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ABSTRACT
Background  Myeloid-derived suppressor cells (MDSC), 
a cornerstone of cancer-related immunosuppression, 
influence response to therapy and disease outcomes in 
melanoma patients. Nevertheless, their quantification is far 
from being integrated into routine clinical practice mostly 
because of the complex and still evolving phenotypic 
signatures applied to define the cell subsets. Here, we 
used a multistep downsizing process to verify whether 
a core of few markers could be sufficient to capture the 
prognostic potential of myeloid cells in peripheral blood 
mononuclear cells (PBMC) of metastatic melanoma 
patients.
Methods  In baseline frozen PBMC from a total of 143 
stage IIIc to IV melanoma patients, we first assessed the 
relevant or redundant expression of myeloid and MDSC-
related markers by flow cytometry (screening set, n=23 
patients). Subsequently, we applied the identified panel to 
the development set samples (n=59 patients undergoing 
first/second-line therapy) to obtain prognostic variables 
associated with overall survival (OS) and progression-
free survival (PFS) by machine learning adaptive index 
modeling. Finally, the identified score was confirmed in a 
validation set (n=61) and compared with standard clinical 
prognostic factors to assess its additive value in patient 
prognostication.
Results  This selection process led to the identification 
of what we defined myeloid index score (MIS), which is 
composed by four cell subsets (CD14+, CD14+HLA-DRneg, 
CD14+PD-L1+ and CD15+ cells), whose frequencies 
above cut-offs stratified melanoma patients according to 
progressively worse prognosis. Patients with a MIS=0, 
showing no over-threshold value of MIS subsets, had the 
best clinical outcome, with a median survival of >33.6 
months, while in patients with MIS 1→3, OS deteriorated 
from 10.9 to 6.8 and 6.0 months as the MIS increased 
(p<0.0001, c-index=0.745). MIS clustered patients into 
risk groups also according to PFS (p<0.0001). The inverse 
correlation between MIS and survival was confirmed in the 
validation set, was independent of the type of therapy and 
was not interfered by clinical prognostic factors. MIS HR 

was remarkably superior to that of lactate dehydrogenase, 
tumor burden and neutrophil-to-lymphocyte ratio.
Conclusion  The MIS >0 identifies melanoma patients 
with a more aggressive disease, thus acting as a simple 
blood biomarker that can help tailoring therapeutic choices 
in real-life oncology.

BACKGROUND
Never like in the last decade the role of the 
immune system in cancer cure has been so 
strongly emphasized.1 Indeed, emerging 
evidence indicates that the level and the type 
of tumor immunity mounted by the host can 
profoundly influence disease progression and 
response to treatment in most human malig-
nancies and in the majority of cancer thera-
pies.2 Patients with pre-existing antitumor 
immunity, indicated by the presence of a rich 
and prevalent T-cell infiltrate,3 4 are generally 
endowed with a better prognosis and have 
higher chance of benefiting from chemo-
therapy, radiotherapy and immunotherapy.5–7 
In contrast, cancers with scant T-cell infil-
trates, also defined as ‘immune excluded’ and 
‘immune deserts’,8 often display a prevalence 
of immunosuppressive myeloid cell subsets, 
such as myeloid-derived suppressor cells 
(MDSC) and tumor-associated macrophages 
(TAM). This milieu represents the hallmark of 
a more aggressive disease and reduced sensi-
tivity to treatment.9–11 Thus, defining the level 
and the type of spontaneous tumor immunity 
can help in implementing patient prognosti-
cation and tailoring treatment intervention. 
Preclinical models clearly proved that the 
onset of protective tumor immunity requires 
the coordination of multiple cell types and 
tissues at organism-wide level.12 However, the 
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assessment of tumor immunological features has been 
largely focused on tumor biopsies through the quantifi-
cation and the spatial distribution of the immune infil-
trate.13 Systemic immune responses, which influence 
tumor rejection or tolerance, may be detectable in the 
peripheral circulation and hence exploitable to profile 
immunological cancer features at individual patient level.

This holds particularly true for MDSC, which are gener-
ated in the bone marrow by myelopoiesis, enter periph-
eral blood and then colonize tumor and immune-relevant 
sites to exert their regulatory functions.14 MDSC are noto-
riously a marker of cancer-associated immunosuppres-
sion and the hallmark of a poorly controllable disease in 
most human cancers.15–17 Preclinical studies have proved 
these cells to exert a broad array of protumor functions 
ranging from blunting T-cell immunity to promote neo-
angiogenesis, local fibrosis, extracellular matrix remod-
eling, epithelial-to-mesenchymal transition and metastatic 
dissemination.18 Their systemic accrual is associated with 
aggressiveness and anticipated resistance to treatment 
ranging from standard chemotherapy and targeted ther-
apies to immune checkpoint inhibitors (ICI).18 19 Despite 
the massive evidence of the role of MDSC as a corner-
stone in cancer progression, these cells remain a yet-to-
be-exploited biomarker in real-life clinical practice.20 
Among the multiple potential reasons the complexity of 
the phenotypic signatures required for MDSC quantifica-
tion may represent a concrete obstacle.20 Indeed, MDSC 
comprise heterogeneous cell subsets clustered by the 
expression of myeloid markers and a still growing panel 
of molecules associated with their functional properties. 
Canonically, in PBMC, they divide into CD11b+CD33+C-
D14+HLA-DR−/low monocytic (M)-MDSC,21 22 CD14−C-
D15+CD11b+ polymorphonuclear (PMN)-MDSC,23 and 
CD14−CD15−CD3−CD19−CD56−HLA-DR−CD11b+CD33+ 
early-MDSC (eMDSC).24 Additional markers that distin-
guish MDSC subsets from their non-suppressive counter-
parts are continuously emerging, such as LOX-1, FATP2, 
CD10 or CD16 for PMN-MDSC,25–28 or S100A9, IL-4Rα, 
PD-L1 as well as STAT1 and STAT3 in monocytic MDSC 
(M-MDSC).24 29 This indicates a dynamic scenario hardly 
reconcilable with clinical practice biomarkers. Further-
more, the recent introduction of high-dimensional 
single-cell mass cytometry as a tool for blood immune cell 
profiling is providing extraordinary insights into the func-
tional properties of circulating myeloid cells.30 However, 
defining a stable, simple but also comprehensive marker 
panel for translating MDSC quantification into real-life 
oncology compatibly with these findings is becoming a 
goal even harder to achieve.

