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Abstract. We say that a Riemannian manifold satisfies the Lp-positivity preserving
property if (−∆+ 1)u ≥ 0 in a distributional sense implies u ≥ 0 for all u ∈ Lp. While
geodesic completeness of the manifold at hand ensures the Lp-positivity preserving prop-
erty for all p ∈ (1,+∞), when p = +∞ some assumptions are needed. In this paper
we show that the L∞-positivity preserving property is in fact equivalent to stochastic
completeness, i.e., the fact that the minimal heat kernel of the manifold preserves proba-
bility. The result is achieved via some monotone approximation results for distributional
solutions of −∆+ 1 ≥ 0, which are of independent interest.

1. Introduction

Let (M, g) be an n-dimensional Riemannian manifold with Riemannian measure dµg. In
the following ∆ = div∇ is the (negatively defined) Laplace-Beltrami operator and, unless
explicitly stated, all integrals are taken with respect to the Riemannian volume measure
dµg.

The aim of this paper is to study qualitative properties for certain solutions of elliptic
PDEs involving the following Schrödinger operator

(1.1) L := ∆− 1.

We say that u ∈ L1
loc(M) solves (−∆+ 1)u ≥ 0 in the sense of distributions ifˆ

M

u(−∆+ 1)φ ≥ 0

for all φ ∈ C∞
c (M) with φ ≥ 0. Note that this is equivalent to say that (−∆ + 1)u is a

positive Radon measure. If more regularity is assumed, namely u ∈ W 1,2
loc (M), we talk of a

weak solution of (−∆+ 1)u ≥ 0 ifˆ
M

g(∇φ,∇u) + uφ ≥ 0

for all φ ∈ C∞
c (M) with φ ≥ 0. Finally, if u ∈ C2(M), then (−∆+ 1)u ≥ 0 is intended in a

strong, pointwise sense. Naturally, if u ∈ C2(M) is a strong solution of the inequality, it is
also a weak and thus distributional solution.

We begin with the following definition:

Definition 1.1. Let p ∈ [1,+∞], we say that (M, g) has the Lp-positivity preserving property
if every u ∈ Lp(M) satisfying

(1.2) (−∆+ 1)u ≥ 0

in the sense of distributions is non-negative a.e.

The definition was proposed by Güneysu in [13] although the case p = 2 of this property
appears in previous works of Kato, [20], and Braverman, Milatovic and Shubin, [4]. In this
last paper, the authors proved that the validity of the L2-positivity preserving property
implies the essential self-adjointness of the Schrödinger operator −∆ + V for all L2

loc non-
negative potentials V . Recall that −∆ + V : C∞

c (M) → L2(M) is essentially self-adjoint
if it has an unique self-adjoint extension to L2(M) (its closure). On the other hand, the
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operator −∆+V with a non-negative L2
loc potential is known to be essentially self-adjoint on

geodesically complete manifolds, see [29, Theorem 1.1] or [4] and [16] for the case of operators
acting on Hermitian vector bundles. The combination of these results lead Braverman,
Milatovic and Schubin to formulate the following

Conjecture (BMS). If (M, g) is a geodesically complete Riemannian manifold then the
L2-positivity preserving property holds.

This conjecture has remained open for 20 years and has only recently been solved in the
positive by Pigola and Veronelli in [25]. For a complete introduction to the topic we refer
to the nice survey [14], to Chapter XIV.5 of [15] and Appendix B of [4].

The case p = +∞ of Definition 1.1 is instead related to stochastic completeness. Recall
that a manifold is said to be stochastically complete if the Brownian paths on M have almost
surely infinite lifetime or, equivalently, if the minimal positive heat kernel associated to the
Laplace-Beltrami operator preserves probability. For the scope of this article, however, we
shall adopt the following (equivalent) definition, which is more relevant from the point of
view of PDEs.

Definition 1.2. A Riemannian manifold (M, g) is said to be stochastically complete if the
only bounded, non-negative C2 solution of ∆u ≥ u on M is u ≡ 0.

There are countless characterizations of stochastic completeness, a comprehensive account
is beyond the scope of this paper, we refer the reader to [9, 11, 23, 24] or the very recent [12].
See also Section 2 below. Stochastic completeness is implied by several geometric, analytic
and probabilistic conditions. For instance, stochastic completeness is ensured by conditions
on the curvature tensor. In this direction, the most general result is the one of Hsu in [19],
a particular case of which states that geodesically complete manifold whose Ricci curvature
satisfies

Ric(x) ≥ −Cr2(x)
outside a compact set are in fact stochastically complete.

As a matter of fact, the Lp-positivity preserving property implies stochastic completeness
of the manifold at hand, as it has been observed by Güneysu in [13]. In particular, stochas-
tically incomplete manifolds provide counterexamples to the validity of the L∞-positivity
preserving property. As an example, take a Cartan-Hadamard manifold whose Ricci curva-
ture diverges at −∞ faster than quadratically, for computations we refer to [21].

