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Abstract

We propose a theoretically sound Objective Bayes procedure for graph-
ical model selection. Our method is based on the Expected–Posterior
Prior (EPP) of Pérez and Berger (2002) and on the Power–Expected–
Posterior Prior (PEPP) of Fouskakis et al. (2015). Being the input of the
proposed methodology a default improper prior, we do not need subjec-
tive prior elicitations and we suggest computationally efficient approxima-
tions of Bayes factors and posterior odds. In diverse simulated scenarios
with varying number of nodes and sample sizes, we show that we per-
form equally well or better than benchmarks. Finally, an application to
protein-signalling data reveals results in line with the literature.

1 Introduction

Graphical models represent conditional independence relationships among vari-
ables by the means of a graph having the variables as nodes. They are widely
used in genomic studies (Dobra et al. 2004 and Bhadra and Mallick 2013),
finance (Sohn and Kim 2012 and Carvalho and Scott 2009), energy forecast-
ing (Wytock and Kolter 2013), among other fields. Theoretical foundations of
graphical models can be found in Lauritzen (1996), Cowell et al. (1999) and
Dawid and Lauritzen (1993).

More specifically, for a collection of q random variables with conditional
independence structure represented by an Undirected Graph (UG), we assume
the underlying graph’s structure to be unknown, and we want to infer it from
the data, through what is known as structure learning. Our approach to the
problem will be purely Bayesian, in order to elaborately handle uncertainty: we
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first assign a prior to the graph and then a prior distribution to the covariance
matrix Σ given the graph. Specifying a conditional prior distribution on Σ
is non-trivial because each graph induces a different independence structure
that affects the shape of the parameter space. In this context, the direct use
of an improper prior is infeasible, since is would incur in indeterminate Bayes
factors. Thus, we need to carefully elicit a prior distribution under each graph,
a task with no hope in high dimensions, or to follow an Objective Bayes (OB)
procedure that, starting from a default improper prior, obtains a “usable” prior
distribution.

OB contributions to structure learning can be found in Carvalho and Scott
(2009), Consonni et al. (2017), Castelletti et al. (2018). They all opt for the
Fractional Bayes Factor approach of O’Hagan (1995), which is mathematically
convenient but with the important disadvantage of a double use of the data, both
for prior specification and model selection. In the current paper we introduce
a structural learning approach based on the Expected–Posterior Prior (EPP)
approach of Pérez and Berger (2002) and the Power–Expected–Posterior Prior
(PEPP) of Fouskakis et al. (2015), which are theoretically sounder than what
proposed in the literature in the context of objective approaches, since double
usage of data is avoided and compatible prior distributions are provided; more
details on prior compatibility can be found in Consonni and Veronese (2008).

The remainder of the paper is as follows. After introducing basic notations
and distributions in Section 2, in Section 3 we describe basic notions of Bayesian
model selection under OB, with focus on EPP and PEPP (Section 3.1) and on
computational challenges (Section 3.2). In Section 4 we face the structural
learning problem: in Section 4.1 we estimate the Bayes factor and in Section
4.2 we specify the prior distribution on the graphs. In Section 5 we apply the
proposed methodologies to simulated settings and to the protein signalling data
of Sachs et al. (2005). We conclude in Section 6, highlighting further directions
of investigation.

2 Overview of Graphical Models

Let G = (V,E) denote an undirected graph with a finite set of nodes V and
a set of edges E ⊆ V × V . Self–loops are not allowed, so that for any edge
(a, b) ∈ E we have that a 6= b. Nodes a, b ∈ V will be assumed adjacent if
the edge (a, b) ∈ E and if all nodes of G are adjacent then G will be assumed
complete. A complete subgraph C ⊂ V that is maximal with respect to ⊂ will
be called a clique. A triple (A,S,B) of subsets of V forms a decomposition of
G if V = A ∪ B and S = A ∩ B is complete and S separates A from B, where
S will be called a separator. Each graph G will be associated with a clique set
C and separator set S. A graph G will be called decomposable if its cliques
and separators admit a perfect ordering i.e. ∀j > 1 and for k < j we obtain
Sj = Cj ∩ Hj−1 ⊂ Ck where Hj−1 = ∩j−1k=1Ck. Every graph throughout this
paper will be assumed to be decomposable.
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Each element a ∈ V will be related to a random variable Ya with values in a
sample space Ya. For a given set A ⊆ V we define YA = (Ya)a∈A as a collection
of random variables {Ya : a ∈ A} with values in YA = ×a∈AYa. A probability
distribution over A ⊆ V implies a joint distribution for YA over YA. Let P
be a distribution over U ⊆ V and A,B ⊆ U , then PA will imply the marginal
distribution of YA and PB|A the conditional distribution of YB given YA = yA.
The distribution P over the vertex set V is Markov w.r.t. to a graph G, if for
any decomposition (A,S,B) of G we obtain that YA ⊥⊥ YB |YS , where ⊥⊥ implies
conditional independence between variables.

