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Abstract: We show the existence of complex dynamics for a seasonally perturbed version of the
Goodwin growth cycle model, both in its original formulation and for a modified formulation,
encompassing nonlinear expressions of the real wage bargaining function and of the investment
function. The need to deal with a modified formulation of the Goodwin model is connected with
the economically sensible position of orbits, which have to lie in the unit square, in contrast to
what occurs in the model’s original formulation. In proving the existence of chaos, we follow the
seminal idea by Goodwin of studying forced models in economics. Namely, the original and the
modified formulations of Goodwin model are described by Hamiltonian systems, characterized by
the presence of a nonisochronous center, and the seasonal variation of the parameter, representing
the ratio between capital and output, which is common to both frameworks, is empirically grounded.
Hence, exploiting the periodic dependence on time of that model parameter we enter the framework
of Linked Twist Maps. The topological results valid in this context allow us to prove that the Poincaré
map, associated with the considered systems, is chaotic, focusing on sets that lie in the unit square,
and also when dealing with the original version of the Goodwin model. Accordingly, the trademark
features of chaos follow, such as sensitive dependence on initial conditions and positive topological
entropy.

Keywords: Goodwin growth cycle model; nonisochronous center; parameter seasonal perturbation;
linked twist maps; chaotic dynamics
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1. Introduction

In the last years of his research activity, Goodwin in [1] studied, by means of numerical
experiments, what can be obtained by the superimposition of exogenous cycles to cycles
endogenously generated by a model, focusing, in particular, on the one by Rössler [2],
and concluding that, “At this point it becomes appropriate to consider the relevance, if any, that
these forced models have to economics. The answer is not difficult to find: the economy consists of
a very large number of separate and distinct parts, with the result that these parts are subject to
continual exogenous forces. To begin with there are the individual national economies increasingly
acted on by the movements of the world economy. Then within the economy there are various
markets with dynamics particular to them. There is the annual solar cycle with its influence on
various markets, for example the agricultural, the touristic, the fuel, and any number of others” ([1],
pp. 121–123).

Taking inspiration from such considerations, we investigate the effect produced on the
dynamics of both the original version and a modified formulation of his celebrated growth
cycle model (see [3,4]) (The interested reader can find in [5] a survey on the vast literature
about the Goodwin model, concerning possible extensions or modifications of the original
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setting, in [3,4]), by the exogenous periodic variation in one of the model parameters, the
seasonal oscillation of which is empirically grounded.

We recall that the Goodwin model represents, in Goodwin’s own words, a “starkly
schematized”, yet incisive, manner, the relationships between capitalists and workers.
The need to deal with a modified formulation of the growth cycle model comes from
the fact that the original formulation, proposed in [3,4], is not coherent. Indeed, despite the
linearity of the real wage bargaining function and of the investment function, the original
Goodwin model consists of two nonlinear differential equations of the Lotka–Volterra
type, the variables of which are wage share in national income and proportion of labor
force employed, which, by definition, cannot exceed unit. On the other hand, orbits of the
Goodwin model can lie everywhere in the first quadrant, possibly outside the unit square
(Goodwin was aware of this fact and, indeed, in ([3], p. 57), he wrote “Both u [wage share
in national income] and v [employment proportion] must be positive and v must, by definition,
be less than unity; u normally will be also but may, exceptionally, be greater than unity (wages and
consumption greater than total product by virtue of losses and disinvestment)”). Some contribu-
tions, such as those by Desai et al. [6] and Harvie et al. [7], were devoted to fixing such an
issue in an economically sensible manner. Nonetheless, as shown by Madotto et al. in [8],
those works do not solve the problem with the orbit position, since the assumptions made
in those two papers are not sufficient to guarantee that orbits lie inside the unit square.
Hence, keeping the settings in [6,7] as a starting point, but taking into consideration the
results obtained in [8], we deal here with a different reformulation of the Goodwin growth
cycle model, which, in its outcomes, is consistent with the meanings of the variables and,
in particular, with their admissible ranges. In more detail, in our revisitation of the model,
in regard to the real wage bargaining function, we opt for the nonlinear formulation of
the Phillips curve proposed by Phillips in [9], and considered, for example, in [6]. For the
investment function, we deal with a similar nonlinear formulation, used in the simulative
analysis performed in [8], and satisfying the conditions found in that work, so as to ensure
that orbits lie in the feasible region. We stress that a nonlinear investment function is also
grounded from an economic viewpoint, since, according to [10], followed by [11], it is
suitable to encompass the description of a more flexible savings behavior with respect
to its linear counterpart. Moreover, the nonlinear version of the Phillips curve [9] was
initially considered by Goodwin, too, who then linearized that expression in its well-known
model so as to obtain an approximation for it, “in the interest of lucidity and ease of analysis”
([3], p. 55) (see also [6], p. 2666). Still, the economic interpretation requires the real wage
bargaining function to be increasing in the proportion of labor force employed, while the
investment function has to be decreasing in wage share in the national income.

Since the modified formulation of the Goodwin model that we are going to analyze
fulfills the conditions in [8], we know that, like the original framework in [3,4], it is still
a Hamiltonian system, characterized by the presence of a global, nonisochronous center.
Hence, in order to analytically show the dynamic consequences produced on its periodic
orbits by the exogenous periodic variation in one of the model parameters, we use the
Linked Twist Maps (LTMs, hereinafter) method, recently employed, for instance, in [12] to
show the existence of complex dynamics in two evolutionary game theoretical contexts.
In particular, we assume that the chosen parameter alternates in a periodic fashion between
two different values, e.g., due to a seasonal effect, and this allows us to prove the existence
of chaotic dynamics. In order to make our choice empirically grounded, we focus on
the parameter that describes the ratio between capital and output, since, keeping the
capital level constant, production is no doubt influenced by phenomena that are periodic
in nature. We can, for instance, take into consideration the oscillatory behavior during
the solar year of the energy price in electricity markets in consequence of the varying
demand over the months, as investigated, for example, in [13,14], or the different supply
in the agricultural commodity markets in various seasons. We stress, however, that the
same assumption about a periodic variation between two different values made on any
other model parameter would produce analogous results in terms of generated dynamics,
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since all parameters influence the center position (We remark that this is a sufficient, albeit
not necessary, condition in order to apply the LTMs method whenever we deal with a
nonisochronous center, as long as the switching times between the regimes described by
the two different parameter values are large enough. As shown, for example, in [12,15],
the LTMs technique can be used even when, in consequence of the periodic perturbation of
one of the model parameters, the center position does not vary, but the shape of the orbits
is modified in a suitable manner).

In order to explain the LTMs technique we need to recall, on the one hand, the original
setting of linked twist maps, as studied, for instance, in [16–18], with the corresponding
assumptions of smoothness, preservation of Lebesgue measure and monotonicity of the
angular speed with respect to the radial coordinate, and, on the other hand, the Stretching
Along the Paths (henceforth, SAP) method, developed in the planar case in [19,20] and
extended to higher dimensional frameworks in [21]. The SAP method is a topological
technique that allows the existence of fixed points, periodic points and chaotic dynamics
for continuous maps that expand the arcs along one direction and that are defined on
sets homeomorphic to the unit cube in Euclidean spaces. The context of LTMs represents
a geometrical framework in which it is possible to employ the SAP method in view of
proving, as done, for example, in [22,23], the presence of the trademark features of chaos,
such as sensitive dependence on initial conditions and positive topological entropy. In more
detail, by a Linked Twist Map we mean the composition of two twist maps, each acting on
an annulus, with the two annuli linked together, i.e., crossing in the two-dimensional case
along two (or more) planar sets homeomorphic to the unit square, that we call generalized
rectangles. Since our approach is purely topological, different from that in [16–18], we just
need a twist condition on the boundary of the two linked annuli, similar to what is required
in the Poincaré-Birkhoff fixed point theorem.

As explained above, in the present paper, we are going to apply the LTMs method to
the original and to the modified formulations of the Goodwin model, that, according to
the findings in [8], are Hamiltonian systems with nonisochronous centers, the position of
the center varying when the value of one of the model parameters changes. In particular,
in both frameworks we act on the ratio between capital and output, since it is sensible
to assume that it alternates, due to a seasonal effect, in a periodic fashion between two
different levels, one of which may be seen as a perturbation of the other. In this manner,
starting either from the original or the modified formulation of the Goodwin model, we
obtain two conservative systems, the unperturbed and the perturbed ones, and for each
system we can consider an annulus made of energy level lines. Under suitable conditions,
the orbits the two annuli are linked together, crossing in two disjoint generalized rectangles.
In our settings, the LTMs technique consists of finding two such linked annuli, having
intersections containing chaotic sets. Their existence is established by applying the SAP
method to the Poincaré map obtained as composition of the Poincaré maps associated with
the unperturbed system and the perturbed one. This leads us to work with discrete-time
dynamical systems. Like what has happened in other contexts in which the LTMs method
was used (see e.g., [12,23]), our results about the existence of complex dynamics are robust
with respect to small changes, in L1 norm, in the coefficients of the considered settings.

We stress that the nonisochronicity of the center plays a crucial role in applying the
SAP method, because it implies that the Poincaré maps produce a twist effect on the linked
annuli, since the orbits composing them are run with a different speed. In this manner,
the generalized rectangles, where the annuli meet, are increasingly deformed with the
passing of time. Hence, if the regimes governed by the unperturbed system and by the
perturbed one are sufficiently long-lasting, the Poincaré maps transform the generalized
rectangles into spiral-like sets, that intersect the same generalized rectangles many times,
so that the stretching property required by the SAP method, in order to guarantee the
existence of chaotic sets inside the generalized rectangles, is fulfilled.

Regarding the nonisochronicity of the center in the settings that we analyze in this
manuscript, for the original formulation proposed in [3,4], we rely on the classical results
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in [24,25] about the monotonicity of the period of orbits for the Lotka–Volterra predator–
prey model with respect to the energy level, since the Goodwin growth cycle model is a
special case of that more general framework. For the modified formulation of the Goodwin
model that we take into account we instead make reference to the findings obtained
in [8] about the period of small and large cycles for a wide class of Hamiltonian systems
encompassing the one here considered. More precisely, although an exhaustive analysis
of the period of the orbits does not seem to be easy to perform, as discussed in [8], due to
the presence of singularities in the model, Madotto et al. proved, on the one hand, that the
approximation of the period length of small cycles by means of the period of the linearized
system is valid near the equilibrium point and, on the other hand, that the period length
of large cycles, approaching the boundary of the feasible set, i.e., the unit square in our
context, is arbitrarily high. In view of illustrating, by means of a concrete example, our
main result about the existence of complex dynamics for the modified formulation of the
Goodwin model, we numerically checked that the periods of the orbits coinciding with
the inner and the outer boundaries of the linked annuli, considered in our example, did
not coincide, finding, in particular, that the period of the orbits increased with the energy
level, in analogy with the classical results in [24,25] for the original formulation of the
Goodwin model. This is in agreement with the simulative experiments performed in [8] for
the same setting that we investigate. Indeed, using a different notation, the framework that
we study has been essentially proposed in (Section 5.3 in [8]) to illustrate the difficulties
which arise when trying to prove that the period map connected with the general class of
Hamiltonian systems analyzed in that paper is increasing, even if the detailed numerical
simulations performed in [8] suggest that the period monotonicity holds true for the system
that we consider.

