
FIRST-ORDER APPROXIMATION OF STRONG VECTOR EQUILIBRIA
WITH APPLICATION TO NONDIFFERENTIABLE CONSTRAINED

OPTIMIZATION

AMOS UDERZO1,∗

1 Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Milano, ITALY
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1. INTRODUCTION

Given a mapping (vector-valued bifunction) f : Rn×Rn −→ Rm, with Rm being partially
ordered by a (nontrivial) closed, convex and pointed cone C ⊂ Rm, and a nonempty, closed set
K ⊆ Rn, by strong vector equilibrium problem the following problem is meant

(VEP) find x ∈ K such that f (x,z) ∈C, ∀z ∈ K.

The set of all solutions (if any) to problem (VEP) will be denoted throughout the paper by SE ,
namely

SE =
⋂
z∈K

f−1(·,z)(C)∩K, (1.1)

and referred to as the set of strong vector equilibria. Clearly, strong vector equilibrium problems
are a natural generalization of the well-known Ky Fan inequality to the more general context of
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2 A. UDERZO

partially ordered vector spaces. Similarly as their scalar counterpart, they provide a convenient
format to treat in an unifying framework several different classes of problems, ranging from
multicriteria optimization problems, vector Nash equilibrium problems, to vector variational
inequalities and complementarity problems (see, for instance, [1, 2, 3, 5, 9, 10, 16]).

As for many problems formalized by traditional or generalized equations, for several pur-
poses the mere knowledge of a single solution to (VEP) is not enough. Very often, once a
strong vector equilibrium x̄ ∈SE has been found (or shown to exist), one would need/aspire
to glean insights into the behaviour of the set SE around x̄. The fact that x̄ may be an iso-
lated element of SE or lie in the boundary or, instead, be an interior element of this set, might
change dramatically the outcome of a further analysis, where the local geometry of SE around
x̄ does matter. On the other hand, finding all the solutions of (VEP) around x̄ could be a task
that one can hardly accomplish in many concrete cases. What is reasonably achievable some-
times is only a local approximation of SE near x̄, yet suitable in specific circumstances. To
mention one of them, with connection with the subject of the present paper, consider the suc-
cessful approach to optimality conditions for constrained problems, where at a certain step an
approximated representation of the feasible region already does the trick.

It is well known that in nonsmooth analysis tangent cones, working as a surrogate of deriv-
ative for sets, are the main tools for formalizing first-order (and beyond, if needed) approx-
imations of sets. So the main aim of the present paper is to provide elements for a conical
approximation of strong vector equilibria. It should be remarked that a difficulty in undertaking
such a task comes from the fact that the set SE is not explicitly defined. Besides, if addressing
this question through the reformulation of SE as in (1.1), classical results on the tangent cone
representation of such sets as f−1(·,z)(C)∩K, now at disposal in nonsmooth analysis as a mod-
ern development of the Lyusternik theorem (see [13, 15, 20]), seem not be readily exploitable
because of the intersection over z ∈ K appearing in (1.1).

In this context, the findings exposed in what follows are focussed on representing the con-
tingent cone to SE at a given strong vector equilibrium x̄, which is one of the most employed
conical approximations in the literature devoted to variational analysis and optimization. The
representation of such a cone will be performed by means of first-order approximations of the
problem data, namely generalized derivatives of the bifunction f and tangent cones of the set
K defining (VEP). In other words, following a principle deep-rooted in many contexts of non-
linear analysis, approximations of the solution set to a given problem are obtained by means of
exact solutions to approximated problems.

The paper is structured as follows. Section 2 aims at recalling preliminary notions of non-
smooth analysis, which play a role in formulating and establishing the achievements of the
paper. Section 3 contains the main results concerning the first-order approximation of the
contingent cone to SE . In Section 4, these results are applied to derive both necessary and
sufficient optimality conditions for nondifferentiable optimization problems, whose constraint
systems are formalized as a strong vector equilibrium problem.

Below, the basic notations employed in the paper are listed. The acronyms l.s.c., u.s.c and
p.h. stand for lower semicontinuous, upper semicontinuous and positively homogeneous, re-
spectively. Rd denotes the finite-dimensional Euclidean space, with dimension d ∈ N. The
closed ball centered at an element x∈Rd , with radius r≥ 0, is denoted by B(x;r). In particular,
B = B(0;1) stands for the unit ball, whereas S stands for the unit sphere, 0 denoting the null
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vector of an Euclidean space. Given a subset S⊆Rd , the distance of a point x from S is denoted
by dist(x;S), with the convention that dist(x;∅) = +∞. The prefix intS denotes the interior of
S, clS denotes its closure, whereas coneS its conical hull, respectively. Given two subsets A and
B of the same space, the excess of A over B is indicated by exc(A;B) = supa∈A dist(a;B). By
PH (Rn,Rm) the space of all continuous p.h. mappings acting between Rn and Rm is denoted,
equipped with the norm ‖h‖PH = supu∈S ‖h(u)‖, h∈PH (Rn,Rm), while L (Rn,Rm) denotes
its subspace of all linear operators. The inner product of an Euclidean space will be denoted by
〈·, ·〉. Whenever C is a cone in Rq, by C

	
= {v ∈ Rq : 〈v,c〉 ≤ 0, ∀c ∈C} the negative dual

(a.k.a. polar) cone to C is denoted. Given a function ϕ : Rq −→ R∪{±∞}, the symbol ∂ϕ(x)
denotes the subdifferential of ϕ at x in the sense of convex analysis (a.k.a. Fenchel subdiffer-
ential). The normal cone to a set S ⊆ Rq at x ∈ S in the sense of convex analysis is denoted by
N(x;S) = {v ∈ Rq : 〈v,s− x〉, ∀s ∈ S}.