Let (y1, · · · ,yn) be n independent observations from a Nq(0,Σ), and

Y = (Y1, · · · ,Yq) =

 yT1
...

yTn

 (1)

be the n×p data matrix of these observations, where yi = (yi1, · · · , yiq) denotes
the i-th observation and Yj = (y1j , · · · , ynj) denotes the observations on the j-
th variable. We assume that the matrix Y follows a Matrix–Normal distribution
with mean parameter M = 0, row–covariance matrix In and column–covariance
matrix Σ; i.e. Y ∼MNn×q(0, In,Σ). The density of Y given Σ is

f(Y|Σ) =
det(Σ)−n/2

(2π)nq/2
exp

{
− 1

2
tr(Σ−1S)

}
, (2)

where S = YTY and tr(·) denotes trace of a matrix.

By the term graphical model, we refer to a family of distributions which
are Markov with respect to a graph G. A Gaussian graphical model is defined
by assuming that Y ∼MNn×q(0, In,Σ), adhered to the Markov property with
respect to the graph G, where its structure is represented through non–zero
entries on the concentration matrix K = Σ−1. We write Σ ∈M+(G) to denote
that Σ is positive definite and coherent with the Markov property to G. The
density of Y given Σ and G follows the graph decomposition in cliques and
separators as follows:

f(Y|Σ, G) =

∏
C∈C f(YC |ΣC , G)∏
S∈S f(YS |ΣS , G)

, (3)

where under each clique C ∈ C (and separator S ∈ S) the matrix

YC =

 yT1C
...

yTnC


follows a Matrix Normal distribution, such that YC ∼ MNn×|C|(0, In,ΣC),
with | · | denoting set cardinality. Matrices YC and YS denote submatrices of
Y consisting of the columns indexed by C ∈ C or S ∈ S.
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A commonly used conjugate prior on the covariance matrix Σ is the Hyper-
Inverse Wishart distribution; see Dawid and Lauritzen (1993). We use the
notation Σ ∼ HIWG(b,D) to denote that Σ follows a Hyper–Inverse Wishart
distribution with respect to a graph G, having b > 0 degrees of freedom and
scale matrix D ∈M+(G). The density of Σ has a similar factorization as in (3)
i.e.

π(Σ|G) =

∏
C∈C π(ΣC |b,DC , G)∏
S∈S π(ΣS |b,DS , G)

, (4)

where under each clique C ∈ C (and separator S ∈ S) the respective matrix
ΣC follows an Inverse Wishart distribution IW|C|(b,DC) with density

π(ΣC |b,DC , G) = KC det(ΣC)−(b/2+|C|)exp
{
− 1

2
tr(Σ−1C DC)

}
, (5)

where

KC =
det(DC)

2b|C|/2Γ|C|(
b
2 )
,

having DC ,ΣC ∈ M+(G). Matrix ΣC corresponds to the marginal covariance
matrix of yC obtained from y by selecting the elements of y indexed by C ∈ C

(similarly for S ∈ S).

By Roverato (2000), under a graph G, the density of K = Σ−1 is

π(K|δ, A,G) ∝ det(K)(b−2)/2 exp
{
− 1

2
tr(KA−1)

}
,

where A = D−1 and K,A ∈M+(G). If G is the complete graph, then K follows
a Wishart distribution. If G is not the complete graph, then the density of K is
proportional to a Wishart distribution, conditioned to the event K ∈ M+(G).
This distribution is known as G-conditional Wishart distribution (or G-Wishart
distribution); i.e. K ∼ WG(b + |V | − 1, A). This distribution will be useful in
the sequel to generate observations from a Hyper–Inverse Wishart distribution.

3 Objective Bayes Model Selection

We assume the reader is familiar with the basic concepts of model selection from
a Bayesian viewpoint, as described for instance in O’Hagan and Forster (2004).
In the present section, we provide a background on Objective Bayes model
selection (OB), following Consonni et al. (2018) and focusing on the priors of
Pérez and Berger (2002) and Fouskakis et al. (2015). The developments in the
current section will then be adopted in Section 4 in the context of Gaussian
graphical model selection of undirected decomposable graphs.
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In the Bayesian model selection framework, our interest lies on a finite set
M = {M1, · · · ,Mk} of statistical models, where we assign a prior model prob-
ability π(Mj) on each model in M. With y = (y1, · · · , yn)T be the data, each
model Mj ∈ M (j = 1, . . . , k) is a family of sampling densities f(y|θj ,Mj),
indexed by a model–specific parameter θj ∈ Θj , with a prior π(θj |Mj). Model
comparison of two competing models Mj ,Mi ∈M is based on posterior model
odds, provided by

POMj :Mi =
π(Mj |y)

π(Mi|y)
=
π(Mi)

π(Mj)
× mj(y)

mi(y)
; (6)

the ratio mj(y)/mi(y) represents the Bayes factor of model Mj versus model
Mi and is denoted by BFMj :Mi(y), with mj(y) =

∫
f(y|θj ,Mj)π(θj |Mj)dθj

being the marginal likelihood of the observable data y under model Mj ∈M.

