ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)
ARS MATHEMATICA CONTEMPORANEA 22 (2022) \#P2.07
https://doi.org/10.26493/1855-3974.2443.02e
(Also available at http://amc-journal.eu)

Generalised dihedral CI-groups

Ted Dobson * (ㄷ)
University of Primorska, UP IAM, Muzejski trg 2, SI-6000 Koper, Slovenia, and University of Primorska, UP FAMNIT, Glagoljasska 8, SI-6000 Koper, Slovenia

Mikhail Muzychuk (
Department of Mathematics, Ben-Gurion University of the Negev, Israel

Pablo Spiga (1)
Dipartimento di Matematica e Applicazioni, University of Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy

Received 24 September 2020, accepted 16 August 2021, published online 27 May 2022

Abstract

In this paper, we find a strong new restriction on the structure of CI-groups. We show that, if R is a generalised dihedral group and if R is a CI-group, then for every odd prime p the Sylow p-subgroup of R has order p, or 9 . Consequently, any CI-group with quotient a generalised dihedral group has the same restriction, that for every odd prime p the Sylow p-subgroup of the group has order p, or 9 .

Keywords: CI-group, DCI-group, generalised dihedral, Cayley isomorphism.
Math. Subj. Class. (2020): 05E18, 05E30

1 Introduction

Let R be a finite group and let S be a subset of R. The Cayley digraph of R with connection set S, denoted Cay (R, S), is the digraph with vertex set R and with (x, y) being an arc if and only if $x y^{-1} \in S$. Now, Cay (R, S) is said to be a DCI-graph (here $C I$ stands for Cayley isomorphic while the D stands for directed), if whenever Cay (R, S) is isomorphic to $\operatorname{Cay}(R, T)$, there exists an automorphism φ of R with $S^{\varphi}=T$. Clearly,

[^0]$\operatorname{Cay}(R, S) \cong \operatorname{Cay}\left(R, S^{\varphi}\right)$ for every $\varphi \in \operatorname{Aut}(R)$ and hence, loosely speaking, for a DCIgraph Cay (R, S) deciding when a Cayley digraph over R is isomorphic to $\operatorname{Cay}(R, S)$ is theoretically and algorithmically elementary, but computationally efficient only if $\operatorname{Aut}(R)$ is small; that is, the solving set for $\operatorname{Cay}(R, S)$ is reduced to simply $\operatorname{Aut}(R)$ (for the definition of a solving set see for example [24, 26]). The group R is a DCI-group if Cay (R, S) is a DCI-graph for every subset S of R. Moreover, R is a $C I$-group if Cay (R, S) is a DCI-graph for every inverse-closed subset S of R. Thus every DCI-group is a CI-group.

After roughly 50 years of intense research, the classification of DCI- and CI-groups is still open. The current state of the art in this problem is as follows. There exist two rather short lists of candidates for DCI- and CI-groups and it is known that every DCI- and every CI-group must be a member of the corresponding list, see for instance [20]. Showing that a candidate on the lists of possible DCI- or CI-groups is actually a DCI- or CI-group, though, takes a considerable amount of effort. Just to give an example, the recent paper of Feng and Kovács [15] is a tour de force that shows that elementary abelian groups of rank 5 are DCI-groups.

In this paper we find an unexpected new restriction on which generalised dihedral groups are CI-groups, and significantly shorten the list of candidates for CI-groups.

Definition 1.1. Let A be an abelian group. The generalised dihedral group $\operatorname{Dih}(A)$ over A is the group $\left\langle A, x \mid a^{x}=a^{-1}, \forall a \in A\right\rangle$. A group is called generalised dihedral if it is isomorphic to $\operatorname{Dih}(A)$ for some A. When A is cyclic, $\operatorname{Dih}(A)$ is called a dihedral group.

Our main result is the following.
Theorem 1.2. Let $\operatorname{Dih}(A)$ be a generalised dihedral group over the abelian group A. If $\operatorname{Dih}(A)$ is a CI-group, then, for every odd prime p the Sylow p-subgroup of A has order p, or 9. If $\operatorname{Dih}(A)$ is a DCI-group, then, in addition, the Sylow 3-subgroup has order 3.

Generalised dihedral groups are amongst the most abundant members in the list of putative CI-groups. The importance of Theorem 1.2 is the arithmetical condition on the order of such groups, which greatly reduces even further the list of candidates for CI-groups. We believe that every generalised dihedral group satisfying this numerical condition on its order is a genuine CI-group. (This is in line with the partial result in [8].) Additionally, this result further reduces to two other groups on the list, whose definitions we now give.

Definition 1.3. Let A be an abelian group such that every Sylow p-subgroup of A is elementary abelian. Let $n \in\{2,4,8\}$ be relatively prime to $|A|$. Set $E(A, n)=A \rtimes\langle g\rangle$, where g has order n and $a^{g}=a^{-1}, \forall a \in A$.

Note that $E(A, 2)=\operatorname{Dih}(A)$. The groups $E(A, 4)$ and $E(A, 8)$ have centres Z_{1} and Z_{2} of order 2 and 4 , respectively, and $E(A, 4) / Z_{1} \cong E(A, 8) / Z_{2} \cong \operatorname{Dih}(A)$. Babai and Frankl [2, Lemma 3.5] showed that a quotient of a (D)CI-group by a characteristic subgroup is a (D)CI-group, while the first author and Joy Morris [7, Theorem 8] showed that a quotient of a (D)CI-group is a (D)CI-group. Applying either result and Theorem 1.2 we have the following.

Corollary 1.4. If $E(A, 4)$ or $E(A, 8)$ is a CI-group, then, for every odd prime p the Sylow p-subgroup of A has order p or 9 . If $E(A, n), n \in\{2,4,8\}$ is a DCI-group, then, in addition, $n \neq 8$ and the Sylow 3-subgroup of A has order 3 .

Not much is known about which of the groups under consideration in this paper are CI-groups. Let p be a prime. Babai [1, Theorem 4.4] showed $D_{2 p}$ is a CI-group. The first author [4, Theorem 22] extended this to some special values of square-free integers. With Joy Morris, the first and third authors [8] showed that $D_{6 p}$ is a CI-group, $p \geq 5$. Also, Li, Lu , and Pálfy showed $E(p, 4)$ and $E(p, 8)$ are CI-groups.

We have one other result of interest, for which we will need an additional definition.

Definition 1.5. Let G be a group, and $S \subseteq G$. A Haar graph of G with connection set S has vertex set $G \times \mathbb{Z}_{2}$ and edge set $\{\{(g, 0),(s g, 1)\}: g \in G$ and $s \in S\}$.

So a Haar graph is a bipartite analogue of a Cayley graph. There is a corresponding isomorphism problem for Haar graphs, and if the group A is abelian, it is equivalent to the isomorphism problem for Cayley graphs of generalised dihedral groups $\operatorname{Dih}(A)$ that are bipartite (for nonabelian groups the problems are not equivalent, as for non-abelian groups Haar graphs need not be transitive), see [17, Lemma 2.2]. If isomorphic bipartite Cayley graphs of $\operatorname{Dih}(A)$ are isomorphic by group automorphisms of A, we say A is a BCI-group. We will also show that \mathbb{Z}_{3}^{k} is not a BCI-group for every $k \geq 3$, while it is known that \mathbb{Z}_{3}^{k} is a CI-group for every $1 \leq k \leq 5$ [32].

1.1 Some notation

Babai [1, Lemma 3.1] has proved a very useful criterion for determining when a finite group is a DCI-group and, more generally, when Cay (R, S) is a DCI-graph.

Lemma 1.6. Let R be a finite group, and let S be a subset of R. Then, Cay (R, S) is a DCI-graph if and only if $\operatorname{Aut}(\operatorname{Cay}(R, S))$ contains a unique conjugacy class of regular subgroups isomorphic to R.

Let Ω be a finite set and let G be a permutation group on Ω. An orbital graph of G is a digraph with vertex set Ω and with arc set a G-orbit $(\alpha, \beta)^{G}=\left\{\left(\alpha^{g}, \beta^{g}\right) \mid g \in G\right\}$, where $(\alpha, \beta) \in \Omega \times \Omega$. In particular, each orbital graph has for its arcs one orbit on the ordered pairs of elements of Ω, under the action of G. Moreover, we say that the orbital graphs $(\alpha, \beta)^{G}$ and $(\beta, \alpha)^{G}$ are paired. When $(\alpha, \beta)^{G}=(\beta, \alpha)^{G}$, we say that the orbital graph is self-paired.

When G is transitive and $\omega_{0} \in \Omega$, there exists a natural one-to-one correspondence between the orbits of G on $\Omega \times \Omega$ (a.k.a. orbitals or 2-orbits of G) and the orbits of the stabiliser $G_{\omega_{0}}$ on Ω (a.k.a. suborbits of G). Therefore, under this correspondence, we may naturally define paired and self-paired suborbits.

