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Scientific abstract

In this thesis we take a superspace perspective on T-duality, focusing on sigma models defined on
background geometries that are constructed in terms of Lie supergroups. We briefly review Abelian
bosonic and fermionic T-duality and the derivation of Buscher's rules, moving then to the dualisa-
tion of principal chiral models on group manifolds. Extension of the latter to the case of supergroup
manifolds represents the starting point of our analysis, which features an extended discussion about
the explicit dualisation of the supergroup OSp(1|2). While the initial model represents an appro-
priate three-dimensional supergravity background, the T-dual one hints in the opposite direction,
as the ansatz adopted to construct the dual veilbeine fails to satisfy the supergravity torsion con-
straints. Such result, together with the complexity of the ansatz-based approach, suggests that
a more abstract and general point of view should be taken on the dualisation procedure. This
represents the next step of our analysis and allows a simpler dualisation of principal chiral models
and a clearer argument that the above T-dual model falls outside the class of three-dimensional su-
pergravity backgrounds. Extension of the dualisation procedure to symmetric and semi-symmetric
coset space sigma models based on Lie supergroups G/H is also favored by the more abstract
perspective, which allows to recover the well-known exchange of equations of motion and Maurer-
Cartan equations typically observed in purely bosonic settings, hence leading to the construction
of a dual Lax connection and ensuring preservation of classical integrability. While dualisation of
principal chiral models can be performed in full generality, for coset models the procedure might be
affected by impediments appearing in the process of integrating out the gauge fields in favor of the
dual variables, and thus requires a case by case analysis. We proceed by solving those gauge fields
equations of motion that allow for a general solution, thus confining the potential obstruction to a
single equation, whose solvability depends on the invertibility of two linear operators. We conclude
by discussing two explicit examples in which dualisation goes through, the first based on the sym-
metric space S3 ~ SO(4)/SO(3), well-known for its dualisability, the second on the semi-symmetric
space OSp(1]2)/SO(1, 1), already approached in the literature from the point of view of holography

and representing a Green-Schwarz-like sigma model satisfying the supergravity torsion constraints.
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Introduction

In this chapter we provide a brief introduction to T-duality, highlighting some of its features and
providing a non-exhaustive list of references on the topic. We conclude with a short description of

the remaining chapters and their structure.

1.1. A landscape of T-dualties

The main focus of this thesis lies in an intriguing property arising in the context of sigma models,
known under the name of Target Space Duality, or more simply T-duality. Many examples of
dualities have been found, conjectured and studied in the last few decades in the physics literature
and such word originates from the possibility of providing two different descriptions of a common
underlying physical system. From this point of view, the name target space duality hints toward the
possibility of establishing a relation between different target space geometries, equally perceived
from the sigma model perspective and giving rise to a single physical picture. For this reason T-
duality has played a major role in the context of string theory, where sigma models are commonly
exploited to describe the motion of strings in curved backgrounds. The origin of target space
duality is in fact rooted in the string theory framework as it was first discovered and understood,
in the context of string compactifications, as the invariance of the string spectrum and the full
worldsheet conformal field theory under the exchange of a geometry having a compact direction of
radius R with another one compactified on a circle of radius % [3-5]. This phenomenon represents
a characteristic feature of strings and originates from the possibility, enjoyed by one-dimensional
extended objects as opposed to point-like particles, to wrap around compact directions.

In [6, 7] Buscher further extended the above picture by showing the invariance, under target
space duality, of a generic string sigma model on an arbitrary curved manifold enjoying an Abelian
isometry, while Rocek and Verlinde showed in [8] that couples of conformal sigma models on curved

backgrounds related by T-duality of a single Abelian isometry represent equivalent conformal field
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theories. This was soon extended to the case of d commuting isometries [9]. Importantly, the

approaches adopted by Buscher and Rocek-Verlinde presented a slight conceptual difference

e Buscher's results were based on the idea of rewriting a sigma model action, in which a certain
background coordinate xp only appears in terms of worldsheet derivatives dxg and dxp, in the
so-called first order form: substituting such terms with a new field A, A and adding to the
action the extra term A(0A — 0A) one may recover the initial model integrating out A, while

a new model is obtained upon integrating out A, A.

e Rotek and Verlinde realised how the above rewriting is actually equivalent to the gauging of a
global shift symmetry along the direction xp. Such shift symmetry can indeed be made local
by covariantising the derivatives with a gauge field transforming appropriately dxp — (0+A)xo
0xo — (0 + A)xp and the extra term A(0A — 0A) can be regarded as enforcing the flatness

of the gauge field by means of a Lagrange multiplier.

The second approach represented an important change of viewpoint, as the gauging procedure could
be straightforwardly generalised to settings with non-Abelian isometries and this was indeed soon
recognised by de la Ossa and Quevedo, who introduced non-Abelian T-duality in [10]. The idea of
performing duality transformations for non-Abelian isometries had actually already been considered
earlier in Buscher's PhD thesis, which remains unpublished, and several years before in [11-13].
It was immediately realised, already in [10], that the newly introduced non-Abelian dualisation
carried some peculiar features as compared to the Abelian one, and in paricular a systematic loss
of isometries in the T-dual model. Indeed, while dualising with respect to a set of commuting
isometries one finds that these are preserved in the T-dual model, so that the gauging procedure
could be performed again leading back to the original model, when dualising with respect to a
non-Abelian group G, this is generically broken and the dual model could even enjoy no isometry
at all, implying that one may not be able to perform again the gauging and reach back the original
model. It was indeed argued by Giveon and Ro&ek [14] that, contrarily to the Abelian case, non-
Abelian T-duality is not a symmetry of a single underlying worldsheed conformal field theory, but
rather a relation between inequivalent theories. They also described how the exchange of equations
of motion with Maurer-Cartan equations, which had already been observed for Abelian duality, is
reproduced in the non-Abelian setting. Despite its peculiarities, this new duality attracted a lot of
attention and also started to be used as a solution generating technique in supergravity [15—19].
In the search for an approach allowing to recover the initial model starting from the T-dual one,
novel descriptions of the dualisation procedure started to emerge. A canonical perspective [20—22]
turned out to be effective for generalisation, at least in the Abelian case, to the study of higher
genus worldsheets, while the Poisson-Lie approach [23,24], motivated by the idea that isometries

could have not been the truly relevant structure to consider in duality transformations, initiated a
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novel research line in which T-duality is understood in terms of Lie bi-algebras (g, §) and regarded as
a symmetry which exchanges the roles of g and § (see [25,26] for reviews of recent developments).
About at the same time, people also started studying the possibility of extending T-duality to more
complicated theories involving not only metric, B-field and dilaton, but also Ramond-Ramond and
fermionic fields. This extension of the formalism was first achieved, in the Abelian case, from a
target space perspective [27, 28] and successively generalised to the Green-Schwarz [29, 30] and
pure-spinor [31] formalisms.

More recently, another important development took place when Berkovits and Maldacena pro-
posed in [32] an extension of the Abelian bosonic dualisation procedure to the case of anticommuting
fermionic isometries and showed how this new type of duality could be used to prove self-duality of
the AdSsxS® string background. This achievement allowed to clarify the relation between Wilson
loops and scattering amplitudes which had already emerged from the field theory point of view in
the planar limit of N= 4 super Yang-Mills theory [33]. Self-duality of AdSsxS® was also studied
from the integrability perspective in [34] (see also [35] for previous work and [36] for a review),
and it was shown how the combination of bosonic and fermionic Abelian T-dualities sending the
background to itself could be understood as a precise mapping between the conserved charges of
the two models. Under the latter, some of the local charges in the initial model become delocal-
ised in the dual model and, vice versa, some non-local charges become local. The combination of
bosonic and fermionic Abelian T-dualities was later also used to show self-duality of other string
backgrounds [37—40] and particular attention was given to the case of AdS4 x CP3, for which
self-duality was expected to hold as a consequence of the relation between Wilson loops and scat-
tering amplitudes observed in Aharony— Bergman—Jafferis—Maldacena theory [41-44], in analogy
with N= 4 super Yang-Mills theory for AdSsxS®, and of the integrability of both the string the-
ory [45-48] and gauge theory sides [49, 50]. The appearance of singularities under combinations
of Abelian dualities was however argued to prevent self-duality [51-54]. The idea of a fermionic
duality was soon also considered from the Poisson-Lie perspective [55-59] and in the context of
purely fermionic coset models [60], which highlighted the presence of obstructions to the dualisa-
tion originating from both the fermionic and coset nature of the models and called for the use of
Becchi-Rouet-Stora-Tyutin techniques.

The idea of using T-duality as a solution generating technique in supergravity was re-discovered
and generalised to the bosonic non-Abelian setting in [61, 62], where dualisation of principal chiral
models and coset models in combination with fields from the Ramond-Ramond sector was intro-
duced. For example, novel supergravity solutions were found starting from the notable backgrounds
AdS3xS3xT# and AdSs xS® by performing dualisation along the SO(4) and SO(6) isometries of S3
and S°, first regarded as group manifolds and successively as symmetric cosets. These results also

initiated the search for possible holographic interpretations of the newly obtained T-dual supergrav-
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ity solutions [63—67], hence giving birth to an intriguing interplay between T-duality and holography.
Other interesting features of non-Abelian T-duality emerged as a result of the semi-symmetric coset
realisation for the AdSsxS® background [68] (later also extended to AdS; x CP3 [45]) and the
discovery of its integrability [69]: these initiated the search for integrable deformations of such
model, which led to the discovery of n-deformations [70] and A-deformations [71,72], respectively
generalising the constructions in [73, 74]. A relation between these two was then pointed out
in [75]. It was soon realised that while the n-deformed AdSsxS°® does not represent a Type I
background [76], by performing Abelian T-duality on this model one obtains a proper supergravity
solution exhibiting a novel feature, namely the presence of a dilaton depending on the directions
along which T-duality has been performed, hence making the reverse dualisation not straightfor-
ward. This puzzle was then clarified by the discovery that the n-deformed background enjoys scale,
but not Weyl invariance [77] and for this reason satisfies a generalised version of the supergravity
equations of motion. The full set of such equations was then found in [78] by studying the con-
straints imposed by classical k-symmetry on the target superspace geometry, which turned out to
be not equivalent to 2d Weyl invariance (i.e. Type Il equations of motion), but to scale invariance.

In [79] the background superfields associated to n and A\ deformations were constructed and
it was discovered that for unimodular R-matrices they lead to proper Type Il backgrounds. In [80]
it was further shown that deformations with Abelian R-matrices are equivalent to T-duality-shift-
T-duality transformations performed on the undeformed background. For certain bosonic models,
deformations with non-Abelian R-matrices turned out to be equivalent to non-Abelian T-duality of
the undeformed model [81]. The latter finding was then proved in [82—84], where n deformations
of principal chiral models, semi-symmetric cosets and Green-Schwarz sigma models were shown to
be equivalent to a deformation of their T-duals by means of an invertible two-cocycle.

Dualisation of non-Abelian fermionic directions has furthermore been discussed in [82—85] and,
in connection with A-deformed models, in [86]. Quite recently, non-Abelian fermionic T-duality
has also been approached from the double field theory perspective [87,88] and a new supergravity
solution has been constructed by performing bosonic dualisation of the non-compact isometry group
SL(2,R) acting on the AdSs factor contained in the AdS3xS3xCY, background [89].

1.2. Structure of the thesis

In chapter 2 we provide a quick review of some known results, first deriving the Buscher’s rules
for Abelian bosonic and fermionic duality of a single isometry and subsequently moving to the
dualisation of principal chiral models on group manifolds. This prepares the ground for the case of
supergroup manifolds G considered in chapter 3: we first extend to superspace the results obtained

in the purely bosonic setting by dualising the left sector G; of the full isometry group G; x G and
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subsequently consider the example of G = OSp(1]2). We explicitly construct the initial model, and
its Killing vectors, showing it satisfies the supergravity torsion constraints. T-dualisation is then
considered, first with respect to the maximal bosonic subgroup SL(2,R); and next with respect
to the full OSp(1|2), supergroup. Residual isometries for both T-dual models are constructed and
an argument is presented, hinting toward the fact that both models break the supergravity torsion
constraints. The argument is based on a choice of ansatz for the vielbeine of the T-dual models
and the need for a more general choice, together with the complexity of the approach, leads us
to take a more abstract perspective on the whole procedure. Chapter 4 is based on this point of
view, which allows to perform T-duality of principal chiral models in great generality, automatically
providing a choice of T-dual vielbeine and allowing a simple construction of the 3-form Hsz = dB>.
Exploiting these results we revise and improve our analysis of the principal chiral model on OSp(1]2),
showing that both the dual vielbeine and Hs break the superspace supergravity requirements. The
new point of view also allows for simpler generalisation of the dualisation procedure to the case of
coset models G/H based on Lie supegroups and we thus analyse the case of symmetric and semi-
symmetric spaces. In such classes of models, the requirement for local invariance under the right
action of H leads to potential obstructions to dualisation, hence forcing a case by case analysis.
We proceed however integrating out all the gauge fields, except for the ones requiring a choice of
explicit model, thus obtaining a hybrid T-dual action. This way we are able to recover, as for the
case of principal chiral models, the exchange in role of Maurer-Cartan equations and equations of
motion typically exhibited by bosonic T-duality. For all three classes of models, we also include in
the discussion a topological deformation term, based on two-cocycles and recently introduced in
the literature. In the final section we recast solvability of the potentially obstructing equation as
the invertibility condition for two linear operators and consider two explicit examples in which these

turn out to be invertible, hence allowing completion of the dualisation procedure.






Short Review Of Some Known Results

We revise some known results about T-duality, so as to introduce conventions and notation.

2.1. Abelian T-duality

In this section we shall partially take inspiration from [90] to briefly revise the concepts of bosonic
and fermionic Abelian T-dualities as respectively introduced in [6—8] and [32]. The starting point

of the discussion is the sigma model action
S= ;J drdo (V—hh* s X" 0u X* gy + €*P 05X 00X Buy) (2.1)
X

where, aiming at a purely classical treatment, we discarded the Dilaton term which might possibly be
included. In this model the fields X* = X*(o, T), coordinates on the background space (superspace
in the fermionic case), are regarded as maps X* : ¥ > M Vu = 1,...,dim(M) from a two-
dimensional Lorentzian worldsheet (¥, hag)* to some curved space (M, g,.) (superspace). Before
proceeding, we shall first rewrite the action in a convenient compact form. To do this we first
exploit worldsheet reparametrisation and Weyl invariance of the action to write the worldsheet
metric in the conformal gauge, i.e. hag = Mog = (' 9) with h = det(has) = —1. Then,

choosing €*P = (2 ') and introducing lightcone coordinates

z=3(1+0) T=z+2 0y = 2(0+0)
= = _
zZ=3(t-o0) c=z-2 0y = 2(0—0) (2.2)
and drdoc — ddedet(gé) = —2dzdz ,

LFrom now on T will be chosen to have sphere-like topology, to avoid dealing with non-trivial holonomies of the
gauge fields along non-contractible loops. While generalisation to other topologies turned out to be manageable via
the canonical picture [20-22] in the Abelian setting, this is still an open problem in the non-Abelian case.
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the action takes the following form
S = f d’z OXYOXME,, with Euw = guv + Buw . (2.3)
b

Where the metric and B-field have been packed together as the symmetric and antisymmetric

components of E.

2.1.1. Bosonic

The bosonic T-duality procedure relies on the assumption that the background metric g, enjoys at
least one continuous isometry X* — X* 4+ K*e generated by the Killing vector K = K*0,,. Gauging
the symmetry and adding to the action a term enforcing the flatness of the gauge fields by means
of Lagrange multipliers, one can recover the initial model upon integrating out the multipliers,
while another model is obtained by removal of the gauge fields. Together with the requirement
Zkg = 0, for the intial action (2.3) to be dualised one further needs that ZxB = 0. With such

an assumption one has a global symmetry of the full action
0.S = J d?z 0XYOX*(LKE)uw =0 . (2.4)
b

To proceed with the dualisation it is convenient to make use of coordinates {X*#} = {X1, X™}
adapted to the Killing vector. This way one has K = 01, i.e. the Killing vector acts as a simple
translation along X, and the metric and B-field are independent of such coordinate, which only
appears in the action via 0X! and oX1.

