
Accurate generation of stochastic dynamics based on multi-model

Generative Adversarial Networks
Daniele Lanzoni,1 Olivier Pierre-Louis,2 and Francesco Montalenti1

1)Materials Science Department, University of Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano,

Italy
2)Institut Lumière Matière, UMR5306 Université Lyon 1—CNRS, 69622 Villeurbanne,

France

(*Electronic mail: d.lanzoni@campus.unimib.it)

(Dated: 22 September 2023)

Generative Adversarial Networks (GANs) have shown immense potential in fields such as text and image generation.

Only very recently attempts to exploit GANs to statistical-mechanics models have been reported. Here we quantita-

tively test this approach by applying it to a prototypical stochastic process on a lattice. By suitably adding noise to

the original data we succeed in bringing both the Generator and the Discriminator loss functions close to their ideal

value. Importantly, the discreteness of the model is retained despite the noise. As typical for adversarial approaches,

oscillations around the convergence limit persist also at large epochs. This undermines model selection and the quality

of the generated trajectories. We demonstrate that a simple multi-model procedure where stochastic trajectories are ad-

vanced at each step upon randomly selecting a Generator leads to a remarkable increase in accuracy. This is illustrated

by quantitative analysis of both the predicted equilibrium probability distribution and of the escape-time distribution.

Based on the reported findings, we believe that GANs are a promising tool to tackle complex statistical dynamics by

machine learning techniques.

I. INTRODUCTION

Generative Adversarial Networks (GANs)1 are a class of

Machine Learning (ML) methods capable of generating data

with the same statistical properties of an assigned training set.

Importantly, this is accomplished without the need to explic-

itly estimate the target probability density, a daunting task for

high-dimensional problems.

We recall that GANs are formulated1 as an adversarial

game between two neural networks (NNs), called Generator G

and Discriminator D, which are trained concurrently. The task

of the Generator is to map samples z extracted from a known

probability distribution into samples resembling those drawn

from the real (unknown) data distribution. These generated

samples are passed to the Discriminator together with sam-

ples from the actual training dataset. The objective of the Dis-

criminator is then to recognize whether its input comes from

the generated or the true distribution. The two networks are

trained in an alternate fashion by minimization of loss func-

tions defining a zero-sum adversarial game. When Nash equi-

librium is reached, in principle, G successfully maps z sam-

ples to elements which are distributed according to the true

data distribution.

In recent years, models exploiting GANs have shown im-

pressive results in the generation of photo-realistic images2,

text3 and in medical imaging4, only to cite a few applica-

tions in diverse fields. On the other hand, successful applica-

tions of GANs in statistical mechanics/computational physics

seems to be very limited when compared with other ML

approaches5, which have been used, e.g., to map deterministic

properties such as structure-energy relationships in molecular

systems6,7, phase classification in materials8 and prediction of

complex nonlinear dynamical evolution9,10. On the generative

possibilities of Machine Learning approaches in physics, there

are some recent applications, for example in quantum event

generation11 and in material structure and composition predic-

tion12,13. Learning dynamical processes adds another layer of

complexity, as it involves capturing and correctly reproducing

time correlations. Nevertheless, GANs are a promising tool

to model also stochastic time series data14 and, specifically,

stochastic dynamics in physical systems15,16.

Despite their success, Generative Adversarial Networks are

known to be particularly difficult to handle during training, as

mode collapse and convergence failures are typically encoun-

tered17. Indeed, an intense activity on developing specialized

architectures18, empirical "tricks"17,19 and theoretical under-

standing20,21 has been ongoing in last years. On the dynam-

ical systems front, the recent Ref. 15 focuses on GAN regu-

larization techniques which allows the training of Recurrent

Neural Networks capable of reproducing stochastic evolution

of continuous physical systems. While alternative generative

models such as diffusion denoising models22 and variational

autoencoders23 are less prone to these convergence problems,

the high quality of samples which can be achieved by GANs

and their relatively fast generation times make them appeal-

ing.

In this work, we quantitatively test GANs by applying this

approach to a prototypical stochastic process defined on a lat-

tice. Convergence of the learning procedure close to Nash

equilibrium and very high accuracy in the predicted dynam-

ics is achieved upon exploiting two key procedures: noise

injection and a simple, yet effective, multi-model average.

These approaches are general and can be transferred to any

GAN framework and architecture with straightforward mod-

ifications. While the stochastic process here considered is

very simple, the reader should keep in mind that even in this

one-dimensional settings, obtaining a high quality GAN can

be non-trivial. On the other hand, the low dimensionality

of the example, allows for an in-depth, quantitative analy-

sis of the effect of the considered procedures. Additionally,

2

this is the first example, to the authors knowledge, in which

a GAN is employed to learn physical dynamics coming from

lattice models, which are ubiquitous in computational physics.

While the authors do not expect to obtain a more efficient

method for generating stochastic trajectories in this specific

case, we still hope that the current work will serve as a proof

of concept and will stimulate further research in tackling more

complex systems, such as systems containing many interact-

ing particles and/or more computationally expensive Kinetic

Monte Carlo (KMC) variants.

The paper is organized as follows. First a stochastic pro-

cess on a lattice is defined, analytical expressions for equilib-

rium and kinetic properties of the system and the adaptation

of the standard GAN approach are reported. Next, training

convergence and the effects of noise injection as a regulariza-

tion procedures are discussed. In particular, we show that this

technique greatly stabilize the training process and increases

the quality of generated trajectories. This, however, is not

enough to obtain accurate generation on the quantitative level.

We therefore show that a suitable multi-model approach al-

lows to recover quantitative agreement with close form ex-

pressions for both equilibrium and kinetic properties of the

system. We conclude the Results section by outlining per-

spectives on transfer learning possibilities. For better clarity,

we kept the most technical aspect of this work as appendices,

while the main text reports results concerning optimal choices

of hyperparameters.

