Rend. Sem. Mat. Univ. Pol. Torino Vol. xx, x (xxxx), 1 - 26

M. Rossi and L. Terracini*

LINEAR ALGEBRA AND TORIC DATA OF WEIGHTED PROJECTIVE SPACES

Abstract. This paper is devoted to give characterizations of suitable matrices associated with fans and polytopes defining a weighted projective space and switching rules between them.

Introduction

The aim of the present paper is to give characterizations of fans and polytopes defining a weighted projective space (*wps* for short) and switching rules between them, from a linear algebraic point of view.

After recalling some notation and preliminaries on toric varieties, the starting point here is the usual definition of a (complex) wps as a geometric quotient (see Definition 2), directly checking its natural toric structure. The bridge with the classical presentation of toric varieties via fans is then given by the Cox Theorem [8] Thm. 2.1.

Section 2 is devoted to the characterization of a wps's fan: up to permutations on generators it is possible to associate a $n \times (n+1)$ integer matrix with the fan of a n-dimensional wps (so called fan matrix) whose entries turn out to verify an amount of relations (see equivalent conditions in the Theorem 3, giving a linear algebraic characterization of a wps's fan). Until here almost nothing is new, since the equivalence of conditions (1) and (2) in Theorem 3 can be recovered from [4] and [2], while condition (3) can be deduced from [7] Thm. 3.6. Anyway, we were not able to find in the literature the relations between the fan generators \mathbf{v}_i 's of a wps $\mathbb{P}(Q)$, the associated primitive vectors \mathbf{n}_j 's and the reduction Q' of the weight vector Q, as explained in Lemma 1, although probably well-known to the experts. Notice that Lemma 1 can be used as a key step to get a completely combinatoric proof of the well-known Reduction Theorem 2 (see [18] Thm. 1.26 and its proof). Probably the most original result in Section 2 is the Proposition 5 where it is shown that the fan of a given wps $\mathbb{P}(Q)$ is encoded in the switching matrix giving the Hermite normal form (HNF for short) of the transposed weight vector Q^T . This section ends up with the Proposition 6 in which on the one hand (parts from (1) to (3)) we rewrite the Conrads's presentation of a wps's fan matrix, but proved by directly starting from relations given in the Theorem 3, and on the other hand (part (4)) we present a *Q*-canonical form for the fan of $\mathbb{P}(Q)$, only depending on the weights order in Q (see Remark 4), which can be simply obtained by the HNF of *any* fan matrix of $\mathbb{P}(Q)$. In our opinion this Proposition describes a clean and easy method to get a fan of $\mathbb{P}(Q)$ even by hand (see Example 1).

Section 3 is dedicated to characterize polytopes associated with a polarized wps.

^{*}The authors were partially supported by the Local Project "Computational Algebra and Applications" (2007) and the MIUR-PRIN "Geometria delle varietà algebriche" 2010 Research Funds

As far as we know, results of this section were not known before. Let O(1) be the *minimal* polarization given by a generator of the Picard group $Pic(\mathbb{P}(Q))$. Then we draw a *fan-polytope correspondence* between fans of $\mathbb{P}(Q)$ and polytopes of $(\mathbb{P}(Q), O(1))$: this is given, up to suitable weightings, in the one direction by taking the transposed inverse (so called *transverse*) of a maximal submatrix of a fan matrix, in the other direction by an obvious completion of the transposed adjoint matrix of the polytope matrix (see Definitions 5 and 7 and Remark 10). In our opinion this correspondence combined with the previous Proposition 6 provides a clean and easy method to get a polytope of $(\mathbb{P}(Q), O(m))$, even by hand, up to the elementary computation of the inverse of a (possibly big) matrix (see Example 2). Main results of this section are given by the Theorem 4, which is a direct consequence of Lemma 1, and the Proposition 9. This section ends up with the Theorem 5 giving a linear algebraic characterization of a polarized wps's polytope. This result has to be thought of as the polytopal counterpart of Theorem 3.

1. Preliminaries and notation

1.1. Toric varieties

A *n*-dimensional toric variety is an algebraic normal variety X containing the torus $T := (\mathbb{C}^*)^n$ as a Zariski open subset such that the natural multiplicative self-action of the torus can be extended to an action $T \times X \to X$.

Let us quickly recall the classical approach to toric varieties by means of *cones* and *fans*. For proofs and details the interested reader is referred to the extensive treatments [11], [15], [17] and the recent and quite comprehensive [10].

As usual *M* denotes the group of characters $\chi : T \to \mathbb{C}^*$ of *T* and *N* the group of *1*-parameter subgroups $\lambda : \mathbb{C}^* \to T$. It follows that *M* and *N* are *n*-dimensional dual lattices via the pairing

$$\begin{array}{rccc} M \times N & \longrightarrow & \operatorname{Hom}(\mathbb{C}^*, \mathbb{C}^*) \cong \mathbb{C}^* \\ (\chi, \lambda) & \longmapsto & \chi \circ \lambda \end{array}$$

which translates into the standard paring $\langle u, v \rangle = \sum u_i v_i$ under the identifications $M \cong \mathbb{Z}^n \cong N$ obtained by setting $\chi(\mathbf{t}) = \mathbf{t}^{\mathbf{u}} := \prod t_i^{u_i}$ and $\lambda(t) = t^{\mathbf{v}} := (t^{v_1}, \dots, t^{v_n})$.

Cones and affine toric varieties

Define $N_{\mathbb{R}} := N \otimes \mathbb{R}$ and $M_{\mathbb{R}} := M \otimes \mathbb{R} \cong \text{Hom}(N, \mathbb{Z}) \otimes \mathbb{R} \cong \text{Hom}(N_{\mathbb{R}}, \mathbb{R})$. A *convex polyhedral cone* (or simply a *cone*) σ is the subset of $N_{\mathbb{R}}$ defined by

$$\boldsymbol{\sigma} = \langle \mathbf{v}_1, \dots, \mathbf{v}_s \rangle := \{ r_1 \mathbf{v}_1 + \dots + r_s \mathbf{v}_s \in N_{\mathbb{R}} \mid r_i \in \mathbb{R}_{>0} \}$$

The *s* vectors $\mathbf{v}_1, \ldots, \mathbf{v}_s \in N_{\mathbb{R}}$ are said *to generate* σ . A cone $\sigma = \langle \mathbf{v}_1, \ldots, \mathbf{v}_s \rangle$ is called *rational* if $\mathbf{v}_1, \ldots, \mathbf{v}_s \in N$, *simplicial* if $\mathbf{v}_1, \ldots, \mathbf{v}_s$ are \mathbb{R} -linear independent and *non-singular* if $\mathbf{v}_1, \ldots, \mathbf{v}_s$ can be extended by n - s further elements of *N* to give a basis of the lattice *N*.

A cone σ is called *strictly convex* if it does not contain a linear subspace of positive dimension of $N_{\mathbb{R}}$.

The *dual cone* σ^{\vee} *of* σ is the subset of $M_{\mathbb{R}}$ defined by

$$\sigma^{\vee} = \{ \mathbf{u} \in M_{\mathbb{R}} \mid \forall \mathbf{v} \in \sigma \quad \langle \mathbf{u}, \mathbf{v} \rangle \ge 0 \}$$

A *face* τ *of* σ (denoted by $\tau < \sigma$) is the subset defined by

$$\tau = \sigma \cap \mathbf{u}^{\perp} = \{\mathbf{v} \in \sigma \mid \langle \mathbf{u}, \mathbf{v} \rangle = 0\}$$

for some $\mathbf{u} \in \sigma^{\vee}$. Observe that also τ is a cone.

Gordon's Lemma (see [15] §1.2, Proposition 1) ensures that the semigroup $S_{\sigma} := \sigma^{\vee} \cap M$ is *finitely generated*. Then also the associated \mathbb{C} -algebra $A_{\sigma} := \mathbb{C}[S_{\sigma}]$ is finitely generated. A choice of *r* generators gives a presentation of A_{σ}

$$A_{\sigma} \cong \mathbb{C}[X_1,\ldots,X_r]/I_{\sigma}$$

where I_{σ} is the ideal generated by the relations between generators. Then

$$U_{\mathbf{\sigma}} := \mathcal{V}(I_{\mathbf{\sigma}}) \subset \mathbb{C}^r$$

turns out to be an *affine toric variety*. In other terms an affine toric variety is given by $U_{\sigma} := \operatorname{Spec}(A_{\sigma})$. Since a closed point $x \in U_{\sigma}$ is an evaluation of elements in $\mathbb{C}[S_{\sigma}]$ satisfying the relations generating I_{σ} , then it can be identified with a semigroup morphism $x : S_{\sigma} \to \mathbb{C}$ assigned by thinking of \mathbb{C} as a multiplicative semigroup. In particular the *characteristic morphism*

(1)
$$\begin{aligned} x_{\sigma} &: \sigma^{\vee} \cap M & \longrightarrow & \mathbb{C} \\ \mathbf{u} & \longmapsto & \begin{cases} 1 & \text{if } \mathbf{u} \in \sigma^{\perp} \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

which is well defined since $\sigma^{\perp} < \sigma^{\vee}$, defines a *characteristic point* $x_{\sigma} \in U_{\sigma}$ whose torus orbit O_{σ} turns out to be a $(n - \dim(\sigma))$ -dimensional torus embedded in U_{σ} (see e.g. [15] §3).

Fans and toric varieties

A *fan* Σ is a finite set of cones $\sigma \subset N_{\mathbb{R}}$ such that

- 1. for any cone $\sigma \in \Sigma$ and for any face $\tau < \sigma$ then $\tau \in \Sigma$,
- 2. for any $\sigma, \tau \in \Sigma$ then $\sigma \cap \tau < \sigma$ and $\sigma \cap \tau < \tau$.

For every *i* with $0 \le i \le n$ denote by $\Sigma(i) \subset \Sigma$ the subset of *i*-dimensional cones, called the *i*-skeleton of Σ . A fan Σ is called *simplicial* if every cone $\sigma \in \Sigma$ is simplicial and *non-singular* if every such cone is non-singular. The *support* of a fan Σ is the subset $|\Sigma| \subset N_{\mathbb{R}}$ obtained as the union of all of its cones i.e.

$$|\Sigma| := \bigcup_{\sigma \in \Sigma} \sigma \subset N_{\mathbb{R}} \; .$$

If $|\Sigma| = N_{\mathbb{R}}$ then Σ will be called *complete* or *compact*.

Since for any face $\tau < \sigma$ the semigroup S_{σ} turns out to be a sub-semigroup of S_{τ} , there is an induced immersion $U_{\tau} \hookrightarrow U_{\sigma}$ between the associated affine toric varieties which embeds U_{τ} as a principal open subset of U_{σ} . Given a fan Σ one can construct *an associated toric variety* $X(\Sigma)$ by patching all the affine toric varieties $\{U_{\sigma} \mid \sigma \in \Sigma\}$ along the principal open subsets associated with any common face. Moreover *for every toric variety X there exists a fan* Σ *such that* $X \cong X(\Sigma)$ (see [17] Theorem 1.5). It turns out that ([17] Theorems 1.10 and 1.11; [15] §2):

- *X*(Σ) *is non-singular if and only if the fan* Σ *is non-singular,*
- $X(\Sigma)$ is complete if and only if the fan Σ is complete.