Two subgroups of the symmetric group $\operatorname{Sym}(\Omega)$ are called 2-equivalent if they have the same orbitals. A subgroup of $\operatorname{Sym}(\Omega)$ generated by all subgroups 2 -equivalent to a given $G \leq \operatorname{Sym}(\Omega)$ is called the 2-closure of G, denoted $G^{(2)}$.

The group G is said to be 2 -closed if $G=G^{(2)}$. It is easy to verify that $G^{(2)}$ is a subgroup of $\operatorname{Sym}(\Omega)$ containing G and, in fact, $G^{(2)}$ is the largest (with respect to inclusion) subgroup of $\operatorname{Sym}(\Omega)$ preserving every orbital of G.

2 Construction and basic results

Let q be a power of an odd prime and let \mathbb{F} be a field of cardinality q. We let

$$
\begin{aligned}
G & :=\left\{\left.\left(\begin{array}{lll}
a & x & z \\
0 & b & y \\
0 & 0 & c
\end{array}\right) \right\rvert\, x, y, z \in \mathbb{F}, a, b, c \in\{-1,1\}, a b c=1\right\}, \\
D & :=\left\{\left.\left(\begin{array}{lll}
a & a x & a x^{2} / 2 \\
0 & 1 & x \\
0 & 0 & a
\end{array}\right) \right\rvert\, x \in \mathbb{F}, a \in\{-1,1\}\right\}, \\
H & :=\left\{\left.\left(\begin{array}{lll}
a & 0 & x \\
0 & a & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y \in \mathbb{F}, a \in\{-1,1\}\right\}, \\
K & :=\left\{\left.\left(\begin{array}{lll}
1 & x & y \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right) \right\rvert\, x, y \in \mathbb{F}, a \in\{-1,1\}\right\} .
\end{aligned}
$$

It is elementary to verify that G, D, H and K are subgroups of the special linear group $\mathrm{SL}_{3}(\mathbb{F})$. Moreover, D, H and K are subgroups of $G,|G|=4 q^{3},|D|=2 q$ and $|H|=$ $|K|=2 q^{2}$. We summarise in Proposition 2.1 some more facts.

Proposition 2.1. The group D is generalised dihedral over the abelian group $(\mathbb{F},+)$ and, H and K are generalised dihedral over the abelian group $(\mathbb{F} \oplus \mathbb{F},+)$. The core of D in G is 1. Moreover,

$$
D K=D H=G=H D=K D \text { and } D \cap H=1=D \cap K
$$

Proof. The first two assertions follow with easy matrix computations. Let

$$
g:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \in G
$$

and observe that

$$
g^{-1}\left(\begin{array}{ccc}
a & a x & a x^{2} / 2 \\
0 & 1 & x \\
0 & 0 & a
\end{array}\right) g=\left(\begin{array}{ccc}
a & -a x & -a x^{2} / 2 \\
0 & 1 & x \\
0 & 0 & a
\end{array}\right)
$$

As the characteristic of \mathbb{F} is odd, from this it follows that

$$
D \cap D^{g}=\left\langle\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\right\rangle
$$

It is now easy to see that D is core-free in G.
It is readily seen from the definitions that $D \cap H=1=D \cap K$. Therefore, $|D H|=$ $|D||H|=4 q^{3}$ and $|D K|=|D||K|=4 q^{3}$. As $D H$ and $D K$ are subsets of G and $|G|=4 q^{3}$, we deduce $D H=G=D K$ and hence also $H D=G=K D$.

We let $D \backslash G:=\{D g \mid g \in G\}$ be the set of right cosets of D in G. In view of Proposition 2.1, G acts faithfully by right multiplication on $D \backslash G$ and H and K act regularly by right multiplication on $D \backslash G$.

Proposition 2.2. The subgroups H and K are normal in G and, therefore, are in distinct G-conjugacy classes.
Proof. The normality of H and K in G can be checked by direct computations.

2.1 Schur notation

Since $G=D H$ and $D \cap H=1$, for every $g \in G$, there exists a unique $h \in H$ with $D g=D h$. In this way, we obtain a bijection $\theta: D \backslash G \rightarrow H$, where $\theta(D g)=h \in H$ satisfies $D g=D h$.

Using the method of Schur (see [33]), we may identify via θ the G-set $D \backslash G$ with H. Moreover, we may define an action of G on H via the following rule: for every $g \in G$ and for every $h \in H$,

$$
h^{g}=h^{\prime} \text { if and only if } D h g=D h^{\prime}
$$

A classic observation of Schur yields that the action of G on $D \backslash G$ is permutation isomorphic to the action of G on H. In the rest of the paper, we use both points of view.

In the action of G on H, D is a stabiliser of the identity $e \in H$, i.e. $G_{e}=D$, and H acts on itself via its right regular representation. Since H is normal in G, the action of the point stabiliser G_{e} on H is permutation equivalent to the action of G_{e} via conjugation on H (Proposition 20.2 [33]). More precisely, $h^{g}=g^{-1} h g$ for any $g \in G_{e}$ and $h \in H$.

In what follows, we represent the elements of H and D as pairs $[a, x]$ and $[a, \vec{w}]$, where $x \in \mathbb{F}, \vec{w} \in \mathbb{F}^{2}$ and $a \in\{ \pm 1\}$. In particular, $[a, x]$ represents the matrix

$$
\left(\begin{array}{ccc}
a & a x & a x^{2} / 2 \\
0 & 1 & x \\
0 & 0 & a
\end{array}\right)
$$

of D and, if $\vec{w}=(x, y)$, then $[a, \vec{w}]$ represents the matrix

$$
\left(\begin{array}{lll}
a & 0 & x \\
0 & a & y \\
0 & 0 & 1
\end{array}\right)
$$

of H. Under this identification, the product in D and H greatly simplifies. Indeed, for every $[a, x],[b, y] \in D$ and for every $[a, \vec{v}],[b, \vec{w}] \in H$, we have

$$
\begin{align*}
{[a, x][b, y] } & =[a b, b x+y], \tag{2.1}\\
{[a, \vec{v}][b, \vec{w}] } & =[a b, b \vec{v}+\vec{w}] .
\end{align*}
$$

Using this identification, the action of D on H also becomes slightly easier. Indeed, for every $[a, \vec{v}] \in H$ (with $\vec{v}=(x, y)$) and for every $[b, z] \in D$, we have

$$
\begin{equation*}
[a,(x, y)]^{[b, z]}=\left[a,\left((1-a) z^{2} / 2-b y z+x,(-1+a) z+b y\right)\right] \tag{2.2}
\end{equation*}
$$

This equality can be verified observing that

$$
\left(\begin{array}{ccc}
a & 0 & x \\
0 & a & y \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
b & b z & b z^{2} / 2 \\
0 & 1 & z \\
0 & 0 & b
\end{array}\right)=\left(\begin{array}{ccc}
b & b z & b z^{2} / 2 \\
0 & 1 & z \\
0 & 0 & b
\end{array}\right)\left(\begin{array}{ccc}
a & 0 & (1-a) z^{2} / 2-b y z+x \\
0 & a & (-1+a) z+b y \\
0 & 0 & 1
\end{array}\right)
$$

2.2 One special case

Let $A:=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$, where $e_{1}:=(123), e_{2}:=(456), e_{1}:=$ (789), let $x:=(12)(45)(78)$ and let $R:=\langle A, x\rangle$. Then R is a generalised dihedral group over the elementary abelian 3 -group A of order $3^{3}=27$. Let

$$
S:=\left\{x, e_{1} x, e_{2} x, e_{3} x, e_{1} e_{2} x, e_{1}^{2} e_{2}^{2} x, e_{2} e_{3} x, e_{2}^{2} e_{3}^{2} x, e_{1}^{2} e_{2}^{2} e_{3}^{2} x\right\}
$$

and define

$$
\Gamma:=\operatorname{Cay}(R, S)
$$

It can be verified with the computer algebra system Magma that $\operatorname{Aut}(\Gamma)$ has order $46656=2^{6} \cdot 3^{6}$, acts transitively on the arcs of Γ and (most importantly) contains two conjugacy classes of regular subgroups isomorphic to R and hence, via Babai's lemma, R is not a CI-group.

This example has another interesting property from the isomorphism problem point of view. Observe that each element of S is an involution contained in $R \backslash A$. This implies that Γ is a bipartite graph, in which case Γ is isomorphic to a Haar graph, also called a bi-coset graph. In our example above, as every element of the connection set is an involution, it is a Haar graph of \mathbb{Z}_{3}^{3} but as it is not a CI-graph of $\operatorname{Dih}\left(\mathbb{Z}_{3}^{3}\right), \mathbb{Z}_{3}^{3}$ is not a BCI-group. This is the first example the authors are aware of where a group is an abelian DCI-group but not a BCI-group, as \mathbb{Z}_{p}^{3} is a DCI-group [3]. Our next result shows \mathbb{Z}_{3}^{k} is not a BCI-group for any $k \geq 3$.

Lemma 2.3. Let R be an abelian group and let $H \leq R$. If R is BCI-group, then R / H is BCI-group.

