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LINEAR ALGEBRA AND TORIC DATA OF WEIGHTED
PROJECTIVE SPACES

Abstract. This paper is devoted to give characterizations of suitable matrices associated with
fans and polytopes defining a weighted projective space and switching rules between them.

Introduction

The aim of the present paper is to give characterizations of fans and polytopes defining
a weighted projective space (wps for short) and switching rules between them, from a
linear algebraic point of view.

After recalling some notation and preliminaries on toric varieties, the starting
point here is the usual definition of a (complex) wps as a geometric quotient (see Def-
inition 2), directly checking its natural toric structure. The bridge with the classical
presentation of toric varieties via fans is then given by the Cox Theorem [8] Thm. 2.1.

Section 2 is devoted to the characterization of a wps’s fan: up to permutations
on generators it is possible to associate a n× (n + 1) integer matrix with the fan of a
n-dimensional wps (so called fan matrix) whose entries turn out to verify an amount of
relations (see equivalent conditions in the Theorem 3, giving a linear algebraic char-
acterization of a wps’s fan). Until here almost nothing is new, since the equivalence
of conditions (1) and (2) in Theorem 3 can be recovered from [4] and [2], while con-
dition (3) can be deduced from [7] Thm. 3.6. Anyway, we were not able to find in
the literature the relations between the fan generators v j’s of a wps P(Q), the associ-
ated primitive vectors n j’s and the reduction Q′ of the weight vector Q, as explained in
Lemma 1, although probably well-known to the experts. Notice that Lemma 1 can be
used as a key step to get a completely combinatoric proof of the well-known Reduction
Theorem 2 (see [18] Thm. 1.26 and its proof). Probably the most original result in
Section 2 is the Proposition 5 where it is shown that the fan of a given wps P(Q) is
encoded in the switching matrix giving the Hermite normal form (HNF for short) of
the transposed weight vector QT . This section ends up with the Proposition 6 in which
on the one hand (parts from (1) to (3)) we rewrite the Conrads’s presentation of a wps’s
fan matrix, but proved by directly starting from relations given in the Theorem 3, and
on the other hand (part (4)) we present a Q-canonical form for the fan of P(Q), only
depending on the weights order in Q (see Remark 4), which can be simply obtained by
the HNF of any fan matrix of P(Q). In our opinion this Proposition describes a clean
and easy method to get a fan of P(Q) even by hand (see Example 1).

Section 3 is dedicated to characterize polytopes associated with a polarized wps.
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As far as we know, results of this section were not known before. Let O(1) be the min-
imal polarization given by a generator of the Picard group Pic(P(Q)). Then we draw
a fan-polytope correspondence between fans of P(Q) and polytopes of (P(Q),O(1)):
this is given, up to suitable weightings, in the one direction by taking the transposed
inverse (so called transverse) of a maximal submatrix of a fan matrix, in the other
direction by an obvious completion of the transposed adjoint matrix of the polytope
matrix (see Definitions 5 and 7 and Remark 10). In our opinion this correspondence
combined with the previous Proposition 6 provides a clean and easy method to get a
polytope of (P(Q),O(m)), even by hand, up to the elementary computation of the in-
verse of a (possibly big) matrix (see Example 2). Main results of this section are given
by the Theorem 4, which is a direct consequence of Lemma 1, and the Proposition 9.
This section ends up with the Theorem 5 giving a linear algebraic characterization of a
polarized wps’s polytope. This result has to be thought of as the polytopal counterpart
of Theorem 3.

1. Preliminaries and notation

1.1. Toric varieties

A n–dimensional toric variety is an algebraic normal variety X containing the torus
T := (C∗)n as a Zariski open subset such that the natural multiplicative self–action of
the torus can be extended to an action T ×X → X .

Let us quickly recall the classical approach to toric varieties by means of cones
and fans. For proofs and details the interested reader is referred to the extensive treat-
ments [11], [15], [17] and the recent and quite comprehensive [10].
As usual M denotes the group of characters χ : T → C∗ of T and N the group of 1–
parameter subgroups λ : C∗ → T . It follows that M and N are n–dimensional dual
lattices via the pairing

M×N −→ Hom(C∗,C∗)∼= C∗
(χ,λ) 7−→ χ◦λ

which translates into the standard paring 〈u,v〉 = ∑uivi under the identifications M ∼=
Zn ∼= N obtained by setting χ(t) = tu := ∏ tui

i and λ(t) = tv := (tv1 , . . . , tvn).

Cones and affine toric varieties

Define NR := N⊗R and MR := M⊗R∼= Hom(N,Z)⊗R∼= Hom(NR,R).
A convex polyhedral cone (or simply a cone) σ is the subset of NR defined by

σ = 〈v1, . . . ,vs〉 := {r1v1 + · · ·+ rsvs ∈ NR | ri ∈ R≥0}
The s vectors v1, . . . ,vs ∈ NR are said to generate σ. A cone σ = 〈v1, . . . ,vs〉 is called
rational if v1, . . . ,vs ∈ N, simplicial if v1, . . . ,vs are R–linear independent and non-
singular if v1, . . . ,vs can be extended by n− s further elements of N to give a basis of
the lattice N.
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A cone σ is called strictly convex if it does not contain a linear subspace of positive
dimension of NR.
The dual cone σ∨ of σ is the subset of MR defined by

σ∨ = {u ∈MR | ∀ v ∈ σ 〈u,v〉 ≥ 0}
A face τ of σ (denoted by τ < σ) is the subset defined by

τ = σ∩u⊥ = {v ∈ σ | 〈u,v〉= 0}
for some u ∈ σ∨. Observe that also τ is a cone.
Gordon’s Lemma (see [15] §1.2, Proposition 1) ensures that the semigroup Sσ := σ∨∩
M is finitely generated. Then also the associated C–algebra Aσ := C[Sσ] is finitely
generated. A choice of r generators gives a presentation of Aσ

Aσ ∼= C[X1, . . . ,Xr]/Iσ

where Iσ is the ideal generated by the relations between generators. Then

Uσ := V (Iσ)⊂ Cr

turns out to be an affine toric variety. In other terms an affine toric variety is given by
Uσ := Spec(Aσ). Since a closed point x ∈Uσ is an evaluation of elements in C[Sσ] sat-
isfying the relations generating Iσ, then it can be identified with a semigroup morphism
x : Sσ → C assigned by thinking of C as a multiplicative semigroup. In particular the
characteristic morphism

(1)
xσ : σ∨∩M −→ C

u 7−→
{

1 if u ∈ σ⊥
0 otherwise

which is well defined since σ⊥ < σ∨, defines a characteristic point xσ ∈ Uσ whose
torus orbit Oσ turns out to be a (n−dim(σ))–dimensional torus embedded in Uσ (see
e.g. [15] §3).

Fans and toric varieties

A fan Σ is a finite set of cones σ⊂ NR such that

1. for any cone σ ∈ Σ and for any face τ < σ then τ ∈ Σ,

2. for any σ,τ ∈ Σ then σ∩ τ < σ and σ∩ τ < τ.

For every i with 0≤ i≤ n denote by Σ(i)⊂ Σ the subset of i–dimensional cones, called
the i–skeleton of Σ. A fan Σ is called simplicial if every cone σ ∈ Σ is simplicial and
non-singular if every such cone is non-singular. The support of a fan Σ is the subset
|Σ| ⊂ NR obtained as the union of all of its cones i.e.

|Σ| :=
⋃

σ∈Σ
σ⊂ NR .
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If |Σ|= NR then Σ will be called complete or compact.
Since for any face τ < σ the semigroup Sσ turns out to be a sub-semigroup of

Sτ, there is an induced immersion Uτ ↪→Uσ between the associated affine toric varieties
which embeds Uτ as a principal open subset of Uσ. Given a fan Σ one can construct
an associated toric variety X(Σ) by patching all the affine toric varieties {Uσ | σ ∈ Σ}
along the principal open subsets associated with any common face. Moreover for every
toric variety X there exists a fan Σ such that X ∼= X(Σ) (see [17] Theorem 1.5). It turns
out that ([17] Theorems 1.10 and 1.11; [15] §2):

• X(Σ) is non-singular if and only if the fan Σ is non-singular,

• X(Σ) is complete if and only if the fan Σ is complete.