Hence, our contribution is strongly based, on the one hand, on the results contained
in [8] about the period of cycles of a suitable class of Hamiltonian systems. On the other
hand, our work belongs to the research strand which, starting from [22,23], shows how to
use the LTMs method to prove the existence of complex dynamics in various continuous-
time settings (see e.g., [26–28]). In more detail, the paper that is closest to ours is [23], where
the LTMs method was applied to investigate the dynamical effects produced by a periodic
harvesting in the predator–prey model. Namely, the original formulation of the Goodwin
growth cycle model is a special case of the Lotka–Volterra predator–prey model. However,
our analysis does not coincide with that performed in [23], since, led by the economic
argument about the ratio between capital and output explained above, we perturb in a
periodic fashion a different parameter with respect to [23], and this produces a dissimilar
effect on the center position. Moreover, orbits were run counterclockwise in [23], while
they are run clockwise in the present framework, and this aspect also affects the proof of
our result about LTMs, in which we need to count the laps completed by suitable paths
around the centers.

In addition to the fact that the LTMs method has not been applied to the Goodwin model
yet, two further reasons led us to deal with its original formulation in our investigation.

The first one is to provide robustness to the results that we obtain for the model
modified formulation, which, indeed, in their general conclusions do not depend on the
particular expression of the equations involved, as long as we enter the class of Hamiltonian
systems considered in [8]. Only the kind of geometrical configuration for orbits in the
phase plane, and, thus, the way to use the LTMs method, could vary according to the
formulation of the model equations and on the basis of how they depend on the parameter
that is periodically perturbed. We remark that different nonlinear expressions for the
real wage bargaining function, and for the investment function, could be sensible, as well.
Nonetheless, we chose two formulations that, in addition to having already been considered
in the existing literature, satisfy the conditions found in [8], ensuring that the center is
nonisochronous and that orbits lie in the feasible region, i.e., the unit square, since the state
variables, being wage share in national income and proportion of labor force employed,
can neither be negative, nor exceed unity.
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The second reason for considering the Goodwin original formulation of the growth
cycle model lies in the possibility of showing how to use the LTMs method to prove the
existence of chaotic sets lying inside the unit square, despite the previously mentioned
issue with the orbit position in the original Goodwin setting. Namely, the chaotic sets
are contained in the detected pair of linked annuli, that jointly constitute an invariant
set under the action of the Poincaré map obtained as composition of the Poincaré maps
associated with the unperturbed system and the perturbed one, since each annulus, being
made of periodic orbits, is invariant under the action of the Poincaré map describing the
corresponding regime. Choosing linked together annuli contained in the unit square solves
the problem. As our illustrative examples show, this can be done even when dealing
with parameter configurations analogous to those considered in [6,7]. We stress that the
issue with the orbit position did not occur in [23], since the variables in the original Lotka–
Volterra model, describing the size of prey and predator populations, are not confined to
lying in the unit square.

The remainder of the paper is organized as follows. In Section 2, we recall the original
formulation of the Goodwin growth cycle model and we explain how to apply the LTMs
method in such a context, highlighting the differences with [23]. In Section 3, we introduce
the modified formulation of the Goodwin model, for which we check the existence of chaotic
dynamics by means of the LTMs technique. In Section 4, we recall the definitions and the
results connected with the LTMs method used in the preceding sections. In Section 5, we
conclude. Appendix A contains the mathematical proof of our results, as well as some
related comments.

2. The LTMs Method for the Goodwin Model Original Formulation

Following Goodwin’s seminal idea in [1], of studying forced models in economics,
we apply the Linked Twist Maps (henceforth, LTMs) method, the main features of which
are described in Section 4, to his celebrated growth cycle model, in order to show the
effects produced on its dynamics by the exogenous periodic variation in one of the model
parameters, the seasonal oscillation of which is empirically grounded.

We start by briefly recalling the model’s original formulation proposed in [3,4].
Denoting by u(t) ∈ [0, 1] the wage share in national income and by v(t) ∈ [0, 1] the

employment proportion, the Goodwin model reads as u′ = u(−(α + χ) + ρv)

v′ = v
(
−(α + β) + 1−u

σ

) (1)

where all parameters are positive and, in particular, α is the exogenous labor productivity
growth rate, β is the exogenous labor force growth rate, σ is the capital–output ratio, while
χ and ρ characterize the real wage growth rate, which is of the form −χ + ρv., We stress
that, rather than χ, the symbol γ is generally used in the Goodwin model. However, we
preferred to save γ to denote paths (see e.g., Definition 2) in agreement with the existing
literature on the SAP method. The first equation in (1) derives from Goodwin’s linearized
version of the Phillips curve [9] in real wages (see the first equation in (9) for its nonlinear
formulation). We refer the interested reader to [6] for the derivation of the second equation,
based on the assumptions that capitalists reinvest all profits and workers consume all
wages, and to [6,7] for further details on the model.

Although state variables, due to their meanings, can neither be negative nor exceed
unity, the latter condition is not guaranteed by (1). Namely, those equations describe a
conservative system with closed orbits lying everywhere in the first quadrant of R2 and
surrounding the center

P =

(
1− σ(α + β) ,

α + χ

ρ

)
.
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We stress that P lies in the unit square when

σ <
1

α + β
, α + χ < ρ . (2)

The origin O = (0, 0) is an equilibrium, being a saddle. As it is immediate to check,
System (1) is a special case of the Lotka–Volterra predator–prey model (see e.g., [29]){

x′ = x(a− by)

y′ = y(−c + dx)
(3)

where u(t) corresponds to y(t) and v(t) corresponds to x(t), even if x(t) and y(t) are not
confined to lie in [0, 1], since they are non-negative variables describing the size of the prey
and of the predator populations, respectively. In particular, as in [23], we focused only
on x(t) > 0 and y(t) > 0, being therein interested in dynamic outcomes characterized
by the coexistence between prey and predator. In what follows we confine our analysis
to positive values of u(t) and v(t). Specifically, System (3) describes the twofold, at one
time beneficial and detrimental, nature of the interactions between predators and preys.
Similarly, the Goodwin model schematically represents the involved relationship between
capitalists and workers, with the wage share in national income being the predator variable
and the employment proportion being the prey.

Both (1) and (3) describe Hamiltonian systems. In the former case, orbit equations are
given by

E(u, v) =
u
σ
−
(

1
σ
− α− β

)
log(u) + ρv− (α + χ) log(v) = `,

for some ` ≥ `0, where `0 is the minimum energy level attained by E(u, v) on the open unit
square (0, 1)2, i.e., `0 = E(P). Notice that, under (2), the minimum level attained by E(u, v)
on (0, 1)2 coincides with the minimum level attained on (0,+∞)2, since we assume that
P ∈ (0, 1)2. Moreover, the period of the orbits of System (1) increases with the energy level,
due to the possibility of relying on the classical results in [24,25] on the monotonicity of
the period of the orbits for the Lotka–Volterra predator–prey model in (3). On the other
hand, contrary to what happens with System (3), orbits for System (1) are run clockwise,
as the analysis of the phase portrait shows. This is due to the fact that, as observed above,
comparing Systems (1) and (3), u(t) corresponds to y(t) and v(t) corresponds to x(t).

While Goodwin investigated, by means of numerical experiments in [1], the dynamic
outcomes that can be obtained by superimposing exogenous cycles to cycles endogenously
generated by a model, we analytically show the effect produced on the periodic orbits of
System (1) by the exogenous periodic variation in one of the model parameters. In view of
making our choice empirically grounded, we focus on σ, i.e., the capital–output ratio, since,
keeping the capital level constant, production is certainly influenced by phenomena that
are periodic in nature. We can, for example, consider the oscillatory behavior during the
solar year of the energy price in electricity markets in consequence of the varying demand
over the months, or the different supply in the agricultural commodity markets in the
various seasons. To fix ideas, we concentrate on the second phenomenon, since it is clear
that north of the equator, for instance, in Europe and in the United States, supply in the
agricultural commodity markets is larger from April to October than during the remaining
part of the year. Hence, for the capital–output ratio σ we can assume a periodic alternation
between a higher value, that we call σ(I), referring to fall and winter, and a lower value,
which may be seen as a perturbation of the former, that we call σ(I I), referring to spring
and summer (In regard to seasonal variations in demand and energy price in electricity
markets, according to [14], which refers to [13], “Cycles and seasonality have for a long time
been observed in electricity markets. There are hourly, daily, weekly, and seasonal fluctuations in
prices and demand”. See also [30] for a seasonal electricity demand and pricing analysis). We
stress, however, that a similar assumption about a periodic variation made on any other
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model parameter would produce analogous results in terms of generated dynamics, since
all parameters affect, in some way, the center position.

Supposing then that the capital–output ratio alternates between σ(I), for t ∈ [0, T(I)),
and σ(I I), for t ∈ [T(I), T(I) + T(I I)), with σ(I) > σ(I I), and that the same alternation
between the two regimes recurs with T-periodicity, where T = T(I) + T(I I), we can assume
that we are dealing with a system with periodic coefficients of the form u′ = u(−(α(t) + χ(t)) + ρ(t)v)

v′ = v
(
−(α(t) + β(t)) + 1−u

σ(t)

) (4)

where

k(t) ≡ k, for k ∈ {α, β, χ, ρ}, and σ(t) =

{
σ(I) for t ∈ [0, T(I))

σ(I I) for t ∈ [T(I), T)
(5)

with
0 < σ(I I) < σ(I) <

1
α + β

, α + χ < ρ (6)

as a consequence of (2). The function σ(t) is supposed to be extended to the whole real line
by T-periodicity.

When the capital–output ratio takes value σ(i), and, thus, we are in the regime
having dynamics governed by the system that we call (i), the center coincides with
P(i) =

(
1− σ(i)(α + β), α+χ

ρ

)
, for i ∈ {I, I I}. Notice that, passing from P(I) to P(I I), the

ordinate of the center does not change, while its abscissa rises. In regard to orbits, they are
closed for both Systems (I) and (I I), surrounding P(I) and P(I I), respectively, and they are
run clockwise. In the former case, orbits have equation

E(I)(u, v) =
u

σ(I)
−
(

1
σ(I)
− α− β

)
log(u) + ρv− (α + χ) log(v) = `, (7)

for some ` ≥ `
(I)
0 , while, in the latter case, orbits have equation

E(I I)(u, v) =
u

σ(I I)
−
(

1
σ(I I)

− α− β

)
log(u) + ρv− (α + χ) log(v) = h, (8)

for some h ≥ h(I I)
0 , where `(I)

0 and h(I I)
0 are the minimum energy levels attained by E(I)(u, v)

and E(I I)(u, v) on (0, 1)2, respectively, i.e., `(I)
0 = E(I)(P(I)) and h(I I)

0 = E(I I)(P(I I)).