2. PRELIMINARIES

2.1. Approximation of sets. Given a nonempty set K ⊆ Rn and x̄ ∈ K, in the sequel the fol-
lowing different notions of tangent cone will be mainly employed:

(i) the contingent (a.k.a. Bouligand tangent) cone to K at x̄, which is defined by

T(x̄;K) = {v ∈ Rn : ∃(vn)n, vn→ v, ∃(tn)n, tn ↓ 0 : x̄+ tnvn ∈ K, ∀n ∈ N};

(ii) the cone of radial (a.k.a. weak feasible) directions to K at x̄, which is defined by

Tr(x̄;K) = {v ∈ Rn : ∀ε > 0 ∃tε ∈ (0,ε) : x̄+ tεv ∈ K}.

Clearly, for every K ⊆ Rn and x̄ ∈ K, it is Tr(x̄;K) ⊆ T(x̄;K). Moreover T(x̄;K) is always
closed. If, in particular, K is convex, then the following representations hold

Tr(x̄;K) = cone(K− x̄) and T(x̄;K) = cl(cone(K− x̄)) = clTr(x̄;K) (2.1)

(see [20, Proposition 11.1.2(d)]). Thus, in such an event, both Tr(x̄;K) and T(x̄;K) are convex.
It is well known that an equivalent (variational) reformulation of the notion of contingent cone
is provided by the equality

T(x̄;K) =

{
v ∈ Rn : liminf

t↓0

dist(x̄+ tv;K)

t
= 0
}
. (2.2)

Remark 2.1. Whenever a convex set K ⊆ Rn is, in particular, polyhedral, one has Tr(x̄;K) =
T(x̄;K). To see this, it suffices to exploit the formulae in (2.1) and to observe that, in the present
circumstance, Tr(x̄;K) happens to be closed. The latter follows from the fact that, if S is a closed
affine half-space in Rn, then Tr(x̄;S) = cone(S− x̄) = S− x̄ is a closed set and from the fact that,
if K1 and K2 are convex sets with x̄∈ K1∩K2, then it holds Tr(x̄;K1∩K2) =Tr(x̄;K1)∩Tr(x̄;K2)
(whereas the intersection fails to be preserved by the cone of radial directions in the case of
nonconvex sets, as shown in [6, Example 1.1]).

For a systematic discussion about properties of the above tangent cones and their relation-
ships, the reader is referred for instance to [4, Chapter 4], [7, Chapter I.1], [8], [18, Chapter 2],
and [20, Chapter 11].



4 A. UDERZO

2.2. Approximation of scalar functions. Given a function ϕ : Rn −→ R∪ {±∞}, let x̄ ∈
ϕ−1(R). The set

∂̂
+

ϕ(x̄) =
{

v ∈ Rn : limsup
x→x̄

ϕ(x)−ϕ(x̄)−〈v,x− x̄〉
‖x− x̄‖

≤ 0
}

is called (Fréchet) upper subdifferential of ϕ at x̄. Any element v∈ ∂̂+ϕ(x̄) can be characterized
by the existence of a function ψ : Rn −→ R such that ϕ(x̄) = ψ(x̄), ϕ(x) ≤ ψ(x), for every
x ∈ Rn, ψ is (Fréchet) differentiable at x̄ and v = ∇ψ(x̄). If ϕ : Rn −→ R is concave, then
∂̂+ϕ(x̄) coincides with the superdifferential (a.k.a. upper subdifferential) in the sense of convex
analysis, i.e. −∂ (−ϕ)(x̄).

Whenever ϕ is an u.s.c. function, the upper subdifferential admits another characterization in
terms of Dini-Hadamard directional derivative, in fact being equivalent to the Dini-Hadamard
upper subdifferential (in finite-dimensional spaces, the Fréchet bornology is equivalent to the
Hadamard bornology). More precisely, it holds

∂̂
+

ϕ(x̄) = {v ∈ Rn : 〈v,w〉 ≥ D+
Hϕ(x̄;w), ∀w ∈ Rn}, (2.3)

where

D+
Hϕ(x̄;w) = limsup

u→w
t↓0

ϕ(x̄+ tu)−ϕ(x̄)
t

denotes the Dini-Hadamard upper directional derivative of ϕ at x̄, in the direction w ∈ Rn (see
[15, Chapter 1.3], [19, Chapter 8.B]). Let us recall that, whenever ϕ is locally Lipschitz around
x̄, its Dini-Hadamard directional derivative at x̄ takes the following simpler form

D+
Dϕ(x̄;w) = limsup

t↓0

ϕ(x̄+ tw)−ϕ(x̄)
t

,

which is known as Dini upper directional derivative. The lower versions of these generalized
derivatives are

D−Hϕ(x̄;w) = liminf
u→w
t↓0

ϕ(x̄+ tu)−ϕ(x̄)
t

,

called the Dini-Hadamard lower directional (a.k.a. contingent) derivative of ϕ at x̄, in the direc-
tion w, and

D−Dϕ(x̄;w) = liminf
t↓0

ϕ(x̄+ tw)−ϕ(x̄)
t

,

called the Dini lower directional derivative of ϕ at x̄, in the direction w.
The set

∂̂ϕ(x̄) =
{

v ∈ Rn : liminf
x→x̄

ϕ(x)−ϕ(x̄)−〈v,x− x̄〉
‖x− x̄‖

≥ 0
}

is called (Fréchet) regular subdifferential of ϕ at x̄. Whenever ϕ is l.s.c. around x̄, it admits the
following representation in terms of Dini-Hadamard lower directional generalized derivative

∂̂ϕ(x̄) = {v ∈ Rn : 〈v,w〉 ≤ D−Hϕ(x̄;w), ∀w ∈ Rn}. (2.4)

Whenever ϕ is Fréchet differentiable at x̄, one has ∂̂+ϕ(x̄) = ∂̂ϕ(x̄) = {∇ϕ(x̄)}, where ∇ϕ(x̄)
denotes the gradient of ϕ at x̄.
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Comprehensive discussions from various viewpoints as well as detailed material about these
generalized derivatives can be found in many textbooks devoted to nonsmooth analysis, among
which [7, Chapter I.1], [15, Chapter 1], [18, Chapter 2], [19, Chapter 8], [20].