The symmetry can now be made local by gauging

OX™M — DX™M :=oX™ OX™M — DX™M .= oX™m
oX! - DXl :=oXt + A oX! - DXt:=0X1+ A

(2.5)

and to recover the starting model one needs to include the term X F, with X! a Lagrange multiplier
and F = 0A — 0A the Abelian field strength. The minimally coupled gauged action hence reads
SmcG = f d’z (DXYDX*Ey, + X*F) (2.6)
b
and is invariant under local transformations with € = €(z, Z)

0X"=0 6 X'=€¢ 6X'=0 6A=—-0¢ A= —0¢. (2.7)

As mentioned above, the addition of the field strength term to the action is fundamental in recov-



2.1. Abelian T-duality 9

ering the original model (2.3), as the equations of motion for the Lagrange multiplier X1 forces
the vanishing of the field strength and thus the gauge field to be pure gauge A = 0x, A = dx.
0

The original model is recovered for the convenient choice of x =const which makes A = A =

On the other hand, one can obtain a new model by proceeding the other way around, i.e. first

integrating out the gauge field and then gauge fixing. The equations of motion for A and A read

(OXY — 0XYEy — 0X'Ey)) A= Ei(é)?l—(?XlEll—éXjEil) : (2.8)
11

x

A—
E11

Substituting them into the action, fixing X! = 0 and rearranging the remaining terms, one obtains

a model which formally has the same structure as the original one
5 f 22 ORVIRIE,, | (2.9)
b

with new coordinates {X*} = {X', X™} and the following relations

- ~ 1 ~ 1
Ell =J11 = E Emn = Emn - aEmlEln
3 £ 3 E . (2.10)
Eln = - Eml = -
J11 g11
Using Gu, = %(I::W + E_W) and ém/ = %(EW - I::,w), leads to the famous Buscher's rules
- 1 . B N 1
Ji1 = — dm1 = — Imn = Imn — 7(gm191n + BmlBln)
g11 g11 g11 (2.11)
= Im1 = 1 '
Bml = = an = an - 7(9m181n + Bmlgln) .
g11 g11

It is important to notice that the T-Dual model exhibits a shift isometry along the X! direction,
as the metric and B-field are independent of it. This allows to re-apply the dualisation procedure

to the dual model and go back to the original one.

2.1.2. Fermionic

The fermionic duality introduced in [32] is performed in the same spirit as the bosonic one and thus

follows similar steps. The starting point is again the action

S = f d?z oXNOXM Epyn with  Eyn = gun + Bun (2.12)
z
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the main difference being that now the target space is a superspace M, with bosonic and fermionic
coordinates {XM} = {X™ 64} such that XM : ¥ — M. In this setting gyy and Byy are
respectively graded-symmetric and graded-antisymmetric and thus satisfy gyn = (—1)MINlgyy,
and Byn = —(—1)MINIBy,, where we introduced the Grassmann parity [M| = 0 and [M| = 1
for respectively bosonic and fermionic directions. The total parity of Epy is then simply given by
M| + |N|. Similarly to the bosonic case, the action is assumed to be written in coordinates such
that the metric and B-field are independent of the fermionic 8, which only appears in terms of

06" and 901. The action is thus invariant under a constant fermionic shift of 8 by p
XM xM ol -0t +p, (2.13)

where we introduced X" = {X™, 6% with @ running over all fermionic coordinates except for 6.
In this setting, the dualisation procedure can be performed pretty much like for the bosonic case.

The symmetry is made local by gauging

oXM _ DXM — pxM XM _, DXM — 3xM
001 — DO — 901 + A 201 — Dol — 3ol + A

(2.14)

and adding a term 6'F, with 6! a fermionic Lagrange multiplier and F = dA — dA the fermionic

Abelian gauge field strength. We thus get the minimally coupled gauged action
Spce = L 4’z (DXNDXM Epyy + 61F) (2.15)
which is invariant under local transformations with p = p(z, Z)
6pXM=0 5,00 =p 5,00=0 G,A=-0p G,A=—0p. (2.16)

As already mentioned, the main difference with respect to the bosonic case is that the gauge
field, the Lagrange multiplier and the cross terms E1,, Egm are fermionic quantities, which means
they anticommute. This can be handled with some extra attention when reshuffling the various
terms and as a result of such property the dual fields will be different from the ones found in the
bosonic case. Once again, integrating out the Lagrange multipliers forces the vanishing of the field
strength, hence setting the gauge field to be pure gauge and allowing to recover the initial action.
On the other hand, computing the equations of motion for the gauge field one finds

Uox 1

A= Ei(aél — 0 e + (-1)NOXVE R A=

- £ (00! — 20 Er - XMEL),  (2.17)
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so that substituting back into the action, fixing 81 = 0 and rearranging, a model with the same

structure as the initial one is obtained
S= f d?z oXNOXMEun | (2.18)
¥z

with coordinates {XM} = {XM, 61} and the following components

. ~ 1 - 1
Ei1=Bi1=—%5— Evn = Enn — 5—EmEim
B11 B11 (2.19)
E . _ Eiy E. _ En
1M Bll M1 Bll :

Paying attention to the exchange of fermionic quantities and respecting the graded symmetry
and antisymmetry of the metric and B-field via gyn = %(EM/\/ + (=1)MINIE ) and Byy =
%(EM/\/ — (=1)MIN Epy), we end up with the fermionic analogue of the Buscher’s rules, again

relating the two sigma models

~ ~ 91m 5 I g By
—0 Gyy=2M Bui=—-—=— Byy-=
911 91w By, 11 B, W= By, (2.20)
i} 1 - 1 '
i = 9~ g, 9mBin + Bindin)  Bun = Bun — 5 (Ginin + BinBin) -

Notice that also in this case the dual model exhibits a shift isometry along the 6! direction, as the

metric and B-field are independent of it, and the procedure might thus be repeated.

2.2. Non-Abelian T-duality

Non-Abelian T-duality was first introduced in [10] and conceptually represents the natural extension
of the procedure described in the previous section, to backgrounds with a set of non commuting
isometries. Despite the name, a key feature of such generalisation is that it does not represent a
true duality [14], as it is generally not possible to recover the initial model starting from the T-dual
one and in this sense it is not invertble. Indeed, in contrast to the Abelian case, the dual model
does not usually have the same amount of isometries as the initial model and even gauging the
residual ones, the original setup is generally not recovered. The systematic loss of isometries is due
to the fact that only those isometries which commute with the gauged ones survive the dualisation
procedure [90,91]. As discussed in the introduction, despite this drawback non-Abelian T-duality
has been largely studied and has played an important role in various research directions. In the rest
of this chapter we shall focus on reviewing a class of sigma models, known as principal chiral models

(PCM), defined on group manifolds, as they will be of primary importance for later purposes.
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2.2.1. Principal chiral models

Principal chiral models are sigma models in which the background is a group manifold G. The basic
constituent of this class of models it to the so-called principal chiral field g : ¥ — G, where ¥ is
a two-dimensional Lorentzian worldsheet and G is a Lie group with Lie algebra g. Starting from
g one can construct the Lie algebra valued 1-form current j = g~ldg € QY(X,g) satisfying, by

construction, the Maurer-Cartan equation?
dj=d(g ') rndg=—g '(dg)g ' Andg=—jnrj=—3[j] = di+ilij]=0. (2.21)
The action is then constructed out of the current j as

Secw = |_Trlg " dg) (g 'dp)]. (2.22)

where T r represents the Ad-invariant inner product on the Lie algebra generators and * the Hodge
operator with respect to the worldsheet metric. Switching to lightcone coordinates and choosing

the inner product such that Tr[T,T,] = d,p, the action can be further recast into

Spcm = fz d?z Tr[(g_lé’g)(g_lég)] = JZ d?z (g_lﬁg)b(g_l(_?g)aéab ) (2.23)

Principal chiral models have a large set of isometries G; x Gg, as they are invariant under the global

left g — g[lg and global right g — ggr action of g;, gr € G.

e Invariance under G, is a direct consequence of the fact that j itself is left unchanged

Shem = f &’z Tr[((g. ) "o(g; "e)) (9. 'e) "0(9; 'e))] =
r (2.24)

= L d®z Trl(g '9L9; '08)(g 919, '08)] = Spcm -
e For Gr one needs to exploit Ad-invariance of the inner product, namely ciclicity of the trace

Shem = f d’z Tr[((ggr) ‘o(gar)) ((g9r) ' 0(ggr))] =
r (2.25)

= L d’z Trlgr'e ' (0g)9rgr'e *(9g)9r] = Spcm -

Given such set of isometries, T-duality can be performed by following the same key steps highlighted

in the past section. For these models, the procedure can be carried out in such a way that a quite

2we consider g € C*(X, G), the set of smooth maps from the worldsheet to G, and we denote by d the exterior
derivative on the worldsheet and by Q'(%, g) the set of 1-forms on ¥ taking values in g
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general expression for the dual action is achieved. We shall proceed, as done for example in [61],
by gauging the invariance under the G; action. These global symmetries can be made local by

introducing non-Abelian gauge fields via minimal coupling
Dg:=0dg+ A Dg:=dg+ A . (2.26)
Indeed, given the local transformation g — h=tg with h=! = h=1(z,Z) € G, and
A— h™*Ah — (0h™1)h A— h=*Ah— (@hY)h, (2.27)

the covariant derivatives transform as Dg — h~1Dg and Dg — h~!Dg, so that the covariantised
action enjoys local invariance. At this stage one further needs to enforce the flatness of the gauge
fields by introducing the appropriate Lagrange multiplier term. The full minimally coupled gauged
action then reads

SKSS = |_ &z Tri(e ' De)g  De) + THIAF. (2.28)

where F = 0A — 0A + [A, A] and A are Lie algebra valued Lagrange multipliers. Given the local
transformations (2.27), the field strength transforms as £ — h~1Fh and consecutively the newly
introduced piece is invariant provided the Lagrange multipliers transform as A — h~1Ah. As in the
Abelian cases, variations of the Lagrange multipliers A imposes the vanishing of the field strength
F = 0A — 0A + [A, A] = 0, which in turn implies A = hdh=! and A = hoh™!, i.e. the gauge
fields to be pure gauge. The original model (2.23) is thus recovered by choosing the gauge h = 1.

The dual model can once again be obtained by integrating out the gauge fields rather than the

multipliers. Writing (2.28) in components, the equations of motion for the gauge fields read

A7 = —([(0g)g 1P = oA ) (M 1)? AT = —([(Fg)g ']” + ON°)(NTH)s7 . (2.29)
Where we defined matrices M,? 1= 0,2 + ASf.,P and NP = 8,2 — A°f..P, with £,,€ the structure
constant of the Lie algebra g appearing explicitly in the component form of the field strength

Fa = 0A? — 0A? — APACf,,@. Substituting the latter equations back into the action and exploiting

the gauge freedom to choose g = 1, the action becomes

SHSE = [ 0Pz — @AM )BT )5 B + NN ()
(2.30)
+5/\aa/\c(/\/]—l)cb6ba +/\aa/\C(M—l)Cdé/\eU\/—l)epfpdbéba:| _
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At this point, one can use the definition of N,? to find that
(N"HENP = 6,° = (NT1)a" = 82" + (N1 NI fgc” (2.31)
which substituted into the first of the above four terms, cancels the last two and thus leaves
Spcm = L d?z ONTON(N~Y) Loy, (2.32)

From the latter expression one can then extract the dual metric and B-field as the symmetric and

antisymmetric components of (N71) ., := (N71),%6cp
~ 1o _ _ _
9ab = 5[(/\/ 1)ab + (N 1)ba] Bap = S[(N 1)ab — (N 1)/33] : (2.33)

Given a choice of group manifold G and the above result, one may in principle straightforwardly
compute the T-dual fields by explicitly writing down the matrix N and inverting it using computa-
tional techniques. This might however not always be the best way to proceed, especially in cases
where one would like to retain the underlying index structure. In the next chapter we shall generalise
the above result to the case of supergroup manifolds and consider an explicit example in which the

dualisation can be performed in full details without the need for computational tools.



An Explicit Approach To Super Non-Abelian T-Duality

In light of the great versatility of the gauging procedure introduced in [8], which allowed to extend
T-duality in bosonic backgrounds from the simplest case of a single isometry [6, 7] to the case
of a non-Abelian group of isometries [10], it is natural to consider the possiblity of extending the
Abelian fermionic procedure introduced in [32] to the more complicated case of multiple bosonic
and fermionic isometries with non trivial commutation properties. The rich structure and successful
exploitation of bosonic non-Abelian T-duality in various contexts represents a strong motivation
to wonder about potential extensions and applications of a super non-Abelian setting. Some steps
have already been taken in this direction [60, 82—86], nevertheless a clear picture on the topic is
still missing and the construction of explicit examples (currently almost absent in the literature)
might prove useful in shading some light. With such motivation, we begin addressing the problem
by extending the discussion of principal chiral models from the previous chapter to the case of
supergroup manifolds, which, to the best of our knowledge, has not been discussed with this
flavour in the literature. We then analyse in detail, for the first time from the supergroup manifold
perspective, dualisation of OSp(1]2), which had been considered in [60] in the context of purely
fermionic cosets via Becchi-Rouet-Stora-Tyutin techniques. The material of this chapter hence
already introduces some novelties, but is not taken from [1,2] and rather serves as a motivation

for the next chapter, which is on the other hand based on the latter publications.

3.1. Principal chiral models on supergroup manifolds

The starting point and setup of our discussion goes along the same lines as for principal chiral
models defined on group manifolds. We consider a background which is a Lie supergroup G, with
associated Lie superalgebra g, and define the principal chiral field g : ¥ — G together with the
Lie algebra valued 1-form principal chiral current j = g~*dg € Q(X, g), which again satisfies by

construction the Maurer-Cartan equation (2.21). In lightcone coordinates on the worldsheet the

15
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action takes the form (2.23) with the replacement of the trace by the supertrace

Spen = L 2z STr((g0g) (g *3)] (3.1)

The symmetry properties of the model are the same as the ones discussed in section 2.2.1., i.e.
the action enjoys G; x Gg invariance under the global left and right actions g — gL_lg and
g — ggr for g;, gr € G. We shall proceed again with the gauging of the left action, which can
be made local by introducing non-Abelian Lie algebra valued gauge fields with minimal coupling
Dg = 0g + Ag and Dg = dg + Ag. These enjoy the transformation properties Dg — h~!Dg and
Dg — h™'Dg, for h™t = h™1(z,Z) € G, provided that the gauge fields transform as in (2.27),
ie. A— h7'Ah— (0h~Y)h and A — h=tAh — (0h~')h. These modifications make the action
(3.1) invariant under the local G, action, but to be able to get back the original model we must
include the extra term STr[AF], with F = 0A — 0A + [A, A]. The field strength transforms as
F — h™1Fh, so that the minimally coupled gauged action

spee — fz &2 ST[(g " Dg)(g " Dg)] + STrAF] (32)

is fully invariant under the local G; action provided that A — h~'Ah. Once again, variations of the
Lagrange multipliers A impose the vanishing of the field strength F = 0A — 0A + [A, A] = 0, which
in turn requires the gauge fields to be pure gauge A = hdh~! and A = hoh~!. The original model
(3.1) is thus recovered by conveniently choosing h = 1, while the dual model can be obtained by

integrating out the gauge fields rather than the multipliers.

At this level the whole setup and procedure is thus morally the same as in the purely bosonic
case and the main difference, so far still hidden by having considered fully contracted Lie algebra
valued quantities, lies in the fact that we also have fermionic gauge fields and multipliers. This
implies that particular attention should be paid due to the different GraBmann nature of the various
objects appearing in the action. In order to proceed let us first introduce some notation. We label
the Lie superalgebra generators as {Ta} with A € {m, u}: lower case latin indices label bosonic
generators, while lower case greek indices label fermionic generators. The GraBmann parity of a
generator is thus given by its index following standard conventions

0 if A=m
Al = , (3.3)
1 if A=pu

and in turn allows to identify the parity of all fields in terms of the parity of their indices. To

simplify the notation we shall from now on remove the absolute value. This notation allows us to
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define the graded commutator of generators, the graded antisymmetry of the structure constants

and the action of the supertrace on generators as’

[Ta. Tel := TaTs — (=1)*°TTa = fag“Tc with fag© = —(—1)"Ffga”

3.4
oag = STr[TaTg] = (~1)*BSTr[TgTa] = (—1)*Bd5a . (3.4)

We furthermore exploit 8 45 to construct structure constants with lowered indices fagc = fagPdpc,

which are graded antisymmetric in the exchange of any two indices
fagc = _(_1)BCfACB _ (_1)C(A+B) feag = _(_1)C(A+B)+BAfCBA . (35)

This is a direct result of the supertrace identity holding for any triplet of generators

STr[Ta[Ta. Tc]] = STr[TaTaTc] — (—1)BCSTr[TaTcTa] =
= STr[TaTgTc] — (—1)BCFBATO ST [TaTATc] = (3.6)
= STI’[[TA, TB], T(_‘] .