The OB approach is adopted in cases where we either want to express our
prior ignorance on parameters or it is infeasible to successfully elicit a prior
distribution, especially on high–dimensional parameter spaces. We use a non–
informative default prior distributions, denoted by πN (θj |Mj), which are usu-
ally improper (i.e. having non–finite total mass). These kind of prior distribu-
tions cannot be directly used for model comparison, since the resulting Bayes
factors will depend on ratios of arbitrary normalizing constants. An extended
review on how to handle improper prior distributions in model selection prob-
lems can be found in Consonni et al. (2018), with the most notable of them
being the Fractional Bayes factor of O’Hagan (1995), the Intrinsic Bayes fac-
tor of Berger and Pericchi (1996), the Expected–Posterior Prior approach of
Pérez and Berger (2002) and the Power–Expected Posterior Prior approach of
Fouskakis et al. (2015). For the needs of this paper we will briefly describe the
latter two in the following subsection.

3.1 Objective Priors for Model Selection

Objective Bayes priors avoid subjective elicitation by only using the information
available from the statistical model. An example in this regard is the Expected–
Posterior Prior approach (EPP) of Pérez and Berger (2002), conceived as the
expectation of the posterior distribution given imaginary observations (Spiegel-
halter and Smith 1980, Iwaki 1997) rising from a prior predictive distribution.
There are two main advantages in the use of EPPs in model selection: (i) they
can expedite the use of improper baseline prior distributions, since there are
no issues of indeterminacy in the resulting Bayes factors; (ii) elicitation of the
parameters of each prior when the goal is model selection presents specific chal-
lenges; the main one being compatibility of priors across models (Consonni and
Veronese, 2008) and EPPs provide a valid construction of compatible priors,
being related to the same reference model.

On the other hand, EPPs also show some limitations, since they rely on
features of the imaginary sample, namely to the imaginary sample size and on
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the imaginary design matrix. Optimal choices proposed in the literature of the
minimal imaginary sample size are not entirely satisfactory, since the resulting
priors can still have a significant role in the Bayes factor, especially when the
number of parameters is close to the number of observations. These EPP lim-
itations led Fouskakis et al. (2015) to introduce the Power–Expected–Posterior
Prior (PEPP) approach, where they combine ideas from the power–prior ap-
proach of Ibrahim and Chen (2000) and the unit–information prior approach
of Kass and Wasserman (1995). The rationale of the PEPP approach is the
construction of minimally–informative prior distributions, in which the effect of
the imaginary data on the posterior distribution collapses in one data point. To
achieve this result, Fouskakis et al. (2015) raised the likelihood function involved
in the calculation of the EPP to the power 1/δ, with δ = n, where n denotes
the sample size. The choice δ = n leads to an imaginary design matrix equal to
the observed one, and therefore the selection of a training sample of covariates
and its effects on the posterior model comparison is avoided. Therefore, with
the PEPP approach the sample size of the imaginary data does not have a sig-
nificant effect on the output of the method and the computational cost can be
reduced.

More formally, let y∗ = (y∗1 , · · · , y∗m)T be m independent imaginary obser-
vations which rise independently from a random variable Y∗ on sample space
Y∗. We will assume that both random variables Y∗ and Y are i.i.d. ran-
dom variables on a common sample space Ỹ. Under a given model Mj ∈ M,
starting from a default baseline (usually improper) prior πN (θj |Mj), the pos-
terior distribution of θj given the imaginary data vector y∗ will be provided
by πN (θj |y∗,Mj) ∝ f(y∗|θj ,Mj)π

N (θj |Mj), where f(y∗|θj ,Mj) denotes the
sampling density of y∗ under model Mj . The EPP for the parameter θj under
model Mj ∈M is

πEPP (θj |Mj) =

∫
πN (θj |y∗,Mj)m

∗(y∗)dy∗, (7)

where m∗(y∗) is provided by

m∗(y∗) ≡ mN
0 (y∗) =

∫
f(y∗|θ0,M0)πN (θ0|M0)dθ0; (8)

i.e. the marginal likelihood, evaluated on y∗, of a reference model M0, using
the default baseline prior πN (θ0|M0). In nested cases, M0 is chosen to be the
“simplest” model in M; by this way we a priori support parsimony; i.e. in
absence of enough evidence from the data, simpler models will be favored.

