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Scientific abstract

In this thesis we take a superspace perspective on T-duality, focusing on sigma models defined on

background geometries that are constructed in terms of Lie supergroups. We briefly review Abelian

bosonic and fermionic T-duality and the derivation of Buscher’s rules, moving then to the dualisa-

tion of principal chiral models on group manifolds. Extension of the latter to the case of supergroup

manifolds represents the starting point of our analysis, which features an extended discussion about

the explicit dualisation of the supergroup OSpp1|2q. While the initial model represents an appro-

priate three-dimensional supergravity background, the T-dual one hints in the opposite direction,

as the ansatz adopted to construct the dual veilbeine fails to satisfy the supergravity torsion con-

straints. Such result, together with the complexity of the ansatz-based approach, suggests that

a more abstract and general point of view should be taken on the dualisation procedure. This

represents the next step of our analysis and allows a simpler dualisation of principal chiral models

and a clearer argument that the above T-dual model falls outside the class of three-dimensional su-

pergravity backgrounds. Extension of the dualisation procedure to symmetric and semi-symmetric

coset space sigma models based on Lie supergroups G{H is also favored by the more abstract

perspective, which allows to recover the well-known exchange of equations of motion and Maurer-

Cartan equations typically observed in purely bosonic settings, hence leading to the construction

of a dual Lax connection and ensuring preservation of classical integrability. While dualisation of

principal chiral models can be performed in full generality, for coset models the procedure might be

affected by impediments appearing in the process of integrating out the gauge fields in favor of the

dual variables, and thus requires a case by case analysis. We proceed by solving those gauge fields

equations of motion that allow for a general solution, thus confining the potential obstruction to a

single equation, whose solvability depends on the invertibility of two linear operators. We conclude

by discussing two explicit examples in which dualisation goes through, the first based on the sym-

metric space S3 » SOp4q{SOp3q, well-known for its dualisability, the second on the semi-symmetric

space OSpp1|2q{SOp1, 1q, already approached in the literature from the point of view of holography

and representing a Green-Schwarz-like sigma model satisfying the supergravity torsion constraints.

i





Statement of Originality Declaration

This thesis and the work to which it refers [1, 2] are the results of my own efforts. Any ideas,

data, images or text resulting from the work of others (whether published or unpublished) are fully

identified as such within the work and attributed to their originator in the text, bibliography or in

footnotes. This thesis has been submitted to the University of Surrey and the University of Milano

- Bicocca in agreement with the established dual doctorate program. I agree that the University

has the right to submit my work to the plagiarism detection service TurnitinUK for originality

checks. Whether or not drafts have been so-assessed, the University reserves the right to require

an electronic version of the final document (as submitted) for assessment as above.

Signature:

Date: 10th April 2023

iii





Acknowledgements

I would like to express my gratitude to all the people who have, in one way or another, supported

me throughout the years that led to the completion of this work.

Infinitely many thanks to my supervisors, Silvia and Martin, and our close collaborator Dima, for

their mentoring and support along this path and the great amount of time spent together during

our meetings. Discussing with you has been a pleasure, thanks for your patience and essential

guidance, which played a fundamental role in this achievement.

The numerous amazing people met during my stays in Milan and Guildford also deserve ex-

traordinary acknowledgement. Thanks to all of you for the great time spent together. Very special

thanks to Vaibhav, Laura and Dani for making Guildford home and to Alessandro for his amazing

enthusiasm in discussing and organising our journal clubs.

Thanks to my parents, Stefano and Antonella. None of this would have been possible without

your constant encouragement.

Thanks to Chiara, for believing in me and being my strongest supporter in any possible situation.

Many thanks to the referees, Gabriele Tartaglino-Mazzucchelli and Pietro Antonio Grassi,

for carefully reading the manuscript and providing valuable suggestions toward its improvement.

Thanks for the engaging discussion and the stimulating reflection points raised about this work.

v





Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. A landscape of T-dualties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Short Review Of Some Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Abelian T-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1. Bosonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2. Fermionic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Non-Abelian T-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1. Principal chiral models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. An Explicit Approach To Super Non-Abelian T-Duality . . . . . . . . . . . . . . . . . . . 15

3.1. Principal chiral models on supergroup manifolds . . . . . . . . . . . . . . . . . . . . 15

3.2. Principal chiral model on OSpp1|2q . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1. Initial sigma model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2. T-dual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4. A More Abstract Perspective On Super Non-Abelian T-Duality . . . . . . . . . . . . . . 39

4.1. Principal chiral models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2. T-Dual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3. OSpp1|2q revised and improved . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2. Symmetric and semi-symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2. T-dual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3. Potential obstructions and examples . . . . . . . . . . . . . . . . . . . . . . 62

5. Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A. Superspace Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2. Graded Lie derivative and Killing equation . . . . . . . . . . . . . . . . . . . . . . . 77

A.3. Maurer-Cartan equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.4. Cartan structure equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.5. Connection from metric compatibility . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.6. Supergravity constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vii



B. Orthosymplectic Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.1. The ospp1|2q algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C. Initial Action On OSpp1|2q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C.1. Derivation of the action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C.2. Maurer-Cartan forms of SLp2,Rq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

C.3. Noether currents for principal chiral models . . . . . . . . . . . . . . . . . . . . . . 89

C.4. Left Noether current on OSpp1|2q . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C.5. Killing vectors of the initial model . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

D. T-Dual Action On OSpp1|2q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

D.1. Details of the procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

D.2. Isometries of the T-dual models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

D.3. T-dual torsion constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

E. T-Duality Of Principal Chiral Models - Abstract Approach . . . . . . . . . . . . . . . . . 111

E.1. Properties of topological deformations . . . . . . . . . . . . . . . . . . . . . . . . . 111

E.2. T-dual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

E.3. OSpp1|2q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

F. T-Duality Of Symmetric And Semi-Symmetric Spaces . . . . . . . . . . . . . . . . . . . 121

F.1. Initial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

F.2. T-dual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

F.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

viii





1
Introduction

In this chapter we provide a brief introduction to T-duality, highlighting some of its features and

providing a non-exhaustive list of references on the topic. We conclude with a short description of

the remaining chapters and their structure.

1.1. A landscape of T-dualties

The main focus of this thesis lies in an intriguing property arising in the context of sigma models,

known under the name of Target Space Duality, or more simply T-duality. Many examples of

dualities have been found, conjectured and studied in the last few decades in the physics literature

and such word originates from the possibility of providing two different descriptions of a common

underlying physical system. From this point of view, the name target space duality hints toward the

possibility of establishing a relation between different target space geometries, equally perceived

from the sigma model perspective and giving rise to a single physical picture. For this reason T-

duality has played a major role in the context of string theory, where sigma models are commonly

exploited to describe the motion of strings in curved backgrounds. The origin of target space

duality is in fact rooted in the string theory framework as it was first discovered and understood,

in the context of string compactifications, as the invariance of the string spectrum and the full

worldsheet conformal field theory under the exchange of a geometry having a compact direction of

radius R with another one compactified on a circle of radius α
1

R [3–5]. This phenomenon represents

a characteristic feature of strings and originates from the possibility, enjoyed by one-dimensional

extended objects as opposed to point-like particles, to wrap around compact directions.

In [6, 7] Buscher further extended the above picture by showing the invariance, under target

space duality, of a generic string sigma model on an arbitrary curved manifold enjoying an Abelian

isometry, while Roček and Verlinde showed in [8] that couples of conformal sigma models on curved

backgrounds related by T-duality of a single Abelian isometry represent equivalent conformal field

1



2 1.1. A landscape of T-dualties

theories. This was soon extended to the case of d commuting isometries [9]. Importantly, the

approaches adopted by Buscher and Roček-Verlinde presented a slight conceptual difference

• Buscher’s results were based on the idea of rewriting a sigma model action, in which a certain

background coordinate x0 only appears in terms of worldsheet derivatives Bx0 and B̄x0, in the

so-called first order form: substituting such terms with a new field A, Ā and adding to the

action the extra term ΛpBĀ´ B̄Aq one may recover the initial model integrating out Λ, while

a new model is obtained upon integrating out A, Ā.

• Roček and Verlinde realised how the above rewriting is actually equivalent to the gauging of a

global shift symmetry along the direction x0. Such shift symmetry can indeed be made local

by covariantising the derivatives with a gauge field transforming appropriately Bx0 Ñ pB`Aqx0

B̄x0 Ñ pB̄ ` Āqx0 and the extra term ΛpBĀ ´ B̄Aq can be regarded as enforcing the flatness

of the gauge field by means of a Lagrange multiplier.

The second approach represented an important change of viewpoint, as the gauging procedure could

be straightforwardly generalised to settings with non-Abelian isometries and this was indeed soon

recognised by de la Ossa and Quevedo, who introduced non-Abelian T-duality in [10]. The idea of

performing duality transformations for non-Abelian isometries had actually already been considered

earlier in Buscher’s PhD thesis, which remains unpublished, and several years before in [11–13].

It was immediately realised, already in [10], that the newly introduced non-Abelian dualisation

carried some peculiar features as compared to the Abelian one, and in paricular a systematic loss

of isometries in the T-dual model. Indeed, while dualising with respect to a set of commuting

isometries one finds that these are preserved in the T-dual model, so that the gauging procedure

could be performed again leading back to the original model, when dualising with respect to a

non-Abelian group G, this is generically broken and the dual model could even enjoy no isometry

at all, implying that one may not be able to perform again the gauging and reach back the original

model. It was indeed argued by Giveon and Roček [14] that, contrarily to the Abelian case, non-

Abelian T-duality is not a symmetry of a single underlying worldsheed conformal field theory, but

rather a relation between inequivalent theories. They also described how the exchange of equations

of motion with Maurer-Cartan equations, which had already been observed for Abelian duality, is

reproduced in the non-Abelian setting. Despite its peculiarities, this new duality attracted a lot of

attention and also started to be used as a solution generating technique in supergravity [15–19].

In the search for an approach allowing to recover the initial model starting from the T-dual one,

novel descriptions of the dualisation procedure started to emerge. A canonical perspective [20–22]

turned out to be effective for generalisation, at least in the Abelian case, to the study of higher

genus worldsheets, while the Poisson-Lie approach [23, 24], motivated by the idea that isometries

could have not been the truly relevant structure to consider in duality transformations, initiated a
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novel research line in which T-duality is understood in terms of Lie bi-algebras pg, g̃q and regarded as

a symmetry which exchanges the roles of g and g̃ (see [25,26] for reviews of recent developments).

About at the same time, people also started studying the possibility of extending T-duality to more

complicated theories involving not only metric, B-field and dilaton, but also Ramond-Ramond and

fermionic fields. This extension of the formalism was first achieved, in the Abelian case, from a

target space perspective [27, 28] and successively generalised to the Green-Schwarz [29, 30] and

pure-spinor [31] formalisms.

More recently, another important development took place when Berkovits and Maldacena pro-

posed in [32] an extension of the Abelian bosonic dualisation procedure to the case of anticommuting

fermionic isometries and showed how this new type of duality could be used to prove self-duality of

the AdS5ˆS
5 string background. This achievement allowed to clarify the relation between Wilson

loops and scattering amplitudes which had already emerged from the field theory point of view in

the planar limit of N“ 4 super Yang-Mills theory [33]. Self-duality of AdS5ˆS
5 was also studied

from the integrability perspective in [34] (see also [35] for previous work and [36] for a review),

and it was shown how the combination of bosonic and fermionic Abelian T-dualities sending the

background to itself could be understood as a precise mapping between the conserved charges of

the two models. Under the latter, some of the local charges in the initial model become delocal-

ised in the dual model and, vice versa, some non-local charges become local. The combination of

bosonic and fermionic Abelian T-dualities was later also used to show self-duality of other string

backgrounds [37–40] and particular attention was given to the case of AdS4 ˆ CP3, for which

self-duality was expected to hold as a consequence of the relation between Wilson loops and scat-

tering amplitudes observed in Aharony– Bergman–Jafferis–Maldacena theory [41–44], in analogy

with N“ 4 super Yang-Mills theory for AdS5ˆS
5, and of the integrability of both the string the-

ory [45–48] and gauge theory sides [49, 50]. The appearance of singularities under combinations

of Abelian dualities was however argued to prevent self-duality [51–54]. The idea of a fermionic

duality was soon also considered from the Poisson-Lie perspective [55–59] and in the context of

purely fermionic coset models [60], which highlighted the presence of obstructions to the dualisa-

tion originating from both the fermionic and coset nature of the models and called for the use of

Becchi-Rouet-Stora-Tyutin techniques.

The idea of using T-duality as a solution generating technique in supergravity was re-discovered

and generalised to the bosonic non-Abelian setting in [61,62], where dualisation of principal chiral

models and coset models in combination with fields from the Ramond-Ramond sector was intro-

duced. For example, novel supergravity solutions were found starting from the notable backgrounds

AdS3ˆS
3ˆT4 and AdS5ˆS

5 by performing dualisation along the SOp4q and SOp6q isometries of S3

and S5, first regarded as group manifolds and successively as symmetric cosets. These results also

initiated the search for possible holographic interpretations of the newly obtained T-dual supergrav-
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ity solutions [63–67], hence giving birth to an intriguing interplay between T-duality and holography.

Other interesting features of non-Abelian T-duality emerged as a result of the semi-symmetric coset

realisation for the AdS5ˆS
5 background [68] (later also extended to AdS4 ˆ CP3 [45]) and the

discovery of its integrability [69]: these initiated the search for integrable deformations of such

model, which led to the discovery of η-deformations [70] and λ-deformations [71,72], respectively

generalising the constructions in [73, 74]. A relation between these two was then pointed out

in [75]. It was soon realised that while the η-deformed AdS5ˆS
5 does not represent a Type II

background [76], by performing Abelian T-duality on this model one obtains a proper supergravity

solution exhibiting a novel feature, namely the presence of a dilaton depending on the directions

along which T-duality has been performed, hence making the reverse dualisation not straightfor-

ward. This puzzle was then clarified by the discovery that the η-deformed background enjoys scale,

but not Weyl invariance [77] and for this reason satisfies a generalised version of the supergravity

equations of motion. The full set of such equations was then found in [78] by studying the con-

straints imposed by classical κ-symmetry on the target superspace geometry, which turned out to

be not equivalent to 2d Weyl invariance (i.e. Type II equations of motion), but to scale invariance.

In [79] the background superfields associated to η and λ deformations were constructed and

it was discovered that for unimodular R-matrices they lead to proper Type II backgrounds. In [80]

it was further shown that deformations with Abelian R-matrices are equivalent to T-duality-shift-

T-duality transformations performed on the undeformed background. For certain bosonic models,

deformations with non-Abelian R-matrices turned out to be equivalent to non-Abelian T-duality of

the undeformed model [81]. The latter finding was then proved in [82–84], where η deformations

of principal chiral models, semi-symmetric cosets and Green-Schwarz sigma models were shown to

be equivalent to a deformation of their T-duals by means of an invertible two-cocycle.

Dualisation of non-Abelian fermionic directions has furthermore been discussed in [82–85] and,

in connection with λ-deformed models, in [86]. Quite recently, non-Abelian fermionic T-duality

has also been approached from the double field theory perspective [87,88] and a new supergravity

solution has been constructed by performing bosonic dualisation of the non-compact isometry group

SLp2,Rq acting on the AdS3 factor contained in the AdS3ˆS3ˆCY2 background [89].

1.2. Structure of the thesis

In chapter 2 we provide a quick review of some known results, first deriving the Buscher’s rules

for Abelian bosonic and fermionic duality of a single isometry and subsequently moving to the

dualisation of principal chiral models on group manifolds. This prepares the ground for the case of

supergroup manifolds G considered in chapter 3: we first extend to superspace the results obtained

in the purely bosonic setting by dualising the left sector GL of the full isometry group GLˆGR and
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subsequently consider the example of G “ OSpp1|2q. We explicitly construct the initial model, and

its Killing vectors, showing it satisfies the supergravity torsion constraints. T-dualisation is then

considered, first with respect to the maximal bosonic subgroup SLp2,RqL and next with respect

to the full OSpp1|2qL supergroup. Residual isometries for both T-dual models are constructed and

an argument is presented, hinting toward the fact that both models break the supergravity torsion

constraints. The argument is based on a choice of ansatz for the vielbeine of the T-dual models

and the need for a more general choice, together with the complexity of the approach, leads us

to take a more abstract perspective on the whole procedure. Chapter 4 is based on this point of

view, which allows to perform T-duality of principal chiral models in great generality, automatically

providing a choice of T-dual vielbeine and allowing a simple construction of the 3-form H3 “ dB2.

Exploiting these results we revise and improve our analysis of the principal chiral model on OSpp1|2q,

showing that both the dual vielbeine and H3 break the superspace supergravity requirements. The

new point of view also allows for simpler generalisation of the dualisation procedure to the case of

coset models G{H based on Lie supegroups and we thus analyse the case of symmetric and semi-

symmetric spaces. In such classes of models, the requirement for local invariance under the right

action of H leads to potential obstructions to dualisation, hence forcing a case by case analysis.

We proceed however integrating out all the gauge fields, except for the ones requiring a choice of

explicit model, thus obtaining a hybrid T-dual action. This way we are able to recover, as for the

case of principal chiral models, the exchange in role of Maurer-Cartan equations and equations of

motion typically exhibited by bosonic T-duality. For all three classes of models, we also include in

the discussion a topological deformation term, based on two-cocycles and recently introduced in

the literature. In the final section we recast solvability of the potentially obstructing equation as

the invertibility condition for two linear operators and consider two explicit examples in which these

turn out to be invertible, hence allowing completion of the dualisation procedure.





2
Short Review Of Some Known Results

We revise some known results about T-duality, so as to introduce conventions and notation.

2.1. Abelian T-duality

In this section we shall partially take inspiration from [90] to briefly revise the concepts of bosonic

and fermionic Abelian T-dualities as respectively introduced in [6–8] and [32]. The starting point

of the discussion is the sigma model action

S “ 1
2

ż

Σ

dτdσ
`
?
´hhαβBβX

νBαX
µgµν ` ϵ

αβBβX
νBαX

µBµν
˘

, (2.1)

where, aiming at a purely classical treatment, we discarded the Dilaton term which might possibly be

included. In this model the fields Xµ “ Xµpσ, τq, coordinates on the background space (superspace

in the fermionic case), are regarded as maps Xµ : Σ Ñ M @µ “ 1, ..., d impMq from a two-
dimensional Lorentzian worldsheet pΣ, hαβq

1 to some curved space pM, gµνq (superspace). Before
proceeding, we shall first rewrite the action in a convenient compact form. To do this we first

exploit worldsheet reparametrisation and Weyl invariance of the action to write the worldsheet

metric in the conformal gauge, i.e. hαβ “ ηαβ “
`

´1 0
0 1

˘

with h “ detphαβq “ ´1. Then,

choosing ϵαβ “
`

0 ´1
1 0

˘

and introducing lightcone coordinates

$

&

%

z “ 1
2pτ ` σq

z̄ “ 1
2pτ ´ σq

ñ

$

&

%

τ “ z ` z̄

σ “ z ´ z̄
ñ

$

&

%

Bτ “
1
2pB ` B̄q

Bσ “
1
2pB ´ B̄q

and dτdσ Ñ dzdz̄detp
Bξ

Bξ1
q “ ´2dzdz̄ ,

(2.2)

1From now on Σ will be chosen to have sphere-like topology, to avoid dealing with non-trivial holonomies of the

gauge fields along non-contractible loops. While generalisation to other topologies turned out to be manageable via

the canonical picture [20–22] in the Abelian setting, this is still an open problem in the non-Abelian case.

7



8 2.1. Abelian T-duality

the action takes the following form

S “

ż

Σ

d2z BXν B̄XµEµν with Eµν :“ gµν ` Bµν . (2.3)

Where the metric and B-field have been packed together as the symmetric and antisymmetric

components of E.

2.1.1. Bosonic

The bosonic T-duality procedure relies on the assumption that the background metric gµν enjoys at

least one continuous isometry Xµ Ñ Xµ`Kµϵ generated by the Killing vector K “ KµBµ. Gauging

the symmetry and adding to the action a term enforcing the flatness of the gauge fields by means

of Lagrange multipliers, one can recover the initial model upon integrating out the multipliers,

while another model is obtained by removal of the gauge fields. Together with the requirement

LKg “ 0, for the intial action (2.3) to be dualised one further needs that LKB “ 0. With such

an assumption one has a global symmetry of the full action

δϵS “

ż

Σ

d2z BXν B̄XµpLKEqµν “ 0 . (2.4)

To proceed with the dualisation it is convenient to make use of coordinates tXµu “ tX1, Xmu

adapted to the Killing vector. This way one has K “ B1, i.e. the Killing vector acts as a simple

translation along X1, and the metric and B-field are independent of such coordinate, which only

appears in the action via BX1 and B̄X1.

The symmetry can now be made local by gauging

$

&

%

BXm Ñ DXm :“ BXm

BX1 Ñ DX1 :“ BX1 ` A

$

&

%

B̄Xm Ñ D̄Xm :“ B̄Xm

B̄X1 Ñ D̄X1 :“ B̄X1 ` Ā
(2.5)

and to recover the starting model one needs to include the term X̃1F , with X̃1 a Lagrange multiplier

and F “ BĀ´ B̄A the Abelian field strength. The minimally coupled gauged action hence reads

SMCG “

ż

Σ

d2z
`

DXνD̄XµEµν ` X̃
1F

˘

, (2.6)

and is invariant under local transformations with ϵ “ ϵpz, z̄q

δϵX
m “ 0 δϵX

1 “ ϵ δϵX̃
1 “ 0 δϵA “ ´Bϵ δϵĀ “ ´B̄ϵ . (2.7)

As mentioned above, the addition of the field strength term to the action is fundamental in recov-
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ering the original model (2.3), as the equations of motion for the Lagrange multiplier X̃1 forces

the vanishing of the field strength and thus the gauge field to be pure gauge A “ Bχ, Ā “ B̄χ.

The original model is recovered for the convenient choice of χ “const which makes A “ Ā “ 0.

On the other hand, one can obtain a new model by proceeding the other way around, i.e. first

integrating out the gauge field and then gauge fixing. The equations of motion for A and Ā read

A “
1

E11
pBX̃1 ´ BX1E11 ´ BX

iE1iq Ā “
1

E11
pB̄X̃1 ´ B̄X1E11 ´ B̄X

iEi1q . (2.8)

Substituting them into the action, fixing X1 “ 0 and rearranging the remaining terms, one obtains

a model which formally has the same structure as the original one

S̃ “

ż

Σ

d2z BX̃ν B̄X̃µẼµν , (2.9)

with new coordinates tX̃µu “ tX̃1, Xmu and the following relations

Ẽ11 “ g̃11 “
1

g11
Ẽmn “ Emn ´

1

g11
Em1E1n

Ẽ1n “ ´
E1n
g11

Ẽm1 “
Em1
g11

.

(2.10)

Using g̃µν “
1
2pẼµν ` Ẽµνq and B̃µν “

1
2pẼµν ´ Ẽµνq, leads to the famous Buscher’s rules

g̃11 “
1

g11
g̃m1 “

Bm1
g11

g̃mn “ gmn ´
1

g11
pgm1g1n ` Bm1B1nq

B̃m1 “
gm1
g11

B̃mn “ Bmn ´
1

g11
pgm1B1n ` Bm1g1nq .

(2.11)

It is important to notice that the T-Dual model exhibits a shift isometry along the X̃1 direction,

as the metric and B-field are independent of it. This allows to re-apply the dualisation procedure

to the dual model and go back to the original one.

2.1.2. Fermionic

The fermionic duality introduced in [32] is performed in the same spirit as the bosonic one and thus

follows similar steps. The starting point is again the action

S “

ż

Σ

d2z BXN B̄XM EMN , with EMN “ gMN ` BMN , (2.12)
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the main difference being that now the target space is a superspaceM, with bosonic and fermionic
coordinates tXMu “ tXm, θµu such that XM : Σ Ñ M. In this setting gMN and BMN are
respectively graded-symmetric and graded-antisymmetric and thus satisfy gMN “ p´1q

|M||N|gNM

and BMN “ ´p´1q
|M||N|BNM , where we introduced the Grassmann parity |M| “ 0 and |M| “ 1

for respectively bosonic and fermionic directions. The total parity of EMN is then simply given by

|M| ` |N|. Similarly to the bosonic case, the action is assumed to be written in coordinates such
that the metric and B-field are independent of the fermionic θ1, which only appears in terms of

Bθ1 and B̄θ1. The action is thus invariant under a constant fermionic shift of θ1 by ρ

XM̂ Ñ XM̂ θ1 Ñ θ1 ` ρ , (2.13)

where we introduced XM̂ “ tXm, θµ̂u with µ̂ running over all fermionic coordinates except for θ1.

In this setting, the dualisation procedure can be performed pretty much like for the bosonic case.

The symmetry is made local by gauging

$

&

%

BXM̂ Ñ DXM̂ “ BXM̂

Bθ1 Ñ Dθ1 “ Bθ1 ` A

$

&

%

B̄XM̂ Ñ D̄XM̂ “ B̄XM̂

B̄θ1 Ñ D̄θ1 “ B̄θ1 ` Ā
(2.14)

and adding a term θ̃1F , with θ̃1 a fermionic Lagrange multiplier and F “ BĀ ´ B̄A the fermionic

Abelian gauge field strength. We thus get the minimally coupled gauged action

SMCG “

ż

Σ

d2z
`

DXND̄XM EMN ` θ̃
1F

˘

, (2.15)

which is invariant under local transformations with ρ “ ρpz, z̄q

δρX
M̂ “ 0 δρθ

1 “ ρ δρθ̂
1 “ 0 δρA “ ´Bρ δρĀ “ ´B̄ρ . (2.16)

As already mentioned, the main difference with respect to the bosonic case is that the gauge

field, the Lagrange multiplier and the cross terms E1m, Eµ̃m are fermionic quantities, which means

they anticommute. This can be handled with some extra attention when reshuffling the various

terms and as a result of such property the dual fields will be different from the ones found in the

bosonic case. Once again, integrating out the Lagrange multipliers forces the vanishing of the field

strength, hence setting the gauge field to be pure gauge and allowing to recover the initial action.

On the other hand, computing the equations of motion for the gauge field one finds

A “
1

E11
pBθ̃1 ´ Bθ1E11 ` p´1q

N̂BXN̂E1N̂q Ā “
1

E11
pB̄θ̃1 ´ B̄θ1E11 ´ B̄X

M̂EM̂1q , (2.17)
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so that substituting back into the action, fixing θ1 “ 0 and rearranging, a model with the same

structure as the initial one is obtained

S̃ “

ż

Σ

d2z BX̃N B̄X̃MẼMN , (2.18)

with coordinates tX̃Mu “ tXM̂ , θ̃1u and the following components

Ẽ11 “ B̃11 “ ´
1

B11
ẼM̂N̂ “ EM̂N̂ ´

1

B11
EN̂1E1M̂

Ẽ1M̂ “
E1M̂
B11

ẼM̂1 “
EM̂1
B11

.

(2.19)

Paying attention to the exchange of fermionic quantities and respecting the graded symmetry

and antisymmetry of the metric and B-field via ĝMN “
1
2pÊMN ` p´1q

|M||N|ÊNMq and B̂MN “
1
2pÊMN ´ p´1q

|M||N|ÊNMq, we end up with the fermionic analogue of the Buscher’s rules, again

relating the two sigma models

g̃11 “ 0 g̃1M̂ “
g1M̂
B11

B̃11 “ ´
1

B11
B̃1M̂ “

B1M̂
B11

g̃M̂N̂ “ gM̂N̂ ´
1

B11
pgM̂1B1N̂ ` BM̂1g1N̂q B̃M̂N̂ “ BM̂N̂ ´

1

B11
pgM̂1g1N̂ ` BM̂1B1N̂q .

(2.20)

Notice that also in this case the dual model exhibits a shift isometry along the θ̃1 direction, as the

metric and B-field are independent of it, and the procedure might thus be repeated.

2.2. Non-Abelian T-duality

Non-Abelian T-duality was first introduced in [10] and conceptually represents the natural extension

of the procedure described in the previous section, to backgrounds with a set of non commuting

isometries. Despite the name, a key feature of such generalisation is that it does not represent a

true duality [14], as it is generally not possible to recover the initial model starting from the T-dual

one and in this sense it is not invertble. Indeed, in contrast to the Abelian case, the dual model

does not usually have the same amount of isometries as the initial model and even gauging the

residual ones, the original setup is generally not recovered. The systematic loss of isometries is due

to the fact that only those isometries which commute with the gauged ones survive the dualisation

procedure [90, 91]. As discussed in the introduction, despite this drawback non-Abelian T-duality

has been largely studied and has played an important role in various research directions. In the rest

of this chapter we shall focus on reviewing a class of sigma models, known as principal chiral models

(PCM), defined on group manifolds, as they will be of primary importance for later purposes.
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2.2.1. Principal chiral models

Principal chiral models are sigma models in which the background is a group manifold G. The basic

constituent of this class of models it to the so-called principal chiral field g : Σ Ñ G, where Σ is

a two-dimensional Lorentzian worldsheet and G is a Lie group with Lie algebra g. Starting from

g one can construct the Lie algebra valued 1-form current j “ g´1dg P Ω1pΣ, gq satisfying, by

construction, the Maurer-Cartan equation2

dj “ dpg´1q ^ dg “ ´g´1pdgqg´1 ^ dg “ ´j ^ j “ ´12 rj, js ñ dj ` 1
2 rj, js “ 0 . (2.21)

The action is then constructed out of the current j as

SPCM “
1

2

ż

Σ

T r
“

pg´1dgq ^ ‹pg´1dgq
‰

, (2.22)

where T r represents the Ad-invariant inner product on the Lie algebra generators and ‹ the Hodge

operator with respect to the worldsheet metric. Switching to lightcone coordinates and choosing

the inner product such that T r rTaTbs “ δab, the action can be further recast into

SPCM “

ż

Σ

d2z T r rpg´1Bgqpg´1B̄gqs “

ż

Σ

d2z pg´1Bgqbpg´1B̄gqaδab . (2.23)

Principal chiral models have a large set of isometries GLˆGR, as they are invariant under the global

left gÑ g´1
L g and global right gÑ ggR action of gL, gR P G.

• Invariance under GL is a direct consequence of the fact that j itself is left unchanged

S
1

PCM “

ż

Σ

d2z T r r
`

pg´1
L gq

´1Bpg´1
L gq

˘`

pg´1
L gq

´1B̄pg´1
L gq

˘

s “

“

ż

Σ

d2z T r rpg´1gLg
´1
L Bgqpg

´1gLg
´1
L B̄gqs “ SPCM .

(2.24)

• For GR one needs to exploit Ad-invariance of the inner product, namely ciclicity of the trace

S
1

PCM “

ż

Σ

d2z T r r
`

pggRq
´1BpggRq

˘`

pggRq
´1B̄pggRq

˘

s “

“

ż

Σ

d2z T r rg´1
R g

´1pBgqgRg
´1
R g

´1pB̄gqgRs “ SPCM .

(2.25)

Given such set of isometries, T-duality can be performed by following the same key steps highlighted

in the past section. For these models, the procedure can be carried out in such a way that a quite

2we consider g P C8
pΣ,Gq, the set of smooth maps from the worldsheet to G, and we denote by d the exterior

derivative on the worldsheet and by Ω1pΣ, gq the set of 1-forms on Σ taking values in g
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general expression for the dual action is achieved. We shall proceed, as done for example in [61],

by gauging the invariance under the GL action. These global symmetries can be made local by

introducing non-Abelian gauge fields via minimal coupling

Dg :“ Bg` A D̄g :“ B̄g` Ā . (2.26)

Indeed, given the local transformation gÑ h´1g with h´1 “ h´1pz, z̄q P GL and

AÑ h´1Ah ´ pBh´1qh ĀÑ h´1Āh ´ pB̄h´1qh , (2.27)

the covariant derivatives transform as DgÑ h´1Dg and D̄gÑ h´1D̄g, so that the covariantised

action enjoys local invariance. At this stage one further needs to enforce the flatness of the gauge

fields by introducing the appropriate Lagrange multiplier term. The full minimally coupled gauged

action then reads

SMCGPCM “

ż

Σ

d2z T r rpg´1Dgqpg´1D̄gqs ` T r rΛF s , (2.28)

where F “ BĀ ´ B̄A ` rA, Ās and Λ are Lie algebra valued Lagrange multipliers. Given the local

transformations (2.27), the field strength transforms as F Ñ h´1Fh and consecutively the newly

introduced piece is invariant provided the Lagrange multipliers transform as ΛÑ h´1Λh. As in the

Abelian cases, variations of the Lagrange multipliers Λ imposes the vanishing of the field strength

F “ BĀ ´ B̄A ` rA, Ās “ 0, which in turn implies A “ hBh´1 and Ā “ hB̄h´1, i.e. the gauge

fields to be pure gauge. The original model (2.23) is thus recovered by choosing the gauge h “ 1.

The dual model can once again be obtained by integrating out the gauge fields rather than the

multipliers. Writing (2.28) in components, the equations of motion for the gauge fields read

Aa “ ´
`

rpBgqg´1sb ´ BΛb
˘

pM´1qb
a Āa “ ´

`

rpB̄gqg´1sb ` B̄Λb
˘

pN´1qb
a . (2.29)

Where we defined matrices Ma
b :“ δa

b ` Λc fca
b and Na

b :“ δa
b ´ Λc fca

b, with fab
c the structure

constant of the Lie algebra g appearing explicitly in the component form of the field strength

F a “ BĀa ´ B̄Aa ´AbĀc fcb
a. Substituting the latter equations back into the action and exploiting

the gauge freedom to choose g “ 1, the action becomes

SMCGPCM “

ż

Σ

d2z

„

´ pBΛdqpM´1qc
aB̄ΛdpN´1qd

bδba ` BΛ
aB̄ΛcpN´1qc

bδba`

` B̄ΛaBΛcpM´1qc
bδba ` Λ

aBΛcpM´1qc
d B̄ΛepN´1qe

pfpd
bδba

ȷ

.

(2.30)
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At this point, one can use the definition of Na
b to find that

pN´1qa
cNc

b “ δa
b ñ pN´1qa

b “ δa
b ` pN´1qa

cΛd fdc
b , (2.31)

which substituted into the first of the above four terms, cancels the last two and thus leaves

S̃PCM “

ż

Σ

d2z BΛaB̄ΛcpN´1qc
bδba . (2.32)

From the latter expression one can then extract the dual metric and B-field as the symmetric and

antisymmetric components of pN´1qab :“ pN
´1qa

cδcb

g̃ab “
1

2
rpN´1qab ` pN

´1qbas B̃ab “
1

2
rpN´1qab ´ pN

´1qbas . (2.33)

Given a choice of group manifold G and the above result, one may in principle straightforwardly

compute the T-dual fields by explicitly writing down the matrix N and inverting it using computa-

tional techniques. This might however not always be the best way to proceed, especially in cases

where one would like to retain the underlying index structure. In the next chapter we shall generalise

the above result to the case of supergroup manifolds and consider an explicit example in which the

dualisation can be performed in full details without the need for computational tools.



3
An Explicit Approach To Super Non-Abelian T-Duality

In light of the great versatility of the gauging procedure introduced in [8], which allowed to extend

T-duality in bosonic backgrounds from the simplest case of a single isometry [6, 7] to the case

of a non-Abelian group of isometries [10], it is natural to consider the possiblity of extending the

Abelian fermionic procedure introduced in [32] to the more complicated case of multiple bosonic

and fermionic isometries with non trivial commutation properties. The rich structure and successful

exploitation of bosonic non-Abelian T-duality in various contexts represents a strong motivation

to wonder about potential extensions and applications of a super non-Abelian setting. Some steps

have already been taken in this direction [60, 82–86], nevertheless a clear picture on the topic is

still missing and the construction of explicit examples (currently almost absent in the literature)

might prove useful in shading some light. With such motivation, we begin addressing the problem

by extending the discussion of principal chiral models from the previous chapter to the case of

supergroup manifolds, which, to the best of our knowledge, has not been discussed with this

flavour in the literature. We then analyse in detail, for the first time from the supergroup manifold

perspective, dualisation of OSpp1|2q, which had been considered in [60] in the context of purely

fermionic cosets via Becchi-Rouet-Stora-Tyutin techniques. The material of this chapter hence

already introduces some novelties, but is not taken from [1, 2] and rather serves as a motivation

for the next chapter, which is on the other hand based on the latter publications.

3.1. Principal chiral models on supergroup manifolds

The starting point and setup of our discussion goes along the same lines as for principal chiral

models defined on group manifolds. We consider a background which is a Lie supergroup G, with

associated Lie superalgebra g, and define the principal chiral field g : Σ Ñ G together with the

Lie algebra valued 1-form principal chiral current j “ g´1dg P Ω1pΣ, gq, which again satisfies by

construction the Maurer-Cartan equation (2.21). In lightcone coordinates on the worldsheet the

15
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action takes the form (2.23) with the replacement of the trace by the supertrace

SPCM “

ż

Σ

d2z ST r rpg´1Bgqpg´1B̄gqs . (3.1)

The symmetry properties of the model are the same as the ones discussed in section 2.2.1., i.e.

the action enjoys GL ˆ GR invariance under the global left and right actions g Ñ g´1
L g and

g Ñ ggR for gL, gR P G. We shall proceed again with the gauging of the left action, which can

be made local by introducing non-Abelian Lie algebra valued gauge fields with minimal coupling

Dg “ Bg ` Ag and D̄g “ B̄g ` Āg. These enjoy the transformation properties Dg Ñ h´1Dg and

D̄g Ñ h´1D̄g, for h´1 “ h´1pz, z̄q P G, provided that the gauge fields transform as in (2.27),

i.e. A Ñ h´1Ah ´ pBh´1qh and Ā Ñ h´1Āh ´ pB̄h´1qh. These modifications make the action

(3.1) invariant under the local GL action, but to be able to get back the original model we must

include the extra term ST r rΛF s, with F “ BĀ ´ B̄A ` rA, Ās. The field strength transforms as

F Ñ h´1Fh, so that the minimally coupled gauged action

SMCGPCM “

ż

Σ

d2z ST r rpg´1Dgqpg´1D̄gqs ` ST r rΛF s (3.2)

is fully invariant under the local GL action provided that ΛÑ h
´1Λh. Once again, variations of the

Lagrange multipliers Λ impose the vanishing of the field strength F “ BĀ´ B̄A`rA, Ās “ 0, which

in turn requires the gauge fields to be pure gauge A “ hBh´1 and Ā “ hB̄h´1. The original model

(3.1) is thus recovered by conveniently choosing h “ 1, while the dual model can be obtained by

integrating out the gauge fields rather than the multipliers.

At this level the whole setup and procedure is thus morally the same as in the purely bosonic

case and the main difference, so far still hidden by having considered fully contracted Lie algebra

valued quantities, lies in the fact that we also have fermionic gauge fields and multipliers. This

implies that particular attention should be paid due to the different Graßmann nature of the various

objects appearing in the action. In order to proceed let us first introduce some notation. We label

the Lie superalgebra generators as tTAu with A P tm,µu: lower case latin indices label bosonic

generators, while lower case greek indices label fermionic generators. The Graßmann parity of a

generator is thus given by its index following standard conventions

|A| ”

$

&

%

0 if A “ m

1 if A “ µ
, (3.3)

and in turn allows to identify the parity of all fields in terms of the parity of their indices. To

simplify the notation we shall from now on remove the absolute value. This notation allows us to



3.1. Principal chiral models on supergroup manifolds 17

define the graded commutator of generators, the graded antisymmetry of the structure constants

and the action of the supertrace on generators as1

rTA, TBs :“ TATB ´ p´1q
ABTBTA “ fAB

CTC with fAB
C “ ´p´1qABfBA

C

δAB :“ ST r rTATBs “ p´1q
ABST r rTBTAs “ p´1q

ABδBA .
(3.4)

We furthermore exploit δAB to construct structure constants with lowered indices fABC :“ fAB
DδDC ,

which are graded antisymmetric in the exchange of any two indices

fABC “ ´p´1q
BCfACB “ p´1q

CpA`BqfCAB “ ´p´1q
CpA`Bq`BAfCBA . (3.5)

This is a direct result of the supertrace identity holding for any triplet of generators

ST r rTArTB, TCss “ ST r rTATBTCs ´ p´1q
BCST r rTATCTBs “

“ ST r rTATBTCs ´ p´1q
BC`BpA`CqST r rTBTATCs “

“ ST r rrTA, TBs, TCs .