Proof. For this result, it is most convenient to have the vertex sets of Haar graphs and Cayley graphs of dihedral groups be the same. So, for an abelian group R, we will have $\operatorname{Dih}(R)$ permuting the set $R \times \mathbb{Z}_{2}$ (the vertex set of a Haar graph of R), where an element $s \in R$ is identified with the map $s_{t}: R \times \mathbb{Z}_{2} \rightarrow R \times \mathbb{Z}_{2}$ given by $s_{t}(r, i) \mapsto(r+s, i)$. Define $\iota: R \times \mathbb{Z}_{2} \rightarrow R \times \mathbb{Z}_{2}$ by $\iota(r, i)=(-r, i+1)$. Then $\operatorname{Dih}(R)$ is canonically isomorphic to $G=\left\langle\iota, s_{t}: s \in R\right\rangle$. It is straightforward to show that $\iota \in \operatorname{Aut}(\operatorname{Haar}(R, S))$, and so we have $G \leq \operatorname{Aut}(\operatorname{Haar}(R, S))$ for every $S \subseteq R$. By [28, Theorem 2], we have $\operatorname{Haar}(R, S) \cong \operatorname{Cay}(\operatorname{Dih}(R), T)$, for some $T \subseteq G$, by the map ϕ which identifies (r, i) with the unique element of G which maps $(0,0)$ to $(r, i), r \in R, i \in \mathbb{Z}_{2}$. Hence $\phi(r, i)=r_{t} \iota^{i}$, and $T=\{s \iota: s \in S\}=S \cdot \iota$.

If R is a BCI-group, then $\operatorname{Haar}(R, S)$ is a BCI graph. Let $\mathcal{C}=\{R \times\{0\}, R \times\{1\}\}, \mathcal{B}$ be the set of right cosets of H in $\operatorname{Dih}(R)$, and $U=\{s H: s \in S\}$. Then, as partitions of $R \times \mathbb{Z}_{2}, \mathcal{B}$ refines \mathcal{C}. As \mathcal{C} is a bipartition of $\operatorname{Cay}(\operatorname{Dih}(R), S \cdot \iota), \operatorname{Cay}(\operatorname{Dih}(R / H), U \cdot \iota)$ is bipartite with bipartition $\left\{\{(r H, i): r \in R\}: i \in \mathbb{Z}_{2}\right\}$ and so $\operatorname{Cay}(\operatorname{Dih}(R / H), U \cdot \iota)=$ Haar $(R / H, U)$.

As $\operatorname{Cay}(\operatorname{Dih}(R), S \cdot \iota)$ is a CI-graph of $\operatorname{Dih}(R)$, by the proof of [6, Theorem 8], we see $\operatorname{Cay}(\operatorname{Dih}(R / H), U \cdot \iota)$ is a CI-graph of $\operatorname{Dih}(R / H)$ and any Cayley graph of $\operatorname{Dih}(R / H)$ isomorphic to $\operatorname{Cay}(\operatorname{Dih}(R / H), U \cdot \iota)$ is isomorphic by a group automorphism of $\operatorname{Dih}(R / H)$. But this means any two Haar graphs of R / H are isomorphic by a group automorphism of $\operatorname{Dih}(R / H)$, and so R / H is a BCI-group.

Finally, Γ, as well as the graphs constructed in the next section, have the property that the Sylow p-subgroups of their automorphism groups are not isomorphic to Sylow p subgroups of any 2 -closed group of degree 3^{3} or p^{2} (in the next section). For the example
above, the Sylow p-subgroups of the automorphism groups of Cayley digraphs of \mathbb{Z}_{p}^{3} can be obtained from [5, Theorem 1.1], and none have order 3^{6} as a Sylow p-subgroup of $\operatorname{AGL}(3,3)$ is not 2 -closed (for p^{2} in the next section, the Sylow p-subgroup has order p^{3}, but Sylow p-subgroups of the automorphism groups of Cayley digraphs of \mathbb{Z}_{p}^{2} have order p^{2} or $p^{p+1}[10$, Theorem 14]).

3 The permutation group G is 2 -closed

In this section we prove the following.
Proposition 3.1. The group G in its action on H is 2-closed.
We start with some preliminary observations.
Lemma 3.2. The orbits of G_{e} on H have one of the following forms:
(1) $S_{t}:=\{[1,(t, 0)]\}$, for every $t \in \mathbb{F}$;
(2) $C_{t} \cup C_{-t}$, where $C_{t}:=\{[1,(z, t)] \mid z \in \mathbb{F}\}$ and $t \in \mathbb{F} \backslash\{0\}$;
(3) $P_{t}:=\left\{\left[-1,\left(t+z^{2}, 2 z\right)\right] \mid z \in \mathbb{F}\right\}$ with $t \in \mathbb{F}$.

Proof. Let $g:=[a,(x, y)] \in H$. If $a=1$ and $y=0$, then (2.2) yields

$$
g^{[b, z]}=[1,(x, 0)]=g
$$

and hence the G_{e}-orbit containing g is simply $\{g\}$. Therefore we obtain the orbits in Case (1).

Suppose then $a=1$ and $y \neq 0$. Now, 2.2 yields

$$
\begin{aligned}
g^{[1, z]} & =[1,(-y z+x, y)], \\
g^{[-1, z]} & =[1,(y z+x,-y)] .
\end{aligned}
$$

In particular, $C_{y}=\left\{g^{[1, z]} \mid z \in \mathbb{F}\right\}$ and $C_{-y}=\left\{g^{[-1, z]} \mid z \in \mathbb{F}\right\}$ and we obtain the orbits in Case (2).

Finally suppose $a=-1$. Now, (2.2) yields

$$
g^{[b, z]}=\left[1,\left(z^{2}-b y z+x,-2 z+b y\right)\right] .
$$

In particular, if we choose $z:=b y / 2$ and $t=-y^{2} / 4+x$, then g and $[-1,(t, 0)]$ are in the same G_{e}-orbit. Therefore $[-1,(x, y)]^{G_{e}}=[-1,(t, 0)]^{G_{e}}$. Using again (2.2), we get

$$
[-1,(t, 0)]^{[b,-z]}=\left[-1,\left(t+z^{2}, 2 z\right)\right] .
$$

In particular, $P_{t}=\left\{g^{[b, z]} \mid[b, z] \in G_{e}\right\}$ and we obtain the orbits in Case (3).
We call the G_{e}-orbits in (1) singleton orbits, the G_{e}-orbits in (2) coset orbits and the G_{e}-orbits in (3) parabolic orbits. Clearly, singleton orbits have cardinality 1, coset orbits have cardinality $2 q$ and parabolic orbits have cardinality q. Also, it follows from Lemma 3.2 that there are q singleton orbits, $\frac{q-1}{2}$ coset orbits and q parabolic orbits. Indeed,

$$
q \cdot 1+\frac{q-1}{2} \cdot 2 q+q \cdot q=2 q^{2}=|H| .
$$

It is also clear from Lemma 3.2 that all non-singleton orbits are self-paired and the only self-paired singleton orbit is S_{0}.

Before continuing, we recall [14, Definitions 2.5.3 and 2.5.4] tailored to our needs.

Definition 3.3. We say that $h \in H$ separates the pair $\left(h_{1}, h_{2}\right) \in H \times H$, if $\left(h, h_{1}\right)$ and $\left(h, h_{2}\right)$ belong to distinct G-orbitals, that is, $h h_{1}^{-1}$ and $h h_{2}^{-1}$ are in distinct G_{e}-orbits.

We also say that a subset $S \subseteq H$ separates G-orbitals if, for any two distinct elements $h_{1}, h_{2} \in H \backslash S$, there exists $s \in S$ separating the pair $\left(h_{1}, h_{2}\right)$.

Proposition 3.4. If $q \geq 5$, then $\{e\} \cup P_{0}$ separates G-orbitals.
Proof. Set $S:=\{e\} \cup P_{0}$. Let $h_{1}, h_{2} \in H \backslash S$ be two distinct elements. If h_{1} and h_{2} belong to distinct G_{e}-orbits, then $e \in S$ separates $\left(h_{1}, h_{2}\right)$. Therefore, we assume that h_{1} and h_{2} belong to the same G_{e}-orbit, say, O. Since $h_{1} \neq h_{2}, O$ is not a singleton orbit and hence O is either a coset or a parabolic orbit.

Assume first that O is a parabolic orbit, that is, $O=P_{t}$, for some $t \in \mathbb{F}$. By Lemma 3.2, for each $i \in\{1,2\}$, there exists $x_{i} \in \mathbb{F}$ with $h_{i}=\left[-1,\left(t+x_{i}^{2}, 2 x_{i}\right)\right]$. As $q=|\mathbb{F}| \geq 5$, it is easy to verify that there exists $x \in \mathbb{F}$ with $x \notin\left\{x_{1}, x_{2}\right\}$ and with $x-x_{1} \neq-\left(x-x_{2}\right)$. Now, let $s:=\left[-1,\left(x^{2}, 2 x\right)\right] \in P_{0} \subseteq S$. From (2.1), we deduce

$$
s h_{i}^{-1}=\left[1,\left(t+x_{i}^{2}-x^{2}, 2 x_{i}-2 x\right)\right] .
$$

As $2 x_{i}-2 x \neq 0$, from Lemma 3.2, we obtain $s h_{i}^{-1} \in C_{2\left(x-x_{i}\right)} \cup C_{-2\left(x-x_{i}\right)}$. As $x-x_{1} \neq$ $-\left(x-x_{2}\right)$, we deduce that $s h_{1}^{-1}$ and $s h_{2}^{-1}$ are in distinct G_{e}-orbits and hence s separates $\left(h_{1}, h_{2}\right)$.