To define the PEPP of θj under model Mj ∈ M, Fouskakis et al. (2015)
used the normalized power–likelihood

f(y∗|θj , δ,Mj) =
f(y∗|θj , δ,Mj)

1/δ∫
f(y∗|θj , δ,Mj)1/δdy∗

. (9)

This form of the likelihood adapts to the variable selection problem of Gaussian
linear models, yet it does not hold for all members of the exponential family;
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further information provided in Fouskakis et al. (2018). Using (9), the power–
posterior distribution of θj given the imaginary data vector y∗ is provided by
πN (θj |y∗, δ,Mj) ∝ f(y∗|θj , δ,Mj)π

N (θj |Mj). Then the PEPP of θj is given
by

πPEPP (θj |Mj , δ) =

∫
πN (θj |y∗, δ,Mj)m

∗(y∗|δ)dy∗, (10)

with

m∗(y∗|δ) ≡ mN
0 (y∗|δ) =

∫
f(y∗|θ0, δ,M0)πN (θ0|M0)dθ0. (11)

Note that in the above, for δ = 1 we obtain the EPP of θj under Mj ∈M.

3.2 Computational Aspects

Pérez and Berger (2002) claimed that the EPP (and thus the PEPP as well) in
(7), can be viewed as a two–stage hierarchical prior, whereas the first–stage prior
is the posterior distribution πN (θj |y∗,Mj) and the second–stage prior would be
the predictive density m∗(y∗). Thus, they deduced that the EPP (and PEPP)
approach could be integrated using MCMC approaches. They provide compu-
tational guidelines to approximate Bayes factors using importance sampling,
especially when the predictive density m∗(y∗) is not proper. Fouskakis et al.
(2015) provided four different approximations of Bayes factors as well, where
one was aligned with the approach of Pérez and Berger (2002), using the power–
likelihood of (9).

Following an importance sampling simulation scheme, the Bayes factor of a
model Mj ∈M versus M0, under the PEPP approach (or the EPP for δ = 1),
can be approximated by

BF
∧PEPP

Mj :Mi
(y|δ) = BFNMj :M0

(y|δ) 1

R

R∑
r=1

BFNM0:Mj
(y∗(r)|δ), (12)

with y∗(r), r = 1, · · · , R being R i.i.d. samples from the importance density
g(y∗|δ) = mN

j (y∗|y, δ), where mN
j (y∗|y, δ) = mN

j (y∗,y|δ)/mN
j (y|δ). The

marginal likelihoods required for calculating the importance density, are pro-
vided by

mN
j (y∗,y|δ) =

∫
f(y∗,y|θj , δ,Mj)π

N (θj |Mj)dθj

and

mN
j (y|δ) =

∫
f(y|θj , δ,Mj)π

N (θj |Mj)dθj
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respectively, whereas the Bayes factors included in (12) are provided using the
default baseline priors πN (θj |Mj). If the predictive density mN

j (y∗|y, δ) is not
available in a closed–form expression, Gibbs sampling scheme will be deployed
for generating importance samples, which can be performed as follows:

For r = 1, · · · , R:

• Generate θ(r) from πN (θj |y, δ,Mj).

• Generate a sample y∗(r) from f(y∗|θ(r), δ,Mj).

4 Structural Learning using EPP and PEPP

4.1 Bayes Factor Estimation

Consider the sample data matrix Y in (1) and let G denote the entire collection
of all undirected decomposable Gaussian graphical models on q nodes. Before
we proceed with the development of the PEPP (and EPP) approach for the
Gaussian graphical model selection procedure, we need to define an indepen-
dence graph G0 = (V,E0) where E0 = ∅; this is the “simplest” model among
all models in G. Given a graph G ∈ G, following Carvalho and Scott (2009) we
will consider the conjugate and computationally convenient improper baseline
prior, exploiting the same factorization over cliques and separators as in (3) and
(4):

πN (Σ|G) ∝
∏
C∈C det(ΣC)−|C|∏
S∈S det(ΣS)−|S|

, (13)

where the covariance matrix Σ ∈M+(G).

Let (y∗1, · · · ,y∗m) be m independent imaginary multivariate observations and
Y∗ be the m × q matrix of these observations, similarly as in (1). We let Y
and Y∗ to be independent on a common sample space Y. Following (2), (3)
and (9), the power–likelihood of Y∗C given ΣC ∈ M+(G) under model G ∈ G,
is given by

f(Y∗C |ΣC , δ, G) =
det(δΣC)−m/2

(2π)m|C|/2
exp

{1

2
tr(δΣC)−1S∗C

}
, (14)

which represents a MNm×|C|(0, Im, δΣC), where S∗C = Y∗TC Y∗C . Then, under
each clique C ∈ C the power–posterior distribution of ΣC given Y∗C , under the
baseline prior, is provided by

πN (ΣC |Y∗C , δ, G) ∝ det(ΣC)−(m/2+|C|)exp
{
− 1

2
tr(Σ−1C δ−1S∗C)

}
(15)
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which represents an IW|C|(m, δ
−1S∗C) distribution. Thus, under a graph G ∈ G,

the power–likelihood of Y∗ given Σ ∈ M+(G) is a MNm×q(0, Im, δΣ) and the
power–posterior of Σ given Y∗, under the baseline prior, is a HIWG(m,S∗/δ).
Following the discussion in Section 3.1, the predictive density in (11) is given
by

mN (Y∗|δ,G0) =

∫
f(Y∗|Σ, δ, G0)πN (Σ|G0)dΣ. (16)