The component form of the action (3.2) reads

ShEN = J dzz[ + (g7 '0g) (g7 02)" + [(0g)g 11" AP + [(Og)g 'MAP + ANAP+
* (3.7)
+ N0AB — NMGAB — A AP AR fQPB]agA ,

and exploiting the above property (3.5), while being careful with the exchange of GraBmann odd

quantities, it is possible to find the following equations of motion for the gauge fields
A= —{[(0g)g 11" — an“F(M~H)c” AN = —{l@)g 1  + N HINHA . (38)
Where we defined

MaB = 648 + NCfcaP M)A McB = 6,48
A A A such that ( Ja~Me A : (3.9
NAB = 6AB _ /\CfCAB (N—l)ACNCB _ 5AB

To properly define PCMs, and later on coset models, the (super)trace among generators of the Lie (super)algebra
should be non-degenerate, graded-symmetric and Ad-invariant. The Cartan-Killing form, i.e. the (super)trace of the
generators in the adjoint representation, is a common choice for such an inner product, but is not the only one
available. Indeed, as discussed in footnote 24 at page 18-19 of [92] and papers therein, (super)trace of any other
representation of generators would provide an equivalently good form. This remark is particularly useful in those
cases where the Cartan-Killing form, proportional to the dual-Coxeter number, vanishes identically, such as the series
sl(n|n) and osp(2n+2|2n). These have indeed vanishing Cartan-Killing form, but still fall in the class of basic classical
Lie superalgebras, always admitting a non-degenerate, graded-symmetric and Ad-invariant bilinear form [93].
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At this stage it is important to notice that the supermatrices MaZ and N4B happen to be of even
nature, i.e. they have bosonic fields in the diagonal blocks and fermionic fields in the off-diagonal
ones. This feature can be recognised by analysing the index structure of the terms proportional to
the Lagrange multipliers: a generic superalgebra is characterised by the fact that the commutator
(anticommutator) of two bosonic (fermionic) generators is again bosonic, while the commutator
of a bosonic and a fermionic element is fermionic. This property shows that the diagonal blocks
M,P,N,P and MaP, NP only contain bosonic multipliers A€, as the structure constants f,,° and
fw‘6 vanish. On the other hand, the off-diagonal blocks M2 ,N,® and M.®, N4Z only contain
fermionic multipliers AY as the structure constants f.,° and feo? vanish. This property is important
in the dualisation procedure, since it immediately allows to recognise the partity of MaB NAB as
being given by A+ B. At the same time, since the inverse of an even supermatrix is again even the
GraBmann parity of M~1, N~ exhibit exactly the same structure. Additionally, it should be noted
that invertibility of M and N is ensured by the presence of the identity matrix, which makes the
determinant of their bosonic part non-vanishing. Substituting the equations of motion (3.8) back

into the action (3.2) and exploiting the gauge freedom to set g = 1 we obtain the dual model

Spcm = f d?z 5 4 5 4 §B) 4 §&) (3.10)
>

where

S = —oN (M=) AP (N~ pBoga

S@) = ONONC (N1 (B

]° ‘ (N"1)c"0pa | (3.11)
SG) = NN (M) Bbga

S@ = MONS (M) PINE(N-Y) eF frpBoga

\

As a final step, exploiting the relation

(N—I)ACNCB _ (N—l)AC(écB _ /\DfDCB) = 6AB

(3.12)
- (N71>AB _ 6AB + (Nfl)ACADfDCB
on the term SM) one can cancel again the terms 5©), S®)| thus obtaining the dual action
Spcm = f d?z ONONEB(NHgCocp = J d?z N ONBGga + ONONBBg, . (3.13)
by b

Where we have identified the dual metric and B-field with

gun = [N Dun + CDMYINYum] Bun =3IV v — (CDMYINT ] L (3.14)
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and defined (N"Y)ag := (N"1)4%0¢cs. The latter result looks, as desired and expected, like the
generalised version of (2.32), which is indeed recovered by setting to zero the fermionic generators,
i.e. by going back to a bosonic Lie algebra. We stress again that given the definition (3.9) of N, it
would in principle be possible to write down the supermatrix explicitly and make use of computational
techniques to find its inverse N—!, immediately leading to the T-dual fields (3.14) upon extraction
of the graded symmetric and antisymmetric components of the latter. Such type of inversion would
however be affected by the loss of index structure characterising the model and underlying algebra,
thus making harder the analysis of the T-dual model. Additionally, in the supersymmetric case,
an explicit inversion of N would also be made harder by the presence of fermionic multipliers, and

would thus require the use of specific computational tools?.

3.2. Principal chiral model on OSp(1|2)

In this section we take into account the principal chiral model on OSp(1]|2) and perform explicitly
its T-dualisation. There are multiple reasons to start tackling concrete examples of super non-
Abelian T-duality from such a model: its low dimensionality (3|2) certainly provides a relatively
simple starting point and, even more importantly, it also enjoys very interesting physical properties
which make of it an intriguing and rich playground. The supergroup manifold OSp(1]2) can indeed
be interpreted as the supersymmetric extension of an AdSs background with the minimum amount
of supersymmetry and satisfying the supergravity torsion constraints discussed in A.6.. This fea-
ture renders the model a proper three dimensional supergravity background, relevant in light of
the successful exploitation of bosonic non-Abelian T-duality as a solution generating technique in
supergravity. The possibility of describing super AdSs as a simple supergroup manifold represents
a peculiarity of three dimensions, where the purely bosonic AdSs space might either be realised
as the group manifold SL(2,R) or the coset SO(2,2)/SO(2,1). A similar feature has also been
exploited in the case of the purely bosonic sphere S3, which has been T-dualised from both the
group manifold and coset perspective in [61] and [62]. The coset description of AdS3 has been
largely exploited in the supergravity literature, where a vast class of AdS superspaces with various

amounts of supersymmetries has been realised as AdS 3 q) =~ SS;”R(;’ES)SSJ?‘;(S&)@ [94-97]. An-

other very interesting feature of the principal chiral model on OSp(1]2) is that the T-dual model
to its purely bosonic part, namely the principal chiral model on SL(2,R), can be interpreted as
describing a three dimensional black hole [15]. This immediately rises the question of whether a
possible supersymmetric extension of such interpretation might be attempted, i.e. whether or not
the T-dual model to OSp(1|2) might be interpreted as a supersymmetric black hole directly realised

in superspace. Last but not least, we shall see in the next chapter that the osp(1|2) algebra admits

2For example, one may consider using the Mathematica package Grassmann, by Matthew Headrick.


https://people.brandeis.edu/~headrick/Mathematica/
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a Z4 grading which allows the construction of another very interesting type of model, namely the
semi-symmetric space OSp(1]2)/SO(1,1). Before dualising OSp(1|2), we remark once again that
one could in principle carry out the procedure by using the result of the previous section and exploit-
ing computer algebra techniques to invert the supermatrix N in equation (3.9), thus obtaining the
dual fields (3.14). The complete loss of the index structure resulting from such operation would
however make it much harder to study the dual model, especially in this supersymmetric setting
where the physical interpretation of the background in terms of a supergravity theory requires the
study of geometric requirements such as the torsion constraints. For this reason we shall perform

dualisation by analytically inverting the operators involved in the process.

3.2.1. Initial sigma model

Metric and vielbeine. To begin, we consider a convenient form of the osp(1|2) algebra and

define inner products among generators

{Qav Qﬁ} = _/('Ya)a[BLa [Lav Qa] = _%('Ya)aﬁQﬁ [Lay Lb] =€ Lc

(3.15)
STr[Lalp] = —37ab STr[QaQp] = icag -

Details on how to obtain this form of the algebra and about the conventions for the raising and
lowering of indices can be found in B.1.. We can now start constructing explicitly the initial sigma

model action (3.1) by taking the following parametrisation of OSp(1]2)

al, —0%Qy -1 _ 0°Qa,—xL, _ —1 _—1
g= eX € @ = hosEfer g =€ Q € x - gfergbos ' (3'16)

From this we can construct the current j = g~!dg as

-j = g;elrg[:(;lsd(gbosgfer> = g;elrg;olsd(gbos)gfer + g;elrdgfel’ =

= &rerJbosEfer + gferdgfer = Jbos T Jfer -
The above two contributions to j are derived in C.1. and read
Jrer = 46°X°Ly — (1 = §6%)d6%Qa + 5200 (v7)oPQp — 56%d0P(¥?)apL s (3.18)

Jbos = AX AL,

where A\? are the Maurer-Cartan forms of Sp(2, R) ~ SL(2, R), derived in C.2. and reported below.

Rearranging j = jpos + Jrer =: J%L 1 + j*Q4 we find the following expansion on the generators

| | . .
J = (14 262X = 26%d0P ()] J* = =(1 - 56%)[d6% — 22 (1,)5%] . (3.19)
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Substituting into the action and exploiting the inner products (3.15) we end up with

1 1
Spcm = f STI’[j A *j] = j STI’[jATA A *jBTB] =
2 )y 2 )y

1 1
= f (—=1)ABjA A BSTr[TaTa] = J JAA%BSTr[TaTa] =
2 > 2 >
1 1 3 I a 3 3
=~ | =227 AxAg — —0%(a)aA? A xdEP+ (3.20)
2)s| 2 4

;

] ,
- Zea(wa)aﬁdeﬁ A *>\a - I(]‘ 16

62)do* A *d@a}

1
5 L dx9 A xdxPgpq + dxP A %d07 gop + dB7 A xdXPgpe + dO7 A *d0Pg,s |

where, after introducing R? := x9xPnpq and some manipulations, we defined the metric components

9pg = 91Mpq + 92XpXg = Jap 1—cosh (R)

. : 9= "Rz
Goo = 40°(To)achp = gep  vith sfeom (A1 (3:21)

. I'92 92 = 2R4

9oo = /Epa(l - E) = —Jop
The current j defines a set of orthonormal frames on the supermanifold
1 1 ) .
Spcm = Qf dxM A *dxMgyn = 2J J* A %jBbpa

= = (3.22)

/Ega

1
with  dga = <‘20”ba ° ) j=dxMjyTa

and for later use one can write down their components and those of the inverse frame fields

JniaN = o JaMjnB = 648 with (3.23)
Jm® =01+ %)Ama Jﬂa = éeu(’ya)uu Jm™ = %Amaeu(’ya)ua === %)6“06
= (A, J# =30 " = 58 )ea(N ST e = (1 )0

Where the SL(2, R) frame fields and their inverse read
Am? = 10m? + bxmx? + hxecm? ATH™ = 140, + lsxax™ + lexCec™ . (3.24)

They satisfy Ap?(A71)." = 6" and (A1) An? = 6.° with coefficients

_sinh R , _ R—sinhR . _ _2sinh®(R/2)
R R o R (3.25)
R 2 — Rcoth (R/2) 1 '
/4=§C0th (R/Q) /5: SR2 /625 .
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Isometries and their realisation. In this paragraph we construct explicitly the Noether currents
and Killing vectors associated to the G; x Ggr isometry group of the principal chiral model on
OSp(1)2). In C.3. we discuss Noether currents for generic principal models, while in C.4. and C.5.
we focus on OSp(1|2), first deriving the left Noether current and successively the full set of Killing
vectors. From the action (3.20) one can extract the Noether currents associated to the left and

right group action

GL: g—g g = Ly =-gjg ' =—(dg)g™* (3.26)

Gr: g—8Ur = Ry=j=g 'dg
One can then generalise to the superspace setting the result of [35], relating the Noether currents
for the principal chiral model to Killing vectors. Under an infinitesimal transformation

dexM = Ve, M | (3.27)

generated by a Killing vector &, = €,Mdy associated to the generator V' of the isometry algebra,

the variations of the action read

0¢eSpcm = j

dEV A *f\/NdXMgM/\/ = —J
>

AN <*ngdngMN> , (3.28)
>

so that the Noether current associated to the generator V takes the form
J\/ = <J, \/> = f\/NdXMgM/\/ . (3.29)

Computing explicitly the Noether currents one can then extract the components of the Killing
vectors by inverting the latter formula. From (3.26) and (3.19) we immediately find the current

associated to the right sector of the isometry group, namely OSp(1]2)&

Ry = (14 76%)[A7 — £6%d6P (77) op]
Ry® = —(1 — £6°)[d6™ — $X76°(v,),*]

Ry = RyLs + Ry*Qq with (3.30)

For the current associated to the left sector OSp(1|2); we have
LN = _(dg)g_l = gdg_l = gbosdgl;ols + gbos(gferdg;elr)gllpos = (I—N)bos =+ (I—N)fer (3-31)
and the bosonic piece can be simply extracted by letting x — —x in A? with components (3.24)

(L) bos = Bhos(dgpas) = N[x = —x]Ls = dx"[=h6m? — bXmx? + X €cm?]Ls . (3.32)
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On the other hand, to get the fermionic piece one first needs to compute

I
Brordgrl = gdeﬁeawa)aﬁu (1 267)d0%Qq | (3.33)

and can then proceed by exploiting the relation eABe=A = 377 0 k,adA( ) to find

sinh(R/2) 2 )aﬁ]QB

EposQuEpl = [COSh(R/2)6,° — T—=LZx3(y,
1- COSI”IQR sinh R - (3.34)
gbOsLagb_Ols = [cosh(R)éé7 + TXaXb n . Xcecab]Lb

Putting the above pieces together one finally obtains Ly = Ly?L; + Ly®Qq with
cosh R8p? + 71 cosh R xpx? + Sinh Rx Ech
Josl S (3.35)

Ln? = N[x — —x] + £d6P(yP
sinh I(?R/2)Xa(lya)5a]

Ly® = d6P(1 — £62)[cosh (R/2)6p™ —
At this stage one can apply the relation (3.29) to both the left and right Noether currents to
extract the two sets of Killing vectors

£L (Aéa + BXaX —+ 2X gda )&C_i_ %gp(,ya)p)\aA
gga = éep(fya)Pa(Aéac + BXaXC + %Xdﬁdac)ac - (1 - £92)aa

(3.36)
gﬁa - _(Aéac + BXaXC - %ngdac)ac
5(%& :[éNéaxC — ﬁ@x(fyb)m(UébC + bexc)]8C —(1+ é@z)(Nxa('ya)a — Moy?) 0y
where we defined coefficients
R 2 — Rcoth(R/2
A= = coth (R/2) B = ;?2 (R/2) M = cosh (R/2)
R —sinh R (3.37)
——>——csch(R/2) .

_sinh(R/2) - -
N=-—"5 U= —Recsch(R/2) V=""0

It is possible to check that the latter two sets of vector fields correctly satisfy the osp(1]2) algebra

(€5, €6,] = ean”€L, [¢F, €F,] = eap“éf,
1 1
[gfangRa] = _E(W’a)aﬁfgﬁ [Efa, gé)a] = _E(Va)aﬁgéﬁ

(6, 66,1 = —i(V)aptl, (66, €6,] = —1(V)agtL,

(3.38)
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and commute as required for the G; x Gg isometry to be correctly realised
(€5, €0,] =0 [€F,. €61 =0=[¢1,. €8 ] {¢5,.¢5,1=0. (3.39)
Finally, both sets of vectors satisfy the graded Killing equation derived in A.2.

(L, 9)as = (—1)VABeC(0cgas) + (—1)VE(0a€0) gcs + (~1)A BTV (0560 ) gac . (3.40)

Supergravity constraints. These represent a set of conditions that any supergeometry should
satisfy to be understood as an appropriate supergravity background. Originally introduced to con-
nect the superspace approach to supergravity with the component one [98—101], they were success-
ively re-derived in various occasions and shown to be implied by k-symmetry of the Green-Schwarz
action, describing the motion of a superstring on a supergravity background [102, 103, 78]. Here
we shall show that, in spite of its simplicity, the principal chiral model on OSp(1|2) satisfies the
supergravity torsion constraints described in A.6., hence representing an appropriate supergravity
background. In the next section and next chapter we shall then study whether the T-dual model
satisfies as well the supegravity constraints, i.e. whether or not dualisation preserves them. While
k-symmetry will not be considered in the context of principal chiral models, it will be discussed in
the next chapter for semi-symmetric space sigma models. To see how the OSp(1|2) principal chiral
model satisfies the supergravity torsion constraints in A.6. it is sufficient to recall that on a group

manifold the structure functions Fg® are constant and for the case at hand take the form (B.11)

farf =€a®  fp? = —3(Va)g" o) = 3(Ya)g"  fap® = —i(¥)ap - (3.41)

The constraints on the structure functions (A.38) are thus automatically satisfied with f,,© = 0 =

fap” and ki = —1 and the non-vanishing components of connection and torsion are

Qap = [ Fap" + 6 (Fyap + faba)| = 2€ab°
Qap” = Qabc[Y*. 7187 = (72)8”

Tap® = kifap® = i1(Y)ap

Top” = ~fop" + Qap” = 3(7a)g"

(3.42)

where we exploited the identities for 3d gamma matrices reported in B.1., together with the relation
(—1)C5AcéCB = 5AB and

-1 ac O CB —2oncb 0
wo(b2)  e-(rs) om



3.2. Principal chiral model on OSp(1]2) 25

3.2.2. T-dual model

We perform explicitly T-dualisation of the principal chiral model on OSp(1|2) with respect to the
G, part of the isometry group. We first consider dualisation of the maximal bosonic subgroup
SL(2,R). and successively of the full OSp(1|2),, showing that in both cases the OSp(1]2)r part
of the initial isometry group is preserved and explicitly constructing its realisation. We then try to
solve the torsion constraints by proposing an ansatz for the vielbeine which encompasses the three
models under consideration, namely the principal chiral model, the dual with respect to SL(2,R),
and the dual with respect to OSp(1]2),. This allows to study the torsion constraints for the dual
models while using the principal chiral model as a sanity check of the procedure and leads to the
conclusion that the constraints cannot be satisfied within this framework. Such result, together
with the complexity of the argument, hints toward the need for a more general treatment of the
dualisation procedure, that may allow to take into account more complete ansatze and provide a

clearer picture. This is the goal of the next chapter.