In the following a 1–generated fan Σ is a fan generated by a set of n+1 integral
vectors i.e. a fan whose cones σ⊂ N⊗R are generated by any proper subset of a given
finite subset {v0, . . . ,vn} ⊂ N: we will write

(2) Σ = fan(v0, . . . ,vn) .

Given a 1–generated fan Σ = fan(v0, . . . ,vn), the matrix V = (v0, . . . ,vn) will be called
a fan matrix of Σ. Notice that Σ determines V up to a permutations of columns, meaning
that Σ admits (n+1)! associated fan matrices.
If V = (v0, . . . ,vn) is a fan matrix of Σ = fan(v0, . . . ,vn) then we will denote the maxi-
mal square sub-matrices of V and the associated n–minors as follows

(3) ∀ 0≤ j ≤ n V j := (v0, . . . ,v j−1,v j+1, . . . ,vn) , Vj = det(V j) .

Polytopes and projective toric varieties

A polytope ∆ ⊂ MR is the convex hull of a finite set of points. If this set is a subset
of M then the polytope is called integral. Starting from an integral polytope one can
construct a projective toric variety as follows. Here we will follow the approach of [1],
which the interested reader is referred to for proofs and details (see also [9] §3.2.2).
For any k ∈ N one can define the dilated polytope k∆ := {ku | u ∈ ∆}. It is then
possible to define a graded C–algebra S∆, associated with the integral polytope ∆, as
follows. For any u ∈ k∆∩M consider the associated character χu : t 7→ tu. Given
t ∈ C∗ consider the monomial tkχu : t 7→ tktu. It well defines a monomial product
tk1χu1 · tk2χu2 := tk1+k2χu1+u2 where u1 + u2 ∈ (k1 + k2)∆. Let S∆ be the C–algebra
generated by all monomials {tkχu | k ∈N , u ∈ k∆} which is a graded object by setting
deg(tku) = k.
The projective variety P∆ := Proj(S∆) turns out to be naturally a toric variety whose
fan Σ∆ can be recovered as follows. For any nonempty face F ≺ ∆ consider the cone

σ̌F := {r(u−u′) | u ∈ ∆ , u′ ∈ F , r ∈ R≥0} ⊂MR

and define σF := σ̌∨F ⊂ NR. Then Σ∆ := {σF | F ≺ ∆} turns out to be a fan, called the
normal fan of the polytope ∆, such that there exists a very ample divisor H of X(Σ∆) for
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which (X(Σ∆),H)∼= (P∆,O(1), where O(1) is the natural polarization of P∆ = Proj(S∆)
(see [1] Proposition 1.1.2).

Viceversa a projective toric variety is the couple (X(Σ),H) of a toric variety
X(Σ) and a polarization given by (the linear equivalence class of) a hyperplane section
H. For any 1-cone ρ ∈ Σ(1), consider the torus stable divisor Dρ := Oρ defined as
the closure of the torus orbit of the characteristic point xρ, defined in (1). Since those
divisors generate the Chow group of Weil divisors An−1(X(Σ)) (see [15] §3.4), there
exist integer coefficients aρ ∈ Z such that H = ∑ρ∈Σ(1) aρDρ. It is then well defined the
integral polytope

(4) ∆H := {u ∈MR | ∀ρ ∈ Σ(1) 〈u,nρ〉 ≥ −aρ}

where nρ is the unique generator of the semigroup ρ∩N. Then

(P∆H ,O(1))∼= (X(Σ),H) .

1.2. Hermite normal form

It is well known that Hermite algorithm provides an effective way to determine a basis
of a subgroup of Zn. We briefly recall the definition and the main properties. For
details, see for example [6].

DEFINITION 1. An m×n matrix M = (mi j) with integral coefficients is in Her-
mite normal form (abbreviated HNF) if there exists r≤m and a strictly increasing map
f : {1, . . . ,r}→ {1, . . . ,n} satisfying the following properties:

1. For 1≤ i≤ r, mi, f (i) ≥ 1, mi j = 0 if j < f (i) and 0≤ mi, f (k) < mk, f (k) if i < k.

2. The last m− r rows of M are equal to 0.

THEOREM 1 ([6] Theorem 2.4.3). Let A be an m× n matrix with coefficients
in Z. Then there exists a unique m×n matrix B = (bi j) in HNF of the form B = U ·A
where U ∈ GL(m,Z).

We will refer to matrix B as the HNF of matrix A. The construction of B and U
is effective, see [6, Algorithm 2.4.4], based on Eulid’s algorithm for greatest common
divisor. In the following two applications of this algorithm will be considered: for
computing a fan of a given wps (see Prop. 5) and the so–called Q–canonical fan of
P(Q) (see Prop. 6). At this purpose, a key theoretical tool is the following (for the
proof see [6, §2.4.3])

PROPOSITION 1.

1. Let L be a subgroup of Zn, V = {v1, . . . ,vm} a set of generators, and let A be
the m× n matrix having v1, . . . ,vm as rows. Let B be the HNF of A. Then the
nonzero rows of B are a basis of L.
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2. Let A be a m×n matrix, and let B = U ·AT be the HNF of the transposed of A,
and let r be the number of nonzero rows of B. Then a Z-basis for the kernel of A
is given by the last m− r rows of U.

1.3. Transversion of a matrix

In the following, given a matrix A ∈ GL(n,Q), the matrix obtained by taking the
transposed matrix of the inverse matrix

A∗ := ((A)−1)T

is called the transverse matrix of A. We will see in the following (see subsection 3.1, in
particular Thm. 4) that transversion of a matrix describes, up to the multiplication by a
diagonal matrix of weights, the passage from a fan to a polytope (and back) associated
with the same weighted projective space P(Q).

Here are some elementary properties of transversion:

PROPOSITION 2. Let A and B be matrices of GL(n,Q). Then:

1. (A∗)∗ = A i.e. transversion is an involution in GL(n,Q),

2. (A ·B)∗ = A∗ ·B∗,
3. det(A∗) = 1/det(A),

4. if A is a upper (lower) triangular matrix then A∗ is an lower (upper) triangular
matrix,

5. if A ∈ GL(n,Z) then A∗ ∈ GL(n,Z) too.

1.4. Weighted projective spaces

In the present subsection we will briefly recall the definition and some well known
fact about weighted projective spaces (wps in the following). Proofs and details can be
recovered in the extensive treatments [12] [16], [13] and [3].

DEFINITION 2. Set Q := (q0, . . . ,qn) ∈ (N\{0})n+1 and consider the multi-
plicative group µQ := µq0 ⊕ ·· · ⊕ µqn where µqi is the group of qi-th roots of unity.
Consider the following action of µQ over the n–dimensional complex projective space
Pn

µQ : µQ×Pn −→ Pn

((ζ j) , [z j]) 7−→ [ζ jz j] .

Let ∆Q ⊂ µQ be the diagonal subgroup and consider the quotient groupWQ := µQ/∆Q.
Then the induced quotient space

P(Q) := Pn/WQ

is called the Q–weighted projective space (Q-wps).
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REMARK 1. If q is the greatest common divisor of (q0, . . . ,qn) then

∆Q ∼= µq

Therefore we get the canonical isomorphism

P(Q)∼= P
(

q0

q
, . . . ,

qn

q

)

For this reason in the following we will always assume that

q = gcd(q0, . . . ,qn) = 1 .