Given these premises, we deemed it essential to investi-
gate whether a simple and easy-to-apply approach for the 
standardized quantification of MDSC could be identified. 
By a multistep process of marker screening and by the 
application of a machine learning statistical analysis, we 
sought to identify a ‘minimal marker core’ that captures 
the prognostic value of blood myeloid cells and that may 
be applied in management of melanoma patients.

METHODS
Study design
To identify the minimal marker core for myeloid/MDSC 
quantification in peripheral blood by flow cytometry, we 
relied on separate case sets of frozen PBMC collected 
from advanced melanoma patients, whose complete clin-
ical information were available. The choice was based on 
the aim of identifying, through standardized flow cytom-
etry staining, myeloid-related immune variables signifi-
cantly associated with different disease outcomes. To 
progressively cut down the required markers, we applied 
a three-step approach (figure  1). In step 1, the expres-
sion of canonical and functional MDSC-related markers 
was assessed by flow cytometry in PBMC obtained from 
the melanoma patients of the screening set (n=23), in 
comparison with healthy donors (n=21). The goal here 
was to eliminate redundant lineage markers or under-
represented cell subsets. In this step, the following 
markers were applied: CD14, CD15, HLA-DR, CD33, 
CD11b, homemade lineage pool (CD3, CD56, CD19, 
CD20), IL-4Rα, PD-L1, phospho (p)STAT1, pSTAT3, 
TLR4, LOX-1, CD10 and CD16. In step 2, the selected 
marker panel (CD14, CD15, HLA-DR, PD-L1, IL-4Rα and 
pSTAT3) was applied to baseline PBMC samples of the 
development set melanoma patients (n=59) to obtain 
potentially relevant myeloid variables. Thirteen variables 
(online supplemental table S1) were identified in PBMC 
based on their lineage CD14 or CD15 marker expres-
sion and the relative frequencies of CD14+ cell subsets 
expressing low HLA-DR or positivity for PD-L1, IL-4Rα 
or pSTAT3. Additionally, the geomean and the mean 
fluorescence intensity (GMean and Mean) of pSTAT3 
expression were introduced for a more extensive assess-
ment of this relevant hallmark for MDSC activity.31 These 
myeloid variables were then analyzed by the machine 
learning multivariate approach to verify whether patients 
could be divided into prognostic groups according to the 
above cut-off expression of any of these variables. Based 
on the ranking and on the optimal number of variables 
(n=4) most frequently selected by the adaptive index 
modeling (AIM) to fit the prognostic model, the analysis 
selected four of the 13 variables, that is, CD14+, CD15+, 
CD14+PD-L1+ and CD14+HLA-DRneg cells quantified as 
percentage in PBMC, referred from now on as ‘MIS’. 
In step 3, the prognostic value of MIS was then tested in 
baseline PBMC of the validation set patients (n=61).

Clinical information on melanoma patients and healthy donors
Melanoma patients were enrolled within a multicenter 
observational study conducted from 2010 to 2016 and 
comprised a total of 143 patients with unresectable stage 
IIIc to IV melanoma, Eastern Cooperative Oncology 
Group performance status scores of 0 to 2 and measur-
able disease, including brain metastases. Clinical data 
including demographics, disease stage, treatment, 
standard blood tests and other, are depicted in online 
supplemental table S2. High versus low tumor burden 
was defined according to the presence or absence, 
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respectively, of at least one of the following features: (1) 
high lactate dehydrogenase (LDH; more than 460 U/L); 
(2) metastases in three or more organs; and (3) sum of 
the longest diameters of metastatic lesions more than 
250 mm.32 The median follow-up period was 37.1 (devel-
opment set) and 19 (validation set) months. Patients 
received treatment until progression or discontinua-
tion for excessive side effects. Radiological (MRI or CT 
scans of brain, bone, chest, abdomen, pelvis and other 
soft tissue as applicable) and visual (skin lesion) tumor 
assessments were undertaken at baseline, weeks 12, 20, 
28, 36 and then every 12 weeks. Overall survival (OS) was 
defined as the time from baseline visit (day 0 of treat-
ment) to death from any cause. Progression-free survival 
(PFS) was the time from baseline visit to documented 
disease progression or death. The events observed were 
76 deaths (40 in the development and 36 in the valida-
tion sets) and 94 recurrences (45 in the development 
and 49 in the validation sets). In terms of treatment, 
development set patients received first-line/second-
line BRAF inhibitor (BRAFi) (n=34) according to the 
MO25515 multicenter phase II study (NCT01307397)33 
or ipilimumab+fotemustine (n=25) within the NIBIT-M1 
multicenter phase II study (EudraCT 2010-019356-50),32 
while the validation set patients were treated according 

to current clinical practice (BRAFi ±MEKinhibitor, MEKi, 
11/61; ipilimumab, 32/61; nivolumab, 17/61) or with 
ipilimumab+nivolumab (1/61) within the NIBIT-M2 trial, 
(EudraCT 2012-004301-27) (online supplemental figure 
S1). Patients received different schedules and combina-
tions based on the experimental and standard therapies 
available during the enrollment period.

