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Abstract

Classifying images has become a straightforward and accessible task, thanks to the
advent of Deep Neural Networks. Nevertheless, not much attention is given to the
privacy concerns associated with sensitive data contained in images. In this study, we
propose a solution to this issue by exploring an intersection between Machine Learning
and cryptography. In particular, Fully Homomorphic Encryption (FHE) emerges as a
promising solution, as it enables computations to be performed on encrypted data. We,
therefore, propose a Residual Network implementation based on FHE which allows the
classification of encrypted images, ensuring that only the user can see the result. We
suggest a circuit which reduces the memory requirements by more than 85% compared
to the most recent works, while maintaining a high level of accuracy and a short com-
putational time. We implement the circuit using the well-known CKKS scheme, which
enables approximate encrypted computations. We evaluate the results from three per-
spectives: memory requirements, computational time and calculations precision. We
demonstrate that it is possible to evaluate an encrypted ResNet20 in less than five
minutes on a laptop using approximately 15GB of memory, achieving an accuracy of
91.67% on the CIFAR-10 dataset, which is almost equivalent to the accuracy of the
plain model (92.60%).

1 Introduction

In recent years, Neural Networks have demonstrated impressive capabilities across various
tasks, and they are progressively becoming a fundamental block in delivering many online
services.

Nevertheless, not enough attention is given to user privacy when these models are
deployed as Machine Learning as a Service (MLaaS). In order to run inferences, service
providers need to access plain user data, and this creates issues that are not easy to
deal with. Today, data is protected by laws, like the General Data Protection Regula-
tion (GDPR) [32] in Europe, but currently there is no practical protection of data, apart
from laws. We propose a solution by exploring an intersection between Machine Learning
and cryptography. In particular, we implement a well-known Convolutional Neural Net-
work (CNN) called Residual Neural Network (ResNet), using a particular cryptographic
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scheme that allows for operations to be performed on encrypted data. The scheme used is
an example of so-called Homomorphic Encryption (HE) schemes.

1.1 Convolutional Neural Networks

CNNs have emerged as a powerful class of deep learning models designed to handle data
with a grid-like structure, especially images, videos, time-series and so on. They were first
introduced in 1989 by LeCun et al. [25] as a method to recognize handwritten digits.

The main idea behind these networks is to capture spatial dependencies, local patterns
and features from data, making them highly effective for the image classification task. In
particular, in this paper, we propose a HE-based version of a Residual Neural Network
called ResNet20 [18]. This family of CNNs is based on Residual Connections (also known
as Skip Connections), a shortcut in a Neural Network that allows the gradient to bypass
one or more layers during training. It adds the original input of a layer to its output,
creating a Residual Block and allowing for the network to learn and optimize the parameters
effectively. Residual Blocks indeed prevent the issue of the vanishing gradient problem.

1.2 Homomorphic Encryption

Rivest et al. [34] introduced in 1978 the concept of Privacy Homomorphism: they noticed
that the public-key scheme RSA [33] was homomorphic with respect to the product op-
eration (i.e. in a basic RSA implementation, the product of two ciphertexts is equal to
the encryption of the product of the corresponding two plaintexts). They theorized the
idea of a scheme that could perform the operations of addition and multiplication between
ciphertexts, so that a server could perform computations without having access to plain
user data. This notion was put into practice in 2009, when Gentry [14] exploited the fact
that ideal lattices provide both additive and multiplicative homomorphisms, and built a
cryptosystem over these structures, creating the first HE scheme.

However, there is an issue about managing the growing noise: each multiplication in-
creases the level of noise in the resulting ciphertext; when the noise grows too much, it
makes the ciphertext undecryptable. The noise could be removed by decrypting the cipher-
text, but this, in general, is not always feasible (the server does not have the secret key
needed to do that). To address this issue, Gentry introduced the concept of bootstrapping,
which is an operation that refreshes the level of noise inside a ciphertext by embedding
the ciphertext into a fresh ciphertext, and by homomorphically evaluating the decryption
circuit using an encrypted version of the secret key (sometimes called the bootstrapping
key). In literature, it is possible to find two approaches to this matter:

• Fast bootstrapping: after each multiplication, the ciphertext is bootstrapped. The
reference schemes are the Fast Fully Homomorphic Encryption over the Torus (TFHE) [11]
scheme and the Dusan-Micciancio (FHEW) [12] scheme.

• Leveled: each ciphertext has enough “space” to handle a fixed number of multi-
plications; then, bootstrapping must be performed. These schemes require more memory
since ciphertexts and keys are larger. The reference schemes for integer arithmetic are the
Brakerski-Fan-Vercauteren (BFV) [13] scheme and the Brakerski-Gentry-Vaikuntanathan
(BGV) [7] scheme. For what concerns approximate real numbers arithmetic, the reference
scheme is the Cheon-Kim-Kim-Song (CKKS) [10] scheme.

When a scheme is able to evaluate any circuit of any depth, we use the term Fully Homo-
morphic Encryption (FHE).
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1.3 Related works

Inference from encrypted images based on CNNs has been object of study since few years.
The first generation of CNNs based on HE, called HE-friendly, is characterized by networks
based on polynomial – in most cases linear or square – activation functions, as a consequence
of the limited set of arithmetic operations in HE (i.e., only additions and multiplications).