The sets Γ(I)(`) = {(u, v) ∈ (0,+∞)2 : E(I)(u, v) = `}, for ` > `
(I)
0 , are simple

closed curves surrounding P(I), while Γ(I I)(h) = {(u, v) ∈ (0,+∞)2 : E(I I)(u, v) = h}, for
h > h(I I)

0 , are simple closed curves surrounding P(I I). We call an annulus around P(I) System

(I) any set C(I)(`1, `2) = {(u, v) ∈ (0,+∞)2 : `1 ≤ E(I)(u, v) ≤ `2} with `
(I)
0 < `1 < `2,

having an inner boundary coinciding with Γ(I)(`1), and an outer boundary coinciding
with Γ(I)(`2). Similarly, we call an annulus around P(I I) System (I I) any set C(I I)(h1, h2) =

{(u, v) ∈ (0,+∞)2 : h1 ≤ E(I I)(u, v) ≤ h2} with h(I I)
0 < h1 < h2, having an inner boundary

coinciding with Γ(I I)(h1) and an outer boundary coinciding with Γ(I I)(h2). In particular,
we are interested in annuli for Systems (I) and (I I) contained in (0, 1)2, due to the meaning
of variables u and v. This configuration is achieved by choosing annuli whose outer (and
consequently, inner) boundary set lies sufficiently close to the corresponding center, i.e., for
low enough values of the energy levels `2 > `

(I)
0 and h2 > h(I I)

0 (see, e.g., Figure 1).
In view of providing conditions of the energy levels that ensure that two annuli are

linked together, thus, crossing in two disjoint generalized rectangles (see Section 4 for the
corresponding definition), let us consider the straight line r joining P(I) and P(I I), having
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equation v = (α + χ)/ρ, the ordering inherited from the horizontal axis, so that, given the
points R = (uR, v∗) and S = (uS, v∗) belonging to r, and hence with v∗ = (α + χ)/ρ, it
holds that R C S (resp. R E S) if and only if uR < uS (resp. uR ≤ uS). We are now in a
position to introduce the following:

Definition 1. Given the annulus C(I)(`1, `2) around P(I) and the annulus C(I I)(h1, h2) around
P(I I), we say that they are linked together if

P(I)
2,− C P(I)

1,− E P(I I)
2,− C P(I I)

1,− E P(I)
1,+ C P(I)

2,+ E P(I I)
1,+ C P(I I)

2,+

where, for j ∈ {1, 2}, P(I)
j,− and P(I)

j,+ denote the intersection points between Γ(I)(`j) and the straight

line r, with P(I)
j,− C P(I) C P(I)

j,+, and, similarly, P(I I)
j,− and P(I I)

j,+ denote the intersection points

between Γ(I I)(hj) and r, with P(I I)
j,− C P(I I) C P(I I)

j,+ .

(A) (B)

Figure 1. In (A) we draw in green some energy level lines associated with System (I), surrounding
P(I), and in gray some energy level lines associated with System (I I), surrounding P(I I), together
with the corresponding phase portrait. In (B), we illustrate Definition 1, showing how to obtain two
linked together annuli by suitably choosing two level lines for each system. In particular, we call
C(I)(`1, `2), C(I I)(h1, h2) the two linked annuli, and A (colored in dark green), B (colored in light
green) the two disjoint generalized rectangles obtained as the intersection between the two annuli.

We stress that, for `j > `
(I)
0 and hj > h(I I)

0 , j ∈ {1, 2}, the boundary sets Γ(I)(`j) and
Γ(I I)(hj) intersect the straight line r in exactly two points, because {(u, v) ∈ (0,+∞)2 :
E(I)(u, v) ≤ `} and {(u, v) ∈ (0,+∞)2 : E(I I)(u, v) ≤ h}, coinciding with the lower contour
sets of the convex functions E(I) in (7) and E(I I) in (8), are star-shaped for all ` > `

(I)
0 and

for every h > h(I I)
0 , respectively. We refer the reader to Figure 1B for a graphical illustration

of Definition 1.
We recall that a geometrical configuration analogous to that depicted in Figure 1B,

except for the need for orbits to lie in the unit square, was found in [28] (cf. Figure 2
therein), where the LTMs method was applied to a periodically forced asymmetric second
order ODE. However, in that case, the abscissa of the center decreased passing from the
unperturbed regime to the perturbed one and the centers of the systems corresponding to
the two regimes were located on the horizontal axis. Although both dissimilarities would
not require the introduction of relevant differences in the statement and proof of the main
result in [28] (cf. Theorem 1.2 therein), in adapting them to our framework, we provide
a slightly more general (In (Theorem 1.2 in [28]) the special case of Proposition 1 with
m(I) = m ≥ 2 and m(I I) = 1 considered) version of (Theorem 1.2 in [28]) in Proposition 1,
together with a complete proof (contained in the Appendix A) for the reader’s convenience.

To achieve such an aim, in addition to exploiting the tools recalled in Section 4 and,
in particular, the stretching relation in (16), we need to introduce the Poincaré map Ψ
of System (4), which associates with any initial condition (u0, v0) belonging to (0,+∞)2
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the position at time T of the solution ς( · , (u0, v0)) = (u( · , (u0, v0)), v( · , (u0, v0))) to (4)
starting at time t = 0 from (u0, v0). In symbols, Ψ : (0,+∞)2 → (0,+∞)2, (u0, v0) 7→
ς(T, (u0, v0)). The paper’s solutions are meant to be considered in the Carathéodory sense,
being absolutely continuous and satisfying the corresponding system for almost every
t ∈ R. We recall that a classical method to show the existence of periodic solutions for
systems of first order ODEs with periodic coefficients is based on the search of the periodic
points for the associated Poincaré map, under the assumption of uniqueness of the solutions
for the Cauchy problems (cf. [31]). Notice that Ψ is a homeomorphism on (0,+∞)2 and that
it may be decomposed as Ψ = Ψ(I I) ◦Ψ(I), where Ψ(I) is the Poincaré map associated with
System (I) for t ∈ [0, T(I)] and Ψ(I I) is the Poincaré map associated with System (I I) for
t ∈ [0, T(I I)]. Moreover, since every annulus C(I)(`1, `2) around P(I) is invariant under the
action of the map Ψ(I), being composed of the invariant orbits Γ(I)(`), for ` ∈ [`1, `2], and,
similarly, since every annulus C(I I)(h1, h2) around P(I I) is invariant under the action of the
map Ψ(I I), it holds that every pair of linked together annuli is invariant under the action
of the composite map Ψ. In Proposition 1 we denote τ(I)(`), for all ` > `

(I)
0 , the period of

Γ(I)(`), i.e., the time needed by the solution ς(I)( · , (u0, v0)) to System (I), starting from any
(u0, v0) ∈ Γ(I)(`), to complete one turn around P(I) moving along Γ(I)(`), and by τ(I I)(h),
for all h > h(I I)

0 , the period of Γ(I I)(h), i.e., the time needed by the solution ς(I I)( · , (u0, v0))

to System (I I), starting from any (u0, v0) ∈ Γ(I I)(h), to complete one turn around P(I I)

moving along Γ(I I)(h). Orbits surrounding either P(I) or P(I I) are run clockwise and τ(I)( · )
and τ(I I)( · ) are monotonically increasing with the energy levels, since both features are
fulfilled for System (1), as remarked above. Hence, for any annulus C(I)(`1, `2) around P(I)

it holds that τ(I)(`1) < τ(I)(`2), as well as for each annulus C(I I)(h1, h2) around P(I I) it
holds that τ(I I)(h1) < τ(I I)(h2).

Our result in regard to System (4) reads as follows:

Proposition 1. For any choice of the positive parameters α, β, χ, ρ, σ(I), σ(I I) satisfying (6),
given the annulus C(I)(`1, `2) around P(I), for some `(I)

0 < `1 < `2, and the annulus C(I I)(h1, h2)

around P(I I), for some h(I I)
0 < h1 < h2, assume that they are linked together, calling A and B

the connected components of C(I)(`1, `2) ∩ C(I I)(h1, h2). Then, for every m(I) ≥ 1 and m(I I) ≥ 1
with m = m(I)m(I I) ≥ 2 there exist two positive constants t(I) = t(I)(m(I), τ(I)(`1), τ(I)(`2))
and t(I I) = t(I I)(m(I I), τ(I I)(h1), τ(I I)(h2)) such that if T(i) > t(i), for i ∈ {I, I I}, the Poincaré
map Ψ = Ψ(I I) ◦Ψ(I) of System (4) induces chaotic dynamics on m symbols in A and in B, and
all the properties listed in Theorem 1 are fulfilled for Ψ.

According to Proposition 1, whenever we have two linked together annuli related
to Systems (I) and (I I), if the switching times between the regimes described by those
two systems are large enough, then the Poincaré map Ψ = Ψ(I I) ◦ Ψ(I) induces chaotic
dynamics on m ≥ 2 symbols in the sets in which the two annuli intersect. As is clear
from the proof of Proposition 1 (see the Appendix A), chaotic behavior is generated by
the twist effect produced on the linked annuli by the different speeds with which their
inner and outer boundary sets are run. Namely, after a long enough time, this twist effect
suffices to make the image through Ψ(I) and Ψ(I I) of the paths joining the inner and the
outer boundary sets of the annuli spiral inside them and cross many times the intersection
sets A and B between the linked annuli. In this manner, Ψ satisfies the stretching relation
described in Theorem 1 and, thus, all properties listed therein hold true for the composite
Poincaré map.

We further notice that, under the assumptions in (6), which ensure that the centers
of Systems (I) and (I I) belong to the open unit square, when applying Proposition 1
to linked annuli, having inner and outer boundary sets lying sufficiently close to the
centers, i.e., for low enough values of the energy levels `2 > `1 > `

(I)
0 and h2 > h1 >

h(I I)
0 , the chaotic invariant sets contained in A and in B lie in the open unit square, too.

The same is true not only for the chaotic sets, but for a whole pair of linked annuli when the
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outer boundary sets Γ(I)(`2) and Γ(I I)(h2) are contained in (0, 1)2. Figure 1A shows this
happening, where the parameter values are α = 0.03, β = 0.01, χ = 0.63, ρ = 0.7, σ = 3.
We stress that such parameter configuration is analogous to that considered in ([7], p. 77).
The parameters in Figure 1A are similar to the those in ([6], p. 2668), where the authors
set α = 0.001, β = 0.001, χ = 0.95, ρ = 1, σ = 3. In the works mentioned, the symbol
γ was used instead of χ. α = 0.02, β = 0.01, χ = 0.6, ρ = 0.7, σ(I) = 3, σ(I I) = 2.5, so
that P(I) = (0.910, 0.886) and P(I I) = (0.925, 0.886). In particular, as shown in Figure 1B,
we obtain two linked together annuli C(I)(`1, `2) and C(I I)(h1, h2), contained in (0, 1)2

and crossing in the two disjoint generalized rectangles denoted by A and B, e.g., for
`1 = 1.0274, `2 = 1.0276, h1 = 1.0943, h2 = 1.0946.