Control PBMC from age-matched and gender-matched 
healthy blood donors were obtained from the Immuno-
hematology and Transfusion Medicine Service (SIMT) at 
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 
Italy. All patients and healthy donors signed an informed 
consent to donate blood for immunological analyses 
(protocols approved by the Institutional Ethical Commit-
tees INT39/11 and INT40/11).

Flow cytometry myeloid cell profiling in frozen PBMC
Blood samples (30 mL) were obtained from all mela-
noma patients in vacutainer EDTA (Becton Dickinson) 
and PBMC were isolated by Ficoll gradient (Leuco-sep 
polypropylene tubes, Thermo Fisher Scientific) within 
2 hours of blood collection. Isolated PBMC were frozen 
in Roswell Park Memorial Institute (RPMI) 1640 (Lonza) 
containing 10% dimethylsulfoxide (DMSO, Sigma) and 
30% fetal calf serum (Euroclone) in a cryobox (CoolCell, 

Figure 1  Study design. A three-step approach was applied. Step 1 served in the identification of the minimal myeloid cell 
variable core. Step 2 comprised the quantification of the myeloid cell variables in the development set samples and the 
definition of the MIS by adaptive index modeling. In step 3, the MIS was validated in the validation set samples. MDSC, 
myeloid-derived suppressor cells; MIS, myeloid index score.
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BioCision) and stored in liquid nitrogen to be then simul-
taneously tested by multicolor flow cytometry within each 
of the three, screening, development and validation steps 
of the study (figure 1). The monoclonal fluorochrome-
conjugated antibodies (mAbs) applied throughout the 
study are listed in online supplemental table S3. Thawed 
PBMC were incubated with live/dead (Thermo Fisher 
Scientific) staining for 30 min on ice and washed, treated 
with Fc blocking reagent (Miltenyi Biotec; 10 min at room 
temperature), before incubating with the different mAbs 
for 30 min at 4°C. Thereafter, samples were washed, fixed 
and acquired. For intracellular pSTAT1 and pSTAT3 
detection, PBMC were permeabilized using fixation 
buffer and perm buffer III (Becton Dickinson), according 
to manufacturer’s instructions. For each staining tube, 
0.5×106 cells per sample/matrix were used for all mAbs, 
apart from pSTAT intracellular detection that required 
1×106 cells per sample. However, according to our expe-
rience, the minimal need of biological material for MIS 
assessment was 0.5×106 cells, which could be generally 
obtained from about 1×106 fresh PBMC usually retriev-
able from 1 mL to 2 mL of peripheral blood.

Samples were acquired by Gallios FC 500 and Cytoflex 
flow cytometers, while obtained data were analyzed with 
Kaluza software (all Beckman Coulter), according to the 
gating strategies depicted in online supplemental figure 
S2. Gates were set based on isotype-matched control Abs 
for IL-4Rα, HLA-DR, PD-L1 and pSTAT3, while internal 
references were usually applied for lineage markers. 
Isotype control panels with the respective IgGs were 
included on basis of cell recovery after thawing, with 
generally 60% of patients in each experiment day having 
enough cells to allow isotype control inclusion. For intra-
cellular detection of pSTATs, the control IgGs were always 
included for each patient. Distinct cell subsets repre-
senting the myeloid variables were quantified in terms of 
frequency within PBMC and parent populations. As for 
the evaluation of GMean and Mean, these parameters 
were introduced only for the pSTAT3 marker, in addi-
tion to the percentage of positive cells to try capture any 
potential prognostic impact of a pathway highly reflecting 
MDSC activation and immunosuppressive activity.31 
To standardize the values of GMean and Mean here 
reported, instrument detector setup for FL2 channel 
was set so that the PE-Flow-set Pro bead peak gave the 
expected linear units in log-scale amplification. Given the 
crucial role of quality control (QC) in our standardized 
flow cytometry analyses, frozen PBMC of the same cohort 
(screening, development and validation sets) were evalu-
ated simultaneously or within a very limited time frame, 
in three separate experimental sessions, with samples 
randomized within the same session. Every experi-
ment included frozen PBMC from one or two healthy 
donors, stained with all single mAbs plus the mix, to set 
flow cytometer compensation. Daily QC included the 
use of Flow-Set Pro (Beckman, A69184) to standardize 
multiple lasers (blue, red and violet) applications, Flow-
Check Pro (Beckman, A63493) and CytoFLEX Daily QC 

Fluorospheres (Beckman, B53230), fluorescent micro-
spheres for optical alignment and fluidics system verifi-
cation. All samples of the development set were acquired 
with a Gallios FC500 flow cytometer, while the validation 
set samples were acquired using a Cytoflex flow cytometer. 
All used Abs were titrated to reach the optimal concen-
tration to use in the antibody panel mixes. Single mAb 
lots were used within the same experimental session. As 
PMN-MDSC, similar to PMN, are susceptible to freezing 
procedures, guidelines indicate that their reliable detec-
tion is confined to fresh cells.24 However, we verified that 
CD15+ cells could be reliably quantified in thawed PBMC 
using the ‘doublet exclusion gate’, without the live/dead 
exclusion (online supplemental figure S3A). Indeed, the 
testing of fresh versus frozen PBMC (performed in n=25 
matched samples from melanoma patients) revealed that, 
despite the significant number of reduced events, PMN-
MDSC cell morphology in terms of FSC/SSC is retained 
after thawing. Likewise, the positivity of cells for CD15 is 
specific with respect to isotype controls or other lineage 
markers, such as CD14 (online supplemental figure 
3A‒C). Interestingly, PMN-MDSC loss on freezing, that we 
estimated to be around 45%, seemed proportional to the 
initial cell frequency, as indicated by the direct correla-
tion (R2=0.8) observed between CD15+ in fresh versus 
matched frozen samples (online supplemental figure 
3D,E). In contrast, CD14+ monocytes appeared to be less 
sensitive to freezing, so that live/dead exclusion, which 
was performed based on guidelines, did not significantly 
impact the CD14+ cell frequencies (online supplemental 
figure 3A).