II. METHODS

A. Stochastic process definition

In the diffusion process depicted on Fig. 1, the rate at which

a particle at the site xi moves to the right and to the left are

identical and equal to

γi = νe−(Eb−Ei)/kBT , (1)

where ν is an attempt frequency, Ei is the energy of state i,

Eb is the energy of the diffusion barrier, kB is Boltzmann’s

constant and T is the temperature. For convenience, the lattice

spacing is set to 1. Positions take therefore integer values xi =
i. At domain boundaries, corresponding to x = 0 (x = L) the

particle is only allowed to jump to the right (left).

This diffusion process obeys detailed balance at equilib-

rium and the stationary probability of the Markov chain there-

fore corresponds to a well-defined equilibrium state with

probability

Peq,i =
1

Z
e−Ei/kBT (2)

where Z = ∑i=1,L exp[−Ei/kBT] is the partition function.

We chose a two-well energy profile

Ei =
1

2
(Emax +Emin)+

1

2
(Emax−Emin)cos

[

4πi

L

]

, (3)

where L is the domain length.

0 1 2 ... 20

0 1 2 ... 20

FIG. 1. Graphical representation of the random walk. Lattice points

correspond to energy minima. In order to reach a new lattice position,

the particle has to overcome the diffusion barrier Eb. Gray curve

represent the potential profile, dashed black curve interpolates Ei.

As a representative measure of the kinetic properties of the

process, we use the average time τ for going from one mini-

mum to the other. In the continuum limit L≫ 124,

τ =
Ld

2
e−(Emax+Emin)/2kBT I0

[

Emax−Emin

2kBT

]

, (4)

where d is the distance between the minima of the potential,

and I0 is the modified Bessel function of the first kind.

In the following, we use L = 20, and eV’s for the energy

units, with Emin =−0.35, Emax =−0.15, and T = 500K.

B. Training set

From the here-above defined stochastic process we gen-

erated independent trajectories by KMC simulations, from

which we extracted the elements of the training set, i.e.

(xt ,xt+∆t) pairs, where xt represents the particle position at

time t and xt+∆t the position at time t +∆t.

Using time-units in which exp[Eb/kBT]/ν = 1, we set ∆t =
103, the mean residence times in sites with minimum and

maximum energies being approximately 3∆t and ∆t/30. This

specific choice of ∆t is not critical, except from some obvious

requirements: ∆t much larger than the residence times would

simply yield the long-time equilibrium distribution with no

access to kinetic properties. At the other extreme, values of

∆t much smaller than residence times would call for too many

iterations to generate meaningful trajectories.

The full training set was built upon collecting 1200 inde-

pendent trajectories of 500 snapshots ∆t apart from each other.

The value of t itself is a multiple of ∆t, so that the training set

is composed of couples {(x0,x∆t),(x∆t ,x2∆t),(x2∆t ,x3∆t), ...}.
In the following, the term "step" will be used for such time

3

intervals and not for individual Kinetic Monte Carlo steps, if

not stated otherwise.

C. GAN approach

Let us now describe how GANs can be trained using this

dataset. The task can be conveniently phrased in the frame-

work of conditional GANs (cGANs)25. From a practical

standpoint, the only difference with the original, uncondi-

tional GAN approach is that both the output of the Gener-

ator and that of the Discriminator are conditioned on some

additional information. To mimic Markovian dynamics, the

Generator is conditioned by the current state of the system.

Hence, for assigned NN parameters θG, to be optimized dur-

ing training, the input of G consists in the current position of

the particle xt and in the latent random variable z. Hence, we

write:

x̃t+∆t = G(xt ,z|θG), (5)

where x̃t+∆t is the generated next state of the system. The spe-

cific choice of the latent distribution is not crucial, provided

that the dimension of z is higher? or equal than the one of

real data xt+∆t
20. In the present work, therefore, z was conve-

niently sampled from a multivariate Gaussian distribution in

R
25 at each time step. The Generator produces real numbers

and is initially unaware of both the confined and discrete char-

acters of the stochastic dynamics (i.e. 0≤ xt ≤ L and xt takes

integer values).

Similarly, the scores of the Discriminator, indicating how

likely is the observation of the next state xt+∆t are conditioned

on xt :

s =D(xt+∆t ,xt |θD)

s̃ =D(x̃t+∆t ,xt |θD) = D(G(xt ,z|θG),xt |θD)
(6)

where s and s̃ are the scores for the next state in the dataset

xt+∆t and of the generated next state x̃t+∆t respectively, while

θD are the Discriminator parameters. As in the original GAN

paper1, scores are real numbers in (0,1) and the last layer

of the Discriminator comprises a sigmoid activation function,

as is standard practice in NN classifiers26. Both the Gener-

ator and the Discriminator are implemented in the PyTorch

framework27 as ResNet architectures28 with 7 hidden layers

containing 60 neurons each and have been trained using the

Adam optimizer29. We remark that this choice of hyperpa-

rameters is not the optimal one in terms of computational

costs. In the present work, however, we wanted to show

that GANs can quantitatively reproduce properties of stochas-

tic processes. This choice avoids problems related to under-

parametrized networks.