Following (14), (15) and (16), the PEPP (EPP for δ = 1) of Σ under a graph
G ∈ G is

πPEPP (Σ|G, δ) =

∫
πN (Σ|Y∗, δ, G)mN (Y∗|δ,G)dY∗. (17)

Our guideline to define a minimal size for the number of rows m of the
imaginary data matrix Y∗, is based on the posterior distribution included in
(17). In order, for this respective posterior distribution to be finite, the number
of rows m of the imaginary matrix Y∗ must always satisfy m ≥ |C|, ∀C ∈
C, ∀G ∈ G, which implies that m ≥ q.

4.2 Bayes Factor Computation

As mentioned in Section 3.2, the PEPP and EPP will be improper since they
will contain the arbitrary normalizing constant that rises under the reference
model. Using the importance sampling scheme of Section 3.2, the Bayes factor
of any graph G ∈ G versus the independence graph G0, under the PEPP (or
EPP for δ = 1) approach, is approximated by

BF
∧PEPP

G:G0
(Y|δ) = K(Y, G)H(Y, G|δ)

R∑
r=1

K(Y∗, G)H(Y∗, G|δ), (18)

where for a data matrix Xn×q and an undirected decomposable graph G we
define

K(X, G) =

∏
C∈C Γ|C|(

n+|C|−1
2 )∏

S∈S Γ|S|(
n+|S|−1

2 )
Γ−q

(n
2

)
(19)

and

H(X, G|δ) =

q∏
j=1

det(
1

2δ
Sj)

n
2

∏
C∈C det(

1
2δSC)−

n+|C|−1
2∏

S∈S det(
1
2δSS)−

n+|S|−1
2

. (20)

Using the generation process of the imaginary observations, following the
Gibbs scheme provided in Section 3.2, we approximate the Bayes factor of any
model G ∈ G versus G0 using the following scheme:



10

1. Generate imaginary matrices Y(1)∗, · · · ,Y(R)∗ as follows:

• Generate K(r) from WG(n+ q − 1, (S/δ)−1).

• Generate Y∗(r) from MNm×q(0, Im, δK
(r)−1).

2. Approximate BFPEPPG:G0
(Y|δ) by (18).

The size R of importance samples is defined using a trial-and-error approach,
to control the computational cost of the estimation. For both EPP and PEPP
approaches, the size of the imaginary data observation will be defined as Y∗m×q
with m = q. The guideline provided by Fouskakis et al. (2015) is to consider
m = n and δ = n, for compressing the effect of the imaginary observations to
one data point. In this paper, we set the power parameter δ = q for two reasons:
(i) we need to control the computational cost of our approach; (ii) after several
trials with different choices of δ ranging from q to n there were not significant
gains in terms of performance. Thus the PEPP we obtain here does not have
the unit–information principle, but still has reduced effects from the imaginary
observations.

Regarding the prior model probabilities, we follow Carvalho and Scott (2009);
i.e. we assign a prior probability on each graph G ∈ G using

π(G) ∝ 1

z + 1

(
z

k

)−1
,

where k denotes the number of edges of graph G and z = q(q − 1)/2 is the
maximum number of edges a graph G can have. Under this prior, each edge has
a prior probability of inclusion equal to 0.5.

4.3 Feature–Inclusion Stochastic Search

To apply the EPP and PEPP approaches, we utilize a serial algorithm of Car-
valho and Scott (2008), the Feature–Inclusion Stochastic Search (FINCS), which
operates using the following principle: it uses on–line estimates of posterior
edge–inclusion probabilities to guide the search process in the space of decom-
posable graphical models. Applications of FINCS algorithm can be found in
Fitch et al. (2014), Carvalho and Scott (2009) and Altomare et al. (2013). Fur-
thermore, we introduce two computational improvements: (i) to alleviate the
accumulating processing cost arising from the Bayes factor approximations, we
perform the global move of FINCS by deterministically selecting the median
graph, as in Altomare et al. (2013); (ii) we control the number of iterations
through pilot runs, in order to keep them as small as possible, since our ex-
perimental studies show that our algorithm can reach the optimal model choice
quite fast, rendering superfluous further runs. Our version of FINCS algorithm
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is structured as follows:

For t = 1, · · · , T (iterations):