2.3. Approximation of mappings and bifunctions. A mapping g : Rn −→ Rm is said to be
B-differentiable at x̄ ∈ Rn if there exists a mapping DBg(x̄) ∈PH (Rn,Rm) such that

lim
x→x̄

‖g(x)−g(x̄)−DBg(x̄)(x− x̄)‖
‖x− x̄‖

= 0.

As a consequence of the continuity of DBg(x̄), it is readily seen that if g is B-differentiable at x̄,
it is also continuous at the same point. Notice that, when, in particular, DBg(x̄) ∈L (Rn,Rm),
g turns out to be (Fréchet) differentiable at x̄. In such an event, its derivative, represented by
its Jacobian matrix, will be indicated by ∇g(x̄). Given a nonempty set K ⊆ Rn, a bifunction
f : Rn×Rn −→ Rm is said to be B-differentiable at x̄ ∈ K, uniformly on K, if there exists a
family {DB f (x̄,z) ∈PH (Rn,Rm) : z ∈ K} such that for every ε > 0 ∃δε > 0 such that

sup
z∈K

‖ f (x,z)− f (x̄,z)−DB f (x̄,z)(x− x̄)‖
‖x− x̄‖

< ε, ∀x ∈ B(x̄;δε) .

It should be clear that the above notion of generalized differentiation for bifunctions is a kind
of partial differentiation, in considering variations of a mapping with respect to changes of one
variable only.

Example 2.2. (i) Separable mappings: let us consider mappings f : Rn×Rn −→ Rm, which
can be expressed in the form

f (x,z) = f1(x)+ f2(z),
for proper f1, f2 : Rn −→ Rm. Whenever f1 is B-differentiable at x̄, with B-derivative DB f1(x̄),
the bifunction f is B-differentiable at x̄ uniformly on K, with {DB f (x̄,z) : z ∈ K}= {DB f1(x̄)}.

(ii) Factorable mappings: whenever a mapping f : Rn×Rn −→ Rm can be factorized as

f (x,z) = α(z)g(x),

where g : Rn −→ Rm is B-differentiable at x̄, with B-derivative DBg(x̄), and α : Rn −→ R is
bounded on K, the bifunction f is B-differentiable at x̄ uniformly on K, with {DB f (x̄,z) : z ∈
K}= {α(z)DBg(x̄) : z ∈ Rn}.

(iii) Composition with differentiable mappings: if f : Rn×Rn −→ Rp is B-differentiable
at x̄ uniformly on K and g : Rp −→ Rm is Fréchet differentiable at each point f (x̄,z), with
z ∈ K, then their composition g ◦ f turns out to be B-differentiable at x̄ uniformly on K, with
{DB(g◦ f )(x̄,z) : z ∈ K}= {∇g( f (x̄,z))DB f (x̄,z) : z ∈ K}.
2.4. Distance from strong vector equilibria. The function ν : Rn −→ [0,+∞], defined by

ν(x) = sup
z∈K

dist( f (x,z);C) , (2.5)

can be exploited as a natural measure of the distance of a given point x ∈ Rn from being a
solution to (VEP). Clearly it is SE = ν−1(0)∩K, while positive values of ν quantify the
violation of the strong equilibrium condition in (VEP).

A local error bound (in terms of ν) is said to be valid near x̄∈SE for problem (VEP) if there
exist positive κ and δ such that

dist(x;SE )≤ κν(x), ∀x ∈ B(x̄;δ )∩K. (2.6)
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Notice that, whereas for computing dist(x;SE ) one needs to know all the solutions to (VEP)
near x̄, the value of ν(x) can be computed directly by means of problem data. A study of
sufficient conditions for the error in bound in (2.6) to hold has been recently undertaken in [21].
In particular, the following global error bound condition under an uniform B-differentiability
assumption on f is known to hold.

Proposition 2.3 ([21]). With reference to a problem (VEP), suppose that:

(i) each function x 7→ f (x,z) is C-u.s.c. on K, for every z ∈ K;
(ii) the set-valued mapping x f (x,K) takes C-bounded values on K;

(iii) K is convex;
(iv) f is B-differentiable uniformly on K at each point of K\SE ;
(v) there exists σ > 0 with the property that for every x0 ∈K\SE there is u0 ∈ S∩cone(K−

x0) such that

DB f (x0,z)(u0)+σB⊆C, ∀z ∈ K.

Then, SE is nonempty, closed and the following estimate holds true

dist(x;SE )≤ ν(x)
σ

, ∀x ∈ K.

The error bound in (2.6) will be exploited as a crucial qualification condition for (VEP) in
providing the conical inner approximation of SE .

3. TANGENTIAL APPROXIMATION OF SE

As a first result, a one-side conical approximation from inside of the contingent cone to SE
is presented.

Theorem 3.1 (Inner approximation). With reference to a problem (VEP), let x̄ ∈SE . Suppose
that:

(i) f is B-differentiable at x̄, uniformly on K, with {DB f (x̄,z) : z ∈ K};
(ii) a local error bound such as (2.6) is valid near x̄.