Training proceeds by alternative minimization of the loss

functions1:

LG =−E[log(s̃)]

LD =−
1

2

(

E[log(s)]+E[log(1− s̃)]
)

(7)

c)

FIG. 2. (a) G and D losses as a function of the number of epochs

while minimizing equations 7 directly. Theoretical Nash equilibrium

value of log2 is reported for reference. The behavior is clearly non-

convergent. (b) Comparison of a generated trajectory (dark blue line)

at the end of procedure in (a) and one from the dataset (transparent

green line). (c) Lossplot obtained when Gaussian noise (σ = 0.25) is

added in the training procedure. (d) Example of a generated trajec-

tory (dark blue line) obtained at the end of training procedure of (c)

and one from the dataset (transparent green line).

where E is the expectation value operator. For the Generator,

the non-saturating loss function discussed in Ref. 1 has been

used. At Nash equilibrium, both losses in Eq. 7 are equal

to log2. Pseudo-code and additional technical details on the

training minimization procedure are reported in Appendix A.

III. RESULTS

A. Noise injection and training convergence

In Fig.2a we report the behavior of the Generator and Dis-

criminator loss functions during training. Results clearly show

that the training of the cGAN formulated above not only leads

to oscillations, but to values of the loss functions far from the

ideal log2 Nash equilibrium value. The Generator loss func-

tion exhibits strong oscillations, while LD drops close to zero.

This failure is also reflected in the poor quality of the gener-

ated trajectories, which can be directly assessed by visual in-

spection of the example reported in fig. 2b. Noticeably, the

trajectory exhibits a strong tendency to oscillate only near the

minimum at x = 15. This is reminiscent of mode collapse, one

of the typical failure modes found in GANs17,19.

This unsatisfactory result can be traced back to a feature

of the original formulation of the GAN approach which is

frequently encountered17. As pointed out by Arjovsky and

Bottou20, instabilities in training should be expected when the

intersection between the support of the generated and the true

4

data distribution has zero measure even in the continuous case.

In our example, where true data live on a discrete lattice while

G outputs are real numbers, this problem is critical and results

from Goodfellow et al.1 regarding training convergence are

not expected to apply.

A possible solution also proposed in Ref. 20 is based on

adding random noise both to the true and generated data

before passing them to the Discriminator or the Generator.

Similar strategies have also been suggested as a way to re-

duce extrapolation errors30 and are known to be equivalent to

regularization31. For GANs training, this procedure expands

of the support of probability distributions and solves the over-

lap issue. This explanation is supported by data reported in

Appendix B, in which the role of additive noise was compared

when training GANs on lattice and continuous dynamics.

In practice, Gaussian noise with zero mean and different

standard deviations σ were added to both true and generated

examples:

xdata→ xdata + εdata

G(xdata,z)→ G(xdata + εdata,z)+ εgen

(8)

where xdata represent any instance of the particle position from

the database. Random variables εdata and εgen come from the

same distribution, but are indicated with different symbols in

order to stress their independence. Every time particle coordi-

nates are passed to either the Generator or Discriminator, new

random noise is added. Notice that random noise has to be

added also to generated samples. This is in order to avoid that

the Generator learns a degenerate distribution, i.e. its output

is a single real number. This would restore the zero-measure

problem and make the training procedure unstable again20.

Increasing the value of σ increases the speed of conver-

gence and decreases the fluctuations around Nash equilibrium.

However, when σ becomes too large, the spatial distribution

of the position convolved with the noise becomes smooth and

the information associated with the discreteness of the lattice

positions is lost. In our case, σ = 0.25 produced the best tra-

jectories. A detailed analysis as a function of σ is reported

in Appendix C. The loss plot for σ = 0.25 is reported in

figure 2c. The loss functions are now approaching the ideal

value, despite some oscillations being still present (notice the

smaller y-axis scale in 2c as compared to 2a).

During trajectory generation, no noise was added to the

Generator output. Additive noise for G inputs, however, has

been retained, consistently with the training procedure. The

quality of the generated trajectories is greatly increased with

respect to the noiseless minimization, as seen in the example

of fig. 2d. Remarkably, despite the smoothing role of ε in

training, particle positions are closely peaked near discrete x

values. Additionally, it is clear that the mode collapse prob-

lem encountered in the naive minimization approach has been

strongly reduced. Both features has been further analyzed in

Appendix D.

B. Multi-model generation of trajectories

As already pointed out, oscillations of the loss functions of

Fig. 2c are persistent. This suggests that Gs extracted at differ-

ent epochs within the Nash equilibrium regime could exhibit

significant differences. We therefore compared equilibrium

and kinetic properties of the trajectories produced by several

Generators with those obtained by our reference KMC simu-

lations. Equilibrium distributions from 4 different Generators

extracted within the Nash equilibrium regime and separated

by 50 epochs from each other are reported in 3a. They are

obtained from 10 independent generated trajectories reaching

a total time of 5× 105×∆t. Each single G appears to pro-

duce qualitatively satisfactory results. Indeed, the expected

two-peak equilibrium distribution is obtained in all cases, and

as reported in Fig. 2 each Generator produces trajectories that

looks reasonable. However, significant quantitative variabil-

ity is found in the distributions obtained by different Gs. For

instance, the height and shape of the two peaks is different

at every epoch. Furthermore, each generated distribution is

different from the true distribution extracted from KMC sim-

ulations, shown in Fig.3b.

Let us now show that this issue can be conveniently ad-

dressed by a multi-model scheme based on a suitable average

which strongly increases the accuracy of predictions. This

is done by randomly selecting Generators obtained at differ-

ent epochs. Combining multiple models is often exploited in

Machine Learning to increase their quality. Methods such as

bagging32, boosting33 and stacking34 represent only a hand-

ful of classical examples35. In adversarial contexts, the use of

model ensembles has been proposed during training in order

to make models more resilient to attacks36. The key issue in

our case is that conditional probabilities are not explicitly ac-

cessible for a direct average. In order to circumvent this prob-

lem, we use the following procedure to generate a trajectory.