Assume now that O is a coset orbit, that is, $O=C_{t} \cup C_{-t}$, for some $t \in \mathbb{F} \backslash\{0\}$. In this case, for each $i \in\{1,2\}$, there exist $x_{i} \in \mathbb{F}$ and $a_{i} \in\{ \pm 1\}$ with $h_{i}=\left[1,\left(x_{i}, a_{i} t\right)\right]$. Let $x \in \mathbb{F}$ with

$$
x t\left(a_{2}-a_{1}\right) \neq x_{2}-x_{1} .
$$

(The existence of x is clear when $a_{1} \neq a_{2}$ and it follows from the fact that $h_{1} \neq h_{2}$ when $a_{1}=a_{2}$.) Set $s:=\left[-1,\left(x^{2}, 2 x\right)\right] \in P_{0} \subseteq S$. From (2.1), we have

$$
s h_{i}^{-1} \in\left[-1,\left(x^{2}-x_{i}, 2 x-a_{i} t\right)\right] .
$$

In particular, from Lemma 3.2, we have $s h_{i}^{-1} \in P_{t_{i}}$, for some $t_{i} \in \mathbb{F}$. Thus, $\left(x^{2}-x_{i}, 2 x-\right.$ $\left.a_{i} t\right)=\left(t_{i}+y^{2}, 2 y\right)$, for some $y \in \mathbb{F}$. From this it follows that

$$
t_{i}=x^{2}-x_{i}-\frac{\left(2 x-a_{i} t\right)^{2}}{4}
$$

As $x t\left(a_{2}-a_{1}\right) \neq x_{2}-x_{1}$, a simple computation yields $t_{1} \neq t_{2}$ and hence $s h_{1}^{-1}$ and $s h_{2}^{-1}$ are in distinct G_{e}-orbits. Therefore, s separates $\left(h_{1}, h_{2}\right)$.

Proof of Proposition 3.1. When $q=3$, the proof follows with a computation with the computer algebra system Magma. Therefore, for the rest of the proof we suppose $q \geq$ 5. Let T be the 2 -closure of G. As $\{e\} \cup P_{0}$ separates the G-orbitals, it follows from [14, Theorem 2.5.7] that the action of T_{e} on P_{0} is faithful, and hence so is the action of G_{e} on P_{0}. We denote by $G_{e}^{P_{0}}$ (respectively, $T_{e}^{P_{0}}$) the permutation group induced by G_{e} (respectively, T_{e}) on P_{0}. In particular, $G_{e} \cong G_{e}^{P_{0}}$ and $T_{e} \cong T_{e}^{P_{0}}$.

We claim that

$$
\begin{equation*}
\left(T_{e}\right)^{P_{0}}=\left(G_{e}\right)^{P_{0}} \tag{3.1}
\end{equation*}
$$

Observe that from (3.1) the proof of Proposition 3.1 immediately follows. Indeed, $T_{e} \cong$ $T_{e}^{P_{0}}=G_{e}^{P_{0}} \cong G_{e}$ and hence $T_{e}=G_{e}$. As H is a transitive subgroup of G, we deduce that
$G=G_{e} H=T_{e} H=T$ and hence G is 2-closed. Therefore, to complete the proof, we need only establish (3.1).

From Lemma 3.2, $\left|P_{0}\right|=q$. Hence $\left(G_{e}\right)^{P_{0}}$ is a dihedral group of order $2 q$ in its natural action on q points.

For each $t \in \mathbb{F}^{*}$ let Φ_{t} be the subgraph of $\operatorname{Cay}\left(H, C_{t} \cup C_{-t}\right)$ induced by P_{0}. Let $\left(h_{1}, h_{2}\right)$ be an arc of Φ_{t}. As $h_{1}, h_{2} \in P_{0}$, there exist $x_{1}, x_{2} \in \mathbb{F}$ with $h_{1}=\left[-1,\left(x_{1}^{2}, 2 x_{1}\right)\right]$ and $h_{2}=\left[-1,\left(x_{2}^{2}, 2 x_{2}\right)\right]$. Moreover, $h_{2} h_{1}^{-1} \in C_{t} \cup C_{-t}$ and hence, by (2.1), we obtain

$$
h_{2} h_{1}^{-1}=\left[1,\left(x_{2}^{2}-x_{1}^{2}, 2 x_{2}-2 x_{1}\right)\right] \in C_{t} \cup C_{-t},
$$

that is, $2 x_{2}-2 x_{1} \in\{-t, t\}$. This shows that the mapping

$$
\begin{aligned}
& P_{0} \rightarrow \mathbb{F}^{+} \\
& \left(x^{2}, 2 x\right) \mapsto 2 x
\end{aligned}
$$

is an isomorphism between the graphs Φ_{t} and $\operatorname{Cay}\left(\mathbb{F}^{+},\{-t, t\}\right)$. Therefore

$$
\left(G_{e}\right)^{P_{0}} \leq\left(T_{e}\right)^{P_{0}} \leq \bigcap_{t \in \mathbb{F}^{*}} \operatorname{Aut}\left(\Phi_{t}\right) \cong \bigcap_{t \in \mathbb{F}^{*}} \operatorname{Aut}\left(\operatorname{Cay}\left(\mathbb{F}^{+},\{-t, t\}\right)\right) \cong \operatorname{Dih}\left(\mathbb{F}^{+}\right)
$$

Since $\left(G_{e}\right)^{P_{0}}$ and $\operatorname{Dih}\left(\mathbb{F}^{+}\right)$are dihedral groups of order $2 q$, we conclude that $\left(G_{e}\right)^{P_{0}}=$ $\left(T_{e}\right)^{P_{0}}=\bigcap_{t \in \mathbb{F}^{*}} \operatorname{Aut}\left(\Phi_{t}\right)$, proving 3.1.

4 Generating graph

Combining Proposition 3.1, Proposition 2.2, and Lemma 1.6, we have proven that $\operatorname{Dih}\left(\mathbb{Z}_{p}^{2}\right)$ is not a CI-group with respect to colour Cayley digraphs for odd primes p. In this section we strengthen that result to Cayley graphs.

4.1 Schur rings

Let R be a finite group with identity element e. We denote the group algebra of R over the field \mathbb{Q} by $\mathbb{Q} R$. For $Y \subseteq R$, we define

$$
\underline{Y}:=\sum_{y \in Y} y \in \mathbb{Q} R .
$$

Elements of $\mathbb{Q} R$ of this form will be called simple quantities, see [33]. A subalgebra \mathcal{A} of the group algebra $\mathbb{Q} R$ is called a Schur ring over R if the following conditions are satisfied:
(1) there exists a basis of \mathcal{A} as a \mathbb{Q}-vector space consisting of simple quantities $\underline{T}_{0}, \ldots, \underline{T}_{r} ;$
(2) $T_{0}=\{e\}, R=\bigcup_{i=0}^{r} T_{i}$ and, for every $i, j \in\{0, \ldots, r\}$ with $i \neq j, T_{i} \cap T_{j}=\emptyset$;
(3) for each $i \in\{0, \ldots, r\}$, there exists i^{\prime} such that $T_{i^{\prime}}=\left\{t^{-1} \mid t \in T_{i}\right\}$.

Now, $\underline{T}_{0}, \ldots, \underline{T}_{r}$ are called the basic quantities of \mathcal{A}. A subset S of R is said to be an \mathcal{A} - subset if $\underline{S} \in \mathcal{A}$, which is equivalent to $S=\bigcup_{j \in J} T_{j}$, for some $J \subseteq\{0, \ldots, r\}$.

Given two elements $a:=\sum_{x \in R} a_{x} x$ and $b:=\sum_{y \in R} b_{y} y$ in $\mathbb{Q} R$, the Schur-Hadamard product $a \circ b$ is defined by

$$
a \circ b:=\sum_{z \in R} a_{z} b_{z} z
$$

It is an elementary exercise to observe that, if \mathcal{A} is a Schur ring over R, then \mathcal{A} is closed by the Schur-Hadamard product.

The following statement is known as the Schur-Wielandt principle, see [33, Proposition 22.1].