Statistical analyses
Standard descriptive statistics (absolute numbers of 
observed values and relative frequencies for categorical 
variables, medians and IQR for continuous variables) 
were used to describe the sample characteristics. OS and 
PFS were calculated as the intervals between the date 
of treatment start and the date of death for any cause/
relapse, with censoring occurring at the date of the last 
follow-up visit for event-free patients. These endpoints 
were described by Kaplan-Meier curves and analyzed with 
univariable and multivariable Cox regression models. 
As one of the studies (NIBIT-M1) of the development 
set was multicentric, the LDH values were standardized 
over the upper normal limit of the laboratories and the 
ratio so obtained was log-transformed, log(LDH), to 
moderate the markedly skewed ratio distribution. Multi-
variable models were built by AIM,34 a machine learning 
method incorporating variable selection and dichotomi-
zation. Briefly, a set of binary rules such as ‘marker X>c’ 
(or ‘marker X<c’) for each of the K markers was identi-
fied, where the chosen cut-off was the value c that maxi-
mizes the score test statistics. Variables were sequentially 
added according to a forward selection procedure, each 
time selecting the variable with the highest statistic score. 
The overall number of variables retained in the model 
was chosen by means of cross-validation. The output was 
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an index score that, based on the AIM algorithm, selects 
a subgroup of variables exceeding the identified cut-offs 
at the individual patient level. For univariate and multi-
variate analyses, missing data imputation was applied, 
as the values for some clinical variables (such as LDH, 
neutrophil-to-lymphocyte ratio, NLR, absolute neutro-
phil count, ANC and white blood cells, WBC) were not 
available in about 20% patients. We applied ‘missForest’, 
a random forest approach that allows to handle multivar-
iate data consisting of continuous and categorical vari-
ables simultaneously, while consenting the assessment 
of the quality of imputation by estimating out-of-bag 
(OOB) imputation error.35 OOB performance estimates 
quantifying the quality of imputation were: NRMSE=0.93 
(normalized root mean squared error) for continuous 
variables and PFC=0.03 (proportion of falsely classified 
entries) for categorical variables.

Cox model performance was assessed by computing 
bootstrap-adjusted Harrell’s concordance c-index. Anal-
yses on the pooled set of 120 melanoma patients were 
performed after 10-fold multiple imputation of missing 
data using a random forest approach.35 Longitudinal anal-
ysis of myeloid populations was based on pairwise t-tests. 
Statistical analyses were performed with SAS (V.9.2, SAS 
Institute) and R software (V.3.1.1, R Foundation for Statis-
tical Computing). The conventional two-sided 5% level 
was chosen as the threshold of statistical significance.

RESULTS
Identification of the minimal core of myeloid cell variables
Despite the existing guidelines, the continuous identifi-
cation of a still growing number of markers aimed at a 
more specific discrimination of MDSC subsets compli-
cates the achievement of a definitive consensus on MDSC 
signatures. This could represent one main reason for the 
scarce implementation of peripheral blood MDSC assess-
ment in real-life clinical practice. Indeed, MDSC assess-
ment involves the detection of complex and technically 
challenging flow cytometry signatures. To overcome this 
limit, we sought to investigate whether a ‘minimal myeloid 
cell variable core’ could capture the global prognostic 
value of blood MDSC accrual. To this aim, we designed 
a study based on PBMC frozen samples collected from 
advanced melanoma patients, whose clinical information, 
including disease outcome, were available. The choice of 
using frozen samples was motivated by the possibility of 
identifying prognostic variables, while minimizing inter-
assay variability by running simultaneous flow cytometry 
within the same experimental case set. The use of thawed 
samples could be associated with a potentially heteroge-
neous loss of cells depending on the type of myeloid cell 
subset, referring in particular to the highly susceptible 
PMN/PMN-MDSC population. For this reason, a consis-
tent comparison of matched frozen versus fresh PBMC 
was performed to develop reliable staining procedures, 
as reported in the Methods section.

To define the minimal myeloid marker core, stored 
PBMC were submitted to a multistep process finalized to 
first define a panel of essential MDSC-related markers, 
which were then evaluated for their prognostic value, 
singly and jointly, by a machine learning multivariate 
approach, to provide the most potent myeloid score 
with the lowest possible number of myeloid cell variables 
(figure 1).

In step 1 screening phase, we defined an essential 
MDSC-related marker panel using PBMC from n=23 
stage IIIc to IV melanoma patients and n=21 age and 
gender-matched healthy donors as a platform. We 
observed that the canonical myeloid markers CD33 and 
CD11b24 were redundant with respect to CD14 expressed 
by monocytes and M-MDSC, as well as CD15 expressed 
by PMN-MDSC. Indeed, CD14+ and CD14+HLA-DR− 
cells showed completely overlapping frequencies when 
the gating strategy included or not CD33 and CD11b 
markers (online supplemental figure S4A,B). Similarly, 
PMN-MDSC quantified as CD15+ or CD15+CD11b+ cells 
provided analogous percentages (online supplemental 
figure S4C). We also observed that the subset of e-MDSC, 
which is defined by the lack of most lineage markers as 
CD14−CD15−CD3−CD19−CD56−HLA-DR−CD11b+CD33+ 
cells, was substantially undetectable (<1%) in our case set 
(data not shown). Based on this observation and given 
our goal to minimize the MDSC-related marker panel, we 
decided to exclude eMDSC from subsequent analyses.