One of the first successful attempts was CryptoNets, by Gilad-Bachrach et al. [15] in
2016, which was able to get 99% of accuracy on the MNIST dataset using a simple CNN.
In 2020, Al Badawi et al. [2] proposed a CNN based on RNS-CKKS accelerated by GPU,
achieving 77.55% accuracy on CIFAR-10 dataset [22].

The main issue about these HE-friendly networks is that they do not implement non-
linear activation functions, and this implies lower performance on more difficult tasks. Re-
cent developments on FHE schemes, especially on bootstrapping techniques [6], are enabling
practical evaluations of deeper and more complex circuits, meaning that is it possible to use
existent and pre-trained networks, instead of building and training new networks specifi-
cally for HE computations. The problem of non-linear functions is tackled using polynomial
approximations.

For this second generation of networks, we find two approaches: High-throughput Net-
works and Low-latency Networks. The former work on many images simultaneously, mini-
mizing the amortized inference runtime. These approaches, though, work well when dealing
with big chunks of images, and not with single images.

Low-latency networks are tackled in two different ways. The first one is to use the
TFHE scheme. A recent work by Benamira et al. [5], in 2023, presents an architecture that
evaluates an encrypted image in approximately nine minutes, achieving a performance of
74.1% on the CIFAR-10 dataset, requiring less than 1GB of memory.

The second approach is to use the CKKS scheme. Lee et al. [26] proposed in 2022 a
framework able to obtain a high level of accuracy (91.31% on CIFAR-10) in half an hour of
computations. Their convolution approach follows the work of Juvekar et al. [19], and we
will refer to it as Vector Encoding. Kim et al. [21] introduced, one year later, an open-source
framework that is able to achieve a classification with a level of accuracy of 92.04% on the
CIFAR-10 dataset in approximately six minutes. Their key point is in the encoding process,
which enables fast convolutions based on on polynomial multiplications (which can, indeed,
be interpreted as convolutions) although this approach is characterized by a high memory
usage (100GB).

Vector Encoding [19, 26]: this approach requires k2 (where k is the size of the kernel)
ciphertexts representing different rotations of the input image. Each ciphertext is multiplied
with the corresponding kernel elements for each channel, leading to k2 · c multiplications,
where c is the number of channels. This approach requires k2 + c rotations and rotation
keys.

Coefficient Encoding [21]: this approach encodes an input vector directly as poly-
nomial coefficients (i.e., Coeff encoding, see Section 1.4.2), and convolutions are performed
in a single step by multiplying two polynomials. Nevertheless, many rotations keys are
required to extract the resulting coefficients, and this implies a high memory usage.

1.3.1 Our contribution

In our proposal, we utilize the CKKS scheme to implement a trained ResNet20. Differently
from the most recent works [26, 21], we minimize the memory requirements. De Castro et
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Table 1: Comparison of the most recent solutions for Low-Latency CIFAR-10 HE-based
CNN inference. * denotes that the authors did not provide information about the memory
usage, we thus assume the RAM capacity of their machine

Proposal Scheme Accuracy Runtime Processor Threads Memory

Lee et al. [28] CKKS 90.67% 10602s Xeon Platinum 8280 CPU 64 512 GB*

Lee et al. [26] CKKS 91.31% 2271s Threadripper PRO 3995WX 1 512 GB*

Benamira et al. [5] TFHE 74.10% 570s i7-8650U 4 0.8 GB

Kim et al. [21] CKKS 92.04% 255s EPYC 7402P 1 100 GB

(proposed) CKKS 91.67% 260s M1 Pro 1 15.1 GB

al. [8] shown that memory is currently the main bottleneck to be addressed in FHE circuits,
although most of the works do not consider its impact when building FHE solutions. We
thus introduce an efficient way to perform convolutions, namely Optimized Vector Encoding,
requiring only five rotation keys. Refer to Figure 1 and Table 1 for a summarization of the
most recent related works, compared to our proposal.
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(Benamira et al. [5])
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Figure 1: Accuracy and memory usage of existent literature work and our proposal

We also propose to use Chebyshev Polynomials in order to approximate the ReLU
activation function that, differently from the composable Minimax approximation [27], gives
more flexibility in terms of depth and precision.

1.4 Preliminaries

We first introduce and review some essential preliminaries concerning Fully Homomorphic
Encryption and, in particular, CKKS.

1.4.1 Mathematical fundamentals

Z, R, and C represent the sets of integers, real numbers, and complex numbers, respectively.
Ciphertexts are denoted using bold letters. The ring of polynomials with integer coefficients
is represented as Z[X], and we defineR := Z[X]/(XN+1) as the ring of polynomials modulo
XN + 1, where N is a power of two.
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1.4.2 The CKKS scheme

The original CKKS [10] scheme takes as input a so-called cleartext v ∈ C
N
2 , and it first

encodes it into a polynomial in R. It is possible to encode it in two different ways:

• Coeff: the vector v is encoded directly as polynomial coefficients. It allows to pack
more values (2 · N2 ) in a single ciphertext, but negacyclic convolutions (i.e. the product of
two polynomials in R) does not result in point-wise multiplication between coefficients.

• Slots: the vector v is subject to a canonical embedding σ−1 : C
N
2 → Z[X]/(XN + 1)

which halves the number of available slots in a ciphertext1, but negacyclic convolutions in

R will result in a Hadamard product in the original input space C
N
2 . In other words, this

encoding process enables point-wise (or slot-wise) multiplications between ciphertexts.