Indeed, despite the previously recalled issue (see (2) and the lines above it) with the
orbit position for the original formulation of the Goodwin model in (1), every annulus
around P(i) for System (i), with i ∈ {I, I I}, being made of periodic orbits, is invariant
under the action of the Poincaré map Ψ(i). Consequently, each pair of linked annuli jointly
constitutes an invariant set under the action of the composite Poincaré map Ψ = Ψ(I I) ◦Ψ(I),
so that, even for System (1), the LTMs method allows the detection of complex dynamics
that are consistent from an economic viewpoint.

Nonetheless, in Section 3 we introduce and analyze a modified formulation of the
Goodwin growth cycle model (cf. (9)), whose orbits are all contained in the unit square,
since the necessary and sufficient conditions found in [8] are fulfilled.

Before turning to that new framework, we stress that, like (Theorem 1.2 in [28]),
Proposition 1 is also robust with respect to small changes, in L1 norm, in the coefficients of
System (4). Namely, from the proof of Proposition 1 it follows that, if T(I) and T(I I) satisfy
the conditions described in its statement, then, recalling System (4) and the definition of
its coefficients in (5), there exists a positive constant ε, such that the same conclusions of
Proposition 1 hold true for the system u′ = u(−(ᾰ(t) + χ̆(t)) + ρ̆(t)v)

v′ = v
(
−(ᾰ(t) + β̆(t)) + 1−u

σ̆(t)

)
with ᾰ, β̆, χ̆, ρ̆, σ̆ : R→ R being T-periodic functions with T = T(I) + T(I I), as long as∫ T

0

∣∣ k̆(t)− k
∣∣ dt < ε, for k ∈ {α, β, χ, ρ},

and ∫ T

0

∣∣ σ̆(t)− σ(t)
∣∣ dt =

∫ T(I)

0

∣∣ σ̆(t)− σ(I)∣∣ dt +
∫ T

T(I)

∣∣ σ̆(t)− σ(I I)∣∣ dt < ε.

Due to the similar arguments that are needed in its proof, Proposition 2, i.e., the main
result that we present in Section 3 about the Goodwin model modified formulation, is also
robust with respect to small changes in the coefficients of System (13), in L1 norm.

We conclude the present section by recalling that, in [23], the LTMs method was
applied to the Lotka–Volterra System (3) under the assumption of a periodic harvesting, that
perturbed the center position, causing an alternation for it between two points. However,
since in [23] it was supposed that not only prey, but also predators decrease in number
during the harvesting season, then both coordinates of the center change in that framework.
Furthermore, orbits of System (3) are run counter-clockwise, rather than clockwise, like
happens with the orbits of System (1), and, thus, the definition of the rotation number used
in [23] does not coincide with that employed in the proof of Proposition 1 (cf. (A3) and (A4)).
Those two differences between [23] and the above described context pushed us to provide
a specific, complete presentation in the here analyzed setting of the LTMs method, and
in its application to (1) in Proposition 1. Indeed, as recently shown in [12], the way in
which the LTMs method can be used depends on the meaning attached to the variables
and parameters of the considered model. Moreover, the detailed presentation of the LTMs
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method provided above is useful in view of Section 3, too, where it suffices for us to focus
on the main steps, highlighting the dissimilarities with what we have already explained.

3. The Goodwin Model Modified Formulation

Rather than dealing with the linear expressions for the real wage bargaining function
and for the investment function seen in Section 2, we now consider a modified formulation
of such a setting, motivated by the issue with the orbit position in the original Goodwin
model [3].

In regard to the real wage bargaining function, the most natural choice is given by the
Phillips nonlinear specification in [9], even for real, rather than money, wages (cf. the first
equation in System (9)). This was indeed what Goodwin initially assumed, before lineariz-
ing the Phillips curve so as to obtain the first equation in (1) as an approximation (see [3],
p. 55). We recall that the nonlinear formulation of the Phillips curve in [9] was considered by,
for example, by Desai et al., in [6], in their attempt to guarantee that the orbits of the growth
cycle model lay inside the unit square. On the other hand, as shown by Madotto et al.
in [8], the attempt by Desai et al. in [6] was not successful in fixing the problem with the
orbit position because of their choice of the investment function (cf. Equation (10) in [6],
page 2667), that describes a framework in which capitalists, depending on profitability, do
not necessarily invest all profits. We stress that in [8] it is proven that even the modified
version of the Goodwin model proposed by Harvie et al. in [7], does not ensure that orbits
lie inside the unit square. In order to avoid similar issues, for the investment function
we considered a nonlinear formulation (see the second equation in System (9)) satisfying
the conditions found in [8], and that are recalled below, so as to guarantee that orbits
lay in the feasible region. In more detail, for the investment function we dealt with the
formulation used in the simulative analysis performed in (Section 5.3 in [8]). We underline
that a nonlinear investment function is grounded also from an economic viewpoint, since,
according to [10], followed by [11], it is suitable to describe more flexible savings behavior.
Still, the economic interpretation requires the real wage bargaining function to increase in
proportion to the labor force employed, while the investment function has decrease in the
wage share in national income.

Since the modified formulation of the Goodwin model in (9), that we analyze sat-
isfies the conditions in [8], we know that, like the original framework in [3,4], it is still
a Hamiltonian system characterized by the presence of a global, nonisochronous center.
Hence, in order to analytically show what the dynamic consequences produced on its
periodic orbits by an exogenous periodic variation in one of the model parameters are, we
to use the LTMs method. In particular, in view of making our parameter choice empirically
grounded, due to the same argument explained in Section 2, we focus on the parameter
that describes the ratio between capital and output, assuming that it alternates in a periodic
fashion between two different values, due, for example, to a seasonal effect. This allows
us to prove the existence of chaotic dynamics for System (13), i.e., the analog of System (4)
obtained from (9). Nonetheless, as explained in Section 2, assuming a periodic variation
on any other model parameter would lead to analogous conclusions about the system’s
dynamic behavior, since the center position is influenced by all parameters.

In symbols, u(t) ∈ [0, 1] still denotes the wage share in national income and v(t) ∈ [0, 1]
the employment proportion, our modified formulation of the Goodwin model reads as

u′ = u
(
−(χ + α) + ρ

(1−v)δ

)
v′ = v

(
−(α + β) + 1

σ

(
c− η

(1−u)µ

)) (9)

where all parameters are positive and, in addition to α, β and σ, that still describe the
exogenous labor productivity growth rate, the exogenous labor force growth rate and
the capital–output ratio, respectively, we have χ, ρ and δ characterizing the real wage
growth rate, which, in agreement with [9], is now in the form −χ + ρ

(1−v)δ , while c, η and µ,
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together with σ, characterize the output growth rate, now formulated as 1
σ

(
c− η

(1−u)µ

)
. In

particular, as in the model’s original version in [3,4], it is assumed that capitalists reinvest
all profits and workers consume all wages.

In addition to the origin O = (0, 0), which is still a saddle, the other equilibrium for
System (9) is given by

P̂ =

(
1−

(
η

c− σ(α + β)

) 1
µ

, 1−
(

ρ

χ + α

) 1
δ

)
,

that belongs to the open unit square (0, 1)2 when

σ <
c− η

α + β
, ρ < χ + α , δ ≥ 1, µ ≥ 1. (10)

In order to ensure that P̂ is a global center for System (9), whose orbits lie in the square
(0, 1)2, which is again the feasible region, due to the meaning of u and v, and in view of
applying someof the results obtained in [8] on the period of orbits, we need to check the
conditions described on p. 778 therein for the general system{

u′ = u f (u)ψ(v)

v′ = −v g(v) ϕ(u)
(11)

are fulfilled with the considered formulations of the real wage bargaining function and of
the investment function, under the parameter assumptions in (10). When adapted to our
framework, the conditions in [8] require that f , g : (0, 1)→ (0,+∞) are continuous func-
tions and that ϕ, ψ : (0, 1)→ R are C1 maps with positive derivative on (0, 1), satisfying
limu→0+ ϕ(u) ∈ (−∞, 0), limv→0+ ψ(v) ∈ (−∞, 0), limu→1− ϕ(u) > 0, limv→1− ψ(v) > 0.
All this is true in our context, since, setting f (u) = 1, ψ(v) = −(χ + α) + ρ

(1−v)δ , g(v) = 1,

ϕ(u) = (α + β) − 1
σ

(
c− η

(1−u)µ

)
, holds that f , g are continuous maps taking positive

values only and ϕ, ψ are C1 increasing maps in (0, 1), satisfying

limu→0+ ϕ(u) = α + β− 1
σ (c− η) ∈ (−∞, 0),

limv→0+ ψ(v) = −(χ + α) + ρ ∈ (−∞, 0),

limu→1− ϕ(u) = +∞, limv→1− ψ(v) = +∞

under (10). Moreover, setting

A(u) =
∫

ϕ(u)
u f (u)

du =
∫ 1

u

(
(α + β)− 1

σ

(
c− η

(1− u)µ

))
du

and

B(v) =
∫

ψ(v)
vg(v)

dv =
∫ 1

v

(
−(χ + α) +

ρ

(1− v)δ

)
dv, (12)

it holds that

lim
u→0+

A(u) = lim
u→1−

A(u) = lim
v→0+

B(v) = lim
v→1−

B(v) = +∞ ,

as required in [8], too. Hence, System (9) admits Ê(u, v) = A(u) + B(v) as first integral,
having P̂ as minimum point and, according to Theorem 3.1 in [8], its solutions are periodic
and describe closed orbits, contained in the unit square, around P̂, that is a global center.
In symbols, the orbit equations are then given by Ê(u, v) = ` for some ` ≥ ̂̀0, wherề0 = Ê(P̂). Although an exhaustive analysis of the period of the orbits of System (9) seems
not to be easy to perform, as discussed in [8], due to the presence of singularities in the
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model at u = v = 1, Madotto et al. prove useful results about the period of small and large
orbits for System (11).

On the one hand, they show that the approximation of the period length of small
cycles by means of the period of the linearized system is valid near the equilibrium point
(cf. Corollary 5.2 in [8]) and, on the other hand, they prove that the period length of large
cycles, approaching the boundary of the feasible set, is arbitrarily high, in the case when f
and g are, for instance, C1 functions on the open interval (0, 1), that are continuous in 0, too
(cf. Theorem 5.3 in [8]), as happens in our framework. As previously mentioned, in view
of its applying to System (9), or more precisely to (13) below, the method of the LTMs in
some concrete scenarios (cf. Example 1) is used. Firstly, we perturb the center position by
supposing that σ alternates in a periodic fashion between two different levels, due to a
seasonal effect, so as to obtain two conservative systems, for which we can find two linked
together annuli and suitably choose an annulus made of energy level lines for each system.
Then, we numerically check that the periods of the orbits coinciding with the inner and
the outer boundaries of the considered linked annuli do not coincide. Actually, all the
numerical simulations that we performed suggest the increasing monotonicity of the period
of the orbits for System (9) with respect to the energy level, in analogy with the classical
results in [24,25] for the original formulation of the Goodwin model, and in agreement
with the numerical simulations reported in [8], even if, to the best of our knowledge,
a rigorous proof of the period monotonicity for System (9) is not available in the literature.
In fact, using a different, more abstract, notation, such a system was, essentially, proposed
in (Section 5.3 in [8]) to illustrate the difficulties which arise when trying to prove that
the period map connected with the general framework analyzed in that paper, described
by (11), was increasing. The detailed numerical investigations performed in [8] suggest
that the desired result holds true for the setting we dealt with, even if the period map had
a different behavior in the four regions, called quadrants in [8], in which the feasible set
(0, 1)2 is split by the horizontal and vertical lines passing through the center P̂. In more
detail, Figures 3–7 in (Section 5.3 in [8]) show that the period is very long and increases
with the energy level in the third quadrant, where both u and v assume low values, while it
decreases in the first quadrant, and is not monotone in the second and fourth quadrants.