Let us consider a set of models, each one associated with a dif-

ferent Generator extracted in the Nash equilibrium regime. At

each time step ∆t, we select randomly a model j from the set

composed by M models. Invoking the law of total probabil-

ity37, the multi-model conditional probability Pmm(xt+∆t |xt) is

found to be equal to the average conditional probability:

Pmm(xt+∆t |xt) =
M

∑
j

Pj(xt+∆t |xt)P(j)

=
1

M

M

∑
j

Pj(xt+∆t |xt)

(9)

were Pj(xt+∆t |xt) is the conditional probability for model j,

P(j) = 1/M is the (uniform) probability that model j is cho-

sen.

C. Equilibrium distribution

Figure 3c shows the equilibrium distribution as obtained

from the aforementioned averaging procedure using Gs at the

end of the last 300 epochs of training. Further discussions

5

x

P
ro

b
a
b
il
it

y

c)

0.20

0.15

0.10

0.05

0.00

x

P
ro

b
a
b
il
it

y

b)

0.20

0.15

0.10

0.05

0.00

x

P
ro

b
a
b
il
it

y
a) Model A Model B Model C Model D

Kinetic Monte Carlo Multi-model

L2: 1.51e-4 L2: 2.89e-4 L2: 8.14e-4 L2: 8.85e-5

L2: 2.02e-6L2: 7.49e-8

FIG. 3. Equilibrium distribution obtained by random walk trajecto-

ries from different models. Models A, B, C and D in (a) refer to indi-

vidual models picked at different epochs. (b) reports the equilibrium

distribution obtained by Kinetic Monte Carlo simulations. (c) has

been obtained by the multi-model approach. Black error bars repre-

sent confidence intervals (not reported in (a)). L2 distances between

equilibrium distributions and the analytical one are also reported.

on the choice of the number of models and how they are ex-

tracted are reported in Appendix E. The distribution obtained

in this way is remarkably close to that obtained by direct KMC

simulations. Quantitatively, the L2 distance to the analytical

equilibrium distribution drops by 2 orders of magnitudes, as

reported in the insets of 3.

D. Kinetic properties

Using the same multi-model procedure, we also generated

105 independent trajectories and registered the time required

to reach the left (right) minimum for a particle starting from

the right (left) one. Distributions of first passage times from

one minimum to the other, obtained from KMC simulations,

the multi-model approach and one individual model, are re-

ported in Fig. 4. KMC and multi-model distributions show

remarkable quantitative agreement, confirming that the pro-

posed method is indeed capable of providing an accurate de-

scription of kinetic properties of the system.

The inset of Fig. 4 shows how the average first passage time

τ changes with the multi-model procedure. Passage times for

reaching the right minima from the left one and vice versa

are reported separately. The theoretical expression in the con-

tinuum limit reported above predicts τ ≈ 95.14, while direct

estimation from KMC simulations give τ ≈ 95.2. The multi-

model approach recovers these values within a 3% error.

Notice that the multi-model approach reported here is more

powerful than running every model in parallel and then tak-

ing average properties, since it is capable of generating more

realistic individual trajectories, which allows for the analysis

FIG. 4. First passage time distribution obtained by generated tra-

jectories (dark blue line), by KMC simulations (dashed-dotted green

line) and by a Model A (dashed gray line). Inset reports first passage

times as predicted by models at different epochs and by the multi-

model approach. Models A, B, C and D are the same of figure 3.

Black dashed line corresponds to the analytical mean value. Values

for passages from the left (right) minimum to the right (left) one are

reported separately.

of kinetic pathways. We also remark that this approach is not

computationally demanding, as all models are obtained during

a single training procedure.

E. Transfer learning perspectives

Finally, we wish to emphasize that GANs could conve-

niently be used for transfer learning. Indeed, as shown in

Appendix F, a re-training of only a few epochs is sufficient

to reach a new Nash equilibrium when the diffusion potential

is changed slightly. However, longer training might be neces-

sary for important changes in the dynamics.

Moreover, the transient deviation of the loss during re-

training, which occurs only if the new samples have differ-

ent statistical properties from the reference process, could be

used to discriminate the original stochastic process from other

stochastic processes. A few preliminary tests in this direction

are also reported in Appendix F. This opens novel directions

to detect changes as compared to a reference stochastic pro-

cess.

IV. CONCLUSIONS

In conclusion, we have shown that Generative Adversar-

ial Network architectures can be fruitfully applied to learn

stochastic dynamics and are capable of reproducing both equi-

librium and kinetic properties of a stochastic physical system.

In addition, we have illustrated how GANs can offer promis-

ing perspectives for transfer-learning and discrimination of

stochastic processes.

As compared to previous attempts to learn stochastic pro-

cesses based on GANs, our method does not rely on maxi-

mum mean discrepancy regularization15,16. Furthermore, we

6

have proposed a multi-model procedure which, coupled to

simple noise-regularization, allows one to achieve quantita-

tive learning of the target stochastic process. This proce-

dure shares similarities with usual ensemble-learning strate-

gies36,38,39. However, our multiple models differ from usual

ensemble learning strategies based on multiple training since

they are extracted from a single learning run within the regime

where the system fluctuates around Nash equilibrium. Addi-

tionally, our multi-model procedure differs in the sense that

the average on the generators ensemble is taken as the system

evolves in time, while in typical applications multiple models

concur to a single prediction.

We have applied this procedure to the simple problem of

diffusion in a potential, analyzing on quantitative grounds the

outcomes of the learning procedure. We find it intriguing to

notice that the present strategy could in principle be applied

directly to experimental data, provided that a sufficiently large

set of observations can be collected.