Bosonic dualisation. In this paragraph we perform dualisation with respect to the bosonic sub-
group SL(2,R); < OSp(1]2),.. We shall only highlight the procedure, as a more thorough treatment
of it will be given in the next paragraph, dealing with dualisation of the full OSp(1|2),. The starting
point is again the gauged action (3.2)

SMES = L d?zSTr[(g 1Dg)(g 1 Dg)] + STr[AF] . (3.44)

Recalling the useful choice of parametrisation for the group element g = g, ,.g.,, the left action
of SL(2,R) reads g — hgolsg, hence the gauging goes through as in the previous section with purely
bosonic gauge fields and Lagrange multipliers transforming as Apos — h; - Aboshbos — (00, %) Fbos
and Apos — hy L Aposhbos. Upon fixing the gauge g, = 1 one is left with g = g, and the action

can be rearranged as

SI,;ACCA(ﬂ; = J; dQZSTr[(g;elragfer)(g;elragfer) + (agfer)g;elr[\bos + (agfer)g;eerbos =+ Abos/abos]"‘

+ STF[_a/\bosAbos + 9/\bosAbos + /\bos iosﬁgos fabCLc] ) (3-45)

so that upon using (3.15) and expanding the multipliers as Apos := XL ,, the equations of motion

for the gauge fields are easily computed

X
N
SN—r
| S—
—
|
—_
N—
=
W)

Azos = _[(égferg;elr)b + ((_9

Aa

e (3.46)
bos — _[(agfergfer) - (a

X
S
SN—
| S—
—
|
—
SN—
=
Q
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with matrices M, N and their inverses defined as in (D.3)

Mca = 6Ca - gcab)?b

= (MK = 58,5 — %55 + e,7%,)
Ne? =062+ &% = (Nfl)ak = 1_71r2(53k — X KK — 5akn>~<n) (3.47)
with r? = %%, .

Substituting the equations back into the action and using the result (3.33)

g;elrdgfer = éd@ﬁea(’ya)aﬁLa - (1 B %)deaQa

(3.48)
_ i i 2
(drer)8re, = —540°6%(¥)apla — (1 — 1F)d6*Qa

together with the inner products (3.15) and the identities (D.10) (D.22), the dual action reads

. 1 - A= X"
S = J dAN A xdAM Gy + dAN A dAMByy with . (3.49)
2 v — v
b =0
The dual metric and B-field take the explicit form
gmn = Ll[nmn - )?m)?n] émn = ngmnk)?k
gmu = L35mdk(’yd)u>\)~<k9>\ ému = LS[nmk - gm)?k](’yk)u)ﬂ}\ ' (3-50)
Guv = i€u (14 i6%L2) Buy = — 3 L1%(79) w62
with coefficients
L=t e LP=2) g — (3.51)
LT o(r2 o) 27T T8 (r2 o) T a1y ‘

Full dualisation. \We move to the dualisation of the full OSp(1|2), isometry subgroup starting
from the usual minimally coupled gauged action (3.2), which now also involves fermionic gauge
fields and Lagrange multipliers. We give here the main steps and refer to D.1. for more details.
Expanding the multipliers as A := %?L ,+6%Q,, and using (3.15) the Lagrangian takes the following

explicit form

1 P BT N R
L=—le Loglalg '] —5l(%e)e 1,A - 5[(%e)e ,A — 5AAT+

S\A2 _ (AT a_i~ o AB (A2 1~ c pd a
+ilg " 0glple 1 0el’ + i[(9g)g 16 A° + i[(Og)g e A® + iAGAP+

— i(00p) A + i(20p)A° + 5052 A (1) — 20 A°A% (o)
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One can thus proceed by calculating the equations of motion for the gauge fields

A = |3 (o)1 + 25°) (M7)52(0) 8 — [(Cee P - 0 (Wi,
A — [;(_[@g)g_l]b + 5>”<b)(/\/—1)ba(,ya)pge~g _ [(0g)g_1]9 . aép} (W2_1>pa

(3.53)

To obtain the latter we defined and inverted matrices M, N, as for the dualisation with respect to

SL(2,R); in (3.47), and W4, W5, which also involve fermionic multipliers. These read explicitly

. i(r*=3)
(W1)g™ i= 8p*(1 + AB®) + 3% (v)p(1 + BE?) " A= (irtl) »
. wit — G
(Wh)g® := %(1 + AB?) — 1x%,(v?)s™(1 + BH?) W B: o (3.54)
62 := 6%,

1
i 3 . (3.55)
2

Where we defined coefficients

co_ L’(—12—7r2+r4) Do (=10 + r?)

4 (r2—=1)(r2—4) (re—=1)(r2—4) -

(3.56)

Substituting the equations of motion (3.53) back into (3.52), choosing the gauge g = 1 and
performing some manipulations, which mainly involve the identities (B.8) and (B.7), one lands on

the following dual action

Spem = L 2 (0%9)(25°) Lpg + (99)(30°) L pq + (60°) (257 L + (96°)(30°) [ . (3.57)
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with explicit components

Log = L1(r?) | mpg(1 + ih(r?)8?) — %% (1 + im(r?)8?) + epqi ™ (1 + /'n(r2)9~2)}

Loo = Lo(r?) | —€po (1 + if(r?)8?) — %;a(ya)pg(l + ig(r)9~2)}

Lpo = L3(r)| (2 + ) (Vp)oa — 3%(Y)oaXs — (1 — r?)%peon + 3epab(fya)m>?b]ea

Lpg = L3(r2) —(2+ r2)(7q)pa + 3% (Y7)paXg — (1 — r2)>~<q€poc + 3€4ab(V?) paX }éa :

involving the following quantities

1 —i

L1(r?) := T Lo(r?) = —a L3(r?) = RSNy
o 2(1+2r) . =2(rr-4) . 5+r°
e R [ B R e VI e A GV )
—12—-7r7 4 r* —10 + r?
%) = 3= 1)(rr2+—r4) 9(r%) 1= o= 1)(+r2r— Al (3:59)

We can finally extract the dual metric and B-field as the graded symmetric and antisymmetric
components of the above expressions gypy = %(ZMN + (fl)M’VZNM) and Byy = %(ZM/\/ -

(—=1)MNLn). This leads to the following metric

Gpg = L1(r?)[mpq (1 + fh(r2)§2) — RpXq (1 + /m(r2)§2)] = Jap
gpa = L3(I’2)[—(1 - r2))~<p€aa + 35pab(’ya)aa>~<b]§a = gap (3'60)
Goo = —Lo(r?)epe (1 + if(r?)0?) = —Gop

and B-field

(Vo h!
S
RS

= L1(r?)epgrX (1 + in(r?)0?) = —Bgp
= LS(r2)[(2 +r?)(Vp)oa — 3>~<a(’Ya)aa)~<p]§a = _éop : (3.61)

Boo = —3Lo(r?)%a(¥)po (1 +ig(r)8?) = Boyp

(oo ]!
i)
Q

Residual isometries. In general, only the isometries which commute with the gauged ones survive
dualisation [91, 90]. Hence, given the OSp(1|2); x OSp(1]2)r isometry group of the starting
principal chiral model and the gauging of the left sector for the T-dual models derived in the
previous paragraphs, we should expect the OSp(1|2)g sector to be still intact in the dual models
(3.60) and (3.50). We show that this is indeed the case and find how such residual isometries
are explicitly realised by constructing an ansatz for the Killing vectors and studying the constraints

that the graded Killing equation (A.13) imposes on it. The main results are reported here, while a
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complete list of the constraints and a description of their resolution can be found in D.2..

For the model obtained by dualisation of OSp(1|2), one finds the following set of Killing vectors
gLa = )?dsdacac + %éA(Wa)Auau EQQ = _"é)\('yc)kaac + ?c(ﬂ’c)a”@/ ) (3-62)

while for the T-dual model obtained by dualisation of SL(2,R), one finds

§L, = idgdacac + %éx('y‘a)kuau £Qa = éex(fyb)ka;(dgdbcac —[1- £§2]aa . (3.63)

It should be noted that the bosonic isometries turn out to be realised exactly in the same way for
both T-dual models. This was reasonably expected, as the model (3.50) is effectively obtained
by dualising a subsector of the full OSp(1|2), isometry group. As needed, both sets of vectors
correctly satisfy the osp(1]2) algebra (B.11)

[€0,.€L,] = €ap €L, €L, €0p] = =5 (Va)8%E0n (€00 €Qsl = —1(Y)apéL, - (3.64)

T-dual supergravity constraints. In this paragraph we go back to the supergravity torsion con-
straints, focusing on the T-dual models constructed above. Ideally, one would like to show that such
models satisfy again the constraints, so as to be able to interpret them as appropriate supergravity
backgrounds. In particular, this might extend the 3d black hole interpretation given in [15] for the
T-dual model to the PCM on SL(2, R), in terms of a supersymmetric black hole directly realised in
superspace. Studying this problem for the dual models is much harder than for the principal chiral
model, as after dualisation one loses the supergroup manifold picture and the structure constants
of the initial model are turned into complicated structure functions. The torsion constraints impose

on the latter three non trivial conditions (A.38), which for the models under consideration read

@ faﬁc = /kl(’YC)aB

Fabe) =0 : (3.65)

(©  iFap” + i€ (Foap — Fopa)l = —koFance®(1a)s"

In the spirit of the present chapter we would now like to study the above three constraints explicitly.
This requires an explicit expression for the structure functions of the T-dual models, which in turn

depend on the choice of vielbeine and inverse vielbeine
fABC = (—1)MBGAMGBN[@N6MC — (—1)MN6MeNC] . (3.66)

The latter relation can be extracted from the Maurer-Cartan equation (A.15) by writing the one

forms and exterior derivative in the coordinate basis e® = dAMey”, d = dAMdy, and exploiting
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the defining relation for the inverse vielbeine ea™ep® = 548 or e es™ = oy, Given the T-
dual metrics (3.60) and (3.50) it is not complicated to make a choice of vielbeine, invert it and
consequently derive the structure functions. However, one should keep in mind that the final aim
is finding an appropriate choice of vielbeine which also allows to satisfy the supergravity torsion
constraints reported above, and for this reason it is certainly not a good idea to fix them straight
away, as these would not be guaranteed to solve the constraints. Due to this problem one should
rather proceed by leaving the vielbeine unspecified and letting the torsion constraints determine
the most appropriate set (if any). To continue in full generality one should expand the vielbeine
in powers of the fermionic coordinates with arbitrary coefficient functions. However, to make the
analysis more concrete, we shall restrict ourselves to a quite general, even though possibly not
exhaustive, ansatz. The conclusion will be that no choice of vielbeine with the chosen structure
manages to satisfy the torsion constraints while reproducing the T-dual metrics and this will in
turn motivate the use of a more general formalism to deal with the whole dualisation procedure

and supergravity constraints, that will be discussed in the next chapter.

To introduce and motivate our ansatz for the vielbeine we notice that the three models so
far considered, namely the principal chiral model on OSp(1|2), the T-dual model with respect to
SL(2,R), and the T-dual model with respect to OSp(1|2),, can be described in terms of a single
enlarged metric. For simplicity the three models will be from now on referred to as Initial Model,
Bosonic Model and Fermionic Model. Taking coordinates {x™, 6#} with contractions r? = x"x™ 1,

and 62 = 6#6"¢,,, we can write the following metric

Ipg = (M)p ™ Mmg + 6%(X2)p ™ Mimg

>\1)pm = glapm + g3XpXm + gllxcecpm

. (3.67)

(
X2)p™ = 920, + gaxpx™ + groxecp™
9po = 9>\[(>‘3)pq(’7q)>\a + gg€orxp]  With < E 2)e = o e

A3)p" = g50p™ + gexpx™ + grx“ecp™

for g11=912=0

Guv = €uv[go + 91067

which reduces to each of the three models above by appropriately renaming the coordinates.

e Initial model - unchanged name of coordinates {x", 6*}

l—coshr 142 isinhr i—4
g1= "3 g3 = — 5+ 95 = ~4— 96 = 5,2
(3.68)

: 1
91 =7 9o =1 gio = 15 -
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e Bosonic model - rename coordinates as {x™ = X", 6# = 6#}

91 = 3709) B="9 g7 = '% 9o =1 g10 = g : (3.69)

e Fermionic model - rename coordinates as {x" = X", 6* = o~}

g1 = 2(!’2171) go = —(1 + 2[’2)g%gg g3 =—01 Js = 4/9% g7 = 397599
] 2
98 =% 9o = 2 gio = (12+7r7 = &L (3.70)

The enlarged metric has inverse metric of the form
gpq _ npn(AQHV)nq + 02npn(>\énv>nq
>\/'1nv>pm _ ginvcspm + géanpXm + gﬂvxcgcpm

(
invy m _ 4invs m inv m inv..c m
0 = (NG + g Enx) with | 2 P 9200 TN gl e
(

)\gnv)pm _ génv6pm + génvxpxm + génvxcscpm
for g1l = g1 = 0
g = (g + oft ) (371)

and its defining relation, (—1)Pgpmpg™™™ = dp", allows to express the above coefficients as func-

tions of those of the metric as in (D.46), leading to

e [nitial model

inv _ r? inv _ —ir? inv _ —r?—2(1—coshr) inv _ i(4—r?csch (r/2)?)

91 = 1=coshr 92 = 8(1—coshr) 93 = r2(1—coshr) 4 = 16r2 (3 72)
inv_ rcoth(r/2)  _inv _ —24rcoth(r/2)  _inv _ 1 inv _ :  inv _ 1 '

95 =——7 9 =732 — 99 =—7 Y99 =1 G10 =7

e Bosonic model

ginv _ 2(/’2 - 1) gé'nv _ _% génv - 9 gzi‘nv _ ﬁ

_ . _ _ . (3.73)
g§nv =-1 glgnv - gllrg)v =—7.
e Fermionic model
g =20"-1)  ¢V=i g=-2 g =-3 (3.74)
génv _ _% génv — _i(r2474) gifé\/ — _% . .

We can finally write down the ansatz for the vielbeine that will allow us to explicitly study the torsion
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constraints. This will also need to be supplemented by inverse vielbeine, as these also appear in
the structure functions. We choose vielbeine

em? = (w1)m? + 6%(w2)m?

(w1)2, = A10m? + Asxmx? + Asx Ecm”
N (WQ)ma = A26 + A4.XmXa + A6XC€Cma
eu? = 0 [(77)un(w3)q? + Baeuax?]
. (w?:)ma = B10m? + Baxmx? + Box€ E€cm?
with < (3.75)
N (Wa)m? = D10m? + DaXmx? + Daxecpm?
em® = 0(Wa)mT(Vg)A® + D30x%Xm]
(K1)u® = *+ E3xp(7P)u®
(K2)u® = E26M + Eaxp(¥P)u®
Leu® = (K1)u® + 0% (K2)u®
and similarly looking inverse vielbeine
eam — (w/nv) + 92( mv)am .
wWi™) " = M10," + Maxax" + MsxCec,"
WYY = Mab," + Maxax" + Mex*ec,"
e = O [(Y)an(WE™)g" + Naearx"] _
) a7 = N16," + Ngxax™ 4+ NoxCec,"”
with (3.76)

el = 9%[(w/nv) (’Y )>\ + R30,Y Xa] )
I K{™)a” = 510" + S3xp(7P)a”

)
)
)
WP)a" = R10," + Raxax" + RoxCec,”
)
)

au = 52505’/ + S4Xp(fyp)au

eau — (K/nv) + 92( /nv)au

The coefficients Ay, ..., E4 of the vielbeine, and those of their inverses, are arbitrary functions of r
and pretty much like for the study of Killing vectors, we would now like to fix them by substituting
the ansatze into the torsion constraints. One should however keep in mind that all such degrees
of freedom are actually not completely free, as the coefficients of the vielbeine should also satisfy
a set of equations ensuring that they correctly reproduce the metric, while the coefficients of the
inverse vielbeine should satisfy another set of equations ensuring that they effectively represent an
appropriate inverse matrix. A reasonable way to proceed would thus be that of determining the

MemB = 648, and solving them for the

latter set of equations, coming from the defining relation es
coefficients of the inverse vielbeine as functions of those of the vielbeine. This approach however
leads to quite complicated expressions, naturally affected by highly non-linear dependencies and
makes it really difficult to study the torsion constraints. For this reason, a much more efficient way
to proceed is exploiting knowledge of the inverse metric to write down the coefficients of the inverse
vielbeine as linear functions of those of the vielbeine with insertions of the known coefficients of

the inverse metric. This can be achieved by writing down the metric and its inverse in terms of
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vielbeine and inverse vielbeine

gun = (—1)MN A ey Aey, Bog gMN = (~1)NM+B)§BAe N egh (3.77)