In the last years there has been an effort to better understand the Lp-positivity preserving
property and to find geometric and analytic conditions ensuring its validity. If one takesM =
Rn with the usual Euclidean metric, the L2-positivity preserving property was first proved
by Kato, [20], using the theory of operators on tempered distributions. In a Riemannian
setting, however, one does not dispose of tempered distributions and it is thus necessary to
take other paths. Following an idea of Davies in [4], if the manifold admits a family of smooth
cutoff functions with a good control on the Laplacian, it is possible to prove the Lp-positivity
preserving property. In this direction we mention the results by Braverman, Milatovic and
Schubin in [4]; by Güneysu in [13, 15]; by Bianchi and Setti in [2]; and by the second author
and Veronelli in [21]. Using a completely different strategy, Pigola and Veronelli, [25], were
finally able to prove that the Lp-positivity preserving property for p ∈ (1,+∞) holds on
geodesically complete manifolds, thus verifying that the BMS conjecture is true.

Remark 1.3. Without geodesic completeness the Lp-positivity preserving property generally
fails for every p ∈ [1,+∞]. To see this, take B1 ⊆ R2 the Euclidean open ball of radius
1. Then, the radial function u(r) = −r, which belongs to all Lp spaces, is a non-positive
function which satisfies (−∆+ 1)u ≤ 0.

The proof of Pigola and Veronelli uses some new regularity results for non-negative sub-
harmonic distributions to prove that the Lp-positivity preserving property is implied by a
Liouville-type property for Lp-subharmonic distributions. When p ̸= 1,+∞, this property
is known to hold on geodesically complete manifolds thanks to a result of Yau, [31]. This
strategy, however, fails when p = 1 or p = +∞ since there are known counterexamples to
the Liouville-type property.
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Remark 1.4. To the best of our knowledge, when p = +∞ the most general condition known
so far ensuring the validity of the L∞-positivity preserving property is the one of Theorem
II in [21]. This condition, which requires geodesic completeness and

Ric(x) ≥ −Cr2(x)

outside a compact set, is essentially the celebrated condition of Hsu, [19], for stochastic
completeness.

The above observation suggests a much closer relation between stochastic completeness
and the L∞-positivity preserving property. The main result of this article is in fact the
following:

Theorem A. Let (M, g) be a Riemannian manifold, then M has the L∞-positivity preserv-
ing property if and only if it is stochastically complete.

Theorem A together with the result of Pigola and Veronelli, [25], give the full picture
of the Lp-positivity preserving property when p ∈ (1,+∞]. When p = 1, the best result
we have is the one of the second author with Veronelli, [21, Theorem II], which ensures
the L1-positivity preserving property if the manifold is complete and the Ricci curvature
essentially grows like

Ric(x) ≥ −Cr2(x)
outside of a compact set. Using a construction suggested to us by Veronelli we also prove
the following:

Theorem B. For every ε > 0, there exists a 2-dimensional Riemannian manifold (M, g)
whose Gaussian curvature satisfies

K(x) ∼ −Cr(x)2+ε,

such that the L1-positivity preserving property fails on M . Here r(x) denotes the Riemannian
distance from some fixed pole.

Remark 1.5. Theorem B together with Remark 1.3 show that the result of Theorem II in
[21] alluded in the above is optimal.

Remark 1.6. Using a simple trick introduced in [18], the counterexample in dimension 2 of
Theorem B can be used to construct counterexamples to the L1-positivity preserving prop-
erty in arbitrary dimensions n ≥ 2. It suffices to take the product of the 2 dimensional model
manifold M with an arbitrary n − 2 dimensional closed Riemannian manifold. Extending
the function which provides the counterexample on M to the whole product produces a
counterexample in a manifold of dimension n.

In order to prove that stochastic completeness implies the Lp-positivity preserving prop-
erty, we show that it is essentially a problem of regularity for the distributional, L∞ solutions
of Lu ≥ 0, where L is defined in (1.1). Using a Brezis-Kato inequality we reduce ourselves
to prove the following:

Proposition C. Let (M, g) be a Riemannian manifold and let u ∈ L∞(M) satisfying Lu ≥ 0
in the sense of distributions. Then, there exists some w ∈ C∞(M) with supM w < +∞ such
that u ≤ w and Lw ≥ 0 in the strong sense.

This latter result follows from a monotone approximation theorem for the distributional
solutions of Lu ≥ 0 which is of independent interest.

Theorem D. Let (M, g) be a Riemannian manifold and let u ∈ L1
loc(M) be a solution

of Lu ≥ 0 in the sense of distributions. Then for every Ω ⋐ M there exists a sequence
{uk} ⊂ C∞(Ω) such that:

(i) uk ↘ u pointwise a.e.;
(ii) Luk ≥ 0 for all k;
(iii) uk → u in L1(Ω);
(iv) supΩ uk ≤ 2 ess supΩ u.
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Using a trick due to Protter and Weinberger, [26], it is sufficient to prove a monotone ap-
proximation result for the distributional solution of ∆αv ≥ 0, where ∆αv := α−2 div(α2∇v)
and α is a smooth positive function to be specified later. The monotone approximation for
the weighted Laplacian is obtained using a strategy outlined by Bonfiglioli and Lanconelli
in [3] together with some mean value representation formulas for the solution of ∆αv = 0.
Theorem D generalizes a result of Pigola and Veronelli in [25] where the monotone approx-
imation was proved only on coordinate charts. If the manifold at hand admits a minimal,
positive Green function for the operator ∆α (i.e. it is α-non-parabolic) and if this Green
function vanishes at infinity (i.e. it is strongly α-non-parabolic), as a byproduct of the proof
of Theorem D we obtain a global, monotone approximation result.