In the following a 1–generated fan Σ is a fan generated by a set of n + 1 integral vectors i.e. a fan whose cones $\sigma \subset N \otimes \mathbb{R}$ are generated by any proper subset of a given finite subset $\{\mathbf{v}_0, \ldots, \mathbf{v}_n\} \subset N$: we will write

(2)
$$\Sigma = \operatorname{fan}(\mathbf{v}_0, \dots, \mathbf{v}_n) \; .$$

Given a 1-generated fan $\Sigma = \text{fan}(\mathbf{v}_0, \dots, \mathbf{v}_n)$, the matrix $V = (\mathbf{v}_0, \dots, \mathbf{v}_n)$ will be called *a fan matrix of* Σ . Notice that Σ determines *V* up to a permutations of columns, meaning that Σ admits (n + 1)! associated fan matrices.

If $V = (\mathbf{v}_0, ..., \mathbf{v}_n)$ is a fan matrix of $\Sigma = \text{fan}(\mathbf{v}_0, ..., \mathbf{v}_n)$ then we will denote the maximal square sub-matrices of *V* and the associated *n*-minors as follows

(3)
$$\forall 0 \leq j \leq n \quad V^j := (\mathbf{v}_0, \dots, \mathbf{v}_{j-1}, \mathbf{v}_{j+1}, \dots, \mathbf{v}_n), \ V_j = \det(V^j).$$

Polytopes and projective toric varieties

A polytope $\Delta \subset M_{\mathbb{R}}$ is the convex hull of a finite set of points. If this set is a subset of *M* then the polytope is called *integral*. Starting from an integral polytope one can construct a projective toric variety as follows. Here we will follow the approach of [1], which the interested reader is referred to for proofs and details (see also [9] §3.2.2).

For any $k \in \mathbb{N}$ one can define the dilated polytope $k\Delta := \{k\mathbf{u} \mid \mathbf{u} \in \Delta\}$. It is then possible to define a graded \mathbb{C} -algebra S_{Δ} , associated with the integral polytope Δ , as follows. For any $\mathbf{u} \in k\Delta \cap M$ consider the associated character $\chi^{\mathbf{u}} : \mathbf{t} \mapsto \mathbf{t}^{\mathbf{u}}$. Given $t \in \mathbb{C}^*$ consider the *monomial* $t^k \chi^{\mathbf{u}} : \mathbf{t} \mapsto t^k \mathbf{t}^{\mathbf{u}}$. It well defines a *monomial product* $t^{k_1} \chi^{\mathbf{u}_1} \cdot t^{k_2} \chi^{\mathbf{u}_2} := t^{k_1+k_2} \chi^{\mathbf{u}_1+\mathbf{u}_2}$ where $\mathbf{u}_1 + \mathbf{u}_2 \in (k_1 + k_2)\Delta$. Let S_{Δ} be the \mathbb{C} -algebra generated by all monomials $\{t^k \chi^{\mathbf{u}} \mid k \in \mathbb{N}, \mathbf{u} \in k\Delta\}$ which is a graded object by setting $\deg(t^k \mathbf{u}) = k$.

The *projective* variety $\mathbb{P}_{\Delta} := \operatorname{Proj}(S_{\Delta})$ turns out to be naturally a *toric variety* whose fan Σ_{Δ} can be recovered as follows. For any nonempty face $F \prec \Delta$ consider the cone

$$\check{\sigma}_F := \{r(\mathbf{u} - \mathbf{u}') \mid \mathbf{u} \in \Delta \ , \ \mathbf{u}' \in F \ , \ r \in \mathbb{R}_{\geq 0}\} \subset M_{\mathbb{R}}$$

and define $\sigma_F := \check{\sigma}_F^{\vee} \subset N_{\mathbb{R}}$. Then $\Sigma_{\Delta} := \{\sigma_F \mid F \prec \Delta\}$ turns out to be a fan, called the *normal fan* of the polytope Δ , such that there exists a very ample divisor H of $X(\Sigma_{\Delta})$ for

which $(X(\Sigma_{\Delta}), H) \cong (\mathbb{P}_{\Delta}, \mathcal{O}(1))$, where $\mathcal{O}(1)$ is the natural polarization of $\mathbb{P}_{\Delta} = \operatorname{Proj}(S_{\Delta})$ (see [1] Proposition 1.1.2).

Viceversa a *projective toric variety* is the couple $(X(\Sigma), H)$ of a toric variety $X(\Sigma)$ and a polarization given by (the linear equivalence class of) a hyperplane section H. For any 1-cone $\rho \in \Sigma(1)$, consider the torus stable divisor $D_{\rho} := \overline{O}_{\rho}$ defined as the closure of the torus orbit of the characteristic point x_{ρ} , defined in (1). Since those divisors generate the Chow group of Weil divisors $A_{n-1}(X(\Sigma))$ (see [15] §3.4), there exist integer coefficients $a_{\rho} \in \mathbb{Z}$ such that $H = \sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho}$. It is then well defined the integral polytope

(4)
$$\Delta_H := \{ \mathbf{u} \in M_{\mathbb{R}} \mid \forall \boldsymbol{\rho} \in \Sigma(1) \ \langle \mathbf{u}, \mathbf{n}_{\boldsymbol{\rho}} \rangle \ge -a_{\boldsymbol{\rho}} \}$$

where \mathbf{n}_{0} is the unique generator of the semigroup $\rho \cap N$. Then

$$(\mathbb{P}_{\Delta_H}, \mathcal{O}(1)) \cong (X(\Sigma), H)$$
.

1.2. Hermite normal form

It is well known that Hermite algorithm provides an effective way to determine a basis of a subgroup of \mathbb{Z}^n . We briefly recall the definition and the main properties. For details, see for example [6].

DEFINITION 1. An $m \times n$ matrix $M = (m_{ij})$ with integral coefficients is in Hermite normal form (abbreviated HNF) if there exists $r \leq m$ and a strictly increasing map $f : \{1, ..., r\} \rightarrow \{1, ..., n\}$ satisfying the following properties:

- 1. For $1 \le i \le r$, $m_{i,f(i)} \ge 1$, $m_{ij} = 0$ if j < f(i) and $0 \le m_{i,f(k)} < m_{k,f(k)}$ if i < k.
- 2. The last m r rows of M are equal to 0.

THEOREM 1 ([6] Theorem 2.4.3). Let A be an $m \times n$ matrix with coefficients in \mathbb{Z} . Then there exists a unique $m \times n$ matrix $B = (b_{ij})$ in HNF of the form $B = U \cdot A$ where $U \in GL(m, \mathbb{Z})$.

We will refer to matrix *B* as the HNF of matrix *A*. The construction of *B* and *U* is effective, see [6, Algorithm 2.4.4], based on Eulid's algorithm for greatest common divisor. In the following two applications of this algorithm will be considered: for computing a fan of a given wps (see Prop. 5) and the so-called *Q*-canonical fan of $\mathbb{P}(Q)$ (see Prop. 6). At this purpose, a key theoretical tool is the following (for the proof see [6, §2.4.3])

PROPOSITION 1.

1. Let *L* be a subgroup of \mathbb{Z}^n , $V = \{\mathbf{v}_1, ..., \mathbf{v}_m\}$ a set of generators, and let *A* be the $m \times n$ matrix having $\mathbf{v}_1, ..., \mathbf{v}_m$ as rows. Let *B* be the HNF of *A*. Then the nonzero rows of *B* are a basis of *L*.

2. Let A be a $m \times n$ matrix, and let $B = U \cdot A^T$ be the HNF of the transposed of A, and let r be the number of nonzero rows of B. Then a \mathbb{Z} -basis for the kernel of A is given by the last m - r rows of U.

1.3. Transversion of a matrix

In the following, given a matrix $A \in GL(n, \mathbb{Q})$, the matrix obtained by taking the *trans*posed matrix of the in*verse* matrix

$$A^* := ((A)^{-1})^T$$

is called the *transverse matrix* of A. We will see in the following (see subsection 3.1, in particular Thm. 4) that *transversion* of a matrix describes, up to the multiplication by a diagonal matrix of weights, the passage from a fan to a polytope (and back) associated with the same weighted projective space $\mathbb{P}(Q)$.

Here are some elementary properties of transversion:

PROPOSITION 2. Let A and B be matrices of $GL(n, \mathbb{Q})$. Then:

- 1. $(A^*)^* = A$ i.e. transversion is an involution in $GL(n, \mathbb{Q})$,
- 2. $(A \cdot B)^* = A^* \cdot B^*$,
- 3. $\det(A^*) = 1/\det(A)$,
- *4. if A is a upper* (*lower*) *triangular matrix then A*^{*} *is an lower* (*upper*) *triangular matrix,*
- 5. *if* $A \in GL(n, \mathbb{Z})$ *then* $A^* \in GL(n, \mathbb{Z})$ *too.*

1.4. Weighted projective spaces

In the present subsection we will briefly recall the definition and some well known fact about *weighted projective spaces* (*wps* in the following). Proofs and details can be recovered in the extensive treatments [12] [16], [13] and [3].

DEFINITION 2. Set $Q := (q_0, ..., q_n) \in (\mathbb{N} \setminus \{0\})^{n+1}$ and consider the multiplicative group $\mu_Q := \mu_{q_0} \oplus \cdots \oplus \mu_{q_n}$ where μ_{q_i} is the group of q_i -th roots of unity. Consider the following action of μ_Q over the n-dimensional complex projective space \mathbb{P}^n

$$\begin{array}{cccc} \mu_Q \colon & \mu_Q \times \mathbb{P}^n & \longrightarrow & \mathbb{P}^n \\ & & ((\zeta_j), [z_j]) & \longmapsto & [\zeta_j z_j] \end{array}$$

Let $\Delta_Q \subset \mu_Q$ be the diagonal subgroup and consider the quotient group $\mathbb{W}_Q := \mu_Q / \Delta_Q$. Then the induced quotient space

$$\mathbb{P}(Q) := \mathbb{P}^n / \mathbb{W}_Q$$

is called the Q-weighted projective space (Q-wps).

6

REMARK 1. If q is the greatest common divisor of (q_0, \ldots, q_n) then

$$\Delta_Q \cong \mu_q$$

Therefore we get the canonical isomorphism

$$\mathbb{P}(Q) \cong \mathbb{P}\left(\frac{q_0}{q}, \dots, \frac{q_n}{q}\right)$$

For this reason in the following we will always assume that

$$q = \gcd(q_0, \ldots, q_n) = 1 \; .$$

Let us recall the following standard notation

(5)
$$d_{j} := \gcd(q_{0}, \dots, q_{j-1}, q_{j+1}, \dots, q_{n}) ,$$
$$a_{j} := \operatorname{lcm}(d_{0}, \dots, d_{j-1}, d_{j+1}, \dots, d_{n}) ,$$
$$a := \operatorname{lcm}(a_{0}, \dots, a_{n}) .$$

DEFINITION 3 (Weight vector). In the following a weight vector $Q = (q_0, ..., q_n)$ will denote a n + 1-tuple of coprime positive integer numbers. Referring to notation defined in (5), a weight vector Q will be called reduced if $d_j = 1$, or equivalently $a_j = 1$, for any j = 0, ..., n.