1. For a given model Gt generate importance samples following the Gibbs
scheme of Section 4.2.

2. Estimate Bayes factor under PEPP (or EPP for δ = 1) using (18).

3. Update posterior edge inclusion probabilities.

4. Propose a new model following the FINCS algorithm.

5 Experimental Studies

We compare the performance of EPP and PEPP with the Fractional Bayes
Factor (FBF) approach of Carvalho and Scott (2009), and with the Birth–Death
MCMC (BDMCMC) approach of Mohammadi and Wit (2015), on simulation
studies and a on a real data application. The FBF approach was applied by
Carvalho and Scott (2009) using the FINCS algorithm, whilst the BDMCMC
approach is an MCMC algorithm based on a continuous–time birth–dead process
of edges. For the FBF approach, in all simulation scenarios considered we choose
the default choice for b = q/n provided by O’Hagan (1995), whilst for BDMCMC
approach we follow the standard guidelines provided by Mohammadi and Wit
(2015). Note that BDMCMC is a fully Bayesian, transdimensional method that
performs structural learning in an explicit Bayesian context, rather than using
Bayes factors as in our approach, and it is applicable to all types of graphical
models, whereas here we only focus on decomposable graphical models. The
BDMCMC approach was applied through the BDgraph and huge packages of R,
following the developers guidelines. For our simulation study, we consider two
simulation set–ups with multiple scenarios, while for the real data application
we consider the protein-signalling data in Sachs et al. (2005). All codes were
written using parallel computing in R and are available upon request.

5.1 Simulation Studies

Each simulation scenario is characterized by the pair (q, n), where q = {10, 20, 30}
is the number of nodes and n = {100, 300, 500} the sample size, resulting in nine
scenarios. We consider two simulation set-ups: the Random Scenario and the
Star Scenario. Under the Random Scenario, we generate a total of 40 datasets,
corresponding to 40 true UG models, not guaranteed to be decomposable. Fol-
lowing Peters and Buhlmann (2014), we generate an UG with probability of
edge inclusion pedge = 3/(2q− 2). Under the Star Scenario, we generate a total
of 40 datasets, where the true graph is constructed by setting all nodes adjacent
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to the first node. Under both scenarios, we generate i.i.d. observations using
the following scheme:

For 1, · · · , 40 simulation runs:

1. For the Random Scenario generate an undirected graph G using the
BDgraph package in R. The adjacency matrix of the true graph under
the Star Scenario, is identical for all generated samples.

2. Under both scenarios, generate a matrix K from the G-Wishart distribu-
tion having b = 10 degrees of freedom and scale matrix D = Iq, based on
the adjacency matrix provided by each respective graph GTrue.

3. Generate a data matrix Yn×q ∼MNn×q(0, In,K
−1).

To compare methodologies, we first define the estimated posterior edge in-
clusion probability of an edge eij to be

q̂ij =
∑
G∈G

Ieij∈G π̂(G|Y), (21)

where π̂(G|Y) denotes the estimated posterior probability of the distinctive
graphs visited by the algorithm. The median probability (graphical) model is
defined as the graph that contains edges having posterior edge inclusion proba-
bility greater than 0.5 (not guaranteed to be decomposable). This definition is
identical to the one in Barbieri and Berger (2004) for variable selection problems
in Gaussian linear models.

Each approach under consideration will be evaluated using three perfor-
mance indicators that provide evidence on the ability of each approach to iden-
tify the true underlying UG. The first measure is the Structural Hamming Dis-
tance (SHD), that is the number of edge insertions or deletions required to
retrieve the true graph’s structure. Clearly, lower values correspond to better
performances. Another performance measure is the F1-score (Baldi et al. (2000);
Powers (2011), Mohammadi and Wit (2015)), which is defined by

F1 =
2TP

2TP + FP + FN
(22)

where TP, FP and FN denote the number of true positives, false positives and
false negatives, respectively. Note that F1 ∈ [0, 1], where values closer to one
correspond to better identification of edges, whereas values near zero correspond
to worse edge detections.

Boxplots, over the 40 simulated datasets, for SHDs under the Random Sce-
nario, are presented in Figure 1. As expected, the performances of all methods
improve as we increase the sample size, and deteriorate as we increase the num-
ber of nodes. Furthermore, PEPP distances are in all cases better the those
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recovered by EPP. The BDMCMC method performs worse, but it tends to
allineate as the number of observations increases. We should again highlight
that the comparison is not fair, since the output provided by BDMCMC is a
much richer MCMC output, and therefore it naturally require higher compu-
tational time and higher sample sizes. Finally, PEPP reveals a performance
comparable to FBF, especially for smaller sample sizes, without suffering from
double usage of data as in FBF. Therefore we believe that PEPP is a valid
Bayesian alternative to FBF, since it can provide similar accuracy in a more
theoretically sound procedure.

Similar is the picture under the Star Scenario; for brevity reasons the plot
is not presented here. In Tables 1 and 2 we present the mean and the variance
of the F1 scores under, respectively, the Random and the Star graph simulation
setting, for each scenario and method. In the majority of cases, FBF is the
best performer, but with its theoretical limitation of using twice the data, to
both regularize the prior and the marginal likelihood evaluation. The PEPP
approach closely follows, suggesting a theoretically valid alternative for Bayesian
structural learning.