Corollary E. Let (M, g) be a strongly α-non-parabolic Riemannian manifold and let u ∈
L1
loc(M) be a solution of Lu ≥ 0 in the sense of distributions. Then there exists a sequence

{uk} ⊂ C∞(M) such that:
(i) uk ↘ u pointwise a.e.;
(ii) Luk ≥ 0 for all k;
(iii) uk → u in L1(M);
(iv) supM uk ≤ 2 ess supM u.

Remark 1.7. Results such as Proposition C, Theorem D and Corollary E still hold if the
constant 1 in the operator (1.1) is replaced by another positive constant. Actually, negative
constants are also allowed as long as −L remains a positive operator.

The paper is organized as follows. In Section 2 we study the relation between the L∞-
positivity preserving property and stochastic completeness, showing that the former property
implies the latter and the converse is true up to a claim which is proved later on. Section 3
is devoted to the monotone approximation results. We first observe that the conclusions of
Theorem D can be inferred form an equivalent statement for the operator ∆α. We prove
some mean value representation formulae for α-harmonic functions and show how these
can be used to produce a monotone approximating sequence with wanted properties. As a
corollary of Theorem D, we obtain the desired claim which concludes the proof of Theorem
A. We end the section by observing that if we make some assumptions on the geometry
of M , the monotone approximation results have a global nature. Finally, in Section 4 we
construct a class of Riemannian manifolds on which the L1-positivity preserving property
fails thus proving Theorem B.

2. L∞-positivity preserving property and stochastic completeness

The aim of this section is to investigate the connection between the L∞-positivity pre-
serving property and stochastic completeness. As pointed out in the introduction, there are
several possible definitions one can give for stochastic completeness. We cite here the ones
relevant to our exposition.

(i) for every λ > 0, the only bounded, non-negative C2 solution of ∆u ≥ λu is u ≡ 0;
(ii) for every λ > 0, the only bounded, non-negative C2 solution of ∆u = λu is u ≡ 0;
(iii) the only bounded, non-negative C2 solution of ∆u = u is u ≡ 0.

For a proof of the equivalence we refer to Theorem 6.2 in [9].

Remark 2.1. Note that the regularity required in the above and in Definition 1.2 can be
relaxed to C0(M)∩W 1,2

loc (M) see for instance Section 2 of [1]. This fact is a consequence of
a stronger version of Theorem 2.6 below.

We begin with the following observation due to Güneysu, [13].

Proposition 2.2. If (M, g) has the L∞-positivity preserving property, then it is stochasti-
cally complete.

Proof. To see this, take u ∈ C2(M) a bounded and non-negative function satisfying ∆u ≥ u.
Then, if we set v = −u we have

v ∈ L∞(M) (−∆+ 1)v ≥ 0.
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By the L∞-positivity preserving property, we conclude that v ≥ 0, since u is non-negative,
this yields v ≡ 0 and hence u ≡ 0. □

Remark 2.3. It is worthwhile noticing that stochastic completeness is in general unrelated
to geodesic completeness. It is possible to find Riemannian manifolds which are geodesically
but not stochastically complete such as Cartan-Hadamard manifolds whose Ricci curvature
diverges at −∞ faster that quadratically. On the other hand, Rn \{0} endowed with the
Euclidean metric is stochastically complete but geodesically incomplete.

Proposition 2.2 and the above remark explain the failure of the result of Pigola and
Veronelli, [25], in the case p = ∞.

2.1. From stochastic completeness to the L∞-positivity preserving property. The
goal of this section is to set the ground towards proving the converse of Proposition 2.2.

To this end, let (M, g) be a stochastically complete Riemannian manifold and take u ∈
L∞(M) satisfying (−∆ + 1)u ≥ 0 in the sense of distributions. Our purpose is to show
that u is non-negative almost everywhere or, equivalently, that the negative part u− =
max{0,−u} = (−u)+ vanishes a.e.. The next ingredient in our proof is the following Brezis-
Kato inequality due to Pigola and Veronelli, [25, Proposition 4.1]

Theorem 2.4 (Brezis-Kato). Given a Riemannian manifold (M, g), if u ∈ L1
loc(M) satisfies

Lu ≥ 0 in the sense of distributions, then u+ ∈ L1
loc(M) and Lu+ ≥ 0 in the sense of

distributions.

Since L(−u) ≥ 0 we conclude that Lu− ≥ 0 in the sense of distributions. If u− happened
to be a C2(M) function, stochastic completeness would allow us to conclude that u− ≡ 0,
hence u ≥ 0. Note that, according to Remark 2.1, u− ∈ C0(M) ∩ W 1,2

loc (M) would be
sufficient. In general, however, this is not the case and, as a matter of fact, it is a stronger
requirement than what we actually need. Indeed, if we find w ∈ C2(M) such that supM w <
+∞, 0 ≤ u− ≤ w and Lw ≥ 0, then stochastic completeness applied to w implies that w
hence u− are identically zero.

The existence of such function w is implied by the following corollary of Theorem D,
whose proof is postponed to the next section.

Corollary 2.5. Let (M, g) be a Riemannian manifold and let u ∈ L∞(M) be a distributional
solution of Lu ≥ 0. Then, for every relatively compact Ω ⋐M there exists some uΩ ∈ C∞(Ω)
which solves LuΩ ≥ 0 in a strong sense and such that u ≤ uΩ ≤ 2 ess supΩ u.