Proposition 4.1. Let \mathcal{A} be a Schur ring over R, let $q \in \mathbb{Q}$ and let $x:=\sum_{r \in R} a_{r} r \in \mathcal{A}$. Then

$$
x_{q}:=\sum_{\substack{r \in R \\ a_{r}=q}} r \in \mathcal{A} .
$$

Let X be a permutation group containing a regular subgroup R. As in Section 2.1, we may identify the domain of X with R. Let T_{0}, \ldots, T_{r} be the orbits of X_{e} with $T_{0}=\{e\}$. A fundamental result of Schur [33, Theorem 24.1] shows that the \mathbb{Q}-vector space spanned by $\underline{T}_{0}, \underline{T}_{1}, \ldots, \underline{T}_{r}$ in $\mathbb{Q} R$ is a Schur ring over R, which is called the transitivity module of the permutation group X and is usually denoted by $V\left(R, G_{e}\right)$. In particular, the $V\left(R, G_{e}\right)$ subsets of the Schur ring $V\left(R, G_{e}\right)$ are unions of G_{e}-orbits.

Let $\mathcal{A}:=\left\langle\underline{T}_{0}, \ldots, \underline{T}_{r}\right\rangle$ be a Schur ring over R (where T_{0}, \ldots, T_{r} are the basic quantities spanning \mathcal{A}). The automorphism group of \mathcal{A} is defined by

$$
\begin{equation*}
\operatorname{Aut}(\mathcal{A}):=\bigcap_{i=0}^{r} \operatorname{Aut}\left(\operatorname{Cay}\left(R, T_{i}\right)\right) \tag{4.1}
\end{equation*}
$$

Given a subset S of R, we denote by

$$
\langle\langle\underline{S}\rangle\rangle,
$$

the smallest (with respect to inclusion) Schur ring containing \underline{S}. Now, $\langle\langle\underline{S}\rangle\rangle$ is called the Schur ring generated by \underline{S}.

We conclude this brief introduction to Schur rings recalling [25, Theorem 2.4].
Proposition 4.2. Let S be a subset of R. Then $\operatorname{Aut}(\langle\langle\underline{S}\rangle\rangle)=\operatorname{Aut}(\operatorname{Cay}(R, S))$.

4.2 The group G is the automorphism group of a single (di)graph

It was shown above that the group G is 2 -closed, i.e. it is the automorphism of a coloured digraph. In this section we give a Cayley digraph Cay (H, T) having automorphism group G. To build such a digraph it is sufficient to find a subset $T \subseteq H$ such that $\langle\langle\underline{T}\rangle\rangle=V\left(H, G_{e}\right)$ (Proposition 4.2). Such a set is constructed in Proposition 4.3. Note that T is symmetric for $q \geq 7$, so the digraph $\operatorname{Cay}(H, T)$ is undirected. The cases of $q=3,5$ are exceptional, because in those cases no inverse-closed subset of H has the required property.
Proposition 4.3. Let q be prime, and
$T:= \begin{cases}P_{0} \cup P_{1} \cup P_{x} \cup C_{1} \cup C_{-1} & \text { where } x \in \mathbb{F} \text { with } x \notin\left\{0, \pm 1, \pm 2, \frac{1}{2}\right\} \text { and } x^{6} \neq 1, \\ & \text { when } q>7, \\ P_{0} \cup P_{1} \cup P_{3} \cup C_{1} \cup C_{-1} & \text { when } q=7, \\ S_{1} \cup P_{0} & \text { when } q=5, \\ S_{1} \cup P_{0} & \text { when } q=3 .\end{cases}$
Then $\langle\langle\underline{T}\rangle\rangle=V\left(H, G_{e}\right)$. In particular, T is not a (D) CI-subset of H.

Proof. When $q \leq 7$, the result follows by computations with the computer algebra system Magma. Therefore for the rest of the proof we suppose $q>7$.

According to Proposition 3.2 the basic sets of $V\left(H, G_{e}\right)$ are of three types: $S_{a}, C_{b} \cup$ C_{-b}, P_{c} with $a, b, c \in \mathbb{F}$ and $b \neq 0$. Thus we have three types of basic quantities $\underline{S_{a}}$, $\underline{C_{b}}+\underline{C_{-b}}, \underline{P_{c}}$ and

$$
V\left(H, G_{e}\right)=\left\langle\underline{S_{a}}, \underline{C_{b}}+\underline{C_{-b}}, \underline{P_{c}} \mid a, b, c \in \mathbb{F}, b \neq 0\right\rangle .
$$

Set

$$
\begin{aligned}
H_{1} & :=\left\{[1, \vec{v}] \mid \vec{v} \in \mathbb{F}^{2}\right\}, \\
H_{2} & :=\{[1,(t, 0)] \mid t \in \mathbb{F}\} .
\end{aligned}
$$

By (2.1), H_{1} and H_{2} are subgroups of H with $\left|H_{2}\right|=q,\left|H_{1}\right|=q^{2}$ and, by Lemma 3.2, $H_{2}=\cup_{t \in \mathbb{F}} S_{t}$. In Table 4.2 we have reported the multiplication table among the basic quantities of $V\left(H, G_{e}\right)$: this will serve us well.

	$\underline{S_{r}}$	$\underline{C_{s}}$	$\underline{P_{t}}$
$\underline{S_{a}}$	$\underline{S_{a+r}}$	$\underline{C_{s}}$	$\underline{P_{t-a}}$
$\underline{C_{b}}$	$\underline{C_{b}}$	$\begin{cases}q \underline{C_{b+s}} & \text { if } b+s \neq 0 \\ q \underline{H_{2}} & \text { if } b+s=0\end{cases}$	$\underline{H \backslash H_{1}}$
$\underline{P_{c}}$	$\underline{P_{c+r}}$	$\underline{H \backslash H_{1}}$	$q \underline{S_{-c+t}}+\underline{H_{1} \backslash H_{2}}$

Table 1: Multiplication table for the basic quantities of $V\left(H, G_{e}\right)$.
Fix $a, b, c \in \mathbb{F}$ with $b, c \neq 0$ and let \mathcal{A} be the smallest Schur ring of the group algebra $\mathbb{Q} H$ containing $\underline{P_{a}}, \underline{C_{b}}+\underline{C_{-b}}, \underline{S_{c}}$. We claim that

$$
\begin{equation*}
\mathcal{A}=V\left(H, G_{e}\right) \tag{4.2}
\end{equation*}
$$

Clearly, $\mathcal{A} \leq V\left(H, G_{e}\right)$. From Table 4.2, for every $k \in\{0, \ldots, q-1\}$, we have $\underline{S_{c}}{ }^{k}=\underline{S_{c k}}$ and hence $\underline{S_{c k}} \in \mathcal{A}$. As $c \neq 0, \underline{S_{i}} \in \mathcal{A}$, for each $i \in\{0, \ldots, q-1\}$. Now, as $\underline{P_{a}} \in \overline{\mathcal{A}}$, from Table 4.2, we have $\underline{P_{a}} \cdot \underline{S_{i}}=\underline{P_{a+i}} \in \mathcal{A}$ for any $i \in\{0, \ldots, q-1\}$. The equality $\left(\underline{C_{b}}+\underline{C_{-b}}\right)^{2}=2 q \underline{H_{2}}+q \underline{C_{2 b}}+q \underline{C_{-2 b}}$ implies $\underline{C_{2 b}}+\underline{C_{-2 b}} \in \mathcal{A}$. Now arguing inductively

Let $x \in \mathbb{F}$ with $x \notin\left\{0, \pm 1, \pm 2, \frac{1}{2}\right\}$ and $x^{6} \neq 1$, let $T:=P_{0} \cup P_{1} \cup P_{x} \cup C_{1} \cup C_{-1}$ and let $\mathcal{T}:=\langle\langle\underline{T}\rangle\rangle$ (the existence of x is guaranteed by the fact that $q>7$). We claim that

$$
\begin{equation*}
\underline{H_{2}}, \underline{H_{1}}, \underline{C_{2}}+\underline{C_{-2}}, \underline{S_{1}}+\underline{S_{-1}}+\underline{S_{x}}+\underline{S_{-x}}+\underline{S_{1-x}}+\underline{S_{x-1}} \in \mathcal{T} . \tag{4.3}
\end{equation*}
$$

Using Table 4.2 for squaring \underline{T}, we obtain (after rearranging the terms):

$$
\begin{aligned}
\underline{T}^{2}= & 3 q \underline{S_{0}}+q \underline{S_{1}}+q \underline{S_{-1}}+q \underline{S_{x}}+q \underline{S_{-x}}+q \underline{S_{1-x}}+q \underline{S_{x-1}} \\
& +9 \underline{H_{1} \backslash H_{2}}+12 \underline{H} \backslash \underline{H_{1}}+q \underline{{C_{2}}_{2}}+q \underline{C_{-2}}+2 q \underline{H_{2}} .
\end{aligned}
$$