In terms of computational speed, Figure 2 shows that, moving from lower
to higher number of vertices, the computational cost of the FINCS algorithm is
significantly higher. The FBF approach is similarly constrained, but Carvalho
and Scott (2008) have developed the FINCS algorithm in C++ environment,
reducing the runtime up to 176 seconds for 50000 iterations. We are currently
investigating the transition of our approach to C++ aiming to the same compu-
tational gains. The average runtime of BDMCMC with q = 30 over 40 datasets
is 44 seconds, a performance close to 500 iterations of FINCS algorithm under
EPP or PEPP approach.

5.2 Real Data Application

We now provide an application to the Sachs et al. (2005) data, which include
levels of eleven phosphorylated proteins and phospholipids quantified using flow
cytometry. Nine different experimental studies were conducted, differing on
certain aspects, with the respective sample size of each experiment to be between
700 and 1000. These data were originally used by Sachs et al. (2005) to infer a
single DAG and Friedman et al. (2008) merged these 9 datasets to infer a single
UG. Peterson et al. (2015) used the same dataset to infer a different UG under
each experimental condition, and we will share the same purpose.

We apply the PEPP approach following the same algorithmic set–up of our
simulation studies for q = 10, and we compute, for each dataset, the SHD
between the benchmarks and PEPP. The resulting estimated posterior edge
inclusion probabilities were provided by considering 16 runs of the FINCS al-
gorithm for each dataset and then calculate their average. First, in Figure 3
we present the learnt graphical structures under the PEPP approach for every
dataset. In Table 3 we report the SHDs between the PEPP approach and the



14

benchmarks, whereas in Table 4 the number of edges under PEPP and the alter-
native methods. We note that there are not significant differences between EPP
and PEPP. All proposed methodologies provide the same output for datasets 3
and 8, whilst the most significant differences can be found in dataset 5, where
the SHD between PEPP and FBF, as well as BDMCMC, is up to five different
edges. Our findings are similar to Peterson et al. (2015), where they identified
Dataset 5 as the one that differs the most compared to the others.

A further advantage of EPP and PEPP over FBF is that the formers asso-
ciate a higher posterior probability to the estimated MAP model, i.e. the model
with the highest estimated posterior probability. In Table 5 we present the es-
timated posterior probability of the MAP model under datasets 3 and 8, the
two datasets where EPP, PEPP and FBF returned the same estimated median
probability model. Thus, EPP and PEPP can more easily distinct the “opti-
mal” model relative to FBF. The results of BDMCMC are omitted from this
Table since the output of respective package returns only estimated posterior
edge inclusion probabilities.

6 Conclusions and Further Directions

We have introduced two theoretically sound Objective Bayes approaches for
model selection of undirected Gaussian graphical models. The key difference
between the proposed methodologies and the Fractional Bayes Factor approach
previously proposed in the literature is that the Expected–Posterior Prior (EPP)
and Power–Expected–Posterior Prior (PEPP), that we adopt here, rely on imag-
inary observations, avoiding double use of data. In their core, they utilize im-
proper prior distributions when it is difficult to successfully elicit a subjective
one, alleviating the indeterminacy in Bayes factors arising from the existence
of arbitrary normalizing constants. The advantage of PEPP over EPP is that
the former reduces the effect of imaginary data, leading in some cases to more
accurate estimation.

Our studies show that PEPP performs better or equally well to EPP. Fur-
thermore, the performance of PEPP is better than other benchmark methods,
for smaller sample sizes and higher number of nodes. In terms of the estimated
MAP model, our results indicate that EPP and PEPP perform better than
FBF, since they manage to distinguish the “optimal” model with higher pos-
terior probability. Higher estimated posterior weights lead to a more efficient
exploration of the space of graphs, which is useful when we are restricted in
computational time. This feature of EPP and PEPP led us to consider the
FINCS algorithm instead of “traditional” MCMC approaches (for example the
MC3 approach in Fouskakis et al. (2015), or Small World MCMC with modified
proposals as in Guan et al. (2006)).

In the current development, EPP and PEPP are not feasible for higher
number of nodes, due to the incremental computational cost of the importance
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sampling estimation of the Bayes factors. We are currently investigating the
extension to C++ routines that will significantly reduce the computational bur-
den for the calculation of the Bayes factor in (12), following the lines suggested
in Carvalho and Scott (2008). Finally, we are currently interested in extending
our methodology to the covariate-adjusted graphical model selection framework
of Consonni et al. (2017).
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Pérez, J. and Berger, J. O. (2002). Expected-posterior prior distributions for
model selection. Biometrika, 89:491–511.

Peters, J. and Buhlmann, P. (2014). Identifiability of Gaussian structural equa-
tion models with equal error variances. Biometrika, 101:219–228.

Peterson, C., Stingo, F. C., and Vannucci, M. (2015). Bayesian inference of
multiple Gaussian graphical models. Journal of the American Statistical As-
sociation, 110:159–174.

Powers, D. M. (2011). Evaluation: from precision, recall and f-measure to
roc, informedness, markedness & correlation. Journal of Machine Learning
Technologies, 2:37–63.