Via a compactness argument we use the functions uΩ to construct the function w. The
following theorem, proved by Sattinger in [28], also comes into aid as it allows to obtain
L-harmonic function from super/sub solutions of Lu = 0.

Theorem 2.6. Let u1, u2 ∈ C∞(M) satisfying

Lu1 ≥ 0, Lu2 ≤ 0, u1 ≤ u2

on M . Then, there exists some w ∈ C∞(M) such that

u1 ≤ w ≤ u2 and Lw = 0.

Remark 2.7. Theorem 2.6 is a weaker formulation of a much more general theorem, proved
by Ratto, Rigoli and Véron, [27], for a wider class of functions, namely u1, u2 ∈ C0(M) ∩
W 1,2

loc (M). This result goes under the name of sub and supersolution method or monotone
iteration scheme. Note that the results of [27] hold for a larger class of second order elliptic
operators. For a survey on the subject, we refer to Heikkilä and Lakshmikantham, [17].

Using the functions constructed locally in Corollary 2.5 together with an exhaustion
procedure we obtain the following:

Theorem 2.8. Let (M, g) be a Riemannian manifold and let u ∈ L∞(M) satisfying Lu ≥ 0
in the sense of distributions. Then, there exists w ∈ C∞(M) such that u ≤ w, Lw ≥ 0 in a
strong sense and supM w < +∞.
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Proof. We begin by observing that if u ∈ L∞(M) then, setting c = ∥u∥L∞(M), we have

Lc = −c ≤ 0 on M.

Next, take {Ωh} an exhaustion of M by relatively compact sets such that

Ω1 ⋐ Ω2 ⋐ . . . ⋐ Ωh ⋐ Ωh+1 ⋐ . . . ⋐M,

∂Ωh is smooth and M = ∪hΩh. On each set Ωh we apply Corollary 2.5 and we obtain a
sequence of functions uh ∈ C∞(Ωh) such that

(1) u ≤ uh ≤ 2c in Ωh;
(2) Luh ≥ 0 strongly on Ωh.

Since Lc ≤ 0, we use Theorem 2.6 on each Ωh to obtain wh ∈ C∞(Ωh) satisfying

(1) Lwh = 0;
(2) uh ≤ wh ≤ 2c.

We conclude by showing that {wh}h is bounded respect to the C∞(M)-topology and thus
converges, up to a subsequence, to some w ∈ C∞(M).

To this end, let K ⊂ M be a compact set and k ∈ N, k ≥ 2. By Schauder estimates for
the operator L we have

∥wh∥Ck(K) ≤ A
(
∥wh∥L∞(K) + ∥Lwh∥Ck−2,α(K)

)
for some α ∈ (0, 1). See for instance Section 6.1 of [8]. In particular there exists a constant
C = C(K,n, k) > 0 such that ∥wh∥Ck(K) < C for every h ∈ N. Here

||wh||Ck(K) = ||wh||L∞(K) + ||∇wh||L∞(K) + · · ·+ ||∇kwh||L∞(K).

Since {wh}h is pre-compact, it converges in the C∞(M) topology up to a subsequence,
denoted again with {wh}h. Let w ∈ C∞(M) be the C∞ limit, we have that

u ≤ w ≤ 2c and Lw = 0.

□

This concludes the proof of Theorem A, apart from the proof of Corollary 2.5.

3. Monotone approximation results

This section is devoted to the proof of Theorem D. Instead of proving Theorem D di-
rectly, we prove an equivalent monotone approximation result for another elliptic differential
operator closely related to L. We begin by taking a function α ∈ C∞(M) satisfying

(3.1)

{
Lα = 0

α > 0
.

The existence of such a function is ensured by [7], and is equivalent to the fact that λ−L
1 > 0.

In our case it is easy to see that λ−L
1 ≥ 1.

Using α we define the following drifted Laplacian

(3.2) ∆α : u 7→ α−2 div(α2∇u).

With a trivial density argument, one has that ∆α is symmetric in L2 with respect to the
measure α2dµg. Then, using the following idea due to Protter and Weinberger, [26], we
establish the relation between ∆α and L. See also Lemma 2.3 of [25].

Lemma 3.1. If u ∈ L1(Ω) with Ω ⋐M , then

(∆− 1)u ≥ 0 ⇔ ∆α

(u
α

)
≥ 0,

where both inequalities are intended in the sense of distributions.
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Proof. Fix 0 ≤ φ ∈ C∞
c (Ω), by direct computation we have

α∆α

(φ
α

)
= α−1 div

[
α2∇

(φ
α

)]
= α−1 div (α∇φ− φ∇α)

= ∆φ− φ
∆α

α
= Lφ,

(3.3)

where in the last equation we have used (3.1). Thus, using (3.3) and the symmetry of ∆α

we conclude (
∆α

(u
α

)
, αφ

)
L2

=

ˆ
Ω

u

α
∆α

(φ
α

)
α2dµg

=

ˆ
Ω

u (∆− 1)φ dµg = ((∆− 1)u, φ)L2 .

□

Using Equation (3.3) and setting v = α−1u, it is possible to obtain Theorem D from
an equivalent statement for the operator ∆α. In this perspective, our goal is to prove the
following:

Theorem 3.2. Let (M, g) be a Riemannian manifold and let v ∈ L1
loc(M) be a solution

of ∆α v ≥ 0 in the sense of distributions. Then, for every Ω ⋐ M there exists a sequence
{vk} ⊂ C∞(Ω) such that:

(i) vk ↘ v pointwise a.e.;
(ii) ∆α vk ≥ 0 for all k;
(iii) vk → v in L1(Ω);
(iv) supΩ vk ≤ ess supΩ v.