M

such that (—=1)Pgupg™N = 64"V Using then es™ep® = 648, the second relation allows to extract

ea" = (—1)"g"VenPépa , (3.78)
which leads to the linear expressions (D.47) for the coefficients of the inverse vielbeine as functions
of those of the vielbeine and fixes the problem of having too many degrees of freedom to deal with.
One could now substitute the vielbeine and their inverses into the torsion constraints, leading to
a set of quite involved, but still tractable, set of differential equations for the coefficients of the
vielbeine only. What still remains to be addressed is the other requirement the vielbeine should
satisfy, namely they should reproduce the metric. There is no way around this, and for this reason
we shall simply spell out the whole set of equations and treat them as an additional constraint, to
be added to the ones on torsion. Writing the metric in terms of the vielbeine as in (3.77) leads to
the following 10 conditions, which we shall from now on refer to as metric equations

1
g1 = —5 (A — A2
Go = i[D3 — r?D3 + iA1 As — ir?AsAg)
1 1
g3 = —A1As — §r2A§ - §A§
ga = —i[D3 — 2Dy Dy — D3 — r*D3 — iA4(A1 + r?As) — iAsAs — iAsAg]
1

1 . .
gs = —EAlBl + 5/’2/4552 —iD1E; — II’2D2E3

2 2 . . | | (3.79)
Js = 7584(/41 +r A3) — EAgBl — 5/4582 — ID4E1 + IE3(D3 + DQ)
1 1 . .
g7 = §A182 — §A5Bl - ID1E3 - ID2E1
1
96 = —7Bs(A1 + r?As) + iD1E3 + ir’ DyEs — iD3E;

90 = i(E} — r’E3)

OJOJORORONONOROROX®

: 3i ' ' ' '
Jdio = I[2E1E2 — 2r2E3E4 — Z’B% + ér2B§ + ir2B§ - i’ABi - ér28184]

At this point we are almost ready to proceed with our plan: substitute the ansatze for vielbeine
and inverse vielbeine into the explicit expression (3.66) for the structure functions; determine from
these the explicit set of differential equations imposed on the coefficients by the torsion constraints
(3.65); substitute the expressions for the coefficients of the inverse vielbeine as linear functions of
those of the vielbeine and try to solve the conditions resulting from the torsion constraints together
with the metric equations reported above. We anticipate that, at the end of the story, we shall

be dealing with a system of 26 equations, including the 10 (algebraic) metric equation and the 16
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(differential) equations resulting from the torsion constraints, and we shall argue that the system
admits no solution for either the bosonic or the fermionic T-dual model. As a consistency and
sanity check for our procedure, we shall also treat the initial principal chiral model on the same
footing as the T-dual models, that is as if we didn't know about its super group manifold structure
and we had only been given its metric. This reverse engineering treatment of the principal chiral
model highlights how the components of its metric satisfy complicated sets of differential equations
which the T-dual models are not able to satisfy. This effect, brought in by the dualisation, might
be interpreted as the result of switching hyperbolic functions of r with polynomials in the same
variable. In a sense, dualisation truncates the infinite series expansions encoded in the hyperbolic
functions to some finite polynomials so that, while differentiating the former one generates terms
that might be recombined exploiting trigonometric identities, the same is not generally true for the
latter, which give rise to new independent structures upon differentiation. Before writing down the
full set of equations resulting from the torsion constraints, there are a few comments related to

the metric equations (3.79) that we should make, which will be useful in the subsequent analysis.

e In solving (3.79) together with the constraints, it will be very convenient not to solve eqs @
and @ explicitly, as these would bring unwanted square roots into the game. Such equations
shall rather be imposed on the other constrains to symplify them and will only be solved at

the very end of the calculation.

e Solving @ as a quadratic equation for Az and using @ as a constraint, one can rewrite the
former as the linear equation @ A1 + r?As = 1. This simplification is due to the fact that
all the three models satisfy the relation g1 + r’gs = —%. The newly obtained equation can
then be conveniently solved for As. This simplifies the above system (and successively the
constraints) and leads to naturally solve @ for the coefficient A4. Together with the just
mentioned relation between g; and g3, it will also be useful to exploit the following relations,

holding among the coefficients of all the three models above

1
Gtrigg=—5  @+ria+g=0  gll-2("-1)q]=0

9592 = 9594 = 9598 =0 = 9692 = 9694 = 9698 (3.80)
1

2rgs + r°gs + gt =0 gé—ZQéZO-

e Equations @ to can be easily solved for the coefficients B, ..., B4 or D1, ..., D4: we

shall later choose the second option, as some of the constraints will be naturally solved in

terms of the B-coefficients.

e Writing down explicitly the invertibility condition for the vielbeine, eaMeyB = 648, one
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obtains a linear system of the form Wx = v, where x represents the unknown coefficients of
the inverse veilbeine {Mj, ..., S4} and the matrix W contains the coefficients {A1, ..., E4} of

the vielbeine. The condition for the invertibility of W, and thus of the vielbeine, then reads

det(W) = (A1 + rPAs)* (A2 — rPA2)3(E2 — rPE2)*xcgigd # 0 . (3.81)

e The two couples of eqs @ — @ and @ — present a similar structure: both of them
involve the off-diagonal coefficients of the vielbeine in quadratic form (i.e. D’s and B’s), while

the coefficients on the diagonal blocks (i.e. A’s and E’s) appear multiplied by each other.
Assuming one of the couples {A1, E1}, {A1, Es}, {As, E1}, {As, E3} to be non-vanishing,
which is needed to ensure invertibility of the vielbeine as from the above condition, one could
easily solve @ and for the couple of variables {Ax, Ex}, {A2, Ea}, {Ae, E2}, {As, Ea}.

e The choice of non-vanishing couple also allows to extract another information: by differen-

tiating @ and @ one obtains
91 = —(MA] — 1A — rPAsAy)  go = 2i(ELE} — rE3 — r’E3E3) (3.82)

which depending on the choice of non-vanishing coefficients made above, might respectively
be used to get an expression for A} or A; and E} or E4. This helps in exchanging differential

for algebraic equations, effectively disentangling some of the constraints.

We can now move on to the explicit construction of the structure functions, for which more details

are provided in D.3.. Recalling the definition (3.66) one finds the following expressions
faﬁc = (’Yb)aﬁ[(Fl(SbC + F2XbXC + F3Xd€dbc) + 92(F45bc + F5XbXC + F6Xd€dbc)] , (3.83)

fabd = o [EOL)\(F75bd + FgXb/\d + F9XC€de)+
+ (’Yq)ax(/—_loXCECqbXd + F11XC€quXb + F12XC€deXq+ (3.84)

+ F13’)’]qbXd + F146bqu + F156qub + F16XquXd)] ,

]:ag’y = 9>‘{F17 [6(1765)\ + 5576(1)\]—1-
+ Fisxp[(7P)a"epn + (7P)87€an] + F1oxp[0a7 (7P)ar + 087 (VP )ar] + (3.85)
+ () (Ya)pn + ()57 (Vg)anl (F200q” + FaixgxP + Faox“ecp?)} |

with the coefficients reported in (D.56),(D.57),(D.58). From the latter, it is not hard to extract

the conditions imposed by the torsion constraints (3.65) on the coefficients:
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e From (3.83) one immediately recognises that constraint @ Imposes six conditions

1)  A=ik Fa=0
(12)  R=0 (15) FR=0 . (3.86)
@ Fz3=0 Fe=0

e Similarly, from (3.84) one can recognise the following six conditions imposed by

a7)  F=o0 Fis+ Fis =0
Fe=0 @ Fia=0 : (3.87)
Fio+ Fi1 =0 (22)  Fie=0

e The remaining four conditions imposed by @ can be conveniently obtained by slightly re-
arranging the constraint. Contracting both sides with €,4%(7x)4° and exploiting the identities

in B.1. this can be rewritten as
quk[z}-ocﬁw(’)’k)wﬁ + féﬁkeak(’Yk)éﬁ] = 4k2(—7:apd"7dq - faqdndp) . (3.88)
Notice that the latter operation can be inverted by contracting again with ”9,(v")," as
Epa (F)APEPI 0 (V") WY = —48,P6," +26,°6,° . (3.89)

and the second term vanishes on both sides of @ as they are traceless. After a short

calculation, the above rearranged constraint leads to the following conditions

@ Fis — Fi9 = 2kofg @ Fi9 — Foo = ko(F13 — Fi5)

Fao — F17 = kar?(Fio — F11) Fao — F17 + r?Fa1 = 2kar?Fip

At this point one can proceed with the aid of Mathematica, so as to more efficiently manipulate and

(3.90)

solve the 10 metric equations and the 16 constraints just introduced. At first we shall proceed by
solving as many equations as possible without specifying any model, i.e. solving for the coefficients
of the vielbeine in terms of generic metric coefficients. This allows to solve 8 metric equations
and 6 constraints, fixing 14 out of the 18 available coefficients of the vielbeine. At this stage
the remaining equations become quite involved and in order to proceed further in the analysis one
needs to specify the model. While the equations for the initial model greatly simplify and allow for

a solution which recovers the vielbeine introduced at the beginning of the chapter, the other two
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models exhibit a complicated structure and the set of equations turns out to be inconsistent.

As a first step in the above argument, we shall assume coefficients A; and E; of the vielbeine to be
non-vanishing. This ensures their invertibility, as discussed around (3.81). The metric equations
@ and @ might in principle be easily solved, but this would bring into the game square roots,
which would make the rest of the equations more complicated and harder to simplify. For this
reason we shall proceed by solving only linear equations and imposing the above two, together
with the conditions (3.80), as constraints on the resolution of the remaining equations. This can
be achieved in Mathematica by using the command Assume, which allows to simplify expressions
under some given assumptions. One can then notice that constraints @ — @ are algebraic and
can thus be solved together with some of the metric equations: conditions @ — , and
@ — @ are easily solved in terms of the coefficients Ay, Az, A4, D1, D>, D3, Dy, E5, By, By, Ba.
Notice that despite the appearance, all these equations can be solved linearly and only @ and
actually require dividing by A1 and Ej.

The second step consists in solving the conditions (3.82) for A} and E} and substituting the result
in all the remaining constraints. Simplifying all of them imposing once again the vanishing of@
and @ together with (3.80), one finds that constraints @ and @ have become algebraic and
can be easily solved for As and Bs, while can easily be solved for Ag. The latter equation is

not an algebraic one, but can be safely solved for Ag as this only appears in , @ and never
differentiated.

At this point one is left with free coefficients A1, E1, E3, E4 and unsolved equations @ @ , @

— , @ — , of which only the first two are algebraic. It is hence the moment to specify

the model under consideration

e Initial model. After introducing explicitly the coefficients of the metric and solving @ and
@ for A1 and E; all the remaining equations undergo a great simplification and one can
notice that most of them vanish provided that kZ = 1. This is however not sufficient to
solve all the constraints, as @ are only satisfied provided that k; = —1 and E3 = 0. At
this stage only equation @ is left unsolved and one can easily put remedy to this by setting
E4 = 0. At the end of these steps all the constraints and metric equations are satisfied for
the metric coefficients of the initial model and one recovers the coefficients of the vielbeine

that we introduced in the previous section, together with the requirement that k; = —1.

e Bosonic model. Also for this model one can proceed by solving @ and @ for Ay and Ej.

However, contrarily to the previous case, one immediately finds problems upon inspecting
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, as this turns out to be only dependent on k; and r?, thus only allowing for solutions

with non-constant kj.

e Fermionic model. For this model things are slightly more involved, as proceeding like for
the other two models brings into the game more complicated square roots. One can how-
ever proceed by leaving @ and @ unsolved and checking consistency of the remaining
set of differential equations, which are coupled and all dependent on Af, E7, E5. Indeed,
after isolating A} from equation and substituting into all the others, one finds that
@, , @@ become algebraic in the variables Aq, E1, E3. In particular, @ and
@ can be linearly solved for A; and E3 and this causes to only allow for the solution

E1 =0, hence leading to an inconsistency.

From this analysis, the T-dual models constructed in the previous paragraphs seem not to satisfy
the supergravity torsion constraints. However, we restricted ourselves to an ansatz for the choice
of vielbeine and our argument might be improved by considering a more general one. One could
have proceeded by considering an expansion of the vielbeine in the fermionic coordinates, but the
complexity of the approach strongly suggests one should really resort to other techniques. In the
next chapter we shall thus introduce a more abstract point of view on the dualisation: this will
allow to argue much more quickly that the T-dual models break the torsion constraints and will
also be of easier extension to other types of geometries, in particular coset sigma models of the

symmetric and semi-symmetric kind.



A More Abstract Perspective On Super Non-Abelian T-Duality

Motivated by the results of the previous chapter and the difficulties encountered in analysing T-
dual models of principal chiral models from an explicit ansatz-based approach, in this chapter we
shall take a slightly more abstract perspective on T-duality, relying on the possibility of solving
the equations of motion for the gauge fields in a general model-independent manner. This will
have the advantage of leading to a T-dual action directly written down in terms of a set of
dual vielbeine, which can be more efficiently exploited to study the supergravity requirements of
the model. Additionally, this will allow to recover the exchange of Maurer-Cartan equations and
equations of motion notoriously resulting from the bosonic dualisation. This approach will also have
the advantage of being more easily generalisable to other types of geometries and in particular we
shall focus on symmetric and semi-symmetric spaces, re-deriving the exchange of Maurer-Cartan

equations and equations of motion found for principal chiral models.

4.1. Principal chiral models

We start from principal chiral models, performing gauging and dualisation with respect to the left

sector of the isometry group, then re-considering the explicit example of OSp(1]2).

4.1.1. Setup

Let us consider again a generic Lie (super)group manifold G with associated Lie (super)algebra g,
equipped with a non-degenerate, (graded-)symmetric, Ad-invariant bilinear form (—, —). Principal
chiral models are defined in terms of smooth maps g € C*(%, G) from the two dimensional Lorent-
zian worldsheet ¥~ to G, constructing the pull-back to ¥ of the Lie algebra valued Maurer-Cartan
1-form j := g~ 1dg e Q(Z, g). This satisfies by construction the Maurer-Cartan flatness condition
dj+ %[Jj] = 0, where d represents the exterior derivative on the worldsheet, and is invariant under

the global left action of the group on itself g — gL_lg, while transforms adjointly j — g,;lng under

39
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the global right action g — ggr, for g;, gr € G. The principal chiral model action

Spcm = LU: *J) (4.1)

then enjoys G; x Gg global invariance, with associated Noether currents Ly := —gjg and Ry :=J.
The equations of motion read d(xj) = 0 and, together with the Maurer-Cartan equation, can
be understood as resulting from the flatness condition of Lax connection J(z). This depends
on a complex spectral parameter z and its existence ensures classical integrability of the model

[104-106]. Parametrising the Lax connection as J = aj + b *j one finds

1 d(xj) =0
dJ—l—E[J, J]=0 = () iff a?—b’=a. (4.2)
dj+ 30,1 =0
This condition can be solved as a := —3(z — z7%)? and b := }(z? — z72), so that J = J(2).

We stress that, strictly speaking, the existence of a Lax connection is not enough to guarantee
full integrability of a system, as this ensures the presence of an infinite set of conserved charges,
which might however be not in involution. For this reason the Lax connection is said to imply weak
integrabiliy, while strong integrability, namely the involution property of the charges, is ensured

when the components of the Lax connection satisfy a specific Poisson structure [107].

Topological deformations. We can introduce one more ingredient in the definition of our starting
model, namely a deformation first introduced in [82—84] and referred to as topological, as it does
not alter the equations of motion of the model nor its global symmetries, thus leaving untouched
the construction of the Lax connection. This class of deformations relies on the existence of
two-cocylces Q' on the Lie (super)algebra g, or possibly on a subalgebra of it. Given Q € H?(g)

satisfying the two-cocycle condition

QX [V, Z]) + (—=1)XOFAQY, [Z, X]) + (-1D)ZEIQ(Z [X,Y]) =0  VX.Y.Zeg, (43)

! As discussed in [82], deformation by a two-cocycle becomes trivial when the latter is a couboundary. This happens
when Q(X,Y) = f([X,Y]), with X,Y € g and f : g — F some linear map, called 1-cochain, from the algebra to
F =R or F=C. In such cases the deformation can be removed by a field redefinition and for this reason non-trivial
deformations are in correspondence with two-cocycles modulo coboundaries. This relates non-trivial deformations to
elements of the second cohomology group Hz(g), which also correspond to non-trivial central extensions of g. For
finite-dimensional semisimple Lie algebras, the Whitehead lemma ensures that H2(g) = 0 (see for example chapter
4 in [108] and references therein) and a similar result has been proven in chapter 18 of the collection [109, 110]
for finite-dimensional simple Lie algebras. Non-trivial deformations of Lie algebras can thus be considered when g
is neither simple nor semisimple, as for the case of u(2) discussed in [82]. For Lie superalgebras these results do
not hold in general and one needs to perform a case by case analysis. See for example [111-113] for results on the
cohomology of Lie superalgebras, also in relation to string theory and supergravity.
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by the Riesz representation theorem one can associate to this a unique Lie algebra endomorphism

D : g — g relating €2 to the inner product as
Q(X,Y)=<(D(X),Y) VX, Yeg. (4.4)

The graded antisymmetry of Q and the two-cocylce condition (4.3) respectively imply the following

properties of D, which are derived in E.1.
(X, D(Y)) = —(D(X),Y) D[X,Y] = [D(X),Y]+ [X,D(Y)] VX,Yeg. (4.5)

Hence, D is antisymmetric with respect to the inner product and acts as a derivation on the Lie

bracket. One can then show that D can be extended to a left-invariant vector field on G
D(gYg ') =g(D(Y)+[g7'D(9).Y])g™'  WYeg (4.6)
upon defining

o0
,1D Z

adX D(X)) = -D(g™Y)g for g:=e~. (4.7)

Notice that g71D(g) = —D(g1)g is a result of the fact that g=1D(g) is defined via the same
series expansion as the Maurer-Cartan forms j := g~ 'dg in (C.12). This makes D inherit the
same properties as the exterior derivative d. The above property allows to show, together with

Ad-invariance of the inner product, that
Qg71Xg,97'Yg) = QX,Y) + (g7 D(9), [X,Y]) . (4.8)

Extending the above definitions to p-forms Q2P(%, g) one can then define the deformed action

E f@ W)+ C(DG).J) | (4.9)

with ¢ € R an arbitrary deformation parameter, from now on set to one without loss of generality.

