η2,−η3 + eiθκη1ζ−η1,η2,η3

)
+

+iλθ′f2 cos θ
(
X45η1ζη1,η2,η3 − eiθκη1η3ζ−η1,η2,−η3

)
+

+f2θ
′
(
eiθκX01X45η2ζ−η1,η2,−η3 +X01η2η3ζη1,η2,η3

)
− hζη1,η2,η3 = 0

(A.64)

which, substituting the expressions of ζ, gives

−hα+ 2iλρν(x′ + iy′)
(
X45α

∗ − β∗eiθκ
)

sin θ+
+f2θ

′
(
X01(α+X45βe

iθκ) + i(X45α− βeiθκ)λ cos θ
)

= 0
−hβ∗ − 2iνλρ(x′ − iy′)(X45β + αeiθκ) sin θ+

+f2θ
′
(
X01(β∗ −X45α

∗eiθκ)− i(α∗eiθκ +X45β
∗)λ cos θ

)
= 0 .

(A.65)

Solving the BPS conditions. From the previous discussion, we have obtained four
equations, given in (A.63) and (A.65), which have to be solved simultaneously. A convenient
way to understand the structure of these equations is to define

A ≡ α+X45βe
iθκ , B ≡ αX45 − βeiθκ (A.66)

so that the full set of equations becomes (taking the conjugate of first and fourth)

−f2λθ
′ sin θB + 2ρν(x′ + iy′)

(
iX01A

∗ + λB∗ cos θ
)

= 0
f2λθ

′ sin θeiθκA+ 2ρν(x′ + iy′)
(
iX01e

iθκB∗ − eiθκλA∗ cos θ
)

= 0
−hα+ 2iλρνB∗ sin θ(x′ + iy′) + f2θ

′ (X01A+ iBλ cos θ
)

= 0
hβ + 2iνλρeiθκA∗ sin θ(x′ + iy′) + f2θ

′(−X01e
iθκB + ieiθκAλ cos θ) = 0 ,

(A.67)

where we used that eiθκ = e−iθκ . We now define

ϑ ≡ cos θ ⇒ ϑ′ = −θ′ sin θ , (1− ϑ2) = sin2 θ . (A.68)
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We now multiply the last two equations in (A.67) by sin θ and take a combination of them
such that the terms with h disappear. The resulting set is

f2λϑ
′B + 2ρνz′

(
iX01A

∗ + λB∗ϑ
)

= 0
−f2λϑ

′A+ 2ρνz′
(
iX01B

∗ − λA∗ϑ
)

= 0
2iνλρB∗β(1− ϑ2)z′ − f2ϑ

′β
(
X01A+ iBλϑ

)
+

+2iνλρeiθκA∗α(1− ϑ2)z′ + f2ϑ
′αeiθκ(X01B − iAλϑ) = 0

h̃β + 2iνλρeiθκA∗(1− ϑ2)z′ + f2ϑ
′eiθκ(X01B − iAλϑ) = 0 ,

(A.69)

where h̃ = h sin θ and we reintroduced the complex variable z = x + iy. We focus on the
first two equations and consider them as a system in ϑ′ and z′. In order to have a non
trivial solution we require the determinant to vanish

B
(
iX01B

∗ − λA∗ϑ
)

+A
(
iX01A

∗ + λB∗ϑ
)

= 0 (A.70)

namely

ϑ =
iX01
λ

(
|A|2 + |B|2

A∗B −AB∗

)
= iλX01

(
|α|2 + |β|2

αβ∗ − α∗β

)
. (A.71)

Under this condition, the first two equations are linear dependent and we can get rid of
one of them. So, after imposing (A.71), we have

−f2λϑ
′A+ 2ρνz′

(
iX01B

∗ − λA∗ϑ
)

= 0
2iνλρB∗β(1− ϑ2)z′ − f2ϑ

′β
(
X01A+ iBλϑ

)
+

+2iνλρeiθκA∗α(1− ϑ2)z′ + f2ϑ
′αeiθκ(X01B − iAλϑ) = 0

h̃β + 2iνλρeiθκA∗(1− ϑ2)z′ + f2ϑ
′eiθκ(X01B − iAλϑ) = 0 .