REMARK 2. Every weighted projective space is a toric variety. In fact the natural torus action over \mathbb{P}^n passes through the quotient as follows

where π_Q is the natural quotient map and τ_Q is the quotient map associated with the action

$$\begin{array}{cccc} \mu_Q \times (\mathbb{C}^*)^n & \longrightarrow & (\mathbb{C}^*)^n \\ ((\zeta_j), (t_i)) & \longmapsto & (\zeta_0^{-1} \zeta_i t_i) \end{array}$$

Then the torus $(\mathbb{C}^*)^n$ can be embedded in $\mathbb{P}(Q)$ via the following map

$$\begin{array}{ccc} (\mathbb{C}^*)^n & \hookrightarrow & \mathbb{P}(Q) \\ (t_1, \dots, t_n) & \longmapsto & [1:t_1: \dots: t_n] \end{array}$$

whose image is the open subset $\mathbb{P}(Q) \setminus \mathcal{V}(\prod_j z_j)$.

PROPOSITION 3. Since $gcd(q_0, ..., q_n) = 1$, the following facts are true:

1. $gcd(q_j, d_j) = 1$,

- 2. *if* $i \neq j$ *then* $gcd(d_i, d_j) = 1$,
- 3. $a_j | q_j$,
- 4. $gcd(a_j, d_j) = 1$,
- 5. $a_j d_j = a$,
- 6. setting $q'_j := q_j/a_j$, then $Q' = (q'_0, \dots, q'_n)$ is reduced; Q' is then called the reduction of Q.

The proofs of these well known properties (see [13] 1.3.1) are elementary.

Instead we will prove the following property, which does not appear in the main treatments of the subject.

PROPOSITION 4. Let $Q = (q_0, ..., q_n)$ be a weight vector and $Q' = (q'_0, ..., q'_n)$ be its reduction. Define

(6)
$$\delta := \operatorname{lcm}(q_0, \dots, q_n) \quad and \quad \delta' := \operatorname{lcm}(q'_0, \dots, q'_n) .$$

Then $\delta = a\delta'$, where *a* is defined in (5).

REMARK 3. The Proposition 4 still holds when $q := \text{gcd}(q_0, \dots, q_n) > 1$.

Proof of Proposition 4. We will prove that δ divides $a\delta'$ and, viceversa, $a\delta'$ divides δ . On the one hand, to show that δ divides $a\delta'$ it suffices to show that q_j divides $a\delta'$ for every *j* and this fact follows immediately by definitions since $q_j = a_j q'_j | a\delta'$.

On the other hand, by definitions of *a* and δ' , to prove that $a\delta'$ divides δ it suffices to prove that $a_iq'_k \mid \delta$, which is $a_i \mid \frac{\delta}{q_k}a_k$, for every *i*, *k*. By the definition of a_i given in (5), the latter is obtained by showing that d_j divides $\frac{\delta}{q_k}a_k$ for every *j*, *k*.

If $j \neq k$ then d_i divides a_k and we are done.

Suppose now j = k. Let p be a prime dividing d_k and let p^t, p^r be the highest powers of p dividing d_k and q_k respectively. Then p^t divides q_i for every $i \neq k$, by the definition of d_k : in particular $p^t | \delta$. If $r \ge t$ then

$$orall i \quad p^t \mid q_i \Rightarrow orall j \quad p^t \mid d_j \Rightarrow orall k \quad p^t \mid a_k$$

If r < t then p^{t-r} divides $\frac{\delta}{q_k}$; moreover p^r divides d_i for every $i \neq k$, since $p^r \mid q_k$ and $p^t \mid q_i$ for every $i \neq k$: then p^r divides a_k . Therefore p^t divides $\frac{\delta}{q_k}a_k$. Thus we proved that d_k divides $\frac{\delta}{a_k}a_k$.

Let us now recall the following well-known result to which we will refer below as to the *Reduction Theorem*.

THEOREM 2 (Reduction Theorem ([12] §1,[13] 1.3.1)). Let $Q' = (q'_0, \ldots, q'_n)$ be the reduced weight vector of $Q = (q_0, \ldots, q_n)$. Then

(7)
$$\mathbb{P}(Q) \cong \left(\mathbb{C}^{n+1} \setminus \{0\}\right) / \mathbb{C}^* = \mathbb{P}(Q')$$

where the quotient is realized by means of the (reduced) action

$$\mathbf{v}_{\mathcal{Q}'}: \quad \mathbb{C}^* \times \mathbb{C}^{n+1} \quad \longrightarrow \qquad \mathbb{C}^{n+1} \\ (t,(z_j)) \quad \longmapsto \quad \left(t^{q'_0} z_0, \dots, t^{q'_n} z_n\right) \ .$$

Let us end up this preliminary section with the following technical statement which will be useful below. Partial proofs of this result may recovered from [4] §2 and [14] Prop. 2.3. Moreover it is certainly well-know to experts. However for purposes of definiteness we include here a detailed proof.

LEMMA 1. Let $Q = (q_0, ..., q_n)$ be a weight vector; let $\{\mathbf{v}_0, ..., \mathbf{v}_n\}$ be a set of vectors in \mathbb{Q}^n , generating \mathbb{Q}^n and such that $\sum_{j=0}^n q_j \mathbf{v}_j = 0$. Let L be the lattice generated in \mathbb{Q}^n by $\{\mathbf{v}_0, ..., \mathbf{v}_n\}$ and L' be the sublattice generated by $\{q_0\mathbf{v}_0, ..., q_n\mathbf{v}_n\}$. Then the following properties hold:

- (a) $[L:L'] = \prod_{j=0}^{n} q_j;$
- (b) let $V := (v_{ij})$ be the $n \times (n+1)$ matrix whose columns are given by components of $\mathbf{v}_0, \ldots, \mathbf{v}_n$ over a basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$ of L i.e. $\mathbf{v}_j = \sum_{i=1}^n = v_{ij}\mathbf{e}_i$, for every $j = 0, \ldots, n$, and denote by V_j the n-minor of V obtained by deleting the j-th column as in (3). Then

$$\forall j = 0, \dots, n \quad V_j = (-1)^{\varepsilon + j} q_j, \text{ for a fixed } \varepsilon \in \{0, 1\},$$

(c) $\forall j = 0, ..., n \quad \mathbf{v}_j = d_j \mathbf{n}_j$, where \mathbf{n}_j is the generator of the semigroup $\langle \mathbf{v}_j \rangle \cap L$ and d_j is defined in (5); in particular L is the lattice generated by $\{\mathbf{n}_0, ..., \mathbf{n}_n\}$; moreover $\{\mathbf{n}_0, ..., \mathbf{n}_n\}$ satisfy the hypotheses of this Lemma with respect to the reduced weight vector Q' i.e. they generate \mathbb{Q}^n and $\sum_{i=0}^n q'_i \mathbf{n}_j = 0$.

Proof. For (a), observe that L' has $q_1\mathbf{v}_1, \ldots, q_n\mathbf{v}_n$ as a basis. Then L' has index $\prod_{j=1}^n q_j$ in the lattice L_0 generated by $\mathbf{v}_1, \ldots, \mathbf{v}_n$. The quotient L/L_0 is cyclic generated by the image of \mathbf{v}_0 , so that $[L:L_0]$ divides q_0 . If $r\mathbf{v}_0 \in L_0$, with $r \in \mathbb{Z}$ then $r\mathbf{v}_0 = \sum_{j=1}^n s_j \mathbf{v}_j$ with $s_1, \ldots, s_n \in \mathbb{Z}$. Since $gcd(q_0, \ldots, q_n) = 1$ then there exists $\lambda \in \mathbb{Z}$ such that $r = -\lambda q_0$, $s_i = \lambda q_i$ for $i = 1, \ldots, n$; in particular q_0 divides r, so that $[L:L_0] = q_0$ and [L:L'] = $[L:L_0][L_0:L'] = \prod_{i=0}^n q_i$.

(b): for j = 0, ..., n, let L_j be the lattice generated by $\mathbf{v}_0, ..., \mathbf{v}_{j-1}, \mathbf{v}_{j+1}, ..., \mathbf{v}_n$. Then $|V_j| = [L:L_j] = q_j$, as we have shown in (a) for the case j = 0. Let $\varepsilon \in \{0, 1\}$ be such that $V_0 = (-1)^{\varepsilon} q_0$. Then

$$\forall j = 0, \dots, n \quad V_j = (-1)^j \frac{q_j}{q_0} V_0 = (-1)^{\varepsilon + j} q_j$$

since $\sum_{j=0}^{n} q_j \mathbf{v}_j = 0$. (c): we have

$$\forall j = 0, \dots, n \quad q_j \mathbf{v}_j = -\sum_{k \neq j} q_k \mathbf{v}_k = -d_j \sum_{k \neq j} \tilde{q}_k \mathbf{v}_k$$

where $\tilde{q}_k := q_k/d_i \in \mathbb{N}$. By (1) in Proposition 3, $gcd(q_i, d_i) = 1$ meaning that

$$\forall j = 0, \dots, n \quad \exists \mathbf{v}'_j \in L : \mathbf{v}_j = d_j \mathbf{v}'_j .$$

Then (5) in Proposition 3 allows to write

(8)
$$0 = \sum_{j=0}^{n} q_j \mathbf{v}_j = \sum_{j=0}^{n} \left(q'_j a_j \right) \left(d_j \mathbf{v}'_j \right) = a \sum_{j=0}^{n} q'_j \mathbf{v}'_j \Longrightarrow \sum_{j=0}^{n} q'_j \mathbf{v}'_j = 0.$$

Moreover $\mathbf{v}'_0, \dots, \mathbf{v}'_n$ generate *L* and (a) ensures that the following index

(9)
$$\left[L:\langle q'_{j}\mathbf{v}'_{j} \mid j=0,\ldots,n\rangle\right]=\prod_{j=0}^{n}q'_{j}.$$

Then the proof ends up by showing that, for all j, $\mathbf{v}'_j = \mathbf{n}_j$. With this goal in mind, consider $h_j \in \mathbb{N}$ such that $\mathbf{v}'_j = h_j \mathbf{n}_j$. If $V' = (v'_{ij})$ is the matrix of components of $\mathbf{v}'_0, \ldots, \mathbf{v}'_n$, over the basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$ of L, then

$$\forall j = 0, \dots, n \quad \left| V'_j \right| = q'_j$$

On the other hand

$$\mathbf{v}_0' \in h_0 L \Longrightarrow \forall \ i = 1, \dots, n \quad h_0 \mid v_{i0}' \Longrightarrow \forall \ k = 1, \dots, n \quad h_0 \mid \left| V_k' \right| = q_k' \ .$$

Therefore (6) in Proposition 3 implies that

$$h_0 \mid \gcd(q'_1, \dots, q'_n) = 1 \Longrightarrow h_0 = 1$$

Analogously $h_j = 1$, for all $1 \le j \le n$. Hence $\mathbf{v}'_j = \mathbf{n}_j$.