To enrich our phenotypic analysis with functional 
molecules that have been reported in literature to poten-
tially associate with MDSC activation and differentiation 
pathways, the expression levels of PD-L1, IL-4Rα, TLR4, 
pSTAT1 and pSTAT3 was also explored in the screening 
melanoma set of patients with respect to a group of age 
and gender-matched healthy donors. Results showed 
that while TLR4 and pSTAT1 were expressed either by 
the totality of CD14+ cells and/or with no significant 
differences between melanoma patients and donors, 
the percentages of PD-L1, pSTAT3 and IL-4Rα-posi-
tive monocytes displayed significant differences (online 
supplemental figure 4D), suggesting potential prognostic 
implications. For the definition of PMN-MDSC, we used 
a gating procedure that allowed reliably detecting these 
cells in thawed PBMC by their CD15+ expression, as 
detailed in the Methods section. Cells expressing other 
PMN-MDSC markers such as LOX-1, CD10 and CD16 
consistently expressed also CD15 and were represented 
in different and heterogeneous proportions within the 
CD15+ PMN-MDSC gate, as shown in the representative 
plots of online supplemental figure 4E. This suggested 
that CD15 could sufficiently encompass the diverse PMN-
MDSC subsets in our setting.

In sum, the panel of essential MDSC markers emerging 
from the screening included CD14, CD15, HLA-DR, 
PD-L1, IL-4Rα and pSTAT3, leading to the definition of 
the myeloid cell variables (online supplemental table S1) 
to be then assessed in the development set for prognostic 
impact by machine learning multivariate analysis.
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Development and validation of the MIS
Steps 2 and 3 of the study (figure  1) were performed 
with samples of a total of 120 stage IIIc to IV metastatic 
melanoma patients, whose clinical features are depicted 
in online supplemental table S2. Divided into develop-
ment (n=59) and validation (n=61) sets, these patients 
were enrolled at baseline of first or second line therapy 
with BRAFi±MEKi (n=45) or ICI-based treatments (ipili-
mumab, nivolumab or both; n=75) (online supplemental 
figure 1). In step 2, PBMC samples from melanoma 
patients of the development set were evaluated for the 
frequencies of the myeloid cell variables selected in the 
screening phase and comprising CD14+, CD15+, CD14+H-
LA-DR−, CD14+PD-L1+, CD14+IL-4Rα+ and CD14+pSTAT3+ 
(online supplemental table S1). pSTAT3 expression was 
also evaluated as GMean and Mean for a deeper assess-
ment of this relevant MDSC activity pathway.31 Obtained 
data was then crossed with patient disease outcome eval-
uated as PFS and OS. The AIM was applied to build a 
prognostic score, which incorporated the joint contribu-
tion of all myeloid cell variables to the clinical outcome. 
The machine learning approach produced a ranking of 
the immune variables associated with disease outcome 
and showed that four of them were most frequently 
retrieved as fitting the predictive model (online supple-
mental figure S5A). The four selected variables were 
those included in the MIS and were represented by 
CD14+, CD15+, CD14+HLA-DRneg and CD14+PD-L1+ in 
PBMC. As depicted in online supplemental figure S5B, 
the frequency of the CD14+HLA-DRneg and CD14+PD-L1+ 
in the CD14+ population ranked right after the first four 
variables, with Max score values (the observed partial like-
lihood score test statistics for the main effect, whose lower 
values indicate a better fitting) slightly higher than those 
displayed by the same cell subsets in PBMC. The MIS 
stratified melanoma patients according to progressively 
shorter OS (figure 2A). These variables showed different 
cut-off points but always corresponded to relatively 
high percentiles (75% for CD15+, 89% for CD14+ and 
CD14+PDL-1+ cells, 85% for CD14+HLA-DRneg, table 1). 
The levels above cut-off of any of the identified cell 
subsets consistently implied a higher risk of progression, 
indicating the existence of positive association patterns.

The MIS allowed the detection of four melanoma 
patient groups characterized by 0, 1, 2 or 3 variables 
exceeding their respective cut-off values (table 2). There 
was a notable difference in OS between patients with no 
factors exceeding the cut-off values (MIS=0, 36 patients, 
median OS >33.6 months) and the remaining patients 
(MIS 1→3, 23 patients), whose median OS progressively 
deteriorated from 10.9 (MIS 1) to 6.8 (MIS 2) and 6.0 
months (MIS3) (figure  2A). The degree of divergence 
among the curves was statistically significant (p<0.0001) 
and HR rose from 5.85 for MIS 1 to 12.7 and 32.6 for MIS 
2 and 3, respectively, with respect to MIS 0 (c-index=0·745, 
table 3).

MIS divided melanoma patients into four groups also 
in terms of PFS (p<0.0001) (figure  2B), indicating a 

potential impact of the score on response/resistance to 
therapy as well. When we stratified the patients according 
to the type of therapy applying a dichotomized MIS 
(with MIS=1 to 3 groups collapsed to avoid sparse data), 
MIS>0 was strongly associated with worse OS and PFS with 
respect to MIS=0 in both BRAFi-treated (p<0.0001) and 
ICI-treated (p<0.0001, p=0.0024) patients (figure 2C,D). 
This evidence suggests that MIS has a prognostic value, 
indicating that systemic myeloid cell dysfunctions 
contribute to the treatment resistance not only for ICI 
but also for targeted therapies, as already indicated in 
multiple preclinical and clinical settings.

In step 3, MIS variables were then tested in the valida-
tion set (n=61) applying the above selected cut-offs. MIS=0 
was less represented with respect to the development set 
(36/59 development versus 13/61 validation), while a 
MIS=4 group displaying all the variables above the cut-
offs appeared (online supplemental table S4 and online 
supplemental figure S6A,B) in line with the worse clinical 
outcomes observed for validation set patients with respect 
to those of the development set (online supplemental 
table 2 and online supplemental figure 7). As expected, 
also in the validation set MIS stratified melanoma patients 
into groups with progressively worse disease outcomes as 
the MIS increased, both in terms of OS (p<0.0001) and 
PFS (p<0.0001) and again independently of therapy with 
ICI or BRAFi/MEKi (online supplemental figure S6A-C).