From the assumptions on x, the elements $-1,1,-x, x,-(x-1), x-1$ are pairwise distinct. Therefore

$$
\begin{aligned}
& \underline{T^{2}} \circ \underline{S_{b}}= \begin{cases}5 q \underline{S_{0}}, & b=0, \\
3 q \underline{S_{b}}, & \text { if } b \in\{ \pm 1, \pm x, \pm(x-1)\}, \\
2 q \underline{S_{b}}, & \text { if } b \notin\{0, \pm 1, \pm x, \pm(x-1)\},\end{cases} \\
& \underline{T}^{2} \circ \underline{C_{b}}= \begin{cases}(q+9) \underline{C_{b}}, & \text { if } b \in\{ \pm 2\}, \\
9 \underline{C_{b}}, & \text { if } b \notin\{0, \pm 2\},\end{cases} \\
& \underline{T}^{2} \circ \underline{P_{b}}=12 \underline{P_{b}}, \quad \text { if } b \in \mathbb{F} .
\end{aligned}
$$

Since the numbers $6,9, q+9,2 q, 3 q, 5 q$ are also pairwise distinct (because $q \neq 3$), an application of the Schur-Wielandt principle yields

$$
\begin{aligned}
\left(\underline{T^{2}}\right)_{3 q} & =\underline{S_{1}}+\underline{S_{-1}}+\underline{S_{x}}+\underline{S_{-x}}+\underline{S_{1-x}}+\underline{S_{x-1}} \in \mathcal{T} \\
\left(\underline{T}^{2}\right)_{12} & =\underline{H \backslash H_{1}} \in \mathcal{T} \\
\left(\underline{T}^{2}\right)_{2 q} & =\underline{H_{2}}-\left(\underline{S_{0}}+\underline{S_{1}}+\underline{S_{-1}}+\underline{S_{x}}+\underline{S_{-x}}+\underline{S_{1-x}}+\underline{S_{x-1}}\right) \in \mathcal{T}, \\
\left(\underline{T}^{2}\right)_{q+9} & =\underline{C_{2}}+\underline{C_{-2}} \in \mathcal{T}
\end{aligned}
$$

From this, (4.3) immediately follows.
We claim that

$$
\begin{equation*}
\underline{S_{1}}+\underline{S_{-1}} \in \mathcal{T} . \tag{4.4}
\end{equation*}
$$

Let

$$
\mathcal{T}_{H_{2}}:=\mathcal{T} \cap \mathbb{Q} H_{2}
$$

and observe that $\mathcal{T}_{H_{2}}$ is a Schur ring over the cyclic group $H_{2} \cong \mathbb{Z}_{q}$ of prime order q. It is well known that every Schur ring over \mathbb{Z}_{q} is determined by a subgroup $M \leq \operatorname{Aut}\left(\mathbb{Z}_{q}\right) \cong$ \mathbb{Z}_{q}^{*} such that, every basic set of the corresponding Schur ring is an M-orbit. Let M be such a subgroup for $\mathcal{T}_{H_{2}}$. From (4.3), the simple quantity $S_{1}+S_{-1}+\underline{S}_{x}+S_{-x}+S_{1-x}+$ S_{x-1} belongs to $\mathcal{T}_{H_{2}}$ and hence $\{ \pm 1, \pm x, \pm(1-x)\}$ is a $\overline{\mathcal{T}_{H_{2}}}$-subset of cardinality 6 . It follows that $|M|$ divides six and $M \subseteq\{ \pm 1, \pm x, \pm(1-x)\}$. If $|M| \in\{3,6\}$, then $\{ \pm 1, \pm x, \pm(1-x)\}$ is a subgroup of \mathbb{Z}_{q}^{*}, contrary to the assumption $x^{6} \neq 1$. Therefore

$$
\begin{equation*}
\text { either } M=\{1\} \text { or }|M|=\{ \pm 1\} . \tag{4.5}
\end{equation*}
$$

In both cases, $\{-1,1\}$ is a union of M-orbits. Therefore, $\underline{S_{1}}+\underline{S_{-1}} \in \mathcal{T}_{H_{2}}$. From this, (4.4) follows immediately.

We are now ready to conclude the proof. Clearly, $\underline{T} \in V\left(H, G_{e}\right)$ and hence $\mathcal{T} \subseteq$ $V\left(H, G_{e}\right)$. From (4.3), $\underline{H_{1}} \in \mathcal{T}$ and, from (4.4), $\underline{S_{1}}+S_{-1} \in \mathcal{T}$. Therefore $\underline{H_{1}} \circ \underline{T}=$ $\underline{C_{1}}+\underline{C_{-1}} \in \mathcal{T}$ and $\left(\underline{T}-\underline{H_{1}}\right) \circ \underline{T}=\underline{P_{0}}+\underline{P_{1}}+\underline{P_{x}} \in \mathcal{T}$. Therefore

$$
\left(\left(\underline{P_{0}}+\underline{P_{1}}+\underline{P_{x}}\right)\left(\underline{S_{1}}+\underline{S_{-1}}\right)\right) \circ\left(\underline{P_{0}}+\underline{P_{1}}+\underline{P_{x}}\right) \in \mathcal{T} .
$$

$\operatorname{As}\left(\underline{P_{0}}+\underline{P_{1}}+\underline{P_{x}}\right)\left(\underline{S_{1}}+\underline{S_{-1}}\right)=\underline{P_{1}}+\underline{P_{2}}+\underline{P_{x+1}}+\underline{P_{-1}}+\underline{P_{0}}+\underline{P_{x-1}}$, we deduce

$$
\left(\left(\underline{P_{0}}+\underline{P_{1}}+\underline{P_{x}}\right)\left(\underline{S_{1}}+\underline{S_{-1}}\right)\right) \circ\left(\underline{P_{0}}+\underline{P_{1}}+\underline{P_{x}}\right)=\underline{P_{0}}+\underline{P_{1}}
$$

and hence $\underline{P_{0}}+\underline{P_{1}} \in \mathcal{T}$. Therefore, $\underline{P_{x}}=\left(\underline{P_{0}}+\underline{P_{1}}+\underline{P_{x}}\right)-\left(\underline{P_{0}}+\underline{P_{1}}\right) \in \mathcal{T}$. As

$$
\left(\underline{P_{0}}+\underline{P_{1}}\right) \underline{P_{x}}=q \underline{S_{x}}+q \underline{S_{x-1}}+2\left(\underline{H \backslash H_{1}}\right)
$$

from the Schur-Wielandt principle, we obtain $\underline{S_{x}}+\underline{S_{x-1}} \in \mathcal{T}$. Therefore $\underline{S_{x}}+\underline{S_{x-1} \in \mathcal{T}_{H_{2}}}$ and hence $\{x, x-1\}$ is a $\mathcal{T}_{H_{2}}$-subset. Thus $\{x, \overline{x-1}\}$ is an M-orbit. Recall (4.5). If $M=\{-1,1\}$, then $x-1=-1 \cdot x=-x$, contrary to the assumption $x \neq 1 / 2$. Therefore $M=\{1\}$ and $\mathcal{T}_{H_{2}}=\mathbb{Q} H_{2}$. Thus $\underline{S_{i}} \in \mathcal{T}$, for each $i \in \mathbb{Z}_{q}$. Thus $\underline{S_{1}}, \underline{P_{x}}, \underline{C_{1}}+\underline{C_{-1}} \in \mathcal{T}$ and (4.2) implies $V\left(H, G_{e}\right) \subseteq \mathcal{T}$.

5 Proof of Theorem 1.2

Proof of Theorem 1.2. The list of candidate CI-groups is on page 323 in [20]. From here, we see that, if R is in this list and if $R=\operatorname{Dih}(A)$ is generalised dihedral, then for every odd prime p the Sylow p-subgroup of R is either elementary abelian or cyclic of order 9 .

Assume that the Sylow p-subgroup (p is an odd prime) of A is elementary abelian of rank at least 2 . Let $P \leq A$ be a subgroup isomorphic to \mathbb{Z}_{p}^{2} and let $x \in R \backslash A$. Then $\langle P, x\rangle \cong$ $\operatorname{Dih}\left(\mathbb{Z}_{p}^{2}\right)$. By Proposition 4.3, $\operatorname{Dih}\left(\mathbb{Z}_{p}^{2}\right)$ contains a non-DCI subset. Therefore $\operatorname{Dih}\left(\mathbb{Z}_{p}^{2}\right)$ is a non-DCI-group. Since subgroups of a (D)CI-group are also (D)CI, we conclude that R is a not a DCI-group as well. The non-DCI set T constructed in Proposition 4.3 is symmetric for $p \geq 7$. Hence $\operatorname{Dih}\left(\mathbb{Z}_{p}^{2}\right)$ and, therefore, R are non-CI groups when $p \geq 7$. If $p=5$, then the group $\operatorname{Dih}\left(\mathbb{Z}_{p}^{2}\right)$ contains a non-CI subset, namely: $P_{0} \cup S_{1} \cup S_{-1}$ (this was checked by Magma ${ }^{1}$). Combining these arguments we conclude that if $\operatorname{Dih}(A)$ is a CI-group, then its Sylow p-subgroup is cyclic if $p \geq 5$. If $p=3$, then the Sylow 3 -subgroup is either cyclic of order 9 or elementary abelian. The example in Section 2.2 shows that the rank of an elementary abelian group is bounded by 2 .