Let us recall the following standard notation

d j := gcd(q0, . . . ,q j−1,q j+1, . . . ,qn) ,

a j := lcm(d0, . . . ,d j−1,d j+1, . . . ,dn) ,(5)
a := lcm(a0, . . . ,an) .

DEFINITION 3 (Weight vector). In the following a weight vector Q =(q0, . . . ,qn)
will denote a n + 1–tuple of coprime positive integer numbers. Referring to notation
defined in (5), a weight vector Q will be called reduced if d j = 1, or equivalently a j = 1,
for any j = 0, . . . ,n.

REMARK 2. Every weighted projective space is a toric variety. In fact the
natural torus action over Pn passes through the quotient as follows

(C∗)n×Pn //

τQ×πQ

²²

Pn

πQ

²²
(C∗)n×Pn(Q) // Pn(Q)

where πQ is the natural quotient map and τQ is the quotient map associated with the
action

µQ× (C∗)n −→ (C∗)n

((ζ j) ,(ti)) 7−→ (
ζ−1

0 ζiti
)

Then the torus (C∗)n can be embedded in P(Q) via the following map

(C∗)n ↪→ P(Q)
(t1, . . . , tn) 7−→ [1 : t1 : . . . : tn]

whose image is the open subset P(Q)\V
(
∏ j z j

)
.

PROPOSITION 3. Since gcd(q0, . . . ,qn) = 1, the following facts are true:

1. gcd(q j,d j) = 1 ,
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2. if i 6= j then gcd(di,d j) = 1 ,

3. a j | q j ,

4. gcd(a j,d j) = 1 ,

5. a jd j = a ,

6. setting q′j := q j/a j, then Q′ = (q′0, . . . ,q
′
n) is reduced; Q′ is then called the re-

duction of Q.

The proofs of these well known properties (see [13] 1.3.1) are elementary.
Instead we will prove the following property, which does not appear in the main

treatments of the subject.

PROPOSITION 4. Let Q = (q0, . . . ,qn) be a weight vector and Q′ = (q′0, . . . ,q
′
n)

be its reduction. Define

(6) δ := lcm(q0, . . . ,qn) and δ′ := lcm(q′0, . . . ,q
′
n) .

Then δ = aδ′, where a is defined in (5).

REMARK 3. The Proposition 4 still holds when q := gcd(q0, . . . ,qn) > 1.

Proof of Proposition 4. We will prove that δ divides aδ′ and, viceversa, aδ′ divides δ.
On the one hand, to show that δ divides aδ′ it suffices to show that q j divides aδ′ for
every j and this fact follows immediately by definitions since q j = a jq′j | aδ′.
On the other hand, by definitions of a and δ′, to prove that aδ′ divides δ it suffices to
prove that aiq′k | δ, which is ai | δ

qk
ak, for every i,k. By the definition of ai given in (5),

the latter is obtained by showing that d j divides δ
qk

ak for every j,k.

If j 6= k then d j divides ak and we are done.
Suppose now j = k. Let p be a prime dividing dk and let pt , pr be the highest powers of
p dividing dk and qk respectively. Then pt divides qi for every i 6= k, by the definition
of dk: in particular pt | δ. If r ≥ t then

∀ i pt | qi ⇒ ∀ j pt | d j ⇒ ∀ k pt | ak .

If r < t then pt−r divides δ
qk

; moreover pr divides di for every i 6= k, since pr | qk and

pt | qi for every i 6= k : then pr divides ak. Therefore pt divides δ
qk

ak. Thus we proved

that dk divides δ
qk

ak.

Let us now recall the following well-known result to which we will refer below
as to the Reduction Theorem.

THEOREM 2 (Reduction Theorem ([12] §1,[13] 1.3.1)). Let Q′ = (q′0, . . . ,q
′
n)

be the reduced weight vector of Q = (q0, . . . ,qn). Then

(7) P(Q)∼=
(
Cn+1 \{0})/C∗ = P

(
Q′)
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where the quotient is realized by means of the (reduced) action

νQ′ : C∗×Cn+1 −→ Cn+1

(t,(z j)) 7−→
(

tq′0 z0, . . . , tq′n zn

)
.

Let us end up this preliminary section with the following technical statement
which will be useful below. Partial proofs of this result may recovered from [4] §2 and
[14] Prop. 2.3. Moreover it is certainly well-know to experts. However for purposes of
definiteness we include here a detailed proof.

LEMMA 1. Let Q = (q0, . . . ,qn) be a weight vector; let {v0, . . . ,vn} be a set
of vectors in Qn, generating Qn and such that ∑n

j=0 q jv j = 0. Let L be the lattice
generated inQn by {v0, . . . ,vn} and L′ be the sublattice generated by {q0v0, . . . ,qnvn}.
Then the following properties hold:

(a) [L : L′] = ∏n
j=0 q j;

(b) let V := (vi j) be the n×(n+1) matrix whose columns are given by components of
v0, . . . ,vn over a basis e1, . . . ,en of L i.e. v j = ∑n

i=1 = vi jei, for every j = 0, . . . ,n,
and denote by Vj the n-minor of V obtained by deleting the j-th column as in (3).
Then

∀ j = 0, . . . ,n Vj = (−1)ε+ jq j , for a fixed ε ∈ {0,1} ,

(c) ∀ j = 0, . . . ,n v j = d jn j , where n j is the generator of the semigroup 〈v j〉∩ L
and d j is defined in (5); in particular L is the lattice generated by {n0, . . . ,nn};
moreover {n0, . . . ,nn} satisfy the hypotheses of this Lemma with respect to the
reduced weight vector Q′ i.e. they generate Qn and ∑n

j=0 q′jn j = 0.

Proof. For (a), observe that L′ has q1v1, . . . ,qnvn as a basis. Then L′ has index ∏n
j=1 q j

in the lattice L0 generated by v1, . . . ,vn. The quotient L/L0 is cyclic generated by the
image of v0, so that [L : L0] divides q0. If rv0 ∈ L0, with r ∈Z then rv0 = ∑n

j=1 s jv j with
s1, . . . ,sn ∈ Z. Since gcd(q0, . . . ,qn) = 1 then there exists λ ∈ Z such that r = −λq0,
si = λqi for i = 1, . . . ,n; in particular q0 divides r, so that [L : L0] = q0 and [L : L′] =
[L : L0][L0 : L′] = ∏n

i=0 qi.
(b): for j = 0, . . . ,n, let L j be the lattice generated by v0, . . . ,v j−1,v j+1, . . . ,vn. Then
|Vj|= [L : L j] = q j, as we have shown in (a) for the case j = 0. Let ε ∈ {0,1} be such
that V0 = (−1)εq0. Then

∀ j = 0, . . . ,n Vj = (−1) j q j

q0
V0 = (−1)ε+ jq j

since ∑n
j=0 q jv j = 0.

(c): we have
∀ j = 0, . . . ,n q jv j =−∑

k 6= j
qkvk =−d j ∑

k 6= j
q̃kvk

where q̃k := qk/d j ∈ N. By (1) in Proposition 3, gcd(q j,d j) = 1 meaning that

∀ j = 0, . . . ,n ∃ v′j ∈ L : v j = d jv′j .
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Then (5) in Proposition 3 allows to write

(8) 0 =
n

∑
j=0

q jv j =
n

∑
j=0

(
q′ja j

)(
d jv′j

)
= a

n

∑
j=0

q′jv
′
j =⇒

n

∑
j=0

q′jv
′
j = 0 .

Moreover v′0, . . .v
′
n generate L and (a) ensures that the following index

(9)
[
L : 〈q′jv′j | j = 0, . . . ,n〉] =

n

∏
j=0

q′j.