Altogether, these analyses point to MIS as a potent 
biomarker for capturing the negative prognostic value of 
circulating myeloid cells in advanced melanoma patients 
based on the expression of four phenotypic targets.

Prognostic effect of MIS with respect to clinical variables and 
biomarkers
Even if based on a simple test strategy, MIS assessment 
requires some technical efforts related to PBMC isolation 
and the use of flow cytometry, a detection approach not 
so frequently applied in oncological diagnostics. To prove 
the additive value of MIS quantification in management 
of melanoma patients, we compared its prognostic effect 
with respect to that of clinical variables routinely used 
in standard practice, including the NLR recently revis-
ited as a reliable prognostic factor potentially related to 
PMN-MDSC.23

To match the prognostic effects of MIS with respect 
to the clinical variables, we analyzed the whole case set 
of 120 melanoma patients, by pooling development 
and validation set patient data to consent a more solid 
model tuning and re-estimated the MIS on the basis of 
optimized cut-offs (figure  3A–C, (online supplemental 
table 5A). The distribution of dichotomized MIS in the 
global population showed that a MIS>0 intercepted about 
45% of advanced stage IIIc to IV melanoma patients, with 
n=31, 13, 7 and 4 patients displaying MIS 1, 2, 3 and 4, 
respectively (figure  3D and online supplemental table 
5B). Of note, the analysis of the entire cohort with the 
original cut-offs defined in the development set showed 
overlapping results (online supplemental figure S8).
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Figure 2  MIS in the development set. (A) MIS in the OS and (B) in the PFS. (C) MIS in the OS of patients receiving ICI (left 
panel) or BRAFi (right panel) based on dichotomized classification (0; >0). (D) MIS in the PFS of melanoma patients receiving ICI 
(left panel) or BRAFi (right panel) based on dichotomized classification (0; >0). BRAFi, BRAF inhibitor; ICI, immune checkpoint 
inhibitors; MIS, myeloid index score; OS, overall survival; PFS, progression-free survival; pts, patients.
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table 4 depicts the results of the univariate Cox model 
analysis of the whole patient case set, with MIS and clin-
ical variables analyzed as continuous parameters or 
dichotomized as indicated. This analysis revealed that 
MIS displayed the highest HR (HR 8.3, p<0.0001) among 
all the variables, including LDH, WBC, ANC, tumor 
burden, stage and NLR. HR estimate for NLR (HR 1.73, 
p<0.0001) is consistent with published data and recent 
meta-analyses.36 In addition, other blood cell count 
parameters such as absolute monocyte count (AMC) and 
lymphocyte-to-monocyte ratio (LMR), showed significant 
HRs although with lower P values. Of note, the single MIS 
variables (CD14+, CD15+, CD14+PD-L1+ and CD14+HLA-
DRneg) displayed statistically significant correlations with 
OS, but their HRs (ranging from 1.2 to 3.7) were lower 
than that displayed by MIS (HR 8.3), indicating the 
potentiating effect of our score with respect to the single 
MDSC subset quantification (table 4). Notably, univariate 
analyses of MIS variables according to dichotomization, 
calculated based on new cut-offs optimized on univariate 
analyses with the same criteria used for the construction 
of MIS, showed that all four variables retained significant 
HR estimates (table 5).

Finally, we assessed by multivariate joint modeling the 
independence and the implementing contribution of MIS 
with respect to prognostic clinical biomarkers commonly 
applied in melanoma patients such as LDH, tumor burden 
and NLR. The results obtained by this analysis showed a 
still high HR of the MIS (HR 9.25, p=0.0001), confirming 
that the prognostic effect of our score is solid despite the 
adjustment of the other variables (figure 4A). A compa-
rable analysis including instead NLR, showed a weaker 

association with OS (HR 1.42, p=0.0469), indicating that 
in this case, the addition of the other variables influences 
and reduces the prognostic effect of the NLR (figure 4B).

Thus, the overall performance of the multivariate anal-
ysis was better when the model included MIS (Harrell 
c=0.81) rather than NLR (Harrell c=0.71), supporting the 
implementing value of the MIS as clinical parameter for 
prognostication of melanoma patients. When both MIS 
and NLR were incorporated in the multivariable model 
(figure 4C), only MIS retained its prognostic effect, while 
the effect of NLR was even more attenuated and lost its 
statistical significance. These findings further demon-
strate that NLR could not be a valid competitor of our 
MIS as a predictive tool.

DISCUSSION
Although cancer survival rate has significantly improved 
over the years, it is well established that patients displaying 
specific tumor-related immune dysfunctions, such as 
systemic myeloid cell accrual or lack of local immune 
surveillance, rapidly progress and poorly respond to 
treatment.17 Nevertheless, standardized biomarkers to 
intercept these patients in real-life clinical practice are 
still scanty. Here we propose to exploit the MIS to fill 
this gap in melanoma. The MIS represents a relatively 
simple flow cytometry blood test that could be applied 
to metastatic melanoma patients for implementing stan-
dard prognostic factors and plan therapeutic choices also 
on the basis of individual immunological features. MIS 
is built on the combined expression of four lineage and 
functional myeloid markers that emerged to sufficiently 
surrogate MDSC prognostic value. Indeed, MIS stratifies 
melanoma patients into groups with progressively shorter 
OS and PFS and when >0, it identifies patients with 8.3 
HR of treatment failure, as assessed in univariate analysis 
(table 4). The prognostic effect of MIS is independent of 
clinical parameters, such as tumor burden, stage, LDH, 
line of treatment and NLR.37 Interestingly, MIS ability to 
intercept poor outcome of patients is significantly higher 
than that displayed by all the tested clinical and biological 
factors, providing its additive value in melanoma patient 
clinical management.