(3.6)

The component form of the action (3.2) reads

SMCGPCM “

ż

Σ

d2z

„

` pg´1BgqApg´1B̄gqB ` rpBgqg´1sAĀB ` rpB̄gqg´1sAAB ` AAĀB`

` ΛABĀB ´ ΛAB̄AB ´ ΛAAP ĀQfQP
B

ȷ

δBA ,

(3.7)

and exploiting the above property (3.5), while being careful with the exchange of Graßmann odd

quantities, it is possible to find the following equations of motion for the gauge fields

AA “ ´
␣

rpBgqg´1sC ´ BΛC
(

pM´1qC
A ĀA “ ´

␣

rpB̄gqg´1sC ` B̄ΛC
(

pN´1qC
A . (3.8)

Where we defined

$

&

%

MA
B :“ δA

B ` ΛCfCA
B

NA
B :“ δA

B ´ ΛCfCA
B

such that

$

&

%

pM´1qA
CMC

B “ δA
B

pN´1qA
CNC

B “ δA
B

. (3.9)

1To properly define PCMs, and later on coset models, the (super)trace among generators of the Lie (super)algebra

should be non-degenerate, graded-symmetric and Ad-invariant. The Cartan-Killing form, i.e. the (super)trace of the

generators in the adjoint representation, is a common choice for such an inner product, but is not the only one

available. Indeed, as discussed in footnote 24 at page 18-19 of [92] and papers therein, (super)trace of any other

representation of generators would provide an equivalently good form. This remark is particularly useful in those

cases where the Cartan-Killing form, proportional to the dual-Coxeter number, vanishes identically, such as the series

slpn|nq and ospp2n`2|2nq. These have indeed vanishing Cartan-Killing form, but still fall in the class of basic classical

Lie superalgebras, always admitting a non-degenerate, graded-symmetric and Ad-invariant bilinear form [93].
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At this stage it is important to notice that the supermatrices MA
B and NA

B happen to be of even

nature, i.e. they have bosonic fields in the diagonal blocks and fermionic fields in the off-diagonal

ones. This feature can be recognised by analysing the index structure of the terms proportional to

the Lagrange multipliers: a generic superalgebra is characterised by the fact that the commutator

(anticommutator) of two bosonic (fermionic) generators is again bosonic, while the commutator

of a bosonic and a fermionic element is fermionic. This property shows that the diagonal blocks

Ma
b,Na

b and Mα
β, Nα

β only contain bosonic multipliers Λc , as the structure constants fγa
b and

fγα
β vanish. On the other hand, the off-diagonal blocks Ma

β,Na
β and Mα

b, Nα
B only contain

fermionic multipliers Λγ as the structure constants fca
β and fcα

b vanish. This property is important

in the dualisation procedure, since it immediately allows to recognise the partity of MA
B,NA

B as

being given by A`B. At the same time, since the inverse of an even supermatrix is again even the

Graßmann parity of M´1,N´1 exhibit exactly the same structure. Additionally, it should be noted

that invertibility of M and N is ensured by the presence of the identity matrix, which makes the

determinant of their bosonic part non-vanishing. Substituting the equations of motion (3.8) back

into the action (3.2) and exploiting the gauge freedom to set g “ 1 we obtain the dual model

S̃PCM “

ż

Σ

d2z S̃p1q ` S̃p2q ` S̃p3q ` S̃p4q , (3.10)

where
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

S̃p1q “ ´BΛCpM´1qC
AB̄ΛDpN´1qD

BδBA

S̃p2q “ BΛAB̄ΛCpN´1qC
BδBA

S̃p3q “ B̄ΛABΛCpM´1qC
BδBA

S̃p4q “ ΛABΛCpM´1qC
DB̄ΛEpN´1qE

F fFD
BδBA

. (3.11)

As a final step, exploiting the relation

pN´1qA
CNC

B “ pN´1qA
CpδC

B ´ ΛDfDC
Bq ” δA

B

ñ pN´1qA
B “ δA

B ` pN´1qA
CΛDfDC

B
(3.12)

on the term S̃p1q one can cancel again the terms S̃p3q, S̃p4q, thus obtaining the dual action

S̃PCM “

ż

Σ

d2z BΛAB̄ΛBpN´1qB
CδCA “

ż

Σ

d2z BΛAB̄ΛBg̃BA ` BΛ
AB̄ΛBB̃BA . (3.13)

Where we have identified the dual metric and B-field with

g̃MN “
1
2 rpN

´1qMN ` p´1q
MNpN´1qNMs B̃MN “

1
2 rpN

´1qMN ´ p´1q
MNpN´1qNMs , (3.14)
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and defined pN´1qAB :“ pN
´1qA

CδCB. The latter result looks, as desired and expected, like the

generalised version of (2.32), which is indeed recovered by setting to zero the fermionic generators,

i.e. by going back to a bosonic Lie algebra. We stress again that given the definition (3.9) of N, it

would in principle be possible to write down the supermatrix explicitly and make use of computational

techniques to find its inverse N´1, immediately leading to the T-dual fields (3.14) upon extraction

of the graded symmetric and antisymmetric components of the latter. Such type of inversion would

however be affected by the loss of index structure characterising the model and underlying algebra,

thus making harder the analysis of the T-dual model. Additionally, in the supersymmetric case,

an explicit inversion of N would also be made harder by the presence of fermionic multipliers, and

would thus require the use of specific computational tools2.

3.2. Principal chiral model on OSpp1|2q

In this section we take into account the principal chiral model on OSpp1|2q and perform explicitly

its T-dualisation. There are multiple reasons to start tackling concrete examples of super non-

Abelian T-duality from such a model: its low dimensionality p3|2q certainly provides a relatively

simple starting point and, even more importantly, it also enjoys very interesting physical properties

which make of it an intriguing and rich playground. The supergroup manifold OSpp1|2q can indeed

be interpreted as the supersymmetric extension of an AdS3 background with the minimum amount

of supersymmetry and satisfying the supergravity torsion constraints discussed in A.6.. This fea-

ture renders the model a proper three dimensional supergravity background, relevant in light of

the successful exploitation of bosonic non-Abelian T-duality as a solution generating technique in

supergravity. The possibility of describing super AdS3 as a simple supergroup manifold represents

a peculiarity of three dimensions, where the purely bosonic AdS3 space might either be realised

as the group manifold SLp2,Rq or the coset SOp2, 2q{SOp2, 1q. A similar feature has also been

exploited in the case of the purely bosonic sphere S3, which has been T-dualised from both the

group manifold and coset perspective in [61] and [62]. The coset description of AdS3 has been

largely exploited in the supergravity literature, where a vast class of AdS superspaces with various

amounts of supersymmetries has been realised as AdSp3|p,qq »
OSppp|2qˆOSppq|2q

SLp2,RqˆSOppqˆSOpqq
[94–97]. An-

other very interesting feature of the principal chiral model on OSpp1|2q is that the T-dual model

to its purely bosonic part, namely the principal chiral model on SLp2,Rq, can be interpreted as

describing a three dimensional black hole [15]. This immediately rises the question of whether a

possible supersymmetric extension of such interpretation might be attempted, i.e. whether or not

the T-dual model to OSpp1|2q might be interpreted as a supersymmetric black hole directly realised

in superspace. Last but not least, we shall see in the next chapter that the ospp1|2q algebra admits

2For example, one may consider using the Mathematica package Grassmann, by Matthew Headrick.

https://people.brandeis.edu/~headrick/Mathematica/
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a Z4 grading which allows the construction of another very interesting type of model, namely the

semi-symmetric space OSpp1|2q{SOp1, 1q. Before dualising OSpp1|2q, we remark once again that

one could in principle carry out the procedure by using the result of the previous section and exploit-

ing computer algebra techniques to invert the supermatrix N in equation (3.9), thus obtaining the

dual fields (3.14). The complete loss of the index structure resulting from such operation would

however make it much harder to study the dual model, especially in this supersymmetric setting

where the physical interpretation of the background in terms of a supergravity theory requires the

study of geometric requirements such as the torsion constraints. For this reason we shall perform

dualisation by analytically inverting the operators involved in the process.

3.2.1. Initial sigma model

Metric and vielbeine. To begin, we consider a convenient form of the ospp1|2q algebra and

define inner products among generators

tQα, Qβu “ ´ipγ
aqαβLa rLa, Qαs “ ´

1
2pγaqα

βQβ rLa, Lbs “ εab
cLc

ST r rLaLbs “ ´
1
2ηab ST r rQαQβs “ i ϵαβ .

(3.15)

Details on how to obtain this form of the algebra and about the conventions for the raising and

lowering of indices can be found in B.1.. We can now start constructing explicitly the initial sigma

model action (3.1) by taking the following parametrisation of OSpp1|2q

g “ ex
aLae´θαQα “ gbosgf er g´1 “ eθ

αQαe´xaLa “ g´1
f erg

´1
bos . (3.16)

From this we can construct the current j “ g´1dg as

j “ g´1
f erg

´1
bosdpgbosgf er q “ g

´1
f erg

´1
bosdpgbosqgf er ` g

´1
f erdgf er “

“ g´1
f er jbosgf er ` g

´1
f erdgf er “: jbos ` jf er .

(3.17)

The above two contributions to j are derived in C.1. and read

$

&

%

jf er “
i
4θ
2λaLa ´ p1´

i
8θ
2qdθαQα `

1
2λaθ

αpγaqα
βQβ ´

i
2θ
αdθβpγaqαβLa

jbos “ dx
mλm

aLa

, (3.18)

where λa are the Maurer-Cartan forms of Spp2,Rq » SLp2,Rq, derived in C.2. and reported below.

Rearranging j “ jbos ` jf er “: j
aLa ` j

αQα we find the following expansion on the generators

ja “ p1`
i

4
θ2q

“

λa ´
i

2
θαdθβpγaqαβ

‰

jα “ ´p1´
i

8
θ2q

“

dθα ´
1

2
λaθβpγaqβ

α
‰

. (3.19)
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Substituting into the action and exploiting the inner products (3.15) we end up with

SPCM “
1

2

ż

Σ

ST r rj ^ ‹js “
1

2

ż

Σ

ST r rjATA ^ ‹j
BTBs “

“
1

2

ż

Σ

p´1qABjA ^ ‹jBST r rTATBs “
1

2

ż

Σ

jA ^ ‹jBST r rTBTAs “

“
1

2

ż

Σ

„

´
1

2
λa ^ ‹λa ´

i

4
θαpγaqαβλ

a ^ ‹dθβ`

´
i

4
θαpγaqαβdθ

β ^ ‹λa ´ ip1´
i

16
θ2qdθα ^ ‹dθα

ȷ

“
1

2

ż

Σ

dxq ^ ‹dxpgpq ` dx
p ^ ‹dθσgσp ` dθ

σ ^ ‹dxpgpσ ` dθ
σ ^ ‹dθρgρσ ,

(3.20)

where, after introducing R2 :“ xqxpηpq and some manipulations, we defined the metric components

$

’

’

’

&

’

’

’

%

gpq “ g1ηpq ` g2xpxq “ gqp

gpσ “ i
4θ
αpγaqασλ

a
p “ gσp

gρσ “ i ϵρσp1´
iθ2

16 q “ ´gσρ

with

$

&

%

g1 “
1´cosh pRq

R2

g2 “
2rcosh pRq´1s´R2

2R4

. (3.21)

The current j defines a set of orthonormal frames on the supermanifold

SPCM “
1

2

ż

Σ

dxN ^ ‹dxMgMN “
1

2

ż

Σ

jA ^ ‹jBδBA

with δBA “

ˆ

´ 1
2
ηba 0

0 iϵβα

˙

j “ dxM jM
ATA ,

(3.22)

and for later use one can write down their components and those of the inverse frame fields

jM
AjA
N “ δM

N jA
M jM

B “ δA
B with (3.23)

jm
a “ p1` iθ2

4 qλm
a jµ

a “ i
2θ
νpγaqνµ jm

α “ 1
2λm

aθνpγaqν
α jµ

α “ ´p1´ iθ2

8 qδµ
α

ja
m “ pλ´1qa

m ja
µ “ 1

2θ
νpγaqν

µ jα
m “ i

2θ
νpγaqναpλ

´1qa
m jα

µ “ ´p1´ iθ2

4 qδα
µ

Where the SLp2,Rq frame fields and their inverse read

λm
a “ l1δm

a ` l2xmx
a ` l3x

cεcm
a pλ´1qa

m “ l4δa
m ` l5xax

m ` l6x
cεca

m . (3.24)

They satisfy λm
apλ´1qa

n “ δm
n and pλ´1qa

mλm
b “ δa

b with coefficients

l1 “
sinhR

R
l2 “

R ´ sinhR

R3
l3 “ ´

2 sinh2 pR{2q

R2

l4 “
R

2
coth pR{2q l5 “

2´ R coth pR{2q

2R2
l6 “

1

2
.

(3.25)
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Isometries and their realisation. In this paragraph we construct explicitly the Noether currents

and Killing vectors associated to the GL ˆ GR isometry group of the principal chiral model on

OSpp1|2q. In C.3. we discuss Noether currents for generic principal models, while in C.4. and C.5.

we focus on OSpp1|2q, first deriving the left Noether current and successively the full set of Killing

vectors. From the action (3.20) one can extract the Noether currents associated to the left and

right group action

GL : gÑ g
´1
L g ñ LN “ ´g j g

´1 “ ´pdgqg´1

GR : gÑ g gR ñ RN “ j “ g
´1dg

. (3.26)

One can then generalise to the superspace setting the result of [35], relating the Noether currents

for the principal chiral model to Killing vectors. Under an infinitesimal transformation

δϵx
M “ ϵV ξV

M , (3.27)

generated by a Killing vector ξV “ ξV
MBM associated to the generator V of the isometry algebra,

the variations of the action read

δϵSPCM “

ż

Σ

dϵV ^ ‹ξV
NdxMgMN “ ´

ż

Σ

ϵV ^ d

ˆ

‹ξV
NdxMgMN

˙

, (3.28)

so that the Noether current associated to the generator V takes the form

JV :“ xJ, V y “ ξV
NdxMgMN . (3.29)

Computing explicitly the Noether currents one can then extract the components of the Killing

vectors by inverting the latter formula. From (3.26) and (3.19) we immediately find the current

associated to the right sector of the isometry group, namely OSpp1|2qR

RN “ RN
aLa ` RN

αQα with

$

&

%

RN
a “ p1` i

4θ
2q
“

λa ´ i
2θ
αdθβpγaqαβ

‰

RN
α “ ´p1´ i

8θ
2q
“

dθα ´ 1
2λ
aθρpγaqρ

α
‰

. (3.30)

For the current associated to the left sector OSpp1|2qL we have

LN “ ´pdgqg
´1 “ gdg´1 “ gbosdg

´1
bos ` gbospgf erdg

´1
f er qg

1
bos “ pLNqbos ` pLNqf er (3.31)

and the bosonic piece can be simply extracted by letting x Ñ ´x in λa with components (3.24)

pLNqbos “ gbospdg
´1
bosq “ λ

arx Ñ ´xsLa “ dx
mr´l1δm

a ´ l2xmx
a ` l3x

cεcm
asLa . (3.32)
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On the other hand, to get the fermionic piece one first needs to compute

gf erdg
´1
f er “

i

2
dθβθαpγaqαβLa ` p1´

i

8
θ2qdθαQα , (3.33)

and can then proceed by exploiting the relation eABe´A “
ř8
k“0

1
k!ad

k
ApBq to find

gbosQαg
´1
bos “

“

coshpR{2qδα
β ´
sinhpR{2q

R
xapγaqα

β
‰

Qβ

gbosLag
´1
bos “

“

coshpRqδba `
1´ coshR

R2
xax
b `
sinhR

R
xcεca

b
‰

Lb

. (3.34)

Putting the above pieces together one finally obtains LN “ LN
aLa ` LN

αQα with

$

&

%

LN
a “ λarx Ñ ´xs ` i

2dθ
βθαpγbqαβrcoshRδb

a ` 1´coshR
R2

xbx
a ` sinhR

R x
cεcb

as

LN
α “ dθβp1´ i

8θ
2qrcosh pR{2qδβ

α ´
sinh pR{2q
R xapγaqβ

αs

. (3.35)

At this stage one can apply the relation (3.29) to both the left and right Noether currents to

extract the two sets of Killing vectors

$

&

%

ξRLa “ pAδa
c ` Bxax

c ` 1
2x
dεda

cqBc `
1
2θ
ρpγaqρ

λBλ

ξRQα “
i
2θ
ρpγaqραpAδa

c ` Bxax
c ` 1

2x
dεda

cqBc ´ p1´
i
4θ
2qBα

(3.36)
$

&

%

ξLLa “ ´pAδa
c ` Bxax

c ´ 1
2x
dεda

cqBc

ξLQα “
“

i
2Nθαx

c ´ i
4θ
λpγbqλαpUδb

c ` V xbx
cq
‰

Bc ´ p1`
i
8θ
2qpNxapγaqα

σ ´Mδα
σqBσ

where we defined coefficients

A “
R

2
coth pR{2q B “

2´ R coth pR{2q

2R2
M “ cosh pR{2q

N “ ´
sinh pR{2q

R
U “ ´R csch pR{2q V “

R ´ sinhR

R2
csch pR{2q .

(3.37)

It is possible to check that the latter two sets of vector fields correctly satisfy the ospp1|2q algebra

rξRLa , ξ
R
Lb
s “ εab

cξRLc rξLLa , ξ
L
Lb
s “ εab

cξLLc

rξRLa , ξ
R
Qαs “ ´

1

2
pγaqα

βξRQβ rξLLa , ξ
L
Qαs “ ´

1

2
pγaqα

βξLQβ

rξRQα , ξ
R
Qβ
s “ ´ipγaqαβξ

R
La rξLQα , ξ

L
Qβ
s “ ´ipγaqαβξ

L
La

(3.38)
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and commute as required for the GL ˆ GR isometry to be correctly realised

rξRLa , ξ
L
Lb
s “ 0 rξRLa , ξ

L
Qαs “ 0 “ rξ

L
La , ξ

R
Qαs tξRQα , ξ

L
Qβ
u “ 0 . (3.39)

Finally, both sets of vectors satisfy the graded Killing equation derived in A.2.

pLξV gqAB “ p´1q
V pA`BqξCV pBCgABq ` p´1q

V BpBAξ
C
V qgCB ` p´1q

ApB`C`V qpBBξ
C
V qgAC . (3.40)

Supergravity constraints. These represent a set of conditions that any supergeometry should

satisfy to be understood as an appropriate supergravity background. Originally introduced to con-

nect the superspace approach to supergravity with the component one [98–101], they were success-

ively re-derived in various occasions and shown to be implied by κ-symmetry of the Green-Schwarz

action, describing the motion of a superstring on a supergravity background [102, 103, 78]. Here

we shall show that, in spite of its simplicity, the principal chiral model on OSpp1|2q satisfies the

supergravity torsion constraints described in A.6., hence representing an appropriate supergravity

background. In the next section and next chapter we shall then study whether the T-dual model

satisfies as well the supegravity constraints, i.e. whether or not dualisation preserves them. While

κ-symmetry will not be considered in the context of principal chiral models, it will be discussed in

the next chapter for semi-symmetric space sigma models. To see how the OSpp1|2q principal chiral

model satisfies the supergravity torsion constraints in A.6. it is sufficient to recall that on a group

manifold the structure functions FABC are constant and for the case at hand take the form (B.11)

fab
c “ εab

c faβ
γ “ ´12pγaqβ

γ fβa
γ “ 1

2pγaqβ
γ fαβ

c “ ´ipγcqαβ . (3.41)

The constraints on the structure functions (A.38) are thus automatically satisfied with fαb
c “ 0 “

fαβ
γ and k1 “ ´1 and the non-vanishing components of connection and torsion are

Ωab
c “ 1

2

“

fab
c ` δcdpfdab ` fdbaq

‰

“ 1
2εab

c

Ωaβ
γ “ Ωabc rγ

b, γc sβ
γ “ pγaqβ

γ

Tαβ
c “ k1fαβ

c “ ipγcqαβ

Taβ
γ “ ´faβ

γ `Ωaβ
γ “ 3

2pγaqβ
γ ,

(3.42)

where we exploited the identities for 3d gamma matrices reported in B.1., together with the relation

p´1qCδACδ
CB “ δA

B and

δAC “

ˆ

´ 1
2
ηac 0

0 iϵαγ

˙

δCB “

ˆ

´2ηcb 0

0 iϵγβ

˙

. (3.43)
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3.2.2. T-dual model

We perform explicitly T-dualisation of the principal chiral model on OSpp1|2q with respect to the

GL part of the isometry group. We first consider dualisation of the maximal bosonic subgroup

SLp2,RqL and successively of the full OSpp1|2qL, showing that in both cases the OSpp1|2qR part

of the initial isometry group is preserved and explicitly constructing its realisation. We then try to

solve the torsion constraints by proposing an ansatz for the vielbeine which encompasses the three

models under consideration, namely the principal chiral model, the dual with respect to SLp2,RqL

and the dual with respect to OSpp1|2qL. This allows to study the torsion constraints for the dual

models while using the principal chiral model as a sanity check of the procedure and leads to the

conclusion that the constraints cannot be satisfied within this framework. Such result, together

with the complexity of the argument, hints toward the need for a more general treatment of the

dualisation procedure, that may allow to take into account more complete ansatze and provide a

clearer picture. This is the goal of the next chapter.

Bosonic dualisation. In this paragraph we perform dualisation with respect to the bosonic sub-

group SLp2,RqL Ă OSpp1|2qL. We shall only highlight the procedure, as a more thorough treatment

of it will be given in the next paragraph, dealing with dualisation of the full OSpp1|2qL. The starting

point is again the gauged action (3.2)

SMCGPCM “

ż

Σ

d2z ST r rpg´1Dgqpg´1D̄gqs ` ST r rΛF s . (3.44)

Recalling the useful choice of parametrisation for the group element g “ gbosgf er , the left action

of SLp2,Rq reads gÑ h´1
bosg, hence the gauging goes through as in the previous section with purely

bosonic gauge fields and Lagrange multipliers transforming as Abos Ñ h
´1
bosAboshbos ´ pBh

´1
bosqhbos

and Λbos Ñ h
´1
bosΛboshbos . Upon fixing the gauge gbos “ 1 one is left with g “ gf er and the action

can be rearranged as

SMCGPCM “

ż

Σ

d2z ST r rpg´1
f erBgf er qpg

´1
f er B̄gf er q ` pBgf er qg

´1
f er Ābos ` pB̄gf er qg

´1
f erAbos ` Abos Ābos s`

` ST r r´BΛbos Ābos ` B̄ΛbosAbos ` ΛbosA
a
bos Ā

b
bos fab

cLc s , (3.45)

so that upon using (3.15) and expanding the multipliers as Λbos :“ x̃
aLa, the equations of motion

for the gauge fields are easily computed

$

&

%

Āabos “ ´rpB̄gf erg
´1
f er q

b ` pB̄x̃bqspM´1qb
a

Aabos “ ´rpBgf erg
´1
f er q

b ´ pBx̃bqspN´1qb
a

, (3.46)
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with matrices M, N and their inverses defined as in (D.3)

$

&

%

Mc
a :“ δc

a ´ εc
abx̃b ñ pM´1qa

k “ 1
1´r2

pδa
k ´ x̃ax̃

k ` εa
knx̃nq

Nc
a :“ δc

a ` εc
abx̃b ñ pN´1qa

k “ 1
1´r2

pδa
k ´ x̃ax̃

k ´ εa
knx̃nq

with r2 :“ x̃bx̃aηab .

(3.47)

Substituting the equations back into the action and using the result (3.33)

$

&

%

g´1
f erdgf er “

i
2dθ

βθαpγaqαβLa ´ p1´
iθ2

8 qdθ
αQα

pdgf er qg
´1
f er “ ´

i
2dθ

βθαpγaqαβLa ´ p1´
iθ2

8 qdθ
αQα

, (3.48)

together with the inner products (3.15) and the identities (D.10) (D.22), the dual action reads

S̃ “
1

2

ż

Σ

dΛN ^ ‹dΛM g̃MN ` dΛ
N ^ dΛMB̃MN with

$

&

%

Λn ” x̃n

Λν ” θν
. (3.49)

The dual metric and B-field take the explicit form

$

’

’

’

&

’

’

’

%

g̃mn “ L1rηmn ´ x̃mx̃ns

g̃mν “ L3εmdkpγ
dqνλx̃

kθλ

g̃µν “ i ϵµνp1` iθ
2L2q

$

’

’

’

&

’

’

’

%

B̃mn “ L1εmnk x̃
k

B̃mν “ L3rηmk ´ x̃mx̃k spγ
kqνλθ

λ

B̃µν “ ´
1
4L1x̃kpγ

kqµνθ
2

, (3.50)

with coefficients

L1 :“
1

2pr2 ´ 1q
L2 :“ ´

1

8

pr2 ´ 2q

pr2 ´ 1q
L3 :“

i

4pr2 ´ 1q
. (3.51)

Full dualisation. We move to the dualisation of the full OSpp1|2qL isometry subgroup starting

from the usual minimally coupled gauged action (3.2), which now also involves fermionic gauge

fields and Lagrange multipliers. We give here the main steps and refer to D.1. for more details.

Expanding the multipliers as Λ :“ x̃aLa` θ̃
αQα and using (3.15) the Lagrangian takes the following

explicit form

L “ ´
1

2
rg´1Bgsarg

´1B̄gsa ´
1

2
rpBgqg´1saĀ

a ´
1

2
rpB̄gqg´1saA

a ´
1

2
AaĀ

a`

`
1

2
pBx̃aqĀ

a ´
1

2
pB̄x̃aqA

a ´
i

2
x̃aA

αĀβpγaqβα `
1

2
x̃aA

c Ādεdc
a`

` irg´1Bgsβrg
´1B̄gsβ ` irpBgqg´1sβĀ

β ` irpB̄gqg´1sβA
β ` iAβĀ

β`

´ ipBθ̃βqĀ
β ` ipB̄θ̃βqA

β `
i

2
θ̃βA

αĀapγaq
β
α ´

i

2
θ̃βA

aĀαpγaqα
β .

(3.52)
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One can thus proceed by calculating the equations of motion for the gauge fields

Āα “

„

1

2

`

rpB̄gqg´1sb ` B̄x̃b
˘

pM´1qb
apγaq

ρσ θ̃σ ´ rpB̄gqg
´1sρ ´ B̄θ̃ρ

ȷ

pW´1
1 qρ

α

Aα “

„

1

2

`

´rpBgqg´1sb ` Bx̃b
˘

pN´1qb
apγaq

ρσ θ̃σ ´ rpBgqg
´1sρ ` Bθ̃ρ

ȷ

pW´1
2 qρ

α

(3.53)

Āa “

„

´rpB̄gqg´1sb ´ B̄x̃b ´ i

ˆ

rpB̄gqg´1sρ ` B̄θ̃ρ
˙

pW´1
1 qρ

αpγbqα
β θ̃β`

`
i

2

ˆ

rpB̄gqg´1sc ` B̄x̃c
˙

pM´1qc
dpγdq

ρσ θ̃σpW
´1
1 qρ

αpγbq βα θ̃β

ȷ

pM´1qb
a

Aa “

„

´rpBgqg´1sb ` Bx̃b ` i

ˆ

rpBgqg´1sρ ´ Bθ̃ρ
˙

pW´1
2 qρ

αpγbqα
β θ̃β`

`
i

2

ˆ

rpBgqg´1sc ´ Bx̃c
˙

pN´1qc
dpγdq

ρσ θ̃σpW
´1
2 qρ

αpγbqα
β θ̃β

ȷ

pN´1qb
a .

To obtain the latter we defined and inverted matrices M,N, as for the dualisation with respect to

SLp2,RqL in (3.47), and W1,W2, which also involve fermionic multipliers. These read explicitly

$

&

%

pW1qβ
α :“ δβ

αp1` Aθ̃2q ` 1
2 x̃apγ

aqβ
αp1` Bθ̃2q

pW2qβ
α :“ δβ

αp1` Aθ̃2q ´ 1
2 x̃apγ

aqβ
αp1` Bθ̃2q

, with

$

’

’

’

&

’

’

’

%

A :“ i
4

pr2´3q
pr2´1q

B :“ i
r2´1

θ̃2 :“ θ̃αθ̃α

, (3.54)

and using the identities in B.1. can be inverted as

$

&

%

pW´1
1 qα

ρ “ 4
p4´r2q

“

δα
ρp1` Cθ̃2q ´ 1

2 x̃cpγ
cqα
ρp1`Dθ̃2q

‰

pW´1
2 qα

ρ “ 4
p4´r2q

“

δα
ρp1` Cθ̃2q ` 1

2 x̃cpγ
cqα
ρp1`Dθ̃2q

‰

. (3.55)

Where we defined coefficients

C :“
i

4

p´12´ 7r2 ` r4q

pr2 ´ 1qpr2 ´ 4q
D :“ i

p´10` r2q

pr2 ´ 1qpr2 ´ 4q
. (3.56)

Substituting the equations of motion (3.53) back into (3.52), choosing the gauge g “ 1 and

performing some manipulations, which mainly involve the identities (B.8) and (B.7), one lands on

the following dual action

S̃PCM “

ż

Σ

d2z pBx̃qqpB̄x̃pqL̃pq ` pBx̃
qqpB̄θ̃ρqL̃ρq ` pBθ̃

σqpB̄x̃pqL̃pσ ` pBθ̃
σqpB̄θ̃ρqL̃ρσ , (3.57)
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with explicit components

L̃pq “ L1pr
2q

„

ηpq
`

1` ihpr2qθ̃2
˘

´ x̃p x̃q
`

1` impr2qθ̃2
˘

` εpqk x̃
k
`

1` inpr2qθ̃2
˘

ȷ

L̃ρσ “ L2pr
2q

„

´ϵρσ
`

1` i f pr2qθ̃2
˘

´
1

2
x̃apγ

aqρσ
`

1` igprqθ̃2
˘

ȷ

L̃pσ “ L3pr
2q

„

p2` r2qpγpqσα ´ 3x̃apγ
aqσαx̃p ´ p1´ r

2qx̃pϵσα ` 3εpabpγ
aqσαx̃

b

ȷ

θ̃α

L̃ρq “ L3pr
2q

„

´p2` r2qpγqqρα ` 3x̃apγ
aqραx̃q ´ p1´ r

2qx̃qϵρα ` 3εqabpγ
aqραx̃

b

ȷ

θ̃α ,

(3.58)

involving the following quantities

L1pr
2q :“

1

2pr2 ´ 1q
L2pr

2q :“
4i

pr2 ´ 4q
L3pr

2q :“
´i

pr2 ´ 1qpr2 ´ 4q

hpr2q :“
2p1` 2r2q

pr2 ´ 1qpr2 ´ 4q
mpr2q :“

´2pr2 ´ 4q

pr2 ´ 1qpr2 ´ 4q
npr2q :“

5` r2

pr2 ´ 1qpr2 ´ 4q

f pr2q :“
´12´ 7r2 ` r4

4pr2 ´ 1qpr2 ´ 4q
gpr2q :“

´10` r2

pr2 ´ 1qpr2 ´ 4q
. (3.59)

We can finally extract the dual metric and B-field as the graded symmetric and antisymmetric

components of the above expressions g̃MN “ 1
2pL̃MN ` p´1q

MN L̃NMq and B̃MN “ 1
2pL̃MN ´

p´1qMN L̃MNq. This leads to the following metric

$

’

’

’

&

’

’

’

%

g̃pq “ L1pr
2q
“

ηpq
`

1` ihpr2qθ̃2
˘

´ x̃p x̃q
`

1` impr2qθ̃2
˘‰

“ g̃qp

g̃pσ “ L3pr
2q
“

´p1´ r2qx̃pϵσα ` 3εpabpγ
aqσαx̃

b
‰

θ̃α “ g̃σp

g̃ρσ “ ´L2pr
2qϵρσ

`

1` i f pr2qθ̃2
˘

“ ´g̃σρ

(3.60)

and B-field
$

’

’

’

&

’

’

’

%

B̃pq “ L1pr
2qεpqk x̃

k
`

1` inpr2qθ̃2
˘

“ ´B̃qp

B̃pσ “ L3pr
2q
“

p2` r2qpγpqσα ´ 3x̃apγ
aqσαx̃p

‰

θ̃α “ ´B̃σp

B̃ρσ “ ´
1
2L2pr

2qx̃apγ
aqρσ

`

1` igprqθ̃2
˘

“ B̃σρ

. (3.61)

Residual isometries. In general, only the isometries which commute with the gauged ones survive

dualisation [91, 90]. Hence, given the OSpp1|2qL ˆ OSpp1|2qR isometry group of the starting

principal chiral model and the gauging of the left sector for the T-dual models derived in the

previous paragraphs, we should expect the OSpp1|2qR sector to be still intact in the dual models

(3.60) and (3.50). We show that this is indeed the case and find how such residual isometries

are explicitly realised by constructing an ansatz for the Killing vectors and studying the constraints

that the graded Killing equation (A.13) imposes on it. The main results are reported here, while a
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complete list of the constraints and a description of their resolution can be found in D.2..

For the model obtained by dualisation of OSpp1|2qL one finds the following set of Killing vectors

ξLa “ x̃
dεda

cBc `
1
2 θ̃
λpγaqλ

νBν ξQα “ ´i θ̃
λpγcqλαBc ` x̃cpγ

cqα
νBν , (3.62)

while for the T-dual model obtained by dualisation of SLp2,RqL one finds

ξLa “ x̃
dεda

cBc `
1
2 θ̃
λpγaqλ

νBν ξQα “
i
2 θ̃
λpγbqλαx̃

dεdb
cBc ´ r1´

i
4 θ̃
2sBα . (3.63)

It should be noted that the bosonic isometries turn out to be realised exactly in the same way for

both T-dual models. This was reasonably expected, as the model (3.50) is effectively obtained

by dualising a subsector of the full OSpp1|2qL isometry group. As needed, both sets of vectors

correctly satisfy the ospp1|2q algebra (B.11)

rξLa , ξLb s “ εab
cξLc rξLa , ξQβ s “ ´

1
2pγaqβ

αξQα rξQα , ξQβ s “ ´ipγ
aqαβξLa . (3.64)

T-dual supergravity constraints. In this paragraph we go back to the supergravity torsion con-

straints, focusing on the T-dual models constructed above. Ideally, one would like to show that such

models satisfy again the constraints, so as to be able to interpret them as appropriate supergravity

backgrounds. In particular, this might extend the 3d black hole interpretation given in [15] for the

T-dual model to the PCM on SLp2,Rq, in terms of a supersymmetric black hole directly realised in

superspace. Studying this problem for the dual models is much harder than for the principal chiral

model, as after dualisation one loses the supergroup manifold picture and the structure constants

of the initial model are turned into complicated structure functions. The torsion constraints impose

on the latter three non trivial conditions (A.38), which for the models under consideration read

A Fαβc ” ik1pγcqαβ

B Fαpbcq ” 0

C 1
2 rFαβ

γ ` i ϵγδpFδαβ ´ Fδβαqs ” ´k2Fαbcεbcapγaqβγ
. (3.65)

In the spirit of the present chapter we would now like to study the above three constraints explicitly.

This requires an explicit expression for the structure functions of the T-dual models, which in turn

depend on the choice of vielbeine and inverse vielbeine

FABC “ p´1qMBeAMeBNrBNeMC ´ p´1qMNBMeNCs . (3.66)

The latter relation can be extracted from the Maurer-Cartan equation (A.15) by writing the one

forms and exterior derivative in the coordinate basis eA “ dΛMeM
A, d “ dΛMBM and exploiting
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the defining relation for the inverse vielbeine eA
MeM

B “ δA
B or eM

AeA
N “ δM

N . Given the T-

dual metrics (3.60) and (3.50) it is not complicated to make a choice of vielbeine, invert it and

consequently derive the structure functions. However, one should keep in mind that the final aim

is finding an appropriate choice of vielbeine which also allows to satisfy the supergravity torsion

constraints reported above, and for this reason it is certainly not a good idea to fix them straight

away, as these would not be guaranteed to solve the constraints. Due to this problem one should

rather proceed by leaving the vielbeine unspecified and letting the torsion constraints determine

the most appropriate set (if any). To continue in full generality one should expand the vielbeine

in powers of the fermionic coordinates with arbitrary coefficient functions. However, to make the

analysis more concrete, we shall restrict ourselves to a quite general, even though possibly not

exhaustive, ansatz. The conclusion will be that no choice of vielbeine with the chosen structure

manages to satisfy the torsion constraints while reproducing the T-dual metrics and this will in

turn motivate the use of a more general formalism to deal with the whole dualisation procedure

and supergravity constraints, that will be discussed in the next chapter.

To introduce and motivate our ansatz for the vielbeine we notice that the three models so

far considered, namely the principal chiral model on OSpp1|2q, the T-dual model with respect to

SLp2,RqL and the T-dual model with respect to OSpp1|2qL, can be described in terms of a single

enlarged metric. For simplicity the three models will be from now on referred to as Initial Model,

Bosonic Model and Fermionic Model. Taking coordinates txm, θµu with contractions r2 ” xnxmηmn

and θ2 ” θµθνϵµν we can write the following metric

gpq “ pλ1qp
mηmq ` θ

2pλ2qp
mηmq

gpσ “ θ
λrpλ3qp

qpγqqλσ ` g8ϵσλxps with

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

pλ1qp
m “ g1δp

m ` g3xpx
m ` g11x

cεcp
m

pλ2qp
m “ g2δp

m ` g4xpx
m ` g12x

cεcp
m

pλ3qp
m “ g5δp

m ` g6xpx
m ` g7x

cεcp
m

for g11 “ g12 “ 0

gµν “ ϵµνrg9 ` g10θ
2s

, (3.67)

which reduces to each of the three models above by appropriately renaming the coordinates.

• Initial model - unchanged name of coordinates txm, θµu

g1 “
1´cosh r
r2

g3 “ ´
1`2g1
2r2

g5 “
i sinh r
4r g6 “

i´4g5
4r2

g7 “
ig1
4 g9 “ i g10 “

1
16 .

(3.68)
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• Bosonic model - rename coordinates as txm ” x̃m, θµ ” θµu

g1 “
1

2pr2´1q
g3 “ ´g1 g7 “

ig1
2 g9 “ i g10 “

1´2g1
8 . (3.69)

• Fermionic model - rename coordinates as txm ” x̃m, θµ ” θ̃µu

g1 “
1

2pr2´1q
g2 “ ´p1` 2r

2qg21g9 g3 “ ´g1 g4 “ 4ig
2
1 g7 “

3g1g9
2

g8 “
g9
4 g9 “

´4i
r2´4

g10 “ p12` 7r
2 ´ r4q

g1g
2
9
8 . (3.70)

The enlarged metric has inverse metric of the form

gpq “ ηpnpλinv1 qn
q ` θ2ηpnpλinv2 qn

q

gpσ “ θλrpγqqλ
σpλinv3 qq

p ` ginv8 δλ
σxps with

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

pλinv1 qp
m “ ginv1 δp

m ` ginv3 xpx
m ` ginv11 x

cεcp
m

pλinv2 qp
m “ ginv2 δp

m ` ginv4 xpx
m ` ginv12 x

cεcp
m

pλinv3 qp
m “ ginv5 δp

m ` ginv6 xpx
m ` ginv7 x

cεcp
m

for ginv11 “ g
inv
12 “ 0

gµν “ ϵµνrginv9 ` ginv10 θ
2s (3.71)

and its defining relation, p´1qP gMP g
PN “ δM

N , allows to express the above coefficients as func-

tions of those of the metric as in (D.46), leading to

• Initial model

ginv1 “ r2

1´cosh r ginv2 “ ´i r2

8p1´cosh rq ginv3 “
´r2´2p1´cosh rq
r2p1´cosh rq

ginv4 “
ip4´r2 csch pr{2q2q

16r2

ginv5 “ ´
r coth pr{2q

4 ginv6 “
´2`r coth pr{2q

4r2
ginv7 “ ´14 ginv9 “ i ginv10 “ ´

1
4 .

(3.72)

• Bosonic model

ginv1 “ 2pr2 ´ 1q ginv2 “ ´ i r
2

4 ginv3 “ ´2 ginv4 “ i
4

ginv7 “ ´12 ginv9 “ i ginv10 “ ´
1
4 .

(3.73)

• Fermionic model

ginv1 “ 2pr2 ´ 1q ginv2 “ i ginv3 “ ´2 ginv7 “ ´32

ginv8 “ ´12 ginv9 “ ´
ipr2´4q
4 ginv10 “ ´

3
4 .