After the encoding, coefficients are scaled by a factor ∆ that controls the precision of
computations.

Remark. The scheme works with polynomials in Z[X]/XN+1, with N being a power of two,
because they allow for fast computations using the Number Theoretical Transform (NTT),
which allows to perform multiplications with complexity O(n log(n)) instead of the basic
modular polynomial multiplication, which has a complexity O(n2). NTT is a variant of the
Fast Fourier Transform (FFT) that operates in a Galois Field Fpn (sometimes referred to
as GF(pn)) with p being a prime number, and n ∈ Z+.

In particular, we use the Residual Number System (RNS) variant of the CKKS scheme.
It works on Double Chinese-Remainder-Transform (DCRT) polynomials. A DCRT poly-
nomial is a large polynomial factorized in smaller ones using CRT and transformed in the
NTT space, for performance reasons.

After the encoding, the plaintext polynomial is encrypted using a variant of the Learning
with Errors (LWE) [31] hard problem. In particular, the ring-variant (RLWE), which has
been shown [30] to be as hard as the worst-case lattice problems, and therefore resistant to
quantum attacks.

Informally, we take a RLWE sample a, b ∈ (Zq[X]/(XN +1))2 – notice that each of a, b
is a pair of polynomials – such that a is uniformly sampled and b = a · s+ e for a small e.
The ciphertext c encrypting the input polynomial m(X) is thus obtained as follows:

c = (b′, a′) = v · (b, a) + (m+ e0, e1)

∈ (Zq[X]/(XN + 1))2

An important feature of RLWE-based cryptosystems is that it is possible to pack multi-
ple values in a single polynomial, leading to a Single Instruction Multiple Data (SIMD)
computational paradigm, which unlocks parallel computations.

Our proposal is based on the OpenFHE implementation [1] of the RNS-CKKS [9]

scheme, which allows to perform operations on encrypted R
N
2 vectors. Computations are

approximate, meaning that:

a = Decrypt(Encrypt(a)) + ε

where ε is a small error introduced by different factors (by the rounding in encoding process,
by the scaling factor and because of RLWE encryption) which grows when performing

1Refer to [10] for a more detailed explanation of this encoding process
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operations. The available operations are addition (c1 ⊕ c2), multiplication (c1 ⊗ c2) and
rotation Roti(c) (when i > 0, coefficients are rotated to the left, to the right otherwise).
In case of multiple rotations on the same ciphertext, the Hoisted Automorphisms technique
[16] FastRoti(c) is used.

Notice that additions and multiplications can also be evaluated between ciphertexts and
plaintexts.

1.4.3 Moduli chain and Bootstrapping

Ciphertexts are encrypted using a large modulus Q, which is constructed as a moduli chain
Q = q0 · q1 · · · · · qℓ. In our case, ℓ represents the depth of the circuit, i.e. the number of
multiplications that can be performed on a ciphertext. When performing a multiplication,
the scale of the resulting ciphertext is squared to ∆2, meaning that a rescaling procedure
is required. This operation brings back the scale to ∆, but it consumes one level, meaning
that the modulus of the ciphertext is reduced from Q to Q/∆. Since the qi are close to ∆,
rescaling can be seen as removing an element of the moduli chain Q. Intuitively, when a
ciphertext reaches its smallest possible modulus Q = q0 (therefore, no further rescaling is
applicable), it needs to be bootstrapped. We use the bootstrapping [4] procedure introduced
by Boussuat et al. [6]. This operation is, in general, the most complex operation in FHE
circuits.

Rotations need a Key Switching procedure, which requires a key for each rotation in-
dex. We use the Hybrid Key Switching (HKS) [17, 20] procedure, in which a rotation key
(sometimes referred to as Automorphism Key or Galois Key) requires approximately

2 · ℓ · dnum ·N ·
(
1 +

1

dnum

)
(1)

bits, where ℓ is (roughly) the depth of the circuit, dnum is the number of digits in HKS,
and N is the ring dimension. The number of rotation keys is the main factor to take into
account when analyzing the memory requirements, since they are the largest objects in a
RNS-CKKS based circuit.

1.4.4 Chebyshev Polynomials

Chebyshev polynomials are a set of orthogonal polynomials that are widely used for ap-
proximating non-linear functions over [−1, 1]. The Chebyshev Polynomials of the first kind
are defined as follows:

T0(x) = 1

T1(x) = x

Then, recursively:

Tn(x) = 2xTn−1(x)− Tn−2(x)

These polynomials, of degree n, have n different roots in [−1, 1], called the Chebyshev
Roots. It can be shown (refer to Trefthen [36] for a detailed introduction) that they are
distributed as:

xk = cos

(
k

n
π

)
with 0 ≤ k < n
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By using these roots, instead of a set of uniformly distributed values, the oscillation and
divergence of high-degree polynomial interpolants near the endpoints of the interval (some-
times known as the Runge Phenomenon), is minimized. In our proposal, these polynomials
are used in approximating the ReLU activation function and the modular reduction per-
formed in the boostrapping procedure.

2 Circuit overview

We now present the FHE-based circuit that implements ResNet20.

2.1 Ciphertexts Depth

The multiplicative depth of a ciphertext is distributed as follows:

• 1 level consumed for the Convolutional Layer and the Batch Normalization.

• 5, 6 or 7 levels, depending on the desired precision, consumed for the evaluation of
the Chebyshev Polynomial approximating ReLU.