2. Characterization of fans giving $\mathbb{P}(Q)$

2.1. Characterizing the fan

Let us fix an *n*-dimensional lattice *N* and a subset of n + 1 vectors $\{\mathbf{v}_0, ..., \mathbf{v}_n\} \subset N$. The following theorem is an application of the previous Lemma 1 to known results such as e.g. Lemma 2.11 in [2], Prop. 5.4 in [5] and Thm. 3.6 in [7].

THEOREM 3. Let $Q = (q_0, ..., q_n)$ be a weight vector. Consider the fan $\Sigma =$ fan $(\mathbf{v}_0, ..., \mathbf{v}_n)$ and the associated matrix $V = (\mathbf{v}_0, ..., \mathbf{v}_n)$ with respect to a fixed basis of N. Then the following facts are equivalent:

- 1. Σ is a fan of $\mathbb{P}(Q)$,
- 2. $\sum_{j=0}^{n} q_j \mathbf{v}_j = 0$ and the sub-lattice $N' := \langle q_0 \mathbf{v}_0, \dots, q_n \mathbf{v}_n \rangle \subset N$ has finite index

$$[N:N'] = \prod_{j=0}^n q_j \; ,$$

3. $\forall j = 0, \dots, n \quad V_j = (-1)^{\varepsilon + j} q_j$, for a fixed $\varepsilon \in \{0, 1\}$,

10

4.
$$q_0 \mathbf{v}_0 = -\sum_{i=1}^n q_i \mathbf{v}_i$$
 and $|V_0| := |\det(\mathbf{v}_1, \dots, \mathbf{v}_n)| = q_0$.

Proof of Theorem 3. (1) \Rightarrow (2). A fan of the wps $\mathbb{P}(Q)$ with $Q = (q_0, \ldots, q_n)$ is presented in [15] at the end of §2.3. Then, by Lemma 1(a) one may check that fan to satisfy conditions stated in (2).

$$(2) \Rightarrow (3)$$
. This is Lemma 1(b).

(3) \Rightarrow (4). For any k = 1, ..., n consider the $(n+1) \times (n+1)$ matrix

$$A_k := \begin{pmatrix} v_{k0} & \cdots & v_{kn} \\ & & \\ & V & \end{pmatrix}$$

Since the first and the (k+1)-st rows of A_k are equal we get

$$\forall k = 1, \dots, n \quad 0 = \det(A_k) = \sum_{j=0}^n (-1)^j v_{kj} V_j \stackrel{(3)}{=} (-1)^{\varepsilon} \sum_{j=0}^n q_j v_{kj} \Rightarrow \sum_{j=0}^n q_j \mathbf{v}_j = 0.$$

(4) \Rightarrow (2). Since $|V_0| = q_0$ then $\{q_1\mathbf{v}_1, \dots, q_n\mathbf{v}_n\}$ is a basis of the sub-lattice N'. Hence

$$[N:N'] = |\det(q_1\mathbf{v}_1,\ldots,q_n\mathbf{v}_n)| = \left(\prod_{i=1}^n q_i\right)|V_0| \stackrel{(4)}{=} \prod_{j=0}^n q_j.$$

(2) \Rightarrow (1). First note that (2) and Lemma 1(a) imply that $\mathbf{v}_0, \dots, \mathbf{v}_n$ generate *N*. It follows by Lemma 1(c) that $\mathbf{n}_0, \dots, \mathbf{n}_n$ generate *N* and $\sum_{j=0}^n q'_j \mathbf{n}_j = 0$.

Let D_j be the torus invariant divisor associated with the 1-dimensional cone $\langle \mathbf{n}_j \rangle \in \Sigma(1)$ for the toric variety with fan Σ . Consider the sequence

(10)
$$0 \longrightarrow M \xrightarrow{div} \bigoplus_{j=0}^{n} \mathbb{Z} \cdot D_{j} \xrightarrow{d} \mathbb{Z} \longrightarrow 0$$

where $div(\mathbf{m}) = \sum_{j=0}^{n} \langle \mathbf{m}, \mathbf{n}_{j} \rangle D_{j}$ and $d(\sum_{j=0}^{n} b_{j} D_{j}) = \sum_{j=0}^{n} b_{j} q'_{j}$. Then div is injective since the \mathbf{n}_{j} span $N = M^{\vee}$ and d is surjective since $gcd(q'_{0}, \ldots, q'_{n}) = 1$. Furthermore, $d \circ div = 0$ follows easily from $\sum_{j=0}^{n} q'_{j} \mathbf{n}_{j} = 0$.

Hence, to prove that (10) is exact, it suffices to show that $\ker(d) \subset \operatorname{Im}(div)$. Take $\sum_{j=0}^{n} b_j D_j \in \ker(d)$. Since $\mathbf{n}_1, \dots, \mathbf{n}_n$ are linearly independent over \mathbb{Q} , one can find $\mathbf{m} \in M \otimes \mathbb{Q}$ such that $\langle \mathbf{m}, \mathbf{n}_i \rangle = b_i$ for $1 \leq i \leq n$. Since $\sum_{j=0}^{n} q'_j \mathbf{n}_j = 0$ and $\sum_{j=0}^{n} b_j q'_j = 0$, we obtain

$$q'_0\langle \mathbf{m}, \mathbf{n}_0 \rangle = -\sum_{i=1}^n \langle \mathbf{m}, q'_i \mathbf{n}_i \rangle = -\sum_{i=1}^n q'_i \langle \mathbf{m}, \mathbf{n}_i \rangle = -\sum_{i=1}^n q'_i b_i = q'_0 b_0 .$$

It follows that $\langle \mathbf{m}, \mathbf{n}_0 \rangle = b_0$. Thus $\langle \mathbf{m}, \mathbf{n}_j \rangle = b_j \in \mathbb{Z}$ for all *j*. This implies $\mathbf{m} \in M$ since $\mathbf{n}_0, \dots, \mathbf{n}_n$ span $N = M^{\vee}$, and the desired exactness follows immediately.

We are now in a position to apply the Cox Theorem, [8] Thm. 2.1, to give a geometric quotient description of $X(\Sigma)$. In particular the exact sequence (10) suffices

to show that the *Chow group* of Weil divisors modulo rational equivalence for the toric variety $X(\Sigma)$ is given by $A_{n-1}(X) \cong \mathbb{Z}$ (see e.g. [15] §3.4). Let $S = \mathbb{C}[x_0, \ldots, x_n]$ be the polynomial ring obtained by associating the variable x_j with the 1-dimensional cone $\langle \mathbf{n}_j \rangle \in \Sigma(1)$. The grading on *S* is defined by setting

$$\deg(x_j) := \deg(d(D_j)) = q_j \,.$$

Since $\text{Hom}(A_{n-1}(X), \mathbb{C}^*) \cong \mathbb{C}^*$, it is then possible to exhibit $X(\Sigma)$ as a geometric quotient

$$X(\Sigma) \cong \left(\mathbb{C}^{n+1} \setminus \{0\} \right) / \mathbb{C}^*$$

where the quotient is realized by means of the action $v_{Q'}$ in the statement of the Reduction Theorem 2. Then $X(\Sigma) \cong \mathbb{P}(Q') \cong \mathbb{P}(Q)$.

The following definition will be useful in section 3, when speaking about the *fan-polytope correspondence*:

DEFINITION 4 (*F*-admissible matrices). A matrix $V \in Mat(n, n+1, \mathbb{Z})$ will be called *F*-admissible if it satisfies the following conditions

- 1. the matrix $V = (\mathbf{v}_0, ..., \mathbf{v}_n)$ admits only nonvanishing coprime maximal minors *i.e.* $\forall j = 0, 1, ..., n$ $V_j \neq 0$ and $gcd(V_j \mid 0 \le j \le n) = 1$;
- 2. the columns \mathbf{v}_j of V satisfy one of the equivalent conditions (2), (3), (4) of Theorem 3 with respect to the weights $q_j := |V_j|$.

The subset of F–admissible matrices will be denoted by $\mathfrak{V}_n \subset \operatorname{Mat}(n, n+1, \mathbb{Z})$ *.*

2.2. Hermite normal form of weights and fans of $\mathbb{P}(Q)$

The following result, which is a direct consequence of Theorem 3, exhibit a rather surprising method to get a fan of a given wps $\mathbb{P}(Q)$: in fact this fan turns out to be *encoded* in the switching matrix giving the HNF of the transposed weight vector Q^T . Since such a matrix is obtained by a well known algorithm, based on Euclid's algorithm for greatest common divisor, [6] Algorithm 2.4.4, this gives a constructive method to produce a fan of $\mathbb{P}(Q)$ which can be performed by any procedures computing elementary linear algebra operations.

PROPOSITION 5. Let $Q = (q_0, \ldots, q_n)$ be a weight vector, B the HNF of the transposed vector Q^T and $U \in GL(n+1,\mathbb{Z})$ be such that $U \cdot Q^T = B$. Let C be the matrix consisting of the last n rows of U and let \mathbf{v}_j be the j^{th} column vector of C, for $0 \leq j \leq n$. Let L, L' be the lattices generated in \mathbb{Z}^n by $\mathbf{v}_0, \ldots, \mathbf{v}_n$ and $q_0 \mathbf{v}_0, \ldots, q_n \mathbf{v}_n$ respectively. Then

$$I. B = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix};$$

- 2. $L = \mathbb{Z}^n$;
- 3. $\sum_{j=0}^{n} q_j \mathbf{v}_j = 0;$
- 4. there exists $\varepsilon \in \{0,1\}$ such that $C_j = (-1)^{\varepsilon+j}q_j$ for all $0 \le j \le n$.
- 5. $[L:L'] = \prod_{j=0}^{n} q_j$.

As a consequence of Theorem 3, $fan(\mathbf{v}_0, \ldots, \mathbf{v}_n)$ is a fan of $\mathbb{P}(Q)$.

Proof. The rank of Q is 1, so by definition of HNF, $B = \begin{pmatrix} a \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ with $a \ge 1$. By the

equality $Q^T = U^{-1} \cdot B$ we see that *a* must divide q_0, \ldots, q_n , so that a = 1; this proves (1). Then (3) follows immediately by $U \cdot Q^T = B$.

To prove part (2), let (c_0, \ldots, c_n) be the 2nd column of U^{-1} . Then $U \cdot U^{-1} = I$ easily implies that $\sum_{j=0}^{n} c_j \mathbf{v}_j = \mathbf{e}_1$, the first standard basis vector of \mathbb{Z}^n . Columns $3, \ldots, n+1$ of U^{-1} similarly show that $\mathbf{e}_2, \ldots, \mathbf{e}_n$ are in the sublattice generated by $\mathbf{v}_0, \ldots, \mathbf{v}_n$. Hence this sublattice must be \mathbb{Z}^n .