(3.74)

We can finally write down the ansatz for the vielbeine that will allow us to explicitly study the torsion
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constraints. This will also need to be supplemented by inverse vielbeine, as these also appear in

the structure functions. We choose vielbeine

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

em
a “ pω1qm

a ` θ2pω2qm
a

eµ
a “ θλrpγqqµλpω3qq

a ` B3ϵµλx
as

em
α “ θλrpω4qm

qpγqqλ
α `D3δλ

αxms

eµ
α “ pκ1qµ

α ` θ2pκ2qµ
α

with

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

pω1q
a
m “ A1δm

a ` A3xmx
a ` A5x

cεcm
a

pω2qm
a “ A2δm

a ` A4xmx
a ` A6x

cεcm
a

pω3qm
a “ B1δm

a ` B4xmx
a ` B2x

cεcm
a

pω4qm
a “ D1δm

a `D4xmx
a `D2x

cεcm
a

pκ1qµ
α “ E1δµ

α ` E3xppγ
pqµ
α

pκ2qµ
α “ E2δµ

α ` E4xppγ
pqµ
α

(3.75)

and similarly looking inverse vielbeine

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ea
m “ pωinv1 qa

m ` θ2pωinv2 qa
m

eα
n “ θλrpγqqαλpω

inv
3 qq

n ` N3ϵαλx
ns

ea
ν “ θλrpωinv4 qa

qpγqqλ
ν ` R3δλ

νxas

eα
ν “ pκinv1 qα

ν ` θ2pκinv2 qα
ν

with

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

pωinv1 qa
n “ M1δa

n `M3xax
n `M5x

cεca
n

pωinv2 qa
n “ M2δa

n `M4xax
n `M6x

xεca
n

pωinv3 qa
n “ N1δa

n ` N4xax
n ` N2x

cεca
n

pωinv4 qa
n “ R1δa

n ` R4xax
n ` R2x

cεca
n

pκinv1 qα
ν “ S1δα

ν ` S3xppγ
pqα

ν

pκinv2 qα
ν “ S2δα

ν ` S4xppγ
pqα

ν

. (3.76)

The coefficients A1, ..., E4 of the vielbeine, and those of their inverses, are arbitrary functions of r

and pretty much like for the study of Killing vectors, we would now like to fix them by substituting

the ansatze into the torsion constraints. One should however keep in mind that all such degrees

of freedom are actually not completely free, as the coefficients of the vielbeine should also satisfy

a set of equations ensuring that they correctly reproduce the metric, while the coefficients of the

inverse vielbeine should satisfy another set of equations ensuring that they effectively represent an

appropriate inverse matrix. A reasonable way to proceed would thus be that of determining the

latter set of equations, coming from the defining relation eA
MeM

B “ δA
B, and solving them for the

coefficients of the inverse vielbeine as functions of those of the vielbeine. This approach however

leads to quite complicated expressions, naturally affected by highly non-linear dependencies and

makes it really difficult to study the torsion constraints. For this reason, a much more efficient way

to proceed is exploiting knowledge of the inverse metric to write down the coefficients of the inverse

vielbeine as linear functions of those of the vielbeine with insertions of the known coefficients of

the inverse metric. This can be achieved by writing down the metric and its inverse in terms of
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vielbeine and inverse vielbeine

gMN “ p´1q
MpN`AqeN

AeM
BδBA gMN “ p´1qNpM`BqδBAeA

NeB
M , (3.77)

such that p´1qP gMP g
PN “ δM

N . Using then eA
MeM

B “ δA
B, the second relation allows to extract

eA
M “ p´1qAMgMNeN

BδBA , (3.78)

which leads to the linear expressions (D.47) for the coefficients of the inverse vielbeine as functions

of those of the vielbeine and fixes the problem of having too many degrees of freedom to deal with.

One could now substitute the vielbeine and their inverses into the torsion constraints, leading to

a set of quite involved, but still tractable, set of differential equations for the coefficients of the

vielbeine only. What still remains to be addressed is the other requirement the vielbeine should

satisfy, namely they should reproduce the metric. There is no way around this, and for this reason

we shall simply spell out the whole set of equations and treat them as an additional constraint, to

be added to the ones on torsion. Writing the metric in terms of the vielbeine as in (3.77) leads to

the following 10 conditions, which we shall from now on refer to as metric equations

1 g1 ” ´
1

2
pA21 ´ r

2A25q

2 g2 ” irD
2
1 ´ r

2D22 ` iA1A2 ´ i r
2A5A6s

3 g3 ” ´A1A3 ´
1

2
r2A23 ´

1

2
A25

4 g4 ” ´irD
2
3 ´ 2D1D4 ´D

2
2 ´ r

2D24 ´ iA4pA1 ` r
2A3q ´ iA2A3 ´ iA5A6s

5 g5 ” ´
1

2
A1B1 `

1

2
r2A5B2 ´ iD1E1 ´ i r

2D2E3

6 g6 ” ´
1

2
B4pA1 ` r

2A3q ´
1

2
A3B1 ´

1

2
A5B2 ´ iD4E1 ` iE3pD3 `D2q

7 g7 ”
1

2
A1B2 ´

1

2
A5B1 ´ iD1E3 ´ iD2E1

8 g8 ” ´
1

2
B3pA1 ` r

2A3q ` iD1E3 ` i r
2D4E3 ´ iD3E1

9 g9 ” ipE
2
1 ´ r

2E23q

10 g10 ” ir2E1E2 ´ 2r
2E3E4 ´

3i

4
B21 `

i

2
r2B22 `

i

4
r2B23 ´

i

4
r4B24 ´

i

2
r2B1B4s .

(3.79)

At this point we are almost ready to proceed with our plan: substitute the ansatze for vielbeine

and inverse vielbeine into the explicit expression (3.66) for the structure functions; determine from

these the explicit set of differential equations imposed on the coefficients by the torsion constraints

(3.65); substitute the expressions for the coefficients of the inverse vielbeine as linear functions of

those of the vielbeine and try to solve the conditions resulting from the torsion constraints together

with the metric equations reported above. We anticipate that, at the end of the story, we shall

be dealing with a system of 26 equations, including the 10 (algebraic) metric equation and the 16
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(differential) equations resulting from the torsion constraints, and we shall argue that the system

admits no solution for either the bosonic or the fermionic T-dual model. As a consistency and

sanity check for our procedure, we shall also treat the initial principal chiral model on the same

footing as the T-dual models, that is as if we didn’t know about its super group manifold structure

and we had only been given its metric. This reverse engineering treatment of the principal chiral

model highlights how the components of its metric satisfy complicated sets of differential equations

which the T-dual models are not able to satisfy. This effect, brought in by the dualisation, might

be interpreted as the result of switching hyperbolic functions of r with polynomials in the same

variable. In a sense, dualisation truncates the infinite series expansions encoded in the hyperbolic

functions to some finite polynomials so that, while differentiating the former one generates terms

that might be recombined exploiting trigonometric identities, the same is not generally true for the

latter, which give rise to new independent structures upon differentiation. Before writing down the

full set of equations resulting from the torsion constraints, there are a few comments related to

the metric equations (3.79) that we should make, which will be useful in the subsequent analysis.

• In solving (3.79) together with the constraints, it will be very convenient not to solve eqs 1

and 9 explicitly, as these would bring unwanted square roots into the game. Such equations

shall rather be imposed on the other constrains to symplify them and will only be solved at

the very end of the calculation.

• Solving 3 as a quadratic equation for A3 and using 1 as a constraint, one can rewrite the

former as the linear equation 3s A1 ` r
2A3 “ 1. This simplification is due to the fact that

all the three models satisfy the relation g1 ` r
2g3 “ ´

1
2 . The newly obtained equation can

then be conveniently solved for A3. This simplifies the above system (and successively the

constraints) and leads to naturally solve 4 for the coefficient A4. Together with the just

mentioned relation between g1 and g3, it will also be useful to exploit the following relations,

holding among the coefficients of all the three models above

g1 ` r
2g3 “ ´

1

2
g2 ` r

2g4 ` g8 “ 0 g8r1´ 2pr
2 ´ 1qg1s “ 0

g5g2 “ g5g4 “ g5g8 “0 “ g6g2 “ g6g4 “ g6g8

2rg6 ` r
2g1
6 ` g

1
5 “ 0 g1

8 ´
1

4
g1
9 “ 0 .

(3.80)

• Equations 5 to 8 can be easily solved for the coefficients B1, ..., B4 or D1, ..., D4: we

shall later choose the second option, as some of the constraints will be naturally solved in

terms of the B-coefficients.

• Writing down explicitly the invertibility condition for the vielbeine, eAMeMB “ δAB, one
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obtains a linear system of the form Wx “ v , where x represents the unknown coefficients of

the inverse veilbeine tM1, ..., S4u and the matrix W contains the coefficients tA1, ..., E4u of

the vielbeine. The condition for the invertibility of W , and thus of the vielbeine, then reads

detpW q “ pA1 ` r
2A3q

4pA21 ´ r
2A25q

3pE21 ´ r
2E23q

49g31g
4
9 ‰ 0 . (3.81)

• The two couples of eqs 1 ´ 2 and 9 ´ 10 present a similar structure: both of them

involve the off-diagonal coefficients of the vielbeine in quadratic form (i.e. D1s and B1s), while

the coefficients on the diagonal blocks (i.e. A1s and E1s) appear multiplied by each other.

Assuming one of the couples tA1, E1u, tA1, E3u, tA5, E1u, tA5, E3u to be non-vanishing,

which is needed to ensure invertibility of the vielbeine as from the above condition, one could

easily solve 2 and 10 for the couple of variables tA2, E2u, tA2, E4u, tA6, E2u, tA6, E4u.

• The choice of non-vanishing couple also allows to extract another information: by differen-

tiating 1 and 9 one obtains

g1
1 “ ´pA1A

1
1 ´ rA

2
5 ´ r

2A5A
1
5q g1

9 “ 2ipE1E
1
1 ´ rE

2
3 ´ r

2E3E
1
3q , (3.82)

which depending on the choice of non-vanishing coefficients made above, might respectively

be used to get an expression for A1
1 or A

1
5 and E

1
1 or E

1
3. This helps in exchanging differential

for algebraic equations, effectively disentangling some of the constraints.

We can now move on to the explicit construction of the structure functions, for which more details

are provided in D.3.. Recalling the definition (3.66) one finds the following expressions

Fαβc “ pγbqαβrpF1δbc ` F2xbxc ` F3xdεdbcq ` θ2pF4δbc ` F5xbxc ` F6xdεdbcqs , (3.83)

Fαbd “ θλ
“

ϵαλpF7δb
d ` F8xbΛ

d ` F9x
cεcb

dq`

` pγqqαλpF10x
cεcqbx

d ` F11x
cεcq

dxb ` F12x
cεcb

dxq`

` F13ηqbx
d ` F14δb

dxq ` F15δq
dxb ` F16xqxbx

dq
‰

,

(3.84)

Fαβγ “ θλ
␣

F17rδα
γϵβλ ` δβ

γϵαλs`

` F18xprpγ
pqα
γϵβλ ` pγ

pqβ
γϵαλs ` F19xprδα

γpγpqβλ ` δβ
γpγpqαλs`

` rpγpqα
γpγqqβλ ` pγ

pqβ
γpγqqαλspF20δq

p ` F21xqx
p ` F22x

cεcp
qq
(

,

(3.85)

with the coefficients reported in (D.56),(D.57),(D.58). From the latter, it is not hard to extract

the conditions imposed by the torsion constraints (3.65) on the coefficients:
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• From (3.83) one immediately recognises that constraint A imposes six conditions

$

’

’

’

&

’

’

’

%

11 F1 ” ik1

12 F2 ” 0

13 F3 ” 0

$

’

’

’

&

’

’

’

%

14 F4 ” 0

15 F5 ” 0

16 F6 ” 0

. (3.86)

• Similarly, from (3.84) one can recognise the following six conditions imposed by B

$

’

’

’

&

’

’

’

%

17 F7 ” 0

18 F8 ” 0

19 F10 ` F11 ” 0

$

’

’

’

&

’

’

’

%

20 F13 ` F15 ” 0

21 F14 ” 0

22 F16 ” 0

. (3.87)

• The remaining four conditions imposed by C can be conveniently obtained by slightly re-

arranging the constraint. Contracting both sides with εpq
kpγkqγ

β and exploiting the identities

in B.1. this can be rewritten as

εpq
k r2Fαβγpγkqγβ ` Fδβλϵαλpγkqδβs ” 4k2pFαpdηdq ´ Fαqdηdpq . (3.88)

Notice that the latter operation can be inverted by contracting again with εpqnpγ
nqµ
ν as

εpq
kpγkqγ

βεpqnpγ
nqµ
ν “ ´4δµ

βδγ
ν ` 2δµ

νδγ
β , (3.89)

and the second term vanishes on both sides of C as they are traceless. After a short

calculation, the above rearranged constraint leads to the following conditions

$

&

%

23 F18 ´ F19 ” 2k2F9

24 F20 ´ F17 ” k2r
2pF10 ´ F11q

$

&

%

25 F19 ´ F22 ” k2pF13 ´ F15q

26 F20 ´ F17 ` r
2F21 ” 2k2r

2F12

. (3.90)

At this point one can proceed with the aid of Mathematica, so as to more efficiently manipulate and

solve the 10 metric equations and the 16 constraints just introduced. At first we shall proceed by

solving as many equations as possible without specifying any model, i.e. solving for the coefficients

of the vielbeine in terms of generic metric coefficients. This allows to solve 8 metric equations

and 6 constraints, fixing 14 out of the 18 available coefficients of the vielbeine. At this stage

the remaining equations become quite involved and in order to proceed further in the analysis one

needs to specify the model. While the equations for the initial model greatly simplify and allow for

a solution which recovers the vielbeine introduced at the beginning of the chapter, the other two
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models exhibit a complicated structure and the set of equations turns out to be inconsistent.

As a first step in the above argument, we shall assume coefficients A1 and E1 of the vielbeine to be

non-vanishing. This ensures their invertibility, as discussed around (3.81). The metric equations

1 and 9 might in principle be easily solved, but this would bring into the game square roots,

which would make the rest of the equations more complicated and harder to simplify. For this

reason we shall proceed by solving only linear equations and imposing the above two, together

with the conditions (3.80), as constraints on the resolution of the remaining equations. This can

be achieved in Mathematica by using the command Assume, which allows to simplify expressions

under some given assumptions. One can then notice that constraints 11 ´ 13 are algebraic and

can thus be solved together with some of the metric equations: conditions 2 ´ 8 , 10 and

11 ´ 13 are easily solved in terms of the coefficients A2, A3, A4, D1, D2, D3, D4, E2, B1, B2, B4.

Notice that despite the appearance, all these equations can be solved linearly and only 2 and 10

actually require dividing by A1 and E1.

The second step consists in solving the conditions (3.82) for A1
1 and E

1
1 and substituting the result

in all the remaining constraints. Simplifying all of them imposing once again the vanishing of 1

and 9 , together with (3.80), one finds that constraints 17 and 21 have become algebraic and

can be easily solved for A5 and B3, while 16 can easily be solved for A6. The latter equation is

not an algebraic one, but can be safely solved for A6 as this only appears in 16 , 23 , 26 and never

differentiated.

At this point one is left with free coefficients A1, E1, E3, E4 and unsolved equations 1 , 9 , 14 , 15 ,

18 ´ 20 , 22 ´ 26 , of which only the first two are algebraic. It is hence the moment to specify

the model under consideration

• Initial model. After introducing explicitly the coefficients of the metric and solving 1 and

9 for A1 and E1 all the remaining equations undergo a great simplification and one can

notice that most of them vanish provided that k21 ” 1. This is however not sufficient to

solve all the constraints, as 24 , 25 are only satisfied provided that k1 “ ´1 and E3 “ 0. At

this stage only equation 23 is left unsolved and one can easily put remedy to this by setting

E4 “ 0. At the end of these steps all the constraints and metric equations are satisfied for

the metric coefficients of the initial model and one recovers the coefficients of the vielbeine

that we introduced in the previous section, together with the requirement that k1 “ ´1.

• Bosonic model. Also for this model one can proceed by solving 1 and 9 for A1 and E1.

However, contrarily to the previous case, one immediately finds problems upon inspecting
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14 , as this turns out to be only dependent on k1 and r
2, thus only allowing for solutions

with non-constant k1.

• Fermionic model. For this model things are slightly more involved, as proceeding like for

the other two models brings into the game more complicated square roots. One can how-

ever proceed by leaving 1 and 9 unsolved and checking consistency of the remaining

set of differential equations, which are coupled and all dependent on A1
1, E

1
1, E

1
3. Indeed,

after isolating A1
1 from equation 14 and substituting into all the others, one finds that

15 , 19 , 22 , 24 , 25 become algebraic in the variables A1, E1, E3. In particular, 15 and

25 can be linearly solved for A1 and E3 and this causes 19 to only allow for the solution

E1 “ 0, hence leading to an inconsistency.

From this analysis, the T-dual models constructed in the previous paragraphs seem not to satisfy

the supergravity torsion constraints. However, we restricted ourselves to an ansatz for the choice

of vielbeine and our argument might be improved by considering a more general one. One could

have proceeded by considering an expansion of the vielbeine in the fermionic coordinates, but the

complexity of the approach strongly suggests one should really resort to other techniques. In the

next chapter we shall thus introduce a more abstract point of view on the dualisation: this will

allow to argue much more quickly that the T-dual models break the torsion constraints and will

also be of easier extension to other types of geometries, in particular coset sigma models of the

symmetric and semi-symmetric kind.



4
A More Abstract Perspective On Super Non-Abelian T-Duality

Motivated by the results of the previous chapter and the difficulties encountered in analysing T-

dual models of principal chiral models from an explicit ansatz-based approach, in this chapter we

shall take a slightly more abstract perspective on T-duality, relying on the possibility of solving

the equations of motion for the gauge fields in a general model-independent manner. This will

have the advantage of leading to a T-dual action directly written down in terms of a set of

dual vielbeine, which can be more efficiently exploited to study the supergravity requirements of

the model. Additionally, this will allow to recover the exchange of Maurer-Cartan equations and

equations of motion notoriously resulting from the bosonic dualisation. This approach will also have

the advantage of being more easily generalisable to other types of geometries and in particular we

shall focus on symmetric and semi-symmetric spaces, re-deriving the exchange of Maurer-Cartan

equations and equations of motion found for principal chiral models.

4.1. Principal chiral models

We start from principal chiral models, performing gauging and dualisation with respect to the left

sector of the isometry group, then re-considering the explicit example of OSpp1|2q.

4.1.1. Setup

Let us consider again a generic Lie (super)group manifold G with associated Lie (super)algebra g,

equipped with a non-degenerate, (graded-)symmetric, Ad-invariant bilinear form x´,´y. Principal

chiral models are defined in terms of smooth maps g P C8pΣ,Gq from the two dimensional Lorent-

zian worldsheet Σ to G, constructing the pull-back to Σ of the Lie algebra valued Maurer-Cartan

1-form j :“ g´1dg P Ω1pΣ, gq. This satisfies by construction the Maurer-Cartan flatness condition

dj ` 12 rj, js “ 0, where d represents the exterior derivative on the worldsheet, and is invariant under

the global left action of the group on itself gÑ g´1
L g, while transforms adjointly j Ñ g

´1
R jgR under

39
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the global right action gÑ ggR, for gL, gR P G. The principal chiral model action

SPCM :“

ż

Σ

xj, ‹jy , (4.1)

then enjoys GLˆGR global invariance, with associated Noether currents LN :“ ´gjg and RN :“ j .

The equations of motion read dp‹jq “ 0 and, together with the Maurer-Cartan equation, can

be understood as resulting from the flatness condition of Lax connection Jpzq. This depends

on a complex spectral parameter z and its existence ensures classical integrability of the model

[104–106]. Parametrising the Lax connection as J “ aj ` b ‹ j one finds

dJ `
1

2
rJ, Js “ 0 ñ

$

&

%

dp‹jq “ 0

dj ` 1
2 rj, js “ 0

iff a2 ´ b2 ” a . (4.2)

This condition can be solved as a :“ ´14pz ´ z
´1q2 and b :“ 1

4pz
2 ´ z´2q, so that J ” Jpzq.

We stress that, strictly speaking, the existence of a Lax connection is not enough to guarantee

full integrability of a system, as this ensures the presence of an infinite set of conserved charges,

which might however be not in involution. For this reason the Lax connection is said to imply weak

integrabiliy, while strong integrability, namely the involution property of the charges, is ensured

when the components of the Lax connection satisfy a specific Poisson structure [107].

Topological deformations. We can introduce one more ingredient in the definition of our starting

model, namely a deformation first introduced in [82–84] and referred to as topological, as it does

not alter the equations of motion of the model nor its global symmetries, thus leaving untouched

the construction of the Lax connection. This class of deformations relies on the existence of

two-cocylces Ω1 on the Lie (super)algebra g, or possibly on a subalgebra of it. Given Ω P H2pgq

satisfying the two-cocycle condition

ΩpX, rY, Zsq ` p´1qXpY`ZqΩpY, rZ,Xsq ` p´1qZpX`Y qΩpZ, rX, Y sq “ 0 @X, Y, Z P g , (4.3)

1As discussed in [82], deformation by a two-cocycle becomes trivial when the latter is a couboundary. This happens

when ΩpX, Y q :“ f prX, Y sq, with X, Y P g and f : g Ñ F some linear map, called 1-cochain, from the algebra to
F “ R or F “ C. In such cases the deformation can be removed by a field redefinition and for this reason non-trivial
deformations are in correspondence with two-cocycles modulo coboundaries. This relates non-trivial deformations to

elements of the second cohomology group H2pgq, which also correspond to non-trivial central extensions of g. For

finite-dimensional semisimple Lie algebras, the Whitehead lemma ensures that H2pgq “ 0 (see for example chapter

4 in [108] and references therein) and a similar result has been proven in chapter 18 of the collection [109, 110]

for finite-dimensional simple Lie algebras. Non-trivial deformations of Lie algebras can thus be considered when g

is neither simple nor semisimple, as for the case of up2q discussed in [82]. For Lie superalgebras these results do

not hold in general and one needs to perform a case by case analysis. See for example [111–113] for results on the

cohomology of Lie superalgebras, also in relation to string theory and supergravity.
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by the Riesz representation theorem one can associate to this a unique Lie algebra endomorphism

D : gÑ g relating Ω to the inner product as

ΩpX, Y q “ xDpXq, Y y @X, Y P g . (4.4)

The graded antisymmetry of Ω and the two-cocylce condition (4.3) respectively imply the following

properties of D, which are derived in E.1.

xX,DpY qy “ ´xDpXq, Y y DrX, Y s “ rDpXq, Y s ` rX,DpY qs @X, Y P g . (4.5)

Hence, D is antisymmetric with respect to the inner product and acts as a derivation on the Lie

bracket. One can then show that D can be extended to a left-invariant vector field on G

DpgY g´1q “ g
`

DpY q ` rg´1Dpgq, Y s
˘

g´1 @Y P g (4.6)

upon defining

g´1Dpgq :“
8
ÿ

k“0

p´1qk

pk ` 1q!
adkXpDpXqq “ ´Dpg

´1qg for g :“ eX . (4.7)

Notice that g´1Dpgq “ ´Dpg´1qg is a result of the fact that g´1Dpgq is defined via the same

series expansion as the Maurer-Cartan forms j :“ g´1dg in (C.12). This makes D inherit the

same properties as the exterior derivative d. The above property allows to show, together with

Ad-invariance of the inner product, that

Ωpg´1Xg, g´1Y gq “ ΩpX, Y q ` xg´1Dpgq, rX, Y sy . (4.8)

Extending the above definitions to p-forms ΩppΣ, gq one can then define the deformed action

SΩPCM :“
1
2

ż

Σ

xj, ‹jy ` ζ xDpjq, jy , (4.9)

with ζ P R an arbitrary deformation parameter, from now on set to one without loss of generality.

Gauging. We proceed, as in the previous chapter, with the gauging of a subgroup KL Ď GL in

the left sector of the isometry group of the deformed principal chiral model. Denoting by kL the

Lie algebra of KL, we introduce kL-valued gauge fields ω P Ω
1pΣ, kLq and modify the current j as

jω :“ g
´1dg` g´1ωg with g P C8pΣ,Gq . (4.10)
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The latter is now invariant under the local left KL action gÑ k
´1g with k P KL provided that

ω Ñ k´1ωk ` k´1dk . (4.11)

The action must then be modified by means of the Lagrange multiplier term, enforcing the flatness

of the gauge fields. Introducing Λ P C8pΣ, kLq we thus have the following master action

Sω :“
1
2

ż

Σ

xjω, ‹jωy ` xDpjωq, jωy `

ż

Σ

xΛ`Dpgqg´1, Fωy with Fω :“ dω `
1
2 rω,ωs , (4.12)

which given the property Fω Ñ k
´1Fωk , under local KL transformations, is invariant provided that

Λ Ñ k´1Λk ` k´1Dpkq . (4.13)

Notice that the contribution xDpgqg´1, Fωy must be included to retain invariance under the global

GR action in the presence of the deformation. Indeed, g Ñ ggR does not affect the multipliers

but (4.8) implies xDpjωq, jωy Ñ xDpjωq, jωy ` xg
´1
R DpgRq, rjω, jωsy, thus leading to the need for a

compensating term. More details are given in E.1.. Finally, we can simplify the master action as

Sω “
1
2

ż

Σ

xjω, ‹jωy ` xDpjωq, jωy `

ż

Σ

xΛ̃, Fjωy with Λ̃ :“ g´1Λg` g´1Dpgq , (4.14)

where we exploited that g´1Fωg “ Fjω . The latter is manifestly KL invariant and can now be

T-dualised. Integrating out the Lagrange multipliers one enforces the flatness of the gauge fields,

which can be removed by an appropriate choice of KL gauge, while integrating out the gauge fields

one obtains the T-dual model, where the Lagrange multipliers play the role of dual coordinates. KL

gauge invariance can then be exploited to remove dimpKLq coordinates of the initial model, thus

restoring the correct number of degrees of freedom. When KL “ GL one can choose gauge g “ 1,

so that all information from the initial model is lost.

4.1.2. T-Dual model

One can now proceed with T-dualisation by integrating out the gauge fields from the master action

(4.14), which varied with respect to ω leads to

‹jω ` dΛ̃´DΛ̃pjωq “ 0 with DΛ̃ :“ D ` adΛ̃ . (4.15)

The latter equation can be solved as

jω “ ´
1

1´DΛ̃
P`pdΛ̃q `

1

1`DΛ̃
P´pdΛ̃q with DΛ̃ :“ D ` adΛ̃ , (4.16)
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where we introduced projectors P˘ : Ω
1pΣ, gq Ñ Ω1˘pΣ, gq

P˘ :“
1
2p1˘ ‹q with P˘P˘ “ P˘ P˘P¯ “ 0 , (4.17)

defining an orthogonal decomposition of worldsheet 1-forms Ω1pΣ, gq » Ω1`pΣ, gq ‘Ω
1
´pΣ, gq

2.

Substituting the latter back into the master action (4.14) and exploiting the relation

xX,
1

1˘DY
Zy “ x

1

1¯DY
X,Zy @X, Y, Z P g , (4.18)

which results from xDXpY q, Zy “ ´xY,DXpZqy, one obtains the T-dual action

S̃ “

ż

Σ

xdΛ̃,
1

1´DΛ̃
P`pdΛ̃qy . (4.19)

Equations of motion and Lax connection. One can now verify the exchange of equations of

motion and Maurer-Cartan equations by computing the T-dual equations of motion as in E.2..

Varying the dual action with respect to Λ̃ and exploiting δDΛ̃ “ adδΛ̃ together with the relation

1

1˘ pDΛ̃ ` δDΛ̃q
“

1

1˘DΛ̃
¯

1

1˘DΛ̃
˝ adδΛ̃ ˝

1

1˘DΛ̃
` ... , (4.20)

where ˝ denotes composition, one indeed finds Maurer-Cartan-like equations of motion

d̃j ` 1
2 r̃j , j̃s “ 0 with j̃ :“ jω . (4.21)

Combining the latter with (4.16), and exploiting Jacobi identity, one then recovers the conservation

equation for j̃

dp‹̃jq “ 0 . (4.22)

This exchange allows to construct the dual Lax connection as the one of the initial model

J̃pz̃q :“ ´14pz̃ ´ z̃
´1q2 j̃ ` 1

4pz̃
2 ´ z̃´2q ‹ j̃ , (4.23)

with z̃ a new spectral parameter, thus ensuring classical integrability of the dual model.

Residual isometries. As discussed in the previous chapter, since T-duality preserves the isomet-

ries commuting with the ones that have been gauged [90,91], for principal chiral models one expects

2Equation (4.15) can be easily solved by rearranging as jω “ ´ ‹ T ` Sp‹jωq, with S :“ DΛ̃ and T :“ dΛ̃,

and recursively substituting jω into itself. Exploiting ‹
2

“ 1 one finds jω “ ´
ř8

k“0 S
2k

‹ T ´
ř8

k“0 S
2k`1T “

´
1
1´S
P`pT q `

1
1`S
P´pT q, using in the last step

ř8

k“0 S
2k

“
1
2

`

1
1´S

`
1
1`S

˘

and
ř8

k“0 S
2k`1

“
1
2

`

1
1´S

´
1
1`S

˘

.
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the T-dual model to still retain the global GR invariance. Indeed under gÑ ggR one has

Λ̃ Ñ g´1
R Λ̃gR ` g

´1
R DpgRq (4.24)

and the dual action is manifestly invariant. This comes from gR, D being constant on the world-

sheet, as gR is a global GR transformation and D a Lie algebra endomorphism D : gÑ g, and the

relation

Dg´1
R Λ̃gR`g´1

R DpgRq
pg´1
R dΛ̃gRq “ g

´1
R DΛ̃pdΛ̃qgR , (4.25)

implied by (4.6). Ad-invariance of the inner product then ensures invariance of the action at all

orders. One can then also compute the associated Noether current

J̃N “ ‹DΛ̃ j̃ . (4.26)

The latter can be combined with the result (C.21) to extract the Killing vectors generating the

residual isometries, for which more details are provided in E.2.. Given generators TA of the Lie

algebra g, with commutators rTA, TBs “ fAB
CTC , the Killing vectors read

ξTA “ pDA
B ` Λ̃MfMA

BqBB with BB :“
B

BΛ̃B
, (4.27)

where we defined components DpTAq “ DA
BTB of the Lie algebra endomorphism. From Jacobi

identity and two-cocycle condition one can then verify they satisfy the commutation relations

rξTA , ξTB s “ fAB
CξTC . (4.28)

T-dual vielbeine. The T-dual action (4.19) can be alternatively rewritten as

S̃ “ 1
2

ż

Σ

xẽ, ‹ẽy ` xẽ, DΛ̃ẽy with ẽ :“ ´
1

1´DΛ̃
dΛ̃ , (4.29)

where we introduced T-dual vielbeine ẽ. Notice that the choice of vielbeine is not unique. One

may indeed define ẽ´ :“ ´
1

1´DΛ̃
dΛ̃ or ẽ` :“ ´

1
1`DΛ̃

dΛ̃ and the dual action (4.19) would still be

rewritten as (4.29), respectively in terms of ẽ´ or ẽ`
3. From the above definition one can find the

following modified Maurer-Cartan equation (see the last paragraph in E.2. for more details)

dẽ `
1

2
rẽ, ẽs “ ´

1

2

1

1´DΛ̃
rẽ, ẽs . (4.30)

3The two choices are related by ẽ´ “
1`D

Λ̃
1´D

Λ̃
ẽ` and the operator

1`D
Λ̃

1´D
Λ̃
acts as a local vielbeine rotation leaving

unchanged the structure of the action. Additionally, the action is not affected by overall changes of sign in the

vielbeine definition: choosing ẽ´ :“ ˘
1

1´D
Λ̃
dΛ̃ or ẽ` :“ ˘

1
1`D

Λ̃
dΛ̃ ẽ` simply changes the relative sign between terms

in the left member of (4.30).
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Furthermore, recognising the presence of a T-dual B-field

B̃2 :“
1

2
xẽ, DΛ̃ẽy , (4.31)

one can determine E.2., from the point of view of the background geometry, its field strength

H3 :“ dB̃2 “
1

2
xẽ,

1

1´DΛ̃
rẽ, ẽsy . (4.32)

The latter relation is always true, at least locally, due to Poincaré lemma, as the field strength H3

should be a closed 3-form. From the global point of view, H3 might be closed but not exact, hence

being a representative of the third cohomology class.

4.1.3. OSpp1|2q revised and improved

We are now in the position to reconsider the principal chiral model on OSpp1|2q and study its

properties by using the formalism described in the previous section.

Lie algebra and initial setup. Throughout this section we shall change a bit our notation as

compared to the previous chapter, and use the OSpp1|2q algebra in spinorial form. More details

about it are provided in B.1., and we report here the non-trivial commutators for clarity

rLαβ, Lγδs “ ´ i
`

ϵγpαLβqδ ` ϵδpαLβqγ

˘

rQα, Qβs “ Lαβ rLαβ, Qγs “ ´i ϵγpαQβq .
(4.33)

With this notation, the inner products take the form

xLαβ, Lγδy “ ϵαpγϵδqβ xQα, Qβy “ i ϵαβ xLαβ, Qγy “ 0 . (4.34)

Since H2pospp1|2qq “ 0 [111–113], we proceed with the undeformed principal chiral model (4.1),

i.e. setting D “ 0 in all formulae from the previous section. We shall not discuss, as in chapter 3,

the explicit structure of the dual fields, but rather concentrate on the supergravity requirements.

Initial model - torsion constraints. Given the 3d supergravity torsion constraints (E.34), it is

not hard to recognise that the initial model satisfies them. All one needs to do is expanding the

generic Maurer-Cartan form on the Lie algebra generators j “ jαβLαβ ` j
αQα, exploiting the

commutators (4.33) to write down the Maurer-Cartan equation in components

djαβ ` i jγα ^ jγ
β “
1

2
jα ^ jβ djα ` i jβ ^ jβ

α “ 0 . (4.35)
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The torsion constraints (E.34) are then satisfied with the identifications

eαβ “ ´jαβ eα “ ´jα Ωα
β “ ´ i2 jα

β Tαβγ
δ “ ´ϵγpαδβq

δ , (4.36)

and conditions (A.33) for the connection are respected due to the symmetry of jαβ. Even though the

initial sigma model does not contain a B-field, one could include in the 3d action an H3 contribution

that would dynamically generate the cosmological constant via the equations of motion, thus

ensuring the existence of a super-AdS3 solution. In this case the three-form would read

H3 “ eα ^ e
αβ ^ eβ `

4i
3Reα

β ^ eβ
γ ^ eγ

α , (4.37)

which is indeed of the form (E.36), with R proportional to the AdS3 radius. From the sigma model

perspective, this three-form might be included via a Wess-Zumino term

SWZ “
1
3!

ż

M

xj, rj, jsy with BM “ Σ . (4.38)

T-dual model - torsion constraints. In order to study the torsion constraints for the dual model,

we need to compute the exterior derivative of the dual vielbeine (4.29). Using the modified Maurer-

Cartan equation (4.30) we can extract dẽ by computing

dẽ “ ´
1

2
rẽ, ẽs ´

1

2

1

1´ adΛ̃
rẽ, ẽs . (4.39)

This would allow us to substitute dẽαβ and dẽα into the torsion constraints (E.34) and check

explicitly whether these can be satisfied for some appropriate choice of connection. To find the

exterior derivative of the vielbeine one needs, from the above equation, to compute the action of

the operator 1
1´adΛ̃

on rẽ, ẽs and to this aim we now make the assumption of having dualised with

respect to the full OSpp1|2qL sector of the isometry group, so as to be able to choose the gauge

g “ 1 in which no trace is left of the initial model and Λ̃ :“ g´1Λg`g´1Dpgq Ñ Λ P ospp1|2q. Then,

expanding the vielbeine and Lagrange multipliers on the OSpp1|2q generators as ẽ “ ẽαβLαβ`ẽ
αQα

and Λ :“ x̃αβLαβ` θ̃
αQα we can start computing (see the last paragraph in E.3. for more details)

rẽ, ẽs “
`

2i ẽγpα ^ ẽγ
βq ´ ẽα ^ ẽβ

˘

Lαβ `
`

2i ẽαβ ^ ẽβ
˘

Qα “: υ
αβLαβ ` υ

αQα . (4.40)

One can then exploit the results (E.49) and (E.50) with the choice U :“ Λ and V :“ rẽ, ẽs to find

1

1´ adΛ
rẽ, ẽs “

1

1´ 2x̃2
“

p1´ x̃2qZαβ ´ 2x̃γ
αx̃δ
βZγδ ´ 2i x̃γ

pαZβqγ
‰

Lαβ`

`
2

2´ x̃2
ζαrδα

β ´ i x̃α
βsQβ ,

(4.41)
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with

Zαβ “ υαβ `
2

2´ x̃2
“

υpα ´ iυγ x̃γ
pα
‰

θ̃βq`

`
i

p2´ x̃2qp1´ 2x̃2q

“

p1´ 1
2 x̃
2qυαβ ´ 3x̃γ

αx̃δ
βυγδ ´ 3i x̃γ

pαυβqγ
‰

θ̃2

ζα “ υα ´
i

p1´ 2x̃2q

“

p1´ x̃2qυαβ ´ 2x̃γ
αx̃δ
βυγδ ´ 2i x̃γ

pαυβqγ
‰

θ̃β`

´
i

p2´ x̃2qp1´ 2x̃2q

“

3
2υ
α ´ i

`

7
2 ´ x̃

2
˘

υβ x̃β
α
‰

θ̃2 .

(4.42)

The exterior derivatives of the components of the vielbeine are then easily extracted

dẽαβ “ ´
1

2
υαβ ´

1

2p1´ 2x̃2q

“

p1´ x̃2qZαβ ´ 2x̃γ
αx̃δ
βZγδ ´ 2i x̃γ

pαZβqγ
‰

dẽα “ ´
1

2
υα ´

2

2p2´ x̃2q
ζβrδβ

α ´ i x̃β
αs

(4.43)

and we are ready to start looking at the torsion constraints (E.34), starting from the first one

dẽαβ ´ 2ẽγpα ^Ωγ
βq “ ´12 ẽ

α ^ ẽβ . (4.44)

This is the most restrictive constraint, as it contains no free component of torsion and the only non-

vanishing one has to be a constant. Looking at the left hand side of the constraint, we recognise

that even after expanding the connection one form on the vielbeine Ωα
β “ ẽγδΩγδ α

β ` ẽγΩγ α
β it

cannot contribute with a term proportional to ẽα ^ ẽβ that could compensate for the one on the

right hand side of the equation. Hence, for the constraint to be satisfied one strictly needs that

terms proportional to ẽα^ ẽβ coming from dẽαβ should match the constant term on the right hand

side of the equation. To study this requirement, it is sufficient to look at those terms in (4.43)

which are proportional to υαβ, as from (4.40) these are the only ones containing ẽα ^ ẽβ. Hence,

concentrating on terms involving the latter contribution we find

dẽαβ|υαβ “ ´
1

2
υαβ ´

1

2p1´ 2x̃2q

“

p1´ x̃2qυαβ ´ 2x̃γ
αx̃δ
βυγδ ´ 2i x̃γ

pαυβqγ
‰

` (4.45)

´
i

2p2´ x̃2qp1´ 2x̃2q2
“

p1` 2x̃4qυαβ ´ 4p2´ x̃2qx̃γ
αx̃δ
βυγδ ´ ip5` 2x̃2qx̃γ

pαυβqγ
‰

θ̃2.