Then the proof ends up by showing that, for all j, v′j = n j. With this goal in mind,
consider h j ∈ N such that v′j = h jn j . If V ′ = (v′i j) is the matrix of components of
v′0, . . . ,v

′
n, over the basis e1, . . . ,en of L, then

∀ j = 0, . . . ,n
∣∣V ′

j
∣∣ = q′j

On the other hand

v′0 ∈ h0L =⇒∀ i = 1, . . . ,n h0 | v′i0 =⇒∀ k = 1, . . . ,n h0 |
∣∣V ′

k

∣∣ = q′k .

Therefore (6) in Proposition 3 implies that

h0 | gcd
(
q′1, . . . ,q

′
n
)

= 1 =⇒ h0 = 1

Analogously h j = 1, for all 1≤ j ≤ n. Hence v′j = n j .

2. Characterization of fans giving P(Q)

2.1. Characterizing the fan

Let us fix an n-dimensional lattice N and a subset of n+1 vectors {v0, ...,vn} ⊂ N.
The following theorem is an application of the previous Lemma 1 to known results
such as e.g. Lemma 2.11 in [2], Prop. 5.4 in [5] and Thm. 3.6 in [7].

THEOREM 3. Let Q = (q0, . . . ,qn) be a weight vector. Consider the fan Σ =
fan(v0, . . . ,vn) and the associated matrix V = (v0, . . . ,vn) with respect to a fixed basis
of N. Then the following facts are equivalent:

1. Σ is a fan of P(Q) ,

2. ∑n
j=0 q jv j = 0 and the sub-lattice N′ := 〈q0v0, . . . ,qnvn〉 ⊂ N has finite index

[N : N′] =
n

∏
j=0

q j ,

3. ∀ j = 0, . . . ,n Vj = (−1)ε+ jq j , for a fixed ε ∈ {0,1} ,
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4. q0v0 =−∑n
i=1 qivi and |V0| := |det(v1, . . . ,vn)|= q0 .

Proof of Theorem 3. (1)⇒ (2). A fan of the wps P(Q) with Q = (q0, . . . ,qn) is pre-
sented in [15] at the end of §2.3. Then, by Lemma 1(a) one may check that fan to
satisfy conditions stated in (2).

(2)⇒ (3). This is Lemma 1(b).
(3)⇒ (4). For any k = 1, . . . ,n consider the (n+1)× (n+1) matrix

Ak :=




vk0 · · · vkn

V


 .

Since the first and the (k +1)-st rows of Ak are equal we get

∀ k = 1, . . . ,n 0 = det(Ak) =
n

∑
j=0

(−1) jvk jVj
(3)
= (−1)ε

n

∑
j=0

q jvk j ⇒
n

∑
j=0

q jv j = 0 .

(4)⇒ (2). Since |V0|= q0 then {q1v1, . . . ,qnvn} is a basis of the sub-lattice N′.
Hence

[N : N′] = |det(q1v1, . . . ,qnvn)|=
(

n

∏
i=1

qi

)
|V0| (4)

=
n

∏
j=0

q j .

(2)⇒ (1). First note that (2) and Lemma 1(a) imply that v0, . . . ,vn generate N.
It follows by Lemma 1(c) that n0, . . . ,nn generate N and ∑n

j=0 q′jn j = 0.
Let D j be the torus invariant divisor associated with the 1-dimensional cone 〈n j〉 ∈Σ(1)
for the toric variety with fan Σ. Consider the sequence

(10) 0 //M div //
n⊕

j=0

Z ·D j
d //Z //0

where div(m) = ∑n
j=0〈m,n j〉D j and d(∑n

j=0 b jD j) = ∑n
j=0 b jq′j. Then div is injective

since the n j span N = M∨ and d is surjective since gcd(q′0, . . . ,q
′
n) = 1. Furthermore,

d ◦div = 0 follows easily from ∑n
j=0 q′jn j = 0.

Hence, to prove that (10) is exact, it suffices to show that ker(d) ⊂ Im(div). Take
∑n

j=0 b jD j ∈ ker(d). Since n1, . . . ,nn are linearly independent over Q, one can find
m∈M⊗Q such that 〈m,ni〉= bi for 1≤ i≤ n. Since ∑n

j=0 q′jn j = 0 and ∑n
j=0 b jq′j = 0,

we obtain

q′0〈m,n0〉=−
n

∑
i=1
〈m,q′ini〉=−

n

∑
i=1

q′i〈m,ni〉=−
n

∑
i=1

q′ibi = q′0b0 .

It follows that 〈m,n0〉= b0. Thus 〈m,n j〉= b j ∈ Z for all j. This implies m ∈M since
n0, . . . ,nn span N = M∨, and the desired exactness follows immediately.

We are now in a position to apply the Cox Theorem, [8] Thm. 2.1, to give a
geometric quotient description of X(Σ). In particular the exact sequence (10) suffices
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to show that the Chow group of Weil divisors modulo rational equivalence for the toric
variety X(Σ) is given by An−1(X)∼= Z (see e.g. [15] §3.4). Let S =C[x0, . . . ,xn] be the
polynomial ring obtained by associating the variable x j with the 1-dimensional cone
〈n j〉 ∈ Σ(1). The grading on S is defined by setting

deg(x j) := deg(d(D j)) = q j .

Since Hom(An−1(X),C∗)∼= C∗, it is then possible to exhibit X(Σ) as a geometric quo-
tient

X(Σ)∼=
(
Cn+1 \{0})/C∗

where the quotient is realized by means of the action νQ′ in the statement of the Re-
duction Theorem 2. Then X(Σ)∼= P(Q′)∼= P(Q).

The following definition will be useful in section 3, when speaking about the
fan-polytope correspondence:

DEFINITION 4 (F–admissible matrices). A matrix V ∈Mat(n,n+1,Z) will be
called F–admissible if it satisfies the following conditions

1. the matrix V = (v0, . . . ,vn) admits only nonvanishing coprime maximal minors
i.e. ∀ j = 0,1, . . . ,n Vj 6= 0 and gcd(Vj | 0≤ j ≤ n) = 1;

2. the columns v j of V satisfy one of the equivalent conditions (2), (3), (4) of Theo-
rem 3 with respect to the weights q j := |Vj|.

The subset of F–admissible matrices will be denoted by Vn ⊂Mat(n,n+1,Z).

2.2. Hermite normal form of weights and fans of P(Q)

The following result, which is a direct consequence of Theorem 3, exhibit a rather sur-
prising method to get a fan of a given wps P(Q): in fact this fan turns out to be encoded
in the switching matrix giving the HNF of the transposed weight vector QT . Since such
a matrix is obtained by a well known algorithm, based on Euclid’s algorithm for great-
est common divisor, [6] Algorithm 2.4.4, this gives a constructive method to produce
a fan of P(Q) which can be performed by any procedures computing elementary linear
algebra operations.

PROPOSITION 5. Let Q = (q0, . . . ,qn) be a weight vector, B the HNF of the
transposed vector QT and U ∈ GL(n+1,Z) be such that U ·QT = B. Let C be the
matrix consisting of the last n rows of U and let v j be the jth column vector of C, for
0 ≤ j ≤ n. Let L,L′ be the lattices generated in Zn by v0, . . . ,vn and q0v0, . . . ,qnvn
respectively. Then

1. B =




1
0
...
0


;
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2. L = Zn;

3. ∑n
j=0 q jv j = 0;

4. there exists ε ∈ {0,1} such that C j = (−1)ε+ jq j for all 0≤ j ≤ n.

5. [L : L′] = ∏n
j=0 q j.

As a consequence of Theorem 3, fan(v0, . . . ,vn) is a fan of P(Q).