Finally parts (4) and (5) follow immediately from parts (2) and (3) of Lemma 1. \Box

2.3. A *Q*-canonical fan of $\mathbb{P}(Q)$

In the present subsection we want to use the characterization (4) in Theorem 3 to get a Q-canonical fan of $\mathbb{P}(Q)$, in the sense that the associated fan matrix is in HNF, up to a permutation of columns (see the following Remark 4). This fact presents the fan in a triangular shape and generated by as many as possible of the vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$ in a given basis of the lattice N. Moreover it turns out to be a convenient procedure to get a fan of $\mathbb{P}(Q)$ by hands (see Example 1 below).

PROPOSITION 6. Let $Q = (q_0, ..., q_n)$ be a weight vector. For any j with $1 \le j \le n$, define $k_j := \text{gcd}(q_0, q_j, q_{j+1}, ..., q_n)$. Then:

- 1. $k_j | k_{j+1}$,
- 2. either $k_n = (q_0, q_n) = 1$ or there exists a positive integer *i*, with $1 \le i \le n-1$, such that $k_i = 1$ and $k_{i+1} > 1$,
- 3. consider a upper triangular matrix $V^0 = (\mathbf{v}_1, \dots, \mathbf{v}_n) \in \operatorname{Mat}(n, n, \mathbb{Z})$ whose columns \mathbf{v}_i are such that:

$$\forall 1 \le j \le i - 1 \quad \mathbf{v}_j = \mathbf{e}_j \\ \forall i \le j \le n - 1 \quad v_{jj} = k_{j+1} / k_j \\ v_{nn} = q_0 / k_n$$

where v_{kj} is the k-th entry of the column \mathbf{v}_j ; then there exists a choice for v_{kj} with $i \leq j$ and k < j such that V^0 can be completed to a matrix $V = (\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_n) \in Mat(n, n + 1, \mathbb{Z})$ whose columns satisfy the following condition

$$\sum_{j=0}^n q_j \mathbf{v}_j = 0 ;$$

in particular the columns of V satisfy condition (4) of Theorem 3, hence generate a fan of $\mathbb{P}(Q)$.

4. there exists a unique choice of the previous matrices V and V⁰ such that V⁰ is in HNF with only nonnegative entries; then the column \mathbf{v}_0 in V admits only negative entries. Moreover the matrix $V' = (\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{v}_0)$ is in HNF.

Proof. (1) is obvious. (2) follows from (1) by recalling the hypothesis

$$k_1 = \gcd(q_0, q_1, \ldots, q_n) = 1 .$$

To prove (3) we have to show the existence of an integral vector $\mathbf{v}_0 = \begin{pmatrix} v_{10} \\ \vdots \\ v_{n0} \end{pmatrix}$ and integers v_{jk} satisfying the following equations

(11) $\forall 1 \le j \le i-1$ $q_0 v_{j0} + q_j + \sum_{k=i}^n q_k v_{jk} = 0$

(12)
$$\forall i \le j \le n-1 \qquad q_0 v_{j0} + q_j \frac{k_{j+1}}{k_j} + \sum_{k=j+1}^n q_k v_{jk} = 0$$

(13)
$$q_0 v_{n0} + q_n \frac{q_0}{k_n} = 0$$

The last equation (13) is clearly satisfied by putting $v_{n0} = -q_n/k_n = -q_n/(q_0, q_n)$. The *j*-th equation in (12) admits integer solutions for $(v_{j0}, v_{j,j+1}, \dots, v_{jn})$ if and only if

$$gcd(q_0, q_{j+1}, \dots, q_n) = k_{j+1} \mid q_j \frac{k_{j+1}}{k_j}$$

which is clearly true since $k_j | q_j$, by definition. Finally the *j*-th equation in (11) admits integer solutions for $(v_{j0}, v_{ji}, v_{j,i+1} \dots, v_{jn})$ if and only if

$$\forall 1 \leq j \leq i-1 \quad \gcd(q_0, q_i, \dots, q_n) = k_i \mid q_j$$

which is clearly true since $k_i = 1$, by the previous part (2). Recall now that V^0 is a triangular matrix, giving

$$\det(V^0) = \prod_{j=1}^n v_{jj} = k_{i+1} \cdot \frac{k_{i+2}}{k_{i+1}} \cdots \frac{k_n}{k_{n-1}} \cdot \frac{q_0}{k_n} = q_0$$

which is enough to get condition (4) of Theorem 3 for the columns of *V*. To prove (4) let us first of all observe that, for any $1 \le j \le i - 1$, $\mathbf{v}_j = \mathbf{e}_j$, meaning that the first i - 1 columns of V^0 are composed of nonnegative entries satisfying the HNF conditions. Moreover V^0 is upper triangular. Then it remains to prove that there exists a unique choice for v_{jk} such that

$$\forall k : i \leq k \leq n , \forall j : j < k \quad 0 \leq v_{jk} < v_{kk} .$$

The j-th equation in (12) can be rewritten as follows

$$q_0 v_{j0} + q_n v_{jn} = -q_j \frac{k_{j+1}}{k_j} - \sum_{k=j+1}^{n-1} q_k v_{jk} .$$

Fixing variables v_{jk} , for $j + 1 \le k \le n - 1$, the previous diophantine equation admits solutions for v_{j0}, v_{jn} if and only if

(14)
$$k_n = \gcd(q_0, q_n) \mid -q_j \frac{k_{j+1}}{k_j} - \sum_{k=j+1}^{n-1} q_k v_{jk}$$

Moreover, given a particular solution $v_{jn}^{(0)}$, all the possible integer solutions for v_{jn} are given by

$$v_{jn} = v_{jn}^{(0)} - \frac{q_0}{k_n} \cdot h_{jn} = v_{jn}^{(0)} - v_{nn} \cdot h_{jn} , \quad \forall h_{jn} \in \mathbb{Z} .$$

Divide $v_{jn}^{(0)}$ by v_{nn} . Then the remainder of such a division gives a unique choice for v_{jn} such that

$$\forall i \leq j \leq n-1 \quad 0 \leq v_{jn} < v_{nn} \; .$$

Analogously the j-th equation in (11) can be rewritten as follows

$$q_0 v_{j0} + q_n v_{jn} = -q_j - \sum_{k=i}^{n-1} q_k v_{jk}$$

and the same argument ensures the existence of a unique choice for v_{jn} such that

$$\forall \ 1 \leq j \leq i-1 \quad 0 \leq v_{jn} < v_{nn} \ .$$

Then the last column in V^0 can be uniquely chosen with non-negative entries satisfying the HNF condition. Iteratively, condition (14) is satisfied if and only if there exist integer solutions for x, v_{ik} in the diophantine equation

$$k_n x + q_{n-1} v_{j,n-1} = -q_j \frac{k_{j+1}}{k_j} - \sum_{k=j+1}^{n-2} q_k v_{jk}$$

which is if and only if

$$\gcd(k_n, q_{n-1}) = \gcd(q_0, q_{n-1}, q_n) =: k_{n-1} \mid -q_j \frac{k_{j+1}}{k_j} - \sum_{k=j+1}^{n-2} q_k v_{jk}$$

In particular, given a solution $v_{j,n-1}^{(0)}$, all the possible integer solutions for $v_{j,n-1}$ are given by

$$v_{j,n-1} = v_{j,n-1}^{(0)} - \frac{k_n}{k_{n-1}} \cdot h_{j,n-1} = v_{j,n-1}^{(0)} - v_{n-1,n-1} \cdot h_{j,n-1} , \quad \forall \ h_{j,n-1} \in \mathbb{Z} .$$

Therefore, the division algorithm ensures the existence of a unique choice for $v_{j,n-1}$ such that

$$\forall i \le j \le n-1 \quad 0 \le v_{j,n-1} < v_{n-1,n-1}$$
.

The same argument ensures the existence of a unique choice for $v_{j,n-1}$ such that

 $\forall 1 \le j \le i - 1 \quad 0 \le v_{j,n-1} < v_{n-1,n-1}$.

Then the (n-1)-st column in V^0 can be uniquely chosen with non-negative entries satisfying the HNF condition. By completing the iteration, V_0 can then be uniquely chosen in HNF. Consequently \mathbf{v}_0 has to necessarily admit only negative entries. To prove that V' is in HNF it suffices to observe that, for V', the function $f : \{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n+1\}$, in Definition 1, is given by setting f(i) = i, for any $1 \le i \le n$. Then V'is in HNF if and only V^0 is in HNF, since there are no condition for the entries of \mathbf{v}_0 which is the (n+1)-st column of V'.

REMARK 4. When the weight vector Q is fixed, a significant consequence of Proposition 6 is that the fan of $\mathbb{P}(Q)$ presented in (4) is unique and is given by the HNF of a matrix V associated with any fan of $\mathbb{P}(Q)$. Clearly the uniqueness of the Q-canonical fan of $\mathbb{P}(Q)$ depends on the weights order in Q. Then we can't define a *canonical* fan of $\mathbb{P}(Q)$ but just a Q-canonical one.

EXAMPLE 1. Let us apply the Proposition 6 to produce by hand the *Q*-canonical fan (hence a fan) of $\mathbb{P}(Q)$ for Q = (2, 3, 4, 15, 25). First of all observe that in this case

$$k_1 = \gcd(Q) = 1$$
, $k_2 = d_1 = 1$, $k_3 = \gcd(2, 15, 25) = 1$, $k_4 = \gcd(2, 25) = 1$

The matrix V' in Proposition 6(4) is in HNF, then it looks as follows

$$V' = \begin{pmatrix} 1 & 0 & 0 & v_{1,3} & v_{1,0} \\ 0 & 1 & 0 & v_{2,3} & v_{2,0} \\ 0 & 0 & 1 & v_{3,3} & v_{3,0} \\ 0 & 0 & 0 & 2 & v_{4,0} \end{pmatrix}$$

with $0 \le v_{k,3} \le 1$, for $1 \le k \le 3$. Moreover we get the following conditions

$$0 = q_0 v_{4,0} + \frac{q_0 q_4}{k_4} = 2v_{4,0} + 50 \implies v_{4,0} = -25$$

$$0 = q_0 v_{3,0} + \frac{\kappa_3 q_3}{k_4} + q_4 v_{3,3} = 2v_{3,0} + 15 + 25v_{3,3} \Rightarrow v_{3,3} = 1 \text{ and } v_{3,0} = -20$$

$$0 = q_0 v_{2,0} + \frac{k_2 q_2}{k_3} + q_4 v_{2,3} = 2v_{2,0} + 4 + 25v_{2,3} \implies v_{2,3} = 0 \text{ and } v_{2,0} = -2$$

$$0 = q_0 v_{1,0} + \frac{k_1 q_1}{k_2} + q_4 v_{1,3} = 2v_{1,0} + 3 + 25v_{1,3} \implies v_{1,3} = 1 \text{ and } v_{1,0} = -14$$

16

giving the following *Q*-canonical fan for $\mathbb{P}(2,3,4,15,25)$:

$$\Sigma = \operatorname{fan}\left(\begin{pmatrix} -14\\ -2\\ -20\\ -25 \end{pmatrix}, \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0\\ 1\\ 2 \end{pmatrix} \right) \right) \,.$$

REMARK 5. Proposition 6 above has to be compared with results in §3 and §4 of [7]. In particular parts from (1) to (3) give a rewrite of Proposition 3.2, Remark 3.3 and Theorem 3.6 in [7]. For what concerns part (4), although it apparently looks to be related with Remark 4.3 and Theorem 4.5 in [7], it seems to us to be a rather new result in the literature. In fact Conrads, in §4 of [7], discusses HNFs of square matrices in $GL(n, \mathbb{Q}) \cap Mat(n, n, \mathbb{Z})$ since he's interested in classifying isomorphism classes of simplices of a given type. Here the aim is quite different since we study HNF of the simplex itself, which turns out to be unique and then identifying the *Q*-canonical fan of $\mathbb{P}(Q)$.