R Core Team (2013). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria.

Roverato, A. (2000). Cholesky decomposition of a hyper inverse Wishart matrix.
Biometrika, 87:99–122.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005).
Causal protein signaling networks derived from multiparameter single-cell
data. Science, 308:523– 529.

Sohn, K.-A. and Kim, S. K. (2012). Joint estimation of structured sparsity and
output structure in multiple - output regression via inverse - covariance reg-
ularization. In Proceedings of the 15th International Conference on Artificial
Intelligence and Statistics (AISTATS), 22:1081 – 1089.

Spiegelhalter, D. J. and Smith, A. F. M. (1980). Bayes factors for linear and log-
linear models with vague prior information. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 44:377–387.

Wytock, M. and Kolter, Z. (2013). Sparse Gaussian conditional random fields.
algorithms, theory, and application to energy forecasting. In Proceedings of
the 30th International Conference on Machine Learning, 28:1265–1273.



18

Figure 1: Simulation study under Random Scenario. Structural Hamming distances between
estimated and true graphs, over 40 datasets, for number of nodes q = {10, 20, 30} and sample
size n = {100, 300, 500}. Performances are measured for EPP, PEPP, FBF and BDMCMC.
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Case Studies Approaches

Scenario q n EPP PEPP FBF BDMCMC

100 0.31 (0.05) 0.47 (0.06) 0.51 (0.06) 0.50 (0.02)

10 300 0.54 (0.05) 0.65 (0.03) 0.71 (0.03) 0.66 (0.02)

500 0.59 (0.07) 0.68 (0.05) 0.74 (0.04) 0.70 (0.02)

100 0.25 (0.02) 0.48 (0.02) 0.41 (0.03) 0.36 (0.01)

Random 20 300 0.47 (0.02) 0.62 (0.01) 0.66 (0.02) 0.50 (0.01)

500 0.59 (0.02) 0.71 (0.01) 0.76 (0.01) 0.59 (0.01)

100 0.23 (0.01) 0.42 (0.01) 0.37 (0.02) 0.31 (0.01)

30 300 0.44 (0.02) 0.55 (0.01) 0.59 (0.01) 0.44 (0.01)

500 0.51 (0.01) 0.60 (0.01) 0.68 (0.01) 0.50 (0.01)

Table 1: Sumulated data. Means of F1-score (variances in parentheses) under the Random
Scenario.

Case Studies Approaches

Scenario q n EPP PEPP FBF BDMCMC

100 0.33 (0.06) 0.57 (0.05) 0.57 (0.05) 0.54 (0.01)

10 300 0.55 (0.05) 0.64 (0.03) 0.66 (0.03) 0.63 (0.01)

500 0.62 (0.04) 0.71 (0.01) 0.78 (0.01) 0.73 (0.01)

100 0.25 (0.03) 0.47 (0.02) 0.41 (0.03) 0.37 (0.00)

Star 20 300 0.45 (0.04) 0.60 (0.04) 0.63 (0.04) 0.51 (0.00)

500 0.61 (0.03) 0.72 (0.02) 0.75 (0.02) 0.61 (0.01)

100 0.22 (0.03) 0.38 (0.02) 0.29 (0.04) 0.29 (0.00)

30 300 0.48 (0.02) 0.62 (0.01) 0.64 (0.01) 0.45 (0.00)

500 0.52 (0.01) 0.64 (0.01) 0.68 (0.01) 0.50 (0.00)

Table 2: Simulated data. Means of F1-score (variances in parentheses) under the Star
Scenario.
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(a) q (b) n

Figure 2: Simulated data. Computational time (in seconds) of 500 iterations of EPP, PEPP
and FBF, as a function of q for n = 500 (left panel) and as a function of the sample size n

for a fixed number of nodes q = 20 (right panel).

Figure 3: Protein Signalling data. Estimated median probability graphs under the first
experimental condition, using PEPP approach.
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Dataset EPP FBF BDMCMC

1 2 1 1

2 0 2 3

3 0 0 0

4 2 1 1

5 1 5 5

6 1 1 1

7 2 1 1

8 0 0 0

9 2 1 1

Table 3: Protein Signalling data. Structural Hamming Distances between estimated graphs,
under PEPP and every alternative method, for all datasets.

Dataset PEPP EPP FBF BDMCMC

1 8 6 9 9

2 8 8 10 11

3 9 9 9 9

4 6 6 7 7

5 6 5 11 11

6 8 7 9 9

7 8 6 9 9

8 10 10 10 10

9 9 7 10 10

Table 4: Protein Signalling data. Total Number of Edges under each competing approach for
all datasets.
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Dataset EPP PEPP FBF

3 0.96 0.97 0.3

8 0.96 0.96 0.3

Table 5: Protein Signalling data. Estimated Posterior Probability of the MAP model for
EPP, PEPP and FBF, for datasets 3 and 8.
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