From the latter expression and the definition υαβ :“ 2i ẽγpα ^ ẽγ
βq ´ ẽα ^ ẽβ, one can then

recognise that despite a first constant term proportional to ẽα ^ ẽβ, all the remaining ones lead

to non-vanishing and non-constant contributions which cannot be compensated by the right hand

side of the above torsion constraint. For this reason we conclude that the torsion constraint is

broken by the T-dual model. Exploiting the result (4.32) it is then also possible to get an additional



48 4.1. Principal chiral models

confirmation of the incompatibility of the T-dual model with the supergravity requirements. Indeed

combining (4.41) and the inner products (4.34) it is not hard to notice that the T-dual three-form

contains components that should not be present in order to satisfy the requirement (E.36). In

particular, one finds terms proportional to ẽα ^ ẽβ ^ ẽγ by looking at

H3|ẽαẽβ ẽγ “
1

2
xẽαQα,

2

2´ x̃2
ζβrδβ

δ ´ i x̃β
δsQδy (4.46)

and considering once again the terms proportional to υαβ contained in ζα. This leads to

H3|ẽαẽβ ẽγ “ ẽ
α ^ ẽβ ^ ẽγ

2

1´ 2x̃2

„

i x̃pαβ θ̃γq ´
3

2´ x̃2
x̃pαβ x̃γqδ θ̃

δ

ȷ

. (4.47)

Before surrendering to the impossibility of satisfying the supergravity constraints with the T-dual

model, we shall consider the possibility of performing a local OSpp1|2q rotation on the vielbeine

ẽ Ñ ẽg :“ g´1ẽg for g P C8pΣ,OSpp1|2qq. While leaving the metric term in (4.29) unchanged,

due to the Ad-invariance of the inner product, this rotation introduces new contributions to the

B-field and one may thus hope to be able to choose g so as to satisfy both the requirements on

torsion and H3. To get the modified structure equation for the vielbeine ẽ
g we start noting that

dẽg “ g´1pdẽqg ´ rA, ẽgs with A :“ g´1dg . (4.48)

Hence, substituting dẽ with (4.30) one finds immediately

∇Aẽg “ ´
1

2
rẽg, ẽgs´

1

2

1

1´ adΛg
rẽg, ẽgs with Λg :“ g´1Λg ∇A :“ d`rA,´s. (4.49)

We can thus proceed as above, and start by expanding

Λg :“ yαβLαβ ` λ
αQα ẽg :“ ẽαβLαβ ` ẽ

αQα A :“ AαβLαβ ` A
αQα . (4.50)

From (4.49) it is clear that new contributions to dẽαβ come from rA, ẽgs, while the rest is left

unchanged. For this reason we start looking for a possible choice of A that could cancel the

unwanted terms proportional to ẽα ^ ẽβ encountered in (4.45), in which one should simply make

the replacements x̃αβ Ñ yαβ and θ̃α Ñ λα. One can then see that

rA, ẽgs|ẽαẽβ “ ´ẽ
γ ^ ẽδApγ

pαδδq
βq (4.51)

and while this might be exploited to cancel terms in (4.45) which are linear in yγ
α, terms of the

form ẽγ ^ ẽδypγ
pαyδq

βq could not be cancelled and hence dẽαβ still exhibits some non-constant

contributions which spoil the torsion constraint.
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In light of the above analysis it is now also possible to recognise that even upon dualising the

SLp2,RqL subgroup of the left-isometry sector one would still not be able to satisfy the torsion

constraints. Since H2pslp2,Rqq “ 0 also in this case we proceed by setting D “ 0 in all the

expressions derived in the previous section, and parametrising the group element for the initial

model as g “ gbosgf er with gbos :“ e
xαβLαβ and gf er :“ e

´θαQα , one can choose gauge such that

gbos “ 1. Expanding the multipliers as Λ :“ x̃αβLαβ the dual model is then written in terms of

Λ̃ :“ g´1
f erΛgf er “ p1`

i
4θ
2qx̃αβLαβ ` iθ

γ x̃γ
αQα “: y

αβLαβ ` λ
αQα . (4.52)

The analysis carried out for the dualisation of the full OSpp1|2qL can thus be re-used by replacing

x̃αβ Ñ yαβ and θ̃α Ñ λα in (4.45). This leads once again to the conclusion that the torsion

constraint is broken by the dualisation.

We should mention that while restoring the fermionic components of connection could help

solving the torsion constraints, this would be in contradiction with the fundamental assumption

of Lorentzian structure group. This would correspond to studying super Riemannian geometry

[114], known to have a complicated connection to supergravity [115,116], via a limiting procedure

in superspace [117]. As a final remark, while we considered general local OSpp1|2q rotation of

vielbeine, to try solving the torsion constraints, there might in principle still exist some choice of

shift and/or field redefinition improving the situation, possibly at the cost of modifying the canonical

torsion constraints A.6.. We thought about this possibility, but could not find any of them.

4.2. Symmetric and semi-symmetric spaces

We shall now discuss extension of the T-duality procedure introduced in the previous section to

two other types of geometries, namely symmetric and semi-symmetric spaces.

4.2.1. Setup

These two classes of models belong to the family of coset sigma models on spaces G{H with G

a Lie (super)group and H a Lie (super)subgroup, and are characterised by the fact that H arises

as the invariant subset under the action of an automorphism σ of G. This has the property that

σk “ 1 with k “ 2 for symmetric and k “ 4 for semi-symmetric spaces [118, 119] 4 and induces

an orthogonal decomposition of the Lie algebra g which in turn exhibits restricted commutation

relations. Like group manifolds, coset spaces G{H are characterised by the transitive left action GL

4See also chapter 5 in [105] for a nice introduction and [120] for coset spaces admitting Zm-grading.
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of the group on itself, but the right transitive action GR is lost in favor of the equivalence of any

two group elements differing by the right action of any h P H. Physical sigma models on G{H will

thus have to exhibit a global GL invariance as well as a local HR : gÑ gh gauge symmetry, and the

description in terms of the Maurer-Cartan form j :“ g´1dg P Ω1pΣ, gq, which is by construction

invariant under the global left action GL : gÑ g
´1
L g and transforms as j Ñ h

´1jh ` h´1dh under

local HR : gÑ gh, will exhibit some differences with respect to the principal chiral model case.

Symmetric spaces. For this class of models the automorphism σ : g Ñ g is an involution and

the Lie (super)subalgebra h has the property σphq “ h. The rest of the (super)algebra, denoted by

m, is then characterised by σpmq “ ´m and the following orthogonal decomposition takes place

g » h‘m with h :“ 1
2p1` σq
looomooon

“:Ph

pgq m :“ 1
2p1´ σq
looomooon

“:Pm

pgq . (4.53)

The automorphism property σrX, Y s “ rσpXq, σpY qs @X, Y P g then leads to commutators

rh, hs Ď h rm, hs Ď m rm,ms Ď h . (4.54)

The non-degenerate, (graded-)symmetric, Ad-invariant bilinear form x´,´y on the Lie (super)algebra

is taken to be compatible with the above decomposition and only non-vanishing for couples of ele-

ments in the same subspace. Elements in h are said to be of homogeneity |h| “ 0, while elements
in m of homogeneity |m| “ 2, hence one has that xX, Y y ‰ 0 only for |X|` |Y | “ 0 mod 4.

The above algebra decomposition also reflects on the Maurer-Cartan form j :“ g´1dg P

Ω1pΣ, gq

j “ A`m with A :“ Phpjq P Ω
1pΣ, hq m :“ Pmpjq P Ω

1pΣ,mq . (4.55)

While invariance of j under global GL : gÑ g
´1
L g implies the invariance of A and m, the transform-

ation j Ñ h´1jh ` h´1dh under local HR : gÑ gh implies that AÑ A` h
´1dh and m Ñ h´1mh.

For this reason, symmetric-space sigma model actions can be constructed as

S :“
1

2

ż

Σ

xm, ‹my (4.56)

and exhibit global GL invariance, with associated Noether current LN :“ gmg
´1, as well as local

HR invariance. The equations of motion of the above action read

∇A ‹m “ 0 (4.57)
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while the Maurer-Cartan equation dj ` 1
2 rj, js “ 0 now decomposes on the two subspaces as

h : FA `
1
2 rm,ms “ 0 m : ∇Am “ 0 . (4.58)

Like for principal chiral models, the Maurer-Cartan equations and equations of motion for symmetric

spaces can be encoded in the flatness condition of a Lax connection, which ensures classical

integrability of the models. Parametrising J “ aA` b ‹A` cm` e ‹m, with a, b, c, e coefficients

to be determined, the flatness condition dJ ` 1
2 rJ, Js “ 0 implies the above equations of motion

and Maurer-Cartan equations provided that b “ 0, a “ 1 and c2 ´ e2 “ 1. These can be solved,

for example, as c :“ 1
4pz
2 ` z´2q and e :“ 1

4pz
2 ´ z´2q, so that J ” Jpzq.

Semi-symmetric spaces. For these models, the automorphism σ : gÑ g satisfies σ4 “ 1 and the

Lie subalgebra h ” g0 enjoys the property σpg0q “ g0. The remaining elements of the superalgebra

are characterised by σpg1q “ ig1, σpg2q “ ´g2 or σpg3q “ ´ig3, so that one could identify the

action of σ on four subspaces σpgkq “ i
kgk , with k “ 0, 1, 2, 3, leading to the decomposition

g » g0 ‘ g1 ‘ g2 ‘ g3 with gk :“
1
4p1` i

3kσ ` i2kσ2 ` ikσ3q “: Pkpgq , PkPl “ δklPl . (4.59)

Exploiting again the automorphism property σrgi , gj s “ rσpgiq, σpgjqs one finds commutators

rgi , gj s Ď gpi`jqmod4 (4.60)

From σpgkq “ i
kgk one also recognises that σ

2pgkq “ p´1q
kgk , i.e. σ

2 acts as p´1qF and for this

reason g0, g2 and g1, g3 are respectively purely bosonic and purely fermionic subspaces. Elements in

gk are said to be of homogeneity k and also in this case the non-degenerate, (graded-)symmetric,

Ad-invariant bilinear form x´,´y is taken to be compatible with the above decomposition, such

that xX, Y y ‰ 0 for |X|` |Y | “ 0 mod 4. To simplify the notation in subsequent paragraphs, and
more easily make contact with symmetric spaces, we rename the four subspaces as

g » h‘ p‘m‘ q , (4.61)

so that non-vanishing commutation relations read

rh, hs Ď h rp, hs Ď p rm, hs Ď m rq, hs Ď q

rp, ps Ď m rm, ps Ď q rq, ps Ď h

rm,ms Ď h rq,ms Ď p

rq, qs Ď m . (4.62)



52 4.2. Symmetric and semi-symmetric spaces

Also in this case the above algebra decomposition reflects on the Maurer-Cartan form j

j “ A` p `m ` q with

A :“ Phpjq P Ω
1pΣ, hq p :“ Pppjq P Ω

1pΣ, pq

m :“ Pmpjq P Ω
1pΣ,mq q :“ Pqpjq P Ω

1pΣ, qq .

(4.63)

While invariance of j under global GL : gÑ g
´1
L g implies invariance of A, p,m, q, the transformation

j Ñ h´1jh`h´1dh under local HR : gÑ gh implies AÑ A`h
´1dh and tp,m, qu Ñ h´1tp,m, quh,

so that semi-symmetric space sigma models can be constructed as

S :“
1

2

ż

Σ

xm, ‹my ` κ xp, qy . (4.64)

These exhibit global GL invariance, with associated Noether current LN :“ g
`

m´ κ2 ‹ pp´ qq
˘

g´1,

as well as local HR invariance. The equations of motion of the above action read F.1.

∇A ‹m ´
κ

2
rp, ps `

κ

2
rq, qs “ 0

κ

2
∇Aq ` rp, ‹m ´

κ

2
ms “ 0

κ

2
∇Ap ´ rq, ‹m `

κ

2
ms “ 0 ,

(4.65)

while the Maurer-Cartan equation dj ` 1
2 rj, js “ 0 decomposes on the four subspaces as

h : FA `
1

2
rm,ms ` rp, qs “ 0

p : ∇Ap ` rm, qs “ 0

m : ∇Am `
1

2
rp, ps `

1

2
rq, qs “ 0

q : ∇Aq ` rm, ps “ 0 .

(4.66)

Also for this class of models, the equations of motion and Maurer-Cartan equations can be encoded

in the flatness of a Lax connection, which now takes the form of

Jpzq :“ A` zp `
1

2
pz2 ` z´2qm ` z´1q ´

1

2κ
pz2 ´ z´2q ‹m . (4.67)

It should furthermore be noted that the action (4.64) is of the Green-Schwarz form and the above

Lax connection can only be constructed provided that the relative coefficient κ between the metric

and B-field term is either `1 or ´1. See F.1. for more on this. Importantly, this condition

is the same one required to have κ-symmetry of the action [121, 45], as we shall discuss soon,

and hence supercoset sigma models of the form (4.64) with κ “ ˘1 are both integrable and κ-
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symmetric [103], thus representing very special instances of superstring sigma models.

From the above discussion one can recognise that semi-symmetric spaces are special cases of

symmetric ones and indeed all relevant expressions for the latter can be obtained by formally setting

to zero any element in p, q from the former. For this reason we shall from now on present the

analysis only in terms of semi-symmetric models.

Topological deformations. Symmetric and semi-symmetric space sigma models can be deformed

in analogy with principal chiral models, hence leading to the following action

SΩSS :“
1
2

ż

Σ

xm, ‹my ` κxp, qy `Ωpj, jq . (4.68)

Exactly like for principal chiral models, this does not alter the equations of motion nor the Noether

current, thus leaving unaffected the construction of the Lax connection. The only difference

encountered for the above two classes of coset models, lies in the requirement of HR invariance

of the action under local transformations g Ñ gh for h P H, which makes the Maurer-Cartan

current transform as j Ñ h´1jh ` h´1dh. In turn, exploiting the relation (4.6) and Dph´1dhq “

h´1d
`

Dphqh´1
˘

h, the latter implies that

Ωpj, jq Ñ Ωpj, jq `Ωph´1dh, h´1dhq , (4.69)

so that HR invariance is retained upon restricting Ω|h “ 0. For symmetric spaces, this requirement

leads to the condition D : h Ñ m, as the inner product ensures that ΩpH1, H2q “ xDpH1q, H2y “

xM1, H2y “ 0 for H1, H2 P h and M1 P m. From the derivation property of D it then follows

that for the commutation relations to be preserved one also needs D : mÑ h. In semi-symmetric

spaces, these conditions are further supplemented by the requirements D : pÑ q and D : qÑ p.

Gauging. Given the deformed (semi)-symmetric coset action (4.68) one can gauge a subgroup

of the isometry group KL Ď GL as done for the principal chiral models around equation (4.10), so

that upon introducing Lagrange multipliers Λ P C8pΣ, kLq the following master action is obtained

Sω :“
1
2

ż

Σ

xmω, ‹mωy ` κxpω, qωy ` xDpjωq, jωy `

ż

Σ

xΛ̃, Fjωy , (4.70)

where Λ̃ “ g´1Λg ` g´1Dpgq and Aω, pω, mω, qω are the projections of jω on the four subspaces.

The above action is again manifestly KL gauge invariant due to the invariance of jω and of Λ̃,

which follows from the transformation law Λ Ñ k´1Λk ` k´1Dpkq with k P KL under g Ñ k
´1g.

At the same time, it also retains HR gauge invariance as, by construction, the first two terms

are left unchanged by g Ñ gh due to the transformation laws tpω, mω, qωu Ñ h
´1tpω, mω, qωuh,
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while the last two terms generate compensating contributions. Indeed using Ω|h “ 0, Dph
´1dhq “

h´1d
`

Dphqh´1
˘

h and (4.6), one finds that xDpjωq, jωy Ñ xDpjωq, jωy ´ 2xDphqh
´1, Fjωy, while

xΛ̃, Fjωy Ñ xΛ̃, Fjωy ` xDphqh
´1, Fjωy. Cancellation of the two contributions thus fixes the relative

coefficient between the deformation and Lagrange multiplier terms in the action. T-duality can

now be performed by integrating out the gauge fields rather than the Lagrange multipliers, which

would otherwise lead back to the initial action after an appropriate choice of gauge. At the end of

the dualisation one can finally proceed with the gauge fixing of the extra coordinates, so that the

correct number of degrees of freedom is recovered. For coset models G{H this procedure is slightly

different from the case of principal chiral models, as one generally needs to gauge fix some of the

Lagrange multipliers together with the initial coordinates. Consider for example the case in which

one gauges the full group of isometry KL “ GL

• Fixing an HR gauge in the initial model, one begins with dimpGq´dimpHq initial coordinates

x . At the end of the dualisation one also has dimpGq multipliers x̃ , but having already

exploited the HR gauge symmetry to fix some of the initial coordinates, only the GL gauge

symmetry remains available. This can be exploited to remove dimpGq degrees of freedom,

but since the initial coordinates left are only dimpGq ´ dimpHq, one will necessarily have to

fix some of the multipliers as well.

• Performing dualisation before exploiting the HR gauge symmetry one obtains a T-dual model

containing dimpGq initial coordinates x and dimpGq Lagrange multipliers x̃ . Having gauged

the full group of isometry one can now exploit the GL gauge symmetry to completely get rid

of the initial coordinates, i.e. choose gauge g “ 1. To correctly recover dimpGq ´ dimpHq

degrees of freedom it is then necessary to exploit the residual HR gauge symmetry, which

can however only remove Lagrange multipliers.

κ-symmetry of the master action. We now describe the conditions under which the generic

master action (4.70) of a semi-symmetric space sigma model enjoys κ-symmetry. Interestingly,

these will formally look the same as the ones required for κ-symmetry of the initial action (4.64),

derived in [103] (from which we shall borrow some notation) and argued to imply the supergravity

torsion constraints. While the requirements for κ-symmetry of the T-dual models will not be

discussed here, these should be similar to those of the master action, as the gauge fields integrated

out along the dualisation are inert under such fermionic transformations. This should in turn imply

that the T-dual model satifies the supergravity torsion constraints and indeed it has been argued

in [83]. To begin, we recall the McArthur interpretation of κ-symmetry in terms of the right action

of a purely fermionic local and infinitesimal group element gf on the group element g [122]

g Ñ ggf with gf “ e
ϵ » 1` ϵ and ϵ :“ ϵp ` ϵq . (4.71)
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Having, for coset models, no canonical definition for the right action of a generic group element,

the idea of McArthur is that of determining the fermionic parameters ϵp and ϵq by requiring the

transformation to leave the action invariant. Since the gauge fields ω are supposed to be integrated

out in the dualisation procedure, discussed in the next section, κ-symmetry of the master action

should not rely on their transformation properties under (4.71), as they do not appear in the T-

dual model. On the other hand, Lagrange multipliers may in principle transform under the above

fermionic action, as they play the role of coordinates in the dual model. We shall indeed see that

they need to transform for the master action to be invariant. From the definition jω :“ j ` g
´1ωg

one finds that

g Ñ ggf ñ jω Ñ jω `∇jωϵ ñ

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

δκAω “ rqω, ϵps ` rpω, ϵqs

δκpω “ dϵp ` rAω, ϵps ` rmω, ϵqs

δκmω “ rpω, ϵps ` rqω, ϵqs

δκqω “ dϵq ` rAω, ϵqs ` rmω, ϵps

(4.72)

and additionally

g Ñ ggf ñ Dpgqg´1 Ñ Dpgqg´1 ` gDpϵqg´1 . (4.73)

One can then compute the variations of the master action (4.70) under g Ñ ggf and substitute

the above relations. Since jω is not flat one cannot use the Maurer-Cartan equations to simplify the

variations, as it could on the other hand be done for κ-symmetry of the initial model. Nevertheless,

recalling that Fjω “ g
´1Fωg one can rearrange the variations as

δκSω “

ż

Σ

xϵp, rpω, pκ´‹qmωsy´xϵq, rqω, pκ`‹qmωsy`δκγ`xδκΛ´
κ
2grpPp´Pqqϵsg

´1, Fωy (4.74)

where the term δκγ encodes the variations of the worldsheet metric, which will be specified soon.

When the last term in the above variations vanishes, one formally recovers the same structure that

would have been obtained by varying, with respect to g Ñ ggf , the initial action (4.64), with the

simple replacements tpω, mω, qωu Ñ tp,m, qu. Hence we learn the Lagrange multipliers should

transform under κ-symmetry so as to cancel the last term. To analyse it in more details, we first

notice that Fω P kL and δκΛ P kL, while
κ
2grpPp ´ Pqqϵsg

´1 P g and thus proceed by decomposing

X :“ κ
2grpPp ´ Pqqϵsg

´1 “ KpXq `KKpXq , (4.75)

where K and KK respectively represent projectors on the gauged subalgebra kL and its orthogonal

complement kK
L , on which g decomposes as g » kL ‘ kK

L with respect to the inner product. This
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means that one can rewrite the extra term as

xδκΛ´X, Fωy “ xδκΛ´KpXq ´KKpXq, Fωy “ xδκΛ´KpXq, Fωy , (4.76)

using in the last step that, by definition of orthogonal complement, xkK
L , kLy “ 0. Consequently,

the unwanted term vanishes provided that the Lagrange multipliers enjoy the following κ-symmetry

transformations

δκΛ “ Kp12grpP
p1q ´ P p3qqϵsg´1q . (4.77)

Under this assumption one is left with

δκSω “

ż

Σ

xϵp, rpω, pκ´ ‹qmωsy ´ xϵq, rqω, pκ` ‹qmωsy ` δκγ . (4.78)

As anticipated, this has the same structure as the variations one would have obtained for the initial

action (4.64). In the latter expression one can define worldsheet operators P κ˘ :“
1
2pκ ˘ ‹q and

notice they satisfy relations

P κ˘P
κ
˘ “

1
4 rpκ

2 ` 1q ˘ 2κ‹s P κ˘P
κ
¯ “

1
4pκ

2 ´ 1q . (4.79)

Hence, for κ “ ˘1 one recovers the worldsheet projectors P˘ :“
1
2p1˘ ‹q

κ “ 1 : P κ˘ ” P˘ κ “ ´1 : P κ˘ ” ´P¯ . (4.80)

The projection property of the above operators will soon prove important in showing κ-symmetry

of the master action - and the same would be true for the initial action (4.64) - for this reason

we shall from now on assume that κ “ `1. Before proceeding further we also need to introduce

some extra notation, for both the Lie algebra g and the component form of the above projectors.

For an algebra g enjoying the decomposition (4.61) we explicitly denote the generators from the

various subspaces as

h “ spantHâu p “ spantQαu m “ spantMau q “ spantSα̂u . (4.81)

The projectors enjoy the following properties

P˘P˘ “ P˘ P˘P¯ “ 0 1 “ P` ` P´ ‹ “ P` ´ P´

xα, P˘βy “ xP¯α, βy ñ xP˘α, P˘βy “ 0 @α, β P Ω1pΣ, gq ,
(4.82)
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but in checking κ-symmetry we shall need their component form P i j˘ . To find this we start by

recalling that given 1-forms α, β one has

xα, βy “ ϵi jxαi , βjyd
2σ xα, ‹βy “ γ i jxαi , βjyd

2σ , (4.83)

with ϵi j “ ´ϵj i and γ i j :“
?
´hhi j , for h :“ detphi jq and hi j the worldsheet metric. In the above

notation αi , βj are still Lie algebra valued but lose the 1-form property and for this reason the inner

product is now symmetric, i.e. while xα, βy “ ´xβ,αy we have xαi , βjy “ xβj , αiy. The component

form of the projectors can then be obtained by defining

αi :“ γi jα
j αi˘ :“ P

i j
˘αj (4.84)

and looking at the following two expressions

xα, P˘βy “ ϵ
i jxαi , pβ

˘qjyd
2σ “ ϵi jγjkxαi , pβ˘q

ky “ ϵi jγjkP
kl
˘ xαi , βlyd

2σ

(4.85)

xα, P˘βy “
1
2xα, βy ˘

1
2xα, ‹βy “

1
2pϵ
i j ˘ γ i jqxαi , βjyd

2σ .

Comparison leads to a condition and the required component form

ϵi lγlkP
kj
˘ ” 1

2pϵ
i j ˘ γ i jq ñ P i j˘ “

1
2pγ

i j ˘ ϵi jq “ P j i¯ . (4.86)

In components, the projectors satisfy the following important properties

P i j˘γjkP
kl
˘ “ P i l˘ P i j˘γjkP

kl
¯ “ 0

γ i j “ P i j` ` P
i j
´ ϵi j “ P i j` ´ P

i j
´ (4.87)

P i j˘P
kl
˘ “ P kj˘ P

i l
˘ P i j˘P

kl
˘ “ P i l˘P

kj
˘ .

All of them are simple to verify and, in particular, the last one is a direct consequence of the fact that

detpγ i jq “ ´1. Indeed one can explicitly write down the relation detpγ i jq “ γ11γ22´pγ12q2 “ ´1

and use it to check that P i j˘P
kl
˘ “ P kj˘ P

i l
˘ holds true for all possible values of i , j, k, l P t1, 2u. We

are now ready to rewrite the variations of the master action as

δκSω “

ż

Σ

2xϵp, rpω, m
´
ω sy ´ 2xϵq, rqω, m

`
ω sy `

1
2δκγ

i jxpmωqi , pmωqjyd
2σ , (4.88)

where we explicitly wrote the term

δκγ :“ `
1
2δκγ

i jxpmωqi , pmωqjyd
2σ . (4.89)
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To proceed further we need to make a choice of fermionic parameters which allows the two un-

wanted terms to be cancelled by the variations of the worldsheet metric. Introducing κp P p and

κq P q we thus make the ansatz

ϵp :“ rpmωqi , κ
i
qs P p ϵq :“ rpmωqi , κ

i
ps P q , (4.90)

and proceed by introducing explicit worldsheet indices in all terms

δκSω “

ż

Σ

2ϵklxϵp, rpp
`
ω qk , pmωql syd

2σ ´ 2ϵklxϵq, rpq
´
ω qk , pmωql syd

2σ ` δκγ “ (4.91)

“

ż

Σ

2ϵklγkn
`

P nj` xϵp, rppωqj , pmωql sy ´ P
nj
´ xϵq, rpqωqj , pmωql sy

˘

d2σ ` δκγ “

“

ż

Σ

d2σ δκγ
i j

2 xpmωqi , pmωqjy ´ 2xrpmωqi , κ
i
qs, rpp

`
ω q
j , pmωqj sy ´ 2xrpmωqi , κ

i
ps, rpq

´
ω q
j , pmωqj sy

where we used the relation ϵklγknP
nj
˘ “ ¯P l j˘ to get to the third line. At this point we exploit the

notation introduced above for the Lie algebra generators to rewrite

$

&

%

rpmωqi , κ
i
qs “ pmωq

a
i κ
i α̂
q faα̂

βQβ

rpmωqi , κ
i
ps “ pmωq

a
i κ
iα
p faα

β̂Sβ̂

$

&

%

rpp`
ω q
j , pmωqj s “ pp

`
ω q
jαpmωq

b
j fαb

β̂Sβ̂

rpq´
ω q
j , pmωqj s “ pq

´
ω q
j α̂pmωq

b
j fα̂b

βQβ

, (4.92)

so that the variations can be rearranged as

δκSω “

ż

Σ

d2σ
“

1
2pδκγ

i jqδab ` 2pp
`
ω q
jακi α̂q δβ̂βfαa

β̂fbα̂
β ´ 2pq´

ω q
j α̂κiαp δββ̂faα̂

βfbα
β̂
‰

pmωq
a
j pmωq

b
i .

(4.93)

To manipulate the above variations we add zero in the form

“

pp`
ω q
jακi α̂q δβ̂βfαb

β̂faα̂
β ´ pp`

ω q
jακi α̂q δβ̂βfαb

β̂faα̂
β
‰

pmωq
a
j pmωq

b
i “ 0

“

pq´
ω q
j α̂κiαp δββ̂fbα̂

βfaα
β̂ ´ pq´

ω q
j α̂κiαp δββ̂fbα̂

βfaα
β̂
‰

pmωq
a
j pmωq

b
i “ 0 ,

(4.94)

so that using δβ̂β “ ´δββ̂ and fαa
β̂ “ ´faα

β̂ the terms can be rearranges as

δκSω “

ż

Σ

d2σ

ˆ

1
2pδκγ

i jqδab ` rpp
`
ω q
jακi α̂q ´ pq

´
ω q
j α̂κiαp sδββ̂rfaα̂

βfbα
β̂ ` fbα̂

βfaα
β̂s` (4.95)

´ rpp`
ω q
jακi α̂q ` pq

´
ω q
j α̂κiαp sδββ̂rfaα̂

βfbα
β̂ ´ fbα̂

βfaα
β̂s

˙

pmωq
a
j pmωq

b
i .

We now recognise that the extra terms on the first line can interact with the variations of the

worldsheet metric if the following condition is satisfied, as found in [103] for the undeformed initial
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model (4.64)

δββ̂pfaα̂
βfbα

β̂ ` fbα̂
βfaα

β̂q ” cαα̂δab , (4.96)

for cαα̂ some matrix to be determined. Under this assumption the variations become

δκSω “

ż

Σ

d2σ

ˆ

1
2pδκγ

i jq ` cαα̂rpp
`
ω q
jακi α̂q ´ pq

´
ω q
j α̂κiαp s

˙

δabpmωq
a
j pmωq

b
i ` (4.97)

´ rpp`
ω q
jακi α̂q ` pq

´
ω q
j α̂κiαp sδββ̂rfaα̂

βfbα
β̂ ´ fbα̂

βfaα
β̂spmωq

a
j pmωq

b
i .

To conclude the reasoning we then need to recall two further properties that variation of the

worldsheet metric should have: obviously it should be symmetric in the exchange of i and j and ad-

ditionally it should satisfy the condition γi jδκγ
i j “ 0. The latter requirement is a direct consequence

of the definition γ i j :“
?
´hhi j , as under the general variations

δp
?
´hq “ 1

2

?
´hh´1δh with δh “ ´hhi jδh

i j (4.98)

one finds that

γi jδκγ
i j “

?
´hhi jpδκ

?
´hqhi j ´ hhi jδκh

i j “ ´δh ´ hhi jδκh
i j “ 0 . (4.99)

In order to ensure that δκγ
i j enjoys the latter two properties, it is sufficient to notice that the term

we would like to cancel from the first line in (4.97) reads

pp`
ω q
jακi α̂q ´ pq

´
ω q
j α̂κiαp “ P jk` ppωq

α
k κ
i α̂
q ´ P

jk
´ pqωq

α̂
k κ
iα
p , (4.100)

so that by requiring

κi α̂q :“ P
i l
`κ
α̂
ql κiαp :“ P

i l
´κ
α
pl (4.101)

symmetry in the exchange of i and j is ensured by the property P jk˘ P
i l
˘ “ P

ik
˘ P

j l
˘ . It should also be

noticed how the requirement (4.101) guarantees the vanishing of the second line in (4.97), which

is antisymmetric in the exchange of i and j due to antisymmetry in a and b. Hence, choosing

δκγ
i j “ 2cαα̂

“

pq´
ω q
j α̂κiαp ´ pp

`
ω q
jακi α̂q

‰

(4.102)

and requiring (4.101) is sufficient to set δκSω “ 0. Finally, the condition γi jδκγ
i j “ 0 is ensured

by the relation γi j “ P
`
i j ` P

´
i j and the properties P

j l
˘P
in
˘ “ P i l˘P

jn
˘ , P

i j
˘ “ P

j i
¯ , P

˘
i j P

jk
¯ “ 0 of the

projectors. Notice at this stage how the properties enjoyed by the projectors played a crucial role

in finding the cancellation of κ-symmetry variations, hence justifying the restriction κ “ ˘1.
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To summarise, the master action (4.70) of a semi-symmetric deformed coset model enjoys κ-

symmetry provided the structure constants and inner products of the underlying algebra satisfy

δββ̂pfaα̂
βfbα

β̂ ` fbα̂
βfaα

β̂q ” cαα̂δab , (4.103)

for some matrix cαα̂, and one chooses worldsheet metric variations and fermionic parameters

δκγ
i j “ 2cαα̂

“

pq´
ω q
j α̂κiαp ´pp

`
ω q
jακi α̂q

‰

;

$

&

%

ϵp :“ rpmωqi , κ
i
qs with κiq :“ P

i l
`κql

ϵq :“ rpmωqi , κ
i
ps with κip :“ P

i l
´κpl

. (4.104)

The condition (4.103) seems to represent a restriction on the structure constants of the underlying

algebra and it would be interesting to understand under which circumstances this is satisfied. To

the best of our knowledge, this problem has not yet been addressed in the literature.

4.2.2. T-dual model

One can now proceed in the dualisation of the master action (4.70) by integrating out the gauge

fields. Variation with respect to ω gives the following equations of motion

‹mω ´
1
2pω `

1
2qω `∇jω Λ̃´Dpjωq “ 0 with ∇jω :“ d` rjω,´s , (4.105)

which after projecting on the four subspaces read

h : rΛ̃q, pωs `DΛ̃mpmωq ` rΛ̃p, qωs “ ∇Aω Λ̃h

p : rΛ̃h, pωs ` rΛ̃q, mωs `DΛ̃mpqωq `
1
2pω “ ∇Aω Λ̃p

m : ´ ‹mω ` rΛ̃p, pωs ` rΛ̃h, mωs ` rΛ̃q, qωs “ dΛ̃m ´DΛmpAωq

q : DΛ̃mppωq ` rΛ̃p, mωs ` rΛ̃h, qωs ´
1
2qω “ ∇Aω Λ̃q .

(4.106)

The first important feature one can notice about the latter system is that the first equation, unlike

the remaining three, does not exhibit a linear term in Aω. This is a direct result of the need

for HR gauge invariance of the initial model, which forced us to exclude the h-projection of j

from the action. In turn this implies that while the last three equations can be solved in general

for pω, mω, qω, the first equation may potentially represent an obstruction to dualisation, as the

underlying algebra will determine whether or not this can effectively be solved. For this reason,

completion of the T-duality procedure requires a case by case analysis. We shall now proceed by

solving the last three equations, landing on a hybrid T-dual action which allows to recover the

exchange of equations of motion and Maurer-Cartan equations found for principal chiral models.

In the next section we shall describe two examples in which the first equation can be solved as well.
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The equations in the subspaces p and q in (4.105) can be solved, see F.2. for more details, as

«

pω

qω

ff

“ R

«

´∇Aω Λ̃p ` adΛ̃qpmωq
´∇Aω Λ̃q ` adΛ̃ppmωq

ff

“

“

«

´R11p∇Aω Λ̃pq ´ R12p∇Aω Λ̃qq ` pR11 ˝ adΛ̃q ` R12 ˝ adΛ̃pqpmωq
´R21p∇Aω Λ̃pq ´ R22p∇Aω Λ̃qq ` pR21 ˝ adΛ̃q ` R22 ˝ adΛ̃pqpmωq

ff

,

(4.107)

where we defined

R :“

»

–

´ 1
1`c`˝DΛ̃m˝c´˝DΛ̃m

˝ c` ´ 1
1`c`˝DΛ̃m˝c´˝DΛ̃m

˝ c` ˝DΛ̃m ˝ c´

´ 1
1`c´˝DΛ̃m˝c`˝DΛ̃m

˝ c´ ˝DΛ̃m ˝ c`
1

1`c´˝DΛ̃m˝c`˝DΛ̃m
˝ c´

fi

fl (4.108)

and

c˘ :“
2

1˘ 2adΛ̃h
. (4.109)

After substituting pω and qω back into the equation of motion in m, this can be rewritten in

a form similar to the equation of motion (4.15) encountered for principal chiral models, namely

mω “ ´ ‹ T ` Sp‹mωq, with the definitions

S :“ adΛ̃h ` adΛ̃p ˝ pR11 ˝ adΛ̃q ` R12 ˝ adΛ̃pq ` adΛ̃q ˝ pR21 ˝ adΛ̃q ` R22 ˝ adΛ̃pq (4.110)

T :“ dΛ̃m ´DΛ̃mpAωq ` padΛ̃p ˝ R11 ` adΛ̃q ˝ R21qp∇Aω Λ̃pq ` padΛ̃p ˝ R12 ` adΛ̃q ˝ R22qp∇Aω Λ̃qq

and can thus be solved in a similar way

mω “ ´
1

1´ S
˝ P`pT q `

1

1` S
˝ P´pT q . (4.111)

Substituting pω, mω, qω back into (4.70) and rearranging, one obtains the hybrid T-dual action

S̃ “

ż

Σ

xT,
1

1´ S
P`pT qy ` xΛ̃h, FAωy`

` 1
2

ż

Σ

x∇Aω Λ̃p, R21p∇Aω Λ̃pq ` R22p∇Aω Λ̃qqy ` x∇Aω Λ̃q, R11p∇Aω Λ̃pq ` R12p∇Aω Λ̃qqy ,

(4.112)

which is manifestly invariant under KL : g Ñ k
´1g gauge transformations due to the invariance

of Λ̃ :“ g´1Λg ` g´1Dpgq and Aω. See the second paragraph in F.2. for more details on the

rearrangement. As needed, the above action is also unchanged under HR : g Ñ gh gauge trans-

formations: the law Aω Ñ h
´1Aωh ` h

´1dh makes ∇Aω Λ̃x Ñ h´1∇Aω Λ̃xh and consequently the
law Λ̃ Ñ h´1Λ̃h ` h´1Dphq ensures that Ri jp∇Aω Λ̃x q Ñ h´1Ri jp∇Aω Λ̃x qh, for x “ tp,m, qu and
i , j P t1, 2u, so that T Ñ h´1Th and SpT q Ñ h´1SpT qh.
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Equations of motion and Lax connection. Varying the action (4.112) with respect to the

multipliers Λ̃h, Λ̃p, Λ̃m, Λ̃q (see the last paragraph in F.2. for details) one finds equations of motion

Λ̃h : FÃ `
1
2 rm̃, m̃s ` rp̃, q̃s “ 0

Λ̃p : ∇Ãp̃ ` rm̃, q̃s “ 0

Λ̃m : ∇Ãm̃ `
1

2
rp̃, p̃s `

1

2
rq̃, q̃s “ 0

Λ̃q : ∇Ãq̃ ` rm̃, p̃s “ 0 ,

(4.113)

which have the form of Maurer-Cartan equations (4.66) after defining Ã :“ Aω, p̃ :“ pω, m̃ :“ mω

and q̃ :“ qω, with pω, mω, qω as given in (4.107) and (4.111). Variations with respect to Ã gives

back the unsolved equation in (4.105), namely

rΛ̃p, p̃s `DΛ̃mpm̃q ` rΛ̃p, q̃s “ ∇ÃΛ̃h . (4.114)

Using the above equations of motion together with Jacobi identity and the fact that p̃, m̃, q̃ satisfy

(4.105) one then also recovers, having chosen κ “ 1, the equations of motion of the initial model

∇Ã ‹ m̃ ´
1

2
rp̃, p̃s `

1

2
rq̃, q̃s “ 0

1
2∇Ãq̃ ` rp̃, ‹m̃ ´

1
2m̃s “ 0

1
2∇Ãp̃ ´ rq̃, ‹m̃ `

1
2m̃s “ 0 ,

(4.115)

which confirms the exchange of equations of motion and Maurer-Cartan equations observed in

principal chiral models. In turn, this allows to write down the T-dual Lax connection as for the

initial model (4.67)

J̃pz̃q :“ Ã` z̃ p̃ ` 1
2pz̃
2 ´ z̃´2qm̃ ` z̃´1q̃ ´ 1

2pz̃
2 ´ z̃´2q ‹ m̃ , (4.116)

with z̃ a new spectral parameter. Once again this ensures classical integrability of the T-dual

model.

4.2.3. Potential obstructions and examples

In this section we focus on the unsolved equation (4.114). We first rewrite it in a convenient

manner, making it clear that the possibility to solve it depends on the underlying algebra and thus

highlighting the presence of potential obstructions in the dualisation procedure. Subsequently we

discuss two simple examples, one of a symmetric and one of a semi-symmetric space, in which a

solution can be explicitly found.
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Substituting the solution (4.107) for pω, qω into the unsolved equation (4.114), one obtains

∇ÃΛ̃h “ ´adΛ̃q ˝ R11p∇ÃΛ̃pq ´ adΛ̃q ˝ R12p∇ÃΛ̃qq ` adΛ̃q ˝ pR11 ˝ adΛ̃q ` R12 ˝ adΛ̃pqpm̃q`

´ adΛ̃p ˝ R21p∇ÃΛ̃pq ´ adΛ̃p ˝ R22p∇ÃΛ̃qq ` adΛ̃p ˝ pR21 ˝ adΛ̃q ` R22 ˝ adΛ̃pqpm̃q`

`DΛ̃mpm̃q . (4.117)

It is now convenient to define the following set of operators

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

O1 :“ R11 ˝ adΛ̃q ` R12 ˝ adΛ̃p
O2 :“ R21 ˝ adΛ̃q ` R22 ˝ adΛ̃p
O3 :“ R12 ˝ adΛ̃q ` R11 ˝ adΛ̃p
O4 :“ R22 ˝ adΛ̃q ` R21 ˝ adΛ̃p

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

O:

1 :“ adΛ̃q ˝ R22 ` adΛ̃p ˝ R12

O:

2 :“ adΛ̃q ˝ R21 ` adΛ̃p ˝ R11

O:

3 :“ adΛ̃q ˝ R12 ` adΛ̃p ˝ R22

O:

4 :“ adΛ̃q ˝ R11 ` adΛ̃p ˝ R21

(4.118)

where conjugates O: are defined via xO:pXq, Y y “ xX,OpY qy @X, Y P g exploiting (F.18). Using
the latter definitions and substituting also the solution (4.111) for mω one then finds

∇ÃΛ̃h “ ´O
:

3p∇ÃΛ̃qq ´O
:

4p∇ÃΛ̃pq`

´
␣

DΛ̃m `O
:

3 ˝ adΛ̃p `O
:

4 ˝ adΛ̃q

(

˝
␣

8
ÿ

k“0

S2kp‹T q `
8
ÿ

k“0

S2k`1pT q
(

. (4.119)

The definition (4.110) of the 1-form T can also be rewritten, using the operators (4.118), as

T “ dΛ̃m `O:

1pdΛ̃qq `O
:

2pdΛ̃qq ´ pDΛ̃m ` adΛ̃p ˝O3 ` adΛ̃q ˝O4qpÃq , (4.120)

so that upon substituting in the above equation and rearranging terms in such a way that Ã ” Aω

appears on the left hand side, one finally obtains the desired form of the unsolved equation (4.114)

W pAωq ` Zp‹Aωq “ ζ , (4.121)

where we introduced operators W,Z : hÑ h and the 1-form ζ P Ω1pΣ, hq as

W :“ adΛ̃h ` N ` pDΛ̃m ´M
:q ˝

8
ÿ

k“0

S2k`1 ˝ pDΛ̃m `Mq

Z :“ pDΛ̃m ´M
:q ˝

8
ÿ

k“0

S2k ˝ pDΛ̃m `Mq

ζ :“ dΛ̃h ` ξ ` pDΛ̃m ´M
:q ˝ p‹ ` Sq ˝

8
ÿ

k“0

S2k ˝ pdΛ̃m ` χq .