3.1. Representation formula for α-harmonic functions. We begin by establishing
some mean value representation formulae involving the Green function of the operator ∆α on
Ω with Dirichlet boundary conditions. Recall that G : Ω×Ω \ {x = y} → R is a symmetric,
L1(Ω× Ω) function satisfying the following properties:

(a) G ∈ C∞ (Ω× Ω \ {x = y}) and G(x, y) > 0 for all x, y ∈ Ω with x ̸= y;
(b) limx→y G(x, y) = +∞ and G(x, y) = 0 if x ∈ ∂Ω (or y ∈ ∂Ω);
(c) ∆αG(x, y) = −δx(y) with respect to α2dµg, that is,

φ(x) = −
ˆ
Ω

G(x, y)∆α φ(y)α
2(y)dµy ∀φ ∈ C∞

C (Ω)

.
For r > 0 and x ∈ Ω, we define the following set

(3.4) Br(x) :=
{
y ∈ Ω | G(x, y) > r−1

}
∪ {x}.

We adopt the convention G(x, x) = +∞ so that Br(x) =
{
y ∈ Ω | G(x, y) > r−1

}
. Observe

that Br(x) ⊂ Ω are open and relatively compact sets, moreover, for almost all r > 0, ∂Br(x)
is a smooth hypersurface. This is a consequence of Sard’s theorem. In the following, dσ and
dµ represent the Riemannian surface and volume measure of ∂Br(x) and Br(x) respectively.

Proposition 3.3. For every v ∈ C∞(Ω) and almost every r > 0, the following representa-
tion formula holds

v(x) =

ˆ
∂Br(x)

v(y)|∇G(x, y)|α2(y)dσy −
ˆ
Br(x)

[
G(x, y)− 1

r

]
∆αv(y)α

2(y)dµy(3.5)

Proof. By the Green identity we have

v(x) =−
ˆ
Br(x)

G(x, y)∆α v(y)α
2(y)dµy

+

ˆ
∂Br(x)

(
G(x, y)

∂v

∂ν
(y)− v(y)

∂G

∂ν
(x, y)

)
α2(y)dσy.
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Since ∂G
∂ν = −|∇G|, we obtain

v(x) =

ˆ
∂Br(x)

v(y)
∣∣∣∇G(x, y)∣∣∣α2(y)dσy +

1

r

ˆ
∂Br(x)

∂v

∂ν
(y)α2(y)dσy

−
ˆ
Br(x)

G(x, y)∆αv(y)α
2(y)dµy

=

ˆ
∂Br(x)

v(y)
∣∣∣∇G(x, y)∣∣∣α2(y)dσy −

ˆ
Br(x)

[
G(x, y)− 1

r

]
∆αv(y)α

2(y)dµy.

□

In particular, if v ∈ C2(Ω) is α-harmonic, i.e. ∆αu = 0 on Ω, then

(3.6) v(x) =

ˆ
∂Br(x)

|∇G(x, y)| v(y) α2(y) dσy.

The formulae (3.6) and (3.5) are a generalization of some standard representation formula
for the Laplace-Beltrami operator. See for instance the Appendix of [3], [22] or the very
recent [6].

3.2. Distributional vs. potential α-subharmonic solutions. Before proving the mono-
tone approximation result, we observe that the notion of α-subharmonicity in the distri-
butional sense is closely related to the notion of α-subharmonic solutions in the sense of
potential theory.

Definition 3.4. We say that an upper semicontinuous function u : Ω → [−∞,+∞) is
α-subharmonic in the sense of potential theory on Ω if the following conditions hold

(i) {x ∈ Ω | u(x) > −∞} ≠ ∅;
(ii) for all V ⋐ Ω and for every h ∈ C2(V )∩C0(V ) such that ∆α h = 0 in V with u ≤ h

on ∂V , then
u ≤ h in V.

The key observation, first noted by Sjörgen in [30, Theorem 1] in the Euclidean setting, is
that every distributional α-subharmonic function is almost everywhere equal to a function
which is α-subharmonic in the sense of potential theory. Note that in [30, Theorem 1],
Sjörgen considers a wider class of elliptic differential operators. The drifted Laplace-Beltrami
operator falls into that class.

More precisely, if v ∈ L1(Ω) satisfies ∆α v ≥ 0 in the sense of distributions, then v is equal
almost everywhere to an α-subharmonic function in the sense of potential theory. Naturally,
if v has some better regularity property, for example it is continuous, the equality holds
everywhere. This fact holds true also in the Riemannian case, we sketch here the proof for
clarity of exposition.

Recall that for every φ ∈ C∞
c (Ω) we have

φ(x) = −
ˆ
Ω

G(x, y)∆αφ(y) α
2(y)dµy.