(A.72)

Again, in order to have a non trivial solution in z′ and ϑ′ of the first two equations, we
should require the vanishing of the determinant. This can be done by choosing eiθk = 1 and

X45 = |β|
2 − |α|2

α∗β + αβ∗
. (A.73)

Now, if we plug this condition into (A.72), together with (A.71), we are left with two
equations  −f2λϑ

′A+ 2ρνz′
(
iX01B

∗ − λA∗ϑ
)

= 0
h̃β = −2iνλρA∗(1− ϑ2)z′ − f2ϑ

′(X01B − iAλϑ) .
(A.74)

Substituting the conditions (A.71) and (A.73) into the first equation we find

z′ = i
ϑ′

2ϑνρ

(
α∗β∗(α2 − β2)− αβ(α∗2 − β∗2)

α∗2 + β∗2

)
. (A.75)

Plugging this into the second equation of (A.74) and squaring both sides leads to an
identity. All in all, in order to solve the full set of equations (A.67), the fluxes and the
position of the D5′-branes are chosen as in (A.71), (A.73) and (A.75), namely

X01 = λ cos θf2
f4
, X45 = ν

(
|α|2 − |β|2

f1

)
(A.76)
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and
4z′e−φ∂wh2 = −f2f4θ

′ tan θ , (A.77)

where we used (A.32) and (A.33).

Interpreting the solution. In order to interpret the previous result, we start consider-
ing the expression of z′, which identifies how the D5′ is placed on the Riemann surface Σ.
The real part of (A.77) is

4e−φ(z′∂zh2 + z̄′∂z̄h2) = −2f2f4θ
′ tan θ (A.78)

which, using (A.76), can be rewritten

2e−φ(h2)′ = −f2f4(ln |f2f4|)′ . (A.79)

Squaring both sides and using f2
2 f

2
4 = 4e−2φh2

2, this equation turns out to be an identity.
The imaginary part of (A.77), instead, is given by

z′∂zh2 − z̄′∂z̄h2 = 0 (A.80)

and it actually defines a curve on Σ. In order to better characterize it, recall that since h2
is a harmonic function we can write it as the imaginary part of a holomorphic function,

h2 = A2 + Ā2 , hD2 = i(A2 − Ā2) . (A.81)

Using z = x(y) + iy the BPS equation for the embedding becomes
d

dy

(
A2(x(y) + iy)− Ā2(x(y)− iy)

)
= 0 , (A.82)

which is solved when the dual of h2 is constant along the embedding,

hD2 = const . (A.83)

Let us now move to the conditions on X45 and X01. In terms of the fluxes in (A.38),
the solution in (A.76) becomes

F1 = b1 + νeφf1(|α|2 − |β|2) , Fel = λf4f2e
φ cos θ . (A.84)

In order for this solution to be consistent with the Bianchi identity, these expressions have
to be constant along the curve defined by (A.83). One can numerically check that, for all
the theories considered in this paper, this condition is actually satisfied.

Note that, since the value of fluxes is constant along (A.83), we can choose the points
along the curves where to evaluate the expressions in (A.84). We can apply this argument
to simplify the expression of F1. When we are on y = 0 (lower boundary of the strip), we
find that f1 = 0 and the second term in the expression of F1 in (A.84) vanishes. It is then
enough to find the value of b1 on the lower boundary, along the curve (A.83). But,

b1 = 2hD2 (A.85)

on the lower boundary, as one can check from the explicit expression in (4.6). So we have

F1 = 2hD2 (A.86)

along (A.83), which is consistent with the Bianchi identity.
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A.3.1 On-shell action

The Legendre-transformed on-shell action is given by

SD5 − Fel
δSD5
δFel

= 8
π2α′3

I , I =
∫
dξ h1h2(∂zh2)z′ . (A.87)

Since hD2 is constant along the embedding, we have z′∂zA2 = z̄′∂z̄Ā2. Therefore,

dh2
dξ

= z′∂zA2 + z̄′∂z̄Ā2 = 2z′∂zh2 . (A.88)

We find

I = 1
2

∫
dξ h1h2

dh2
dξ

= 1
4
[
h1h

2
2

]ξ1

ξ0
− 1

4

∫
dξ h2

2
dh1
dξ

, (A.89)

where integration by parts has been used for the second equality. Evaluating this more
explicitly, using h2 = 2A2 + ihD2 , leads to

I = 1
4
[
h1h

2
2

]ξ1

ξ0
+ i

4

∫
dξ h2

2 ∂zA1z
′ − i

4

∫
dξ h2

2 ∂z̄Ā1z̄
′

= 1
4
[
h1h

2
2

]ξ1

ξ0
− 1

2 Im
[∫ (

2A2 + ihD2
)2
∂A1

]
. (A.90)

Since hD2 is constant along the embedding, the remaining integrand is holomorphic. To
integrate it we introduce

∂W = A2
2∂A1 . (A.91)

This leads to (4.27).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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