(4.122)
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In the above expressions, we isolated terms from the p, q subspaces by defining S :“ adΛh `L with

M :“ adΛ̃p ˝O3 ` adΛ̃q ˝O4 L :“ adΛ̃p ˝O1 ` adΛ̃q ˝O2 N :“ adΛ̃q ˝O3 ` adΛ̃p ˝O4

ξ :“ O:

3pdΛ̃qq `O
:

4pdΛ̃pq χ :“ O:

1pdΛ̃qq `O
:

2pdΛ̃pq , (4.123)

so that one can recover the expressions for symmetric-spaces by setting such contributions to zero.

The rewriting (4.121) of the unsolved equation of motion (4.114) makes it clear that it cannot

be generally solved for Aω, as this possibility depends on the invertibility of the operators W and Z

and in turn on the structure of the underlying algebra. In fact, using the projectors P˘ introduced

in (4.17) one can write 1 “ P` ` P´ and ‹ “ P` ´ P´ and use this to separately solve for the

components A˘
ω :“ P˘Aω P Ω

1
˘pΣ, hq of the gauge field. This leads to

pW ` ZqA`
ω “ ζ

` pW ´ ZqA´
ω “ ζ

´ . (4.124)

Consecutively, one can solve the equation for Aω provided the two operators W ˘Z are invertible.

From a first inspection, one may recognise three situations: in the first two W and 1˘ ZW´1 or

Z and 1 ˘WZ´1 are inverible, with respectively Z and W not invertible, while in the third case

both W and Z are not invertible, but their sum and difference are

Aω “
1

2
pζ ` ‹ζqB` `

1

2
pζ ´ ‹ζqB´ with

$

’

’

’

&

’

’

’

%

B˘ :“ W
´1rp1˘ ZW´1q´1s

B˘ :“ ˘Z
´1rp1˘WZ´1q´1s

B˘ :“ pW ˘ Zq´1

. (4.125)

Even though the above result requires a case-by-case analysis and does not allow for a general

solution that could be substituted back into the hybrid action (4.112), one could make one further

step to formally integrate out Aω and obtain the full T-dual action, separating the metric from the

B-field. From the definition (4.122) of ζ one can recognise that

P˘ζ “ P˘ζ˘ with ζ˘ :“ dΛ̃h ` ξ ˘ pDΛ̃ ´M
:q ˝

8
ÿ

k“0

p˘Sqk ˝ pdΛ̃m ` χq (4.126)

and the gauge field Aω can thus be split into terms with and without Hodge-star operator

Aω :“ ‹α` β with α :“
1

2
pζ`B` ´ ζ´B´q β :“

1

2
pζ`B` ` ζ´B´q . (4.127)

This can now be substituted back into the hybrid action (4.112), obtainting S̃ “
ş

Σ g̃ ` B̃ with

g̃ :“
1

2
xλ´,

1

1´ S
‹ λ`y ´ x∇βΛ̃h `O:

3p∇βΛ̃qq `O
:

4p∇βΛ̃pq, ‹αy , (4.128)
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B̃ :“
1

2
xλ´,

1

1´ S
λ`y ` xΛ̃h, Fβ ´

1

2
rα,αsy `

1

2
xα,Npαqy`

`
1

2
x∇βΛ̃p, R21p∇βΛ̃pq ` R22p∇βΛ̃qqy `

1

2
x∇βΛ̃p, R21p∇βΛ̃pq ` R22p∇βΛ̃qqy .

(4.129)

Where we further defined the 1-forms λ˘ :“ ∇β˘αΛ̃m`O:

1p∇β˘αΛ̃qq`O:

2p∇β˘αΛ̃pq´Dpβ˘αq.

While the above action is formally T-dual to (4.68), as all gauge fields have been integrated

out assuming invertibility of W ˘ Z, we stress again that the h-valued 1-forms α and β encode

all such information and cannot be made more explicit without performing a choice of model. We

shall now discuss two examples in which the equation (4.121) can effectively be solved.

S3 » SOp4q{SOp3q. The symmetric space S3 has already been studied in the literature [62] and

it’s known to be T-dualisable. Having explicitly solved the equations of motion (4.106) in the

subspaces p,m, q and exploited the solution to rearrange the action and the h-projection, we shall

recover dualisability in a slightly different fashion, as solving the equation (4.121) will require the

inversion of two 3x3 operators, as opposed to the 6x6 one studied in [62]. These exhibit the nice

property of being analytically invertible, thus allowing to avoid computational methods and to retain

the underlying index structure, which would otherwise be lost. We shall assume to have dualised

the full GL “ SOp4q group of isometry, so as to choose gauge g “ 1. Further assuming vanishing

deformation D “ 0, we end up with Λ̃ :“ g´1Λg ` g´1Dpgq Ñ Λ P sop4q. We thus start by

considering the sop4q subalgebra contained in osppM|2q, with M “ 4, reported in B.1.

rRIJ , RKLs “ ´
i
2pδIKRJL ´ δJKRIL ´ δILRJK ` δJLRIKq , (4.130)

with indices I, J “ t1, 2, 3, 4u raised and lowered using the Euclidean metric δIJ . The subalgebra

h “ sop3q “ tHi :“ ´
1
2εi
jkRjku can then be separated from the rest m :“ tMi :“ Ri4u by using

indices i , j “ t1, 2, 3u and exploiting the above relation one can find

rHi , Hj s “
i

2
εi j
kHk rMi , Hj s “

i

2
εi j
kMk rMi ,Mj s “

i

2
εi j
kHk . (4.131)

Expanding the gauge fields and the multipliers as

Aω “ A
i
ωHi Λ “ Λh ` Λm “ y

iHi ` x
iMi , (4.132)

one can compute, see F.3. for more details, the explicit form of the operators W and Z

W pAωq “ v
iεi j
kAjωHk with v i :“ i

2 ry
i `

x ¨y
p4´y2q

x i s

Zp‹Aωq “
1

4py2´4q

␣

rpy2 ´ 4qx2 ´ py ¨ xq2sδj
k`

` rpy ¨ xqyj ´ py
2 ´ 4qxj sx

k ` rpy ¨ xqxj ´ x
2yj sy

k
(

‹ AjωHk .

(4.133)
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Looking at the above expressions one realises that v j and x j respectively lie in the kernels of Wj
k

and Zj
k , which are thus not invertible. However it is also not too complicated to recognise that

W ˘ Z are both invertible and in particular that one can write the two inverses as

rpW ˘ Zq´1sk
l “ a˘

1 δk
l ` xkpa

˘
2 x
l ` a˘

3 y
lq ` ykpa

˘
4 x
l ` a˘

5 y
lq ` εak

lpa˘
6 x
a ` a˘

7 y
aq` (4.134)

` xaybεab
lpa˘
8 x
k ` a˘

9 y
kq ` xaybεabkpa

˘
10x
l ` a˘

11y
lq ` a˘

12x
aybεabkx

cydεcd
l ,

with coefficients a˘
1 , ..., a

˘
12 complicated functions of x

2, y2, py ¨ xq which we report in F.3..

OSpp1|2q{SOp1, 1q. This semi-symmetric coset has been studied in the literature in the context

of holography [123] and we shall here consider it as one of the simplest explicit examples of super

non-Abelian dualisation, showing that the equations of motion (4.121) can indeed be solved. The

interest in such a model comes from its structure, which is that of a 2d Green-Schwarz string

sigma model satisfying the supergravity torsion constraints. Furthermore, dualisation of such a

coset naturally generalises that of the principal chiral model on OSpp1|2q, considered in the previous

sections, and it would thus be interesting to study in full details. The T-dual model may also in

principle be approached from the point of view of holography, as it has already been done for certain

classes of T-dual models [63–67]. Performing dualisation with respect to the full isometry group

GL “ OSpp1|2q one can choose gauge g “ 1 and upon setting D “ 0 the multipliers become

Λ̃ :“ g´1Λg` g´1Dpgq Ñ Λ P ospp1|2q. The starting point for this model is the ospp1|2q algebra

(4.33), which we rewrite in lightcone notation using α, β “ t`,´u and ϵ`´ “ ´1

tQ˘, Q˘u “ L˘˘ tQ`, Q´u “ L`´ rL˘˘, Q¯s “ ¯iQ˘

rL`´, L˘˘s “ ˘iL˘˘ rL``, L´´s “ ´2iL`´ rL`´, Q˘s “ ˘
i
2Q˘ .

(4.135)

Upon identifying the four subspaces as

h “ tL`´u p “ tQ`u m “ tL``, L´´u q “ tQ´u , (4.136)

one can see that the commutator structure (4.62) is indeed satisfied. We thus proceed expanding

the gauge field and multipliers as

Aω “ AL`´ Λ “ Λh`Λp`Λm`Λq “ yL`´` θ
`Q`` x

``L``` x
´´L´´` θ

´Q´ (4.137)

and after some computations, see F.3. for more details, we find that

W pAωq “ 0 Zp‹Aωq “
4x``x´´

1` y2

„

1`
4iθ`θ´

p1´ iyqr4x``x´´ ` p1` iyq2s

ȷ

‹ AL`´ . (4.138)
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Hence equation (4.121) can immediately be solved exploiting nilpotency of the fermionic multipliers

Z´1 “
1` y2

4x``x´´

„

1´
4iθ`θ´

p1´ iyqr4x``x´´ ` p1` iyq2s

ȷ

. (4.139)

H-gauge fixing. In both examples considered above we have performed dualisation by gauging

the full group G of isometry of the initial model, successively exploiting the K “ G gauge freedom

to get rid of the initial coordinates. As mentioned below equation (4.70), the dual models are

then written in terms of dimpGq Lagrange multipliers, which need to be reduced by exploiting the

inherited H-gauge symmetry in order to recover the right number dimpG{Hq of degrees of freedom.

To deal with such requirement one can then proceed as in [62], that is by using the multipliers

to construct precisely dimpG{Hq invariant quantities under the local H action and using the gauge

transformations to get rid of those multipliers whose disappearance could not lead to the vanishing

of the invariant quantities. This way one is effectively establishing a one-to-one relation between

the invariant quantities and the remaining multipliers, so that the invariants themselves could be

used to describe the T-dual model. This reasoning had already been exploited in [124,125], where

the authors argued about the possibilty of constructing precisely dimpG{Hq H-invariant quantities

out of dimpGq group parameters. We thus conclude with a brief discussion about the construction

of invariant quantities for the two models examined above. To this aim we start by recalling that

under a local HR transformation gÑ gh the multipliers Λ̃ :“ g
´1Λg` g´1Dpgq transform as

Λ̃ Ñ h´1Λ̃h ` h´1Dphq with h P H , (4.140)

so that upon gauging the full group of isometry, choosing g “ 1 and setting D “ 0 one finds

Λ Ñ h´1Λh “ Ad´1
h Λ “

8
ÿ

k“0

1

k!
adkCpΛq with h :“ e´C C :“ C iHi . (4.141)

Where we respectively denoted by Hi and C
i the generators of the Lie algebra h and the local

parameters of the transformation. The latter relation can then be used to determine the explicit

transformation law of the Lagrange multipliers and construct invariant quantities.

For the case of the symmetric space SOp4q{SOp3q it is not hard to exploit the commutation

relations (4.131) and the expansion (4.132) of the multipliers to find that

z i Ñ z jpAd´1
h qj

i :“ z j
„

cosh pC{2qδj
i `
1´ cosh pC{2q

2
CjC

i `
i sinh pC{2q

C
Ckεkj

i

ȷ

, (4.142)

for z i “ tx i , y iu and C2 :“ C iCi . Noting that pAd
´1
h qk

ipAd´1
h ql

jδi j “ δkl one can then immediately
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construct three invariant quantities

y2 :“ y iyi x2 :“ x ixi y ¨ x :“ y ixi , (4.143)

so that dimpHq “ 3 out of the dimpGq “ 6 multipliers can be gauge fixed, recovering dimpG{Hq “ 3

dual coordinates as for the initial model.

For the case of the semi-symmetric space OSpp1|2q{SOp1, 1q the above computation is even

simpler, as h is Abelian and one has h “ eCL`´ . From the relations (4.135) and the multipliers

expansion (4.137) one then obtains that y is itself invariant and

θ` Ñ e iC{2θ` x`` Ñ e iCx`` x´´ Ñ e´iCx´´ θ´ Ñ e´iC{2θ´ , (4.144)

from which one can immediately construct the bosonic invariant x``x´´. Notice that in this case

the gauge transformations act as a phase on the multipliers and hence do not allow to set to zero

any of them. This is in agreement with the fact that the inverse operator Z´1 in equation (4.139)

would otherwise not exist. The best one could achieve in this situation is hence setting either

x`` or x´´ to a non-vanishing constant, effectively getting rid of it and recovering the number

dimpG{Hq “ 2 of bosonic coordinates of the initial model.



5
Conclusions and Outlook

In this thesis we have taken a superspace approach to non-Abelian T-duality, aiming for a better

understanding of examples of dualisation procedure in which the background under investigation

enjoys a set of superisometries closing on a certain superalgebra. The well-known process of

gauging bosonic isometries, enforcing the flatness of the gauge fields and integrating them out,

can be nicely extended to the supersymmetric setting and we concentrated on three main families

of models constructed in terms of Lie supergroups, namely principal chiral and coset models on

symmetric and semi-symmetric spaces.

After briefly reviewing the derivation of Buscher’s rules for the case of a single bosonic or

fermionic isometry, we highlighted the dualisation procedure for bosonic principal chiral models,

successively extending it to the case of supergroup manifolds and concentrating on the simple,

but physically relevant, concrete example of OSpp1|2q. Even for such a relatively simple model, an

explicit and ansatz-based approach to dualisation proved to be quite involved due to the enriched

amount of technical complications deriving from the need for a physical understanding of supergeo-

metries, which have to satisfy a non-trivial set of geometric requirements to be granted the status

of appropriate supergravity backgrounds. The study of such requirements turns out to be much

clearer from a more abstract and algebraic perspective, which allows to perform dualisation of prin-

cipal chiral models in great generality and to draw conclusions about the above specific model with

a faster and more linear argument: while the initial model represents an appropriate supergravity

background, its T-dual falls outside this class of geometries. Beyond this, the more abstract point

of view also allows an intuitive extension of T-duality to coset models based on Lie supergroups and

to explicitly verifiy the exchange in role of the equations of motion and Maurer-Cartan equations,

expected to hold as for the purely bosonic setting, for all the three classes of models investigated.

Dualisation of symmetric and semi-symmetric spaces exhibits more subtleties, as compared to

the case of principal chiral models, since the process of integrating out the gauge fields cannot

be performed in general and obstructions may arise due to the local H-invariance characterising

69
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cosets G{H. The potential impediment can however be confined to the study of a single equation,

involving quantities taking values in the Lie algebra of the subgroup H, in which invertibility of two

linear operators determines on a case-by-case basis the possibility of completing the procedure.

This allows, as a first step, to recover the known dualisability of the symmetric space S3 »

SOp4q{SOp3q and to introduce a prime concrete example of semi-symmetric dualisation in terms of

the OSpp1|2q{SOp1, 1q coset, which exhibits the structure of a 2d Green-Schwarz-like superstring

satisfying the supergravity torsion constraints.

The above results and considerations are far from providing a complete picture on super non-

Abelian T-duality, but certainly suggest some possible directions to take into account to shed more

light on the topic. In first place, it would certainly be interesting to investigate further the breaking

of the supergravity torsion constraints upon dualisation of the principal chiral model on OSpp1|2q.

A possible explanation for this phenomenon might lie in the simplicity of the model, which despite

its interesting properties does not describe the dynamics of a string on a supergravity background.

This would require the use a Green-Schwarz action [102], argued to preserve the supergravity inter-

pretation of the backgrounds [83,84], and hence the removal of the fermionic vielbeine contribution

to the metric and the inclusion of a Wess-Zumino term. The gauging procedure used in this work

would not be applicable in such case [126], but this would certainly deserve further investigations.

Another interesting possibility is that the breaking of three-dimensional supergravity requirements

might be the result of a more general breaking pattern ds2
S3
Ñ dr2 ` f prqds2

S2
already observed

in [15] for the dualisation of the bosonic compact space S3, and more recently also in the non

compact case of AdS3 [89]. Understanding whether this pattern might exhibit a supersymmet-

ric extension could be used to argue in favour of a lower dimensional supergravity in the T-dual

model, which would represent a novel peculiar feature brought into the game by the dualisation of

non-Abelian fermionic isometries.

Other fascinating directions to pursue are certainly related to a deeper understanding of semi-

symmetric spaces, which often play an important role in the AdS/CFT context. To begin, in

light of the resolution of the potential obstruction for the semi-symmetric coset OSpp1|2q{SOp1, 1q

it would be interesting to complete in full details the dualisation procedure of such model, as

this might serve as a base reference for the study of more complicated examples. Additionally,

in light of the holography perspective from which the above model was initially studied [123], it

would be very fascinating to consider again this direction by looking for a possible holographic

description of the T-dual model. The connection between bosonic T-duality and holography has

already been explored in the literature for certain classes of models [63–67], for which a holographic

interpretation of the T-dual backgrounds has been achieved. It thus seems reasonable that novel

examples of such relation should appear in a super non-Abelian T-duality setting and, beyond the

simple semi-symmetric spaced mentioned above, it would naturally be worth tackling this type of
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analysis for the various examples of semi-symmetric spaces of physical relevance appeaing in the

AdS/CFT literature. This line of research would also benefit from a deeper understanding of the

structure of the operators W and Z, defined in (4.122), involved in the potentially obstructing

equation for coset models. Indeed, criteria for T-dualisability of a background might be extracted

by understanding the invertibility conditions of such operators. These conditions might lead to

some restrictions on the form of the underlying algebra and knowing the latter would immediately

allow for a more systematic study of the dualisation procedure.

Last but not least, another interesting scenario in which the ideas and techniques developed

in the gauging approach to T-duality might potentially find application, is represented by non-

relativistic string theory. In this context, the so-called Lie algebra expansion [127] has indeed

recently allowed the construction of coset-like sigma models [128] thus opening up the possibility

of re-using the T-duality toolkit to attempt gaining further insight on the topic.
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A
Superspace Conventions

A.1. Setup

Consider a pp, q|2nq-dimensional manifoldM with metric g of Graßmann degree zero. This locally
resembles Rp,q|2n, naturally equipped with a block-diagonal graded-symmetric bilinear form δAB “

p´1q|A||B|δBA
1, built out of the flat metric of signature pp, qq in the bosonic block and the standard

symplectic form in the fermionic one, that is

δAB :“

«

ηab 0

0 Jαβ

ff

with ηab :“

«

´1pˆp 0pˆq

0qˆp 1qˆq

ff

, Jαβ :“

«

0nˆn 1nˆn

´1nˆn 0nˆn

ff

. (A.1)

The supergroup OSppp, q|2nq :“ tA P GLpp, q|2nq : ASTηA “ ηu, where AST denotes super

transposition of A, leaves invariant the above bilinear form and hence represents the structure

group ofM. This supergroup has 12pp`qqpp`q´1q`np2n`1q bosonic generators and 2pp`qqn
fermionic generators. Upper case letters from the beginning of the latin alphabet A,B, C,D, ...

will refer to tangent space indices, while upper case letters from the middle of the latin alphabet

M,N, P,Q, ... to curved indices. Coordinates onM will be collectively denoted by zM .

We shall adopt the northwest-southeast (NW-SE) summation convention, commonly adopted

in superspace, and in a given set of coordinates the metric tensor will be written as

g “
1

2
dzM d dzNgNM , (A.2)

with gNM “ p´1qMNgMN and d denoting the graded symmetric tensor product dz
M d dzN :“

dzM b dzN ` p´1qMNdzN b dzM . The symbol ^ denotes graded antisymmetric tensor product

1The symbol | ¨ | refers to the Graßmann degree and we shall generally simply replace |A| with A.
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dzM ^ dzN :“ dzM b dzN ´ p´1qMNdzN b dzM and k-forms are expanded as

ωk “
1

k!
dzMk ^ ...^ dzM1ωM1...Mk . (A.3)

Under a change of coordinates zM Ñ z̃Mpzq we have the following transformation properties

dzM Ñ dz̃M “ dzN
Bz̃M

BzN
B

BzM
Ñ

B

Bz̃M
“
BzN

Bz̃M
B

BzN
, (A.4)

leaving the exterior derivative d “ dzMBM invariant and transforming the metric components as

g̃MNpz̃q “ p´1q
pQ`MqN Bz

Q

Bz̃N
BzP

Bz̃M
gPQpzq . (A.5)

One can then introduce frame fields, or vielbeine, eA such that

g “
1

2
eB d eAηAB with eA “ dzMeM

A gMN “ p´1q
NBeM

BeN
AδAB (A.6)

and a set of inverse vielbeine eA, satisfying the relation eA
␣ eB “ δA

B and defining the structure

functions onM
reA, eBs “ FABCeC . (A.7)

In the above we used ␣ to denote the interior product, while δA
B is the Kronecker symbol and

r´,´s the graded Lie bracket. By setting δBA “ p´1qABδA
B we can introduce δAB and gMN ,

respectively the inverses of δAB and gMN , such that

OACOCB “ δ
A
B ðñ p´1qCOBCO

CA “ δB
A with O “ δ, g . (A.8)

A generic pp, qq-tensor S can be expanded on a basis as

S “ dzMq b ...b dzM1 SM1...Mq
Np...N1 BN1 b ...b BNp (A.9)

and its components transform as

S̃M1...Mq
Np...N1 “p´1q

řq
n“2pMn`Qnq

řn´1
m“1Mmp´1q

řp
k“2pNk`Pk q

řk´1
l“1 Nl ¨

¨
BzQq

Bz̃Mq
......

BzQ1

Bz̃M1
SQ1...Qq

Pp...P1
Bz̃N1

BzP1
......

Bz̃Np

BzPp
. (A.10)
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A.2. Graded Lie derivative and Killing equation

The Lie derivative along a vector field X onM will be denoted by LX . This acts on functions f

and vector fields Y as

LXpf q “ Xpf q LXpY q “ rX, Y s . (A.11)

By requiringLX to act as a graded derivation on tensor product and commute with interior product

LXpY b ωq “ LXpY q b ω ` p´1q
XY Y bLXpωq

LXpY ␣ ωq “ LXpY q ␣ ω ` p´1q
XY Y ␣LXpωq ,

(A.12)

one can determine the graded Lie derivative of the metric and B-field as

pLKV T qMN “ p´1q
V pM`NqKPV BPTMN ` p´1q

V NpBMK
P
V qTPN ` p´1q

MpN`P`V qpBNK
P
V qTMP ,

(A.13)

for T “ tg,Bu. The latter can be obtained by considering

LKV pY
␣X ␣ T q “ LKV pY q

␣X ␣ T ` p´1qV Y Y ␣LKV pXq
␣ T ` p´1qV pX`Y qY ␣X ␣LKV pT q

and choosing Y “ BM , X “ BN , KV “ KV
P BP , so as to extract the components as

BM
␣BN

␣T “ TMN BM
␣BN

␣pLKT q “ pLKT qMN rBM , K
P
V BP s “ pBMK

P
V qBP . (A.14)

Notice that |BM | “ M and |K
P
V | “ V ` P , with V the grading of the isometry generated by KV .

A.3. Maurer-Cartan equations

The vielbeine eA satisfy the Maurer-Cartan equation de ` 1
2 re, es “ 0. In components this reads

deC ´
1

2
eA ^ eBFBAC “ 0 . (A.15)

To show this one uses Cartan’s formula and that Lie derivative commutes with the interior product

LXpY ␣ ωq “ LXpY q ␣ ω ` p´1q
XY Y ␣LXpωq LXω “ dpX ␣ ωq ` X ␣ pdωq . (A.16)

Indeed, taking Y ␣LXω and choosing X “ eA, Y “ eB, ω “ e
C these two equations lead to

$

&

%

eB
␣LeApe

Cq “ FBAC

eB
␣LeApe

Cq “ eB
␣ eA

␣ deC
ñ eB

␣ eA
␣ deC “ FBAC . (A.17)
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A.4. Cartan structure equations

The torsion and curvature 2-forms

TC “
1

2
eB ^ eATAB

C RC
D “

1

2
eB ^ eARABC

D (A.18)

satisfy Cartan’s structure equations

TC “ ´deC ` eB ^ΩB
C RC

D “ ´dΩC
D `ΩC

E ^ΩE
D , (A.19)

with Bianchi identities

dTC ` TB ^ΩB
C “ eB ^ RB

C dRC
D ` RC

E ^ΩE
D “ ΩC

E ^ RE
D. (A.20)

ΩB
C denotes the connection 1-form with coefficients ΩAB

C defined by the covariant derivative of

the inverse vielbeine ∇eAeB “ ΩABCeC . The Ricci tensor and scalar curvature are then defined as

RAB :“ p´1q
Cp1`A`BqRCAB

C R :“ δBARAB . (A.21)

To obtain (A.19) one starts from the definition of p1, 2q-torsion and p1, 3q-curvature tensors

T pX, Y q :“ ∇XY ´ p´1qXY∇Y X ´ rX, Y s

RpX, Y qZ :“ ∇X∇Y Z ´ p´1qXY∇Y∇XZ ´∇rX,Y sZ ,
(A.22)

which choosing X “ eA, Y “ eB, Z “ eC lead to

TAB
CeC “

“

ΩAB
C ´ p´1qABΩBA

C ´ FABC
‰

eC

RABC
DeD “

“

eAΩBC
D ´ p´1qABeBΩAC

D ` p´1qApB`C`EqΩBC
EΩAE

D`

´ p´1qBpC`EqΩAC
EΩBE

D ´ FABEΩECD
‰

eD .

(A.23)

A.5. Connection from metric compatibility

Metric compatibility leads to the condition ΩApBCq “ 0 for ΩABC :“ ΩAB
DδDC , and can be

combined with (A.19) to rewrite the connection components as

ΩAB
C “

1

2

“

FAB
C ` FCAB ` p´1q

ABFCBA
‰

, (A.24)
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where we defined FAB
C :“ FABC ` TABC and FCAB :“ p´1qCpA`BqδCDFDA

EδEB.

To begin, one can obtain the relation ΩCpABq :“ ΩCAB ` p´1q
ABΩCBA “ 0 by looking at

∇ZpX␣Y ␣gq “ p∇ZXq␣Y ␣g`p´1qXZX␣p∇ZY q␣g`p´1qZpX`Y qX␣Y ␣∇Zg , (A.25)

imposing that ∇Zg “ 0 and choosing X “ eA, Y “ eB, Z “ ec . In order to determine the

connection in terms of structure functions and torsion one can then lower the index in the Cartan

structure equation

TABC “ ΩABC ´ p´1q
ABΩBAC ´ FABC with

$

&

%

TABC :“ TAB
DδDC

FABC :“ fABDδDC
, (A.26)

and take the symmetric part of the equation with respect to the indices B ´ C. Exploiting the

condition ΩApBCq “ 0 this leads to

ΩBqApC “ ´p´1q
AB

“

FApBCq ` TApBCq

‰

. (A.27)

Looking at the symmetric part in B ´ C of the condition ΩBpCAq “ 0 one then finds

ΩpBCqA ` p´1q
ACΩBqApC “ 0 ñ ΩBqApC “ ´p´1q

ACΩpBCqA , (A.28)

which can be substituted in the former equation leading to

ΩpBCqA “ p´1q
ApB`Cq

“

FApBCq ` TApBCq

‰

. (A.29)

One can then simply write ΩBCA “ ΩrBCsA `ΩpBCqA and use that the first antisymmetric term is

precisely contained in the Cartan structure equation, hence obtaining

ΩBCA “
1

2

“

FBCA ` p´1q
ApB`CqpFABC ` p´1q

BCFACBq
‰

, (A.30)

with FBCA :“ FBCA ` TBCA. Finally, recalling that ΩBCA “ ΩBCDδDA and p´1qAδDAδAE “ δDE

one can contract both sides of the above equation with p´1qAδAE to raise back the index.

A.6. Supergravity constraints

In this section we introduce a set of requirements that any superspace should satisfy in order to

be given the physical interpretation of appropriate supergravity background [129, 130]. The fun-

damental postulate of any supergravity theory, introduced in direct analogy with general relativity,
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is that the superspace structure group should be a Lorentz group, relating equivalent vielbeine via

a reducible combination of vector and spinor representations. This assumption imposes a strong

restriction on the generic structure supergroup and, practically speaking, imposes connection and

curvature to take values in the Lorentz algebra in such a way that they result to be diagonal

ΩAB
C “

«

ΩAb
c 0

0 ΩAβ
γ

ff

RABC
D “

«

RABc
d 0

0 RABγ
δ ,

ff

(A.31)

with vector and spinor components related by the commutator of gamma matrices associated to

the Lorentz group

ΩAβ
γ 9ΩAbc rΓ

b,Γc sβ
γ RABγ

δ 9RABcd rΓ
c ,Γd sγ

δ . (A.32)

In particular we notice that such constraints lead to the following restrictions on the connection

ΩAb
γ “ 0 “ ΩAβ

c ΩApBCq “ ΩABC ` p´1q
BCΩACB “ 0 , (A.33)

and similarly for the curvature.

This postulate implies another important feature of supergravities, known as Dragon’s the-

orem [101, 129, 131]: a non-trivial relation between supertorsion and supercurvature can be es-

tablished and the latter can be completely expressed in terms of the former. Due to this result,

supertorsion represents the truly fundamental quantity in superspace, while supercurvature is ef-

fectively redundant. This implies that proceeding further in direct analogy with general relativity

and imposing the vanishing of torsion to find a Levi-Civita connection is not a good choice in super-

space, as this would also lead to vanishing curvature, and hence to a trivial geometry. Additionally,

such a choice would be in contradiction with the global supersymmetry perspective, which exhibits

a single non-vanishing component of torsion: imposing all components to vanish would make the

simplest flat superspace fall outside the class of geometries encompassed by our description, thus

immediately breaking the physical interpretation. Despite the restrictions imposed by the above

postulate, superspaces still feature a quite large number of fields and it thus makes sense to look

for a set of requirements which could reduce such set of degrees of freedom to a consistent minimal

one. This motivates the following set of torsion constraints

Tαβ
c “ k1fαβ

c Tab
c “ Taβ

c “ Tαβ
γ “ 0 , (A.34)

introduced to establish a connection with the component formulation of supergravity [98–100],

while ensuring consistency with flat superspace. In the above equation k1 represents a proportion-
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ality constant, while fαβ
c are the structure constants of the underlying super Poincaré algebra,

and their exact form may vary depending on the dimension. The above set of ”canonical” torsion

constraints represent the basis of our analysis for the PCM on OSpp1|2q and its T-dual model,

but it should be kept in mind that not all of them are essentials and one may possibly consider

variations. In fact, the truly fundamental constraint is the first one Tαβ
c “ k1fαβ

c , which ensures

consistency with flat superspace and also comes out as a requirement when imposing κ-symmetry

of the Green-Schwarz action [102,78]. The remaining constraints are often said to be conventional,

as they are generically chosen so as to fix components of the connection or the vielbeine, but might

for example be modified as a result of shifts and field re-definitions [132].

We can now spell out explicitly the equations contained in (A.24) imposing (A.33), (A.34)

1 Ωab
c “ 1

2

“

Fabc ` δcdpFdab ` Fdbaq
‰

2 Ωαb
c “ 1

2

“

Fαbc ` δcdpFdαb ` Fdbα ` Tdbαq
‰

3 Ωaβ
γ “ 1

2

“

Faβγ ` Taβγ ´ δγδpFδaβ ` Tδaβ ` Fδβa ` k1fδβaq
‰

4 Ωαβ
γ “ 1

2

“

Fαβγ ` δγδpFδαβ ´ Fδβαq
‰

5 0 “ 1
2

“

Faβc ` δcdpFdaβ ` Tdaβ ` Fdβaq
‰

6 0 “ 1
2

“

Fabγ ` Tabγ ` δγδpFδab ` Fδbaq
‰

7 0 “ 1
2

“

Fαβc ` k1fαβc ` δcdpFdαβ ` Tdαβ ´ Fdβα ´ Tdβαq
‰

8 0 “ 1
2

“

Fαbγ ` Tαbγ ´ δγδpFδαb ` k1fδαb ´ Fδbα ´ Tδbαq
‰

.

(A.35)

The first thing one can notice is that equations 1 and 4 define two unconstrained components

of the connection in terms of the structure functions of the geometry. By construction, these

components satisfy the requirement ΩApBCq “ 0. The second thing to notice is that equations

5 ´ 8 do not represent four independent constraints on the structure functions and components

of torsion. Indeed, given the graded antisymmetry of FABC and TABC in the exchange of the first
two indices, it is not difficult to notice that exploiting δcbδ

cd “ δb
d and δγβδ

γδ “ δβ
δ one finds

5 δcb “ ´ 6 δγβ 7 δcb “ ´ 8 δγβ . (A.36)

It is thus sufficient to solve equations 6 and 7 by noting that the symmetric and antisymmetric

parts in the lower indices should vanish separately.

6

$
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%

Tab
γ :“ ´Fabγ 6A

Fδab ` Fδba ” 0 6S

7

$

&

%

pFdαβ ` Tdαβq ´ pFdβα ` Tdβαq ” 0 7A

Fαβc ” ´k1fαβc 7S

(A.37)

Hence one is left with solving equations 2 and 3 , which can however be first simplified by using
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the constraints imposed by 6 and 7 .

• Exploiting 6A and 6S , equation 2 leads to the condition Ωαb
c “ Fαbc .

This fixes one further component of the connection and 6S ensures that it correctly satisfies

Ωαpbcq “ 0. Condition 6S will hence represent one of the actual constraints imposed by the

supergravity requirements. This will finally have to be supplemented by (A.32).

• Exploiting 7A and 7S , equation 3 leads to the condition Taβ
γ :“ ´Faβγ `Ωaβγ .

This just fixes one of the unconstrained components of torsion, leaving Ωaβ
γ still free. Sub-

stituting back into 7A one finds it is satisfied provided that Ωdpαβq “ 0. This will be ensured

by the requirement (A.32), which will completely fix the latter component of connection.

To summarise, the eight equations on the previous page have been solved for the components

of connection Ωab
c ,Ωαβ

γ ,Ωαb
c and torsion Tab

γ , Taβ
γ . This requires to constrain the structure

functions Fαβc to be constant and Fαab to be antisymmetric in the last two indices. The connection
component Ωaβ

γ is left unconstrained except for the requirement Ωapαβq “ 0. Hence, at this

stage, the actual constraints on the structure functions resulting from imposing the supergravity

requirements are 6S and 7S . One can now finally impose the requirement (A.32), which puts an

additional condition on the structure functions Fαab and completely fixes the connection component
Ωaαβ, also ensuring its graded antisymmetry in the last two indices. Altogether, the resulting

constraints on the structure functions read

Fαβc ” ´k1fαβc

Fαpbcq ” 0

1
2 rFαβ

γ ` δγδpFδαβ ´ Fδβαqs ” k2Fαbc rΓb,Γc sβγ ,

(A.38)

where k1, k2 are proportionality constants. And the non-vanishing components of connection and

torsion read

Ωab
c “ 1

2

“

Fabc ` δcdpFdab ` Fdbaq
‰

Ωaβ
γ “ Ωabc rΓ

b,Γc sβ
γ

Ωαb
c “ Fαbc

Ωαβ
γ “ 1

2

“

Fαβγ ` δγδpFδαβ ´ Fδβαq
‰

“ k2Fαbc rΓb,Γc sβγ

Tab
γ “ ´Fabγ

Tαβ
c “ k1fαβ

c

Taβ
γ “ ´Faβγ `Ωaβγ

Tβa
γ “ ´Fβaγ ´Ωaβγ .

(A.39)



B
Orthosymplectic Algebra

B.1. The ospp1|2q algebra

To derive the algebra (3.15) we start from the more general osppM|2q algebra 1

tQIα, QJβu “ δIJLαβ ` ϵαβRIJ

rRIJ , QKαs “ ´iδKrIQJsα rLαβ, QIγs “ ´iϵγpαQIβq (B.1)

rLαβ, L
γδs “ ´2iδpα

pγLβq
δq rRIJ , R

KLs “ ´2iδrI
rKRJs

Ls ,

where QIα are Graßmann-odd generators carrying the index I “ 1, ...,M of the vector repres-

entation of sopMq, generated by RIJ “ δIKδJLR
KL “ ´RJI , and the spinor index α “ 1, 2

of spp2,Rq » slp2,Rq, generated by Lαβ “ ϵαγLγδϵβδ “ Lβα with ϵαβ “ ´ϵβα and inverse

ϵαβ “ ´ϵβα such that ϵαγϵγβ “ ϵβγϵ
γα “ δβ

α.

The above algebra reduces to the following one when considering the ospp1|2q case

tQα, Qβu “ Lαβ rLαβ, Qγs “ ´i ϵγpαQβq rLαβ, L
γδs “ ´2iδpα

pγLβq
δq . (B.2)

It is here convenient to introduce generators

La “ ´
i

2
pγaq

αβLαβ , (B.3)

defined in terms of the 3d gamma matrices pγaqα
β, generators of slp2,Rq in the fundamental

1For a complete discussion of which we refer to [93, 133]. Here we use convention according to which paren-

theses and square brackets respectively denote normalised symmetrisation and normalised anti-symmetrisation of the

enclosed indices.
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representation

tγa, γbuα
β “ 2δα

βηab rγa, γbsα
β “ 2εabcpγcqα

β

with ηab “ diagp´1,`1,`1q “ ηab s.t. ηabηbc “ ηcbη
ba “ δc

a .
(B.4)

Vctor indices a “ 0, 1, 2 are raised and lowered by η

γa “ ηabγb εabcγc “ ε
abcηcdγ

d “ εabcγ
c γaLa “ γbη

baLa “ γaL
a , (B.5)

while spinor indices are raised and lowered by ϵ

pγaqαβ “ ϵαδpγ
aqδβ “ pγ

aqα
δϵβδ pγaqαβ “ ϵαδpγaqδ

β “ pγaqαδϵ
βδ . (B.6)

We also have the following identities

εabcε
adk “ δb

kδc
d ´ δb

dδc
k εabcε

abd “ ´2δc
d , (B.7)

and combining the anticommutator and commutator of gamma matrices (B.4) one can obtain

pγaqα
δpγbqδ

β “ δα
βηab ` εabcpγcqα

β ñ pγaqαδpγ
bqδβ “ ´δα

βηab ´ εabcpγcqα
β

pγaqα
δpγbqδ

α “ 2ηab ñ pγaqαδpγ
bqδα “ ´2ηab .

(B.8)

Moreover, the 3d gamma matrices enjoy the following properties

pγaqαβ “ pγ
aqβα pγaqαβ “ pγaqβα pγaqα

α “ 0

pγaqαβpγaqρσ “ ϵραϵβσ ` ϵρβϵασ .
(B.9)

These can be understood as descending from those of the 4d sigma matrices upon dimensional

reduction, as noted in Appendix A of [134]. Using the above properties one can verify that2

La “ ´
i

2
pγaq

αβLαβ ñ Lαβ “ ´ipγ
bqαβLb (B.10)

and, exploiting the relations (B.8), one can recover the ospp1|2q algebra in (3.15)

tQα, Qβu “ ´ipγ
bqαβLb rLa, Qγs “ ´

1

2
pγaqγ

βQβ rLa, Lbs “ εab
cLc . (B.11)

2We do this by checking consistency of the two definitions using (B.8)

La “ ´
i

2
pγaq

αβLαβ “ ´
1

2
pγaq

αβ
pγbqαβLb “ ´

1

2
p´2qδa

bLb “ La .
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Notice also that the definition of inner products provided in (3.15) has been fixed by setting

ST r rLaLbs “ Aηab ST r rQαQβs “ iBϵαβ (B.12)

and checking consistency with the following supertrace identity

ST r rTArTB, TCss “ ST r rTATBTCs ´ p´1q
BCST r rTATCTBs “

“ ST r rTATBTCs ´ p´1q
BC`BpC`AqST r rTBTATCs “

“ ST r rrTA, TBsTCs ,

(B.13)

which should be satisfied by all triplets of generators pTA, TB, TCq. The triplet pLa, Qα, Qβq forces

A “ ´B{2, so that choosing B “ 1 leads to the desired inner products (3.15).