Gauging. We proceed, as in the previous chapter, with the gauging of a subgroup K; € G, in
the left sector of the isometry group of the deformed principal chiral model. Denoting by ¢; the

Lie algebra of K;, we introduce £, -valued gauge fields w € Q*(X, €,) and modify the current j as

Joi=g ldg+glwg with geC®(X,G). (4.10)
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The latter is now invariant under the local left K; action g — k‘lg with k € K, provided that
w —  klwk+ k7 ldk . (4.11)

The action must then be modified by means of the Lagrange multiplier term, enforcing the flatness

of the gauge fields. Introducing A € C*(%, £, ) we thus have the following master action
Sy = ;ng, *Juw> +{DU), ju) + L</\ +D(g)g ', Fuy with Fyi=dw+ i[w,w], (4.12)
which given the property F,, — k~1F,k, under local K; transformations, is invariant provided that
AN —  kTAk+kTID(K) . (4.13)

Notice that the contribution (D(g)g™!, F,) must be included to retain invariance under the global
Gr action in the presence of the deformation. Indeed, g — ggr does not affect the multipliers
but (4.8) implies {D(jw), Juw) — {DUw) Juwy + (drD(IR), liw. juwl), thus leading to the need for a
compensating term. More details are given in E.1.. Finally, we can simplify the master action as

Sw = % J s *Jw) + D), Juw) + f (N F) with A=g Ng+g 'D(g), (4.14)
> x

where we exploited that g~ 'F,g = Fi,- The latter is manifestly K, invariant and can now be
T-dualised. Integrating out the Lagrange multipliers one enforces the flatness of the gauge fields,
which can be removed by an appropriate choice of K; gauge, while integrating out the gauge fields
one obtains the T-dual model, where the Lagrange multipliers play the role of dual coordinates. K,
gauge invariance can then be exploited to remove dim(K,) coordinates of the initial model, thus
restoring the correct number of degrees of freedom. When K; = G, one can choose gauge g = 1,

so that all information from the initial model is lost.

4.1.2. T-Dual model

One can now proceed with T-dualisation by integrating out the gauge fields from the master action

(4.14), which varied with respect to w leads to
*jy +dA = Dx(jy) =0  with D := D +adj . (4.15)

The latter equation can be solved as

1 - 1 . _
- Df\:ﬂ(d/\) S DAP_(d/\) with  Dj := D + ads , (4.16)

jw:_
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where we introduced projectors Py : QY (Z, g) — QL(Z, g)
Pr:=21(14%)  with PPy =Ps P.P; =0, (4.17)

defining an orthogonal decomposition of worldsheet 1-forms Q1 (%, g) ~ QL (Z, g) ® QL (T, ).
Substituting the latter back into the master action (4.14) and exploiting the relation

1 1
, Z) ={+—
1+ Dy 1F Dy

(X X,Z) VXY, Zeg, (4.18)

which results from (Dx(Y), Z) = —(Y, Dx(Z)), one obtains the T-dual action

- - 1 -
5= L<d/\, —n P, (dA)) . (4.19)

Equations of motion and Lax connection. One can now verify the exchange of equations of
motion and Maurer-Cartan equations by computing the T-dual equations of motion as in E.2..

Varying the dual action with respect to A and exploiting 0Dj = adsz together with the relation

1 1 1 1
cadsio T p t (4.20)

1+ (Dy +0D;)  1+D; ' 1+ Dy

where o denotes composition, one indeed finds Maurer-Cartan-like equations of motion
Jl=0  with  Ji=j,. (4.21)

Combining the latter with (4.16), and exploiting Jacobi identity, one then recovers the conservation
equation for J
d(xj)=0. (4.22)

This exchange allows to construct the dual Lax connection as the one of the initial model
JZ)i=—3(2-2YH+2(22-22)], (4.23)

with Z a new spectral parameter, thus ensuring classical integrability of the dual model.

Residual isometries. As discussed in the previous chapter, since T-duality preserves the isomet-

ries commuting with the ones that have been gauged [90,91], for principal chiral models one expects

2Equation (4.15) can be easily solved by rearranging as j, = — * T + S(xj,), with S := Dj and T := dA,
and recursively substituting ji, into itself. Exploiting ** = 1 one finds ju = — >4 S* « T — 302, S*TT =
_ 1 1

— =P (T) + 1+LSP_(T), using in the last step ;" o S* = (2 + p%s) and D0, SH*H = 1( A - H—S)
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the T-dual model to still retain the global Gg invariance. Indeed under g — ggr one has

A - gz'Agr + gr*D(9r) (4.24)
and the dual action is manifestly invariant. This comes from ggr, D being constant on the world-
sheet, as gr is a global Gg transformation and D a Lie algebra endomorphism D : g — g, and the

relation

—1 4% -1 iy
implied by (4.6). Ad-invariance of the inner product then ensures invariance of the action at all
orders. One can then also compute the associated Noether current

Jv =*D5J . (4.26)

The latter can be combined with the result (C.21) to extract the Killing vectors generating the
residual isometries, for which more details are provided in E.2.. Given generators T, of the Lie

algebra g, with commutators [Ta, Tg] = fas€Tc, the Killing vectors read

STA = (DAB + AMfMAB)ag with aB = /%3 , (427)

D

where we defined components D(T4) = DaBTg of the Lie algebra endomorphism. From Jacobi

identity and two-cocycle condition one can then verify they satisfy the commutation relations
(€7, é75] = Fag“ér. (4.28)

T-dual vielbeine. The T-dual action (4.19) can be alternatively rewritten as

& . - 1 ~
5= ;L@, D+@EDE  wih  E=—r—pdi. (4.29)

where we introduced T-dual vielbeine €. Notice that the choice of vielbeine is not unique. One
may indeed define & := —=5-dA or & := —135-dA and the dual action (4.19) would still be
rewritten as (4.29), respectively in terms of &_ or &, 3. From the above definition one can find the

following modified Maurer-Cartan equation (see the last paragraph in E.2. for more details)

1 1 1
dé+ -|é &l =—= g€ €| . 4.30
(68 =5 184 (4.30)
3 . ~ 14Dz ~ 1+ D5 . . . .
The two choices are related by & = =5~ &, and the operator ;=g acts as a local vielbeine rotation leaving
A A

unchanged the structure of the action. Additionally, the action is not affected by overall changes of sign in the
vielbeine definition: choosing é_ = i1—1D,~\ dAor é; ;= iﬁd/\ €4 simply changes the relative sign between terms
in the left member of (4.30).
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Furthermore, recognising the presence of a T-dual B-field
- 1 . ~
By = §<e, Dxé) , (4.31)

one can determine E.2., from the point of view of the background geometry, its field strength

Hs 1= dBy = 5(& - o8 [ &) . (4.32)

The latter relation is always true, at least locally, due to Poincaré lemma, as the field strength Hs
should be a closed 3-form. From the global point of view, H3z might be closed but not exact, hence

being a representative of the third cohomology class.

4.1.3. OSp(1]2) revised and improved
We are now in the position to reconsider the principal chiral model on OSp(1]|2) and study its

properties by using the formalism described in the previous section.

Lie algebra and initial setup. Throughout this section we shall change a bit our notation as
compared to the previous chapter, and use the OSp(1|2) algebra in spinorial form. More details

about it are provided in B.1., and we report here the non-trivial commutators for clarity

[Lag. Lys] = = i(ey(alp)s + €s(alp)y)

' (4.33)
[Qa. Qpl = Lagp [Lap. Qy] = —leyaQp) -
With this notation, the inner products take the form
<Loc61 L75> = ea('yeé)ﬁ <Qou Qﬁ> = ieaﬁ <Laﬁv Q’y> =0. (4-34)

Since H?(0sp(1]2)) = 0 [111-113], we proceed with the undeformed principal chiral model (4.1),
i.e. setting D = 0 in all formulae from the previous section. We shall not discuss, as in chapter 3,

the explicit structure of the dual fields, but rather concentrate on the supergravity requirements.

Initial model - torsion constraints. Given the 3d supergravity torsion constraints (E.34), it is
not hard to recognise that the initial model satisfies them. All one needs to do is expanding the
generic Maurer-Cartan form on the Lie algebra generators j = j"‘ﬁLag + j%Qq, exploiting the
commutators (4.33) to write down the Maurer-Cartan equation in components

dj*f + i A P = EJO‘ AP dj*+iP A jg*=0. (4.35)
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The torsion constraints (E.34) are then satisfied with the identifications
ef = —jP e = -~ Qo = — L Topy’ = _G'Y(aéﬁ)é ' (4.36)

and conditions (A.33) for the connection are respected due to the symmetry of j,5. Even though the
initial sigma model does not contain a B-field, one could include in the 3d action an Hs contribution
that would dynamically generate the cosmological constant via the equations of motion, thus

ensuring the existence of a super-AdSs solution. In this case the three-form would read
Hs=ea ne®P Aeg+ 3helP Aeg” ney®, (4.37)

which is indeed of the form (E.36), with R proportional to the AdSs radius. From the sigma model

perspective, this three-form might be included via a Wess-Zumino term

Swz =% fMg, [.J])  with M=% . (4.38)

T-dual model - torsion constraints. In order to study the torsion constraints for the dual model,
we need to compute the exterior derivative of the dual vielbeine (4.29). Using the modified Maurer-

Cartan equation (4.30) we can extract dé by computing

. 1. . 1 1 o~
dé = _5[6' él — 57 2d; [ €] . (4.39)

This would allow us to substitute dé*® and dé&* into the torsion constraints (E.34) and check
explicitly whether these can be satisfied for some appropriate choice of connection. To find the
exterior derivative of the vielbeine one needs, from the above equation, to compute the action of
the operator ﬁ on [&, €] and to this aim we now make the assumption of having dualised with
respect to the full OSp(1|2), sector of the isometry group, so as to be able to choose the gauge
g = 1in which no trace is left of the initial model and A := g~ 'Ag+g~1D(g) — A € osp(1|2). Then,
expanding the vielbeine and Lagrange multipliers on the OSp(1|2) generators as & = &% [ ,5+&*Qq

and A := )?O‘BLQE; + 9~°‘Qa we can start computing (see the last paragraph in E.3. for more details)
[6,8] = (28" A 8P — 8% A &) Lag + (2i8°F A 83)Qa =1 V*PLop + 1*Qu - (4.40)

One can then exploit the results (E.49) and (E.50) with the choice U := A and V := [&, &] to find

1 1
g 8= - %2179 — 23,2558 770 — 2i%, (@ ZO] Lo+
~ dn _

2
2—Xx?

(4.41)
+

¢¥[6a° — i%P1Qs
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with

2
2 — X2
I

790 = %P 4

[U(O‘ - /U'ony(a] 09+

t a0 [(1 - 122)u™P — 3%,2%Pv" — 3i%,(*uP)7]6?
; B (4.42)
Ca B 'Ua —_— m[(l - )?Z)Uaﬁ — 2)?1706)“(’551}’)’5 - 2,5&7((11,6)'7]95+
/ 3 (T 22), Bz alf2
BT A C e
The exterior derivatives of the components of the vielbeine are then easily extracted
1 1 .
deb — —Euaﬁ i) [(1—%2)Z%F — 25,%%P 27° — 2ig, (@ ZP)17]
1 5 (4.43)
d&* = —Zv* — = (P[5p* — i%°]

2 22— %2)

and we are ready to start looking at the torsion constraints (E.34), starting from the first one
dg*P 287 A QP = L2 A & (4.44)

This is the most restrictive constraint, as it contains no free component of torsion and the only non-
vanishing one has to be a constant. Looking at the left hand side of the constraint, we recognise
that even after expanding the connection one form on the vielbeine Q4P = 575975 P+ é’Yanﬁ it
cannot contribute with a term proportional to & A &° that could compensate for the one on the
right hand side of the equation. Hence, for the constraint to be satisfied one strictly needs that
terms proportional to 8% A & coming from d&*® should match the constant term on the right hand
side of the equation. To study this requirement, it is sufficient to look at those terms in (4.43)
which are proportional to v*P, as from (4.40) these are the only ones containing & A 8. Hence,

concentrating on terms involving the latter contribution we find

1 1

&P s = —§fua6 — m[(l — )% — 25,255 — 2i%, @]+ (4.45)
] | N )

s a gl IV - 42 - S% RO (5 4 25) 5 N8,

From the latter expression and the definition v®® := 2ig7(* A &8 — & A &, one can then
recognise that despite a first constant term proportional to & A &, all the remaining ones lead
to non-vanishing and non-constant contributions which cannot be compensated by the right hand
side of the above torsion constraint. For this reason we conclude that the torsion constraint is

broken by the T-dual model. Exploiting the result (4.32) it is then also possible to get an additional
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confirmation of the incompatibility of the T-dual model with the supergravity requirements. Indeed
combining (4.41) and the inner products (4.34) it is not hard to notice that the T-dual three-form
contains components that should not be present in order to satisfy the requirement (E.36). In

particular, one finds terms proportional to & A & A &Y by looking at

2
2 - %2

1 .~
Hslaagoan = 5(€*Qa, Plos° — i%:°1Qs) (4.46)

and considering once again the terms proportional to v®® contained in ¢. This leads to

o - - 2 . 3 . . =«
Hs|zagpsy = 8 A &P A &7 [/x(aﬁe,y) - X(aﬁ)cy)éeé] : (4.47)

1—2%2 2— X2

Before surrendering to the impossibility of satisfying the supergravity constraints with the T-dual
model, we shall consider the possibility of performing a local OSp(1|2) rotation on the vielbeine
& — 89 := g 1&g for g € C*(Z,0Sp(1]2)). While leaving the metric term in (4.29) unchanged,
due to the Ad-invariance of the inner product, this rotation introduces new contributions to the
B-field and one may thus hope to be able to choose g so as to satisfy both the requirements on

torsion and Hz. To get the modified structure equation for the vielbeine é9 we start noting that
dg9 = g71(dé)g — [A, &89] with  A:=gldg. (4.48)
Hence, substituting dé with (4.30) one finds immediately
Va89 = —%[59,59]—77[59, &89  with A9:=g*Ag  Va:=d+[A —]. (4.49)
We can thus proceed as above, and start by expanding
N =y Plos + AQq 89 :=E8%Lop +8Qq A= A%+ AQ, . (4.50)

From (4.49) it is clear that new contributions to d&*° come from [A, &9], while the rest is left
unchanged. For this reason we start looking for a possible choice of A that could cancel the
unwanted terms proportional to 8% A & encountered in (4.45), in which one should simply make

the replacements ¥ — y®0 and 6% — \*. One can then see that
[A, 89)|gage = —&" A A, (%657 (4.51)

and while this might be exploited to cancel terms in (4.45) which are linear in y,%, terms of the
form & A é‘sy(w(o‘yé)ﬁ) could not be cancelled and hence dé&®f still exhibits some non-constant

contributions which spoil the torsion constraint.
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In light of the above analysis it is now also possible to recognise that even upon dualising the
SL(2,R), subgroup of the left-isometry sector one would still not be able to satisfy the torsion
constraints. Since H?(sl(2,R)) = 0 also in this case we proceed by setting D = 0 in all the
expressions derived in the previous section, and parametrising the group element for the initial
model as g = gpo58rer With gpos = €¥F

gbos = 1. Expanding the multipliers as A := X*P 5 the dual model is then written in terms of

6 and g, := e 9P, one can choose gauge such that

A:=grlNgre, = (14 2028 Log + i07%,%Qa =1 y*PLag + X*Qu - (4.52)

The analysis carried out for the dualisation of the full OSp(1|2), can thus be re-used by replacing
B — yoB and 6% — A\* in (4.45). This leads once again to the conclusion that the torsion

constraint is broken by the dualisation.

We should mention that while restoring the fermionic components of connection could help
solving the torsion constraints, this would be in contradiction with the fundamental assumption
of Lorentzian structure group. This would correspond to studying super Riemannian geometry
[114], known to have a complicated connection to supergravity [115,116], via a limiting procedure
in superspace [117]. As a final remark, while we considered general local OSp(1|2) rotation of
vielbeine, to try solving the torsion constraints, there might in principle still exist some choice of
shift and/or field redefinition improving the situation, possibly at the cost of modifying the canonical

torsion constraints A.6.. We thought about this possibility, but could not find any of them.