After that, we refresh the level of the ciphertext via the bootstrapping procedure (refer to
Section 5 of Boussat et al.[6] for a detailed exploration):

• 1 level consumed after the ModRaise procedure.

• 4 levels consumed by the CoeffToSlot procedure, i.e. the homomorphic version of
the encoding.

• 5 levels consumed by the Chebyshev approximation of g0(x), that is the base case of
the modular reduction iterative procedure (with r equal to the number of iterations):

g0(x) =
1

2r
√
2π

cos

(
2π

2r

(
x− 1

4

))

• 3 levels consumed by the double-angle iterations used to conclude the evaluation of
the homomorphic modular reduction:

gi+1(x) = 2 g2i −
(

1
2r
√
2π

)
with 0 ≤ i < r

• 4 levels consumed by the SlotToCoeff procedure, i.e. the homomorphic version of
the decoding.

2.2 Residual Networks Structure

ResNet20 is a particular type of Residual Network, constructed as shown in Figure 2.
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Figure 2: ResNet20 high level structure

The network is composed of five layers:

• Initial Layer: takes as input a RGB image I represented as a tensor R3×32×32 and
evaluates a Convolutional Layer, a Batch Normalization and the ReLU function; it returning
a R16×32×32 tensor.

• Layer 1: this layer is composed of three Basic Block, each of them built as shown
in Figure 3. Each block works with 16 × 32 × 32 input tensors, Convolution Layers have
a padding of {1, 1}, a kernel width k = 3, and a stride of {1, 1} The output is a tensor
∈ R16×32×32.

Input

Convolutional Layer

Batch Normalization

ReLU

Convolutional Layer

Batch Normalization

Add

ReLU

Figure 3: Structure of the Basic Block in ResNet20

• Layer 2: this layer performs a downsampling on the input image by performing the
first convolution with a stride of {2, 2}. This halves the width of the nout = 32 channels.
As a result, the output of the downsampling block is a tensor ∈ R32×16×16. Then, two Basic
Blocks follow.

• Layer 3: as before, there is another downsampling at the beginning of this layer. In
this case nout = 64, so the output tensor ∈ R64×8×8. After that, two Basic Blocks complete
the layer.
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• Classification Layer: an Average Pooling Layer is used to extract features from each
channel. This is followed by a Fully Connected Layer with 10 output neurons, each cor-
responding to a specific class. The classification decision is made by selecting the neuron
with the highest output score.

The size of the ciphertexts will change through the evaluation of the circuit: at Layer
1, ciphertexts have s = 16384 slots, then s is reduced to s = 8192, and so on (see Table 2).
This allows to perform computations on smaller ciphertexts, which are faster.

Table 2: Image shapes in different ResNet20 layers

Layer Channels (c) Size (w) Total values (c · w2)

1 16 32 16384 = 214

2 32 16 8192 = 213

3 64 8 4096 = 212

2.3 Optimized Vector Encoding

We propose an optimized version of the Vector Encoding procedure that, in case of odd-
sized kernels with {1, 1} padding, uses a constant number of five rotation keys. Notice
that the number of rotation keys does not depend on the size of the kernel k2 or on the
number of channels c, while in previous implementations [19] the number of rotation keys
was (k2 − 1) + c. This allows to drastically reduce the memory footprint of the rotation
keys.

2.3.1 Incorporating the Batch Normalization

The Optimized Vector Encoding procedure allows to evaluate both the Convolutional Layer
and the following Batch Normalization layer at the same time. When a trained ResNet is
evaluated, all the Batch Normalization layers use precomputed values of mean and vari-
ance, making it, de facto, an affine transformation. The original formula of the Batch
Normalization is the following:

y =
x− E[x]√
Var(x) + ε

· γ + β

Since we consider the inference process, the value of the mean E[x] and the variance Var(x)
are not computed (instead, constant values are used), and we can thus re-write the equation
as follows:

y =
x− E

V
· γ + β

y =
γ

V
x− Eγ

V
+ β

y = Ax+ b with A =
γ

V
, b =

Eγ

V
+ β

Now, since Convolutional Layers can be seen as affine transformations, they can be com-
bined with Batch Normalization, consuming only one multiplicative depth.
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2.3.2 Applying the kernel

We introduce the kernel application along with an example, in particular we want to repli-
cate the convolution shown in Fig. 4. Notice that all the convolutions (excluding the ones
performed in downsampling) are performed with {1, 1} padding.

0 0 0 0 0

0 a b c 0

0 d e f 0

0 g h i 0

0 0 0 0 0

× k1

× k4

× k7

× k2

× k5

× k8

× k3

× k6

× k9
×

k1 k2 k3

k4 k5 k6

k7 k8 k9

=

A B C

D E F

G H I

Figure 4: Convolution on a width w = 3 channel with padding = {1, 1} and a kernel of
size k = 3

To begin with, the application of the kernel to the image requires a ciphertext containing
all the input channels next to each other, from the first to the last one (Figure 5).

a b c d

e f g h

i j k l

m n o p

a b c d

e f g h

i j k l

m n o p

[ c× w × w ]

a b c d

e f g h

i j k l

m n o p

a b c d e . . . pa b c d e . . . p

[ c× w2 ]

a b c d e . . . p Channel 0 Channel 1 . . . Channel c− 1

[ c · w2 ]

Figure 5: The reshaping process applied before the encryption

More formally, let I ∈ Rc×w×w be the input feature map with c channels of dimension
w × w. The slots of the ciphertext c encrypting I are

c(w2·i)+(w·j)+z ← Ii,j,z

where 0 ≤ i < c indexes the channel and 0 ≤ j, z < w the spatial position. Notice that the
values of c and w change during the evaluation of the circuit depending on the considered
ResNet20 layer, as shown in Table 2. The evaluation of the convolution consists of three
steps.