The next obvious step is the extension to several dimen-

sions. While, in general, the versatility of Neural-Network

based Machine-Learning methods should allow for a direct

extension, particular care is needed in devising training strate-

gies keeping the number of parameters under control. While

in some cases we already obtained promising preliminary re-

sults, a complete generalization still requires further work.

ACKNOWLEDGMENTS

F.M. acknowledges financial support from ICSC – Centro

Nazionale di Ricerca in High Performance Computing, Big

Data and Quantum Computing, funded by European Union –

NextGenerationEU”.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available

from the corresponding authors upon reasonable request.

Appendix A: Training Procedure

In this section, we provide more details on the training pro-

cedure employed for the minimization of the adversarial Loss

functions:

LG =−E[log(s̃)]

LD =−
1

2

(

E[log(s)]+E[log(1− s̃)]
)

(A1)

where LG and LD are the Generator and Discriminator loss

functions respectively, s and s̃ are the scores provided by

the Discriminator and E represent the expectation value op-

erator. Minimization has been performed using standard

PyTorch implementation27 of the Adam optimizer29, with

batches composed of≈ 7000 coordinates pairs. Adam param-

eters have been set to β1 = 0.5, β2 = 0.999 and learning rate

was 10−4. Pseudocode for the optimization is reported in Al-

gorithm 1. As the Discriminator should be at optimality for a

fixed Generator1, 20 LD minimization steps were performed

for every LG minimization step. In our tests, this produced

the best trade off between quality of the generated trajectories

and training time.

tot_epochs← set number of epochs ;

σ ← set additive noise standard deviation ;

G← initialize Generator ;

D← initialize Discriminator ;

for epoch in tot_epochs do

for (xt ,xt+∆t) in dataset do

(ε1,ε2)← samples from N (0,σ) ;

xt ← xt + ε1 ;

xt+∆t ← xt+∆t + ε2 ;

for 20 iterations do

z← sample from N (0, I25) ;

ε3← sample from N (0,σ);
x̃t+∆t ← G(xt ,z) ;

x̃t+∆t ← x̃t+∆t + ε3 ;

s̃← D(x̃t+∆t ,xt) ;

s← D(xt+∆t,xt
) ;

LD←−
1
2 [log(s)+ log(1− s̃)] ;

Adam update for θD ;

end

s̃← D(x̃t+∆t ,xt) ;

LG←−log(s̃) ;

Adam update for θG;

end

Save G and D
end

Algorithm 1: Algorithm used to minimize eq. A1. for

loop iterating on the dataset operates on batches.

N (0, I25) indicates a multivariate normal distribution

in R
25 having the identity as covariance matrix, while

N (0,σ) represents the standard normal distribution

with standard deviation σ .

Appendix B: Noise regularization and discrete stochastic
dynamics

The stabilization effect of additive noise during training is

a critical step whenever the stochastic dynamics to be learned

lives on a discrete lattice. This statement follows Goodfellow

et al.26, who claimed in their original paper that "GANs re-

quire differentiation through the visible units, and thus cannot

model discrete data". This is also consistent with the work of

Arjovsky and Bottou20, which shows that GANs training sta-

bility depends on the intersection conditions of the true data

and generated probability distribution supports.

As a test, we trained GANs on two prototypical stochas-

tic processes: a Gaussian step and a discrete step one-

dimensional random walk without any external potential. In

both cases, a particle performs an unbiased one-dimensional

random walk on the interval [0,20]. In the first model, at every

timestep, a standard normal random variable is added to the

7

FIG. 5. (a) Lossplot obtained by training a GAN on trajectories ob-

tained by the random walk on continuous values. (b) Reports the

same loss functions in the case of training on discrete dynamics.

position of the particle. In the second model, the particle takes

instead a unit step to the left or to the right with equal probabil-

ities. Motion is confined in [0,20] by rejecting moves which

would place the particle outside such interval. Datasets for

both the continuous and the discrete model were constructed,

each comprising (xt ,xt+∆t) pairs coming from 200 indepen-

dent trajectories composed by 104 random walk steps. In or-

der to mimic the procedure reported in the main text, in which

the time interval between generated states can be bigger than

individual diffusion steps, pair elements were spaced by a ∆t

corresponding to 10 KMC steps.

Fig. 5a reports the training loss function from a G-D cou-

ple with the same hyper-parameters as in the main text trained

on (xt ,xt+∆t) coming from the Gaussian walk model. While

noise regularization slightly reduces oscillations, it does not

seem to be critical for the continuous case, as both loss func-

tions rapidly converge towards the theoretical log2 value. On

the other hand, the σ = 0.0 case for the discrete dynamics

shows a clearly non-convergent behavior (Fig. 5b). This is

readily solved when additive noise is introduced in the train-

ing procedure.

The noise-regularization procedure, therefore, seems to be

critical for model convergence when the GAN approach used

in the present work is applied to discrete stochastic systems.

In continuous systems, on the other hand, it plays a less cru-

cial role but still allows for a reduction in loss functions oscil-

lations around the Nash value log2. As a side note, we remark

that applications to continuous dynamics, while not fully ex-

plored in the current work, seem to be less affected by training

stability problems.

FIG. 6. Lossplot for different values of the training noise σ . The

lower the standard deviation of the additive noise, the lower is the

stabilization effect.

Appendix C: Training results as a function of noise strength

In the main text, we discussed results for a noise standard

deviation of σ = 0.25, claiming that, among tested values,

it provides the best results in terms of training convergence

speed and quality of the generated trajectories. We report in

Fig. 6 the lossplots for other values of σ .

As the value of σ decreases, the oscillations in loss func-

tions during training become stronger. In the σ = 0.125 case

oscillations are so strong that the 3000 epochs used here are

not sufficient to conclude if convergence can be reached.