Then, it holds ⋂
z∈K

DB f (x̄,z)−1(C)∩Tr(x̄;K)⊆ T(x̄;SE ). (3.1)

Proof. Let us start with observing that, since it is DB f (x̄,z) ∈PH (Rn,Rm) for every z ∈ K,
and C is a cone, each set DB f (x̄,z)−1(C) turns out to be a cone containing 0, as well as
Tr(x̄;K) does by definition. Thus, if taking v = 0 ∈

⋂
z∈K DB f (x̄,z)−1(C)∩Tr(x̄;K), the in-

clusion v ∈ T(x̄;SE ) obviously holds as the latter cone is closed. So, take an arbitrary v ∈(⋂
z∈K DB f (x̄,z)−1(C)∩Tr(x̄;K)

)
\{0}. Since both the sets in the inclusion in (3.1) are cones,

one can assume without any loss of generality that ‖v‖= 1. In the light of the characterization
via (2.2), v is proven to belong to T(x̄;SE ) if one shows that

liminf
t↓0

dist(x̄+ tv;SE )

t
= 0. (3.2)
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Showing the equality in (3.2) amounts to show that for every τ > 0 and ε > 0 there exists
t0 ∈ (0,τ) such that

dist(x̄+ t0v;SE )

t0
≤ ε. (3.3)

So, let us fix ad libitum τ and ε . Hypothesis (ii) ensures the existence of δ , κ > 0 as in (2.6).
By virtue of hypothesis (i), corresponding to ε/κ , there exists δε > 0 such that

f (x,z) ∈ f (x̄,z)+DB f (x̄,z)(x− x̄)+κ
−1

ε‖x− x̄‖B, ∀x ∈ B(x̄;δε) , ∀z ∈ K,

and hence, in particular,

f (x̄+ tv,z) ∈ f (x̄,z)+ tDB f (x̄,z)(v)+κ
−1

εtB, ∀t ∈ (0,δε), ∀z ∈ K.

By taking into account that x̄∈SE and v∈DB f (x̄,z)−1(C) for every z∈K, the above inclusion
implies

f (x̄+ tv,z) ∈C+ tC+κ
−1

εtB⊆C+κ
−1

εtB, ∀t ∈ (0,δε), ∀z ∈ K.

In terms of the residual function ν introduced in (2.5), this means

ν(x̄+ tv) = sup
z∈K

dist( f (x̄+ tv,z);C) ≤ exc(C+κ
−1

εtB;C) = exc(κ−1
εtB;C)

≤ κ
−1

εt, ∀t ∈ (0,δε), (3.4)

where the second equality holds because C is a convex cone. On the other hand, according to
hypothesis (ii) there exists δ0 ∈ (0,min{τ,δ ,δε}) such that

dist(x;SE )≤ κν(x), ∀x ∈ B(x̄;δ0)∩K. (3.5)

Since it is v ∈ Tr(x̄;K), for some t∗ ∈ (0,δ0) it happens

x̄+ t∗v ∈ K∩B(x̄;δ0) ,

and therefore, by inequality (3.5), one obtains

dist(x̄+ t∗v;SE )≤ κν(x̄+ t∗v). (3.6)

By combining inequalities (3.4) and (3.6), as it is t∗ < δ0 < δε , one obtains

dist(x̄+ t∗v;SE )≤ κ ·κ−1
εt∗ = εt∗.

The last inequality shows that (3.3) is true for t0 = t∗ ∈ (0,τ), thereby completing the proof. �

The inclusion in (3.1) states that, under proper assumptions, any solution of the (approxi-
mated) problem

find v ∈ Tr(x̄;K) such that DB f (x̄;z)(v) ∈C, ∀z ∈ K, (3.7)

provides a vector, which is tangent to SE at x̄ in the sense of Bouligand. Notice that problem
(3.7) is almost in the form (VEP) (it would be exactly in the form (VEP) if Tr(x̄;K) = K).
Roughly speaking, all of this means that if the problem data of (VEP) are properly approxi-
mated (K by its radial direction cone, f by its generalized derivatives in the sense of Bouligand,
respectively) near a reference solution x̄, then the solutions of the resulting approximated prob-
lem (3.7) work as a first-order approximation of the solution set to the original problem (VEP).
Problem (3.7) is typically expected to be easier than (VEP) by virtue of the structural properties
of its data. Basically, (3.7) can be regarded as a cone constrained p.h. vector inequality system,
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so its solution set is a cone. Furthermore, if K is convex and DB f (x̄,z) :Rn−→Rm is C-concave
for every z ∈ K, the latter meaning that

DB f (x̄,z)(v1)+DB f (x̄,z)(v2)≤C DB f (x̄,z)(v1 + v2), ∀v1, v2 ∈ Rn,

where ≤C denotes the partial ordering on Rm induced in the standard way by the cone C, then
the solution set to problem (3.7) is a convex cone.

As a further comment to Theorem 3.1, it must be remarked that the inclusion in (3.1) provides
only a one-side approximation of T(x̄;SE ), which may happen to be rather rough. This fact is
illustrated by the next example.

Example 3.2 (Inclusion (3.1) may be strict). Consider the problem (VEP) defined by the fol-
lowing data: K =C =R2

+ = {x = (x1,x2)∈R2 : x1 ≥ 0, x2 ≥ 0} and a vector-valued bifunction
f : R2×R2 −→ R2 given by

f (x1,x2,z1,z2) =

 1
2(−m−z x1 + x2 +1)2

1
2(m

+
z x1− x2 +1)2

 ,

where
m−z = 1− 1

‖z‖2 +1
and m+

z = 1+
1

‖z‖2 +1
, z ∈ R2.

Since f (x,z) ∈ R2
+ for every (x,z) ∈ R2×R2, it is clear that SE = K = R2

+. Fix x̄ = 0 ∈SE ,
so one has

Tr(0;K) = T(0;SE ) = R2
+.