Proof. The rank of Q is 1, so by definition of HNF, B =




a
0
...
0


 with a ≥ 1. By the

equality QT = U−1 ·B we see that a must divide q0, . . . ,qn, so that a = 1; this proves
(1). Then (3) follows immediately by U ·QT = B.
To prove part (2), let (c0, . . . ,cn) be the 2nd column of U−1. Then U ·U−1 = I easily
implies that ∑n

j=0 c jv j = e1, the first standard basis vector of Zn. Columns 3, . . . ,n+1
of U−1 similarly show that e2, . . . ,en are in the sublattice generated by v0, . . . ,vn. Hence
this sublattice must be Zn.
Finally parts (4) and (5) follow immediately from parts (2) and (3) of Lemma 1.

2.3. A Q–canonical fan of P(Q)

In the present subsection we want to use the characterization (4) in Theorem 3 to get a
Q–canonical fan of P(Q), in the sense that the associated fan matrix is in HNF, up to
a permutation of columns (see the following Remark 4). This fact presents the fan in
a triangular shape and generated by as many as possible of the vectors e1, . . . ,en in a
given basis of the lattice N. Moreover it turns out to be a convenient procedure to get a
fan of P(Q) by hands (see Example 1 below).

PROPOSITION 6. Let Q = (q0, . . . ,qn) be a weight vector. For any j with 1 ≤
j ≤ n, define k j := gcd(q0,q j,q j+1, . . . ,qn). Then:

1. k j | k j+1 ,

2. either kn = (q0,qn) = 1 or there exists a positive integer i, with 1 ≤ i ≤ n− 1,
such that ki = 1 and ki+1 > 1,

3. consider a upper triangular matrix V 0 = (v1, . . . ,vn) ∈ Mat(n,n,Z) whose co-
lumns v j are such that:

∀ 1≤ j ≤ i−1 v j = e j

∀ i≤ j ≤ n−1 v j j = k j+1
/

k j

vnn = q0
/

kn
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where vk j is the k-th entry of the column v j; then there exists a choice for vk j with
i≤ j and k < j such that V 0 can be completed to a matrix V = (v0,v1, . . . ,vn) ∈
Mat(n,n+1,Z) whose columns satisfy the following condition

n

∑
j=0

q jv j = 0 ;

in particular the columns of V satisfy condition (4) of Theorem 3, hence generate
a fan of P(Q).

4. there exists a unique choice of the previous matrices V and V 0 such that V 0 is in
HNF with only nonnegative entries; then the column v0 in V admits only negative
entries. Moreover the matrix V ′ = (v1, . . . ,vn,v0) is in HNF.

Proof. (1) is obvious. (2) follows from (1) by recalling the hypothesis

k1 = gcd(q0,q1, . . . ,qn) = 1 .

To prove (3) we have to show the existence of an integral vector v0 =




v10
...

vn0


 and

integers v jk satisfying the following equations

∀ 1≤ j ≤ i−1 q0v j0 +q j +
n

∑
k=i

qkv jk = 0(11)

∀ i≤ j ≤ n−1 q0v j0 +q j
k j+1

k j
+

n

∑
k= j+1

qkv jk = 0(12)

q0vn0 +qn
q0

kn
= 0 .(13)

The last equation (13) is clearly satisfied by putting vn0 =−qn/kn =−qn/(q0,qn). The
j-th equation in (12) admits integer solutions for (v j0,v j, j+1, . . . ,v jn) if and only if

gcd(q0,q j+1, . . . ,qn) = k j+1 | q j
k j+1

k j

which is clearly true since k j | q j, by definition. Finally the j-th equation in (11) admits
integer solutions for (v j0,v ji,v j,i+1 . . . ,v jn) if and only if

∀ 1≤ j ≤ i−1 gcd(q0,qi, . . . ,qn) = ki | q j

which is clearly true since ki = 1, by the previous part (2). Recall now that V 0 is a
triangular matrix, giving

det(V 0) =
n

∏
j=1

v j j = ki+1 · ki+2

ki+1
· · · kn

kn−1
· q0

kn
= q0



Linear Algebra and toric data of WPS 15

which is enough to get condition (4) of Theorem 3 for the columns of V .
To prove (4) let us first of all observe that, for any 1≤ j ≤ i−1, v j = e j, meaning that
the first i− 1 columns of V 0 are composed of nonnegative entries satisfying the HNF
conditions. Moreover V 0 is upper triangular. Then it remains to prove that there exists
a unique choice for v jk such that

∀k : i≤ k ≤ n , ∀ j : j < k 0≤ v jk < vkk .

The j–th equation in (12) can be rewritten as follows

q0v j0 +qnv jn =−q j
k j+1

k j
−

n−1

∑
k= j+1

qkv jk .

Fixing variables v jk, for j + 1 ≤ k ≤ n− 1, the previous diophantine equation admits
solutions for v j0,v jn if and only if

(14) kn = gcd(q0,qn) | −q j
k j+1

k j
−

n−1

∑
k= j+1

qkv jk .

Moreover, given a particular solution v(0)
jn , all the possible integer solutions for v jn are

given by
v jn = v(0)

jn −
q0

kn
·h jn = v(0)

jn − vnn ·h jn , ∀ h jn ∈ Z .

Divide v(0)
jn by vnn. Then the remainder of such a division gives a unique choice for v jn

such that
∀ i≤ j ≤ n−1 0≤ v jn < vnn .

Analogously the j-th equation in (11) can be rewritten as follows

q0v j0 +qnv jn =−q j−
n−1

∑
k=i

qkv jk

and the same argument ensures the existence of a unique choice for v jn such that

∀ 1≤ j ≤ i−1 0≤ v jn < vnn .

Then the last column in V 0 can be uniquely chosen with non-negative entries satisfying
the HNF condition. Iteratively, condition (14) is satisfied if and only if there exist
integer solutions for x,v jk in the diophantine equation

knx+qn−1v j,n−1 =−q j
k j+1

k j
−

n−2

∑
k= j+1

qkv jk

which is if and only if

gcd(kn,qn−1) = gcd(q0,qn−1,qn) =: kn−1 | −q j
k j+1

k j
−

n−2

∑
k= j+1

qkv jk .



16 M. Rossi and L. Terracini

In particular, given a solution v(0)
j,n−1, all the possible integer solutions for v j,n−1 are

given by

v j,n−1 = v(0)
j,n−1−

kn

kn−1
·h j,n−1 = v(0)

j,n−1− vn−1,n−1 ·h j,n−1 , ∀ h j,n−1 ∈ Z .

Therefore, the division algorithm ensures the existence of a unique choice for v j,n−1
such that

∀ i≤ j ≤ n−1 0≤ v j,n−1 < vn−1,n−1 .

The same argument ensures the existence of a unique choice for v j,n−1 such that

∀ 1≤ j ≤ i−1 0≤ v j,n−1 < vn−1,n−1 .

Then the (n− 1)–st column in V 0 can be uniquely chosen with non-negative entries
satisfying the HNF condition. By completing the iteration, V0 can then be uniquely
chosen in HNF. Consequently v0 has to necessarily admit only negative entries. To
prove that V ′ is in HNF it suffices to observe that, for V ′, the function f : {1, . . . ,n}→
{1, . . . ,n+1}, in Definition 1, is given by setting f (i) = i, for any 1≤ i≤ n. Then V ′
is in HNF if and only V 0 is in HNF, since there are no condition for the entries of v0
which is the (n+1)–st column of V ′.

REMARK 4. When the weight vector Q is fixed, a significant consequence of
Proposition 6 is that the fan of P(Q) presented in (4) is unique and is given by the
HNF of a matrix V associated with any fan of P(Q). Clearly the uniqueness of the
Q–canonical fan of P(Q) depends on the weights order in Q. Then we can’t define a
canonical fan of P(Q) but just a Q–canonical one.