These tests show that higher variance for ε leads to more

stable training procedures. Notice, however, that this does not

suffice for σ selection, as lossplots do not contain quantitative

information on the quality of the generated trajectories.

Appendix D: Quality of generated trajectories as a function of
noise strength

We now report an analysis of the trajectories produced by

training GANs with non-optimal values of σ . Fig. 7 shows

the equilibrium distributions obtained for the same values as

those used in the previous section. These distributions have

been obtained through the same procedure as that reported for

σ = 0.25 in the main text, using the multi-model approach.

It can be noticed that at high σ values details on the equilib-

rium distribution are lost. For example, for σ = 5.0 the Gen-

erator is merely capable of recovering the most basic aspect of

the dynamics, i.e. the presence of two peaks in the equilibrium

distribution. In contrast, for σ = 0.125, the probability den-

sity is suppressed in regions close to potential energy maxima,

i.e. configurations that are rarely visited.

These learning failures can also be observed in the mean

passage times, reported in the bottom panel of Fig. 7, where

the values for σ = 0.25 are also reported for reference. Strong

noise leads to a spurious reduction in learned passage times,

and σ = 0.125, on the other hand, exhibits significantly longer

τ .

8

M
e
a
n
 p

a
s
s
a
g
e
 t

im
e
s
 (
Δ

t)

KMC value

P
ro

b
a
b
il
it

y

x

P
ro

b
a
b
il
it

y

x

P
ro

b
a
b
il
it

y

x

P
ro

b
a
b
il
it

y

x

FIG. 7. Equilibrium distributions obtained by Generators trained

with different additive noise strength. Black bars represent confi-

dence interval for probabilities. Barplot on the bottom reports mean

passage times. For every σ value, the two bars represent values for

left to right and right to left passages respectively. KMC estimate of

mean passage time is reported as a green dashed line.

Noise strength has an additional effect on the generated tra-

jectories: the lower the noise standard deviation, the more

discrete-like the trajectories appear. This property can be ap-

preciated in Fig. 8, where the generated equilibrium distri-

butions Peq as in 7 are plotted in dark blue with smaller dis-

cretization bins (0.04 in the units of lattice spacing). Proba-

bility densities are rescaled for clarity. For σ = 5.0 (not re-

ported), σ = 1.0 and σ = 0.5 the learned probability density

is spread out into two broad peaks, corresponding to the two

minima in the potential energy function. On the other hand,

the two cases with σ = 0.25 and σ = 0.125 exhibit a comb-

like distribution, with sharp peaks at each lattice site.

This could be explained by considering how the additive

noise affects the Nash equilibrium condition for GAN train-

ing. Following Ref. 20, the Generator task is now to produce

samples x̃t+∆t such that, once noise ε is added, are distributed

as xt+∆t + ε . Close to Nash equilibrium, therefore, Generator

FIG. 8. Equilibrium distributions obtained by KMC convolved with

the noise distribution (Peq(x)∗N (0,σ), pale green), and by genera-

tors, both with (Peq(x̃)∗N (0,σ), dark blue) and without convolution

(Peq(x̃), dashed black line).

and true data (conditional) probability densities, Pg and Pdata,

should be related via

Pg(x̃t+∆t |xt)∗N (0,σ)≈ Pdata(xt+∆t |xt)∗N (0,σ), (D1)

where ∗ denotes the standard convolution product and

N (µ ,σ) a normal distribution with mean µ and standard de-

viation σ .

In Fig. 8, equilibrium distributions convolved with the re-

spective N (0,σ) are reported (pale green). Clearly, informa-

tion about the lattice discreteness is completely lost for large

σ , which prevents learning microscopic details on valid parti-

cle positions. However, the training converges to the modified

Nash equilibrium of eq. D1, as confirmed by the observation

that the convolution of the generated equilibrium distribution

Peq(x̃)∗N (0,σ) represented by the dashed black lines in 8 is

remarkably close to the target one Peq(x)∗N (0,σ). We also

remark that for σ = 0.25, despite the sharp nature of the peaks

in the probability distribution, there is no significant mode col-

lapse, as all lattice position are visited. On the contrary, for

other values of σ , a depletion of probability density in energy-

maxima regions can be clearly observed. In summary, these

results show how poor trajectories and good training conver-

gence can coexist. One therefore should not rely solely on LG

and LD values.

This analysis also shows how the optimal value of σ comes

from the trade off between training stabilization and the loss

of microscopic details of the dynamics. Fig.8 suggests that

σ should be small enough for the equilibrium distribution Peq

convoluted by the noise distribution N (0,σ) to exhibit one

peak per lattice site, and large enough for these peaks to have

overlapping tails between the peaks. The first condition is nec-

essary to keep the information that the lattice discreteness is

9

x

P
ro

b
a
b
il
it

y

b)

0.20

0.15

0.10

0.05

0.00

30 models (spaced)

L2: 2.81e-6

x

P
ro

b
a
b
il
it

y

c)

0.20

0.15

0.10

0.05

0.00

100 models (spaced)

L2: 3.16e-6

x

a)

0.20

0.15

0.10

0.05

0.00

30 models

L2: 2.78e-5

P
ro

b
a
b
il
it

y

d)

3
0

3
0
 (s

p
a
c
e
d
)

1
0
0
 (s

p
a
c
e
d
)

M
a
in

 te
x
t

FIG. 9. Results obtained through the multi-model approach by using

different models for the average. (a), (b) and (c) represent the equi-

librium distribution obtained using Generators at the end of the last

30 epochs, by selecting 1 Generator every 10 in the last 300 epochs

and 100 models spaced by 10 epochs in the last 1000. (d) reports

mean first passage times (main text bars are reported for compari-

son; left to right and right to left passages are reported separately).