C
Initial Action On OSpp1|2q

C.1. Derivation of the action

We recall the chosen parametrisation for OSpp1|2q

g “ ex
aLae´θαQα “ gbosgf er g´1 “ eθ

αQαe´xaLa “ g´1
f erg

´1
bos (C.1)

and the structure of the current j “ g´1dg

j “ g´1
f er jbosgf er ` g

´1
f erdgf er “: jbos ` jf er . (C.2)

The bosonic contribution can be written as jbos “ λ
aLa, where λ

a are the Maurer-Cartan forms

of Spp2,Rq » SLp2,Rq, the bosonic part of OSpp1|2q. To calculate the fermionic current one can

define F :“ θαQα and proceed by using the following formula, which first appeared in [135,136]

jf er :“ ´
sinhpMq
M ∇jbosF ´ 2

„

F,
sinh2pM{2q
M2

∇jbosF
ȷ

, (C.3)

where we introduced notation

∇A :“ d` rA,´s and M “ adF :“ rF,´s (C.4)

and the hyperbolic functions are understood as formal Taylor series. In the case under consideration,

with only two fermionic coordinates θα, one finds

jf er “ ´∇jbosF ´
1

2
rF,∇jbosF s ´

1

6
rF, rF, dF ss . (C.5)

We can thus calculate the various contributions

• ∇jbosF “ dF ` rjbos , F s “ dθαQα ´
1
2λaθ

αpγaqβαQβ
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• rF,∇jbosF s “ i
ˆ

θαdθβ ´ 1
2θ
αλaθ

ρpγaqρ
β

˙

pγbqαβLb

• rF, dF s “ iθαdθβpγaqαβLa

• rF, rF, dF ss “ i
2θ
ρθαdθβpγaqαβpγaqρ

σQσ

and using the identity (D.8) we can combine such terms into the fermionic current

jf er “ ´p1´
i

8
θ2qdθαQα `

i

4
θ2λaLa `

1

2
λaθ

αpγaqα
βQβ ´

i

2
θαdθβpγaqαβLa , (C.6)

so that equation (3.19) is recovered.

Exploiting the inner products (3.15) the action reads

S “
1

2

ż

Σ

ST r rj ^ ‹js “
1

2

ż

Σ

jb ^ ‹jap´12ηabq ` j
β ^ ‹jαpi ϵαβq (C.7)

and using that for any two 1-forms α and β one has α^‹β “ ´‹α^β and α^β “ ´p´1q|α||β|β^α,

where |α| and |β| represent their grading, the two terms in the action become

´
1

2
ja ^ ‹ja “ ´

1

2
p1`

i

2
θ2q

`

λa ^ ‹λa ´ ipγaqαβλ
a ^ ‹θαdθβ ´

3

8
θ2dθα ^ ‹dθα

˘

´i jα ^ ‹jα “ ´ip1´
i

4
θ2q

`

dθα ^ ‹dθα ` pγaqαβλ
a ^ ‹θαdθβ ´

1

4
θ2λa ^ ‹λa

˘

,

(C.8)

so that they can be combined into (3.20).

C.2. Maurer-Cartan forms of SLp2,Rq

To explicitly construct the Maurer-Cartan forms λa we start by defining L ” xaLa and considering

the following parametric current

jptq “ e´tLdetL such that jpt “ 1q “ jbos jpt “ 0q “ 0 . (C.9)

One can thus notice that

Bt jptq “ ´Ljptq ` e
´tLdpLetLq “ ´Ljptq ` e´tLdpetLLq “ dL` rjptq, Ls , (C.10)

so that integrating both sides one obtains

jptq “ tdL´

„

L,

ż t

0

du jpuq

ȷ

. (C.11)
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Recursively substituting the current into itself one then gets

jptq “ tdL´

„

L,

ż t

0

du udL

ȷ

`

„

L,

ż t

0

du
“

L,

ż u

0

dvvdL
‰

ȷ

´

„

L,

ż t

0

du
“

L,

ż u

0

dv rL,

ż v

0

dwwdLs
‰

ȷ

` ...

and after integration finally arrives to

jptq “ tdL´ t2

2! rL, dLs `
t3

3! rL, rL, dLss ´
t4

4!
rL, rL, rL, dLsss `

t5

5!
rL, rL, rL, rL, dLssss ` ... “

“ t
8
ÿ

k“0

p´tqk

pk ` 1q!
adkLpdLq with adL :“ rL,´s ; ad0L :“ 1 . (C.12)

Exploiting the slp2,Rq algebra rLa, Lbs “ εabcLc and the identity (B.7) one then finds the pattern

$

&

%

ad2kL pdLq “ R
2k´2JaLa for k ě 1

ad2k`1
L pdLq “ R2kdxbxaεab

cLc for k ě 0 ,
(C.13)

where we defined R2 :“ xqxpηpq and J
a “ R2pdxaq ´ pxidx

iqxa. The series is then resummed as

jptq “ t
8
ÿ

k“0

p´tqk

pk ` 1q!
adkLpdLq “ t

8
ÿ

k“0

p´tq2k

p2k ` 1q!
ad2kL pdLq ` t

8
ÿ

k“1

p´tq2k`1

p2k ` 2q!
ad2k`1
L pdLq “

“ tdL` R´3
8
ÿ

k“1

ptRq2k`1

p2k ` 1q!
JaLa ´ R

´2
8
ÿ

k“0

ptRq2k`2

p2k ` 2q!
dxbxcεcb

aLa “

“ tdL` R´3rsinh ptRq ´ tRsJaLa ´ R
´2rcosh ptRq ´ 1sdxbxcεcb

aLa “

“ dxm
„

sinh ptRq

R
δm
a `
tR ´ sinh ptRq

R3
xmx

a ´ 2
sinh2 ptR{2q

R2
xcεcm

a

ȷ

La , (C.14)

which reduces to (3.24) for t “ 1.

C.3. Noether currents for principal chiral models

In this section we work out the Noether currents for principal chiral models and relate them to the

Killing vectors of the model, so as to recover equation (3.29).

Group action perspective. Given the invariance under global left and global right action

GL : g Ñ g´1
L g GR : g Ñ g gR , (C.15)

one can extract the Noether currents by using the standard trick of taking local infinitesimal trans-

formations gR “ 1` ϵR, with ϵR “ ϵ
A
RTA.
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Under the above actions, the current j respectively transforms as

GL : j Ñ j ´ g´1pdϵLqg GR : j Ñ j `∇jϵR , (C.16)

with ∇j defined in (C.4). Integrating by parts and exploiting rj, ‹js “ 0, the variations then read

δLSPCM “ ´

ż

Σ

xϵL, dp‹LNqy and δRSPCM “ ´

ż

Σ

xϵR, dp‹RLqy , (C.17)

with the Noether currents LN :“ ´gjg
´1 and RN :“ j as in (3.26).

Coordinate transformation perspective. We consider for the moment a sigma model including

metric and B-field terms S “ Sg ` SB with

Sg “
1

2

ż

Σ

dxN ^ ‹dxM gMN and SB “
1

2

ż

Σ

dxN ^ dxM BMN , (C.18)

such that gMN “ p´1q
MNgNM and BMN “ ´p´1q

MNBNM . Then, considering a local infinitesimal

coordinate transformation δxA “ ϵV ξAV with gradings
∣∣δxA∣∣ “ A, ∣∣ϵV ∣∣ “ V, ∣∣ξAV ∣∣ “ V ` A, the

variations of the metric term in the action read

δSg “
1

2

ż

Σ

“

pdϵV qξNV ^ ‹dx
MgMN ` ϵ

V pdξNV q ^ ‹dx
MgMN`

` dxN ^ ‹pdϵV qξMV gMN ` dx
N ^ ‹ϵV pdξMV qgMN ` dx

N ^ ‹dxMϵV ξPV BP gMN
‰

“
1

2

ż

Σ

“

2dϵV ^ ξNV ‹ dx
MgMN`

` ϵV
`

dxNBNξ
P
V ^ ‹dx

MgMP ` p´1q
NV dxN ^ ‹dxMBMξPV gPN ` p´1q

V pM`NqdxN ^ ‹dxMξPV BP gMN
˘‰

“

“

ż

Σ

dϵV ^ ξNV ‹ dx
MgMN `

1

2
ϵV dxN ^ ‹dxMpLξV gqMN , (C.19)

and similarly for the B-field

δSB “

ż

Σ

dϵV ^ ξNV dx
MBMN `

1

2
ϵV dxN ^ dxMpLξV BqMN , (C.20)

with the graded Lie derivative given in (A.13). At this stage, requiring the coordinate transformation

to represent an isometry of the full action, the Lie derivative terms vanish and after integrating by

parts one is left with the Noether current

δS “ ´

ż

Σ

ϵV dp‹JV q with JV :“ ξ
N
V dx

MgMN ` ξ
N
V ‹ dx

MBMN . (C.21)

For principal chiral models, which have no B-field contribution, this expression reduces to (3.29).
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C.4. Left Noether current on OSpp1|2q

In this section we construct the Noether currents associated to the GL invariance of the principal

chiral model on OSpp1|2q. Let us recall the left Noether current (3.26)

LN “ gbosdg
´1
bos ` gbospgf erdg

´1
f er qg

´1
bos with gbos :“ e

xaLa gf er :“ e
´θαQα . (C.22)

The bosonic contribution has been constructed in (3.32) and to compute the remaining terms we

start by expanding the fermionic group element and exploiting the algebra (B.11) to find

gf erdg
´1
f er “ p1´Q`

1
2Q
2qdpQ` 1

2!Q
2 ` 1

3!Q
3q “ dQ´ 1

2 rQ, dQs `
1
6 rQ, rQ, dQss “

“
i

2
dθβθαpγaqαβLa ` p1´

i

8
θ2qdθαQα .

(C.23)

We then use the relation eABe´A “
ř8
k“0

1
k!ad

k
ApBq to include the effect of the bosonic rotation.

For the La generators, a few commutators are sufficient to find a pattern and re-sum the series as

gbosLag
´1
bos “ La `

8
ÿ

k“0

R2k´2

p2kq!
pR2δa

b ´ xax
bqLb `

8
ÿ

k“0

R2k

p2k ` 1q!
xcεca

bLb “

“ La ` R
´1 sinh pRqxcεca

bLb ` R
´2pcosh pRq ´ 1qpR2δa

b ´ xax
bqLb “

“
“

coshpRqδa
b `
1´ coshR

R2
xax
b `
sinhR

R
xcεca

b
‰

Lb ,

(C.24)

and similarly for the Qα generators

gbosQαg
´1
bos “

8
ÿ

k“0

pR{2q2k

p2kq!
Qα ´

1

2

8
ÿ

k“0

pR{2q2k

p2k ` 1q!
xapγ

aqα
βQβ “

“
“

coshpR{2qδα
β ´
sinhpR{2q

R
xapγ

aqα
β
‰

Qβ .

(C.25)

Putting together the above ingredients one then finds LN “ L
a
NLa ` L

α
NQα as in (3.35).

C.5. Killing vectors of the initial model

In this section we construct explicitly the Killing vectors for the principal chiral model on OSpp1|2q.

Before specialising to such model, we consider again a more general sigma model including a B-field

term, for which we derived in (C.21) the Noether current associated to the isometries

JV “ xJ, V y “ ξ
N
V dx

MgMN ` ξ
N
V ‹ dx

MBMN , (C.26)
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with V denoting either one of the bosonic generators tBau or one of the fermionic generators

tFαu. The inner product is taken to be non-degenerate and block diagonal with xBa, Bby “ δab

and xFα, Fβy “ δαβ. Our aim here is extracting the components of the Killing vectors from those

of the Noether current and for this reason we proceed assuming to have an explicit expression for

J, which can be expanded as J “ dxNJ
p1q
N ` ‹dxNJ

p2q
N . Comparing the two sides of the equation

above for V “ Bb and V “ Fβ one then finds

V “ Bb : J
p1qa
N δab “ ξ

M
Bb
gMN J

p2qa
N δab “ ´ξ

M
Bb
BMN

V “ Fβ : J
p1qα
N δαβ “ p´1q

NξMFβgMN J
p2qα
N δαβ “ ´p´1q

NξMFβBMN .
(C.27)

The two equations involving the metric will now be exploited to extract the components of the

Killing vectors. If the model also has a B-field which does not break the isometries, the equations

involving such field will then be automatically respected. The principal chiral model will not have

problems from this point of view, but later on we shall deal with this in the T-dual model.

Setting V “ Bb the equations involving the metric read

1 J
p1qa
n δab “ ξ

m
Bb
gmn ` ξ

µ
Bb
gµn 2 J

p1qa
ν δab “ ξ

m
Bb
gmν ` ξ

µ
Bb
gµν . (C.28)

For the full metric to be invertible p´1qP gMP g
PN “ δM

N , the two block diagonal terms gmn and

gµν should both be separately invertible and we define their inverse matrices via gmpĝ
pn “ δm

n and

gµρĝ
ρν “ δµ

ν . We put a hat on the inverses to highlight that those are not the components of the

full inverse metric gMB. This fact can be exploited to solve the second equation for ξµBb , substitute

back into the first equation and solve it for ξmBb . In this second step one further needs to invert the

symmetric operator Gmn :“ gmn ` ĝ
µνgmνgnµ. Its invertibility is ensured by the invertibility of gmn

and we write its inverse as GmpG
pn “ δm

n. In the end one finds Killing vector components

$

&

%

ξmBb “ G
mnpJ

p1qa
n δab ` ĝ

µνJ
p1qa
ν δabgµnq

ξµBb “ ĝ
µνrGmnpJ

p1qa
n δab ` ĝ

ρσJ
p1qa
σ δabgρnqgmν ´ J

p1qa
ν δabs

. (C.29)

One can then proceed in a very similar way for the case V “ Fβ. The equations read

4 J
p1qα
n δαβ “ ξ

m
Qβ
gmn ` ξ

µ
Qβ
gµn 4 J

p1qα
ν δαβ “ ´ξ

m
Qβ
gmν ´ ξ

µ
Qβ
gµν (C.30)

and the resulting Killing vector components are

$

&

%

ξmFβ “ G
mnrJ

p1qα
n δαβ ´ ĝ

µνJ
p1qα
ν δαβgµns

ξµFβ “ ĝ
µνrGmnpJ

p1qα
n δαβ ´ ĝ

ρσJ
p1qα
σ δαβgnρqgmν ` J

p1qα
ν δαβs

. (C.31)
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We now specialise to OSpp1|2q with metric (3.21) and inner products (3.15). From these one finds

gµρ “ i ϵµρp1´
i

16
θ2q ñ ĝρν “ ´i ϵλρp1`

i

16
θ2q such that gµρĝ

ρν “ δµ
ν

gmp “ g1ηmp ` g2xmxp ñ ĝpn “ g3η
pn ` g4x

pxn such that gmpĝ
pn “ δm

n
(C.32)

with coefficients g1, g2 given in (3.21) and g3 “
1
g1
, g4 “

g2
2g1
. Additionally the operator Gab reads

Gmp :“ gmp ` g
µνgmνgpµ “ p1`

i

8
θ2qgmp ñ Gpn “ p1´

i

8
θ2qĝpn . (C.33)

The right sector. To obtain the components of the right set of Killing vectors it is sufficient to

recall the right Noether current (3.30) to extract

pRNq
a
n “ p1`

i

4
θ2qλn

a pRNq
a
ν “

i

2
θρpγaqρν pRNq

α
n “

1

2
λn
aθρpγaqρ

α pRNq
α
ν “ ´p1´

i

8
θ2qδν

α.

Using then the inner products (3.15) and the expressions derived above one obtains components

pξRLk q
c “ Aδk

c ` Bxkx
c `
1

2
xdεdk

c pξRLk q
ρ “
1

2
θνpγkqν

ρ

pξRQβ q
c “

i

2
θνpγaqνβpAδa

c ` Bxax
c `
1

2
xdεda

cq pξRQβ q
λ “ ´p1´

i

4
θ2qδβ

λ .

(C.34)

The left sector. Similarly, for the left sector, recalling the Noether current (3.35) one extracts

pLNq
a
m “ ´

sinhR

R
δm
a ´
R ´ sinhR

R3
xmx

a ´
2 sinh2 pR{2q

R2
xcεcm

a

pLNq
a
ν “

i
2θ
ρpγbqρνrcosh pRqδb

a `
1´ coshR

R2
xbx

a `
sinhR

R
xcεcb

as

pLNq
α
ν “ p1´

i

8
θ2qrcosh pR{2qδν

α ´
sinh pR{2q

R
xapγ

aqν
αs pLNq

a
ν “ 0 .

(C.35)

Using again the inner products and the expressions above one then finds

pξLLk q
c “ ´pAδk

c ` Bxkx
x ´
1

2
xdεdk

cq pξLLk q
ρ “ 0

(C.36)

pξLQβ q
c “

i

2
Nθβx

c ´
i

4
θλpγbqλβpUδb

c ` V xbx
x q pξLQβ q

ρ “ ´p1`
i

8
θ2qpNxapγ

aqβ
ρ ´Mδβ

ρq ,

with the coefficients A,B, U, V,M,N introduced in equation (3.37).





D
T-Dual Action On OSpp1|2q

D.1. Details of the procedure

In this section we provide details relative to the dualisation of the principal chiral model on OSpp1|2q

with respect to the OSpp1|2qL isometries. Starting from the explicit Lagrangian (3.52), which we

report here for clarity

L “ ´
1

2
rg´1Bgsarg

´1B̄gsa ´
1

2
rpBgqg´1saĀ

a ´
1

2
rpB̄gqg´1saA

a ´
1

2
AaĀ

a`

`
1

2
pBx̃aqĀ

a ´
1

2
pB̄x̃aqA

a ´
i

2
x̃aA

αĀβpγaqβα `
1

2
x̃aA

c Ādεdc
a`

` irg´1Bgsβrg
´1B̄gsβ ` irpBgqg´1sβĀ

β ` irpB̄gqg´1sβA
β ` iAβĀ

β`

´ ipBθ̃βqĀ
β ` ipB̄θ̃βqA

β `
i

2
θ̃βA

αĀapγaqα
β ´
i

2
θ̃βA

aĀαpγaqα
β .

(D.1)

Variations of the gauge fields lead to the equations

Āa ´ Ācεc
abx̃b “ ´rpB̄gqg

´1sa ´ B̄x̃a ` i Āαpγaqα
β θ̃β

Aa ` Acεc
abx̃b “ ´rpBgqg

´1sa ` Bx̃a ´ iAαpγaqα
β θ̃β

(D.2)

Āα `
1

2
Āβpγaqβ

αx̃a `
1

2
Āapγaq

αβ θ̃β “ ´rpB̄gqg
´1sα ´ B̄θ̃α

Aα ´
1

2
Aβpγaqβ

αx̃a ´
1

2
Aapγaq

αβ θ̃β “ ´rpBgqg
´1sα ` Bθ̃α ,

and to solve the latter system for the gauge fields we start from the first couple of equations.

These allow us to find Āa and Aa in terms of the fermionic fields by defining the matrices M and

95
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N, that can be easily inverted exploiting the identities in B.1.

$

&

%

Mc
a ” δc

a ´ εc
abx̃b ñ pM´1qa

k “ 1
1´r2

pδa
k ´ x̃ax̃

k ` εa
knx̃nq

Nc
a ” δc

a ` εc
abx̃b ñ pN´1qa

k “ 1
1´r2

pδa
k ´ x̃ax̃

k ´ εa
knx̃nq

with r2 ” x̃ax̃a “ x̃ax̃
a “ x̃bx̃aηab .

(D.3)

This leads to rewriting the first two equations as

$

&

%

Āa “
“

´rpB̄gqg´1sb ´ B̄x̃b ` i Āαpγbqα
β θ̃β

‰

pM´1qb
a

Aa “
“

´rpBgqg´1sb ` Bx̃b ´ iAαpγbqα
β θ̃β

‰

pN´1qb
a
, (D.4)

so that substituting the latter into the second pair of equations and rearranging one obtains

$

&

%

ĀβpW1qβ
α “ 1

2

`

rpB̄gqg´1sb ` B̄x̃b
˘

pM´1qb
apγaq

ασ θ̃σ ´ rpB̄gqg
´1sα ´ B̄θ̃α

AβpW2qβ
α “ 1

2

`

´rpBgqg´1sb ` Bx̃b
˘

pN´1qb
apγaq

ασ θ̃σ ´ rpBgqg
´1sα ` Bθ̃α

, (D.5)

with the definitions

$

&

%

pW1qβ
α ” δβ

α ` 1
2 x̃apγ

aqβ
α ` i

2pγ
aqβ
ρpM´1qa

bpγbq
ασ θ̃ρθ̃σ

pW2qβ
α ” δβ

α ´ 1
2 x̃apγ

aqβ
α ` i

2pγ
aqβ
ρpN´1qa

bpγbq
ασ θ̃ρθ̃σ

. (D.6)

In order to recast W1 and W2 in the form (3.54) and to invert them, we need to make some

simplifications. The first step is exploiting the identity

θ̃ρθ̃σ “
1

2
pθ̃ρθ̃σ ´ θ̃σ θ̃ρq “

1

2
pδαρ δ

β
σ ´ δ

α
σ δ
β
ρ qθ̃αθ̃β “

“
1

2
ϵρσϵ

βαθ̃αθ̃β “
1

2
ϵρσpθ̃

β θ̃βq “
1

2
ϵρσ θ̃

2 ,

(D.7)

which also has the raised-index analogue

θ̃ρθ̃σ “ ´
1

2
ϵρσ θ̃2 . (D.8)

By using (D.7) in the above definitions of W1 and W2 we obtain

$

’

’

&

’

’

%

i
2pγ

aqβ
ρpM´1qa

bpγbq
ασ θ̃ρθ̃σ “

i
4 θ̃
2

ˆ

δβ
αpM´1qa

a ` pγcqβ
αpM´1qa

bεabc

˙

i
2pγ

aqβ
ρpN´1qa

bpγbq
ασ θ̃ρθ̃σ “

i
4 θ̃
2

ˆ

δβ
αpN´1qa

a ` pγcqβ
αpN´1qa

bεabc

˙ , (D.9)
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so that from the explicit form of M´1 and N´1 one can find

pM´1qa
a “ pN´1qa

a “
r2 ´ 3

r2 ´ 1
pM´1qa

bεabc “ ´pN
´1qa

bεabc “
2x̃c
r2 ´ 1

(D.10)

and rearrange (D.6) to obtain (3.54). The two matrices are then easily inverted using the iden-

tities for the γ-matrices in B.1., leading to (3.55). This allows to solve for the fermionic gauge

fields in (D.5) and to substitute the result back into (D.4) to obtain the equations of motion (3.53).

Substituting the equations of motion back into the Lagrangian (3.52) and choosing gauge g “ 1,

we thus get

Āα “ ´pB̄θ̃βqpW´1
1 qβ

α `
1

2
pB̄x̃bqpM´1qb

apγaq
βλθ̃λpW

´1
1 qβ

α

Aα “ `pBθ̃βqpW´1
2 qβ

α `
1

2
pBx̃bqpN´1qb

apγaq
βλθ̃λpW

´1
2 qβ

α

(D.11)

Āa “ ´pB̄x̃bqpM´1qb
a ´ ipB̄θ̃βqpW´1

1 qβ
αpγbqα

ρθ̃ρpM
´1qb

a`

`
i

2
pB̄x̃cqpM´1qc

dpγdq
βλθ̃λpW

´1
1 qβ

αpγbqα
ρθ̃ρpM

´1qb
a

Aa “ `pBx̃bqpN´1qb
a ´ ipBθ̃βqpW´1

2 qβ
αpγbqα

ρθ̃ρpN
´1qb

a`

´
i

2
pBx̃cqpN´1qc

dpγdq
βλθ̃λpW

´1
2 qβ

αpγbqα
ρθ̃ρpN

´1qb
a

L “´
1

2
pηab ` εabc x̃

cqAaĀb ´ ipϵαβ `
1

2
x̃cpγ

cqαβqA
αĀβ`

`
i

2
pγaqα

β θ̃βA
αĀa ´

i

2
pγaqα

β θ̃βA
aĀα`

`
1

2
pBx̃aqĀ

a ´
1

2
pB̄x̃aqA

a ´ ipBθ̃αqĀ
α ` ipB̄θ̃αqA

α .

(D.12)

Using the explicit form of M´1, N´1,W´1
1 ,W

´1
2 and exploiting the identities (B.8) and (B.7) it is

finally possible to rewrite the gauge fields more explicitly. These are reported below broken down

into terms leading to different contributions to the dual action.

Āa :“ Āa1 ` Ā
a
2 ` Ā

a
3 with: (D.13)

Āa1 :“ ´pB̄x̃
cqpM´1qc

a

Āa2 :“
i θ̃βpB̄θ̃

ρq

p4´ r2qp1´ r2q

„

2p2` r2qpγaqρ
β ´ 6x̃cpγ

cqρ
β x̃a ´ 2p1´ r2qδρ

β x̃a ´ 6εackpγ
cqρ
β x̃k

ȷ

Āa3 :“
θ̃2pB̄x̃cq

p4´ r2qp1´ r2q2

„

2x̃c x̃
ap4´ r2q ´ 2δc

ap1` 2r2q ´ εc
ad x̃dp5` r

2q

ȷ
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Aa :“ Aa1 ` A
a
2 ` A

a
3 with: (D.14)

Aa1 :“ pBx̃
cqpN´1qc

a

Aa2 :“
i θ̃βpBθ̃

ρq

p4´ r2qp1´ r2q

„

2p2` r2qpγaqρ
β ´ 6x̃cpγ

cqρ
β x̃a ` 2p1´ r2qδρ

β x̃a ` 6εackpγ
cqρ
β x̃k

ȷ

Aa3 :“
i θ̃2pBx̃cq

p4´ r2qp1´ r2q2

„

´2x̃c x̃
ap4´ r2q ` 2δc

ap1` 2r2q ´ εc
ad x̃dp5` r

2q

ȷ

Āα :“ Āα1 ` Ā
α
2 with: (D.15)

Āα1 :“ ´pB̄θ̃
ρqpW´1

1 qρ
α

Āα2 :“
θ̃βpB̄x̃

bq

p4´ r2qp1´ r2q

„

p2` r2qpγbq
αβ ´ 3x̃cpγ

cqαβ x̃b ` p1´ r
2qϵαβ x̃b ` 3εbckpγ

cqαβ x̃k
ȷ

Aα :“ Aα1 ` A
α
2 with: (D.16)

Aα1 :“ pBθ̃
ρqpW´1

2 qρ
α

Aα2 :“
θ̃βpBx̃

bq

p4´ r2qp1´ r2q

„

p2` r2qpγbq
αβ ´ 3x̃cpγ

cqαβ x̃b ´ p1´ r
2qϵαβ x̃b ´ 3εbckpγ

cqαβ x̃k
ȷ

.

The above terms respectively contribute to the expressions

pBx̃qqpB̄x̃pqL̃pq “ ´
1

2
pηab ` εabc x̃

cqpAa1Ā
b
1 ` A

a
1Ā
b
3 ` A

a
3Ā
b
1q`

´ ipϵαβ `
1

2
x̃cpγ

cqαβqA
α
2 Ā
β
2`

`
i

2
pγaqα

β θ̃βA
α
2 Ā
a
1 ´
i

2
pγaqα

β θ̃βA
a
1Ā
α
2`

`
1

2
pBx̃aqpĀ

a
1 ` Ā

a
3q ´

1

2
pB̄x̃aqpA

a
1 ` A

a
3q (D.17)

pBθ̃σqpB̄θ̃ρqL̃ρσ “ ´
1

2
pηab ` εabc x̃

cqAa2Ā
b
2 ´ ipϵαβ `

1

2
x̃cpγ

cqαβqA
α
1 Ā
β
1`

`
i

2
pγaqα

β θ̃βA
α
1 Ā
a
2 ´
i

2
pγaqα

β θ̃βA
a
2Ā
α
1`

´ ipBθ̃αqĀ
α
1 ` ipB̄θ̃αqA

α
1 (D.18)
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pBx̃qqpB̄θ̃ρqL̃ρq “ ´
1

2
pηab ` εabc x̃

cqAa1Ā
b
2 ´ ipϵαβ `

1

2
x̃cpγ

cqαβqA
α
2 Ā
β
1`

´
i

2
pγaqα

β θ̃βA
a
1Ā
α
1 `
1

2
pBx̃aqĀ

a
2 ` ipB̄θ̃αqA

α
2 (D.19)

pBθ̃σqpB̄x̃pqL̃pσ “ ´
1

2
pηab ` εabc x̃

cqAa2Ā
b
1 ´ ipϵαβ `

1

2
x̃cpγ

cqαβqA
α
1 Ā
β
2`

`
i

2
pγaqα

β θ̃βA
α
1 Ā
a
1 ´
1

2
pB̄x̃aqA

a
2 ´ ipBθ̃αqĀ

α
2 . (D.20)

It actually turns out that many of the above terms cancel among each other or simply vanish due to

the nilpotency of the fermionic multipliers, thus leaving us with the following relevant contributions

pBx̃qqpB̄x̃pqL̃pq “ ´ipϵαβ `
1

2
x̃cpγ

cqαβqA
α
2 Ā
β
2 `
1

2
pBx̃aqĀ

a
1 pBx̃qqpB̄θ̃ρqL̃ρq “ `ipB̄θ̃αqA

α
2

`
i

2
pγaqα

β θ̃βA
α
2 Ā
a
1 ´
i

2
pγaqα

β θ̃βA
a
1Ā
α
2

pBθ̃σqpB̄θ̃ρqL̃ρσ “ ´ipϵαβ `
1

2
x̃cpγ

cqαβqA
α
1 Ā
β
1 `
i

2
pγaqα

β θ̃βA
α
1 Ā
a
2 ` pBθ̃σqpB̄x̃pqL̃pσ “ ´ipBθ̃αqĀ

α
2

´ ipBθ̃αqĀ
α
1 ` ipB̄θ̃αqA

α
1

Working these out explicitly one finally obtains (3.58).

Some useful identities. We close this section by briefly summarising some additional identities,

particularly useful in obtaining the explicit form of the gauge fields, resulting from the expressions

of M´1, N´1,W´1
1 ,W

´1
2 and (B.8),(B.7). Notice that the identities involving W´1

1 and W´1
2 are

valid for their purely bosonic part, i.e. upon neglecting the terms proportional to θ̃2.

pW´1
1 qα

α “
8

4´ r2
“ pW´1

2 qα
α pW´1

1 qα
βpγaqβ

α “
´4x̃a

4´ r2
“ ´pW´1

2 qα
βpγaqβ

α (D.21)

$

&

%

pM´1qc
bpM´1qb

a “ 1
p1´r2q2

rp1` r2qδc
a ` pr2 ´ 3qx̃c x̃

a ` 2x̃dεdc
as

pM´1qc
dεbdkpM

´1qb
apW´1

1 qβ
αpγkqα

β “ 4
p4´r2qp1´r2q2

r2r2δc
a ´ 2x̃c x̃

a ` p1` r2qx̃dεdc
as

$

&

%

pN´1qc
bpN´1qb

a “ 1
p1´r2q2

rp1` r2qδc
a ´ pr2 ´ 3qx̃c x̃

a ´ 2x̃dεdc
as

pN´1qc
dεbdkpN

´1qb
apW´1

2 qβ
αpγkqα

β “ 4
p4´r2qp1´r2q2

r2r2δc
a ´ 2x̃c x̃

a ` p1` r2qx̃dεdc
as

Additional identities required to obtain the explicit dual action are

$

&

%

pM´1qq
bpηab ` x̃

cεcabq “ ηaq

pN´1qp
apηab ` x̃

cεcabq “ ηpb

$

&

%

pW´1
1 qσ

βpϵαβ `
1
2 x̃cpγ

cqαβq “ ´ϵσα

pW´1
2 qρ

βpϵαβ `
1
2 x̃cpγ

cqαβq “ ϵρβ

(D.22)



100 D.2. Isometries of the T-dual models

D.2. Isometries of the T-dual models

In this section we study the residual isometries of the T-dual models by solving explicitly the Killing

equations (A.13). We consider in detail the dual model with respect to the full OSpp1|2qL isometry

subgroup and then discuss briefly the dual with respect to SLp2,RqL. To begin we rewrite the

metric (3.60), obtained by dualising OSpp1|2qL, as follows

$

’

’

’

&

’

’

’

%

ĝpq “ L1
“

ηpq
`

1` ihpr2qθ̃2
˘

´ x̃p x̃q
`

1` impr2qθ̃2
˘‰

ĝpσ “ L3x̃pϵσαθ̃
α ` L4εpabpγ

aqσαθ̃
αΛb

ĝρσ “ L2ϵρσ
`

1` i f pr2qθ̃2
˘

with

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

L1 “
1

2pr2´1q

L2 “
´4i

pr2´4q

L3 “
ip1´r2q

pr2´1qpr2´4q

L4 “
´3i

pr2´1qpr2´4q

(D.23)

We broke down the coefficient L3 defined in (3.59) into two new coefficients L3 and L4 and

absorbed all the prefactors in L2, L3, L4, leaving L1 untouched. This will allow us to keep track of

such coefficients and their derivatives without looking at their explicit form. We notice indeed that

all coefficients are functions of r2 :“ x̃bx̃aηab, such that @ u “ upr
2q we can easily compute

Baupr
2q “ 2x̃au

1pr2q . (D.24)

Similarly, recalling the definition θ̃2 :“ θ̃γ θ̃γ “ ϵγδ θ̃
γ θ̃δ we can also easily determine that

Bαθ̃
2 “ 2θ̃α . (D.25)

At this point we have all the ingredients to start computing the partial derivatives of the dual

metric, which will be needed to write down the Killing equations

Bag̃pq “ `2x̃aL
1
1rηpqp1` ihθ̃

2q ´ x̃p x̃qp1` imθ̃
2qs ` 2iL1h

1x̃aηpq θ̃
2`

´ L1pηpax̃q ` ηqax̃pqp1` imθ̃
2q ´ 2iL1m

1x̃p x̃q x̃aθ̃
2

Bαg̃pq “ 2iL1hηpq θ̃α ´ 2iL1mx̃p x̃q θ̃α

Bag̃pσ “ `2L
1
3x̃ax̃pϵσαθ̃

α ` L3ηpaϵσαθ̃
α`

` 2L1
4x̃aεpbcpγ

bqσαθ̃
αx̃c ` L4εpbapγ

bqσαθ̃
α

Bαg̃pσ “ L3x̃pϵσα ` L4εpbcpγ
bqσαx̃

c

Bag̃ρσ “ 2L
1
2x̃aϵρσp1` i f θ̃

2q ` 2iL2f
1x̃aϵρσ θ̃

2

Bαg̃ρσ “ 2iL2f ϵρσ θ̃α .

(D.26)

We can now proceed by making a general ansatz for the Killing vectors, so as to be able to explicitly

write the Killing equations and determine the constraints they imposes on the ansatz.
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Bosonic Killing vectors - |ξLc | “ 0. These should satisfy the following three equations, obtained
by setting the free indices in (A.13) respectively to pM,Nq “ tpp, qq, pp, σq, pρ, σqu

ξacBag̃pq ` ξ
α
c Bαg̃pq ` pBpξ

a
cqg̃aq ` pBpξ

α
c qg̃αq ` pBqξ

a
cqg̃pa ` pBqξ

α
c qg̃pα ” 0 1

ξacBag̃pσ ` ξ
α
c Bαg̃pσ ` pBpξ

a
cqg̃aσ ` pBpξ

α
c qg̃ασ ` pBσξ

a
cqg̃pa ` pBσξ

α
c qg̃pα ” 0 2

ξacBag̃ρσ ` ξ
α
c Bαg̃ρσ ` pBρξ

a
cqg̃aσ ` pBρξ

α
c qg̃ασ ´ pBσξ

a
cqg̃ρa ` pBσξ

α
c qg̃ρα ” 0 3

(D.27)

The following ansatz can then be constructed

ξLc “ ξ
a
cBa ` ξ

α
c Bα with (D.28)

ξac “ δc
arA1pr

2q ` A2pr
2qθ̃2s ` x̃c x̃

arB1pr
2q ` B2pr

2qθ̃2s ` x̃dεdc
arD1pr

2q `D2pr
2qθ̃2s

ξαc “ rF pr
2qpγcqβ

α ` Gpr2qx̃cδβ
α `Mpr2qx̃c x̃kpγ

kqβ
α ` Upr2qx̃dεdcbpγ

bqβ
αsθ̃β ,

and to simplify the substitution into the above equation we also compute its derivatives

Bpξ
a
c “ 2x̃pδc

arA1
1 ` A

1
2θ̃
2s ` ηpc x̃

arB1 ` B2θ̃
2s ` x̃cδp

arB1 ` B2θ̃
2s`

` x̃c x̃p x̃
arB1

1 ` B
1
2θ̃
2s ` εpc

arD1 `D2θ̃
2s ` x̃p x̃

dεdc
arD1

1 `D
1
2θ̃
2s

Bρξ
a
c “ r2δc

aA2 ` 2x̃c x̃
aB2 ` 2x̃

dεdc
aD2sθ̃ρ

Bpξ
α
c “ r2F

1x̃ppγcqβ
α ` 2G1x̃p x̃cδβ

α ` 2Gηpcδβ
α ` 2M 1x̃p x̃c x̃bpγ

bqβ
α`

`Mηpc x̃bpγ
bqβ
α `Mx̃cpγpqβ

α2U 1x̃p x̃
dεdcbpγ

bqβ
α ` Uεpcbpγ

bqβ
αsθ̃β

Bρξ
α
c “ F pγcqρ

α ` Gx̃cδρ
α `Mx̃c x̃bpγ

bqρ
α ` Ux̃dεdcbpγ

bqρ
α .

(D.29)

At this stage one can proceed by substituting all the above ingredients into the Killing equations

and collecting, for each of them, terms which should vanish independently. This leads to a set of

constraining equations for the coefficients of the ansatz, that one can try to solve.

Equation 1 leads to 8 constraints

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

L1
1A1 ` pL1 ` r

2L1
1qB1 “ 0

ipL1hq
1A1 ` ipL1h ` r

2pL1hq
1qB1 ` pL1 ` r

2L1
1qB2 ` L

1
1A2 ` iL1hG ´ L4U “ 0

´L1
1A1 ´ L1A

1
1 ´ p2L1 ` r

2L1
1qB1 ` L1p1´ r

2qB1
1 “ 0

r´ipL1mq
1A1 ´ iL1mA

1
1 ´ L

1
1A2 ´ L1A

1
2 ´ ip2L1m ` r

2pL1mq
1qB1`

´p2L1 ` r
2L1
1qB2 ` iL1ph ´ r

2mqB1
1 ` L1p1´ r

2qB1
2 ´ iL1mG ` 2L3G

1 ´ 2L4U
1s “ 0

´L1A1 ` L1p1´ r
2qB1 ` 2L1A

1
1 “ 0

r´iL1mA1 ´ L1A2 ` iL1ph ´ r
2mqB1 ` L1p1´ r

2qB2`

`2iL1hA
1
1 ` 2L1A

1
2 ` 2L3G ` L4U ` 2r

2L4U
1s “ 0

L1D
1
1 “ 0

iL1hD
1
1 ` L1D

1
2 ` 2L4F

1 “ 0

(D.30)
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Equation 2 leads to 10 constraints

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

2L1
3A1 ´ 2L1A2 ` 2pL3 ` r

2L1
3qB1 ` 2L1p1´ r

2qB2 ` 2L3A
1
1 ` r

2L3B
1
1 ` 2L3G ´ 2L2G

1 “ 0

L3A1 ` 2L1A2 ` r
2L3B1 ´ 2L2G “ 0

L1D2 “ 0

p2L1
4 `

1
r2L4qA1 ` 2pL4 ` r

2L1
4qB1 ` 2L4G `

1
r2L2U “ 0

L4D1 ´ L2M ´ 2L4F “ 0

r2L4D
1
1 ´ 2L2F

1 “ 0

2L4F ` p2r
2L4 ´ L2qM ´ L4D1 “ 0

´2L4M ´ 2L2M
1 ´ L4D

1
1 “ 0

p2L4 ´
1
r2L2qU ´

1
r2L4A1 “ 0

´ 1r2L4A1 ` 2L4A
1
1 ´

1
r2L2U ´ 2L2U

1 “ 0

(D.31)

Equation 3 leads to 2 constraints

$

&

%

L2G ` L
1
2A1 ` r

2L1
2B1 “ 0

ipL2f q
1A1 ` pL3 ` L

1
2qA2 ` i r

2pL2f q
1B1 ` r

2pL3 ` L
1
2qB2 ` 2iL2f G “ 0

(D.32)

Notice that in deriving the constraints for equation 3 we exploited the fact that objects anti-

symmetric in two spinor indices should be proportional to ϵ, which gives

pBρξ
a
cqg̃aσ ` pBρxi

α
c qg̃ασ ´ pBσξ

a
cqg̃ρa ` pBσξ

α
c qg̃ρα “

“ rϵγδpBδξ
a
cqg̃aγsϵρσ ` rϵ

γδpBδξ
α
c qg̃αγsϵρσ .