Furthermore, since ∆α v = dνv is a positive Radon measure, we haveˆ
Ω

v(x)∆αφ(x) α
2(x)dµx =

ˆ
Ω

φ(x) dνvx

for every φ ∈ C∞
c (Ω). The measure dνv is often referred as the ∆α-Riesz measure of v. By

a direct computation we haveˆ
Ω

v(x)∆αφ(x) α
2(x)dµx =

ˆ
Ω

φ(x) dνvx

= −
ˆ
Ω

ˆ
Ω

G(x, y)∆αφ(y) α
2(y)dµy dν

v
x

=

ˆ
Ω

−
(ˆ

Ω

G(x, y)dνvx

)
∆αφ(y)α

2(y)dµy,
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hence, ˆ
Ω

(
v(y) +

ˆ
Ω

G(x, y) dνvx

)
∆αφ(y)α

2(y)dµy = 0,

for every 0 ≤ φ ∈ C∞
c (Ω). In other words, the function

v +

ˆ
Ω

G(x, ·)dνvx

is α-harmonic in the sense of distributions. By [30, Theorem 1] of Sjörgen we know that
α-harmonic functions are almost everywhere equal to a function which is α-harmonic in the
sense of potential theory. When the operator at hand is the Euclidean Laplacian, this result
is usually referred as Weyl’s lemma. We conclude that

(3.7) v
a.e.
= h−

ˆ
Ω

G(x, ·)dνvx ,

where h is α-harmonic in a strong sense. On the other hand, one can prove that the function

(3.8) −G ∗ dνv = −
ˆ
Ω

G(x, ·)dνvx

is α-subharmonic in the sense of potential theory which concludes the sketch of the proof.
For this latter statement, we refer to Section 6 of [3].

3.3. Proof of Theorem 3.2. In order to prove Theorem 3.2, we adopt a strategy laid
out by Bonfiglioli and Lanconelli in [3], where they obtained some monotone approximation
results for a wide class of second order elliptic operators on Rn. To do so, we begin by
defining the following mean integral operators. If v is an upper semicontinuous function on
Ω, x ∈ Ω and r > 0, we set

(3.9) mr(v)(x) :=

ˆ
∂Br(x)

v(y)|∇yG(x, y)|α2(y) dσy.

In particular, if v is an α-subharmonic function in the sense of distributions we have the
following results, which are an adaptation to the case or Riemannian manifolds of [3].

Proposition 3.5. Given a Riemannian manifold (M, g) and Ω ⋐ M , if v ∈ L1(Ω) is
α-subharmonic in the sense of distributions, then

(a) v(x) ≤ mr(v)(x) for almost every x ∈ Ω and almost every r > 0;
(b) let 0 < s < r then ms(v)(x) ≤ mr(v)(x) almost everywhere in Ω;
(c) for almost every x ∈ Ω we have limr→0mr(v)(x) = v(x);
(d) for every r > 0 mr(v) is α-subharmonic in the sense of potential on Ω.

Proof. By the observation in the previous section, up to a choice of a good representative,
we can assume that v is α-subharmonic in the sense of potential, cf. Definition 3.4.
(a) Fix x0 ∈ Ω and r > 0, consider φ ∈ C0(∂Br(x0)) such that v ≤ φ on ∂ Br(x0). Let
h : Br(x0) → R be the solution of

(3.10)

{
∆α h = 0 in Br(x0)

h = φ on ∂ Br(x0)
.

Since v is α-subharmonic in the sense of potential, then v ≤ h in Br(x0). By Proposition
3.3 we have

(3.11) v(x0) ≤ h(x0) =

ˆ
∂Br(x0)

φ(y)|∇yG(x0, y)|dσα
y

where dσα
y = α2(y) dσy. Since v is upper semicontinuous on ∂Br(x0), there exists a sequence

{φi}i ⊂ C0(∂Br(x0)) such that φi(y) ↘ v(y) almost everywhere on ∂Br(x0). Applying
(3.11) to each φi we obtain by Dominated Convergence that

v(x0) ≤
ˆ
∂Br(x0)

v(y)|∇yG(x0, y)|dσα
y = mr(v)(x0).
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(b) Fix 0 < s < r, let φ and h be as in (i) so that v ≤ h on Br(x0). By Proposition 3.3 we
have

ms(v)(x0) ≤
ˆ
∂Bs(x0)

h(y)|∇yG(x0, y)|dσα
y = h(x0) =

ˆ
∂Br(x0)

φ(y)|∇yG(x0, y)|dσα
y .

Taking a monotone sequence of continuous functions on the boundary φi ↘ u and proceeding
as above we conclude

ms(v)(x0) ≤
ˆ
∂Br(x0)

φi(y)|∇yG(x0, y)|dσα
y −→ mr(v)(x0).

(c) This property is a consequence of the fact that v is (almost everywhere) equal to an upper
semicontinuous function. Fix x0 ∈ Ω and ε > 0 there exists a small enough neighborhood
of x0, V (x0), such that .

v(y) < v(x0) + ε

on V (x0). Taking for r > 0 small enough, we have

mr(v)(x0) ≤ v(x0) + ε.

Recall that the function constant to 1 is α-harmonic on Ω. By (i), v(x0) ≤ mr(v)(x0) hence

mr(v)(x0)− ε ≤ v(x0) ≤ mr(v)(x0).

Letting ε, and thus r go to 0, we obtain desired property.
(d) This last property is a consequence of the decomposition of α-subharmonic functions
observed in (3.7). Integrating against |∇G|α2 both sides of (3.7) we obtain

mr(v)(x) = h(x)−mr(G ∗ dνv)(x).