Myeloid cells are a plastic population, whose role in 
cancer can be complex and divergent depending on the 
functional state and which is regulated by fine metabolic 

Table 1  MIS cut-offs and quantiles in the development set

Variable
(in PBMC, %) Cut-off Quantile No. >cut-off

CD14+HLA-DRneg >2.90 85.00 26

CD14+PD-L1+ >4.50 89.00 15

CD14+ >20.00 89.00 29

CD15+ >1.87 75.00 20

PBMC, peripheral blood mononuclear cells.

Table 2  Classification and distribution according to MIS 
variables in the development set

MIS Verified condition No.

0 No-one simultaneously 36

1 One 12

2 Two simultaneously 7

3 Three simultaneously 4

4 All simultaneously 0

Total 59

MIS, myeloid index score.

Table 3  Multivariable Cox model of HR stratified by MIS on 
OS

MIS (reference) HR (95% CI) P value*

1 (0) 5.85 (2.63 to 13.00) <0.0001

2 (0) 12.71 (4.75 to 34.00)

3 (0) 32.63 (8.73 to 122.02)

c-index: 0·745.
*P value with two-sided Wald test.
MIS, myeloid index score.
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pathways that are becoming a target of emerging anti-
inflammatory and anti-cancer strategies.38 Nevertheless, 
their central role in virtually all treatment modalities, 
including surgery, chemotherapy, radiotherapy, immu-
notherapy and targeted therapy, is still largely unex-
plored. Our study proves that few and general markers 
encompassing both monocytic and granulocytic cells, 
including MDSC, provide an overview on the prognostic 
impact that myeloid blood cells can exert in melanoma 
patients. Indeed, MIS includes CD14+, CD14+HLA-DRneg, 

CD14+PD-L1+ and CD15+ cells, which are all cell subsets 
largely proved to be involved in cancer-related immuno-
suppression and disease aggressiveness.21 27 39–42

The AIM sequentially includes variables to the extent 
that they provide additional predictive information. Our 
MIS, in which three of the four selected features include 
total CD14+ cells and two CD14+ subsets (HLA-DRneg and 
PD-L1+) can be potentially explained by the existence of 
one or more additional underlying and still unknown 
subpopulation(s) of CD14+ cells, which is/are better 

Figure 3  MIS in the global population. (A) MIS in OS. (B) MIS in PFS according to optimized cut-offs. (C) MIS in the OS of 
melanoma patients receiving ICI (left panel) or BRAFi/BRAFi+MEKi (right panel) based on dichotomized classification (0; >0). 
(D) Distribution of the 120 melanoma patients stratified by MIS (0 to 4) calculated according to optimized cut-off levels. Red, 
positive; white: negative. BRAFi, BRAF inhibitor; ICI, immune checkpoint inhibitors; MEKi, MEK inhibitor; MIS, myeloid index 
score; OS overall survival; PFS, progression-free survival; pts, patients.
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quantified by the combination of all subsets rather than 
by any single CD14+ feature.

Levels above the cut-offs of any of these subsets are 
sufficient to predict significantly poorer OS and PFS on 
therapy. This implies that melanoma-associated myeloid 
alterations may be phenotypically heterogeneous even 
among patients with the same malignancy and stage, due 
to different myelo-conditioning tumor properties and 
likely inter-individual variability.

The fact that the frequencies of CD14+HLA-DRneg and 
CD14+PD-L1+ subsets appeared to be more prognostically 
relevant when referred to total PBMC than when calcu-
lated within CD14+ cells should not be ascribed to the 
indirect prognostic influence of CD14+ population per 
se, since the AIM is supposed to select only independent 

and non-redundant variables. Rather, these data suggest 
that a potential impact could be displayed by the non-
myeloid population present in PBMC, for instance 
lymphocytes. Indeed these cells, representing the vast 
majority of PBMC, are not included in the present algo-
rithm, but they could still indirectly influence prognosis. 
For instance, the frequency of CD14+HLA-DRneg and 
CD14+PD-L1+ cells could impact on the frequency in 
PBMC of selected lymphocyte cell subsets that, in turn, 
have also prognostic relevance. This hypothesis is in a 
way suggested by the evidence that T-cell subsets such as 
CD8+PD-1+ T cells inversely correlate with the frequency 
of CD14+HLA-DRneg cells, as assessed in a group of the 
MIS patients (data not shown).

Table 4  Univariate analyses of the MIS and other clinical variables

Variable HR 95% CI P value

CD14+HLA-DRneg* 1.5869 1.5321 to 1.6438 <0.0001

CD14+PD-L1+* 1.5711 1.4753 to 1.6731 <0.0001

CD14+* 3.7135 3.3118 to 4.1640 <0.0001

CD15+* 1.2116 1.1853 to 1.2386 <0.0001

MIS (>0 vs 0) 8.3281 7.0773 to 9.7999 <0.0001

NLR* 1.7275 1.6127 to 1.8506 <0.0001

Tumor burden (high vs low) 2.1928 1.8942 to 2.5385 <0.0001

ANC* 1.4357 1.3575 to 1.5185 <0.0001

log(LDH)* 2.0613 1.8610 to 2.2832 <0.0001

WBC* 1.4524 1.3680 to 1.5420 <0.0001

Stage (M1c vs others) 1.8326 1.5744 to 2.1331 <0.0001

Pretreatment (Yes vs No) 1.2472 1.0717 to 1.4515 0.0043

BRAF mutation (Yes vs No) 1.2444 1.0777 to 1.4369 0.0029

Age* 1.1392 1.0043 to 1.2922 0.0427

LMR* 0.6590 0.4800 to 0.9048 0.0099

AMC* 1.4994 1.1720 to 1.9182 0.0013

Therapy (ICI vs BRAFi/MEKi) 1.1396 0.9842 to 1.3196 0.0805

Gender (M vs F) 0.7749 0.6706 to 0.8953 0.0005

*Continuous variables, evaluated as contrast of the fourth versus the first quartile of the variable distribution.
AMC, absolute monocyte count; ANC, absolute neutrophil count; BRAFi, BRAF inhibitor; ICI, immune checkpoint inhibitor; LDH, lactate 
dehydrogenase; LMR, lymphocyte-to-monocyte ratio; MEKi, MEK inhibitor; MIS, myeloid index score; NLR, neutrophil-to-lymphocyte ratio; 
WBC, white blood cells.