4.2. Symmetric and semi-symmetric spaces

We shall now discuss extension of the T-duality procedure introduced in the previous section to

two other types of geometries, namely symmetric and semi-symmetric spaces.

4.2.1. Setup

These two classes of models belong to the family of coset sigma models on spaces G/H with G
a Lie (super)group and H a Lie (super)subgroup, and are characterised by the fact that H arises
as the invariant subset under the action of an automorphism o of G. This has the property that
ok =1 with k = 2 for symmetric and k = 4 for semi-symmetric spaces [118,119] # and induces
an orthogonal decomposition of the Lie algebra g which in turn exhibits restricted commutation

relations. Like group manifolds, coset spaces G/H are characterised by the transitive left action G,

*See also chapter 5 in [105] for a nice introduction and [120] for coset spaces admitting Z,,-grading.
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of the group on itself, but the right transitive action Gg is lost in favor of the equivalence of any
two group elements differing by the right action of any h € H. Physical sigma models on G/H will
thus have to exhibit a global G, invariance as well as a local Hg : g — gh gauge symmetry, and the
description in terms of the Maurer-Cartan form j := g~'dg € Q*(X, g), which is by construction
invariant under the global left action G; : g — gL_lg and transforms as j — h~'jh + h~tdh under

local Hgr : g — gh, will exhibit some differences with respect to the principal chiral model case.

Symmetric spaces. For this class of models the automorphism o : g — g is an involution and

the Lie (super)subalgebra b has the property o(h) = h. The rest of the (super)algebra, denoted by

m, is then characterised by o(m) = —m and the following orthogonal decomposition takes place
g~h®m  with  h:=3(1+0)(g) m = 3(1-0)(g) (4.53)
~— —
=Py =:Pn

The automorphism property o[ X, Y] = [0(X),c(Y)] VX,Y € g then leads to commutators

[h.h] = b [m, ] = m [mm]ch. (4.54)

The non-degenerate, (graded-)symmetric, Ad-invariant bilinear form (—, —) on the Lie (super)algebra
is taken to be compatible with the above decomposition and only non-vanishing for couples of ele-
ments in the same subspace. Elements in b are said to be of homogeneity |h| = 0, while elements

in m of homogeneity |m| = 2, hence one has that (X, Y s 0 only for | X| + |Y| = 0 mod 4.

The above algebra decomposition also reflects on the Maurer-Cartan form j := g ldg €
QNZ. g)
Jj=A+m with  A:=FR>) € QYI.h)  m:=Pu() € QX m). (4.55)

While invariance of j under global G; : g — gL_lg implies the invariance of A and m, the transform-
ation j — h™Yjh 4+ h~dh under local Hg : g — gh implies that A — A+ h~tdh and m — h™mh.

For this reason, symmetric-space sigma model actions can be constructed as

5= L<m, *m) (4.56)

1

and exhibit global G; invariance, with associated Noether current Ly := gmg™, as well as local

Hgr invariance. The equations of motion of the above action read

Va+xm=0 (4.57)
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while the Maurer-Cartan equation dj + %[j,j] = 0 now decomposes on the two subspaces as
h: Fa+i[mm]=0 m: Vam=0. (4.58)

Like for principal chiral models, the Maurer-Cartan equations and equations of motion for symmetric

spaces can be encoded in the flatness condition of a Lax connection, which ensures classical

integrability of the models. Parametrising J = aA+ bx A+ cm+ e m, with a, b, ¢, e coefficients

to be determined, the flatness condition dJ + %[J, J] = 0 implies the above equations of motion

and Maurer-Cartan equations provided that b =0, a =1 and ¢? — e? = 1. These can be solved,
1 1

for example, as ¢ := z(z? + z72) and e := 7(z*> — z72), so that J = J(z).

Semi-symmetric spaces. For these models, the automorphism o : g — g satisfies 0* = 1 and the
Lie subalgebra h = go enjoys the property o(go) = go. The remaining elements of the superalgebra
are characterised by o(g1) = ig1, 0(g2) = —g2 or o(g3) = —igs, so that one could identify the

action of o on four subspaces o(gx) = i*gi, with k = 0,1, 2, 3, leading to the decomposition
0~g0Pog1DgoDgz with gy = %(1 + %o + %% + %03 = P(g) . PcP = 6xP). (4.59)

Exploiting again the automorphism property o|g;, g;] = [0(g/), 0(g,)] one finds commutators
[9:, 8] S 8(i+j)moda (4.60)

From o(gx) = i“gx one also recognises that 02(gx) = (—1) gy, i.e. 02 acts as (—1)F and for this
reason go, g> and g1, g3 are respectively purely bosonic and purely fermionic subspaces. Elements in
gk are said to be of homogeneity k and also in this case the non-degenerate, (graded-)symmetric,
Ad-invariant bilinear form {(—, —) is taken to be compatible with the above decomposition, such
that (X,Y) # 0 for | X| +|Y| = 0 mod 4. To simplify the notation in subsequent paragraphs, and

more easily make contact with symmetric spaces, we rename the four subspaces as

g~hOpeOmdq, (4.61)

so that non-vanishing commutation relations read

bbb [p.bl<p [m,plcm  [q.h]<=q
[p.p] € m [m,p] S q [a.p] < b
[m, m] < b [q.m]<p

[g.q] cm. (4.62)
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Also in this case the above algebra decomposition reflects on the Maurer-Cartan form J

J=A4+p+m+gq with
A:=PR() e QY. h)  p:=PR() € QY. p) (4.63)
m:=Pu(j) € QYZ,m)  q:=PR() € QYZ,q) .

While invariance of j under global G; : g — g[lg implies invariance of A, p, m, g, the transformation
J — h=Yh+h~tdhunderlocal Hg : g — ghimplies A — A+h~tdhand {p, m, g} — h={p, m, g}h,

so that semi-symmetric space sigma models can be constructed as

S = % L<m, *my + k{p, q) . (4.64)

These exhibit global G; invariance, with associated Noether current Ly = g(m— 5x(p— q))g_l,

as well as local Hg invariance. The equations of motion of the above action read F.1.

K K
VA*m—*[p,p]Jrg[q,Q]:O

2
gVAq + [p,xm — gm] =0 (4.65)
K K
§VAp— [q, xm + Em] =0,

while the Maurer-Cartan equation dj + %[JJ] = 0 decomposes on the four subspaces as

b - FA+%[m,m]+[p,q]=0
p: Vap+[m,q]=0

) ) (4.66)
m: o Vam+S[ppl+ 5la.q] =0

q: Vaqg+[mp]=0.
Also for this class of models, the equations of motion and Maurer-Cartan equations can be encoded
in the flatness of a Lax connection, which now takes the form of

1 1
J(z) =A+zp+ 5(22 +z%m+z71qg - %(z —z %) xm. (4.67)

It should furthermore be noted that the action (4.64) is of the Green-Schwarz form and the above
Lax connection can only be constructed provided that the relative coefficient kK between the metric
and B-field term is either +1 or —1. See F.1. for more on this. Importantly, this condition
is the same one required to have k-symmetry of the action [121,45], as we shall discuss soon,

and hence supercoset sigma models of the form (4.64) with kK = +1 are both integrable and k-
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symmetric [103], thus representing very special instances of superstring sigma models.

From the above discussion one can recognise that semi-symmetric spaces are special cases of
symmetric ones and indeed all relevant expressions for the latter can be obtained by formally setting
to zero any element in p, q from the former. For this reason we shall from now on present the

analysis only in terms of semi-symmetric models.

Topological deformations. Symmetric and semi-symmetric space sigma models can be deformed

in analogy with principal chiral models, hence leading to the following action
S8 = 4 | . emy 4+ o, @)+ Q0) (4.69)
X

Exactly like for principal chiral models, this does not alter the equations of motion nor the Noether
current, thus leaving unaffected the construction of the Lax connection. The only difference
encountered for the above two classes of coset models, lies in the requirement of Hg invariance
of the action under local transformations g — gh for h € H, which makes the Maurer-Cartan
current transform as j — h™jh + h~'dh. In turn, exploiting the relation (4.6) and D(h~ldh) =
h=td(D(h)h~1)h, the latter implies that

QG.j) —  QU.J)+Q(htdh htdh) (4.69)

so that Hg invariance is retained upon restricting |y = 0. For symmetric spaces, this requirement
leads to the condition D : h — m, as the inner product ensures that Q(Hi, Ha) = (D(H1), H2) =
(My,Hy) = 0 for H1, H, € h and M; € m. From the derivation property of D it then follows
that for the commutation relations to be preserved one also needs D : m — h. In semi-symmetric

spaces, these conditions are further supplemented by the requirements D : p — g and D : q — p.

Gauging. Given the deformed (semi)-symmetric coset action (4.68) one can gauge a subgroup
of the isometry group K, < G; as done for the principal chiral models around equation (4.10), so

that upon introducing Lagrange multipliers A € C* (%, ¢,) the following master action is obtained
Su= 3 [ (e + @) + Dl ) + [ R (4.70)
b by

where A = g_ll\g + g_lD(g) and Ay, pw, My, qu are the projections of j,, on the four subspaces.
The above action is again manifestly K, gauge invariant due to the invariance of j, and of A,
which follows from the transformation law A — k=*Ak + k~1D(k) with k € K. under g — k™ 1g.
At the same time, it also retains Hr gauge invariance as, by construction, the first two terms

are left unchanged by g — gh due to the transformation laws {py, My, G} — W~ {Pw, Mw, Gu}h,
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while the last two terms generate compensating contributions. Indeed using Q|, = 0, D(h~1dh) =
h=td(D(h)h=*)h and (4.6), one finds that (D(juw) juy — {(D(w).jwy — 2{D(h)h~, F;,>, while
(N F,y — (A, F,)+(D(h)h™t, F;,>. Cancellation of the two contributions thus fixes the relative
coefficient between the deformation and Lagrange multiplier terms in the action. T-duality can
now be performed by integrating out the gauge fields rather than the Lagrange multipliers, which
would otherwise lead back to the initial action after an appropriate choice of gauge. At the end of
the dualisation one can finally proceed with the gauge fixing of the extra coordinates, so that the
correct number of degrees of freedom is recovered. For coset models G/H this procedure is slightly
different from the case of principal chiral models, as one generally needs to gauge fix some of the
Lagrange multipliers together with the initial coordinates. Consider for example the case in which

one gauges the full group of isometry K; = G,

e Fixing an Hg gauge in the initial model, one begins with dim(G) — dim(H) initial coordinates
X. At the end of the dualisation one also has dim(G) multipliers X, but having already
exploited the Hr gauge symmetry to fix some of the initial coordinates, only the G, gauge
symmetry remains available. This can be exploited to remove dim(G) degrees of freedom,
but since the initial coordinates left are only dim(G) — dim(H), one will necessarily have to

fix some of the multipliers as well.

e Performing dualisation before exploiting the Hr gauge symmetry one obtains a T-dual model
containing dim(G) initial coordinates x and dim(G) Lagrange multipliers X. Having gauged
the full group of isometry one can now exploit the G; gauge symmetry to completely get rid
of the initial coordinates, i.e. choose gauge g = 1. To correctly recover dim(G) — dim(H)
degrees of freedom it is then necessary to exploit the residual Hr gauge symmetry, which

can however only remove Lagrange multipliers.

k-symmetry of the master action. We now describe the conditions under which the generic
master action (4.70) of a semi-symmetric space sigma model enjoys k-symmetry. Interestingly,
these will formally look the same as the ones required for k-symmetry of the initial action (4.64),
derived in [103] (from which we shall borrow some notation) and argued to imply the supergravity
torsion constraints. While the requirements for k-symmetry of the T-dual models will not be
discussed here, these should be similar to those of the master action, as the gauge fields integrated
out along the dualisation are inert under such fermionic transformations. This should in turn imply
that the T-dual model satifies the supergravity torsion constraints and indeed it has been argued
in [83]. To begin, we recall the McArthur interpretation of k-symmetry in terms of the right action

of a purely fermionic local and infinitesimal group element g on the group element g [122]

g — 89 with gr=e"~1+¢ and €:=¢€+ ¢ . (4.71)
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Having, for coset models, no canonical definition for the right action of a generic group element,
the idea of McArthur is that of determining the fermionic parameters €, and €, by requiring the
transformation to leave the action invariant. Since the gauge fields w are supposed to be integrated
out in the dualisation procedure, discussed in the next section, k-symmetry of the master action
should not rely on their transformation properties under (4.71), as they do not appear in the T-
dual model. On the other hand, Lagrange multipliers may in principle transform under the above
fermionic action, as they play the role of coordinates in the dual model. We shall indeed see that
they need to transform for the master action to be invariant. From the definition Jj,, := j + ¢~ lwg

one finds that

O0xAy = [Chu, ‘fp] + [Pw, 6q]

, _ OrPuw = dep + [Auw, €] + [Mu, €]
g8 — 89f = Ju—JuwtVjE =4 (4.72)

OxMy = [pwv Gp] + [qw' ECI]

\6;{,6](,‘; == qu + [AUJv Eq] + [mw, ep]

and additionally

g — g9 = D(g' — Dlgg ' +egDeg . (4.73)

One can then compute the variations of the master action (4.70) under g — ggr and substitute
the above relations. Since j, is not flat one cannot use the Maurer-Cartan equations to simplify the
variations, as it could on the other hand be done for k-symmetry of the initial model. Nevertheless,

recalling that Fj, = g~ F,g one can rearrange the variations as

0k Sw = Jz<ep: [Pw, (k—*)my])—{€q, [, (K+*)mw]>+6,€’y+<5,§/\—%g[(Pp—Pq)e]gfl, Fu)y (4.74)

where the term d,7y encodes the variations of the worldsheet metric, which will be specified soon.
When the last term in the above variations vanishes, one formally recovers the same structure that
would have been obtained by varying, with respect to g — ggr, the initial action (4.64), with the
simple replacements {p,, My, qu} — {p, m, q}. Hence we learn the Lagrange multipliers should
transform under k-symmetry so as to cancel the last term. To analyse it in more details, we first

notice that F, € & and 64N\ € €, while 5g[(F, — Pﬁl)e]g_1 € g and thus proceed by decomposing
X = 5g[(P, — P)elg™ " = K(X) + K(X) (4.75)

where K and K respectively represent projectors on the gauged subalgebra ¢, and its orthogonal

complement €&, on which g decomposes as g ~ £, @Ei with respect to the inner product. This
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means that one can rewrite the extra term as
(kN = X, Fuy = (0 — K(X) = KH(X), Ry = (8N = K(X), Fu) | (4.76)

using in the last step that, by definition of orthogonal complement, <Ef,EL> = 0. Consequently,
the unwanted term vanishes provided that the Lagrange multipliers enjoy the following k-symmetry
transformations

5uh = K(39[(PM) — PP)elg™?) . (4.77)

Under this assumption one is left with

5.5, = L@p, [P (5 = )Ml — (e, [dur (5 + $)mu]) + 6 - (4.78)

As anticipated, this has the same structure as the variations one would have obtained for the initial
action (4.64). In the latter expression one can define worldsheet operators P§ := 3(k + ) and

notice they satisfy relations
PEPE = H[(K* + 1) & 2K] PEPE = 2(k* — 1) . (4.79)
Hence, for kK = £1 one recovers the worldsheet projectors Py := %(1 + %)
k=1: P = Py Kk=-1: Pf=-Pg. (4.80)

The projection property of the above operators will soon prove important in showing k-symmetry
of the master action - and the same would be true for the initial action (4.64) - for this reason
we shall from now on assume that k = +1. Before proceeding further we also need to introduce
some extra notation, for both the Lie algebra g and the component form of the above projectors.
For an algebra g enjoying the decomposition (4.61) we explicitly denote the generators from the

various subspaces as
h = span{Hs} p = span{Qq} m = span{M,} q = span{Sa} . (4.81)
The projectors enjoy the following properties

PJ_rPiZPi PiP;ZO 1=P++Pf *=P+—P,

(4.82)
{a, PiB) ={(Pra,B) = (Pia,Pi8)=0 Va,Be QY. g),
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but in checking k-symmetry we shall need their component form Pﬂ To find this we start by

recalling that given 1-forms a, 3 one has
(@, B) = ¥, Bj)d°0 (o, +B) = v/, Bj)d°0 (4.83)

with €/ = —¢' and v := \/=hh", for h := det(h;;) and hj; the worldsheet metric. In the above
notation a, B; are still Lie algebra valued but lose the 1-form property and for this reason the inner
product is now symmetric, i.e. while (o, 8) = —(B, a) we have {a;, B;) = {8}, @j). The component

form of the projectors can then be obtained by defining
aj =0 aly = Pgaj (4.84)
and looking at the following two expressions

(o, PyB)y = €¥a;, (B),)d’0 = e'ypde, (B+)*) = €'y PE e, Byd*o

(4.85)
(@, Pe) = 3¢ B) £ 5o +6) = 5(¢” £77)ai. Bpd’o .
Comparison leads to a condition and the required component form
el Pl =Ll +47)y = Pl=l(y+ée)y=P!. (4.86)
In components, the projectors satisfy the following important properties
PlykPL = P PPy =0
N = PY 4 PY el = pi_pli (4.87)
ij pki Kj il ij pki il pkj
PP = PIP! PP = P{PI .