(D.33)

Studying the above set of conditions with Mathematica it is then not too hard to find that

• The first condition from 1 can be solved expressing A1 in terms of B1. One can then

integrate the third condition to find B1 “
B
2´r2
, with B constant. The latter is however set

to zero by the fifth condition.

• The seventh condition from 1 sets D1 “ A, with A constant. The third condition from 2

sets D2 “ 0.

• The ninth condition from 2 sets U “ 0 while the first condition from 3 sets G “ 0.

• From 2 , the second equation sets A2 “ 0 and consecutively the first one then sets B2 “ 0.

The sixth condition requires that F “ C, with C another constant.

• At this point only three conditions are left to solve, namely the fifth, seventh and eighth from

2 . The fact that A and C are constants only allows the solution with M “ 0 and C “ A
2 .
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Hence, all constraints are satisfied and only two coefficients are non-vanishing, i.e. D1 “ A and

F “ A
2 . One is then left with the following Killing vector

KLc “ A
`

x̃bεbc
aBa `

1

2
θ̃βpγcqβ

αBα
˘

. (D.34)

Fermionic Killing vectors -
∣∣ξQλ∣∣ “ 1. These should satisfy the following three equations, ob-

tained from (A.13) by setting the free indices to pM,Nq “ tpp, qq, pp, σq, pρ, σqu

ξaλBag̃pq ` ξ
α
λBαg̃pq ` pBpξ

a
λqg̃aq ` pBpξ

α
λ qg̃αq ` pBqξ

a
λqg̃pa ` pBqξ

α
λ qg̃pα ” 0 4

´ξaλBag̃pσ ´ ξ
α
λBαg̃pσ ´ pBpξ

a
λqg̃aσ ´ pBpξ

α
λ qg̃ασ ` pBσξ

a
λqg̃pa ` pBσξ

α
λ qg̃pα ” 0 5

ξaλBag̃ρσ ` ξ
α
λBαg̃ρσ ´ pBρξ

a
λqg̃aσ ´ pBρξ

α
λ qg̃ασ ` pBσξ

a
λqg̃ρa ´ pBσξ

α
λ qg̃ρα ” 0 6

(D.35)

An ansatz similar to the one considered in the bosonic case can then be constructed

ξQλ “ ξ
a
λBa ` ξ

α
λBα with (D.36)

ξaλ “ rNpr
2qpγaqλβ ` P pr

2qx̃aϵλβ ` T pr
2qx̃bεbc

apγcqλβ ` V pr
2qx̃ax̃bpγ

bqλβsθ̃
β

ξαλ “ δλ
αrR1pr

2q ` R2pr
2qθ̃2s ` x̃apγ

aqλ
αrS1pr

2q ` S2pr
2qθ̃2s ,

for which one has the following derivatives

Bpξ
a
λ “ r2N

1x̃ppγ
aqλβ ` 2P

1x̃p x̃
aϵλβ ` Pδp

aϵλβ ` 2T
1x̃p x̃

bεbc
apγcqλβ ` Tεpc

apγcqλβ`

` 2V 1x̃p x̃
ax̃bpγ

bqλβ ` V δp
ax̃bpγ

bqλβ ` V x̃
apγpqλβsθ̃

β

Bρξ
a
λ “ Npγ

aqλρ ` P x̃
aϵλρ ` T x̃

bεbc
apγcqλρ ` V x̃

ax̃bpγ
bqλρ

Bpξ
α
λ “ 2x̃pδλ

αrR1
1 ` R

1
2θ̃
2s ` pγpqλ

αrS1 ` S2θ̃
2s ` 2x̃p x̃apγ

aqλ
αrS1

1 ` S
1
2θ̃
2s

Bρξ
α
λ “ 2R2δλ

αθ̃ρ ` 2S2x̃apγ
aqλ
αθ̃ρ , (D.37)

Substituting all the ingredients in the Killing equations leads to a set of conditions for the ansatz.

Equation 4 leads to 6 constraints:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

2L1pP ` iR1hq ` 2r
2L1
1P “ 0

2L1
1pN ` r

2V q ´ 2iL1hS1 ` 2L1V ´ 2L4S1 “ 0

´2r2L1
1P ´ 2iL1mR1 ` 4L1p1´ r

2qP 1 ´ 4L1P ` 4L3R
1
1 “ 0

r´2L1
1pN ` r

2V q ` 2iL1mS1 ` 4L1p1´ r
2qV 1 ´ 4L1N

1 ´ 4L1V ´ 4pL3 ` L4qS
1
1 “ 0

´L1pN ´ 2N
1q ` L1p1´ r

2qV ´ pL3 ´ L4qS1 ` 2r
2L4S

1
1 “ 0

2L1T
1 ´ 2L4R

1
1 “ 0

(D.38)
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Equation 5 leads to 8 constraints:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´L1p1´ r
2qP ´ L3R1 ` 2L2R

1
1 “ 0

L4R1 ` L1T “ 0

´L1N ` L1p1´ r
2qV ` 2L2S

1
1 ` pL4 ´ L3qS1 “ 0

L1N ` pL2 ´ r
2L4qS1 “ 0

pL3 ` r
2L1
3 ` i r

2L1m ´ iL1hqP ` r
2L3P

1 ´ 2r2L4T
1 ` 2L2R

1
2 ` 2iL2f R

1
1 “ 0

´pL4 ` r
2L1
4qP ´ pL4 ´ iL1hqT ` 2L4R2 “ 0

rpL1
4 ´ L

1
3 ´ iL1mqN ` p2L4 ´ L3qN

1 ` pL4 ´ L3 ` r
2L1
4 ´ r

2L1
3 ´ i r

2L1m ` iL1hqV `

´r2L3V
1 ` 2L4S2 ` 2L2S

1
2 ` 2iL2f S

1
1s “ 0

piL1h ´ L4 ´ r
2L1
4 ´

1
2L3qN ´ pr

2L4 ` r
4L1
4 `

1
2 r
2L3qV ` pL2 ´ 2r

2L4qS2 ` iL2f S1 “ 0

(D.39)

Equation 6 leads to 2 constraints:

$

&

%

pL3 ` 2L4 ` 2L
1
2qN ` r

2pL3 ` 2L
1
2qV ` 2L2S2 ´ 2iL2f S1 “ 0

r2pL3 ` 2L
1
2qP ´ 2L2R2 ` 2r

2L4T ` 2iL2f R1 “ 0
(D.40)

Once again, in deriving the constraints for equation 6 we used that objects antisymmetric in two

spinor indices should be proportional to the ϵ-tensor, so as to simplify

´ pBρξ
a
λqg̃aσ ´ pBρξ

α
λ qg̃ασ ` pBσξ

a
λqg̃ρa ´ pBσξ

α
λ qg̃ρα “

“ ´rϵγδpBδξ
a
λqg̃aγsϵρσ ´ rϵ

γδpBδξ
α
λ qg̃αγsϵρσ .

(D.41)

Studying the system of equations with Mathematica one then finds that

• The fourth constraint resulting from 5 is solved by expressing N in terms of S1 as N “ 2iS1.

• As a result of the previous step, the second constraint from 4 requires to set V “ 0.

• In turn, the fourth condition from 4 is solved if S1
1 “ 0, i.e. for constant S1 ” B.

• At this point one can also solve the second condition from 5 by expressing R1 in terms

of T and successively integrate the sixth condition from 4 to obtain T “ C?
8´2r2

, with

C constant. This in turn gives an expression for R1 which can be used to solve the first

constraint from 4 by setting P “
Cp1`2r2q

3
?
8´2r2

.

• Solving then the third condition from 4 and the last condition from 5 respectively requires

to set C “ 0 and R2 “ 0.

• Finally, the first condition in 6 is solved by setting S2 “ 0.
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At this stage all the constraints are solved and the remaining non-vanishing coefficients are N “ 2iB

and S1 “ B, with B constant. The fermionic Killing vectors thus read

ξQλ “ B
`

2i θ̃βpγaqβλBa ` x̃apγ
aqλ
αBα

˘

. (D.42)

The overall constant prefactors A and B appearing in (D.34) and (D.42) can then be fixed to

A “ 1 and B “ ´1{2 by computing the commutators of Killing vectors and matching the result to

rξLa , ξLb s “ εab
cξLc rξLa , ξQβ s “ ´

1
2pγaqβ

αξQα rξQα , ξQβ s “ ´ipγ
aqαβξLa . (D.43)

Dual model with respect to SLp2,RqL. Residual isometries of this model can be studied by

exploiting the above results. One can indeed interpret the dual metric (3.50) as the metric (D.23)

with different multipliers and coefficients. Bosonic multipliers are the same as in the previous

section, while fermions are the ones of the initial model. The coefficients of (3.50) in the form of

(D.23) simplify as L3 “ h “ m “ 0 and

L1 ”
1

2pr2 ´ 1q
L2 ” i L4 ”

i

4pr2 ´ 1q
f ” ´

1

8

pr2 ´ 2q

pr2 ´ 1q
. (D.44)

The ansatz for the Killing vectors and all the derivatives are then formally the same, so that one

simply has to study again the constraints with the above coefficients. This leads to

ξLc “ A
`

x̃bεbc
aBa `

1

2
θ̃βpγcqβ

αBα
˘

ξQλ “ B
`

θ̃βpγbqβλx̃
dεdb

aBa ` 2ir1´
i
4 θ̃
2sBλ

˘

(D.45)

and the constants can be fixed to A “ 1 and B “ i
2 by comparison with (D.43).
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D.3. T-dual torsion constraints

We summarise formulae and expressions derived in trying to solve the torsion constraints for the

T-dual models with respect to SLp2,RqL and OSpp1|2qL. The generic metric (3.67), which includes

the initial model as well as its T-duals, has generic inverse metric (3.71) with coefficients

ginv1 “
1

g1
ginv2 “

g25 ´ g2g9 ´ g
2
7r
2

g21g9
ginv3 “

´g3

g21 ` g1g3r
2

ginv4 “
g21p2g5g6 ` g

2
7 ´ g

2
8 ´ g4g9 ` g

2
6r
2q ` 2g1g3p´g

2
5 ` 2g2g9 ` g

2
7r
2q ` g23r

2p´g25 ` g2g9 ` g
2
7r
2q

g21g9pg1 ` g3r
2q2

ginv5 “
g5
g1g9

ginv6 “
´g3g5 ` g1g6

g21g9 ` g1g3g9r
2

(D.46)

ginv7 “
´g7
g1g9

ginv8 “
g8

g1g9 ` g3g9r2
ginv9 “ ´

1

g9

ginv10 “
g1p2g1g10 ` 3g

2
5q ` p2g3g

2
5 ` g1p2g10g3 ` 2g5g6 ´ 2g

2
7 ´ g

2
8qqr

2 ` pg1g
2
6 ´ 2g3g

2
7qr
4

2g1g
2
9pg1 ` g3r

2q
.

Knowledge of the above expressions then allows to write down the coefficients of the inverse

vielbeine as linear functions of those of the vielbeine via (3.78)

M1 “ ´
1

2
A1g

inv
1 M2 “ ´

1

2
pA1g

inv
2 ` A2g

inv
1 ´ B1g

inv
5 ` r2B2g

inv
7 q

M3 “ ´
1

2
rA3g

inv
1 ` ginv3 pA1 ` r

2A3qs

M4 “ ´
1

2
rA3g

inv
2 ` ginv4 pA1 ` r

2A3q ` A4g
inv
1 ` ginv3 pA2 ` r

2A4q ´ B4g
inv
5 `

´ B2g
inv
7 ´ ginv6 pB1 ` r

2B4q ` B3g
inv
8 s

M5 “
1

2
A5g

inv
1 M6 “

1

2
rA5g

inv
2 ` A6g

inv
1 ` B1g

inv
7 ´ B2g

inv
5 s

(D.47)

N1 “ ´ipD1g
inv
1 ` E1g

inv
5 ` r2E3g

inv
7 q N2 “ ´ipE1g

inv
7 ` E3g

inv
5 ´D2g

inv
1 q

N3 “ ´irD3pg
inv
1 ` r2ginv3 q ` E3pg

inv
5 ` r2ginv6 q ` E1g

inv
8 s

N4 “ ´irD4g
inv
1 ` ginv3 pD1 ` r

2D4q ` E1g
inv
6 ´ E3pg

inv
7 ´ ginv8 qs

(D.48)

R1 “ ´
1

2
pA1g

inv
5 ` r2A5g

inv
7 ` B1g

inv
9 q R2 “

1

2
pA5g

inv
5 ` A1g

inv
7 ` B2g

inv
9 q (D.49)

R3 “ ´
1

2
rB3g

inv
9 ` ginv8 pA1 ` r

2A3qs R4 “ ´
1

2
rA3g

inv
5 ´ A5g

inv
7 ` ginv6 pA1 ` r

2A3q ` B4g
inv
9 s

S1 “ ´iE1g
inv
9 S3 “ iE3g

inv
9

S2 “ ´irE2g
inv
9 ` E1g

inv
10 `

3

2
pD1g

inv
5 ` r2D2g

inv
7 q`

`
r2

2
pD4g

inv
5 ´D2g

inv
7 ` ginv6 pD1 ` r

2D4q ´D3g
inv
8 qs

S4 “ irE4g
inv
9 ` E3g

inv
10 ´D2g

inv
5 ´D1g

inv
7 `

1

2
D3pg

inv
5 ` r2ginv6 q ´

1

2
ginv8 pD1 ` r

2D4qs .

(D.50)
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We turn now to the construction of the structure functions, needed for the torsion constraints.

Recalling the expression (3.66) one can write down

FABC “ eAmeBnrBnemC ´ BmenCs ` p´1qBeAµeBνrBνeµC ` BµeνCs`

` reA
meB

ν ´ p´1qBeA
νeB

msrBνem
C ´ Bmeν

Cs ,
(D.51)

and given the need for Fαβd ,Fαbd ,Fαβγ in the constraints (3.65), one can use the relations
Bauprq “ xau

1{r and Bαθ
2 “ 2θα to compute

rBnem
d ´ Bmen

d s “ εnm
k rpω̃1qk

d ` θ2pω̃2qk
d s

rBνeµ
d ` Bµeν

d s “ 2pγqqµνpω3qq
d

rBνem
d ´ Bmeν

d s “ θλ
␣

ϵνλpω̃3qm
d ` pγqqνλrxmp ˜̃ω3qq

d ` pxdηmq ` xqδ
d
mqµ13 ` εmq

dµ14s
(

rBnem
γ ´ Bmen

γs “ θλpγqqλ
γεnm

kpω̃4qk
q

rBνeµ
γ ` Bµeν

γs “ θλ
␣

2E2rδν
γϵµλ ` δµ

γϵνλs ` 2E4xprpγ
pqγνϵµλ ` pγ

pqµ
γϵνλs

(

rBνem
γ ´ Bmeν

γs “ rp ˜̃ω4qm
ppγpqν

γ ` ρ7xmδν
γs ` θ2rp ˜̃̃ω4qm

ppγpqν
γ ` ρ11xmδν

γs ,

(D.52)

where we defined quantities

pω̃1qk
d “ pµ1δk

d ` µ2xkx
d ` µ3x

cεck
d q pω̃2q

d
k “ pµ4δk

d ` µ5xkx
d ` µ6x

cεck
d q

pω̃3qm
d “ pµ7δm

d ` µ8xmx
d ` µ9x

cεcm
d q p ˜̃ω3qq

d “ pµ10δq
d ` µ11xqx

d ` µ12x
cεcq

d q

pω̃4qk
q “ pρ1δk

q ` ρ2xkx
q ` ρ3x

cεck
qq p ˜̃ω4qm

p “ pρ4δm
p ` ρ5xmx

p ` ρ6x
cεcm

pq

p
˜̃̃ω4qm

p “ pρ8δm
p ` ρ9xmx

p ` ρ10x
cεcm

pq

(D.53)

and, to shorten the notation, new coefficients

µ1 “ 2A5 ` rA
1
5 µ2 “ ´A

1
5{r µ3 “ A

1
1{r ´ A3 µ4 “ 2A6 ` rA

1
6

µ5 “ ´A
1
6{r µ6 “ A

1
2{r ´ A4 µ7 “ 2A2 ´ B3 µ8 “ 2A4 ´ B

1
3{r

µ9 “ 2A6 µ10 “ ´B
1
1{r µ11 “ ´B

1
4{r µ12 “ ´B

1
2{r

µ13 “ ´B4 µ14 “ ´B2

(D.54)

ρ1 “ 2D2 ` rD
1
2 ρ2 “ ´D

1
2{r ρ3 “ D

1
1{r ´D4 ρ4 “ D1 ´ E3

ρ5 “ D4 ´ E
1
3{r ρ6 “ D2 ρ7 “ D3 ´ E

1
1{r ρ8 “ ´E4

ρ9 “ ´E
1
4{r ρ10 “ 0 ρ11 “ ´E

1
2{r .

(D.55)
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By then using the ansatz for the inverse vielbeine and the above quantities one finds the expressions

(3.83),(3.84),(3.85) for the structure functions, with the following coefficients

F1 :“ ´2B1pS
2
1 ` r

2S23q ` 4r
2B2S1S3

F2 :“ ´2B4pS
2
1 ` r

2S23q ´ 4B2S1S3 ` 4S
2
3pB1 ` r

2B4q

F3 :“ ´2B2pS
2
1 ` r

2S23q ` 4B1S1S3

F4 :“ 4r
2B2pS1S4 ` S2S3q ´ 4B1pS1S2 ` r

2S3S4q ` µ1rN1pN1 ` r
2N4q ` r

2N2N3s`

` r2µ3rN1N3 ` N2pN1 ` r
2N4qs`

` S1rN1pµ7 ´ µ14q ` r
2N2pµ9 ` µ13q ´ r

2N3µ10 ´ pµ14 ` r
2µ12qpN1 ` r

2N4qs`

` S3rr
2µ10pN1 ` r

2N4q ´ r
2N1pµ9 ` µ13q ´ r

2N2pµ7 ´ µ14q ` r
2N3pµ14 ` r

2µ12qs

F5 :“ ´4B4pS1S2 ` r
2S3S4q ´ 4B2pS1S4 ` S2S3q ` 8S3S4pB1 ` r

2B4q` (D.56)

` µ2rN1pN1 ` r
2N4q ` r

2N2N3s ´ µ3rN1N3 ` N2pN1 ` r
2N4qs ´ pµ1 ` r

2µ2qpN
2
2 ` N2N3 ` N1N4q`

` S1rN1pµ8 ` µ12q ´ N2pµ9 ` 3µ13q ´ N3pr
2µ11 ` 2µ13q ` N4pµ7 ` µ14 ` r

2µ8 ` r
2µ12qs`

` S3rN1pµ9 ´ 3µ13q ` N2pµ7 ´ 3µ14q ´ pN1 ` r
2N4qp2µ10 ` r

2µ11q ´ 2r
2N4µ13`

` N3pµ7 ´ µ14 ` r
2µ8 ´ r

2µ12qs

F6 :“ 4B1pS1S4 ` S2S3q ´ 4B2pS1S2 ` r
2S3S4q`

` µ3rr
2N2N3 ` N1pN1 ` r

2N4qs ` µ1rN1N3 ` N2pN1 ` r
2N4qs`

` S1rN1pµ9 ` µ13q ` N2pµ7 ´ µ14q ´ N3pµ14 ` r
2µ12q ´ µ10pN1 ` r

2N4qs`

` S3rN1pµ14 ´ µ7q ´ r
2N2pµ9 ` µ13q ` r

2N3µ10 ` pN1 ` r
2N4qpµ14 ` r

2µ12qs
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F7 :“ ´r
2N3pM1µ3 `M5µ1q ` S1r2R1B1 ` 2r

2R2B2 ´M1µ7 ´ r
2M5µ9s`

` S3rr
2pM1µ13 ´M5µ14q ´ 2r

2pR2B1 ` R1B2qs

F8 :“ N3pM5µ1 `M1µ3q ` S1r2R1B4 ´ 2R2B2 ` 2R4pB1 ` r
2B4q ´M1µ8 `M5µ9 ´M3pµ7 ` r

2µ8qs`

` S3r2pR2 ´ R3qpB1 ` r
2B4q ` 2B2pR1 ` r

2R4q ´ 2r
2pR2B4 ` R4B2q`

` pM1 ` r
2M3qpµ10 ` µ13 ` r

2µ11q `M5µ14 ` r
2M3µ13s

F9 :“ ´N3pM1µ1 ` r
2M5µ3q ` S1r2R1B2 ` 2R2B1 ´M1µ9 ´M5µ7s`

` S3r´2R1B1 ´ 2r
2R2B2 ´M1µ14 ` r

2M5µ13s

F10 :“ M5N2pµ1 ` r
2µ2q ´M1N1pµ2 `

1
r2µ1q ` S1r2R1B4 `M5µ13 `

1
r2 p2R1B1 `M1µ14qs`

` S3r2R2pB1 ` r
2B4q `M1µ13 `M5µ14s

F11 :“ M3N1µ1 ` N2pM1 ` r
2M3qµ3 `

1
r2M1N1µ1 ` S3r2B2pR1 ` r

2R4q ´ 2R3B1 ` pM1 ` r
2M3qµ10s`

` S1r2R3B2 ´ 2R4B1 ´M3µ14 ´ pM1 ` r
2M3qµ12 ´

1
r2 p2R1B1 `M1µ14qs

F12 :“ ´M1N4µ1 ´M5pN1 ` r
2N4qµ3 ´

1
r2M1N1µ1 ` S1r2R2B2 ´M5µ13 `

1
r2 p2R1B1 `M1µ14qs`

` S3r´2R1B2 ´ 2R2B1 `M1µ9 `M5µ7s

F13 :“ pM5N1 ´M1N2qpµ1 ` r
2µ2q ` S1r´2r2pB1 ` r

2B4q ´M1µ13 ´M5µ14s` (D.57)

` S3r´2R1pB1 ` r
2B4q ´M1µ14 ´ r

2M5µ13s

F14 :“ ´pN1 ` r
2N4qpM5µ1 `M1µ3q ` S1r2R2B1 ` 2R1B2 ´M1µ13 `M5µ14s`

` S3r´2R1B1 ´ 2r
2R2B2 `M1µ7 ` r

2M5µ9s

F15 :“ pM1 ` r
2M3qpN2µ1 ` N1µ3q ` S1r2R3B1 ´ 2B2pR1 ` r

2R4q ´ pM1 ` r
2M3qµ10s`

` S3r2B1pR1 ` r
2R4q ´ 2r

2R3B2 ` pM1 ` r
2M3qpµ14 ` r

2µ12qs

F16 :“ pM1N4 ´M3N1qµ3 ` N2pM1 ` r
2M3qµ2 ´M5pN1 ` r

2N4qµ2 ` pM5N4 ´M3N2qpµ1 ` r
2µ2q`

` S1r2R4B2 ` 2pR2 ` R3qB4 ´ 2M3µ13 ´ pM1 ` r
2M3qµ11s`

` S3r2pR2 ` R3qB2 ´ 2R1B4 ´ 4R4pB1 ` r
2B4q ` 2B4pR1 ` r

2R4q`

`M1µ8 `M3pµ7 ´ µ14 ` r
2µ8q `M5pµ13 ´ µ9q ´ pM1 ` r

2M3qµ12s

F17 :“ r
2S1N3ρ7 ` r

2S3N3pρ4 ` r
2ρ5q ´ 2E2S

2
1 ´ 2r

2E4S1S3

F18 :“ S1N3pρ4 ` r
2ρ5q ` r

2S3N3ρ7 ´ 2E4S
2
1 ´ 2E2S1S3

F19 :“ pN1 ` r
2N4qrS1ρ7 ` S3pρ4 ` r

2ρ5qs ` 2r
2E4S

2
3 ` 2E2S1S3 (D.58)

F20 :“ S1pN1ρ4 ` r
2N2ρ6q ` r

2S3pN1ρ6 ` N2ρ4q

F21 :“ S1rN1ρ5 ´ N2ρ6 ` N4pρ4 ` r
2ρ5qs ` S3r´N1ρ6 ´ N2ρ4 ` pN1 ` r

2N4qρ7s ` 2E4S1S3 ` 2E2S
2
3

F22 :“ ´S1pN1ρ6 ` N2ρ4q ´ S3pN1ρ4 ` r
2N2ρ6q .





E
T-Duality Of Principal Chiral Models - Abstract Approach

E.1. Properties of topological deformations

Antisymmetry and derivation. Graded antisymmetry of Ω leads to the first property in (4.5)

$

&

%

ΩpY,Xq “ ´p´1qXYΩpX, Y q “ ´p´1qXY xDpXq, Y y

ΩpY,Xq “ xDpY q, Xy “ p´1qXY xX,DpY qy
ñ xX,DpY qy “ ´xDpXq, Y y (E.1)

and combining it with the two-cocycle condition (4.3) one recovers the second relation in (4.5)

ΩpX, rY, Zsq ` p´1qXpY`ZqΩpY, rZ,Xsq ` p´1qZpX`Y qΩpZ, rX, Y sq “

“ xDpXq, rY, Zsy ` p´1qXpY`ZqxDpY q, rZ,Xsy ` p´1qZpX`Y qxDpZq, rX, Y sy “

“ ´xX,DrY, Zsy ` xX, rDpY q, Zsy ` xX, rY,DpZqsy ” 0 .

(E.2)

Given a Lie (super)algebra g with generators tTAu satisfying rTA, TBs “ fAB
CTC one can also write

D in components DpTAq “ DA
BTB, and define DAB :“ DA

CδCB. Then antisymmetry implies that

xDpTAq, TBy “ ´xTA, DpTBqy ñ DAB “ ´p´1q
ABDBA (E.3)

and the two-cocycle condition (4.3) leads to the relation

xDpTAq, rTB, TCsy ` p´1q
ApB`CqxDpTBq, rTC , TAsy ` p´1q

CpA`BqxDpTCq, rTA, TBsy “

“ p´1qEpB`CqDA
EfBC

DδDE ` p´1q
pA`EqpB`CqDB

EfCA
DδDE ` p´1q

pC`EqpA`BqDC
EfAB

DδDE “

“ DA
EfEBC ´ p´1q

ABDB
EfEAC ` p´1q

E`CE`N fABEDCNδ
NE “

“
`

DA
M fMB

P ´ p´1qABDB
M fMA

P ´ fAB
MDM

P
˘

δPC ” 0 , (E.4)

where we used the graded antisymmetry of DAB and fABC with respect to any two indices.
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Equations of motion - deformed action. We check that deformations by two-cocycles do not

alter equations of motion and Noether symmetries. Recall that under an arbitrary variation of the

group element δg the current transforms as δj “ dpg´1δgq ` rj, g´1δgs and consecutively

δSΩ “ δ

ˆ

1
2

ż

Σ

Ωpj, jq

˙

“

ż

Σ

Ωpδj, jq “

ż

Σ

´Ωpg´1δg, djq `Ωprj, g´1δgs, jq “

“

ż

Σ

1
2Ωpg

´1δg, rj, jsq `Ωpj, rj, g´1δgsq “ 0 ,

(E.5)

where we exploited Maurer-Cartan equation and (4.3) implies cancellation of the two pieces

Ωpg´1δg, rj, jsq `Ωpj, rj, g´1δgsq ´Ωpj, rg´1δg, jsq “ 0 . (E.6)

GR invariance - deformed action. Before verifying that the deformed action (4.9) retains in-

variance under the global GR action of the group, we shall construct (4.6). Exploiting the relation

gY g´1 “ AdgY “ e
adXY “

8
ÿ

k“0

1
k!ad

k
XpY q with g “ eX X, Y P g (E.7)

and the derivation property of D on the Lie bracket one finds

DpgY g´1q “ gDpY qg´1 `

8
ÿ

k,n“0

1

pk ` n ` 1q!
adkX ˝ adDpXq ˝ ad

n
XpY q . (E.8)

Then, noting that
ş1
0 dtp1´ tq

ktn “ k! n!
pk`n`1q! the second term can be rewritten as

8
ÿ

k,n“0

1

pk ` n ` 1q!
adkX ˝ adDpXq ˝ ad

n
XpY q “

ż 1

0

dt
8
ÿ

k,n“0

p1´ tqktn

k! n!
adkX ˝ adDpXq ˝ ad

n
XpY q “

“

ż 1

0

dt ep1´tqadX ˝ adDpXq ˝ e
tadX pY q “

“ eadX
ż 1

0

dt e´tadX rDpXq, etXY e´tXs “

“ eadX
ż 1

0

dtre´tadXDpXq, Y s “

“ eadX
„ 8
ÿ

k“0

p´1qk

pk ` 1q!
adkX

`

DpXq
˘

, Y

ȷ

“

“ grg´1Dpgq, Y sg´1 , (E.9)

where in the last line we exploited the definition (4.7) and eadX “ Adg for g “ e
x . Putting

together the two pieces above, one recovers (4.6). Then (4.8) is easily verified using the latter
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and Ad-invariance of the inner product

Ωpg´1Xg, g´1Y gq “ xDpg´1Xgq, g´1Y gy “

“ xg´1DpXqg, g´1Y gy ` xg´1rgDpg´1q, Xsg, g´1Y gy “

“ ΩpX, Y q ` xgDpg´1q, rX, Y sy .

(E.10)

This allows to show GR invariance of (4.9). Under gÑ ggR one has j Ñ g
´1
R jgR and hence

SΩ “
1
2

ż

Σ

Ωpj, jq Ñ 1
2

ż

Σ

xDpg´1
R jgRq, g

´1
R jgRy “ SΩ `

1
2

ż

Σ

xgRDpg
´1
R q, rj, jsy “

“ SΩ ´

ż

Σ

d xgRDpg
´1
R q, jy .

(E.11)

In the last step we used Maurer-Cartan equation and that D, gR are constant in order to write the

extra piece as a boundary term which does not contribute to the action.

A very similar reasoning then shows that the master action (4.12) has the same property: the

multipliers do not transform under gÑ ggR and it is sufficient to check that

1
2Ωpjω, jωq ` xDpgqg

´1, Fωy Ñ 1
2Ωpjω, jωq ` xDpgqg

´1, Fωy`

` 1
2xgRDpg

´1
R q, rjω, jωsy ´ xggRDpg

´1
R qg

´1, Fωy “

“ 1
2Ωpjω, jωq ` xDpgqg

´1, Fωy ` d xgRDpg
´1
R q, jωy ,

(E.12)

where in the last step we used g´1Fωg “ Fjω and once again that D, gR are constant.

E.2. T-dual model

Equations of motion. Upon varying the dual action (4.19) with respect to Λ̃ one finds

δS̃ “

ż

Σ

xdδΛ̃,
1

1´DΛ̃
P`dΛ̃y ` xdΛ̃, δ

ˆ

1

1´DΛ̃

˙

P`dΛ̃y ` xP´dΛ̃,
1

1´DΛ̃
dδΛ̃y “

“

ż

Σ

xδΛ̃, d̃j ´
1

2

„

1

1`DΛ̃
dΛ̃,

1

1´DΛ̃
P`dΛ̃

ȷ

y ,

(E.13)

where we used the relation (4.20) and the fact that j̃ :“ jω, with jω as in (4.16). This immediately

leads to the equations of motion (4.21) after noting that r̃j , j̃s “ ´
“

1
1`DΛ̃

dΛ̃, 1
1´DΛ̃

P`dΛ̃
‰

. Then,

j̃ satisfies by construction the relation (4.15) and taking the exterior derivative of it one finds

dp‹̃jq “ ´dr̃j , Λ̃s `Dpd̃jq “ DΛ̃pd̃jq ` r̃j , dΛ̃s “ DΛ̃pd̃j `
1
2 r̃j , j̃sq , (E.14)

which leads to (4.22) upon using the equations of motion (4.21).
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Noether current and Killing vectors. Recalling the transformation law (4.24) of the multipliers

under gÑ ggR and taking gR » 1` ϵ one finds that δΛ̃ “ DΛ̃ϵ. Substituting this into the general

variations (E.13) of the dual action one finds

δS̃ “

ż

Σ

xDΛ̃ϵ, d̃j `
1
2 r̃j , j̃sy “ ´

ż

Σ

xϵ,DΛ̃pd̃jq ` rDΛ̃ j̃ , j̃sy “ ´

ż

Σ

xϵ, d
`

DΛ̃ j̃
˘

y , (E.15)

where we exploited again the relation (4.15). This immediately leads to the Noether current (4.26).

We can now proceed in deriving the explicit form (4.27) of the Killing vectors. To begin we note

that inserting the equations of motion (4.15) into the master action (4.14) one finds

S̃ “
1

2

ż

Σ

xdΛ̃, ˜́jy with j̃ :“ jω . (E.16)

Even without explicitly computing j̃ , from the expression (4.16) we know we can expand

˜́j “ ‹dΛ̃NXN
ATA ` dΛ̃

NYN
ATA (E.17)

for some XN
A and YN

A. Knowing then that the T-dual model contains both a metric and a B-field

term, we can also write the dual action as

S̃ “
1

2

ż

Σ

dΛ̃N ^ ‹dΛ̃M g̃MN ` dΛ̃
N ^ dΛ̃MB̃MN , (E.18)

so that comparing with the above expression and substituting the expansion of ˜́j one finds

g̃MN “ XM
AδAN BMN “ YM

AδAN . (E.19)

At this point we also substitute the above expansion for ˜́j into the T-dual Noether current (4.26)

J̃N “ ‹DΛ̃ j̃ “ ´dΛ̃
NXN

ApDA
C ` Λ̃P fPA

CqTC ´ ‹dΛ̃
NYN

ApDA
C ` Λ̃P fPA

CqTC (E.20)

and finally compare to the general expression (C.21)

ξNTDdΛ̃
M g̃MN ` ξ

N
TD
‹ dΛ̃MB̃MN “ ´dΛ̃

NXN
ApDA

C ` Λ̃P fPA
CqδCD ´ ‹dΛ̃

NYN
ApDA

C ` Λ̃P fPA
CqδCD . (E.21)

Exploiting the relations (E.19) for the dual metric and B-field and the graded antisymmetry of

DAB and fABC under the exchange of any two indices one can extract the components of the Killing

vectors ξMTD “ DD
M ` Λ̃P fPD

M , thus recovering the result (4.27). One can now check the latter
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correctly satisfy the commutation relations rξTA , ξTB s “ fAB
CξTC .

rξTA , ξTB s “
`

DA
MfMB

P ´ p´1qABDB
MfMA

P
˘

BP ` Λ̃
N
`

fNA
MfMB

P ´ p´1qABfNB
MfMA

P
˘

BP “

“ fAB
MDM

P BP ` fAB
M Λ̃NfNM

P BP “ fAB
CξTC , (E.22)

where the first two terms are recombined exploiting the two-cocycle condition as in (E.4), while

the last two by exploiting Jacobi identity.

Structure equation and H3. From the definition (4.29) of the dual vielbeine one finds

dẽ “
1

1´DΛ̃
dp1´DΛ̃q

1

1´DΛ̃
dΛ̃ “

1

1´DΛ̃
addΛ̃pẽq “ ´

1

1´DΛ̃
rp1´DΛ̃qẽ, ẽs “

“ ´
1´ 1

2DΛ̃
1´DΛ̃

rẽ, ẽs “ ´
1

2
rẽ, ẽs ´

1

2

1

1´DΛ̃
rẽ, ẽs ,

(E.23)

which is (4.30). In the first step we used O´1O “ 1 ñ dO´1 “ ´O´1dOO´1 for O “ 1´DΛ̃.
Then we used that dpDΛ̃q “ addΛ̃ and inverted the definition of the vielbeine as dΛ̃ “ ´p1´DΛ̃qẽ.

To compute H3 we take the exterior derivative of (4.31) and exploit the above relation

H3 :“ dB̃2 “
1

2
xdẽ, DΛ̃ẽy ´

1

2
xẽ, addΛ̃ẽy ´

1

2
xẽ, DΛ̃dẽy “ xdẽ, DΛ̃ẽy `

1

2
xrẽ, ẽs, p1´DΛ̃qẽy “

“
1

2
xrẽ, ẽs, ẽy ´

1

2
x
1

1´DΛ̃
rẽ, ẽs, DΛ̃ẽy ´ xrẽ, ẽs, DΛ̃ẽy “

“
1

2
xẽ,

ˆ

1`
DΛ̃
1´DΛ̃

˙

rẽ, ẽsy “
1

2
xẽ,

1

1´DΛ̃
rẽ, ẽsy . (E.24)

In the first line we inverted the definition of ẽ for dΛ̃ and on the second line we used xrẽ, ẽs, DΛ̃ẽy “

0, which follows from antisymmetry ofDΛ̃ and the fact that it acts as a derivation on the Lie bracket.

E.3. OSpp1|2q

Supergravity constraints. To study the requirements imposed by supergravity we proceed now

in a slightly different way, that is by taking the constrained structure equations to be satisfied by

the vielbeine in 4d theories [100,134] and reducing them to 3d. We start by writing the first Cartan

structure equation in (A.19) using 4d spinorial notation, with indices B “ tβ 9β, β, 9βu

dêα 9α ´ êB ^ΩB
α 9α “ ´T̂α 9α dêα ´ êB ^ΩB

α “ ´T̂α dê 9α ´ êB ^ΩB
9α “ ´T̂ 9α. (E.25)
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The connection is then required to be diagonal, with non-vanishing components Ω
β 9β
α 9α,Ωβ

α,Ω 9β
9α,

and the boson-boson part related to the fermion-fermion ones as

Ω
β 9β
α 9α “ Ωβ

αδ 9β
9α `Ω 9β

9αδβ
α . (E.26)

Imposing then the following constraints on torsion

T̂
β 9β
α 9α “ 1

2δβ
αδ 9β

9α T̂αβ
C “ T̂

9α 9β
C “ T̂

α 9β
γ “ T̂

α 9β
9γ “ T̂

Aβ 9β
γ 9γ “ 0 , (E.27)

the structure equations become

dêα 9α ´ êβ 9α ^Ωβ
α ´ êα

9β ^Ω 9β
9α “ ´12 ê

α ^ ê 9α (E.28)

dêα ´ êβ ^Ωβ
α “ ´12 ê

β 9β ^ êγ 9γ T̂
γ 9γ β 9β

α ´ êβ
9β ^ êγ T̂

γ β 9β
α ´ êβ

9β ^ ê 9γ T̂
9γ β 9β

α

dê 9α ´ ê
9β ^Ω 9β

9α “ ´12 ê
β 9β ^ êγ 9γ T̂

γ 9γ β 9β
9α ´ êβ

9β ^ êγ T̂
γ β 9β

9α ´ êβ
9β ^ ê 9γ T̂

9γ β 9β
9α .

In three-dimensions the distinction between dotted and undotted indices is lost, so one can proceed

by identifying the two types of indices, which makes the last two equations the same

dêαβ ´ êγβ ^Ωγ
α ´ êαγ ^Ωγ

β “ ´êγ ^ êδT̂δ γ
αβ

dêα ´ êβ ^Ωβ
α “ ´12 ê

ρσ ^ êγδT̂γδ ρσ
α ´ 2êδ ^ êβγ T̂βγ δ

α .
(E.29)

Then, using

êαβ :“ epαβq ` Sϵαβ Ωαβ “ Ωβα êα :“ eα (E.30)

and choosing

Ωrρσs γ
α “ 0 T̂rρσs pγδq

α “ T̂rρσs rγδs
α “ T̂ρ rγδs

α “ 0 , (E.31)

the first equation splits into

deαβ ´ 2eγpα ^Ωγ
βq “ ´12e

α ^ eβ dS “ 0 , (E.32)

while the second becomes

deα ´ eβ ^Ωβ
α “ ´12e

ρσ ^ eγδTγδ ρσ
α ´ eδ ^ eβγTβγ δ

α . (E.33)

With the above choice, S completely decouples from the system and the remaining constraints are

effectively three-dimensional. As mentioned in Appendix A of [134], in the language of σ-matrices

commonly adopted in four dimensions this corresponds to the decoupling of the direction associated

with the antisymmetric sigma matrix σ2, i.e. the second Pauli matrix. Hence we are left with the
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constrained structure equations

deαβ ´ 2eγpα ^Ωγ
βq “ ´12e

α ^ eβ

deα ´ eβ ^Ωβ
α “ ´12e

δϵ ^ eβγTβγ δϵ
α ´ eδ ^ eβγTβγ δ

α ,
(E.34)

encoding all the necessary requirements on torsion and connection. The components Tαβ γδ
ϵ and

Tαβ γ
δ are unconstrained and the diagonal connection components are related by

Ωαβ
γδ “ 2Ωpα

pγδβq
δq . (E.35)

These have expansion on the vielbeine Ωα
β “ eγδΩγδ α

β ` eγΩγ α
β and off-diagonal components

vanish as needed by (A.33) and metric compatibility implies Ωαβ “ Ωβα.