Table 5  Univariate analysis of MIS variables after dichotomization*

Variable HR 95% CI Cut-off P value

CD14+HLA-DRneg 6.6236 2.6215 to 16.7361 >3.80 <0.0001

CD14+PD-L1+ 7.7874 3.0801 to 19.6893 >4.50 <0.0001

CD14+ 5.4763 2.7027 to 11.0960 >16.60 <0.0001

CD15+ 6.0004 2.8211 to 12.7637 >1.87 <0.0001

*MIS variables were dichotomized according to the indicated cut-offs, calculated as optimized on univariate analyses. The level of statistical 
significance was set at the conventional 5% two‑sided level.
MIS, myeloid index score.
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The heterogeneity of treatments received by patients 
evaluated within this study might represent a limitation. 
Indeed, the treatments included single/double BRAFi 

and MEKi, ICI as monotherapy (with a prevalence of 
ipilimumab versus nivolumab) or in combination with 
chemotherapy. Additionally, the therapies were not 

Figure 4  Joint assessment of MIS and clinical variables. (A) Forest plot representing HR of Cox multivariable model obtained 
by backward selection. (B) Forest plot representing HR of Cox multivariable model of the clinical variables without MIS. (C) 
Forest plot representing HR of Cox multivariable model of the clinical variables with MIS. The categorical variables gender, 
tumor burden, pretreatment, therapy and stage were modeled as such, while age, log(LDH) and NLR were linearly modeled as 
continuous variables. HR estimates were referred to the corresponding IQR. BRAFi, BRAF inhibitors; ICI, immune checkpoint 
inhibitors; LCL, lower confidence limit; log(LDH), log-transformed lactate dehydrogenase; MEKi, MEK inhibitor; MIS, myeloid 
index score; UCL, upper confidence limit; NLR, neutrophil-to-lymphocyte ratio.
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totally comparable between discovery and validation 
cohorts. However, this scenario reflects the times of 
enrollment, witnessing ICI experimental testing and then 
approval, as well as the flourishing of multiple pharma-
driven competing clinical trials. Because of this hetero-
geneity, we were unable to perform subgroup analyses in 
melanoma patients treated with the same drugs, which 
would have been of great interest in a clinical perspec-
tive. However, we believe that a finding across different 
treatments strengthens the value of our approach in 
prognostication.

Our study was purposely designed on retrospectively 
collected melanoma patient case sets and frozen PBMC. 
In fact, this approach allowed developing a myeloid-
related prognostic score thanks to the availability of 
clinical outcome data and the minimized inter-assay vari-
ability consented by simultaneous flow cytometry of the 
same case set samples. The MIS represents a test that can 
be rapidly performed with quite limited amount of PBMC 
and could be applied to retrospectively stratify melanoma 
patients enrolled in clinical trials comprising PBMC collec-
tion and storage. The control experiments performed 
here and the adapted gating strategies indicated that 
thawed PBMC can be reliably profiled for myeloid cell 
subset quantification, despite a significant but propor-
tional loss of mainly PMN-MDSC on freezing. However, 
we have no evidence yet that the MIS cut-offs defined in 
these experimental conditions could be applied to fresh 
PBMC, a required condition for a real translation of the 
MIS from bench to bedside. We also acknowledge that 
PBMC separation may represent an additional obstacle 
to the broad application of MIS or other MDSC-related 
quantification tests in clinical practice and a potential 
source of technical variations linked to sample handling. 
For this reason, and in line with a recent call by the Milieu 
Interieur Consortium to develop whole blood-based 
immune cell phenotyping,43 we received funding from 
the ERA PerMed 2020–2023 Program (Project: Quanti-
fying systemic immunosuppression to personalize cancer 
therapy, Reference number: ERAPERMED2019-320)44 
to develop a whole blood MIS-related assay in prospec-
tive study, which includes a large number of patients 
with different solid malignancies. Indeed, a systematic 
and standardized quantification of blood MDSC across 
different cancer clinical settings would reveal if the quan-
tification of individual systemic myeloid cell dysfunctions 
might help personalize real-life cancer therapy. As MDSC 
are also potent mediators of pro-tumor activity, patients 
displaying high accrual of these cells could be scheduled 
to treatments impacting the number or function of these 
cells. The growing evidence that standard therapies, 
including chemotherapy or anti-angiogenics,6 45 poten-
tiate tumor immunity through their off-target effects on 
myelopoiesis, suggests that MIS might also support the 
design of new strategies aimed at maximizing clinical 
synergy.

CONCLUSION
In summary, we propose the MIS as a tool to identify 
melanoma patients unlikely to benefit from current 
therapeutic strategies because of their systemic myeloid 
dysfunctions. MIS is based on a few fundamental myeloid 
alterations in baseline blood and identifies melanoma 
patients at high risk of early progression, independent of 
type of therapy. Our results warrant ongoing and future 
clinical trials to understand if myeloid conditioning could 
potentiate treatment efficacy and favor disease outcome. 
MIS may help stratifying melanoma patients and select 
treatment according to individual systemic immune 
dysfunctions.
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