(1) Preparing the rotations: We start by considering the following proposition:

Proposition. All possible rotations of a ciphertext can be obtained with a single rotation
key, given an index that is a generator for the ring ZN

2
.

For instance, we can obtain any rotation r of a ciphertext c by applying r timesRot1(c),
and this only requires one rotation key. Of course this approach is not suggested since it
is extremely time-consuming. Instead, we propose a hybrid approach by finding possible
combinations of rotation indexes.

Recall our objective, that is to create nine (k2) ciphertexts which align the nine required
values for each filter application. Considering the example in Figure 4, we want to obtain
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all the required rotations like is shown in Figure 6, where the first column contains the
elements needed for the first convolution, the second column contains the elements needed
for the second convolution, and so on.

a b d e

a b c d e f

b c e f

a b d e g h

a b c d e f g h i

b c e f h i

d e g h

d e f g h i

e f h i

r0 :

r1 :

r2 :

r3 :

r4 :

r5 :

r6 :

r7 :

r8 :

Figure 6: Rotations required for the application of a filter on the input feature map pre-
sented in Figure 4. The red column represents the elements used in the first filter application

In this example, eight keys would be required to store the required rotation indexes
(i.e., {−6,−5,−4,−1,+1,+4,+5,+6}), but this set can be reduced to {1,−5,+5,+1} by
noticing that some of the elements can be written in terms of these four (e.g., 6 = 5 + 1).
Moreover, this method does not require more rotations, since we simply compose existing
rotations.

In general, the kernel operates on slices of the feature map that are stored in different
rows. Considering that the ciphertext encodes a bi-dimensional feature map in row-major
order, we need keys to rotate “horizontally” inside the slice and “vertically” to rotate into
another slice.

Given the feature map size w, and the padded size w′ = w+2, we create keys to rotate
horizontally for indexes 1 and −1 (right and left), and for indexes w′ and −w′ (below and
above) in order to rotate vertically. We thus align the nine elements required for the filter
application as follows:

• r0 ← Rot−1(r1)

• r1 ← FastRot−w(r4)

• r2 ← Rot+1(r1)

• r3 ← FastRot−1(r4)

• r4 ← c

• r5 ← FastRot+1(r4)

• r6 ← Rot−1(r7)



12 Lorenzo Rovida and Alberto Leporati

• r7 ← FastRotw(r4)

• r8 ← Rot+1(r7)

The general procedure is presented in Algorithm 1. In particular, the first for-loop creates
the vertical rotations, rotating by w and −w. On the other hand, the second loop creates
the other rotations (rotating by −1 and 1), using the previously generated ciphertexts.

The number of required rotations for this phase remains k2 − 1, but the number of
Automorphism Keys is constant and equal to four, whereas in previous works[26] based on
Vector Encoding convolutions, the number of rotation keys is equal to k2 − 1.

(2) Applying a set of filters: given a set of k2 rotations, each rotation must be multiplied
by the corresponding weight. Intuitively, the resulting k2 ciphertexts are summed, and the
result will contain the output of the filter application.

A kernel K is defined as a four-dimensional tensor K ∈ Rnout×nin×k×k containing nout

filters, one for each output channel. Each filter is a three-dimensional tensor Rnin×k×k in
which nin is the number of input channels.

The intuition is that each rotation ci represents the i-th element on which the filter is
applied. For instance, c0 represents the values that will be multiplied with the first element
of the filter window (upper-left), c1 with the second element of the filter window (upper),
and so on.

Algorithm 1 Procedure to generate the rotations

1: procedure GenerateRotations(c, k)
2: r← {}
3: mid← (k2 − 1)/2
4: half ← ⌊k/2⌋
5: rmid ← c
6: for i← 0 to half do
7: rmid+i·k ← Rotw(rmid+(i−1)·k)
8: rmid−i·k ← Rot−w(rmid−(i−1)·k)
9: end for

10: for i← 0 to k do
11: row ← k · i
12: for j ← 0 to half do
13: idx← row + half + (j + 1)
14: ridx = Rot1(ridx−1)
15: idx← row + half − (j + 1)
16: ridx = Rot−1(ridx−1)
17: end for
18: end for
19: end procedure

We therefore create k2 plaintexts containing w2 repetitions of the corresponding kernel
value. Considering the example filter presented in Figure 4, we encode k2 plaintexts ki as
shown in Figure 7.