3. Characterization of polytopes giving $\mathbb{P}(Q)$

3.1. From fans to polytopes and back

We shall use the following notation: given a $n \times (n+1)$ matrix $V = (\mathbf{v}_0, \dots, \mathbf{v}_n) = (v_{ij})$ with $1 \le i \le n, 0 \le j \le n$, the $n \times n$ sub-matrix of V obtained by removing the first column is denoted by $V^0 = (\mathbf{v}_1, \dots, \mathbf{v}_n) = (v_{ik})$ with $1 \le i \le n$ and $1 \le k \le n$.

DEFINITION 5. Let $V \in Mat(n, n+1, \mathbb{Z})$ be a matrix whose maximal minors do not vanish i.e., in the same notation given above, $V_l \neq 0$ for every $0 \leq l \leq n$. Consider the vector of absolute values of maximal minors $Q = (|V_0|, ..., |V_n|)$. Recalling 1.3, the (0, Q)-weighted transverse matrix of V (or simply weighted transverse) is defined to be the following $n \times n$ rational matrix

$$(V^0)^*_O := (V^0)^* \cdot (\delta I^0_O)$$

where $I_Q^0 := \text{diag}(1/|V_1|, ..., 1/|V_n|)$ and $\delta := \text{lcm}(|V_0|, ..., |V_n|)$.

REMARK 6. If $V \in \mathfrak{V}_n$, as defined in the Definition 4, then Theorem 4 below implicitly shows that the weighted transverse matrix $(V^0)_Q^*$ is a $n \times n$ integral matrix. In particular this fact is also proved explicitly in the following Proposition 7.

PROPOSITION 7. If $V = (\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_n)$ is a fan matrix of $\mathbb{P}(Q)$, with $Q = (q_0, \dots, q_n)$, then the weighted transverse $(V^0)_Q^*$ has integral entries.

Proof. Recall that the *adjoint matrix of* an invertible square matrix A is defined by setting $\operatorname{Adj}(A) := \det(A) A^{-1}$. Set $W = \operatorname{Adj}(V^0)$ and let \mathbf{w}_i be the *i*-th row of W.

Observe that parts (3) and (4) in Theorem 3 give, for i = 1, ..., n,

$$\begin{aligned} |\mathbf{w}_i \cdot \mathbf{v}_i| &= |\det (V^0)| = q_0 \\ \mathbf{w}_i \cdot \mathbf{v}_k &= 0 \quad \text{for } 1 \le k \le n \text{ and } k \ne i \\ |\mathbf{w}_i \cdot \mathbf{v}_0| &= |\det (V^0)| \frac{q_i}{q_0} = q_i , \end{aligned}$$

where the dot product is the usual matrix product. Therefore $\frac{\delta}{q_0q_i}\mathbf{w}_i \cdot \mathbf{v}_j \in \mathbb{Z}$ for any $0 \le j \le n$. This means that

$$\forall 1 \leq i \leq n \quad \frac{\delta}{q_0 q_i} \mathbf{w}_i \in \mathbb{Z}^n$$

since $\mathcal{L}(\mathbf{v}_0,...,\mathbf{v}_n) = \mathbb{Z}^n$. The proof concludes by transposing *W*.

Let us denote by $\mathcal{O}_{\mathbb{P}(Q)}(1)$, or $\mathcal{O}(1)$ for short, the generator of the Picard group $\operatorname{Pic}(\mathbb{P}(Q)) \cong \mathbb{Z} \cdot \mathcal{O}_{\mathbb{P}(Q)}(1)$.

PROPOSITION 8. If D_j is the torus invariant divisor associated with $\langle \mathbf{v}_j \rangle \in \Sigma(1)$ then $(\delta'/q'_j)D_j$ is an ample divisor in the linear system $|\mathcal{O}_{\mathbb{P}(Q)}(1)|$, where as usual $Q' = (q'_0, \dots, q'_n)$ is the reduced weight vector of Q and $\delta' = \operatorname{lcm}(Q')$.

Proof. Recall the exact sequence (10) showing that the Chow group of $\mathbb{P}(Q)$ is given by $A_{n-1}(\mathbb{P}(Q)) \cong \mathbb{Z}$. By construction, the morphism $d : \bigoplus_{i=0}^{n} \mathbb{Z} \cdot D_{j} \to \mathbb{Z}$ sends a Weil divisor $\sum_{j=0}^{n} b_{j}D_{j}$ to the generator $1 \in \mathbb{Z}$ if and only if (b_{0}, \ldots, b_{n}) is a solution of the diophantine equation $\sum_{j=0}^{n} q'_{j}x_{j} = 1$. It is a well known fact that the Picard group of a normal toric variety can be identified with the subgroup of $A_{n-1}(X)$ generated by the classes of torus invariant Cartier divisors (see e.g. [15] § 3.4, [10] § 4.2). In particular $\operatorname{Pic}(\mathbb{P}(Q)) \subset A_{n-1}(\mathbb{P}(Q)) \cong \mathbb{Z}$ is a free cyclic subgroup. Then a generator of $\operatorname{Pic}(\mathbb{P}(Q))$ is given by a suitable multiple kD of a generator D of $A_{n-1}(\mathbb{P}(Q))$, where k is the least positive integer number such that kD is Cartier. There is a Criterion to determine when a Weil divisor of a toric variety is a Cartier divisor ([17] Prop. 2.4) which applied to the case of $\mathbb{P}(Q)$ can be rewritten as follows:

(15)
$$\sum_{j=0}^{n} b_j D_j$$
 is a Cartier divisor $\iff \forall 0 \le l \le n \ \exists \mathbf{u}_l \in M : \forall j \ne l \ \langle \mathbf{u}_l, \mathbf{n}_j \rangle = b_j$

where \mathbf{n}_j is a generator of the monoid $\langle \mathbf{v}_j \rangle \cap N$. Recall the exact sequence (10) and let $D = \sum_{j=0}^n b_j D_j$ be a generator of $A_{n-1}(\mathbb{P}(Q))$, i.e. d(D) = 1, and consider the positive integer multiple kD. Then (15) gives that kD is a Cartier divisor if and only if, for every l = 0, ..., n,

(16)
$$\exists \mathbf{u}_l \in M : \forall j \neq l \ \langle \mathbf{u}_l, \mathbf{n}_j \rangle = kb_j$$

Since $div(\mathbf{u}_l) = \sum_{i=0}^{n} \langle \mathbf{u}_l, \mathbf{n}_j \rangle D_j$, then (16) is equivalent to requiring that

(17)
$$\exists \mathbf{u}_l \in M : div(\mathbf{u}_l) = \sum_{j \neq l} kb_j D_j + \langle \mathbf{u}_l, \mathbf{n}_l \rangle D_l = kD + (\langle \mathbf{u}_l, \mathbf{n}_l \rangle - kb_l) D_l$$

The exactness of (10) ensures that (17) is equivalent to asking that

(18)
$$\exists \mathbf{u}_l \in M \quad : \quad d\left(kD + \left(\langle \mathbf{u}_l, \mathbf{n}_l \rangle - kb_l\right)D_l\right) = 0 \Leftrightarrow \quad k = q_l'\left(kb_l - \langle \mathbf{u}_l, \mathbf{n}_l \rangle\right) .$$

Then (18) gives that kD is Cartier if and only if $q'_l \mid k$ for every $0 \leq l \leq n$. Then the inclusion $\operatorname{Pic}(\mathbb{P}(Q)) \hookrightarrow A_{n-1}(\mathbb{P}(Q))$ turns out to be the multiplication by δ' . To complete the proof, notice that D_j and q'_jD give the same class in $A_{n-1}(\mathbb{P}(Q))$: in fact $d(D_j - q'_jD) = 0$. Then $(\delta'/q'_j)D_j$ and $\delta'D$ give the generator of $\operatorname{Pic}(\mathbb{P}(Q)) =$ $\delta'A_{n-1}(\mathbb{P}(Q))$. In particular $(\delta'/q'_j)D_j \in |\mathcal{O}_{\mathbb{P}(Q)}(1)|$. This also suffices to prove that $(\delta'/q'_j)D_j$ is ample.

Set Δ_j be the integral polytope associated with the divisor $H = (\delta'/q'_j)D_j$, as in (4). One can easily check that there exist *n* points $\mathbf{w}_1, \ldots, \mathbf{w}_n \in M_{\mathbb{R}}$, depending on the choice of D_j , such that Δ_j is the convex hull $\text{Conv}(\mathbf{0}, \mathbf{w}_1, \ldots, \mathbf{w}_n)$: in particular the ampleness of $(\delta'/q'_j)D_j$ implies that $\{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$ is a set of *n* linearly independent integral vectors ([17] Corollary 2.14).

Let \mathfrak{P}_n be the set of integral polytopes in $M_{\mathbb{R}}$ obtained as the convex hull of the origin and *n* linearly independent integral vectors and $\mathfrak{F}(Q)$ be the set of fans in $N_{\mathbb{R}}$ defining $\mathbb{P}(Q)$. Then we have established maps

(19)
$$\begin{array}{cccc} \forall \ 0 \leq j \leq n \ , \quad \Delta_Q^j : \quad \mathfrak{F}(Q) & \longrightarrow & \mathfrak{P}_n \\ \Sigma & \longmapsto & \Delta_Q^j(\Sigma) := \Delta_j \end{array}$$

Let $W = (w_{ik})$ be the $n \times n$ matrix of the components of vectors $\mathbf{w}_1, \ldots, \mathbf{w}_n \in M_{\mathbb{R}}$ over the dual basis: namely

$$\forall k = 1, \dots, n \quad \mathbf{w}_k = \sum_{i=1}^n w_{ik} \mathbf{e}_i^{\forall}$$

where $\{\mathbf{e}_1^{\vee}, \dots, \mathbf{e}_n^{\vee}\}$ is the dual basis of $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$. Then we get the following representation of the map Δ_O^0 :

THEOREM 4. Given the fan $\Sigma := \operatorname{fan}(\mathbf{v}_0, \dots, \mathbf{v}_n) \in \mathfrak{F}(Q)$, the image $\Delta_Q^0(\Sigma)$ defined in (19) is the convex hull $\operatorname{Conv}(\mathbf{0}, \mathbf{w}_1, \dots, \mathbf{w}_n)$ of the origin with the n linearly independent integral vectors $\mathbf{w}_1, \dots, \mathbf{w}_n \in M_{\mathbb{R}}$ giving the columns of the (0, Q)-weighted transverse matrix of $V = (\mathbf{v}_0, \dots, \mathbf{v}_n)$, i.e.

$$W = (V^0)^*_{O}$$
,

where $Q = (|V_0|, ..., |V_n|)$. Namely the entries of W are given by

$$\forall \ 1 \leq i \leq n \ , \ 1 \leq k \leq n \quad w_{ik} = \frac{\delta V_{ik}^0}{q_k V_0}$$

where V_{ik}^0 is the cofactor of v_{ik} in V^0 and $V_0 = \det(V^0) = \pm q_0$ (by either (3) or (4) in *Theorem 3*).