We now give the updated list of CI-groups. It is a combination of the list in [20], together with our results here and [12, Corollary 13] (note [12, Corollary 13] contains an error, and should list Q_{8} on line (1c), not on line (1b)). We need to define one more group:

Definition 5.1. Let M be a group of order relatively prime to 3 , and $\exp (M)$ be the largest order of any element of M. Set $E(M, 3)=M \rtimes_{\phi} \mathbb{Z}_{3}$, where $\phi(g)=g^{\ell}$, and ℓ is an integer satisfying $\ell^{3} \equiv 1(\bmod \exp (M))$ and $\operatorname{gcd}(\ell(\ell-1), \exp (M))=1$.

Theorem 5.2. Let G, M, and K be CI-groups with respect to graphs such that M and K are abelian, all Sylow subgroups of M are elementary abelian, and all Sylow subgroups of K are elementary abelian of order 9 or cyclic of prime order.
(1) If G does not contain elements of order 8 or 9 , then $G=H_{1} \times H_{2} \times H_{3}$, where the orders of H_{1}, H_{2}, and H_{3} are pairwise relatively prime, and
(a) H_{1} is an abelian group, and each Sylow p-subgroup of H_{1} is isomorphic to \mathbb{Z}_{p}^{k} for $k<2 p+3$ or \mathbb{Z}_{4};
(b) H_{2} is isomorphic to one of the groups $E(K, 2), E(M, 3), E(K, 4), A_{4}$, or 1 ;
(c) H_{3} is isomorphic to one of the groups D_{10}, Q_{8}, or 1 .

[^1](2) If G contains elements of order 8 , then $G \cong E(K, 8)$ or \mathbb{Z}_{8}.
(3) If G contains elements of order 9 , then G is one of the groups $\mathbb{Z}_{9} \rtimes \mathbb{Z}_{2}, \mathbb{Z}_{9} \rtimes \mathbb{Z}_{4}$, $\mathbb{Z}_{2}^{2} \rtimes \mathbb{Z}_{9}$, or $\mathbb{Z}_{2}^{n} \times \mathbb{Z}_{9}$, with $n \leq 5$.

Remark 5.3. The rank bound of an elementary abelian group used in part (1)(a) is due to [29].

Other than positive results already mentioned, the abelian groups known to be CIgroups are $\mathbb{Z}_{2 n}$ [22], $\mathbb{Z}_{4 n}$ [23] with n an odd square-free integer, $\mathbb{Z}_{q} \times \mathbb{Z}_{p}^{2}$ [18], $\mathbb{Z}_{q} \times \mathbb{Z}_{p}^{3}$ [31], and $\mathbb{Z}_{q} \times \mathbb{Z}_{p}^{4}$ [19] with q and p and distinct primes, and $\mathbb{Z}_{2}^{3} \times \mathbb{Z}_{p}$ [9]. Additional results are given in [4, Theorem 16] and [11] with technical restrictions on the orders of the groups. A similar result with technical restrictions on M is given in [4, Theorem 22] for some $E(M, 3)$. Also, $E\left(\mathbb{Z}_{p}, 4\right)$ and $E\left(\mathbb{Z}_{p}, 8\right)$ were shown to be CI-groups in [21], and $Q_{8} \times \mathbb{Z}_{p}$ in [30]. Finally, Holt and Royle have determined all CI-groups of order at most 47 [16]. Applying Theorem 5.2 to determine possible CI-groups, and then checking the positive results above to see that all possible CI-groups are known to be CI-groups, we extend the census of CI-groups up to groups of order at most 59. The isomorphism problem for circulant digraphs was independently solved in [13] and [26] (in both cases a polynomial time algorithm for solving the isomorphism problem was given). A polynomial time algorithm for finding the automorphism group of circulant digraph was provided in [27]. Finally, we remark that the groups $E(M, 3)$ and $E(M, 8)$ are not DCI-groups.

Appendix A An alternative approach

In this section we give an alternative approach to the proof of Theorem 1.2. We do not give all of the details - just the basic idea. In principle, this section is independent from the previous sections, but for convenience we deduce the main result from our previous work.

For each $g \in \mathrm{GL}_{3}(\mathbb{F})$, let g^{\top} denote the transpose of the matrix g and let $g^{\iota}:=\left(g^{-1}\right)^{\top}$. It is easy to verify that $\iota: \mathrm{GL}_{3}(\mathbb{F}) \rightarrow \mathrm{GL}_{3}(\mathbb{F})$ is an automorphism. Let

$$
s=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

and let α be the automorphism of $\mathrm{GL}_{3}(\mathbb{F})$ defined by

$$
\begin{equation*}
g^{\alpha}:=s^{-1} g^{\iota} s=s^{-1}\left(g^{-1}\right)^{\top} s \tag{A.1}
\end{equation*}
$$

for every $g \in \mathrm{GL}_{3}(\mathbb{F})$.
We now define $\hat{\alpha} \in \operatorname{Sym}(H)$ by

$$
\begin{equation*}
[a,(x, y)]^{\hat{\alpha}}=\left[a,\left(y^{2} / 2-x, a y\right)\right] \tag{A.2}
\end{equation*}
$$

for every $[a,(x, y)] \in H$.
Lemma A.1. Let α and $\hat{\alpha}$ be as in (A.1) and (A.2). We have
(1) $G^{\alpha}=G$ and $D^{\alpha}=D$;
(2) $K=H^{\alpha}$ and $H=K^{\alpha}$;
(3) for every $h \in H,(D h)^{\alpha}=D h^{\hat{\alpha}}$;
(4) for every $x \in \mathbb{F}$ and for every $t \in \mathbb{F}^{*}, S_{x}^{\hat{\alpha}}=S_{-x}, C_{t}^{\hat{\alpha}}=C_{t}, P_{x}^{\hat{\alpha}}=P_{-x}$.

Proof. The proof follows from straightforward computations. For every $a \in\{-1,1\}$ and $x \in \mathbb{F}$, we have

$$
\begin{aligned}
\left(\begin{array}{ccc}
a & a x & a x^{2} / 2 \\
0 & 1 & x \\
0 & 0 & a
\end{array}\right)^{\alpha} & =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\left(\begin{array}{ccc}
a & a x & a x^{2} / 2 \\
0 & 1 & x \\
0 & 0 & a
\end{array}\right)^{-1}\right)^{\top}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
a & -x & a(-x)^{2} / 2 \\
0 & 1 & a(-x) \\
0 & 0 & a
\end{array}\right)^{\top}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
a & 0 & 0 \\
-x & 1 & 0 \\
a(-x)^{2} / 2 & a(-x) & a
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a & a(-x) & a(-x)^{2} / 2 \\
0 & 1 & -x \\
0 & 0 & a
\end{array}\right) \in D .
\end{aligned}
$$

This shows $D^{\alpha}=D$. The computations for proving $G=G^{\alpha}, K=H^{\alpha}$ and $H=K^{\alpha}$ are similar.

Let $h:=[a,(x, y)] \in H$. A direct computation shows that

$$
h^{\alpha}=\left(\begin{array}{ccc}
a & 0 & x \\
0 & a & y \\
0 & 0 & 1
\end{array}\right)^{\alpha}=\left(\begin{array}{ccc}
1 & -a y & -a x \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right)
$$

and hence

$$
\begin{aligned}
h^{\alpha}\left(h^{\hat{\alpha}}\right)^{-1} & =\left(\begin{array}{ccc}
1 & -a y & -a x \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right)\left(\left(\begin{array}{ccc}
a & 0 & y^{2} / 2-x \\
0 & a & a y \\
0 & 0 & 1
\end{array}\right)\right)^{-1} \\
& =\left(\begin{array}{ccc}
1 & -a y & -a x \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right)\left(\begin{array}{ccc}
a & 0 & -a y^{2} / 2+a x \\
0 & a & -y \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a & -y & a y^{2} / 2 \\
0 & 1 & -a y \\
0 & 0 & a
\end{array}\right) \in D .
\end{aligned}
$$

Therefore

$$
(D h)^{\alpha}=D^{\alpha} h^{\alpha}=D h^{\alpha}=D h^{\hat{\alpha}}
$$

and part (3) follows. Now, part (4) follows immediately from Lemma 3.2 and part (3).
Lemma A.2. Let $x \in \mathbb{F}$ with $x \notin\left\{0, \pm 1, \pm 2, \frac{1}{2}\right\}$ and $x^{6} \neq 1$, and let

$$
\begin{aligned}
T & :=P_{0} \cup P_{1} \cup P_{x} \cup C_{1} \cup C_{-1}, \\
T^{\prime} & :=P_{0} \cup P_{-1} \cup P_{-x} \cup C_{1} \cup C_{-1} .
\end{aligned}
$$

Then $\operatorname{Cay}(H, T)$ and $\mathrm{Cay}\left(H, T^{\prime}\right)$ are isomorphic but not Cayley isomorphic. In particular, H is not a CI-group.