This method encodes a k × k filter by using w2 slots in k2 plaintexts. The repetitions
are necessary as they allow the parallel evaluation of the application of a filter to an entire
channel.
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k1 k2 k3

k4 k5 k6

k7 k8 k9

k1 k1 . . . k1 → k0

k2 k2 . . . k2 → k1

...

k9 k9 . . . k9 → k8

w2 repetitions

Figure 7: Encoding a filter in nine plaintexts ki

Some values will be masked, in order to avoid to align values coming from other channels
(notice gray values in Figure 6), we therefore put zeros in those slots. We can thus compute
a temporary ciphertext t as shown in Figure 8.

a b d e
× k1 × k1 × k1 × k1

a b c d e f
× k2 × k2 × k2 × k2 × k2 × k2

b c e f
× k3 × k3 × k3 × k3

a b d e g h
× k4 × k4 × k4 × k4 × k4 × k4

a b c d e f g h i
× k5 × k5 × k5 × k5 × k5 × k5 × k5 × k5 × k5

b c e f h i
× k6 × k6 × k6 × k6 × k6 × k6

d e g h
× k7 × k7 × k7 × k7

d e f g h i
× k8 × k8 × k8 × k8 × k8 × k8

e f h i
× k9 × k9 × k9 × k9

A B C D E F G H I

+

+

+

+

+

+

+

+

=

Figure 8: Evaluating a convolution by adding k2 ciphertexts up, following the example
illustrated in Figure 4

More formally, each line computes ri ⊗ ki and t =
∑8

i=0 ri ⊗ ki is the sum of the nine
lines. Nevertheless, there are a lot of empty slots in plaintexts, since we are aligning a
kernel in the first w2 slots only. We extend the procedure to apply c filters over c channels
by arranging the values as shown in Figure 9.
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Channel 0 Channel 1 . . . Channel c− 1Channel 0 Channel 1 . . . Channel c− 1Channel 0 Channel 1 . . . Channel c− 1c :

Kout,1 Kout,2 . . . K0,cKout,1 Kout,2 . . . K0,cKernel0,0 Kernel1,1 . . . Kernelc−1,c−1ki :

Figure 9: Elements alignment before the first iteration

We thus obtain a single ciphertext t in which each i-th block (consisting of w2 elements)
contains the application of the i-th filter on the i-th channel, arranged as follows:

c0 ·K0,0 c1 ·K1,1 . . . cc−1 ·Kc−1,c−1t :

(3) Applying the whole kernel: previously, we applied a single filter to each channel.
To complete the convolution process, all the nout filters of the kernel need to be applied to
each of the nin input channels. As a first step, we rotate by w2 the ciphertext t, obtaining
r = Rotw2(t):

c1 ·K1,1 . . . cc−1 ·Kc−1,c−1 c0 ·K0,0r :

In the second iteration, we apply the second two-dimensional convolutional window,
obtaining a new t, and add it to r.

c1 ·K1,1 . . . cc−1 ·Kc−1,c−1 c0 ·K0,0

c0 ·K1,0 . . . cc−2 ·Kc−1,c−2 cc−1 ·K0,c−1

r :

t :

At the last iteration, the first channel will be back to the first block, since we rotated
by w2 for c times, which is the length of the ciphertext. Assuming c = 16, our procedure
sums the following ciphertexts up:

c0 ·K0,0 c1 ·K1,1 . . . c15 ·K0,15

c1 ·K0,1 c2 ·K1,2 . . . c0 ·K15,0

c2 ·K0,2 c3 ·K1,3 . . . c1 ·K15,1

...

c15 ·K0,15 c0 ·K1,0 . . . c14 ·K15,14

We define the algorithm used for the generation of the encoded kernel plaintext in
Algorithm 2, and the complete procedure for the Optimized Vector Encoding in Algorithm
3.
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Algorithm 2 Procedure that encodes the kernel

1: procedure EncodeKernel(K, iter)
2: kernel← {}
3: for i← 0 to nout do
4: filters← {}
5: for j ← 0 to k2 do
6: idx← (i+ iter) mod nin

7: rep← Repeat(Ki,idx,j , w
2)

8: filters← Append(filters, rep)
9: end for

10: kernel← Append(kernel, filters)
11: end for
12: return kernel
13: end procedure

In usual Vector Encoding, each iteration requires a different key, for a total of c keys.
We thus improved the keys requirements for Vector Encoding from (k2−1+c) to a constant
value 5 (≈ 94% of memory usage reduction in Layer 3, when c = 64, k = 3).

Algorithm 3 Optimized Vector Encoding

1: procedure OptimizedVectorEncoding(c)
2: r← 0
3: c← GenerateRotations(c)
4: for i← 0 to nout do
5: k← EncodeKernel(K, i)
6: t← 0
7: for j ← 0 to k2 do
8: t← t⊕ (cj ⊗ kj)
9: end for

10: r← r⊕Rotw2(t)
11: end for
12: end procedure

2.4 ResNet20 Circuit

Recalling the structure of a ResNet20 (Section 2.2), we want to build an equivalent sequence
of blocks based on FHE. The first issue is about the position of bootstrapping operations.
We consider a Basic Block (Fig. 3), and we build the FHE equivalent as shown in Fig. 10.

Notice that we merged Convolutional Layer and Batch Normalization in a single Con-
vBN layer (refer to Section 2.3.1) that consumes one level.