In view of the next calculations, it is convenient to observe that

f (x,z) = (g◦h)(x,z),

where the mappings g : R2 −→ R2 and h : R2×R2 −→ R2 are given respectively by

g(y) =
(

y2
1/2

y2
2/2

)
and h(x,z) =

(
−m−z x1 + x2 +1
m+

z x1− x2 +1

)
.

To check that the bifunction h is B-differentiable at 0 uniformly on R2
+, with{

DBh(0,z) = ∇h(0,z) =
(
−m−z 1

m+
z −1

)
, z ∈ R2

+

}
it suffices to observe that

‖h(x,z)−h(0,z)−DBh(0,z)(x)‖=

=

∥∥∥∥( −m−z x1 + x2 +1
m+

z x1− x2 +1

)
−
(

1
1

)
−
(
−m−z 1

m+
z −1

)(
x1
x2

)∥∥∥∥= 0, ∀z ∈ R2
+.

Thus, since g is Fréchet differentiable at each point of R2 and

∇g(y) =
(

y1 0
0 y2

)
,

according to what remarked in Example 2.2(iii), the mapping f = g ◦ h turns out to be B-
differentiable at 0 uniformly on R2

+, with

DB f (0,z) = ∇g(h(0,z))◦DBh(0,z) =
(

1 0
0 1

)(
−m−z 1

m+
z −1

)
=

(
−m−z 1

m+
z −1

)
, z ∈ R2

+.
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Notice that a local error bound as in (2.6) is evidently valid near 0 because it is SE = K. Thus,
all the hypotheses of Theorem 3.1 are satisfied.

Now, one readily sees that

DB f (0,z)(v) =
(
−m−z v1 + v2
m+

z v1− v2

)
∈ R2

+ iff


−m−z v1 + v2 ≥ 0

m+
z v1− v2 ≥ 0.

This leads to find

DB f (0,z)−1(R2
+) = {v ∈ R2 : m−z v1 ≤ v2 ≤ m+

z v1}, ∀z ∈ R2
+.

Since one has
lim
‖z‖→∞

m−z = 1− = 1 = 1+ = lim
‖z‖→∞

m+
z ,

it results in⋂
z∈R2

+

DB f (0,z)−1(R2
+)∩Tr(0;R2

+) = {v ∈ R2
+ : v2 = v1}$R2

+ = T(0;SE ).

The above example motivates the interest in outer approximations of SE . Below, a re-
sult in this direction is presented. In what follows, recall that a family of mappings {hz ∈
PH (Rn,Rm) : z ∈ K} is said to be equicontinuous at x0 ∈ Rn if for every ε > 0 there exists
δ > 0 (not depending on z ∈ K) such that

‖hz(x)−hz(x0)‖< ε, ∀z ∈ K, ∀x ∈ B(x0;δ ) .

Theorem 3.3 (Outer approximation). With reference to a problem (VEP), let x̄ ∈SE . Suppose
that:

(i) f is B-differentiable at x̄, uniformly on K, with {DB f (x̄,z) : z ∈ K};
(ii) the family of mappings {DB f (x̄,z) : z ∈ K} is equicontinuous at each point of Rn.

Then, it holds
T(x̄;SE )⊆

⋂
z∈K

DB f (x̄,z)−1(T( f (x̄,z);C))∩T(x̄;K). (3.8)

Proof. Since it is DB f (x̄,z) ∈PH (Rn,Rm) for every z ∈ K, one has

DB f (x̄,z)(0) = 0 ∈ T( f (x̄,z);C), ∀z ∈ K.

Therefore, it clearly holds

0 ∈
⋂
z∈K

DB f (x̄,z)−1(T( f (x̄,z);C))∩T(x̄;K).

So take an arbitrary v ∈ T(x̄;SE )\{0}. As all the sets involved in inclusion (3.8) are cones,
without loss of generality it is possible to assume that ‖v‖ = 1. According to the definition of
contingent cone, there exist (vn)n, with vn−→ v and (tn)n, with tn ↓ 0, such that x̄+tnvn ∈SE ⊆
K. Notice that this inclusion in particular implies that v ∈ T(x̄;K). What remains to be shown
is that

v ∈
⋂
z∈K

DB f (x̄,z)−1(T( f (x̄,z);C)). (3.9)

Fix an arbitrary ε > 0. By virtue of hypothesis (i), there exists δε > 0 such that

f (x,z)− f (x̄,z)−DB f (x̄,z)(x− x̄) ∈ ε‖x− x̄‖B, ∀z ∈ K, ∀x ∈ B(x̄;δε)
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and hence

DB f (x̄,z)(x− x̄) ∈ f (x,z)− f (x̄,z)+ ε‖x− x̄‖B, ∀z ∈ K, ∀x ∈ B(x̄;δε) . (3.10)

Since it is x̄+ tnvn −→ x̄ as n→∞ (as a converging sequence (vn)n must be bounded), for some
nε ∈N it is true that x̄+ tnvn ∈ B(x̄;δε) for every n≥ nε . Thus, by taking x = x̄+ tnvn in (3.10),
one finds

tnDB f (x̄,z)(vn) ∈ f (x̄+ tnvn,z)− f (x̄,z)+ εtn‖vn‖B, ∀z ∈ K, ∀n≥ nε ,

whence it follows

DB f (x̄,z)(vn) ∈
f (x̄+ tnvn,z)− f (x̄,z)

tn
+ ε‖vn‖B, ∀z ∈ K, ∀n≥ nε .