There is another requirement, needed for three-dimensional supergravity theories, that thanks

to the abstract approach we can now take into account more easily. The components of the three-

form H3 should be restricted and the non-vanishing ones should depend on a scalar superfield L

and its derivatives as described in [134]

H3 “ eα ^ e
αβ ^ eβ L` eβ ^ eγ

β ^ eγαDαL´ i
6eα

β ^ eβ
γ ^ eγ

αpiD2 ` 8SqL , (E.36)

where Dα is the superspace covariant derivative, D2 “ DαDα and S is another scalar superfield.

Useful identities. We report here a set of identities needed in the study of the OSpp1|2q model.

To begin we introduce generic quantities taking values in some Lie superalgebra g

U :“ Ub ` Uf V :“ Vb ` Vf , (E.37)

where we split purely bosonic and purely fermionic contributions. In order to compute the action

of 1
1´adU

on V we exploit the above splitting and obtain the following expansion

1

1¯ adU
“

1

1¯ adUb ¯ adUf
“

1

r1¯ adUb sr1¯ p1¯ adUbq
´1 ˝ adUf s

“

“ r1¯ p1¯ adUbq
´1 ˝ adUf s

´1r1¯ adUb s
´1 “

“

8
ÿ

k“0

„

˘
1

1¯ adUb
˝ adUf

ȷk

˝
1

1¯ adUb
“

“
1

1¯ adUb
˘

1

1¯ adUb
˝ adUf ˝

1

1¯ adUb
` ...

(E.38)
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which due to the nilpotency of fermions terminates at some power k “ Nf . For OSpp1|2q we have

U :“ uαβLαβ ` χ
αQα V :“ vαβLαβ ` η

αQα (E.39)

and the above expansion terminates at k “ 2, leaving us with three contributions to compute. To

begin we define χ2 :“ χαχα “ χ
αχβϵαβ and

uγ
αuβ

γ “ ´12δβ
αuγδu

γδ “: ´12δβ
αu2 with u2 :“ uαβu

αβ . (E.40)

Using the latter we can start computing the action of the bosonic term in the expansion on V

1

1´ adUb
pVb ` Vf q “

8
ÿ

k“0

adkUbpVu ` Vf q . (E.41)

Exploiting the commutators (4.33) one obtains

ad2kUbpVbq “ p2u
2qk´1pu2vαβ ´ 2uγ

αuδ
βvγδqLαβ for k ě 1

ad2k`1
Ub

pVbq “ ´2ip2u
2qkuγ

αvβγLαβ for k ě 0
(E.42)

and

ad2kUbpVf q “ p
1
2u
2qkηαQα for k ě 0

ad2k`1
Ub

pVf q “ ´ip
1
2u
2qkuβ

αηβQα for k ě 0
(E.43)

which lead to

1

1´ adUb
pVb ` Vf q “

1

1´ 2u2
“

p1´ u2qvαβ ´ 2uγ
αuδ

βvγδ ´ 2iuγ
pαvβqγ

‰

Lαβ`

`
2

2´ u2
ηβrδβ

α ´ iuβ
αsQα “

“: v 1αβLαβ ` η
1αQα

(E.44)

and consecutively to

adUf ˝
1

1´ adUb
pV q “ η1pαχβqLαβ ` iv

1α
βχ
βQα . (E.45)

One can then compute the terms in the expansion (E.38) recursively, thus obtaining

1

1´ adUb
˝ adUf ˝

1

1´ adUb
pV q “

1

1´ 2u2
“

p1´ u2qη1pαχβq ´ 2uγ
αuδ

βη1pγχδq ´ 2iuγ
αη1pβχγq

‰

Lαβ`

`
2

2´ u2
iv 1α

γχ
γrδβ

α ´ iuβ
αsQα “

“: v2αβLαβ ` η
2αQα (E.46)
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and consecutively

adUf ˝
1

1´ adUb
˝ adUf ˝

1

1´ adUb
pV q “ η2pαχβqLαβ ` iv

2α
βχ
βQα (E.47)

and the last term

1

1´ adUb
˝ adUf ˝

1

1´ adUb
˝ adUf ˝

1

1´ adUb
pV q “

“
1

1´ 2u2
“

p1´ u2qη2pαχβq ´ 2uγ
αuδ

βη2pγχδq ´ 2iuγ
αη2pβχγq

‰

Lαβ`

`
2

2´ u2
iv2α

γχ
γrδβ

α ´ iuβ
αsQα .

(E.48)

One can then put together the above pieces, obtaining the following expression

1

1´ adU
pV q “

1

1´ 2u2
“

p1´ u2qZαβ ´ 2uγ
αuδ

βZγδ ´ 2iuγ
pαZβqγ

‰

Lαβ`

`
2

2´ u2
ζαrδα

β ´ iuα
βsQβ ,

(E.49)

with

Zαβ :“ vαβ ` pη1 ` η2qpαχβq “

“ vαβ `
2

2´ u2
“

ηpα ´ iηγuγ
pα
‰

χβq`

`
i

p2´ u2qp1´ 2u2q

“

p1´ 1
2u
2qvαβ ´ 3uγ

αuδ
βvγδ ´ 3iuγ

pαvβqγ
‰

χ2

ζα :“ ηα ´ ipv 1 ` v2qαβχβ`

“ ηα ´
i

1´ 2u2
“

p1´ u2quαβ ´ 2uγ
αuδ

βvγδ ´ 2iuγ
pαvβqγ

‰

χβ`

´
i

p2´ u2qp1´ 2u2q

“

3
2η
α ´ i

`

7
2 ´ u

2
˘

ηβuβ
α
‰

χ2 .

(E.50)





F
T-Duality Of Symmetric And Semi-Symmetric Spaces

F.1. Initial model

Equations of motion and Noether current. Variations of the action (4.64) read

δS “

ż

Σ

xδm, ‹my ` κ
2 xδp, qy ´

κ
2 xδq, py (F.1)

and upon recalling that for gÑ g` δg the current transforms as j Ñ j ` δj , with δj “ dpg´1δgq`

rj, g´1δgs, one can use (4.62) to project on the four subspaces, thus obtaining

δp “ dpg´1δgq|p ` rA, pg
´1δgq|ps ` rp, pg

´1δgq|hs ` rm, pg
´1δgq|qs ` rq, pg

´1δgq|ms

δm “ dpg´1δgq|m ` rA, pg
´1δgq|ms ` rp, pg

´1δgq|ps ` rm, pg
´1δgq|hs ` rq, pg

´1δgq|qs

δq “ dpg´1δgq|q ` rA, pg
´1δgq|qs ` rp, pg

´1δgq|ms ` rm, pg
´1δgq|ps ` rq, pg

´1δgq|hs .

(F.2)

Substituting and rearranging one then recovers (4.65). The Noether current associated to the

GL : g Ñ g´1
L g invariance of the initial action is then obtained by letting gL » 1 ` ϵ so that

δg “ ´gϵ and δm, δp, δq are simply the projections of ´g´1dϵg on the respective subspaces.

LaxcConnection. Recalling Maurer-Cartan equations (4.66) and equations of motion (4.65)

MC:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

FA `
1
2 rm,ms ` rp, qs “ 0

∇Ap ` rm, qs “ 0

∇Am ` 1
2 rp, ps `

1
2 rq, qs “ 0

∇Aq ` rm, ps “ 0

EOM:

$

’

’

’

&

’

’

’

%

∇A ‹m ´ κ
2 rp, ps `

κ
2 rq, qs “ 0

∇Aq ` rp, 2κ ‹m ´ms “ 0

∇Ap ´ rq, 2κ ‹m `ms “ 0

(F.3)
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since dp‹Aq, dp‹pq, dp‹qq do not appear in the above equations, one can safely take the following

ansatz for the Lax connection, with coefficients a, b, c, w, t to be determined

J “ aA` bm ` c ‹m ` wp ` tq . (F.4)

One can then construct the curvature FJ :“ dJ `
1
2 rJ, Js of the connection and rearrange terms in

the form of the above equations. In doing so, one should be more careful than with the principal

chiral model, as some terms, such as dp, dq or rm, ps, rm, qs appear both in equations of motion

and Maurer-Cartan equations. For this reason one should split such terms and in doing so there

is some extra arbitrariness appearing, which could be taken care of by introducing new coefficients

to be determined. For example, when splitting the term wdp between the second Maurer-Cartan

equation and the third equations of motion one could write wdp “ 1
2pw `αqdp`

1
2pw ´αqdp, so

that each of the two contribution could be used for one of the two equations. Repeating this for

all the necessary terms one finally obtains

FJ “ a
␣

dA` a
2 rA,As `

b2´c2

2a rm,ms ` wt
a rp, qs

(

` w`α
2

␣

dp ` wa`β
w`α rA, ps `

tb`γ
w`α rm, qs

(

`

` b
␣

dm ` arA,ms ` w2`µ
4b rp, ps `

t2`ν
4b rq, qs

(

`
t`ρ
2

␣

dq ` ta`σ
t`ρ rA, qs `

wb`λ
t`ρ rm, ps

(

`

` c
␣

d ‹m ` arA, ‹ms ` w2´µ
4c rp, ps `

t2´ν
4c rq, qs

(

`

`
t´ρ
2

␣

dq ` ta´σ
t´ρ rA, qs `

2wc
t´ρ rp, ‹ms `

wb´λ
t´ρ rp,ms

(

`

` w´α
2

␣

dp ` wa´β
w´α rA, ps `

2tc
w´α rq, ‹ms `

tb´γ
w´α rq,ms

(

, (F.5)

where we introduced α, β, ρ, σ, γ, λ, µ, ν to be determined. In order for the first four brackets to

match the Maurer-Cartan equations and the last three brackets to match the equations of motion

one needs that a “ 1 and

b2 ´ c2 “ 1 wt “ 1 w`β
w`α “ 1

tb`γ
w`α “ 1

w2`µ
2b “ 1 t2`ν

2b “ 1 t`σ
t`ρ “ 1

wb`λ
t`ρ “ 1

w2´µ
2c “ ´κ t2´ν

2c “ κ

t´σ
t´ρ “ 1

wc
t´ρ “

1
κ

wb´λ
t´ρ “ ´1

w´β
w´α “ 1

tc
w´α “´

1
κ

tb´γ
w´α “ ´1 .

(F.6)

From the above constraints one immediately recognises that α “ β and ρ “ σ, then

• combining the first two conditions on the second line and the two conditions on the third line

one finds that ν “ w2 and µ “ t2

• combining the fourth condition on the first line with the third condition on the fifth line one

finds that γ “ w and α “ tb
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• combining the fourth condition on the second line and the third condition on the fourth line

one finds that λ “ t and ρ “ wb

At this point all the extra coefficients have been fixed in terms of b, c, w, t and one can find, for

example from the first condition on the second line and the second condition on the third line,

that b “ 1
2pt
2 ` w2q and c “ 1

2κpt
2 ´ w2q. The second condition on fourth and fifth line are also

consistent with this provided one uses wt “ 1. Now one can impose b2 ´ c2 “ 1, thus finding

b2 ´ c2 “
w4pκ2 ´ 1q ` 2w2t2pκ2 ` 1q ` t4pκ2 ´ 1q

4κ2
” 1 ñ κ2 ” 1 . (F.7)

Hence the flatness of the lax connection (F.4) can be cast into the Maurer-Cartan equations and

equations of motion of semi-symmetric space sigma models provided that κ “ ˘1. With this

restriction, all the above constraints are satisfied and all coefficients are written in terms of w and

t, which must be such that wt “ 1. The simplest choice is to set w “ z and t “ z´1, which

finally leads to

a “ 1 b “ 1
2pz
2 ` z´2q c “ ´ 1

2κpz
2 ´ z´2q w “ z t “ z´1 (F.8)

α “ 1
2pz ` z

´3q “ β ρ “ 1
2pz
3 ` z´1q “ σ γ “ z λ “ z´1 µ “ z´2 ν “ z2 .

F.2. T-dual model

Equations of motion in p, q. To solve (4.105) in the fermionic subspaces we first write them as

p : ´ p12 ` adΛ̃hqppωq ´DΛ̃mpqωq “ ´∇Aω Λ̃p ` adΛ̃qpmωq

q : p12 ´ adΛ̃hqpqωq ´DΛ̃mppωq “ ´∇Aω Λ̃q ` adΛ̃ppmωq ,
(F.9)

which in matrix form read

»

–

´p12 ` adΛ̃hq ´DΛ̃m

´DΛ̃m p12 ´ adΛ̃hq

fi

fl

loooooooooooooooooomoooooooooooooooooon

R´1

«

pω

qω

ff

“

«

´∇Aω Λ̃p ` adΛ̃qpmωq
´∇Aω Λ̃q ` adΛ̃ppmωq

ff

. (F.10)

To invert R´1 we first define c˘ :“
2

1˘2adΛ̃h
so that it can be rewritten as

R´1 “

«

´c´1
` ´DΛ̃m

´DΛ̃m c´1
´

ff

“

«

´c´1
` 0

0 c´1
´

ff

p12 ´Mq , (F.11)
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with

12 :“

«

1 0

0 1

ff

M :“

«

0 ´c` ˝DΛ̃m
c´ ˝DΛ̃m 0

ff

. (F.12)

Consequently one finds

R “ p12 ´Mq
´1

«

´c` 0

0 c´

ff

“

8
ÿ

k“0

Mk

«

´c` 0

0 c´

ff

“

8
ÿ

k“0

M2kp12 `Mq

«

´c` 0

0 c´

ff

, (F.13)

and (4.108) is recovered after noting that

8
ÿ

k“0

M2k “
8
ÿ

k“0

«

´c` ˝DΛ̃m ˝ c´ ˝DΛ̃m 0

0 ´c´ ˝DΛ̃m ˝ c` ˝DΛ̃m

ffk

“

“

»

–

1
1`c`˝DΛ̃m˝c´˝DΛ̃m

0

0 1
1`c´˝DΛ̃m˝c`˝DΛ̃m

fi

fl .

(F.14)

Hybrid action. Using the properties of the inner product we write the action (4.70) explicitly as

Sω “

ż

Σ

xmω, ‹mωy `
1

2
xpω, qωy ` xΛ̃h, FAω `

1

2
rmω, mωs ` rpω, qωsy` (F.15)

` xΛ̃p,∇Aωqω ` rmω, pωsy ` xΛ̃q,∇Aωpω ` rmω, qωsy`

` xΛ̃m,∇Aωmω `
1

2
rpω, pωs `

1

2
rqω, qωsy ` xDpAωq, mωy `

1

2
xDppωq, pωy `

1

2
xDpqωq, qωy

and substituting ‹mω in the first term with (4.105) the terms can be rearranged into

Sω “

ż

Σ

1

2
xmω, dΛ̃m ´DΛ̃mpAωqy ` xΛ̃h, FAωy`

`
1

2
xpω,∇Aω Λ̃q `

␣

1
2qω ´DΛ̃mppωq ´ rΛ̃p, mωs ´ rΛ̃h, qωs `∇Aω Λ̃q

(

y`

`
1

2
xqω,∇Aω Λ̃p `

␣

´12pω ´DΛ̃mpqωq ´ rΛ̃q, mωs ´ rΛ̃h, pωs `∇Aω Λ̃p
(

y .

(F.16)

Now the curly brackets are precisely the equations of motion (4.106) in the subspaces p and q,

hence vanish identically and one can proceed by substituting the solution (4.107) for pω and qω

Sω “

ż

Σ

1

2
xmω, dΛ̃m ´DΛ̃mpAωqy ` xΛ̃h, FAωy` (F.17)

`
1

2
x∇Aω Λ̃p, R21p∇Aω Λ̃pq ` R22p∇Aω Λ̃qqy `

1

2
x∇Aω Λ̃q, R11p∇Aω Λ̃pq ` R12p∇Aω Λ̃qqy`

`
1

2
xpR11 ˝ adΛ̃q ` R12 ˝ adΛ̃pqmω,∇Aω Λ̃qy `

1

2
xpR21 ˝ adΛ̃q ` R22 ˝ adΛ̃pqmω,∇Aω Λ̃py .
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At this point one needs to recombine the last line with the first term on the first line. This can

be achieved by noting that @X, Y P g the entries Ri j of the matrix (4.108) satisfy the following

relations

xR11pXq, Y y “ ´xX,R22pY qy xR12pXq, Y y “ ´xX,R12pY qy xR21pXq, Y y “ ´xX,R21pY qy

(F.18)

which allow to bring the operators acting on mω to the other side of the inner product. Combining

the two terms one then recovers the definition of T given in (4.110)

Sω “

ż

Σ

1

2
xmω, T y ` xΛ̃h, FAωy` (F.19)

`
1

2
x∇Aω Λ̃p, R21p∇Aω Λ̃pq ` R22p∇Aω Λ̃qqy `

1

2
x∇Aω Λ̃q, R11p∇Aω Λ̃pq ` R12p∇Aω Λ̃qqy .

Finally, exploiting the expression (4.111) one can immediately rearrange the first term as xmω, T y “

2xT, 11´SP`T y, thus recovering the hybrid action (4.112). We finally notice that the above relations

for the components Ri j of (4.108) are easily derived after using the definition (4.109) of c˘ to

find that xc˘pXq, Y y “ xX, c¯pY qy. For example, this implies that

xc` ˝DΛ̃m ˝ c´ ˝DΛ̃mpXq, Y y “ xX,DΛ̃m ˝ c` ˝DΛ̃m ˝ c´pY qy @X, Y P g (F.20)

and in turn allows to find

xR11pXq, Y y “ ´x
8
ÿ

k“0

p´1qkpc` ˝DΛ̃m ˝ c´ ˝DΛ̃mq
k ˝ c`pXq, Y y “

“ ´xX, c´ ˝
8
ÿ

k“0

p´1qkpDΛ̃m ˝ c` ˝DΛ̃m ˝ c´q
kpY qy “

“ ´xX,
8
ÿ

k“0

p´1qkpc´ ˝DΛ̃m ˝ c` ˝DΛ̃mq
k ˝ c´pY qy “ ´xX,R22pY qy .

(F.21)

The remaining relations are obtained using analogous reasonings after noting that

R12 “ R11 ˝DΛ̃m ˝ c´ R21 “ ´R22 ˝DΛ̃m ˝ c` . (F.22)

Equations of motion. To vary the action (4.112) with respect to the multipliers and Aω it is

important to notice that for a generic variation the first term in the action gives

δ

ˆ

xT,
1

1´ S
P`T y

˙

“ ´xδT, m̃y ´ xδS ˝
1

1´ S
T,

1

1` S
P´T y , (F.23)
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where m̃ :“ mω as in (4.111) and we used the relation

δ

ˆ

1

1˘ S

˙

“ ¯
1

1˘ S
˝ δS ˝

1

1˘ S
, (F.24)

and exploited (F.18) to find

xX,
1

1˘ S
Y y “ x

1

1¯ S
X, Y y @X, Y P g . (F.25)

The only non-trivial terms to vary are the entries Ri j of (4.108). These only depend on Λ̃h, Λ̃m and

have variations

δΛ̃mR11 “ R12 ˝ adδΛ̃m ˝ R11 ` R11 ˝ adδΛ̃m ˝ R21

δΛ̃mR22 “ R21 ˝ adδΛ̃m ˝ R22 ` R22 ˝ adδΛ̃m ˝ R12

δΛ̃mR12 “ R12 ˝ adδΛ̃m ˝ R12 ` R11 ˝ adδΛ̃m ˝ R22

δΛ̃mR21 “ R21 ˝ adδΛ̃m ˝ R21 ` R22 ˝ adδΛ̃m ˝ R11

(F.26)

δΛ̃hR11 “ R11 ˝ adδΛ̃h ˝ R11 ` R12 ˝ adδΛ̃h ˝ R21

δΛ̃hR22 “ R22 ˝ adδΛ̃h ˝ R22 ` R21 ˝ adδΛ̃h ˝ R12

δΛ̃hR12 “ R11 ˝ adδΛ̃h ˝ R12 ` R12 ˝ adδΛ̃h ˝ R22

δΛ̃hR21 “ R22 ˝ adδΛ̃h ˝ R21 ` R21 ˝ adδΛ̃h ˝ R11 .

(F.27)

In deriving the latter one uses that c˘ only depends on Λ̃h and from (4.20) has variations δΛ̃hc˘ “

¯c˘ ˝ adδΛ̃h ˝ c˘. For example, also using δΛ̃mDΛ̃m “ adδΛ̃m and exploiting again (4.20), one has

δΛ̃mR11 “

ˆ

1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m
˝ c` ˝ adδΛ̃m ˝ c´ ˝DΛ̃m ˝

1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m
`

`
1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m
˝ c` ˝DΛ̃m ˝ c´ ˝ adδΛ̃m ˝

1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m

˙

˝ c` “

“ ´R11 ˝ adδΛ̃m ˝ c´ ˝DΛ̃m ˝
1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m
˝ c` ` R12 ˝ adδΛ̃m ˝ R11 “

“ R11 ˝ adδΛ̃m ˝ R21 ` R12 ˝ adδΛ̃m ˝ R11 , (F.28)

where in the last step we used a rearrangement analogous to that in the last step of (F.21).
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Similarly, varying with respect to Λ̃h and using δΛ̃hc˘ “ ¯c˘ ˝ adδΛ̃h ˝ c˘ one finds

δΛ̃hR11 “

ˆ

1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m
˝ δΛ̃hc` ˝DΛ̃m ˝ c´ ˝DΛ̃m ˝

1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m
`

`
1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m
˝ c` ˝DΛ̃m ˝ δΛ̃hc´ ˝DΛ̃m ˝

1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m

˙

˝ c``

`
1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m
˝ δΛ̃hc` “

“ R11 ˝ adδΛ̃h ˝ c` ˝DΛ̃m ˝ c´ ˝DΛ̃m ˝
1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m
˝ c`` (F.29)

´ R12 ˝ adΛ̃h ˝ c´ ˝DΛ̃m ˝
1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m
˝ c` ´ R11 ˝ adδΛ̃h ˝ c` “

“ R11 ˝ adδΛ̃h ˝

ˆ

´1` ˝c` ˝DΛ̃m ˝ c´ ˝DΛ̃m ˝
1

1` c` ˝DΛ̃m ˝ c´ ˝DΛ̃m

˙

˝ c``

` R12 ˝ adδΛ̃h ˝ R21 “

“ R11 ˝ adδΛ̃h ˝ R11 ` R12 ˝ adδΛ̃h ˝ R21 .

In the last but one step we used a rearrangement analogous to that in the last step of (F.21). The

variations of the hybrid action can then be quickly computed by exploiting the above findings and

making use of the notation (4.118). This way one has

$

&

%

δΛ̃hS “ adδΛ̃h `O
:

2 ˝ adδΛ̃h ˝O1 `O
:

1 ˝ adδΛ̃h ˝O2

δΛ̃hT “ O
:

1 ˝ adδΛ̃hpR21∇Aω Λ̃p ` R22∇Aω Λ̃qq `O
:

2 ˝ adδΛ̃hpR11∇Aω Λ̃p ` R12∇Aω Λ̃qq
$

&

%

δΛ̃pS “ adδΛ̃p ˝O1 `O
:

1 ˝ adδΛ̃p

δΛ̃pT “ adδΛ̃ppR11∇Aω Λ̃p ` R12∇Aω Λ̃qq `O
:

2∇AωδΛ̃p
$

&

%

δΛ̃mS “ O
:

1 ˝ adδΛ̃m ˝O1 `O
:

2 ˝ adδΛ̃m ˝O2

δΛ̃mT “ ∇AωδΛ̃m `O
:

1 ˝ adδΛ̃mpR11∇Aω Λ̃p ` R12∇Aω Λ̃qq `O
:

2 ˝ adδΛ̃mpR21∇Aω Λ̃p ` R22∇Aω Λ̃qq
$

&

%

δΛ̃qS “ adδΛ̃q ˝O2 `O
:

2 ˝ adδΛ̃q

δΛ̃qT “ adδΛ̃qpR21∇Aω Λ̃p ` R22∇Aω Λ̃qq `O
:

1∇AωδΛ̃q
$

&

%

δAωS “ 0

δAωT “ ´pDΛ̃m `O
:

2 ˝ adΛ̃p `O
:

1 ˝ adΛ̃qqδAω .
(F.30)
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Upon using the latter it is sufficient to recognise that, for i “ 1, 2, one has

1

2
rm̃, m̃s “ ´

„

1

1´ S
T,

1

1` S
P´T

ȷ

rO1pm̃q,O2pm̃qs “ ´
„

O1 ˝
1

1` S
T,O2 ˝

1

1´ S
P`T

ȷ

´

„

O1 ˝
1

1´ S
T,O2 ˝

1

1` S
P´T

ȷ

(F.31)

rm̃,Oipm̃qs “ ´
„

1

1` S
T,Oi ˝

1

1´ S
P`T

ȷ

´

„

1

1´ S
T,Oi ˝

1

1` S
P´T

ȷ

1

2
rOipm̃q,Oipm̃qs “ ´

„

Oi ˝
1

1´ S
T,Oi ˝

1

1` S
P´T

ȷ

and use the definitions of p̃, q̃ from (4.107) to recover the equations of motion (4.113). It is

then straightforward to check that the equations (4.115) hold true upon substituting the equations

(4.106), satisfied by p̃, m̃, q̃, and exploiting the T-dual equations of motion (4.113) together with

Jacobi identities.

F.3. Examples

S3 » SOp4q{SOp3q. For symmetric spaces, upon dualising the whole isometry group and setting

D “ 0, the operators W and Z from (4.122) reduce to

W :“ adΛh ` adΛm ˝
8
ÿ

k“0

ad2k`1
Λh

˝ adΛm Z :“ adΛm ˝
8
ÿ

k“0

ad2kΛh ˝ adΛm . (F.32)

Hence, given the commutators

rHi , Hj s “
i

2
εi j
kHk rMi , Hj s “

i

2
εi j
kMk rMi ,Mj s “

i

2
εi j
kHk , (F.33)

and the expansions Aω “ A
i
ωHi and Λ “ y

iHi ` x
iMi , it is simple to compute

adΛhpAωq “
i

2
y iAjωεi j

kHk adΛmpAωq “
i

2
x iAjωεi j

kMk . (F.34)

After a few more commutators, using εi jpεkl
p “ δikδj l ´ δi lδjk , one finds the following pattern

ad2kΛh ˝ adΛmpAωq “ ´
i

8

ˆ

y2

4

˙k´1
“

py ¨ xqAiω ´ py ¨ Aωqx
i
‰

y jεi j
lMl for k ě 1

(F.35)

ad2k`1
Λh

˝ adΛmpAωq “ `
1

4

ˆ

y2

4

˙k
“

py ¨ xqAlω ´ py ¨ Aωqx
l
‰

Ml for k ě 0
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so that using
ř8
k“0py

2{4qk “ 4
4´y2

one can easily re-sum both as

8
ÿ

k“0

ad2kΛh ˝ adΛmpAωq “ adΛmpAωq `
8
ÿ

k“1

ad2kΛh ˝ adΛmpAωq “

“
i

2
x iAjωεi j

kMk ´
i

2p4´ y2q

“

py ¨ xqAiω ´ py ¨ Aωqx
i
‰

y jεi j
kMk “

“
i

2p4´ y2q

“

py ¨ Aωqx
iy j ´ py ¨ xqAiωy

j ´ p4´ y2qAiωx
j
‰

εi j
kMk

8
ÿ

k“0

ad2k`1
Λh

˝ adΛmpAωq “
1

4´ y2
“

py ¨ xqAk ´ py ¨ Aqxk
‰

Mk .

(F.36)

Acting once more with adΛm and rearranging, the expressions (4.133) are obtained. One can then

take the sum and difference of Wk
l and Zk

l and construct an ansatz for the their inverses

rpW ˘ Zq´1sk
l “ a˘

1 δk
l ` xkpa

˘
2 x
l ` a˘

3 y
lq ` ykpa

˘
4 x
l ` a˘

5 y
lq ` εak

lpa˘
6 x
a ` a˘

7 y
aq` (F.37)

` xaybεab
lpa˘
8 x
k ` a˘

9 y
kq ` xaybεabkpa

˘
10x
l ` a˘

11y
lq ` a˘

12x
aybεabkx

cydεcd
l .

This leads to a set of conditions for the coefficients of the ansatz which can be solved in both

cases and, defining z :“ x ¨ y for shortness, take the explicit form

a`
1 “ ´

4py2 ´ 4qrz2 ´ x2py2 ´ 4qs

px4 ´ 4y2qpy2 ´ 4q2 ´ 2z2rx2py2 ´ 2q ´ 4py2 ´ 4qs ` z4
“ ´a´

1

a`
2 “

x6py2 ´ 4q2 ´ 2z2r2y2py2 ´ 4q ´ 4x2py2 ´ 4q ` x4py2 ´ 2qs ` x2z4

px2y2 ´ z2qrz4 ´ 2z2tx2py2 ´ 2q ´ 4py2 ´ 4qu ` px4 ´ 4y2qpy2 ´ 4q2s
“ ´a´

2

a`
3 “

z5 ´ 2z3r8´ 2y2 ` x2py2 ´ 2qs ` zp4x2 ` x4 ´ 4y2qpy2 ´ 4q2

px2y2 ´ z2qrz4 ´ 2z2tx2py2 ´ 2q ´ 4py2 ´ 4qu ` px4 ´ 4y2qpy2 ´ 4q2s
“ ´a´

3

a`
5 “ ´

p16` x4 ´ 4y2qpy3 ´ 4yq2 ´ 2z2py2 ´ 4qr16` y2px2 ´ 4qs ` z4py2 ´ 4q

px2y2 ´ z2qrz4 ´ 2z2tx2py2 ´ 2q ´ 4py2 ´ 4qu ` px4 ´ 4y2qpy2 ´ 4q2s
“ ´a´

5

a`
6 “

8izpy2 ´ 4q

px4 ´ 4y2qpy2 ´ 4q2 ´ 2z2rx2py2 ´ 2q ´ 4py2 ´ 4qs ` z4
“ a´

6 (F.38)

a`
7 “ ´

8ipy2 ´ 4q2

px4 ´ 4y2qpy2 ´ 4q2 ´ 2z2rx2py2 ´ 2q ´ 4py2 ´ 4qs ` z4
“ a´

7

a`
8 “ ´

2itx4py2 ´ 4q2 ´ 2z2r8´ 2y2 ` x2py2 ´ 2qs ` z4u

px2y2 ´ z2qrz4 ´ 2z2tx2py2 ´ 2q ´ 4py2 ´ 4qu ` px4 ´ 4y2qpy2 ´ 4q2s
“ a´

8

a`
9 “

8izpy2 ´ 4qpy2 ´ x2 ´ 4q

px2y2 ´ z2qrz4 ´ 2z2tx2py2 ´ 2q ´ 4py2 ´ 4qu ` px4 ´ 4y2qpy2 ´ 4q2s
“ a´

9

a`
12 “

4py2 ´ 4qrz2 ´ x2py2 ´ 4qs

px2y2 ´ z2qrz4 ´ 2z2tx2py2 ´ 2q ´ 4py2 ´ 4qu ` px4 ´ 4y2qpy2 ´ 4q2s
“ ´a´

12 ,

with a`
4 “ a

`
3 “ ´a

´
4 a`

10 “ ´a
`
8 “ a

´
10 a`

11 “ ´a
`
9 “ a

´
11.
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OSpp1|2q{SOp1, 1q. For this semi-symmetric coset, upon dualising the whole group of isometry

and setting D “ 0, the operators W and Z from (4.122) reduce to

W :“ adΛh`N`padΛm´M
:q˝

8
ÿ

k“0

S2k`1˝padΛm`Mq Z :“ padΛm´M
:q˝

8
ÿ

k“0

S2k ˝padΛm`Mq .

Recall then the expansion of the gauge field and multipliers

Aω “ AL`´ Λ “ Λh`Λp`Λm`Λq “ yL`´` θ
`Q`` x

``L``` x
´´L´´` θ

´Q´ , (F.39)

as well as the ospp1|2q algebra in lightcone notation

tQ˘, Q˘u “ L˘˘ tQ`, Q´u “ L`´ rL˘˘, Q¯s “ ¯iQ˘

rL`´, L˘˘s “ ˘iL˘˘ rL``, L´´s “ ´2iL`´ rL`´, Q˘s “ ˘
i
2Q˘ .

(F.40)

We start computing the action of Ri j defined in (4.108) on the fermionic subspaces. These act as

R11 : pÑ p R12 : qÑ p R21 : pÑ q R22 : qÑ q (F.41)

and are nothing but combined actions of adΛm and c˘, defined in (4.109). We can thus exploit the

above algebra to notice that

adΛhpQ˘q “ ˘
i
2ypQ˘q adΛmpQ˘q “ ˘ix

¯¯pQ¯q , (F.42)

and use these to extract the eigenvalues of c˘ as

c`pQ˘q “ 2
8
ÿ

k“0

p´2qkadkΛhpQ˘q “ 2
8
ÿ

k“0

p´2qkp˘ i2yq
kpQ˘q “

2

1˘ iy
pQ˘q “: a˘pQ˘q (F.43)

and similarly for c´pQ˘q “ a¯pQ˘q. We can now proceed with Ri j . For example, noting that

´c` ˝ adΛm ˝ c´ ˝ adΛmpQ`q “ ´x
``x´´a2`pQ`q, one can easily extract

R11pQ`q “ ´

8
ÿ

k“0

p´c` ˝ adΛm ˝ c´ ˝ adΛmq
k ˝ c`pQ`q “ ´a`

8
ÿ

k“0

p´x``x´´a2`q
kpQ`q “: r11pQ`q

and after repeating the same for the other operators we find

R11pQ`q “ r11pQ`q R12pQ´q “ r12pQ`q R21pQ`q “ r21pQ´q R22pQ´q “ r22pQ´q (F.44)
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where we defined

r11 :“
´a`

1` x``x´´a2`
“ ´r22 r12 :“

ix``a2`
1` x``x´´a2`

r21 :“
´ix´´a2`

1` x``x´´a2`
. (F.45)

We can now proceed in computing the action of the various operators involved in W and Z on the

gauge field Aω :“ AL`´. First of all we notice that

adΛhpAωq “ 0 adΛmpAωq “ ´iApx
``L`` ´ x

´´L´´q , (F.46)

where the first relation follows from the fact that h is Abelian. Then, to compute NpAωq and

MpAωq we exploit the relations

adΛppAωq “ ´
i
2Aθ

`Q` adΛqpAωq “
i
2Aθ

´Q´ (F.47)

and nilpotency of the multipliers pθ`q2 “ 0 “ pθ´q2, which implies the vanishing of any term

containing more than once the operators adΛp or adΛq . This leads to

NpAωq “ padΛq ˝O3 ` adΛp ˝O4qpAωq “

“
␣

adΛq ˝ pR12 ˝ adΛq ` R11 ˝ adΛpq ` adΛp ˝ pR22 ˝ adΛq ` R21 ˝ adΛpq
(

pAωq “

“ rΛq,´
i
2 r11Aθ

`Q`s ` rΛp,
i
2 r22Aθ

´Q´s “

“ ´ i2 r11Aθ
2L`´ ´

i
2 r22Aθ

2L`´ “ 0 ,

(F.48)

where in the last line we defined θ2 :“ θ`θ´ and used r22 “ ´r11 to cancel the two terms.

Proceeding similarly for M we then find

MpAωq “ ´
i
2 r12Aθ

2L`` ´
i
2 r21Aθ

2L´´ (F.49)

and can thus start collecting the following terms

padΛh ` NqpAωq “ 0 padΛm `MqpAωq :“ λ
``L`` ` λ´´L´´ “: λ P m

with λ`` :“ ´ix``
“

1` r12
2x`` θ

2
‰

A λ´´ :“ ix´´
“

1´ r21
2x´´ θ

2
‰

A .
(F.50)

To compute W,Z we need now to repeatedly act with S :“ adΛh ` L defined in (4.123) on λ P m

adΛhpλq “ iyλ
``L`` ´ iyλ

´´L´´ (F.51)

Lpλq “ rΛp, i r11λ
``θ2Q`s ` rΛq,´i r22λ

´´θ`Q`s “ ´i r11λ
``θ2L`` ´ i r22λ

´´θ2L´´ ,
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so that we find

Spλq “ λ``S``L`` ` λ
´´S´´L´´ with

$

&

%

S`` :“ iy
“

1´ r11
y θ
2
‰

S´´ :“ ´iy
“

1` r22
y θ
2
‰

. (F.52)

Recalling that r22 “ ´r11 we see that S
´´ “ ´S`` and we can thus easily compute

8
ÿ

k“0

S2kpλq “ λ``

8
ÿ

k“0

pS``q2kL`` ` λ
´´

8
ÿ

k“0

pS´´q2kL´´ “ sepλ
``L`` ` λ

´´L´´q “: λe P m

8
ÿ

k“0

S2k`1pλq “ λ``

8
ÿ

k“0

pS``q2k`1L`` ` λ
´´

8
ÿ

k“0

pS´´q2k`1L´´ “ sopλ
``L`` ´ λ

´´L´´q “: λo P m

(F.53)

where we defined

se :“
8
ÿ

k“0

pS``q2k so :“
8
ÿ

k“0

pS``q2k`1 . (F.54)

We shall later compute the latter sums, but for the moment we can directly proceed in computing

the final ingredient, namely the action of padΛm ´M
:qλx with x “ te, ou. We easily find

adΛmpλx q “ 2ipx
´´λ``

x ´ x``λ´´
x qL`´

M:pλx q “ pi r12λ
´´
x ` i r21λ

``
x qθ2L`´ ,

(F.55)

so that we can combine the two terms into

padΛm ´M
:qpλx q “ 2i

`

x´´
“

1´ r21
2x´´ θ

2
‰

λ``
x ´ x``

“

1` r12
2x`` θ

2
‰

λ´´
x

˘

L`´ (F.56)

and rewrite the operators W,Z as

W pAωq “ padΛm ´M
:qpλoq ZpAωq “ padΛm ´M

:qpλeq . (F.57)

Recalling the definitions (F.53) of λx and (F.50) of λ
˘˘ we then easily find

W pAωq “ 2i
`

x´´
“

1´ r21
2x´´ θ

2
‰

λ``
o ´ x``

“

1` r12
2x`` θ

2
‰

λ´´
o

˘

L`´ “ (F.58)

“ 2i so
`

x´´
“

1´ r21
2x´´ θ

2
‰

λ`` ´ x``
“

1` r12
2x`` θ

2
‰

λ´´
˘

L`´ “

“ 2sox
``x´´

`“

1´ r21
2x´´ θ

2
‰“

1` r12
2x`` θ

2
‰

´
“

1` r12
2x`` θ

2
‰“

1´ r21
2x´´ θ

2
‰˘

AL`´ “ 0
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and

ZpAωq “ 2i
`

x´´
“

1´ r21
2x´´ θ

2
‰

λ``
e ´ x``

“

1` r12
2x`` θ

2
‰

λ´´
e

˘

L`´ “ (F.59)

“ 2i se
`

x´´
“

1´ r21
2x´´ θ

2
‰

λ`` ´ x``
“

1` r12
2x`` θ

2
‰

λ´´
˘

L`´ “

“ 2sex
``x´´

`“

1´ r21
2x´´ θ

2
‰“

1` r12
2x`` θ

2
‰

`
“

1` r12
2x`` θ

2
‰“

1´ r21
2x´´ θ

2
‰˘

AL`´ “

“ 4x``x´´se
“

1` r12
x`` θ

2
‰

AL`´ .

Where in the last line of the computation for Z we exploited (F.45) to notice that r12
x`` “ ´

r21
x´´

and combine the θ2 prefactors. All we are now left with is the computation of se :“
ř8
k“0pS

``q2k .

Recalling that S`` :“ iy
“

1` r22
y θ
2
‰

one can easily find

pS``qk “ piyqk ` kpiyqk´1i r22θ
2 , (F.60)

so that upon defining z :“ iy it is immediate to obtain

se :“
8
ÿ

k“0

`

z2k ` 2kpzq2k´1i r22θ
2
˘

“
`

1` i r22θ
2Bz

˘

8
ÿ

k“0

pz2qk “
1

1` y

“

1´ 2yr22
1`y2
θ2
‰

. (F.61)

Substituting the latter into ZpAωq and recalling the definitions (F.45) one finally recovers (4.138).
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