KMC value is reported as a dashed green line.

present for the learning process. The second condition guar-

antees that the distribution is smooth and finite everywhere,

allowing e.g. for the calculation of gradients. We therefore

expect that the lattice spacing should correspond to at least

some units of σ . Further tests on more general lattices and

higher dimensional cases, however, might exhibit differences.

Appendix E: Choice of the number of Generators in the
multi-model approach

In this section we provide more details on the effect of the

number of Generators used in the multi-model approach. In

the main text, NN models at the end of the last 300 training

epochs were chosen, as the simple architecture considered in

this work does not pose memory or computational constraints.

Fig. 9, shows equilibrium distribution and mean passage

times with different ways to choose the Generators for the

multi-model method: the last 30 Generators in the training,

30 Generators spaced by 10 epochs in the last 300 and 100

Generators spaced by 10 epochs in the last 1000. The first

choice (Fig. 9a) leads to worst quality in the generated trajec-

tories, but is still an improvement with respect to the single

model prediction. The 30 spaced models (Fig. 9b) performs

very similarly to last 300 used in the main text, and provides

b)

FIG. 10. (a) Loss-plot for re-training with different potentials. Per-

turbations correspond to a downward shift of the potential by 0.1eV

for all points ("Downward shift 0.1eV"), for points at x ≥ 15 ("Side

shift") and for the point a t x = 15 ("Local shift"). The teal curve

"Original potential" has been obtained from new trajectories coming

from the original potential of fig. 1 of the main text. (b) Correlation

plot between the peak height and the integral of the loss function over

five epochs. Pearson correlation coefficient is ≈ 0.801. The points

correspond to the 10 potentials reported in (e), and the green point

corresponds to re-training with a new data set produced with the ini-

tial potential. (c,d) Longer re-trainings. (e) Perturbed potentials.

results that are also similar to 100 spaced Generators in terms

of L2 distance with the analytical distribution. Moreover, as

seen from 9, there is no significant changes in the accuracy of

the first passage times with our different numbers of models.

In summary, the best tradeoff in terms of computational cost

and accuracy among those that we have tested is to use 30

Generators spaced by 10 epochs, while the 300 models choice

reported in the main text produces slightly more accurate re-

sults.

10

Appendix F: Re-training for transfer learning and
discrimination

In this section, we propose to re-train GANs with a new

KMC trajectory dataset after a converged training on the orig-

inal dataset. The new dataset is produced by diffusion in a

modified potential. Our aim is to investigate possible perspec-

tives of using GANs for transfer-learning or for discrimination

between the original dataset and datasets produced by other

stochastic processes.

The re-training loss LG is reported in Fig. 10a for four dif-

ferent datasets. Perturbations of the potential were performed

by a downward shift of the potential by 0.1eV , respectively

for the whole potential ("Downward shift 0.1eV" in 10(e)), for

lattice points at x≥ 15 ("Side shift" in 10(e)) and for the single

point at x = 15 ("Local shift" in 10(e)). An additional curve

for new trajectories coming from the same potential ("Orig-

inal potential") is also reported. For stronger perturbations

in the potential, the initial peak in the loss function and the

area between LG and log2 are larger. While the loss relaxes

to the Nash equilibrium value after a few epochs for the lo-

cal shift, the relaxation is slower for larger changes of the

potential ("Global shift" and "Side shift"). 10b,c reports the

losses obtained during a longer training. The relaxation to-

wards Nash equilibrium is faster than the initial training (see

Fig.3 of the main text), but is of the same order of magnitude.

These results suggest that small perturbations of the potential

can be learnt quickly and open interesting directions for future

research on transfer learning.

Re-training also opens perspectives in the discrimination

between different stochastic processes. Indeed, as a byproduct

of the training procedure, the Discriminator should in prin-

ciple contain implicit information on the distribution of the

Generator and true data. However, near convergence the out-

put of the Discriminator should be close to 1/2. Therefore,

we have not been able to use it directly to identify whether

a new dataset comes from dynamics on the same potential or

has been produced by a different stochastic process. However,

since it leads to a deviation of the losses from the Nash equi-

librium value, re-training does distinguish between different

datasets, as shown in 10. Furthermore, the deviation of the

losses occurs already in the first epochs of retraining. Hence,

distinguishing between the original dataset and other datasets

can be done quickly even if retraining has not converged to

Nash equilibrium. As an additional supporting data for the

fact that the initial peak of the loss contains robust information

about the full relaxation during longer retraining, 10b shows

that the peak value is correlated with the integrated deviation

of the loss from the Nash equilibrium value over 5 epochs.

1I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in

Advances in Neural Information Processing Systems, Vol. 27, edited by

Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-

berger (Curran Associates, Inc., 2014).
2T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans

for improved quality, stability, and variation,” in International Conference

on Learning Representations (2018).
3L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence generative

adversarial nets with policy gradient,” Proceedings of the AAAI Conference

on Artificial Intelligence 31 (2017), 10.1609/aaai.v31i1.10804.
4X. Yi, E. Walia, and P. Babyn, “Generative adversarial network in medical

imaging: A review,” Medical Image Analysis 58, 101552 (2019).
5G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-

Maranto, and L. Zdeborová, “Machine learning and the physical sciences,”

Rev. Mod. Phys. 91, 045002 (2019).
6T. Mueller, A. Hernandez, and C. Wang, “Machine learning for interatomic

potential models,” The Journal of Chemical Physics 152, 050902 (2020),

_eprint: https://doi.org/10.1063/1.5126336.
7P. Friederich, F. Häse, J. Proppe, and A. Aspuru-Guzik, “Machine-learned

potentials for next-generation matter simulations,” Nature Materials 20,

750–761 (2021).
8H. W. Chung, R. Freitas, G. Cheon, and E. J. Reed, “Data-centric frame-

work for crystal structure identification in atomistic simulations using ma-

chine learning,” Phys. Rev. Mater. 6, 043801 (2022).
9K. Yang, Y. Cao, Y. Zhang, S. Fan, M. Tang, D. Aberg, B. Sadigh, and

F. Zhou, “Self-supervised learning and prediction of microstructure evo-

lution with convolutional recurrent neural networks,” Patterns 2, 100243

(2021).
10D. Lanzoni, M. Albani, R. Bergamaschini, and F. Montalenti, “Morpholog-

ical evolution via surface diffusion learned by convolutional, recurrent neu-

ral networks: Extrapolation and prediction uncertainty,” Phys. Rev. Mater.