The desired property follows from the fact that the mean integral −mr(G ∗ dνv) is α-
subharmonic in the sense of potential. For details we refer to Section 6 of [3].

□

The next step is to take a convolution of the mean integral functions mr(v) so to obtain
smooth functions which produce the desired approximating sequence {vk}k.

Proof of Theorem 3.2. Let φ ∈ C1
c ([0, 1]) be a non-negative function with unitary L1-norm,

we define

(3.12) vk(x) := k

ˆ +∞

0

φ(ks) ms(v)(x)ds =

ˆ 1

0

φ(t)m t
k
(v)(x)dt

As shown in [3] the functions defined by (3.12) are eventually smooth.
The monotonicity of {vk} follows immediately from the monotonicity of mr(v) with re-

spect to r. Combining this with property (c) and (a) of Proposition 3.5 we obtain (i) by
monotone convergence. The proof of (ii) is a consequence of (d) in Proposition 3.5. To see
this, let ψ ∈ C∞

c (M), then by Fubini-Tonelli we haveˆ
M

vk(x)∆α ψ(x) =

ˆ
M

(
k

ˆ +∞

0

φ(ks)ms(v)(x)ds

)
∆α ψ(x)

= k

ˆ +∞

0

φ(ks)

(ˆ
M

ms(v)(x)∆αψ(x)

)
ds ≥ 0.

Note that φ is compactly supported on [0, 1], ψ ∈ C∞
c (M) and ms(v)(x) are upper semi-

continuous functions bounded from below by v ∈ L1(M). Both this proofs are straightfor-
ward computations, we refer to [3, Theorem 7.1] for the details. The convergence in L1(Ω)
follows from (i) and (ii), using the fact that |vk| ≤ max{|v|, |v1|} and Dominated Conver-
gence. For the uniform estimate of (iv), it is enough to observe that 1 is an α-harmonic
function on Ω and φ has unitary L1 norm, hence,

vk(x) = k

ˆ +∞

0

φ(ks) ms(v)(x) ds ≤ ess supΩ vk

ˆ +∞

0

φ(ks) ms(1)(x) ds = ess supΩ v.

This concludes the proof of Theorem 3.2. □
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Remark 3.6. Note that in the last estimate, one actually has

ess supΩ vk ≤ ess sup
B1/k(x)

v ≤ ess supΩ v.

This observation will be crucial later on.

3.4. Proof of Theorem D. Finally, we desume the proof of Theorem D from Theorem 3.2.
If {vk}k is the approximating sequence for the function v = u

α , we define uk := αvk. By
Equation (3.3), {uk}k is an approximating sequence for u as it satisfies (i)−(iii) of Theorem
D. The proof is trivial and is therefore omitted. A little more effort is required to show that
if supΩ vk ≤ ess supΩ v, then supΩ uk ≤ 2 ess supΩ u for k large enough.

To this end, fix x ∈ Ω. As noted in Remark 3.6 we have

uk(x) = α(x)vk(x) ≤ α(x) ess supB1/k(x)
v ≤ α(x)

infB1/k
α
ess supΩ u.

Furthermore, for every y ∈ B1/k(x) we estimate

(3.13)
α(x)

α(y)
≤ |α(x)− α(y)|

α(y)
+ 1 ≤ rk(x) supΩ |∇α|

infΩ α
+ 1

where rk(x) = sup{d(x, z) : z ∈ B1/k(x)}. Next, we show that the function rk(x) can be
uniformly bounded so that (3.13) is bounded above by 2.

Lemma 3.7. There exists some k0 ∈ N such that

rk(x) ≤
infΩ α

supΩ |∇α|
=: c ∀x ∈ Ω, ∀k ≥ k0.

Proof. Suppose by contradiction that there exists a sequence of points {xk}k ⊂ Ω such
that rk(xk) > c for every k ∈ N. By definition of rk(xk), there exists a sequence of points
{yk}k ⊂ B1/k(xk) such that d(yk, xk) > c. Since Ω is relatively compact, up to a subsequence,
we can assume that xk → x∞ ∈ Ω and yk → y∞ ∈ Ω. Since yk ∈ B1/k(xk) we have

(3.14) G(xk, yk) > k → +∞.

Note also that the Green function G is smooth and hence continuous on Ω×Ω\{x = y}. Note
that since d(xk, yk) > c, then d(x∞, y∞) ≥ c, in particular we deduce that x∞ ̸∈ ∂Ω because
the Green function G vanishes on the boundary of Ω. If x∞ ∈ Ω is not on the boundary,
fix k ∈ N. By (3.14) and continuity of the Green function we have G(y∞, x∞) > k which
implies that y∞ ∈ B1/k(x∞). In particular we have d(x∞, y∞) ≤ rk(x∞) → 0, which is a
contradiction since d(x∞, y∞) ≥ c. Indeed, for every x ∈ Ω,

lim
k→+∞

rk(x) = 0.

Clearly, rk(x) is a monotone decreasing sequence in k. If its limit is some r0 ̸= 0 this implies
that rk(x) ≥ r0 for all k. In particular the geodesic ball Br0(x) is contained in B1/k(x) for
all k ∈ N. This, however, is a contradiction since

∞⋂
k=1

B1/k(x) = {x}.

□

Thanks to Lemma 3.7, up to taking k large enough, we have

α(x) ≤ 2α(y) ∀x ∈ Ω and ∀y ∈ B1/k(x),

hence,

uk(x) ≤
α(x)

infB1/k
α
ess supΩ u ≤ 2 ess supΩ u ∀x ∈ Ω.