We fix the level of the input ciphertext at ℓ− 1. ConvBN is therefore evaluated before
bootstrapping. In our example (Fig. 10) we assume six levels before bootstrapping, but
this, in general, depends on the degree d of the ReLU Chebyshev Polynomial approximation.
Different experiments will have different circuit depths, but the general structure of the
Basic Block is always the same.
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Input

(ConvBN1)1/δ1

Bootstrapping

ReLUδ1

(ConvBN2)1/δ2

Add

Bootstrapping

(ConvBN1)1/δ2

ℓ− 1

ℓ

ℓ− 6

ℓ− 1

ℓ

ℓ

ℓ− 6

ℓ− 1

Level:

Figure 10: FHE-based structure of a ResNet block. The boxes on the right represent the
ciphertext modulus level, assuming a circuit depth ℓ. Here we assume that the evaluation
of the ReLU function consumes five levels

2.4.1 ReLU Approximation Interval

When using Chebyshev Polynomials in order to approximate a non-linear function, an
approximation interval must be defined. Using an interval different from [−1, 1] is not
convenient as it requires an additional level consumption, since a generic [a, b] must be
scaled down to [−1, 1].

Our approach is to study the range [−δi, δi] of values before all the ReLU evaluations
in the plain ResNet20, and to run the ConvBN with a scale 1/δi (i.e. ConvBN1/δi) such
that all the inputs given to ReLU are in [−1, 1]:

ReLUδi

(
ConvBN1/δi

)
=

{
δi x if x > 0

0 otherwise
(2)

We ended up with the experimental values for the approximating factors δi, i ∈ {1, 2}, in
each block of each layer, reported in Table 3.

Table 3: Experimentally obtained values for δi’s, the approximating factors for intervals
in ReLU

Layer

Block 1 Block 2 Block 3

δ1 δ2 δ1 δ2 δ1 δ2

1 1.00 0.52 0.55 0.36 0.63 0.42

2 0.57 0.40 0.76 0.37 0.63 0.25

3 0.63 0.40 0.57 0.33 0.69 0.10
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2.4.2 Downsampling Layers

Given that the total number of values decreases during the evaluation of the network (refer
to Table 2), it is possible to reduce the number of slots in ciphertexts accordingly. In
particular, downsamplings are performed by evaluating a Convolution Layer with stride
{2, 2} in Downsampling Blocks (Figure 2). Our Optimized Vector Encoding method is no
longer sufficient, since it will blank slots in the output ciphertexts. A reshaping operation is
therefore needed in order to fill these empty spaces. This process is performed by consuming
six levels, and it intuitively works as shown in Figure 11.

. . .

Arranging rows

. . .

. . .

Arranging columns

. . .

Arranging channels

Channel 0 Channel 1

Figure 11: Reshaping values after a Convolutional Layer with stride {2, 2}

Re-arranging values requires new rotation keys. Assuming that the ciphertext has s
slots, our strategy is to perform this procedure when the bootstrapping keys for s slots are
no longer needed, so that they can be cleared from the memory. We can then load the
keys needed for the downsampling, perform the procedure and set the number of slots for
the ciphertexts to s/2. After that, we load the new bootstrapping keys for s/2 slots. The
following layer will be evaluated with smaller ciphertexts, although with twice the number
of channels.

3 Experiments and evaluations

We now present the experiments run using four sets of parameters. Each experiment will
be evaluated according to three main factors: computations precision, computation time
and memory requirements.

The precision of the FHE circuit is evaluated by running a parallel circuit working on
plain values; we evaluate it, considering that CKKS works using fixed-point arithmetic, as:

p(v, v′) = 1−

(∑
i

(
|vi − v′i|
|max(v)|

)
·||v||−1

)
(3)

where v and v′ are two vectors, computed on the plain and on the FHE circuit, respectively.
The considered CIFAR-10 test set is composed of 1000 test images of size 32 × 32, each
representing one out of 10 classes.
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3.1 Circuit parameters

All the experiments have been run on 1.000 images from the CIFAR-10 test set, with the
constraint of using less than 16GB of RAM and to satisfy the level of λ ≥ 128 security bits
according to the Homomorphic Encryption Security Standard[3].

Some common RLWE parameters for all the experiments are the following: Hamming
weight (the number of non-zero elements in the secret key) set to h = 64, standard deviation
of error distribution σ = 3.19. On the other hand, each experiment has different values for
the following parameters:

• Precision (∆, qi, d) : this set of parameters has a big impact on the precision of the
result. However, larger values mean slower and heavier computations.

• Memory (N, qi, dnum, ℓ, CtoS, StoC) : as shown by Eq. 1, these parameters impact
the memory requirements. Also, the levels dedicated to the CoeffToSlot (CtoS) and the
SlotToCoeff (StoC) are important, because larger values mean less complex bootstrapping.

• Time (N, qi, d, CtoS, CtoS) : the first parameter, N , has the heaviest impact in com-
putation time, as it defines the magnitude of all calculations. Smaller qi and d result in
smaller ciphertexts (hence, faster computations). Lastly, larger levels given to CtoS and
StoC results in faster bootstrapping procedures.

The output of the circuit is a vector containing ten values representing the activation
of each output neuron, each associated with an output class. A sample successful output
is presented in Figure 12.

A
ir
p
la
n
e

C
a
r

B
ir
d

C
a
t

D
ee
r

D
o
g

F
ro
g

H
o
rs
e

S
h
ip

T
ru

ck

−
5

0
5

N
eu
ro
n
ac
ti
va
ti
on Plain

FHE

Figure 12: An example of successful FHE output

When the difference between the first and the second most active neurons is large, even
approximate computations are successful. On the other hand, approximate classifications
fail when the error changes the index of the maximum value (Figure 13).