Proof. We view G as a permutation group on $D \backslash G$, which we may identify with H via the Schur notation.

It follows from Lemma A.1(1) and (3) that $\hat{\alpha}$ normalizes G. Therefore, $\hat{\alpha}$ permutes the orbitals of G. Since $\hat{\alpha}$ fixes $e=[1,(0,0)], \hat{\alpha}$ permutes the suborbits of G and, from Lemma A.1(4), we have $\operatorname{Cay}\left(H, T^{\hat{\alpha}}\right)=\operatorname{Cay}\left(H, T^{\prime}\right)$. Hence Cay $(H, T)^{\hat{\alpha}}=\operatorname{Cay}\left(H, T^{\prime}\right)$ and $\operatorname{Cay}(H, T) \cong \operatorname{Cay}\left(H, T^{\prime}\right)$.

Assume that there exists $\beta \in \operatorname{Aut}(H)$ with $\operatorname{Cay}(H, T)^{\beta}=\operatorname{Cay}\left(H, T^{\prime}\right)$. Then $\hat{\alpha} \beta^{-1}$ is an automorphism of $\operatorname{Cay}(H, T)$. It follows from Propositions 4.2 and 4.3 that $\hat{\alpha} \beta^{-1} \in$ $\operatorname{Aut}(\operatorname{Cay}(H, T))=G$. Therefore $\hat{\alpha} \in G \beta$. Since G and β normalize H, so does α. However, this contradicts Lemma A.1(2).

On the previous proof, one could prove directly that there exists no automorphism β of H with $T^{\beta}=T^{\prime}$; however, this requires some detailed computations, in the same spirit as the computations in Section 4.2.

ORCID iDs

Mikhail Muzychuk (D) https://orcid.org/0000-0002-6346-8976
Pablo Spiga (D) https://orcid.org/0000-0002-0157-7405
Ted Dobson (D) https://orcid.org/0000-0003-2013-4594

References

[1] L. Babai, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar. 29 (1977), 329-336, doi:10.1007/BF01895854.
[2] L. Babai and P. Frankl, Isomorphisms of Cayley graphs. I, in: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, North-Holland, Amsterdam, volume 18 of Colloq. Math. Soc. János Bolyai, pp. 35-52, 1978.
[3] E. Dobson, Isomorphism problem for Cayley graphs of \mathbb{Z}_{p}^{3}, Discrete Math. 147 (1995), 87-94, doi:10.1016/0012-365X(95)00099-I.
[4] E. Dobson, On the Cayley isomorphism problem, Discrete Math. 247 (2002), 107-116, doi: 10.1016/S0012-365X(01)00164-9.
[5] E. Dobson and I. Kovács, Automorphism groups of Cayley digraphs of \mathbb{Z}_{p}^{3}, Electron. J. Comb. 16 (2009), Research Paper 149, 20, doi:10.37236/238.
[6] E. Dobson and A. Malnič, Groups that are transitive on all partitions of a given shape, J. Algebraic Combin. 42 (2015), 605-617, doi:10.1007/s10801-015-0593-2.
[7] E. Dobson and J. Morris, Quotients of CI-groups are CI-groups, Graphs Comb. 31 (2015), 547-550, doi:10.1007/s00373-013-1400-2.
[8] E. Dobson, J. Morris and P. Spiga, Further restrictions on the structure of finite DCI-groups: an addendum, J. Algebraic Combin. 42 (2015), 959-969, doi:10.1007/s10801-015-0612-3.
[9] E. Dobson and P. Spiga, CI-groups with respect to ternary relational structures: new examples, Ars Math. Contemp. 6 (2013), 351-364, doi:10.26493/1855-3974.310.59f.
[10] E. Dobson and D. Witte, Transitive permutation groups of prime-squared degree, J. Algebr. Comb. 16 (2002), 43-69, doi:10.1023/A:1020882414534.
[11] T. Dobson, On the isomorphism problem for Cayley graphs of abelian groups whose Sylow subgroups are elementary abelian cyclic, Electron. J. Comb. 25 (2018), Paper No. 2.49, doi: 10.37236/4983.
[12] T. Dobson, Some new groups which are not CI-groups with respect to graphs, Electron. J. Comb. 25 (2018), Paper No. 1.12, doi:10.37236/6541.
[13] S. A. Evdokimov and I. N. Ponomarenko, Recognition and verification of an isomorphism of circulant graphs in polynomial time, Algebra i Analiz 15 (2003), 1-34, doi:10.1090/ s1061-0022-04-00833-7.
[14] I. A. Faradžev, M. H. Klin and M. E. Muzichuk, Cellular rings and groups of automorphisms of graphs, in: Investigations in algebraic theory of combinatorial objects, Kluwer Acad. Publ., Dordrecht, volume 84 of Math. Appl. (Soviet Ser.), pp. 1-152, 1994, doi: 10.1007/978-94-017-1972-8_1.
[15] Y.-Q. Feng and I. Kovács, Elementary abelian groups of rank 5 are DCI-groups, J. Comb. Theory Ser. A 157 (2018), 162-204, doi:10.1016/j.jcta.2018.02.003.
[16] D. Holt and G. Royle, A census of small transitive groups and vertex-transitive graphs, J. Symb. Comput. 101 (2020), 51-60, doi:10.1016/j.jsc.2019.06.006.
[17] H. Koike and I. Kovács, A classification of nilpotent 3-BCI graphs, Int. J. Group Theory 8 (2019), 11-24, doi:10.22108/ijgt.2017.100795.1404.
[18] I. Kovács and M. Muzychuk, The group $\mathbb{Z}_{p}^{2} \times \mathbb{Z}_{q}$ is a CI-group, Comm. Algebra 37 (2009), 3500-3515, doi:10.1080/00927870802504957.
[19] I. Kovács and G. Ryabov, The group $C_{p}^{4} \times C_{q}$ is a DCI-group, Discrete Mathematics 345 (2022), 112705, doi:10.1016/j.disc.2021.112705.
[20] C. H. Li, On isomorphisms of finite Cayley graphs—a survey, Discrete Math. 256 (2002), 301-334, doi:10.1016/S0012-365X(01)00438-1.
[21] C. H. Li, Z. P. Lu and P. P. Pálfy, Further restrictions on the structure of finite CI-groups, J. Algebr. Comb. 26 (2007), 161-181, doi:10.1007/s10801-006-0052-1.
[22] M. Muzychuk, Ádám's conjecture is true in the square-free case, J. Comb. Theory Ser. A 72 (1995), 118-134, doi:10.1016/0097-3165(95)90031-4.
[23] M. Muzychuk, On Ádám's conjecture for circulant graphs, Discrete Math. 167-168 (1997), 497-510, doi:10.1016/s0012-365x(96)00251-8.
[24] M. Muzychuk, On the isomorphism problem for cyclic combinatorial objects, Discrete Math. 197/198 (1999), 589-606, doi:10.1016/S0012-365X(99)90119-X.
[25] M. Muzychuk, An elementary abelian group of large rank is not a CI-group, Discrete Math. 264 (2003), 167-185, doi:10.1016/s0012-365x(02)00558-7.
[26] M. Muzychuk, A solution of the isomorphism problem for circulant graphs, Proc. Lond. Math. Soc. (3) 88 (2004), 1-41, doi:10.1112/s0024611503014412.
[27] I. N. Ponomarenko, Determination of the automorphism group of a circulant association scheme in polynomial time, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 321 (2005), 251-267, 301, doi:10.1007/s10958-006-0217-4.
[28] G. Sabidussi, On a class of fixed-point-free graphs, Proc. Am. Math. Soc. 9 (1958), 800-804, doi:10.2307/2033090.
[29] G. Somlai, Elementary abelian p-groups of rank $2 p+3$ are not CI-groups, J. Algebr. Comb. 34 (2011), 323-335, doi:10.1007/s10801-011-0273-9.
[30] G. Somlai, The Cayley isomorphism property for groups of order $8 p$, Ars Math. Contemp. 8 (2015), 433-444, doi:10.26493/1855-3974.593.12f.
[31] G. Somlai and M. Muzychuk, The Cayley isomorphism property for $\mathbb{Z}_{p}^{3} \times \mathbb{Z}_{q}$, Algebr. Comb. 4 (2021), 289-299, doi:10.5802/alco. 154.
[32] P. Spiga, CI-property of elementary abelian 3-groups, Discrete Math. 309 (2009), 3393-3398, doi:10.1016/j.disc.2008.08.002.
[33] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.

[^0]: *Corresponding author. This work is supported in part by the Slovenian Research Agency (research program P1-0285 and research projects N1-0062, J1-9108, J1-1695, N1-0140, N1-0160, J1-2451, N1-0208).

 E-mail addresses: ted.dobson@upr.si (Ted Dobson), muzychuk@bgu.ac.il (Mikhail Muzychuk), pablo.spiga@unimib.it (Pablo Spiga)

[^1]: ${ }^{1}$ The automorphism group of the corresponding Cayley graph is 4 times bigger than G but the subgroups H and K are non-conjugate inside it.