This concludes the proof of Theorem D.
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3.5. Remarks on the global case. A careful analysis of above proofs shows that the
monotone approximation results can be obtained globally on the whole manifold M as long
as there exists a minimal positive Green function for the operator ∆α and the super level
sets Br(x) are compact. Not all Riemannian manifolds, however, satisfy these conditions.
We recall the following

Definition 3.8. A Riemannian manifold (M, g) is said to be α-non-parabolic if there exists
a minimal positive Green function G for the operator ∆α. Moreover, if this Green function
satisfies

(3.15) lim
y→∞

G(x, y) = 0,

the manifold M is said to be strongly α-non-parabolic.

Note that compact Riemannian manifold are always α-parabolic thus we focus on the
complete, non-compact case. It is also known that if (M, g) is a geodesically complete,
α-non-parabolic manifold, then

(3.16)
ˆ ∞

1

t

volα(Bt(x))
dt <∞

where volα(Bt(p)) is the volume of the geodesic ball of radius t and center x with respect
to the measure α2dµg. See for instance Theorem 9.7 of [10]. Furthermore, if we assume
a non-negative m-Bakry-Émery Ricci tensor Ricmf := Ric+Hess(f) − 1

mdf ⊗ df ≥ 0 with
f = −2 logα, it is possible to prove some Li-Yau type estimates for the heat kernel, see
Theorems 5.6 and 5.8 in [5]. Integrating in time these estimates we obtain the following
bounds for the Green function

C−1

ˆ ∞

d(x,y)

t

volα(Bt(x))
dt ≤ G(x, y) ≤ C

ˆ ∞

d(x,y)

t

volα(Bt(x))
dt.

In particular if (3.16) holds true and Ricmf ≥ 0, the previous estimate implies that the
manifold at hand is strongly α-non parabolic. It would be interesting to investigate which
geometric conditions on the manifold (M, g) imply the existence of a function α such that
(3.16) and Ricmf ≥ 0 hold true.

4. A counterexample to the L1-positivity preserving property

This section is devoted to the proof of Theorem B. Fix ε > 0 and consider the 2-
dimensional model manifold M = R+ ×σS1, that is R+ ×S1 with the metric g = dt2 +
σ2(t)dθ2. Here dθ2 is the standard round metric on S1 and σ = σε is a C∞((0,+∞))
function satisfying

σ(t) =

{
j(t) t > tε

t t < 1
4

.

Here tε = (2(1 + ε)ε)
−1/2ε and the function j is defined as

j(t) =
e−t2+2ε

t1+ε
.

By a direct computation we have

j′(t) = −(1 + ε)e−t2+2ε

(
2tε +

1

t2+ε

)
j′′(t) = (1 + ε)e−t2+2ε

[
2tε−1 + 4(1 + ε)t1+3ε + (2 + ε)

1

t3+ε

]
.
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As a result, outside of a compact set we have the following asymptotic estimate for the
Gaussian curvature:

K(t, θ) = −j
′′(t)

j(t)
g

= −(1 + ε)

[
2t2ε + 4(1 + ε)t2+4ε + (2 + ε)

1

t2

]
g

∼ −4(1 + ε)2t2+4εg

as t → +∞. Next we define the function U(t, θ) = u(t) = (et
2+2ε − et

2+2ε
ε )+ and prove that

it satisfies
∆U ≥ U

in the sense of distributions. If t > tε, by direct computation we have

u′(t) = 2(1 + ε)t1+2εet
2+2ε

u′′(t) = 2(1 + ε)et
2+2ε [

2(1 + ε)t2+4ε + (1 + 2ε)t2ε
]

thus

∆U − U = u′′(t) +
j′(t)

j(t)
u′(t)− u(t) = et

2+2ε [
2(1 + ε)εt2ε − 1

]
+ et

2+2ε
ε ≥ 0.

On the other hand, if t < tε the function U is identically zero, so that ∆U − U ≥ 0 also for
t ∈ (0, tε). To see that ∆U ≥ U in the sense of distributions on the whole manifold we take
0 ≤ φ ∈ C∞

c (M) and set M :=M \Btε(0). Then we computeˆ
M

U(∆φ− φ) =

ˆ
M

U(∆φ− φ)

= −
ˆ
M

g(∇φ,∇U) +

ˆ
∂M

U
∂φ

∂ν
−
ˆ
M

Uφ

= −
ˆ
M

g(∇φ,∇U)−
ˆ
M

Uφ

=

ˆ
M

∆Uφ−
ˆ
∂M

∂U

∂ν
φ−
ˆ
M

Uφ

=

ˆ
M

∆Uφ+

ˆ
∂Btε (0)

∂U

∂t
φ−
ˆ
M

Uφ

=

ˆ
M

(∆U − U)φ+

ˆ
∂Btε (0)

u′φ ≥ 0.

On the other hand we have:ˆ
M

|U |dVg = ωm

ˆ +∞

0

u(t)j(t)dt =

ˆ +∞

tε

1

t1+ε
dt < +∞.

In conclusion, if we set V = −U we have V ∈ L1(M) and (−∆+1)V ≥ 0 but V ≤ 0, which
contradicts the validity of the L1-positivity preserving property on M .
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