This is likely to happen when the difference between the first and the second most
active neurons is small. We studied how the difference between the first and the second
most active neuron is distributed, considering the complete set of images of the CIFAR-
10 test set, using the plain ResNet20 model2. Given yi, the sorted vector containing the
classification of the i-th image, we define a vector D:

D = {di : di = (yi)0 − (yi)1}

2https://github.com/chenyaofo/pytorch-cifar-models

https://github.com/chenyaofo/pytorch-cifar-models
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Figure 13: Example of wrong FHE classification with respect to the plain one (Frog for
plain, Ship for FHE)

Table 4: Parameters for the RNS-CKKS scheme, grouped by experiment.

#Exp
Ring

(N)

Scaling

factor (∆)

Bit length

of qi’s

HKS digits

(dnum)

Moduli chain

log(qp)

Degree

ReLU (d)

Circuit

depth (ℓ)

CtoS and

StoC levels

1 216 252 248 2 1756 bits 59 23 {3, 3}
2 216 250 246 3 1772 bits 200 27 {4, 4}
3 216 250 246 3 1772 bits 119 27 {5, 4}
4 216 248 244 2 1748 bits 59 26 {4, 4}

The average value of differences is ≈ 3.12, with a standard deviation σ(D) ≈ 2.64. In
general, more than 98% of the images have a difference di that is larger than 10−1. This
means that, when approximation errors are less than 10−1, at least 98% of the results is
equal to the plain model.

All the results presented in the experiments are obtained by evaluating the correspond-
ing FHE circuit on a set of one thousand encrypted images from the CIFAR-10 test set,
using a M1 Pro CPU and 16GB of RAM. The set of parameters for each experiment is
given in Table 4.

It is possible to reproduce all the experiments using our open-source code3 in C++.
Algorithm 1 and 2 are available as Python notebooks, along with a notebook that shows
how values from Table 3 have been found. As far as we are aware, ours and Kim et al. [21]
(written using the Lattigo [24] library, in Go language) are the only recent and available
open-source FHE-based CNN implementations.

3.2 Discussion

We present all the results obtained by the four experiments in Table 5 and in Fig. 14.

Experiments show interesting results. To begin with, all the considered sets of param-
eters result in at least 0.93 of relative accuracy. Since the original model has a level of
accuracy of 0.92, this results in at least 0.85 of final accuracy, using any set of parame-
ters. The set relative to Experiment 4, in particular, is the one having the lightest memory
requirements (i.e. only 11.6GB) and the lowest runtime (less than 5 minutes).

By increasing the complexity of the parameters, we find the set of Experiment 1 to be
slightly more complex than the previous one. In particular, we increased the values of ∆

3https://github.com/narger-ef/LowMemoryFHEResNet20

https://github.com/narger-ef/LowMemoryFHEResNet20
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Table 5: Comparison of results obtained in the experiments. Relative accuracy is computed
with respect to the plain results on a subset of 1000 images from the test set

#Exp Total runtime
Bootstrapping

precision

Memory

requirements

Output layer

precision p

Relative

accuracy
Final accuracy

1 291s± 4s ≈ 9.4 bits ≈ 13.6GB 0.93± 0.02 945/1000 87.97%

2 336s± 6s ≈ 7.7 bits ≈ 15.2GB 0.98± 0.01 986/1000 91.67%

3 285s± 6s ≈ 7.7 bits ≈ 12.5GB 0.97± 0.01 978/1000 90.75%

4 260s± 3s ≈ 7.6 bits ≈ 11.6GB 0.92± 0.02 931/1000 86.12%
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Figure 14: Visual representation of precision and runtime of the experiments for the
encrypted circuit

and qi for a higher accuracy in computations. In order to maintain the required level of
security, we reduced by one the levels dedicated to CtoS and StoC. As a result, we obtained
an increase on the relative accuracy (+0.02) at the cost of 2 more GB of memory and a
longer runtime (+7s).

Surprisingly, with the set of parameters defined in Experiment 3, we obtained a larger
relative accuracy (0.98) even though the required memory is increased by only 1GB with
respect to Experiment 4. This confirms that the main bottleneck in computations precision
is the degree d of the ReLU polynomial approximation. We then furthermore increased the
degree to d = 200 in Experiment 2, obtaining the highest level of relative accuracy (0.99).
This costs in terms of memory, since it requires around 15.2GB. Computational times, too,
are higher.

To recap, we propose Experiment 3 as the one having the best ratio between precision
of computations, memory requirements and execution time.

4 Conclusion

We presented a FHE-based circuit that classifies encrypted images with a high level of ac-
curacy (0.9167) on the CIFAR-10 test set, evaluable in less than five minutes on a MacBook
laptop equipped with M1 Pro CPU and 16GB of memory. The order of magnitude of the
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achieved accuracy is similar to other recent works [21, 26], but our approach has a reduction
of memory requirements by about 85% from Kim et al. [21] and by about 98% from Lee et
al. [26].

Execution times are lower, although it is not easy to compare circuits executed on
different hardware. Also for this reason, our work is available open-source. As far as we are
aware, ours and Kim et al. [21] are the only CNNs based on FHE available open-source, as
other recent works do not share any source code.

Furthermore, the circuit can be made even more suitable for real applications by using
dedicated hardware [23, 35], which allows for extreme speed-up for FHE circuits. Theoret-
ically, a 4.600x speed-up [35] would result in approximately five encrypted classifications
per second using our circuit, enabling privacy-preserving inferences to be used in real-world
tasks.
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