Let us assume that the capital–output ratio alternates in a T-periodic fashion between
the same two positive values considered in Section 2, i.e., σ(I) > σ(I I), for the time intervals
t ∈ [0, T(I)) and t ∈ [T(I), T(I) + T(I I)), respectively (Indeed, the values of σ(i) and T(i),
for i ∈ {I, I I}, are determined by the economic features of the capital–output ratio, rather
than by the model formulation. Nonetheless, considering different values for σ(i) and T(i)

with respect to Section 2 would not affect the way in which the LTMs can be applied and
the conclusions that can be drawn, as long as 0 < σ(I I) < σ(I) and T(I), T(I I) are large
enough) with T = T(I) + T(I I), where σ(I I) may be seen as a perturbation of σ(I). We can
then suppose that we are dealing with the following system with periodic coefficients

u′ = u
(
−(χ(t) + α(t)) + ρ(t)

(1−v)δ(t)

)
v′ = v

(
−(α(t) + β(t)) + 1

σ(t)

(
c(t)− η(t)

(1−u)µ(t)

)) (13)

in which κ(t) coincides with κ, for κ ∈ {α, β, χ, c, δ, η, µ, ρ}, σ(t) is as in (5), assuming that
it is extended to the whole real line by T-periodicity, and

0 < σ(I I) < σ(I) <
c− η

α + β
, ρ < χ + α, δ ≥ 1, µ ≥ 1 (14)

as a consequence of (10).
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Calling (Mi), where M stands for “Modified (version of the Goodwin model)”, the sys-
tem that we obtain when the capital–output ratio takes value σ(i), for i ∈ {I, I I}, it is
conservative, with the center coinciding with

P̂(i) =

(
1−

(
η

c− σ(i)(α + β)

) 1
µ

, 1−
(

ρ

χ + α

) 1
δ

)
. (15)

Similar to what happened in Section 2, passing from P̂(I) to P̂(I I), the abscissa of
the center rises, while its ordinate does not change. The orbits of Systems (MI) and
(MII) are closed, surrounding the corresponding center, and a straightforward analysis
of the phase portrait shows that they run clockwise (cf. Figure 2A). Setting A(i)(u) =∫ 1

u

(
(α + β)− 1

σ(i)

(
c− η

(1−u)µ

))
du, for i ∈ {I, I I}, and, recalling the definition of B(v)

in (12), the orbits of Systems (MI) and (MII) have, respectively, equation Ê(I)(u, v) =

A(I)(u) + B(v) = ` for some ` ≥ ̂̀(I)
0 = Ê(I)(P̂(I)) and Ê(I I)(u, v) = A(I I)(u) + B(v) = h

for some h ≥ ĥ(I I)
0 = Ê(I I)(P̂(I I)). The sets Γ̂(I)(`) and Γ̂(I I)(h) can then be defined like in

Section 2 for ` > ̂̀(I)
0 and h > ĥ(I I)

0 , just replacing E(i) with Ê(i) for i ∈ {I, I I}, and they
are still simple closed curves surrounding P̂(I) and P̂(I I), respectively. We can proceed
analogously to Section 2 in defining the annuli Ĉ(I)(`1, `2) around P̂(I), with ̂̀(I)

0 < `1 < `2,

for System (MI) and Ĉ(I I)(h1, h2) around P̂(I I), with ĥ(I I)
0 < h1 < h2, for System (MII),

too. Notice, however, that, differing from Section 2, we do not need to consider energy
levels close to ̂̀(I)

0 and ĥ(I I)
0 to have annuli for Systems (MI) and (MII) contained in

(0, 1)2, thanks to the above recalled results obtained in [8] (cf. in particular Theorem 3.1
therein). Due to the similar effect produced by a variation in σ on the center position for
Systems (1) and (9), the definition of linked together annuli in the new context is analogous
to that introduced in Definition 1 as well, being based on the same ordering relation C,

this time on the straight line r̂ joining P̂(I) and P̂(I I), which has equation v = 1−
(

ρ
χ+α

) 1
δ .

See Figure 2B for a graphical illustration of two linked annuli Ĉ(I)(`1, `2) and Ĉ(I I)(h1, h2)
for System (13). We stress that in the present framework their boundary sets Γ̂(I)(`j) and
Γ̂(I I)(hj), with j ∈ {1, 2}, also intersect the straight line r̂ in exactly two points because
the functions Ê(I) and Ê(I I) are convex. Namely, their second derivative is non-negative
under (14) because (1 − z)ν > (1 − z(ν + 1)), ∀z ∈ [0, 1], ∀ν > 0, where, in our case,
z ∈ {u, v} and ν ∈ {µ + 1, δ + 1}, respectively.

(A) (B)

Figure 2. In (A) we draw in brown some energy level lines associated with System (MI), around P̂(I),
and in magenta some energy level lines associated with System (MII), around P̂(I I), also showing the
corresponding phase portrait. In (B), we illustrate two linked together annuli, that we call Ĉ(I)(`1, `2)

and Ĉ(I I)(h1, h2), obtained by suitably choosing two level lines for each system, as well as the two
disjoint generalized rectangles D (colored in dark orange) and E (colored in light orange) where the
annuli meet.
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In view of stating our result about System (13) (cf. Proposition 2 below), for which
we do not provide a proof, due to its similarity with the verification of Proposition 1,
we introduce the Poincaré map Ψ̂ associated with System (13), that can be decomposed
as Ψ̂ = Ψ̂(I I) ◦ Ψ̂(I), where Ψ̂(I) is the Poincaré map associated with System (MI) for
t ∈ [0, T(I)] and Ψ̂(I I) is the Poincaré map associated with System (MII) for t ∈ [0, T(I I)].
Notice that every pair of linked together annuli for System (13), being made of energy
level lines of Systems (Mi), i ∈ {I, I I}, are invariant under the action of Ψ̂. We denote
by τ̂(I)(`), for all ` > ̂̀(I)

0 , the period of Γ̂(I)(`), and by τ̂(I I)(h), for all h > ĥ(I I)
0 , the

period of Γ̂(I I)(h), recalling that the period of an orbit is the time needed by the solution
to the considered system, starting from a certain point of the orbit, to complete one turn
around the corresponding center, moving around the orbit itself. As discussed above,
the increasing monotonicity of τ̂(I)( · ) and τ̂(I I)( · ) with the energy levels is suggested by
the many simulative experiments that we performed and by the accurate numerical analysis
in (Section 5.3 in [8]), but, to the best of our knowledge, a rigorous proof is not available in
the literature. In the absence of a result showing that the period of orbits of Systems (MI)
and (MII) always increases with energy levels, in Proposition 2 we assume that, given
two linked together annuli for System (13), the period of the orbits composing their inner
boundary is smaller than the period of the orbits composing their outer boundary. The main
difference between Propositions 1 and 2 lies, indeed, in the necessity to exclude in the
latter the fact that the period remains unchanged between the inner and outer boundaries
of the linked annuli, since a variation in the periods is required for the Poincaré map to
produce a twist effect on the annuli, which in turn allows the LTMs method to be applied.
We recall that for System (4) such a variation was granted by the results in [24,25] on the
monotonicity of the period of orbits for the Lotka–Volterra predator–prey model.

Proposition 2. For any choice of the positive parameters α, β, χ, c, δ, η, µ, ρ, σ̂(I), σ̂(I I) satisfy-
ing (14), given the annulus Ĉ(I)(`1, `2) around P̂(I), for some ̂̀(I)

0 < `1 < `2, and the annulus

Ĉ(I I)(h1, h2) around P̂(I I), for some ĥ(I I)
0 < h1 < h2, assume that they are linked together,

calling D and E the connected components of Ĉ(I)(`1, `2) ∩ Ĉ(I I)(h1, h2). Then, if τ̂(I)(`1) <
τ̂(I)(`2), τ̂(I I)(h1) < τ̂(I I)(h2), it holds that for every m̂(I) ≥ 1 and m̂(I I) ≥ 1 with m̂ =
m̂(I)m̂(I I) ≥ 2 there exist two positive constants t̂(I) = t̂(I)(m̂(I), τ̂(I)(`1), τ̂(I)(`2)) and t̂(I I) =
t̂(I I)(m̂(I I), τ̂(I I)(h1), τ̂(I I)(h2)) such that if T(i) > t̂(i), for i ∈ {I, I I}, the Poincaré map
Ψ̂ = Ψ̂(I I) ◦ Ψ̂(I) of System (13) induces chaotic dynamics on m̂ symbols in D and in E , and
all the properties listed in Theorem 1 are fulfilled for Ψ̂.

We remark that the same conclusions in Proposition 2 would also hold true if the
period of the inner boundary were larger (rather than smaller) with respect to the period
of the outer boundary for at least one of the linked together annuli (Notice that, in those
cases, the position of the boundary periods should be exchanged on the denominator of
the fractions defining t̂(I) and/or t̂(I I), which, respectively, coincide with those for t(I)

and t(I I) in the proof of Proposition 1 (see Appendix A), when replacing τ(i) with τ̂(i), for
i ∈ {I, I I}.) In Proposition 2 we chose to focus on the framework in which the period of
the inner boundary is smaller than the period of the outer boundary for both the linked
together annuli, because this is the scenario observed in the numerical experiments in
(Section 5.3 in [8]), as well as in all the simulations that we performed. We find the same
framework in Example 1, that concludes the present investigation of the modified version
of the Goodwin model by illustrating a numerical context, in which Proposition 2 can be
applied to show the existence of chaotic dynamics.

Notice that the parameter configuration considered in Example 1, and in its illus-
tration in Figure 2, coincides with that used to draw Figure 1 in Section 2, as well as
Figures A1 and A2 in Appendix A, except for the parameters c, δ, η and µ, which were not
present in the model’s original formulation in (1), and parameters χ and ρ, whose values
have now been interchanged, in order to satisfy the second condition in (14), i.e., ρ < α + χ,
guarantees that the ordinate of the centers for System (13) lies in the interval (0, 1). Such
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an hypothesis is incompatible with the last condition in (6), which played the same role
in regard to the ordinate of the centers for System (4). Hence, some differences in the
parameter values for the original and the modified versions of the Goodwin model need to
be introduced, but we avoid adding unnecessary ones. In regard to the new parameters
δ and µ, we deal with the same values, i.e., δ = 1 and µ = 1.2, used in the numerical
simulations performed in (Section 5.3 in [8]) where, as already mentioned, the authors
illustrate the issues which arise when trying to prove that the period map connected with
System (9) is increasing, even if numerical evidence of such a conjecture for the above
values of δ and µ. is found. We stress that the case δ = 1 was also considered in [6] (cf.
p. 2668 therein), although in that framework the parameter µ was not present.