Proof. Recalling (4), to define $\Delta_Q^0(\Sigma) = \Delta_0$ one has to write down the hyperplanes of $M_{\mathbb{R}}$

(20) $\forall \rho \in \Sigma(1) \quad \langle \mathbf{u}, \mathbf{n}_{\rho} \rangle = -a_{\rho} , \text{ where } \mathbf{n}_{\rho} \text{ generates } \rho \cap N ,$

for the divisor $H = (\delta'/q'_0)D_0$. Since $\Sigma(1) = \{\langle \mathbf{v}_j \rangle \subset N_{\mathbb{R}} | j = 0, ..., n\}$ the hyperplanes (20) are then given by

(21)
$$\sum_{i=1}^{n} n_{i0}u_{i} = -\delta'/q'_{0}$$
$$\forall k = 1, \dots, n \quad \sum_{i=1}^{n} n_{ik}u_{i} = 0$$

where $\mathbf{n}_j = \sum_{i=1}^n n_{ij} \mathbf{e}_i$ generates the 1-dimensional cone $\langle \mathbf{v}_j \rangle \cap N$. In the part (c) of Lemma 1 it has been observed that $q'_0 \mathbf{n}_0 = -\sum_{k=1}^n q'_k \mathbf{n}_k$. Then the first equation in (21) can be rewritten as follows

$$\sum_{k=1}^n \left(\sum_{k=1}^n q'_k n_{ik}\right) u_i = \delta' \; .$$

Let us represent equations in (21) by the following $(n+1) \times (n+1)$ -matrix

$$M = \begin{pmatrix} \sum_{k=1}^{n} q'_{k} n_{1k} & \cdots & \sum_{k=1}^{n} q'_{k} n_{nk} & | & \delta' \\ n_{11} & \cdots & n_{n1} & | & 0 \\ & \vdots & & & \vdots \\ n_{1n} & \cdots & n_{nn} & | & 0 \end{pmatrix}$$

For j = 0, 1, ..., n, the vertex \mathbf{w}_j of $\Delta_Q^0(\Sigma)$ is then given by the (unique, for (3) in Theorem 3 and recalling that $v_{ij} = d_j n_{ij}$) solution of the linear system associated with the matrix M^{j+1} , obtained removing the (j+1)-st row in M. Clearly $\mathbf{w}_0 = 0$. For j = k = 1, ..., n we get

$$w_{ik} = M_{k+1,i}/M_{k+1,n+1}$$

where $M_{a,b}$ is the (a,b)-cofactor in M. Observe that $M_{k+1,n+1} = (-1)^{k-1} q'_k V_0 / a_0$ and $M_{k+1,i} = (-1)^{k+1} \delta' d_k V_{ik}^0 / a_0$. Then

$$w_{ik}=rac{\delta' d_k}{q_k'}rac{V_{ik}^0}{V_0}=rac{\delta' a_k d_k}{q_k}v_{ik}^*=rac{\delta}{q_k}v_{ik}^*$$

where $v_{ik}^* = V_{ik}^0/V_0$ is the (i,k)-entry of $V^{0*} := ((V^0)^{-1})^T$. The last equality on the right is obtained by recalling Proposition 3(5) and Proposition 4.

REMARK 7. Clearly same conclusions as in Theorem 4 can be obtained by exchanging 0 with any other value j such that $0 \le j \le n$.

REMARK 8. Let Q be a weight vector whose reduction is given by Q'. Consider $\Sigma = \operatorname{fan}(\mathbf{v}_0, \dots, \mathbf{v}_n) \in \mathfrak{F}(Q)$ and, for any $0 \le j \le n$, consider the generator \mathbf{n}_j of the semigroup $\langle \mathbf{v}_j \rangle \cap N$, where N is the lattice generated by $\mathbf{v}_0, \dots, \mathbf{v}_n$. Then Lemma 1(c) and Theorem 3 ensure that $\Sigma := \operatorname{fan}(\mathbf{n}_0, \dots, \mathbf{n}_n) \in \mathfrak{F}(Q')$. Then the previous Theorem 4 gives that

$$\Delta_{O}^{0}(\Sigma) = \Delta_{O'}^{0}(\Sigma)$$

since, recalling once again Propositions 3 and 4,

$$w_{ik} = (\delta/q_k)(V_{ik}^0/V_0) = (\delta'a/q'_ka_k)(N_{ik}^0/d_kN_0) = (\delta'/q'_k)(N_{ik}^0/N_0)$$

(here *N* denotes the matrix $N = (\mathbf{n}_0, \dots, \mathbf{n}_n)$).

EXAMPLE 2. Let us still consider Example 1 to apply the weighted transversion and Theorem 4 for producing by hand a polytope of a given wps $\mathbb{P}(Q)$ with the minimal polarization.

Recall that Q = (2, 3, 4, 15, 25) and the matrix fan obtained in the Example 1 is

$$V = \begin{pmatrix} -14 & 1 & 0 & 0 & 1 \\ -2 & 0 & 1 & 0 & 0 \\ -20 & 0 & 0 & 1 & 1 \\ -25 & 0 & 0 & 0 & 2 \end{pmatrix} \implies (V^0)^* = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix}.$$

Since $\delta = \text{lcm}(2, 3, 4, 15, 25) = 300$, we get

$$W = (V^{0})_{Q}^{*} = (V^{0})^{*} \cdot \delta I_{Q} = 150 \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1/3 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/15 & 0 \\ 0 & 0 & 0 & 1/25 \end{pmatrix}$$

giving $W = \begin{pmatrix} 100 & 0 & 0 & 0 \\ 0 & 75 & 0 & 0 \\ 0 & 0 & 20 & 0 \\ -50 & 0 & -10 & 6 \end{pmatrix}$. Then the polytope we are looking for is $\Delta = \operatorname{Conv}\left(\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 100 \\ 0 \\ 0 \\ -50 \end{pmatrix}, \begin{pmatrix} 0 \\ 75 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 20 \\ -10 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 6 \end{pmatrix}\right).$

More precisely $(\mathbb{P}_{\Delta}, \mathcal{O}(1)) \cong (\mathbb{P}(Q), \delta/q_0 D_0) = (\mathbb{P}^4(2, 3, 4, 15, 25), 150 D_0).$

DEFINITION 6 (*P*-admissible matrices). A square matrix $W \in Mat(n, n, \mathbb{Z})$ is called *P*-admissible if there exists an *F*-admissible matrix $V \in \mathfrak{V}_n$ such that *W* is the weighted transverse matrix of *V*, which is

$$W = (V^0)_Q^*$$
 with $Q = (|V_0|, ..., |V_n|)$.

In other words $W = (\mathbf{w}_1, \dots, \mathbf{w}_n)$ is admissible if and only if the polytope

$$\operatorname{Conv}(\mathbf{0},\mathbf{w}_1,\ldots,\mathbf{w}_n)$$

belongs to the image of the map Δ_Q^0 , as defined in (19). In this case we say that Q, W, V are associated to each other.

Let us denote $\mathfrak{W}_n \subset \operatorname{GL}(n, \mathbb{Q}) \cap \operatorname{Mat}(n, n, \mathbb{Z})$ the subset of *P*-admissible matrices: notice that any such matrix has integer entries by either Theorem 4 or the following *Proposition 7.*

REMARK 9. Remark 8 guarantees that weight vectors Q_1 and Q_2 admitting the same reduction Q' are associated with the same *P*-admissible matrix *W*, which is the *P*-admissible matrix associated with the reduced weight vector Q'. Conversely, there exists a unique reduced weight vector Q' to which *W* is associated. Proposition 9(c) will prove this fact in a purely algebraic setting; moreover Proposition 9(b) will exhibit a constructive method for finding Q'.

DEFINITION 7. Consider a matrix $W \in GL(n, \mathbb{Q}) \cap Mat(n, n, \mathbb{Z})$. Let s_i be the gcd of entries in the *i*-th row of Adj(W). Then we define the reduced adjoint of W as follows

$$\widehat{W} := \frac{|\det(W)|}{\det(W)} \operatorname{diag}\left(\frac{1}{s_1}, \dots, \frac{1}{s_n}\right) \cdot \operatorname{Adj}(W)$$

$$= \operatorname{diag}\left(\frac{|\det(W)|}{s_1}, \dots, \frac{|\det(W)|}{s_n}\right) \cdot W^{-1}$$

Notice that if V is a square matrix in $Mat(n, n, \mathbb{Z})$ such that $V \cdot W$ is a diagonal matrix with positive entries then

(22)
$$V = \operatorname{diag}(r_1, \dots, r_n) \cdot W$$

for some $r_1, \ldots, r_n \in \mathbb{N}$.

PROPOSITION 9. Let W be a P-admissible matrix and let $Q = (q_0, ..., q_n)$ be a reduced weight vector associated to W. Then

- (a) $\left(\widehat{W}^T\right)_Q^* = W;$
- (b) if $s := gcd(s_1, ..., s_n)$ is the greatest common divisor of the terms in Adj(W) then

$$q_0 = |\det(\widehat{W})|$$
, $\forall 1 \le i \le n$, $q_i = \frac{s_i}{s}$, $\operatorname{lcm}(Q) = \frac{|\det(W)|}{s}$

- (c) if Q_1 and Q_2 are reduced weight vectors associated with the same P-admissible matrix W, then $Q_1 = Q_2$;
- (d) there exists a unique F-admissible matrix V associated with W and Q i.e. such that $W = (V^0)^*_{O}$ with $Q = (|V_0|, ..., |V_n|)$.