EXAMPLE 1. Let us apply the Proposition 6 to produce by hand the Q-canonical
fan (hence a fan) of P(Q) for Q = (2,3,4,15,25). First of all observe that in this case

k1 = gcd(Q) = 1 , k2 = d1 = 1 , k3 = gcd(2,15,25) = 1 , k4 = gcd(2,25) = 1 .

The matrix V ′ in Proposition 6(4) is in HNF, then it looks as follows

V ′ =




1 0 0 v1,3 v1,0
0 1 0 v2,3 v2,0
0 0 1 v3,3 v3,0
0 0 0 2 v4,0




with 0≤ vk,3 ≤ 1, for 1≤ k ≤ 3. Moreover we get the following conditions

0 = q0v4,0 +
q0q4

k4
= 2v4,0 +50 ⇒ v4,0 =−25

0 = q0v3,0 +
k3q3

k4
+q4v3,3 = 2v3,0 +15+25v3,3 ⇒ v3,3 = 1 and v3,0 =−20

0 = q0v2,0 +
k2q2

k3
+q4v2,3 = 2v2,0 +4+25v2,3 ⇒ v2,3 = 0 and v2,0 =−2

0 = q0v1,0 +
k1q1

k2
+q4v1,3 = 2v1,0 +3+25v1,3 ⇒ v1,3 = 1 and v1,0 =−14
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giving the following Q–canonical fan for P(2,3,4,15,25) :

Σ = fan







−14
−2
−20
−25


 ,




1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
0


 ,




1
0
1
2





 .

REMARK 5. Proposition 6 above has to be compared with results in §3 and §4
of [7]. In particular parts from (1) to (3) give a rewrite of Proposition 3.2, Remark 3.3
and Theorem 3.6 in [7]. For what concerns part (4), although it apparently looks to
be related with Remark 4.3 and Theorem 4.5 in [7], it seems to us to be a rather new
result in the literature. In fact Conrads, in §4 of [7], discusses HNFs of square matrices
in GL(n,Q)∩Mat(n,n,Z) since he’s interested in classifying isomorphism classes of
simplices of a given type. Here the aim is quite different since we study HNF of the
simplex itself, which turns out to be unique and then identifying the Q–canonical fan
of P(Q).

3. Characterization of polytopes giving P(Q)

3.1. From fans to polytopes and back

We shall use the following notation: given a n× (n+1) matrix V = (v0, . . . ,vn) = (vi j)
with 1 ≤ i ≤ n,0 ≤ j ≤ n, the n× n sub-matrix of V obtained by removing the first
column is denoted by V 0 = (v1, . . . ,vn) = (vik) with 1≤ i≤ n and 1≤ k ≤ n.

DEFINITION 5. Let V ∈Mat(n,n+1,Z) be a matrix whose maximal minors do
not vanish i.e., in the same notation given above, Vl 6= 0 for every 0≤ l ≤ n. Consider
the vector of absolute values of maximal minors Q = (|V0|, . . . , |Vn|). Recalling 1.3, the
(0,Q)-weighted transverse matrix of V (or simply weighted transverse) is defined to be
the following n×n rational matrix

(V 0)∗Q := (V 0)∗ · (δ I0
Q)

where I0
Q := diag(1/|V1|, . . . ,1/|Vn|) and δ := lcm(|V0|, . . . , |Vn|).

REMARK 6. If V ∈ Vn, as defined in the Definition 4, then Theorem 4 below
implicitly shows that the weighted transverse matrix (V 0)∗Q is a n× n integral matrix.
In particular this fact is also proved explicitly in the following Proposition 7.

PROPOSITION 7. If V = (v0,v1, . . . ,vn) is a fan matrix of P(Q), with Q =
(q0, ...,qn), then the weighted transverse (V 0)∗Q has integral entries.

Proof. Recall that the adjoint matrix of an invertible square matrix A is defined by
setting Adj(A) := det(A) A−1. Set W = Adj(V 0) and let wi be the i-th row of W .
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Observe that parts (3) and (4) in Theorem 3 give, for i = 1, . . . ,n,

|wi ·vi| = |det
(
V 0) |= q0

wi ·vk = 0 for 1≤ k ≤ n and k 6= i

|wi ·v0| = |det
(
V 0) | qi

q0
= qi ,

where the dot product is the usual matrix product. Therefore δ
q0qi

wi · v j ∈ Z for any
0≤ j ≤ n. This means that

∀ 1≤ i≤ n
δ

q0qi
wi ∈ Zn

since L(v0, ...,vn) = Zn. The proof concludes by transposing W .

Let us denote by OP(Q)(1), or O(1) for short, the generator of the Picard group
Pic(P(Q))∼= Z ·OP(Q)(1).

PROPOSITION 8. If D j is the torus invariant divisor associated with 〈v j〉 ∈Σ(1)
then (δ′/q′j)D j is an ample divisor in the linear system |OP(Q)(1)|, where as usual
Q′ = (q′0, . . . ,q

′
n) is the reduced weight vector of Q and δ′ = lcm(Q′).

Proof. Recall the exact sequence (10) showing that the Chow group of P(Q) is given
by An−1(P(Q))∼= Z. By construction, the morphism d :

⊕n
i=0Z ·D j → Z sends a Weil

divisor ∑n
j=0 b jD j to the generator 1 ∈ Z if and only if (b0, . . . ,bn) is a solution of the

diophantine equation ∑n
j=0 q′jx j = 1. It is a well known fact that the Picard group of a

normal toric variety can be identified with the subgroup of An−1(X) generated by the
classes of torus invariant Cartier divisors (see e.g. [15] § 3.4, [10] § 4.2). In particular
Pic(P(Q))⊂ An−1(P(Q))∼=Z is a free cyclic subgroup. Then a generator of Pic(P(Q))
is given by a suitable multiple kD of a generator D of An−1(P(Q)), where k is the least
positive integer number such that kD is Cartier. There is a Criterion to determine when
a Weil divisor of a toric variety is a Cartier divisor ([17] Prop. 2.4) which applied to the
case of P(Q) can be rewritten as follows:

(15)
n

∑
j=0

b jD j is a Cartier divisor ⇐⇒ ∀ 0≤ l ≤ n ∃ ul ∈M : ∀ j 6= l 〈ul ,n j〉= b j

where n j is a generator of the monoid 〈v j〉∩N. Recall the exact sequence (10) and let
D = ∑n

j=0 b jD j be a generator of An−1(P(Q)), i.e. d(D) = 1, and consider the positive
integer multiple kD. Then (15) gives that kD is a Cartier divisor if and only if, for every
l = 0, . . . ,n,

(16) ∃ ul ∈M : ∀ j 6= l 〈ul ,n j〉= kb j .

Since div(ul) = ∑n
j=0〈ul ,n j〉D j, then (16) is equivalent to requiring that

(17) ∃ ul ∈M : div(ul) = ∑
j 6=l

kb jD j + 〈ul ,nl〉Dl = kD+(〈ul ,nl〉− kbl)Dl .
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The exactness of (10) ensures that (17) is equivalent to asking that

∃ ul ∈M : d (kD+(〈ul ,nl〉− kbl)Dl) = 0
⇔ k = q′l (kbl −〈ul ,nl〉) .(18)

Then (18) gives that kD is Cartier if and only if q′l | k for every 0 ≤ l ≤ n. Then
the inclusion Pic(P(Q)) ↪→ An−1(P(Q)) turns out to be the multiplication by δ′. To
complete the proof, notice that D j and q′jD give the same class in An−1(P(Q)) : in
fact d(D j − q′jD) = 0 . Then (δ′/q′j)D j and δ′D give the generator of Pic(P(Q)) =
δ′An−1(P(Q)). In particular (δ′/q′j)D j ∈ |OP(Q)(1)|. This also suffices to prove that
(δ′/q′j)D j is ample.