Example 1. We take α = 0.02, β = 0.01, χ = 0.7, ρ = 0.6, σ(I) = 3, σ(I I) = 2.5, c =
0.45, η = 0.3, δ = 1, µ = 1.2 and recall (15), System (MI) has a center in P̂(I) = (0.141, 0.167)
while System (MII) has a center in P̂(I I) = (0.170, 0.167).

As shown in Figure 2B, two linked together annuli Ĉ(I)(e1, e2) and Ĉ(I I)(h1, h2) can be
obtained for e1 = 0.8657, e2 = 0.8696, h1 = 0.9865, h2 = 0.9892, intersecting in the two
disjoint generalized rectangles denoted by D and E . Software-assisted computations show that
τ̂(I)(e1) ≈ 111 < τ̂(I)(e2) ≈ 114 and τ̂(I I)(h1) ≈ 89 < τ̂(I I)(h2) ≈ 90. Hence, Proposition 2
guarantees the existence of chaotic dynamics for the Poincaré map Ψ̂ = Ψ̂(I I) ◦ Ψ̂(I) associated with
System (13) provided that the switching times T̂(I) and T̂(I I) are large enough.

4. Recalling the Linked Twist Maps Method

In the present section we briefly recall the planar results of the Linked Twist Maps
(LTMs) method that we used in Sections 2 and 3, referring the interested reader to [22,23]
for further details and to [32] for a three-dimensional version.

Although in the literature different assumptions, connected, for example, with measure
theory and differential calculus, have been made on linked twist maps (see, e.g., [16–18]),
we rely only on topological hypotheses. Indeed, given two annuli crossing along two (or
more) planar sets homeomorphic to the unit square, by means of a linked twist map we
mean the composition of two twist maps, each acting on one of the two annuli, which
are homeomorphisms and that, similar to what is required in the Poincaré-Birkhoff fixed
point theorem, produce a twist effect on the boundary sets of the two annuli, leaving them
invariant. In the applications of LTMs illustrated in the present paper, we analyze Hamilto-
nian systems with a nonisochronous center, the position of which varies when modifying a
parameter for which it is sensible to assume, due to a seasonal effect, a periodic alternation
between two different values, one of which may be seen as a perturbation of the other.
Thanks to this alternation, we obtain two conservative systems with a nonisochronous
center and for each of them we can consider an annulus composed of energy level lines.
Under certain conditions on the orbits, the two annuli cross in two generalized rectangles.
The LTMs method consists in proving the presence of chaotic dynamics for the Poincaré
map obtained as a composition of the Poincaré maps associated with the unperturbed sys-
tem and with the perturbed one, which are homeomorphisms, by checking that they satisfy
suitable stretching relations (cf. conditions (CF) and (CG) in Theorem 1, as well as (16)). We
stress that the nonisochronicity of the centers is crucial in the above described procedure,
because it implies that the orbits composing the linked annuli run with a different speed, so
that the Poincaré maps produce a twist effect on the linked annuli, despite the invariance
of closed orbits under the action of the Poincaré maps.

The stretching relation in (16) is the kernel of the Stretching Along the Paths (hence-
forth, SAP) method, i.e., the topological technique developed in the planar case in [19,20]
and extended to the N-dimensional framework in [21], that allows the existence of fixed
points, periodic points and chaotic dynamics for continuous maps that expand the arcs
along one direction and that are defined on sets homeomorphic to the unit square. We start
by introducing its main aspects, in order to be able to state Theorem 1, so that we can then
more precisely describe what we mean by chaos.
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We call path in R2 any continuous function γ : [0, 1] → R2 and we set γ := γ([0, 1]).
By a generalized rectangle we mean a subsetR of R2 homeomorphic to the unit square [0, 1]2,
through a homeomorphism H : R2 ⊇ [0, 1]2 → R ⊆ R2. We also introduce the left and the
right sides ofR, defined respectively asR−l := H({0} × [0, 1]) andR−r := H({1} × [0, 1]).
We call the pair

R̃ := (R,R−)

an oriented rectangle of R2, whereR− := R−l ∪R
−
r .

The stretching along the paths relation for maps between oriented rectangles can then be
defined as follows:

Definition 2. Given Ñ := (N ,N−) and Õ := (O,O−) oriented rectangles of R2, let F : N →
R2 be a function and H ⊆ N be a compact set. We say that (H, F) stretches Ñ to Õ along the
paths, and write

(H, F) : Ñ m−→Õ, (16)

if

- F is continuous onH ;
- for every path γ : [0, 1]→ N with γ(0) ∈ N−l and γ(1) ∈ N−r or with γ(0) ∈ N−r and

γ(1) ∈ N−l there exists [t′, t′′] ⊆ [0, 1] such that γ([t′, t′′]) ⊆ H, F ◦ γ([t′, t′′]) ⊆ O, with
F(γ(t′)) ∈ O−l and F(γ(t′′)) ∈ O−r or with F(γ(t′)) ∈ O−r and F(γ(t′′)) ∈ O−l .

We stress that to check the stretching relation in (16) we may need to consider paths
γ : [0, 1] → N with γ(0) ∈ N−r and γ(1) ∈ N−l ; for example, when dealing with the
composition of two functions (like in (17) where Φ := G ◦ F), since the image through the
first map of paths joining the opposite sides of a certain oriented rectangle M̃ from left to
right can connect the sides of N− from right to left through a path that is the starting point
of the second function. Nonetheless in the proof of Proposition 1, contained in Appendix A,
it suffices for us to focus on paths joining the left and the right sides of the generalized
rectangles where the functions start from, since we are not directly dealing with composite
mappings. Namely, thanks to Theorem 1 (cf. in particular (CF) and (CG) therein), in order
to check the existence of chaotic dynamics for the Poincaré map obtained as a composition
of the Poincaré maps associated with the unperturbed Hamiltonian system and with the
perturbed one, we can deal with the two Poincaré maps separately.

Theorem 1. Let F : R2 ⊇ DF → R2 and G : R2 ⊇ DG → R2 be continuous maps defined on the
sets DF and DG, respectively. Let also Ñ := (N ,N−) and Õ := (O,O−) be oriented rectangles
of R2. Suppose that the following conditions are satisfied:

(CF) there are m̂ ≥ 1 pairwise disjoint compact sets H0 , . . . ,Hm̂−1 ⊆ N ∩ DF such that
(Hi, F) : Ñ m−→Õ, for i = 0, . . . , m̂− 1 ;

(CG)there are m̆ ≥ 1 pairwise disjoint compact sets K0 , . . . ,Km̆−1 ⊆ O ∩ DG such that
(Kj, G) : Õ m−→Ñ , for j = 0, . . . , m̆− 1 ;

(Cm)m := m̂ · m̆ ≥ 2 ;
(CΦ)the composite map Φ := G ◦ F is injective on

H∗ :=
⋃

i = 0, . . . , m̂− 1
j = 0, . . . , m̆− 1

H′i,j , with H′i,j := Hi ∩ F−1(Kj) .

Then, setting

X∞ :=
∞⋂

n=−∞
Φ−n(H∗),

there exists a nonempty compact set
X ⊆ X∞ ⊆ H∗



Axioms 2023, 12, 344 18 of 25

in which the following properties are fulfilled:

(i) X is invariant for Φ (that is, Φ(X) = X);
(ii) Φ �X is semi-conjugate to the two-sided Bernoulli shift on m symbols, i.e., there exists a

continuous map π from X onto Σm := {0, . . . , m− 1}Z, endowed with the distance

d(s′, s′′) := ∑
i∈Z

|s′i − s′′i |
m|i|+1

,

for s′ = (s′i)i∈Z and s′′ = (s′′i )i∈Z ∈ Σm , such that the diagram

X X

Σm Σm

-Φ

?

π

?

π

-
σ

commutes, i.e., π ◦ Φ = σ ◦ π, where σ : Σm → Σm is the Bernoulli shift defined by
σ((si)i) := (si+1)i, ∀i ∈ Z ;

(iii) the set P of the periodic points of Φ �X∞ is dense in X and the preimage π−1(s) ⊆ X of every
k-periodic sequence s = (si)i∈Z ∈ Σm contains at least one k-periodic point.

Furthermore, from conclusion (ii) it follows that:

(iv)
htop(Φ) ≥ htop(Φ �X) ≥ htop(σ) = log(m),

where htop is the topological entropy;
(v) there exists a compact invariant set Λ ⊆ X, such that Φ|Λ is semi-conjugate to the two-sided

Bernoulli shift on m symbols, topologically transitive and displaying sensitive dependence on
initial conditions.

Proof. The crucial step consists in showing that

(H′i,j, Φ) : Ñ m−→Ñ , i = 0, . . . , m̂− 1, j = 0, . . . , m̆− 1. (17)

See Theorem 3.1 in [33] for a verification of this property in more general spaces for the
case m̂ = m ≥ 2, m̆ = 1. The condition in (17) is then easy to check (cf. Theorem 3.2 in [33]
for a result analogous to ours, which follows as a corollary from Theorem 3.1 therein).

Recalling Definition 2.3 in [33], as a consequence of (17) it holds that Φ induces chaotic
dynamics on m symbols in the set N . Conclusions (i)–(v) then follow by Theorem 2.2 and by
Footnote 4 in [34], where however, the case m = 2 is considered.

In the proof of Theorem 1, we mentioned the concept of a map inducing chaotic
dynamics on m ≥ 2 symbols on a set according to Definition 2.3 in [33]. For brevity’s sake,
we do not go into detail, but stress that such a notion of chaos for the case m = 2 bears
a deep resemblance to the concept of chaos in the coin-tossing sense, discussed in [35];
however, being stronger than it. Namely, in addition to the requirement in [35] that every
two-sided sequence of two symbols is realized through the iterates of the map, jumping
between two disjoint compact subsets, Definition 2.3 in [33] also requires periodic sequences
of symbols to be reproduced by periodic orbits of the map. We refer the interested reader
to [34] for a comparison with other notions of chaos widely considered in the literature.

Notice that, in light of Definition 2.3 in [33], we can rephrase the statement of Theorem 1
above by saying that, when conditions (CF), (CG), (Cm) and (CΦ) therein are satisfied,
the composite map Φ = G ◦ F induces chaotic dynamics on m ≥ 2 symbols in N , knowing
that from this fact all the properties listed in Theorem 1 hold true for G ◦ F, in regard to
the existence of periodic points, too. We indeed used such reformulation of Theorem 1 in
Sections 2 and 3 (see, for instance, the statement of Propositions 1 and 2) when dealing with
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the composition of the Poincaré maps associated with unperturbed and with perturbed
Hamiltonian systems.