6, 103801 (2022).
11S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks, C. van

Leeuwen, D. Podareanu, R. Ruiz de Austri, and R. Verheyen, “Event gen-

eration and statistical sampling for physics with deep generative models and

a density information buffer,” 12, 2985 (2021), publisher: Nature Publish-

ing Group UK London.
12S. Kim, J. Noh, G. H. Gu, A. Aspuru-Guzik, and Y. Jung, “Generative

adversarial networks for crystal structure prediction,” 6, 1412–1420 (2020),

publisher: ACS Publications.
13Y. Dan, Y. Zhao, X. Li, S. Li, M. Hu, and J. Hu, “Generative adversarial

networks (GAN) based efficient sampling of chemical composition space

for inverse design of inorganic materials,” 6, 84 (2020), publisher: Nature

Publishing Group UK London.
14E. Brophy, Z. Wang, Q. She, and T. Ward, “Generative adversarial net-

works in time series: A systematic literature review,” ACM Comput. Surv.

55 (2023), 10.1145/3559540.
15K. Yeo, Z. Li, and W. Gifford, “Generative adversarial network for proba-

bilistic forecast of random dynamical systems,” 44, A2150–A2175 (2022),

place: USA Publisher: Society for Industrial and Applied Mathematics.
16P. Stinis, C. Daskalakis, and P. J. Atzberger, “SDYN-GANs: Adversarial

learning methods for multistep generative models for general order stochas-

tic dynamics,” (2023), https://doi.org/10.48550/arXiv.2302.03663, _eprint:

2302.03663.
17D. Saxena and J. Cao, “Generative adversarial networks (GANs): Chal-

lenges, solutions, and future directions,” ACM Comput. Surv. 54 (2021),

10.1145/3446374.
18A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks,” (2015).
19I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,”

(2017), _eprint: 1701.00160.
20M. Arjovsky and L. Bottou, “Towards principled meth-

ods for training generative adversarial networks,” (2017),

https://doi.org/10.48550/arXiv.1701.04862, _eprint: 1701.04862.
21L. Mescheder, S. Nowozin, and A. Geiger, “The numerics of GANs,” 30

(2017).
22J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”

(2020), _eprint: 2006.11239.
23D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” (2022),

_eprint: 1312.6114.
24N. G. Van Kampen, Stochastic processes in physics and chemistry, Vol. 1

(Elsevier, 1992).
25M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv

preprint arXiv:1411.1784 (2014).
26I. Goodfellow, Y. Bengio, and A. Courville, Deep learning (MIT press,

2016).
27A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-

11

Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,

and S. Chintala, “PyTorch: An imperative style, high-performance deep

learning library,” in Advances in Neural Information Processing Systems,

Vol. 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-

Buc, E. Fox, and R. Garnett (Curran Associates, Inc., 2019).
28K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition (2016) pp. 770–778.
29D. P. Kingma and J. Ba, “Adam: A method for stochas-

tic optimization,” arXiv preprint arXiv:1412.6980 (2014),

https://doi.org/10.48550/arXiv.1412.6980.
30P. Stinis, T. Hagge, A. M. Tartakovsky, and E. Yeung, “Enforcing con-

straints for interpolation and extrapolation in generative adversarial net-

works,” Journal of Computational Physics 397, 108844 (2019).
31C. M. Bishop, “Training with noise is equivalent to tikhonov regulariza-

tion,” Neural Computation 7, 108–116 (1995).
32L. Breiman, “Bagging predictors,” Machine Learning 24, 123–140 (1996).
33Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-

line learning and an application to boosting,” Computational Learning The-

ory , 23–37 (1995).
34D. H. Wolpert, “Stacked generalization,” Neural Networks 5, 241–259

(1992).

35M. A. Ganaie, M. Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan,

“Ensemble deep learning: A review,” Engineering Applications of Artificial

Intelligence 115, 105151 (2022).
36F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. Mc-

Daniel, “Ensemble adversarial training: Attacks and defenses,” (2020),

_eprint: 1705.07204, _eprint: 1705.07204.
37R. B. Ash, Basic probability theory (John Wiley & Sons, Inc., 1970).
38X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learn-

ing,” Frontiers of Computer Science 14, 241–258 (2020).
39Z.-H. Zhou, “Ensemble learning,” in Machine Learning (Springer Singa-

pore, Singapore, 2021) pp. 181–210.
40C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medi-

cal) time series generation with recurrent conditional GANs,” (2017),

https://doi.org/10.48550/arXiv.1706.02633, _eprint: 1706.02633.
41O. Mogren, “C-RNN-GAN: Continuous recurrent neural networks with

adversarial training,” (2016), https://doi.org/10.48550/arXiv.1611.09904,

_eprint: 1611.09904.
42L. Xu and G. Henkelman, “Adaptive kinetic monte carlo for first-principles

accelerated dynamics,” 129, 114104 (2008).
43M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural

networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations,” 378, 686–707

(2019).