Set ∆ j be the integral polytope associated with the divisor H = (δ′/q′j)D j, as
in (4). One can easily check that there exist n points w1, . . . ,wn ∈ MR, depending on
the choice of D j, such that ∆ j is the convex hull Conv(0,w1, . . . ,wn) : in particular
the ampleness of (δ′/q′j)D j implies that {w1, . . . ,wn} is a set of n linearly independent
integral vectors ([17] Corollary 2.14).

Let Pn be the set of integral polytopes in MR obtained as the convex hull of the
origin and n linearly independent integral vectors and F(Q) be the set of fans in NR
defining P(Q). Then we have established maps

(19)
∀ 0≤ j ≤ n , ∆ j

Q : F(Q) −→ Pn

Σ 7−→ ∆ j
Q(Σ) := ∆ j

Let W = (wik) be the n×n matrix of the components of vectors w1, . . . ,wn ∈MR over
the dual basis: namely

∀ k = 1, . . . ,n wk =
n

∑
i=1

wike∨i

where {e∨1 , . . . ,e∨n } is the dual basis of {e1, . . . ,en}. Then we get the following repre-
sentation of the map ∆0

Q:

THEOREM 4. Given the fan Σ := fan(v0, . . . ,vn) ∈ F(Q), the image ∆0
Q(Σ) de-

fined in (19) is the convex hull Conv(0,w1, . . . ,wn) of the origin with the n linearly in-
dependent integral vectors w1, . . . ,wn ∈MR giving the columns of the (0,Q)-weighted
transverse matrix of V = (v0, . . . ,vn), i.e.

W = (V 0)∗Q ,

where Q = (|V0|, . . . , |Vn|). Namely the entries of W are given by

∀ 1≤ i≤ n , 1≤ k ≤ n wik =
δV 0

ik
qkV0

where V 0
ik is the cofactor of vik in V 0 and V0 = det(V 0) = ±q0 (by either (3) or (4) in

Theorem 3).
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Proof. Recalling (4), to define ∆0
Q(Σ) = ∆0 one has to write down the hyperplanes of

MR

(20) ∀ρ ∈ Σ(1) 〈u,nρ〉=−aρ , where nρ generates ρ∩N ,

for the divisor H = (δ′/q′0)D0. Since Σ(1) = {〈v j〉 ⊂NR| j = 0, . . . ,n} the hyperplanes
(20) are then given by

n

∑
i=1

ni0ui = −δ′/q′0(21)

∀ k = 1, . . . ,n
n

∑
i=1

nikui = 0

where n j = ∑n
i=1 ni jei generates the 1-dimensional cone 〈v j〉 ∩N. In the part (c) of

Lemma 1 it has been observed that q′0n0 =−∑n
k=1 q′knk. Then the first equation in (21)

can be rewritten as follows

n

∑
i=1

(
n

∑
k=1

q′knik

)
ui = δ′ .

Let us represent equations in (21) by the following (n+1)× (n+1)-matrix

M =




∑n
k=1 q′kn1k · · · ∑n

k=1 q′knnk δ′
n11 · · · nn1 0

...
...

n1n · · · nnn 0


 .

For j = 0,1, . . . ,n, the vertex w j of ∆0
Q(Σ) is then given by the (unique, for (3) in

Theorem 3 and recalling that vi j = d jni j) solution of the linear system associated with
the matrix M j+1, obtained removing the ( j + 1)-st row in M. Clearly w0 = 0. For
j = k = 1, . . . ,n we get

wik = Mk+1,i/Mk+1,n+1

where Ma,b is the (a,b)-cofactor in M. Observe that Mk+1,n+1 = (−1)k−1q′k V0
/

a0 and
Mk+1,i = (−1)k+1δ′dk V 0

ik

/
a0. Then

wik =
δ′dk

q′k

V 0
ik

V0
=

δ′akdk

qk
v∗ik =

δ
qk

v∗ik

where v∗ik =V 0
ik/V0 is the (i,k)-entry of V 0∗ := ((V 0)−1)T . The last equality on the right

is obtained by recalling Proposition 3(5) and Proposition 4.

REMARK 7. Clearly same conclusions as in Theorem 4 can be obtained by
exchanging 0 with any other value j such that 0≤ j ≤ n.
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REMARK 8. Let Q be a weight vector whose reduction is given by Q′. Consider
Σ = fan(v0, . . . ,vn) ∈ F(Q) and, for any 0 ≤ j ≤ n, consider the generator n j of the
semigroup 〈v j〉∩N, where N is the lattice generated by v0, . . . ,vn. Then Lemma 1(c)
and Theorem 3 ensure that Σ := fan(n0, . . . ,nn) ∈ F(Q′). Then the previous Theorem
4 gives that

∆0
Q(Σ) = ∆0

Q′(Σ)

since, recalling once again Propositions 3 and 4,

wik = (δ/qk)(V 0
ik/V0) = (δ′a/q′kak)(N0

ik/dkN0) = (δ′/q′k)(N
0
ik/N0)

(here N denotes the matrix N = (n0, . . . ,nn)).

EXAMPLE 2. Let us still consider Example 1 to apply the weighted transversion
and Theorem 4 for producing by hand a polytope of a given wps P(Q) with the minimal
polarization.
Recall that Q = (2,3,4,15,25) and the matrix fan obtained in the Example 1 is

V =




−14 1 0 0 1
−2 0 1 0 0
−20 0 0 1 1
−25 0 0 0 2


 =⇒ (V 0)∗ =

1
2




2 0 0 0
0 2 0 0
0 0 2 0
−1 0 −1 1


 .

Since δ = lcm(2,3,4,15,25) = 300, we get

W =(V 0)∗Q =(V 0)∗ ·δIQ = 150




2 0 0 0
0 2 0 0
0 0 2 0
−1 0 −1 1


 ·




1/3 0 0 0
0 1/4 0 0
0 0 1/15 0
0 0 0 1/25




giving W =




100 0 0 0
0 75 0 0
0 0 20 0
−50 0 −10 6


. Then the polytope we are looking for is

∆ = Conv







0
0
0
0


 ,




100
0
0
−50


 ,




0
75
0
0


 ,




0
0
20
−10


 ,




0
0
0
6





 .

More precisely (P∆,O(1))∼= (P(Q),δ/q0 D0) = (P4(2,3,4,15,25),150 D0).

DEFINITION 6 (P–admissible matrices). A square matrix W ∈ Mat(n,n,Z) is
called P–admissible if there exists an F-admissible matrix V ∈Vn such that W is the
weighted transverse matrix of V , which is

W = (V 0)∗Q with Q = (|V0|, . . . , |Vn|) .
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In other words W = (w1, . . . ,wn) is admissible if and only if the polytope

Conv(0,w1, . . . ,wn)

belongs to the image of the map ∆0
Q, as defined in (19). In this case we say that Q,W,V

are associated to each other.
Let us denote Wn ⊂ GL(n,Q)∩Mat(n,n,Z) the subset of P–admissible matrices: no-
tice that any such matrix has integer entries by either Theorem 4 or the following
Proposition 7.

REMARK 9. Remark 8 guarantees that weight vectors Q1 and Q2 admitting the
same reduction Q′ are associated with the same P–admissible matrix W , which is the
P–admissible matrix associated with the reduced weight vector Q′. Conversely, there
exists a unique reduced weight vector Q′ to which W is associated. Proposition 9(c)
will prove this fact in a purely algebraic setting; moreover Proposition 9(b) will exhibit
a constructive method for finding Q′.