5. Concluding Remarks

In the present work, following the seminal idea by Goodwin, in [1], that studying
forced models in economics, obtained superimposing exogenous cycles to cycles endoge-
nously generated by a model, we showed the existence of complex dynamics in both the
original version of his celebrated growth cycle model (see [3,4]), and in a modified formula-
tion of it, encompassing nonlinear expressions of the real wage bargaining function and of
the investment function, already considered in the literature. In particular, in regard to the
real wage bargaining function we dealt with the formulation proposed by Phillips in [9],
while for the investment function we used an expression employed in [8]. The need to
consider a modified formulation of the Goodwin model was motivated by the observation
that its original version does not guarantee that orbits lie in the unit square, as they should,
since the state variables are wage share in national income and proportion of labor force
employed, which can neither be negative, nor exceed unity. We, however, underline that
a nonlinear investment function is also grounded from an economic viewpoint, since it
encompasses a description of more flexible savings behavior (cf. [10,11]). Goodwin initially
considered the nonlinear version of the Phillips curve in [9], then linearized it so as to
obtain an approximation “in the interest of lucidity and ease of analysis” ([3], p. 55).

Exploiting, in both the original and the modified settings, the periodic dependence
on time of one of the model parameters and the Hamiltonian structure, characterized
by the presence of a global nonisochronous center, we proved the presence of chaos for
the Poincaré map associated with the considered systems by means of the Linked Twist
Maps (LTMs) method, used, for example, in [22,23]. This led us to work with discrete-time
dynamical systems. We stress that the obtained results, in their general conclusions, do
not depend on the particular expression of the equations involved, as long as the class of
Hamiltonian systems, considered in [8], is entered, for which it is therein proven that the
center is nonisochronous and that orbits lie in the unit square. Concerning the necessary
economic assumptions, we recall that the real wage bargaining function has to increase in
proportion to the labor force employed, while the investment function has to decrease in
wage share in national income.

Despite the issue with the orbit position in the original Goodwin model, even for that
formulation we were able to prove the existence of chaotic sets lying in the unit square,
thanks to the features of the LTMs method. Namely, the chaotic sets are located inside the
generalized rectangular regions obtained as an intersection of the detected pair of linked
annuli, that jointly constitute an invariant set under the action of the composite Poincaré
map. Indeed each annulus, being made of periodic orbits, is invariant under the action of
the Poincaré map describing the corresponding regime. Choosing linked together annuli
contained in the unit square solves the problem. As our illustrative examples showed,
this can be done even when dealing with parameter configurations analogous to those
considered in [6,7].

The seminal idea by Goodwin in [1] of studying forced models in economics has been
recently applied to a three-dimensional setting in [36], where the authors investigated
the implications of describing exports as a function of the capital stock in the framework
introduced in [37], which extended the original Goodwin model in [3] to an open economy
setting that included the balance-of-payments constraint (BoPC) on growth. In more detail,
in agreement with Goodwin’s insight, in [38], that Schumpeterian innovations requiring
investment occur periodically, the authors in [36] added a nonlinear forcing term in the
capital accumulation function and, referring to their Figure 5 on p. 266, say that “In this way,
we obtain a scenario in which a non-linear system with a “natural” oscillation frequency interacts
with an external “force” resulting in a chaotic attractor, as shown in Figure 5. The interplay between
two or more independent frequencies characterizing the dynamics of the system is a well-known
route to more complex behaviour”. It would then be interesting to check whether the LTMs
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method, or, more generally, the SAP (Stretching Along the Paths) technique, on which the
LTMs method is based, could be employed in that setting, too, in order to rigorously prove
the existence of complex dynamics.

In regard to three-dimensional applications of the LTMs technique, we recall [32]
where, dealing with linked together cylindrical sets, the focus was on a 3D non-Hamiltonian
system describing a predator–prey model with a Beddington–DeAngelis functional re-
sponse in a periodically varying environment. Related to this, we also mention the 3D
continuous-time non-Hamiltonian framework representing the Lotka–Volterra model with
two predators and one prey in a periodic environment, considered in [39], for which the
presence of chaos was shown by means of the SAP technique, without relying on LTMs
geometry. Despite such dissimilarity in the employed method, the common starting point
in the proofs of chaos for the frameworks analyzed in [32,39] is given by a study of the
properties of the classical planar Lotka–Volterra system. Since, as we have seen, the Good-
win growth cycle model in [3,4] is a special case of the predator–prey setting, in view of
proving the existence of chaotic phenomena for its 3D extension, proposed in [36], we could
try to apply similar arguments to those used in [32,39]. We will investigate this possibility
in a future work.
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Appendix A. Proof of Proposition 1

Proof of Proposition 1. Given the linked together annuli C(I)(`1, `2) and C(I I)(h1, h2), we
call C(I)

t (`1, `2) (resp. C(I)
b (`1, `2)) the subset of C(I)(`1, `2) which lies above (resp. below)

(Namely, t stands for “top” and b stands for “bottom”) the horizontal line r, joining P(I) and
P(I I); analogously, C(I I)

t (h1, h2) (resp. C(I I)
b (h1, h2)) is the subset of C(I I)(h1, h2) which lies

above (resp. below) r. In this manner it holds that C(I)(`1, `2) = C
(I)
t (`1, `2) ∪ C

(I)
b (`1, `2)

and C(I I)(h1, h2) = C(I I)
t (h1, h2) ∪ C

(I I)
b (h1, h2). Moreover, we introduce the generalized

rectangles A := C(I)
t (`1, `2) ∩ C

(I I)
t (h1, h2) and B := C(I)

b (`1, `2) ∩ C
(I I)
b (h1, h2). Let us fix

m(I) ≥ 1 and m(I I) ≥ 1 such that m = m(I)m(I I) ≥ 2. We are going to show that, if we
orientate A and B e.g., by setting A− = A−l ∪ A

−
r and B− = B−l ∪ B

−
r , with A−l :=

A ∩ Γ(I)(`1), A−r := A ∩ Γ(I)(`2), B−l := B ∩ Γ(I I)(h2), B−r := B ∩ Γ(I I)(h1), then there
exist m(I) ≥ 1 pairwise disjoint compact subsetsH0, . . . , Hm(I)−1 of A such that

(Hi, Ψ(I)) : Ã m−→ B̃, i = 0, . . . , m(I) − 1 (A1)

(cf. Figure A1A for a graphical illustration with m(I) = 1), as well as m(I I) ≥ 1 pairwise
disjoint compact subsets K0, . . . , Km(I I)−1 of B such that

(Kj, Ψ(I I)) : B̃ m−→Ã, j = 0, . . . , m(I I) − 1 (A2)

(see Figure A1B for an illustration with m(I I) = 2). If this is the case, (CF) and (CG) in
Theorem 1 are fulfilled for the oriented rectangles Ã := (A,A−) and B̃ := (B,B−), with
F = Ψ(I) and G = Ψ(I I). Since m = m(I)m(I I) ≥ 2, and (Cm) in Theorem 1 holds true, too,
the Poincaré map Ψ = Ψ(I I) ◦Ψ(I) of System (4) induces chaotic dynamics on m symbols
in A. Recalling that the Poincaré map Ψ is a homeomorphism on (0,+∞)2, and, thus,
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injective and continuous, in particular. on the setH∗ :=
⋃

i = 0, . . . , m(I) − 1
j = 0, . . . , m(I I) − 1

Hi ∩
(

Ψ(I)
)−1

(Kj) ,

also condition (CΦ) in Theorem 1 is satisfied for Φ = Ψ and it is then possible to apply
Theorem 1 to conclude that all the properties listed therein are fulfilled for Ψ.

(A) (B)

Figure A1. In (A), given the linked together annuli C(I)(`1, `2) and C(I I)(h1, h2), we draw in orange

the straight line r joining the centers P(I), P(I I) and separating the top sets C(I)
t (`1, `2), C

(I I)
t (h1, h2),

colored, respectively, in green and gray, from the bottom sets C(I)
b (`1, `2), C

(I I)
b (h1, h2), colored

respectively in light green and light gray. For A := C(I)
t (`1, `2) ∩ C

(I I)
t (h1, h2) and B := C(I)

b (`1, `2) ∩
C(I I)

b (h1, h2), suitably oriented by the choice of their left and right sides, we illustrate in (A) the
condition (A1) with m(I) = 1 and in (B) the condition (A2) with m(I I) = 2.

In view of checking (A1), we introduce a system of polar coordinates (ρ(I), θ(I)) cen-
tered at P(I), so that the solution ς(I)(t, (u0, v0)) = (u(t, (u0, v0)), v(t, (u0, v0))) to System (I) with
initial point in (u0, v0) ∈ (0,+∞)2 can be expressed as ς(I)(t, (u0, v0)) = ‖ς(I)(t, (u0, v0))−
P(I)‖ (cos(θ(I)(t, (u0, v0))), sin(θ(I)(t, (u0, v0)))). Moreover, we define the rotation number, de-
scribing the normalized angular displacement during the time interval [0, t] ⊆ [0, T(I)] of
the solution ς(I)(t, (u0, v0)) as

rot(I)(t , (u0, v0)) :=
θ(I)(0, (u0, v0))− θ(I)(t, (u0, v0))

2π
(A3)

in order to count positive the turns around P(I) in the clockwise sense, since orbits for Sys-
tem (I) are run clockwise. Recalling the definition of τ(I)(`), for ` > `

(I)
0 , as a consequence

of the star-shape with respect to P(I) of the lower contour sets {(u, v) ∈ (0,+∞)2 : E(I) ≤ `},
with E(I) as in (7), we find that the following properties hold true for every (u0, v0) ∈
Γ(I)(`), t ∈ [0, T(I)] and n ≥ 1. Hence, we have rot(I)(t, (u0, v0)) ∈ (n, n + 1) ⇐⇒ t ∈
(n τ(I)(`), (n + 1) τ(I)(`)).

rot(I)(t, (u0, v0)) < n ⇐⇒ t < n τ(I)(`)

rot(I)(t, (u0, v0)) = n ⇐⇒ t = n τ(I)(`)

rot(I)(t, (u0, v0)) > n ⇐⇒ t > n τ(I)(`)

To check (A1), let γ : [0, 1] → A be a generic path with γ(0) ∈ A−l , γ(1) ∈ A−r .
For every λ ∈ [0, 1], we consider Ψ(I)(γ(λ)), i.e., the position at time T(I) of the solution
ς(I)(t , γ(λ)) to System (I) starting at t = 0 from γ(λ) ∈ A, together with the corre-
sponding angular coordinate θ(I)(T(I), γ(λ)). We stress that, due to the continuity of γ
and by the continuous dependence of the solutions from the initial data, the function
λ 7→ θ(I)(T(I), γ(λ)) is continuous, too. Moreover, recalling that τ(I)(`1) < τ(I)(`2) and
A−l ⊂ Γ(I)(`1), A−r ⊂ Γ(I)(`2), we show that if T(I) > t(I) :=

(
m(I) + 7

2

)
τ(I)(`1)τ(I)(`2)