By taking into account that vn −→ v as n→∞ and ‖v‖= 1, one has that ‖vn‖ ≤ 2 for all n≥ nε ,
up to a proper increase in the value of nε , if needed. Thus, from the last inclusion one obtains

DB f (x̄,z)(vn) ∈
f (x̄+ tnvn,z)− f (x̄,z)

tn
+2εB, ∀z ∈ K, ∀n≥ nε . (3.11)

By hypothesis (ii) the family {DB f (x̄,z) : z ∈ K} is equicontinuous at v. This means that there
exists n∗ ∈ N (independent of z), with n∗ ≥ nε , such that

‖DB f (x̄,z)(vn)−DB f (x̄,z)(v)‖ ≤ ε, ∀z ∈ K, ∀n≥ n∗,

or, equivalently,

DB f (x̄,z)(v) ∈ DB f (x̄,z)(vn)+ εB, ∀z ∈ K, ∀n≥ n∗.

By recalling (3.11), from the last inclusion one gets

DB f (x̄,z)(v) ∈ f (x̄+ tnvn,z)− f (x̄,z)
tn

+3εB, ∀z ∈ K, ∀n≥ n∗.

Since it is x̄+ tnvn ∈SE for every n ∈ N, this implies

DB f (x̄,z)(v) ∈ C− f (x̄,z)
tn

+3εB ∈ cone(C− f (x̄,z))+3εB, ∀z ∈ K, ∀n≥ n∗.

Since C is convex so T( f (x̄,z);C) = clcone(C− f (x̄,z)), it results in

DB f (x̄,z)(v) ∈ T( f (x̄,z);C)+3εB, ∀z ∈ K.

The arbitrariness of ε and the fact T( f (x̄,z);C) is closed allow one to assert that

DB f (x̄,z)(v) ∈ T( f (x̄,z);C), ∀z ∈ K,

which proves the validity of (3.9). Thus the proof is complete. �

Remark 3.4. (i) In the case in which intC 6=∅, it is useful to remark that the formula in (3.8)
can be equivalently rewritten as

T(x̄;SE )⊆ {0}∪

 ⋂
z∈K∩ f−1(x̄,·)(bdC)

DB f (x̄,z)−1(T( f (x̄,z);C))∩T(x̄;K)

 ,

with the convention that an intersection over an empty index set is the empty set. Indeed,
whenever it happens f (x̄,z) ∈ intC, one has T( f (x̄,z);C) = Rm, with the consequence that
DB f (x̄,z)−1(T( f (x̄,z);C)) = Rn.
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(ii) It is worth noticing that for all those z0 ∈ K such that f (x̄,z0) = 0 (if any), the formula in
(3.8) entails

T(x̄;SE )⊆ DB f (x̄,z0)
−1(C)∩T(x̄;K),

as it is T( f (x̄,z0);C) = T(0;C) =C.
(iii) The reader should observe that, in contrast to Theorem 3.1, Theorem 3.3 has been estab-

lished without assuming any error bound type qualification condition.

The next example shows that also the outer one-side approximation of T(x̄;SE ) provided by
Theorem 3.3 may happen to be rather rough.

Example 3.5 (Inclusion (3.8) may be strict). Consider the (actually scalar) problem (VEP)
defined by the following data: K = R, C = [0,+∞), f : R×R−→ R given by

f (x,z) =
x2z

z2 +1
.

It is clear that with the above data one has SE = {0}. So, fix x̄ = 0. In order for checking
that f is B-differentiable at 0 uniformly on R, with {DB f (0,z) ≡ 0 : z ∈ R}, according to the
definition it suffices to observe that, fixed an arbitrary ε > 0, one has

sup
z∈R

| f (x,z)− f (x̄,z)|
|x− x̄|

= sup
z∈R

∣∣∣∣ x2z
z2 +1

∣∣∣∣
|x|

= sup
z∈R

|z|
z2 +1

· |x| ≤ |x|
2
≤ ε, ∀x ∈ B(0;ε) .

As the family {DB f (0,z)≡ 0 : z ∈R} is actually independent of z ∈R, also the hypothesis (ii)
of Theorem 3.3 is satisfied.

Since f (0,z) = 0 for every z ∈ R, so it is T( f (0,z); [0,+∞)) = [0,+∞), one finds

DB f (0,z)−1 (T( f (0,z); [0,+∞))) = R, ∀z ∈ R.
Consequently, in the current case, one obtains

T(0;SE ) = {0}$R∩R=
⋂
z∈R

DB f (0,z)−1(T( f (0,z); [0,+∞)))∩T(0;R).

Relying on both the preceding approximations, the next result singles out a sufficient condi-
tion, upon which one can establish an exact representation of T(x̄;SE ).

Corollary 3.6. With reference to a problem (VEP), let x̄ ∈SE . Suppose that:
(i) K is polyhedral;

(ii) f (x̄,z) = 0, ∀z ∈ K;
(iii) f is B-differentiable at x̄, uniformly on K, with {DB f (x̄,z) : z ∈ K};
(iv) the family of mappings {DB f (x̄,z) : z ∈ K} is equicontinuous at each point of Rn;
(v) a local error bound such as in (2.6) is valid near x̄.

Then, it holds
T(x̄;SE ) =

⋂
z∈K

DB f (x̄,z)−1(C)∩T(x̄;K).