DEFINITION 7. Consider a matrix W ∈ GL(n,Q)∩Mat(n,n,Z). Let si be the
gcd of entries in the i-th row of Adj(W ). Then we define the reduced adjoint of W as
follows

Ŵ :=
|det(W )|
det(W )

diag
(

1
s1

, . . . ,
1
sn

)
·Adj(W )

= diag
( |det(W )|

s1
, . . . ,

|det(W )|
sn

)
·W−1

Notice that if V is a square matrix in Mat(n,n,Z) such that V ·W is a diagonal
matrix with positive entries then

(22) V = diag(r1, . . . ,rn) ·Ŵ
for some r1, . . . ,rn ∈ N.

PROPOSITION 9. Let W be a P–admissible matrix and let Q = (q0, . . . ,qn) be
a reduced weight vector associated to W. Then

(a)
(

Ŵ T
)∗

Q
= W;

(b) if s := gcd(s1, . . . ,sn) is the greatest common divisor of the terms in Adj(W ) then

q0 = |det(Ŵ )| , ∀ 1≤ i≤ n qi =
si

s
, lcm(Q) =

|det(W )|
s

(c) if Q1 and Q2 are reduced weight vectors associated with the same P–admissible
matrix W, then Q1 = Q2;

(d) there exists a unique F–admissible matrix V associated with W and Q i.e. such
that W =

(
V 0

)∗
Q with Q = (|V0|, . . . , |Vn|).
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Proof. (a). W is a P–admissible matrix. Then there exists a F–admissible matrix V
such that W = ((V 0)T )−1δIQ and Q = (|V0|, . . . , |Vn|), meaning that (V 0)TW = δI0

Q is
diagonal with positive entries. Recalling (22) we get that (V 0)T = diag(r1, . . . ,rn) ·Ŵ
for some r1, . . . ,rn ∈ N. But Q is reduced, which implies that the columns of V 0 have
coprime entries. Therefore r1 = · · ·= rn = 1 and (V 0)T = Ŵ . (a) follows immediately.
(b) On the one hand Ŵ ·W = diag(|det(W )|/s1, . . . , |det(W )|/sn). On the other hand,
by (a), Ŵ = (V 0)T and Ŵ ·W = diag(δ/q1, . . . ,δ/qn), where δ := lcm(Q). Therefore

(23) ∀ 1≤ i≤ n
δ
qi

=
|det(W )|

si
.

Observe now that

lcm
(

δ
q1

, . . . ,
δ
qn

)
=

δ
gcd(q1, . . . ,qn)

= δ

lcm
( |det(W )|

s1
, . . . ,

|det(W )|
sn

)
=

|det(W )|
s

Then (23) gives that δ = |det(W )|/s and, for any 1≤ i≤ n, qi = si/s. Finally (a) gives
that q0 = |V0|= |det(Ŵ )|.
(c) follows immediately by the previous part (b).
(d). If there exist two F–admissible matrix U,V such that they are both associated with
W and Q, then

(v1, . . . ,vn) = V 0 = U0 = (u1, . . . ,un) ⇒ v0 =− 1
q0

n

∑
i=1

qivi =− 1
q0

n

∑
i=1

qiui = u0

implying that V = U .

REMARK 10. In a sense the previous Proposition 9 states that, when restricted
to wps fans associated with reduced weight vector, the weighted transversion pro-
cess giving a polytope starting from a fan, can be inverted by considering the trans-
posed reduced adjoint of the polytope matrix. Namely if W is a polytope matrix of
(P(Q),O(1)), with Q reduced, then V :=

(
v0 Ŵ T

)
is a fan matrix of P(Q) when

v0 is defined by setting v0 =−(∑n
i=1 qivi)/q0, where (v1, . . . ,vn) = Ŵ T .

The following Proposition 10 shows criteria for a matrix W to be P-admissible.

PROPOSITION 10. Let W = (wi j) ∈ GL(n,Q)∩Mat(n,n,Z) be a matrix such
that gcd(wi j) = 1. Let s be the greatest common divisor of the entries in Adj(W ) and
v be the sum of the rows of Adj(W ). Define q0 = |det(Ŵ )|, δ = |det(W )|

s . The following
statements are equivalent:

(a) W is P–admissible;

(b) the vector v is divisible by q0s;
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(c) q0 divides δ and the vector δ
q0

(1, . . . ,1) is in the lattice generated by the rows of
W.

Proof. (a) ⇒(b): If W is P–admissible then there exist a unique reduced weight vector
Q and a unique F–admissible matrix V , associated with W like in Definition 6. By
Proposition 9, Ŵ = (V 0)T and Q = (q0, . . . ,qn) with qi = si/s, for i = 1, . . . ,n. Let vi
be the i-th row of Ŵ ; then ∑n

i=1 qivi is divisible by q0 since Ŵ T = V 0 is F–admissible,
meaning that its columns satisfy the relation ∑n

i=1 qivi = −q0v0. Then ∑n
i=1 sivi is di-

visible by q0s and sivi is the i-th row of Adj(W ).
(b) ⇒(a): Assume that q0s divides any entry in v. For 1 ≤ i ≤ n, let vi be the i-th row
of Ŵ and qi = si/s be defined as in Proposition 9(b); then ∑n

i=1 qivi is divisible by q0.
Put v0 =− 1

q0
∑n

i=1 qivi. Then the matrix

V :=
(

v0 Ŵ T
)

= (v0,v1, . . . ,vn)

turns out to be F–admissible with respect to Q by Theorem 3(4). Then W =
(
V 0

)∗
Q is

P–admissible.
(b) ⇔(c): the sum of the rows of Adj(W ) is the row vector (1, . . . ,1) ·Adj(W ) =
(1, . . . ,1)·det(W )W−1. Thus it is divisible by q0s if and only if there exists (x1, . . . ,xn)∈
Zn such that (x1, . . . ,xn) ·W = δ

q0
(1, . . . ,1), that is if and only if (c) holds.

3.2. Characterizing the polytope of a polarized wps

Given an integral polytope ∆ = Conv(0,w1, . . . ,wn), for a suitable subset {w1, . . . ,wn}⊂
M, let W := (w1, . . . ,wn) be the associated polytope matrix. Then the following result
is a consequence of Propositions 9 and 10.

THEOREM 5. Let ∆ = Conv(0,w1, . . . ,wn) ⊂ MR be a n-dimensional integral
polytope. Set m := gcd(wi j) and define W ′ := 1

mW. Let Q = (q0, . . . ,qn) be the reduc-
tion of the weight vector defined as in Proposition 9(b). Then the following facts are
equivalent:

1. W ′ is a P-admissible matrix, hence it satisfies one of the equivalent conditions in
Proposition 10,

2. (P∆,O(1))∼= (P(Q),O(m)).

Proof. (1)⇒(2): By definition if W ′ is P-admissible then there exists a F-admissible
matrix V such that W ′ = (V 0)∗̃Q, where Q̃ = (|V0|, . . . , |Vn|). By Proposition 9(b) Q̃ = Q.
Then the polytope

Conv
(

0,
w1

m
, . . . ,

wn

m

)

belongs to the image of the map ∆0
Q, as defined in (19). Then W ′ is the polytope matrix

of ∆D′ for some divisor D′ ∈OP(Q)(1) and W = mW ′ is the polytope matrix of ∆ := ∆mD′
giving (2).
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(2)⇒(1): There exists a divisor D of P(Q), belonging to the linear system
|O(m)|, such that ∆ = ∆D. Moreover there exists a divisor D′ ∈ |O(1)| such that
D = mD′ and in particular ∆ = ∆D = m∆D′ . This means that ∆D′ = Conv(0,w′

1, . . . ,w
′
n)

and W ′ := (w′
1, . . . ,w

′
n) = 1

mW is a P–admissible matrix associated with Q.
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