(τ(I)(`2)−τ(I)(`1))
then

θ(I)(T(I), γ(1))− θ(I)(T(I), γ(0)) >
(

2m(I) + 1
)

π.
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If this is true, there exists n∗ ∈ N such that [−2(n∗+ i)π−π,−2(n∗+ i)π] is contained
in the interval {θ(I)(T(I), γ(λ)) : λ ∈ [0, 1]} for i ∈ {0, . . . , m(I) − 1}. Thus, by means of
the Bolzano theorem, there are m(I)pairwise disjoint maximal intervals [λ′i, λ′′i ] of [0, 1]
such that for i ∈ {0, . . . , m(I) − 1} it holds that {θ(I)(T(I), γ(λ)) : λ ∈ [λ′i, λ′′i ]} ⊆ [−2(n∗ +
i)π − π,−2(n∗ + i)π], with θ(I)(T(I), γ(λ′i)) = −2(n∗ + i)π − π and θ(I)(T(I), γ(λ′′i )) =
−2(n∗ + i)π. In order to have the stretching relation (A1) satisfied, we then set Hi :=
{(u0, v0) ∈ A : θ(I)(T(I), (u0, v0)) ∈ [−2(n∗+ i)π−π,−2(n∗+ i)π]} for i ∈ {0, . . . , m(I)−
1}. Indeed, for i ∈ {0, . . . , m(I) − 1},Hi is a compact set containing {γ(λ)) : λ ∈ [λ′i, λ′′i ]}.
Moreover, for i ∈ {0, . . . , m(I) − 1} and λ ∈ [λ′i, λ′′i ], it holds that γ(λ) ∈ Hi, Ψ(I)(γ(λ)) ∈
C(I)

b (`1, `2) and E(I I)(Ψ(I I)(γ(λ′i))) ≥ h2, E(I I)(Ψ(I I)(γ(λ′′i ))) ≤ h1. Hence, there exists
an interval [λ∗i , λ∗∗i ] ⊆ [λ′i, λ′′i ] such that Ψ(I)(γ(λ)) ∈ B for every λ ∈ [λ∗i , λ∗∗i ], and
E(I I)(Ψ(I)(γ(λ∗i ))) = h2, E(I I)(Ψ(I)(γ(λ∗∗i ))) = h1. Since B−l = B ∩ Γ(I I)(h2), B−r = B ∩
Γ(I I)(h1), this means that Ψ(I)(γ(λ∗i )) ∈ B

−
l and Ψ(I)(γ(λ∗∗i )) ∈ B−r , concluding the

verification of (A1).
We then have to check that, for any path, γ : [0, 1] → A with γ(0) ∈ A−l = A ∩

Γ(I)(`1) and γ(1) ∈ A−r = A ∩ Γ(I)(`2), it holds that T(I) > t(I) then θ(I)(T(I), γ(1)) −
θ(I)(T(I), γ(0)) >

(
2m(I) + 1

)
π. Since rot(I)(t, γ(0)) ≥ bt/τ(I)(`1)c and rot(I)(t, γ(1)) ≤

dt/τ(I)(`2)e for every t > 0, it follows that rot(I)(t, γ(0))− rot(I)(t, γ(1)) ≥ bt/τ(I)(`1)c −
dt/τ(I)(`2)e > t τ(I)(`2)−τ(I)(`1)

τ(I)(`1) τ(I)(`2)
− 2 for every t > 0. Hence, for T(I) > t(I) it holds that

rot(I)(T(I), γ(0))− rot(I)(T(I), γ(1))> T(I) τ(I)(`2)−τ(I)(`1)

τ(I)(`1) τ(I)(`2)
− 2

> m(I) + 7
2 − 2 = m(I) + 3

2 > m(I) + 1.

As a consequence, recalling the definition of rot(I) given in (A3), we have θ(I)(T(I), γ(1))−
θ(I)(T(I), γ(0)) > 2(m(I) + 1)π + θ(I)(0, γ(1))− θ(I)(0, γ(0)). Since γ([0, 1]) ⊂ A := C(I)

t (`1, `2)∩
C(I I)

t (h1, h2), it holds that both θ(I)(0, γ(0)) and θ(I)(0, γ(1)) belong to [0, π], and are, thus,
θ(I)(0, γ(1)) − θ(I)(0, γ(0)) > −π. It follows that θ(I)(T(I), γ(1)) − θ(I)(T(I), γ(0)) >
(2m(I) + 1)π, as needed.

Let us now turn to the proof of the stretching relation in (A2). Due to its similarity
with the verification of (A1), we sketch just the main steps. In this case we consider
the image through Ψ(I I) of any path ω : [0, 1] → B joining B−l with B−r and check
that it completely crosses A, from A−l to A−r , at least m(I I) times when T(I I) > t(I I) :=(

m(I I) + 7
2

)
τ(I I)(h1)τ

(I I)(h2)

(τ(I I)(h2)−τ(I I)(h1))
, recalling that also orbits for System (I I) are run clockwise

and that τ(I I)(h1) < τ(I I)(h2) (see Figure A1B for the case m(I I) = 2). Introducing a system
of polar coordinates (ρ(I I), θ(I I)) centered at P(I I), we can define the rotation number as

rot(I I)(t , (u0, v0)) :=
θ(I I)(0, (u0, v0))− θ(I I)(t, (u0, v0))

2π
(A4)

describing the normalized angular displacement during the time interval [0, t] ⊆ [0, T(I I)]
of the solution ς(I I)(t , (u0, v0)) to System (I I) with initial point in (u0, v0) ∈ (0,+∞)2. As
happened with the proof of (A1), the key step in the verification of (A2) consists in showing
that if T(I I) > t(I I) then θ(I I)(T(I I), ω(1)) − θ(I I)(T(I I), ω(0)) >

(
2m(I I) + 1

)
π. Indeed,

using the Bolzano Theorem, we can conclude that there are m(I I) ≥ 1 pairwise disjoint
compact subsets K0, . . . , Km(I I)−1 of B which satisfy (A2).

Once the validity of (A1) and (A2) is verified, it follows that Ψ = Ψ(I I) ◦ Ψ(I) in-
duces chaotic dynamics in m symbols in A by Theorem 1, together with all the properties
listed therein.
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This concludes the first half of our proof, that is complete when we show that Ψ
induces chaotic dynamics on m = m(I)m(I I) ≥ 2 symbols in B, as well. With this aim
in mind, we can, for example, orientate A by setting A−− = A−−l ∪A−−r , with A−−l :=
A∩ Γ(I I)(h1), A−−r := A∩ Γ(I I)(h2), and B by setting B−− = B−−l ∪ B−−r , with B−−l :=
B ∩ Γ(I)(`1), B−−r := B ∩ Γ(I)(`2), and we verify that the image through Ψ(I) of any path
joining in B the sides B−−l and B−−r crosses A, from A−−l to A−−r , at least m(I) times
when T(I) > t(I), and then check that the image through Ψ(I I) of any path in A joining
A−−l with A−−r crosses B, from B−−l to B−−r , at least m(I I) times when T(I I) > t(I I).
Namely, this amounts to show that there exist m(I) ≥ 1 pairwise disjoint compact subsets
H′0, . . . , H′

m(I)−1
of B such that

(H′i , Ψ(I)) : ˜̃B m−→ ˜̃A, i = 0, . . . , m(I) − 1, (A5)

as well as m(I I) ≥ 1 pairwise disjoint compact subsets K′0, . . . , K′
m(I I)−1

of A such that

(K′j, Ψ(I I)) : ˜̃A m−→ ˜̃B, j = 0, . . . , m(I I) − 1, (A6)

where we set ˜̃B := (B,B−−) and ˜̃A := (A,A−−) (see Figure A2). In such a case, (CF)

and (CG) in Theorem 1 are fulfilled for the newly introduced oriented rectangles ˜̃B :=

(B,B−−), ˜̃A := (A,A−−) and with F = Ψ(I), G = Ψ(I I). Since m = m(I)m(I I) ≥ 2, it is
then possible to apply Theorem 1 to conclude that the Poincaré map Ψ = Ψ(I I) ◦Ψ(I) of
System (4) induces chaotic dynamics on m symbols in B, as well. Moreover, Ψ has all the
features listed in Theorem 1, because (CΦ) therein holds true, as Φ = Ψ is injective and

continuous, in particular on the setH′∗ :=
⋃

i = 0, . . . , m(I) − 1
j = 0, . . . , m(I I) − 1

H′ i ∩
(

Ψ(I)
)−1

(K′ j) .

Due to their resemblance to (A1) and (A2), we leave the details in the verification
of (A5) and (A6), that allow completion of the proof, to the reader.

(A) (B)

Figure A2. For the sets A and B, introduced in Figure A1, we now orientate them in a different
manner by suitably choosing the left and the right sides, we illustrate in (A) the stretching relation (A5)
with m(I) = 1 and in (B) the condition (A6) with m(I I) = 2.

Focusing on the first half of the proof of Proposition 1, in which we show that Ψ
induces chaotic dynamics in A, in Figure A1A we provide a qualitative representation
of what happens when the stretching relation in (A1) is fulfilled with m(I) = 1, and, in
Figure A1B, we illustrate the condition (A2) with m(I I) = 2. For (A1) to be satisfied with
m(I) = 1 we need to verify that the image through Ψ(I) of any path γ (in cyan) joining in A
its left and right sides crosses B once from left to right when T(I) is sufficiently large. This
is true in Figure A1A since, calling H0 the compact subset of A in pale blue and setting
γ := γ([0, 1]), it holds that γ ∩ H0 (in blue) is transformed by Ψ(I) into a path (in blue)
connecting B−l and B−r in B. To check (A2) with m(I I) = 2 we need to verify that the image
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through Ψ(I I) of any path ω (in blue) joining in B its left and right sides crosses A twice
from left to right when T(I I) is large enough. This is true in Figure A1B, due to the existence
of the pairwise disjoint compact subsets K0 ,K1 of B (in yellow) with the property that
Ψ(I I)(ω ∩Ki) (in dark blue) connects A−l and A−r in A, for i ∈ {1, 2}.

Similarly, in regard to the second half of the proof of Proposition 1, in which we show
that Ψ induces chaotic dynamics in B, we illustrate, in Figure A2A, condition (A5) with
m(I) = 1 and, in Figure A2B, condition (A6) with m(I I) = 2. Notice that A and B now
need to be oriented in a different manner with respect to Figure A1 to have the stretching
relations in (A5) and (A6) satisfied. Indeed, in Figure A2A we draw (in lilac) the compact
subset H′0 of B with the property that the restriction to it (represented in orange) of any
path γ (in light orange) joining B−−l and B−−r in B is transformed by Ψ(I) into a path (in
orange) connecting A−−l and A−−r in A. In (B) we draw (in beige) the two disjoint compact
subsets K′0, K′1 of A such that the restriction to them (represented in dark orange) of any
path ω (in orange) joining A−−l and A−−r in A is transformed by Ψ(I I) into paths (in dark
orange) connecting B−−l and B−−r in B.
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