Proof. (a). *W* is a *P*-admissible matrix. Then there exists a *F*-admissible matrix *V* such that $W = ((V^0)^T)^{-1} \delta I_Q$ and $Q = (|V_0|, \ldots, |V_n|)$, meaning that $(V^0)^T W = \delta I_Q^0$ is diagonal with positive entries. Recalling (22) we get that $(V^0)^T = \text{diag}(r_1, \ldots, r_n) \cdot \widehat{W}$ for some $r_1, \ldots, r_n \in \mathbb{N}$. But *Q* is reduced, which implies that the columns of V^0 have coprime entries. Therefore $r_1 = \cdots = r_n = 1$ and $(V^0)^T = \widehat{W}$. (a) follows immediately. (b) On the one hand $\widehat{W} \cdot W = \text{diag}(|\det(W)|/s_1, \ldots, |\det(W)|/s_n)$. On the other hand, by (a), $\widehat{W} = (V^0)^T$ and $\widehat{W} \cdot W = \text{diag}(\delta/q_1, \ldots, \delta/q_n)$, where $\delta := \text{lcm}(Q)$. Therefore

(23)
$$\forall 1 \le i \le n \quad \frac{\delta}{q_i} = \frac{|\det(W)|}{s_i} \, .$$

Observe now that

$$\operatorname{lcm}\left(\frac{\delta}{q_1},\ldots,\frac{\delta}{q_n}\right) = \frac{\delta}{\operatorname{gcd}(q_1,\ldots,q_n)} = \delta$$
$$\operatorname{lcm}\left(\frac{|\operatorname{det}(W)|}{s_1},\ldots,\frac{|\operatorname{det}(W)|}{s_n}\right) = \frac{|\operatorname{det}(W)|}{s}$$

Then (23) gives that $\delta = |\det(W)|/s$ and, for any $1 \le i \le n$, $q_i = s_i/s$. Finally (a) gives that $q_0 = |V_0| = |\det(\widehat{W})|$.

(c) follows immediately by the previous part (b).

(d). If there exist two *F*-admissible matrix U, V such that they are both associated with *W* and *Q*, then

$$(\mathbf{v}_1,\ldots,\mathbf{v}_n) = V^0 = U^0 = (\mathbf{u}_1,\ldots,\mathbf{u}_n) \Rightarrow \mathbf{v}_0 = -\frac{1}{q_0} \sum_{i=1}^n q_i \mathbf{v}_i = -\frac{1}{q_0} \sum_{i=1}^n q_i \mathbf{u}_i = \mathbf{u}_0$$

implying that $V = U$.

REMARK 10. In a sense the previous Proposition 9 states that, when restricted to wps fans associated with *reduced* weight vector, the weighted transversion process giving a polytope starting from a fan, can be inverted by considering the *transposed reduced adjoint* of the polytope matrix. Namely if W is a polytope matrix of $(\mathbb{P}(Q), O(1))$, with Q reduced, then $V := (\mathbf{v}_0 | \widehat{W}^T)$ is a fan matrix of $\mathbb{P}(Q)$ when \mathbf{v}_0 is defined by setting $\mathbf{v}_0 = -(\sum_{i=1}^n q_i \mathbf{v}_i)/q_0$, where $(\mathbf{v}_1, \dots, \mathbf{v}_n) = \widehat{W}^T$.

The following Proposition 10 shows criteria for a matrix W to be P-admissible.

PROPOSITION 10. Let $W = (w_{ij}) \in GL(n, \mathbb{Q}) \cap Mat(n, n, \mathbb{Z})$ be a matrix such that $gcd(w_{ij}) = 1$. Let *s* be the greatest common divisor of the entries in Adj(W) and **v** be the sum of the rows of Adj(W). Define $q_0 = |det(\widehat{W})|$, $\delta = \frac{|det(W)|}{s}$. The following statements are equivalent:

- (a) W is P-admissible;
- (b) the vector **v** is divisible by q_0s ;

(c) q_0 divides δ and the vector $\frac{\delta}{q_0}(1,...,1)$ is in the lattice generated by the rows of *W*.

Proof. (a) \Rightarrow (b): If *W* is *P*-admissible then there exist a unique reduced weight vector Q and a unique *F*-admissible matrix *V*, associated with *W* like in Definition 6. By Proposition 9, $\widehat{W} = (V^0)^T$ and $Q = (q_0, \dots, q_n)$ with $q_i = s_i/s$, for $i = 1, \dots, n$. Let \mathbf{v}_i be the i-th row of \widehat{W} ; then $\sum_{i=1}^n q_i \mathbf{v}_i$ is divisible by q_0 since $\widehat{W}^T = V^0$ is *F*-admissible, meaning that its columns satisfy the relation $\sum_{i=1}^n q_i \mathbf{v}_i = -q_0 \mathbf{v}_0$. Then $\sum_{i=1}^n s_i \mathbf{v}_i$ is divisible by q_0s and $s_i \mathbf{v}_i$ is the i-th row of Adj(*W*).

(b) \Rightarrow (a): Assume that q_0s divides any entry in **v**. For $1 \le i \le n$, let \mathbf{v}_i be the i-th row of \widehat{W} and $q_i = s_i/s$ be defined as in Proposition 9(b); then $\sum_{i=1}^n q_i \mathbf{v}_i$ is divisible by q_0 . Put $\mathbf{v}_0 = -\frac{1}{q_0} \sum_{i=1}^n q_i \mathbf{v}_i$. Then the matrix

$$V := \left(egin{array}{c|c} \mathbf{v}_0 & \widehat{W}^T \end{array}
ight) = \left(\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_n
ight)$$

turns out to be *F*-admissible with respect to *Q* by Theorem 3(4). Then $W = (V^0)_Q^*$ is *P*-admissible.

(b) \Leftrightarrow (c): the sum of the rows of $\operatorname{Adj}(W)$ is the row vector $(1, \ldots, 1) \cdot \operatorname{Adj}(W) = (1, \ldots, 1) \cdot \det(W) W^{-1}$. Thus it is divisible by $q_0 s$ if and only if there exists $(x_1, \ldots, x_n) \in \mathbb{Z}^n$ such that $(x_1, \ldots, x_n) \cdot W = \frac{\delta}{q_0}(1, \ldots, 1)$, that is if and only if (c) holds. \Box

3.2. Characterizing the polytope of a polarized wps

Given an integral polytope $\Delta = \text{Conv}(\mathbf{0}, \mathbf{w}_1, \dots, \mathbf{w}_n)$, for a suitable subset $\{\mathbf{w}_1, \dots, \mathbf{w}_n\} \subset M$, let $W := (\mathbf{w}_1, \dots, \mathbf{w}_n)$ be the associated polytope matrix. Then the following result is a consequence of Propositions 9 and 10.

THEOREM 5. Let $\Delta = \text{Conv}(\mathbf{0}, \mathbf{w}_1, \dots, \mathbf{w}_n) \subset M_{\mathbb{R}}$ be a n-dimensional integral polytope. Set $m := \text{gcd}(w_{ij})$ and define $W' := \frac{1}{m}W$. Let $Q = (q_0, \dots, q_n)$ be the reduction of the weight vector defined as in Proposition 9(b). Then the following facts are equivalent:

- 1. W' is a P-admissible matrix, hence it satisfies one of the equivalent conditions in Proposition 10,
- 2. $(\mathbb{P}_{\Delta}, \mathcal{O}(1)) \cong (\mathbb{P}(Q), \mathcal{O}(m)).$

Proof. (1) \Rightarrow (2): By definition if W' is *P*-admissible then there exists a *F*-admissible matrix *V* such that $W' = (V^0)^*_{\tilde{Q}}$, where $\tilde{Q} = (|V_0|, \dots, |V_n|)$. By Proposition 9(b) $\tilde{Q} = Q$. Then the polytope

$$\operatorname{Conv}\left(\mathbf{0}, \frac{\mathbf{w}_1}{m}, \dots, \frac{\mathbf{w}_n}{m}\right)$$

belongs to the image of the map Δ_Q^0 , as defined in (19). Then W' is the polytope matrix of $\Delta_{D'}$ for some divisor $D' \in O_{\mathbb{P}(Q)}(1)$ and W = mW' is the polytope matrix of $\Delta := \Delta_{mD'}$ giving (2).

(2) \Rightarrow (1): There exists a divisor D of $\mathbb{P}(Q)$, belonging to the linear system |O(m)|, such that $\Delta = \Delta_D$. Moreover there exists a divisor $D' \in |O(1)|$ such that D = mD' and in particular $\Delta = \Delta_D = m\Delta_{D'}$. This means that $\Delta_{D'} = \operatorname{Conv}(\mathbf{0}, \mathbf{w}'_1, \dots, \mathbf{w}'_n)$ and $W' := (\mathbf{w}'_1, \dots, \mathbf{w}'_n) = \frac{1}{m}W$ is a P-admissible matrix associated with Q.

Acknowledgment. The authors would like to thank the referee for his careful reading of the manuscript and his pertinent remarks and corrections. In particular Theorem 5 and the proofs of Theorem 3 and Proposition 5 have been significantly improved by his observations.

References

- BATYREV V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994), 493-535; arXiv:alg-geom/9310003.
- BATYREV V. AND COX D., On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (1994), 293–338.
- [3] BELTRAMETTI M. AND ROBBIANO L., Introduction to the theory of weighted projective spaces, Exposition. Math. 4 (1986), 111–162.
- [4] BORISOV A.A. AND BORISOV L.A., Singular toric Fano three-folds (Russian), Mat. Sb. 183 (1992), 134–141; translation in Russian Acad. Sci. Sb. Math. 75 (1993), 277–283.
- [5] BUCZYNSKA W., Fake weighted projective spaces, arXiv:0805.1211
- [6] COHEN H., A Course in Computational Algebraic Number Theory, Graduate Text in Mathematics, 138, Springer-Verlag, Berlin, 1993.
- [7] CONRADS H., Weighted projective spaces and reflexive simplices, Manuscripta Math. 107 (2002), 215–227.
- [8] COX D.A. The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 17-50; arXiv:alg-geom/9210008.
- [9] COX D.A. AND KATZ S. *Mirror symmetry and algebraic geometry*, Mathematical Surveys and Monographs 68, American Mathematical Society, Providence, RI, 1999.
- [10] COX D.A., LITTLE J.B., SCHENCK H.K. *Toric varieties*, Graduate Studies in Mathematics 124, American Mathematical Society, Providence, RI, 2011.
- [11] DANILOV V.I. The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), 85–134; english translation: Russian Math. Surveys 33 (1978), 97–154.
- [12] DELORME C. Espaces projectifs anisotropes, Bull. Soc. Math. France 103 (1975), 203–223.
- [13] DOLGACHEV I. Weighted projective varieties in Group actions and vector fields (Vancouver, B.C., 1981) Lecture Notes in Math. **956**, 34–71, Springer, Berlin 1982.
- [14] FUJINO O. Notes on toric varieties from the Mori theoretic viewpoint Tohoku Math. J. 55 (2003), 551–564.
- [15] FULTON W. Introduction to toric varieties Annals of Mathematics Studies 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993.
- [16] MORI S. On a generalization of complete intersections J. Math. Kyoto Univ. 15 (1975), 619-646.
- [17] ODA T. Convex bodies and algebraic geometry. An introduction to the theory of toric varieties (translated from the Japanese) Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 15, Springer-Verlag, Berlin 1988.

[18] ROSSI M. AND TERRACINI L. Weighted projective spaces from the toric point of view with computational applications arxiv: 1112.1677

AMS Subject Classification: 14M25, 52B20

Michele ROSSI,

Dipartimento di Matematica, Università di Torino Via Carlo Alberto 10, 10123, Torino, ITALY e-mail: michele.rossi@unito.it

Lea TERRACINI,

Dipartimento di Matematica, Università di Torino Via Carlo Alberto 10, 10123, Torino, ITALY e-mail: lea.terracini@unito.it

Lavoro pervenuto in redazione il MM.GG.AAAA.

26