Proof. The above assumptions enable one to apply both Theorem 3.1 and Theorem 3.3. From
the former one, in the light of Remark 2.1 and hypothesis (i), one obtains⋂

z∈K

DB f (x̄,z)−1(C)∩T(x̄;K)⊆ T(x̄;SE ). (3.12)
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From the latter, in the light of hypothesis (ii) and Remark 3.4(ii), one obtains

T(x̄;SE )⊆
⋂
z∈K

DB f (x̄,z)−1(C)∩T(x̄;K). (3.13)

By combining inclusions (3.12) and (3.13) one gets the equality in the thesis. �

4. APPLICATIONS TO CONSTRAINED OPTIMIZATION

This section deals with first-order optimality conditions for optimization problems, whose
feasible region is formalized as a set of strong vector equilibria. As such, these problems can
be cast in mathematical programming with equilibrium constraints, a well-recognized topic
and active area of research (see, among others, [11, 12, 14, 17, 22]). Thus, the optimization
problems here considered take the following form

(MPVEC) minϑ(x) subject to x ∈SE ,

where ϑ : Rn −→ R is the objective function formalizing the criterion used for comparing
variables, while SE is the feasible region of the problem, denoting as in the previous sections
the solution sets to an inner (lower level) problem (VEP). Throughout this section ϑ will be
assumed to be continuous around x̄, but possibly nondifferentiable, as well as the bifunction f
defining (VEP).

In constrained nondifferentiable optimization, first-order optimality conditions are typically
obtained by locally approximating the objective function and the feasible region of a given
problem. In this vein, the fact stated in the next lemma is widely known to hold, which has been
used as a starting point for various, more elaborated, optimality conditions. For a direct proof
see, for instance, [20, Chapter 7.1]. To a deeper view, it can be restored as a special case of an
axiomatic scheme of analysis, which was developed in [6, 8] (see [6, Theorem 2.1]).

Lemma 4.1. Let x̄ ∈SE be a local optimal solution to problem (MPVEC). Then, it holds

D+
Dϑ(x̄;w)≥ 0, ∀w ∈ Tr(x̄;SE ) (4.1)

and
D+

Hϑ(x̄;w)≥ 0, ∀w ∈ T(x̄;SE ). (4.2)

Remark 4.2. Since from their very definition one sees that

D+
Dϑ(x̄;w)≤ D+

Hϑ(x̄;w), ∀w ∈ Rn,

whereas it is Tr(x̄;SE )⊆ T(x̄;SE ), none of the conditions (4.1) and (4.2) can imply in general
the other, unless either ϑ is locally Lipschitz near x̄ or it is Tr(x̄;SE ) = T(x̄;SE ). Thus, the
author does not agree with what asserted in [20, pag. 132]. For the purposes of the present
analysis, only the condition in (4.2) will be actually exploited.

Theorem 4.3 (Necessary optimality condition). Let x̄ ∈ SE be a local optimal solution to
problem (MPVEC). Suppose that:

(i) f is B-differentiable at x̄, uniformly on K, with {DB f (x̄,z) : z ∈ K};
(ii) a local error bound such as in (2.6) is valid near x̄.
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Then, it holds

− ∂̂
+

ϑ(x̄)⊆

(⋂
z∈K

DB f (x̄,z)−1(C)∩Tr(x̄;K)

)	
. (4.3)

Proof. Under the above assumptions, by Theorem 3.1 the inclusion in (3.1) holds true. Conse-
quently, since x̄ ∈SE is a local optimal solution to (MPVEC), according to condition (4.2) it
must be

D+
Hϑ(x̄;w)≥ 0, ∀w ∈

⋂
z∈K

DB f (x̄,z)−1(C)∩Tr(x̄;K).

If ∂̂+ϑ(x̄) =∅ the thesis becomes trivial. Otherwise, by taking into account the representation
in (2.3), which is valid because the function ϑ is in particular u.s.c. around x̄, for an arbitrary
v ∈ ∂̂+ϑ(x̄) one finds

〈v,w〉 ≥ 0, ∀w ∈
⋂
z∈K

DB f (x̄,z)−1(C)∩Tr(x̄;K),

which amounts to say that

−v ∈

(⋂
z∈K

DB f (x̄,z)−1(C)∩Tr(x̄;K)

)	
.

The arbitrariness of v ∈ ∂̂+ϑ(x̄) completes the proof. �

Remark 4.4. To assess the role of the optimality condition formulated in Theorem 4.3, notice
that it does not carry useful information whenever ∂̂ϑ(x̄) = ∅. This happens, for example, if
ϑ is a convex continuous function, which is nondifferentiable at x̄. Nevertheless, the upper
subdifferential is nonempty for large classes of functions, including the class of semiconcave
ones (see [14]). In all such cases, condition (4.3) provides a necessary optimality condition,
which may be more efficient than those expressed in terms of more traditional lower subdiffer-
entials. This because it requires that all elements in −∂̂+ϑ(x̄) belong to the set in the right-side
of (4.3), in contrast to a mere nonempty intersection requirement, which is typical for the lower
subdifferential case.

Corollary 4.5. Under the same assumptions of Theorem 4.3, if the following additional hy-
potheses are satisfied:

(i) K is polyhedral;
(ii) DB f (x̄,z) ∈PH (Rn,Rm) is C-concave for every z ∈ K;

(iii) the qualification condition holds⋂
z∈K

DB f (x̄,z)−1(C)∩ intT(x̄;K) 6=∅, (4.4)

then the inclusion in (4.3) takes the simpler form

−∂̂
+

ϑ(x̄)⊆

(⋂
z∈K

DB f (x̄,z)−1(C)

)	
+N(x̄;K).
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Proof. It is well know that if S1 and S2 are closed convex cones, then (S1∩S2)
	
= cl(S1

	
+S2

	
)

(see [20, Lemma 2.4.1]). On the other hand, if S1−S2 = Rn, then S1
	
+S2

	
is closed (see [20,

Proposition 2.4.3] If the qualification condition S1 ∩ intS2 6= ∅ happens to be satisfied, then
S1−S2 =Rn (see [20, Lemma 2.4.4]). It follows from hypothesis (ii) that each DB f (x̄,z)−1(C),
and then hence

⋂
z∈K DB f (x̄,z)−1(C), is convex. Thus, since

⋂
z∈K DB f (x̄,z)−1(C) and T(x̄;K)

are closed convex cone, by virtue of (4.4) and the assumption (i), one obtains(⋂
z∈K

DB f (x̄,z)−1(C)∩Tr(x̄;K)

)	
=

(⋂
z∈K

DB f (x̄,z)−1(C)

)	
+T(x̄;K)

	
.

Then, in order to achieve the inclusion in the thesis it suffices to recall that T(x̄;K)
	
= N(x̄;K)

(see [20, Lemma 11.2.2]). �

Whenever that data of (MPVEC) happen to be smooth, i.e. ϑ is Fréchet differentiable at x̄ and
DB f (x̄,z) ∈L (Rn,Rm) (and therefore is C-concave) for every z ∈ K, under the assumptions of
Corollary 4.5 the condition in (4.3) becomes a more standard generalized equation of the form

0 ∈ ∇ϑ(x̄)+

(⋂
z∈K

∇ f (x̄,z)−1(C)

)	
+N(x̄;K).

Now, let us consider sufficient optimality conditions, a topic usually investigated in a subse-
quent step of analysis.

The next lemma provides a sufficient (strict) optimality condition for (MPVEC) in the case
the objective function is locally Lipschitz. For its proof see [7, Lemma 1.3, Chapter V]. Notice
that for the statement of Lemma 4.6, the hypothesis on the feasible region of the problem to
allow a first-order uniform conical approximation in the sense of Demyanov-Rubinov is not
needed (see [7, Remark 1.6, Chapter V]).

Lemma 4.6. With reference to (MPVEC), suppose that ϑ is locally Lipschitz around x̄ ∈SE .
If it holds

D−Dϑ(x̄;w)> 0, ∀w ∈ T(x̄;SE )\{0}, (4.5)

then x̄ is a strict local solution to (MPVEC).

On the base of the above lemma, one is in a position to establish the next result.

Theorem 4.7 (Sufficient optimality condition). With reference to (MPVEC), assume that ϑ is
locally Lipschitz around x̄ ∈SE . Suppose that:

(i) f is B-differentiable at x̄, uniformly on K, with {DB f (x̄,z) : z ∈ K};
(ii) the family of mappings {DB f (x̄,z) : z ∈ K} is equicontinuous at each point of Rn.

If the condition

0 ∈ ∂̂ϑ(x̄)+ int

(⋂
z∈K

DB f (x̄,z)−1(T( f (x̄,z);C))∩T(x̄;K)

)	 , (4.6)

is satisfied, then x̄ is a strict local solution to (MPVEC).
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Proof. Observe first that if for a given cone S⊆ Rn it is v ∈ int(S
	
), then it must be

〈v,s〉< 0, ∀s ∈ S\{0}.

Indeed, there exists δ > 0 such that v+δB⊆ S
	

, and therefore it holds

〈v+δu,s〉 ≤ 0, ∀u ∈ B, ∀s ∈ S.

Thus, for any s ∈ S\{0}, the last inequality implies

sup
u∈B
〈v+δu,s〉= 〈v,s〉+δ sup

u∈B
〈u,s〉= 〈v,s〉+δ‖s‖ ≤ 0,

whence one gets
〈v,s〉 ≤ −δ‖s‖< 0.

Consequently, the condition (4.6) implies that there exists v ∈ ∂̂ϑ(x̄) such that it is

〈v,w〉> 0, ∀w ∈

[⋂
z∈K

DB f (x̄,z)−1(T( f (x̄,z);C))∩T(x̄;K)

]
\{0}.

By recalling the representation of ∂̂ϑ(x̄) in (2.4), from the last inequality one obtains

D−Dϑ(x̄;w) = D−Hϑ(x̄;w)> 0, ∀w ∈

[⋂
z∈K

DB f (x̄,z)−1(T( f (x̄,z);C))∩T(x̄;K)

]
\{0}.

Since under the above assumptions Theorem 3.3 can be applied, then by virtue of the inclusion
in (3.8) one can state that condition (4.5) turns out to be satisfied. Thus, the thesis of the
theorem follows from Lemma 4.6. �

Remark 4.8. (i) As it is possible to see by elementary examples (see [15, Chapter 1]), ∂̂ϑ(x̄)
may happen to be empty even though ϑ is locally Lipschitz around x̄. In these circumstances,
the condition in (4.6) can never be satisfied. On the other hand, whenever the p.h. function
D−Hϑ(x̄; ·) : Rn −→ R is sublinear (and hence continuous), then ∂̂ϑ(x̄) = ∂D−Hϑ(x̄; ·)(0) 6= ∅.
This happens e.g. (but not only) when ϑ : Rn −→ R is convex, in which case one has ∂̂ϑ(x̄) =
∂ϑ(x̄).

(ii) The local Lipschitz continuity of ϑ near x̄ might lead to believe that the Clarke subdiffer-
ential may come into play in the current context. Recall that the latter is defined by

∂Cϑ(x̄) =

v ∈ Rn : 〈v,w〉 ≤ limsup
x→x̄
t↓0

ϑ(x+ tw)−ϑ(x)
t

, ∀w ∈ Rn

 .

Since, if ϑ is locally Lipschitz around x̄, then it is ∂̂ϑ(x̄) ⊆ ∂Cϑ(x̄) (see, for instance, [15,
Chapter 1]), it follows that the condition

0 ∈ ∂Cϑ(x̄)+ int

(⋂
z∈K

DB f (x̄,z)−1(T( f (x̄,z);C))∩T(x̄;K)

)	 (4.7)

does not imply in general the condition in (4.6).
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[2] Q. H. Ansari, E. Köbis, J.-C. Yao, Vector variational inequalities and vector optimization. Theory and appli-
cations. Vector Optimization, Springer, Cham, 2018.
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