All of them are simple to verify and, in particular, the last one is a direct consequence of the fact that

11’)’22 _ ('Y
and use it to check that PgPﬁ’ = PfPi’ holds true for all possible values of i, k, | € {1,2}. We

are now ready to rewrite the variations of the master action as

det(y”) = —1. Indeed one can explicitly write down the relation det(y") = 7y 122 = 1

OSu = f 2{ep, [P, My 1) — 2{€q. [Gw, my]) + %5K’7U<(mw)iv (mw)j>d20 ; (4.88)
b
where we explicitly wrote the term

8kY 1= +50x77{(Mw)j, (M) yd®o . (4.89)
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To proceed further we need to make a choice of fermionic parameters which allows the two un-
wanted terms to be cancelled by the variations of the worldsheet metric. Introducing K, € p and

kq € q we thus make the ansatz
& = [(m)ikl] ep &= (o) k] eq, (4.90)
and proceed by introducing explicit worldsheet indices in all terms
85 = |26 [(05 )i (muhi Do — 26 e [(65 o (mu)i ] + 8 = (4.91)
— |26 (P2 e [y (D) = P2Cen [l (M) o0 + 8 =
= | RO m) (ma)) = 21 (m A1 05Y (ma), ) = 200 KL (G5 Y. (ma >

where we used the relation e"’fyk,,ng = $Pg to get to the third line. At this point we exploit the

notation introduced above for the Lie algebra generators to rewrite

] = ()R8 ,0P Qg [(p3Y. (mu);] = (5 V(M) fas S

:.1 o . ~ (4.92)
[(mw)is k] = (mu)iky* o Sg [(a V. (mw);] = (a5 Y (mu); far’ Qe

so that the variations can be rearranged as

5150 = L 20 [3(8x7")0ab + 2(p5 YO KIA 55 fad Foa® — 20 YO KIF0 55 Fa6” Foa? | ()P (M) .

(4.93)
To manipulate the above variations we add zero in the form
[(D )Ja Iaéﬁﬁfab fadﬁ - (P )Ja Iaaﬁﬁfab fadﬁ](mw)f(mw)f‘j = (4 94)
[(qw )Ja Iaéﬁﬁfba faa - (q;)JaK{gaaﬁﬁfbd faaﬁ](mw)j’(mwﬂ) =0
so that using 5[% = _666 and f%,6 = —fm6 the terms can be rearranges as
0kSw = L d2a<;(m’f')5ab + [(p5Y 2R — (a5 YR 10g5 1 Fas oo + foal faal 1+ (4.95)

— (P YRy (GJ)de{;a]fsﬁﬁ[faaﬁfbaB - fbaﬁfaaéo(mw)f(mw)f’

We now recognise that the extra terms on the first line can interact with the variations of the

worldsheet metric if the following condition is satisfied, as found in [103] for the undeformed initial
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model (4.64)
855 (fa6 fio + FoaP Foa?) = Caabab . (4.96)

for coa Some matrix to be determined. Under this assumption the variations become
0k Sw =fzdch(é(ém’j)+Caa[(pw)’°‘ o — (q, Y a]>5ab(mw),(mw)b+ (4.97)
— [P Y™ + (a5 V1855l fac o = foa® Fo®1 ()] (ma)?

To conclude the reasoning we then need to recall two further properties that variation of the
worldsheet metric should have: obviously it should be symmetric in the exchange of / and j and ad-
ditionally it should satisfy the condition 'y,jé,{'y"f = 0. The latter requirement is a direct consequence
of the definition v¥ := +/—hh" as under the general variations

6(vV—h) = 1v/=hh7'6h  with  8h= —hh;5h" (4.98)
one finds that
Yii0kY” = v/ —hhij (6 —h)hY — hhjjdh” = —6h — hh;jdhY = (4.99)

In order to ensure that d,7v" enjoys the latter two properties, it is sufficient to notice that the term

we would like to cancel from the first line in (4.97) reads

(pw)Ja i& (qw)Ja o ij(pw)a ié ij(qw)“ ’ (4.100)
so that by requiring
- B (@101

symmetry in the exchange of / and j is ensured by the property PikPi’ = P PJ/ It should also be
noticed how the requirement (4.101) guarantees the vanishing of the second line in (4.97), which

is antisymmetric in the exchange of / and j due to antisymmetry in a and b. Hence, choosing

kY = 2¢aal(a YRy — (P )Y 2K ] (4.102)

and requiring (4.101) is sufficient to set 64S,, = 0. Finally, the condition W,jénv’j = 0 is ensured
by the relation «y;; = P,j + P, and the properties Pi’Pi” = PgPi”, Pg = P£ P,j—r Pik = 0 of the
projectors. Notice at this stage how the properties enjoyed by the projectors played a crucial role

in finding the cancellation of kK-symmetry variations, hence justifying the restriction Kk = +1.
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To summarise, the master action (4.70) of a semi-symmetric deformed coset model enjoys k-

symmetry provided the structure constants and inner products of the underlying algebra satisfy
6ﬁﬁ(fa&5fbaﬁ + fb&ﬁfaaﬁ) = Couiéab ) (4.103)

for some matrix ch4, and one chooses worldsheet metric variations and fermionic parameters

k" = 2¢aal(ay YR —(ph Yo R ) . (4.104)

& €p = [(mw)/,Kfé] with k! = 'DerIKq/
€q = [(mw)i kbl with K} := Pk,

The condition (4.103) seems to represent a restriction on the structure constants of the underlying
algebra and it would be interesting to understand under which circumstances this is satisfied. To

the best of our knowledge, this problem has not yet been addressed in the literature.

4.2.2. T-dual model

One can now proceed in the dualisation of the master action (4.70) by integrating out the gauge

fields. Variation with respect to w gives the following equations of motion
*My — 2Py + 3G + VA= D(u) =0  with  Vj, :=d+ [ju.—], (4.105)

which after projecting on the four subspaces read

h: [7\q,pw] + D/~\m(mw) + [7\p,qw] = VAw/N\b
p: [Ny ol + [Ag. o] + Di(qw) + 2pw = Va,A

[Ny, pu] [Nq w] ~/\m( w) 2P0 =Vl (4.106)
m: — *xMy + [/\p,pw] + [/\h,mw] + [/\q,%] = dAm — D/\m(AUJ)

The first important feature one can notice about the latter system is that the first equation, unlike
the remaining three, does not exhibit a linear term in A,. This is a direct result of the need
for Hr gauge invariance of the initial model, which forced us to exclude the h-projection of j
from the action. In turn this implies that while the last three equations can be solved in general
for py, My, qu, the first equation may potentially represent an obstruction to dualisation, as the
underlying algebra will determine whether or not this can effectively be solved. For this reason,
completion of the T-duality procedure requires a case by case analysis. We shall now proceed by
solving the last three equations, landing on a hybrid T-dual action which allows to recover the
exchange of equations of motion and Maurer-Cartan equations found for principal chiral models.

In the next section we shall describe two examples in which the first equation can be solved as well.
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The equations in the subspaces p and g in (4.105) can be solved, see F.2. for more details, as
Pu| _ p ~Va, Ay + adg_(my)
qu _vAwi\q + adi\p(mw)

. . (4.107)
B —Rll(VAm/\p) — R12(VAM/\q) + (Rll o ad;\q + R0 ad;\p)(mw)
—Rzl(vAm/N\p) — R22(VAMACI) + (R21 o ad;\q + Ry 0 ad;\p)(mw)
where we defined
T 1+4c oD~loc oD, ©C+ T 1+4c oD~loc oD, ¢+ 0© D/~\ o C-
R:= [ e T R " (4.108)
T T¥c oDy, ocroDy. © ¢ ° Dg, ocyt TTc_oD;_ocioDy. © &
and
2 (4.100)
T 14 2ad; '

After substituting p, and g, back into the equation of motion in m, this can be rewritten in
a form similar to the equation of motion (4.15) encountered for principal chiral models, namely
my = —* T + S(xmy), with the definitions

S:= ad/~\h + ad/~\p o(Ri10 ad/~\cl + Rypo ad;\p) + ad/~\q o(Rp10 ad/~\q + Ry 0 ad,~\p) (4.110)

T := d/N\m — Df\m (Aw) + (ad,~\p oRqi1 + ad,~\q o Rgl)(vAw/N\p) + (ad;\p oRis + ad;\q o RQQ)(VAwf\q)

and can thus be solved in a similar way

1 1
1_50P+(T)+

my = —

o P_(T) . (4.111)

Substituting p, Mw, g back into (4.70) and rearranging, one obtains the hybrid T-dual action

§ = | T 75 PTy + (o Pt

+ éf (Va, Mo Ro1(Va,Ap) + Roo(Va,Ag)) + (Va g, Rin(VaAp) + Ri2(VaAg))y

. (4.112)
which is manifestly invariant under K; : g — kg gauge transformations due to the invariance
of A= g7 tAg + g 'D(g) and A,. See the second paragraph in F.2. for more details on the
rearrangement. As needed, the above action is also unchanged under Hg : g — gh gauge trans-
formations: the law A, — h~1A,h + h~*dh makes V4, Ax — h~1V 4, Ach and consequently the
law A — h=*Ah + h=*D(h) ensures that R;(Va,Ax) — h~'R;j(Va,Ax)h, for x = {p,m, q} and
i,je{l1,2},sothat T - h~'Thand S(T) — h=1S(T)h.
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Equations of motion and Lax connection. Varying the action (4.112) with respect to the

multipliers /N\h, /N\p,/N\m, 7\q (see the last paragraph in F.2. for details) one finds equations of motion

Ay Fz+ 5lm, m) + [, 4] =0

Ay Vb +[m,d =0

. 1 1 (4.113)
Am Vi + 5B B+ 51d.4] =0

Ag ViG+ [/ p]=0,

which have the form of Maurer-Cartan equations (4.66) after defining A= Au, Pi= Py, M:i=my
and § := Gy, with py, My, Gu as given in (4.107) and (4.111). Variations with respect to A gives

back the unsolved equation in (4.105), namely

[Ap. Bl + D5 (M) + [Ay, d] = V zAy . (4.114)

Using the above equations of motion together with Jacobi identity and the fact that p, m, g satisfy

(4.105) one then also recovers, having chosen k = 1, the equations of motion of the initial model

O S S

Virm—3[p.pl+506.9 =0
1944+ [5.+m— 1] = 0 (4.115)
IV — G +m+3m] =0

which confirms the exchange of equations of motion and Maurer-Cartan equations observed in
principal chiral models. In turn, this allows to write down the T-dual Lax connection as for the

initial model (4.67)
JE) =A+2p+ 3 -2m+21G-3(2 -2 »m, (4.116)

with Z a new spectral parameter. Once again this ensures classical integrability of the T-dual

model.

4.2.3. Potential obstructions and examples

In this section we focus on the unsolved equation (4.114). We first rewrite it in a convenient
manner, making it clear that the possibility to solve it depends on the underlying algebra and thus
highlighting the presence of potential obstructions in the dualisation procedure. Subsequently we
discuss two simple examples, one of a symmetric and one of a semi-symmetric space, in which a

solution can be explicitly found.
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Substituting the solution (4.107) for p,, g, into the unsolved equation (4.114), one obtains

vﬂf\b = —ad/~\q o] Rll(v/ai\p) — ad/~\q o ng(VAJ\q) + ad/~\q o (Rll o] ad/~\q + R12 o adﬂp)(rﬁ)Jr

— ad,~\p o Rgl(VAf\p) — ad;\p o R22(VA"/\CI) + ad;\p o (R21 o ad;\q + Ry 0 ad;\p)(rﬁ)+
+ D; () - (4.117)

It is now convenient to define the following set of operators

g s
O :=Ryj0 ad/~\q + Riso0 ad/~\p OJ{ = ad/~\q o Roo + ad/~\p o Ris

) Oy =Ry 0 ad;\q + R0 adf\p ) O£ = ad/N\q ° Ro1 + ad/N\p °Ru1 (4]_]_8)
O3 = Rlzoadi\q +R1103d7\p (’)g = ad/~\q oR12+ad/~\poR22

\04 ;= R0 ad/N\q + Roy 0 adf\p LOZ = adf\q ° R + ad/N\P ° Rax

where conjugates O are defined via (OT(X),Y) = (X, O(Y)) VX,Y e g exploiting (F.18). Using

the latter definitions and substituting also the solution (4.111) for m,, one then finds

V iy = —O3(V al\q) — OL(V z1\)+
a0 oe}
—{Dy, + Ofoady +Ofoady yo{ ), S*GT)+ ) ST} (4.119)
k=0 k=0

The definition (4.110) of the 1-form T can also be rewritten, using the operators (4.118), as
T = dAw + O] (dAg) + O5(dAq) — (D5, +adg © O3 +ad;_© O4)(A) , (4.120)

so that upon substituting in the above equation and rearranging terms in such a way that A = A,

appears on the left hand side, one finally obtains the desired form of the unsolved equation (4.114)
W(Ay) + Z(xAuw) = ¢, (4.121)

where we introduced operators W, Z : h — b and the 1-form ¢ € Q'(%Z, b) as
W= adg + N+ (D5, — Mo 252“1 (D5 + M)

0
Z:=(Df_— Mo Z (D, + M) (4.122)

a0
Ci=dRy+ £+ (Dx, — Mo (x+5)0 Y 5% o (dAn+x) .
k=0
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In the above expressions, we isolated terms from the p, q subspaces by defining S := ad/\b + L with

M = ad/~\p003+ad/~\qo(’)4 L= ad/~\po(’31+ad/~\qo(’)g N = ad/~\qo(’)3+ad/~\po(’)4
¢ 1= OL(dA) + O} (dA,) x := Ol(dA,) + O} (dA,) , (4.123)

so that one can recover the expressions for symmetric-spaces by setting such contributions to zero.

The rewriting (4.121) of the unsolved equation of motion (4.114) makes it clear that it cannot
be generally solved for A, as this possibility depends on the invertibility of the operators W and Z
and in turn on the structure of the underlying algebra. In fact, using the projectors Py introduced
in (4.17) one can write 1 = P, + P_ and x = P, — P_ and use this to separately solve for the
components Aj 1= PLA, € Q% (X, h) of the gauge field. This leads to

(W + Z2)AS = ¢* (W —Z2)A; = (. (4.124)

Consecutively, one can solve the equation for A, provided the two operators W + Z are invertible.
From a first inspection, one may recognise three situations: in the first two W and 1 + ZW ™1
Z and 1 + WZ~1 are inverible, with respectively Z and W not invertible, while in the third case

both W and Z are not invertible, but their sum and difference are

By =Wl + 1)_1]
Au = %(C ++()Bs + %(C —*()B- with Byi=+Z'[(1+wz H)™] . (4125)
By:=W=x2)!

Even though the above result requires a case-by-case analysis and does not allow for a general
solution that could be substituted back into the hybrid action (4.112), one could make one further
step to formally integrate out A, and obtain the full T-dual action, separating the metric from the
B-field. From the definition (4.122) of { one can recognise that

a0
Pl =Pily  with  (qi=dAy+ €+ ( 2 (dAw + X) (4.126)
and the gauge field A, can thus be split into terms with and without Hodge-star operator
. 1 1
A, =xa+ 0 with a = E(QBJF—C,B,) 8= §(C+B+—|—C,B,) . (4.127)
This can now be substituted back into the hybrid action (4.112), obtainting S = { § + B with

7<>\, 5 « A1) = (Vghy + OL(VphA,) + OF(VsA,), *a) | (4.128)
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.1 1 5 1 L
B =5 A + Ny Fg = Sl a]) + 5{a N(a))+ (4.129)

1 ~ ~ ~ 1 . ~ ~
+ §<V6/\pv R21(Vehy) + R22(Vhg)) + §<Vﬁ/\pr R21(Vghy) + R22(V/g)) -
Where we further defined the 1-forms As := Vgio/m + OI(Vﬁia/N\q) + (’)E(V[giof\p) —-D(B+a).
While the above action is formally T-dual to (4.68), as all gauge fields have been integrated
out assuming invertibility of W + Z, we stress again that the h-valued 1-forms o and 3 encode
all such information and cannot be made more explicit without performing a choice of model. We

shall now discuss two examples in which the equation (4.121) can effectively be solved.

S3 ~ S0O(4)/SO(3). The symmetric space S has already been studied in the literature [62] and
it's known to be T-dualisable. Having explicitly solved the equations of motion (4.106) in the
subspaces p, m, q and exploited the solution to rearrange the action and the h-projection, we shall
recover dualisability in a slightly different fashion, as solving the equation (4.121) will require the
inversion of two 3x3 operators, as opposed to the 6x6 one studied in [62]. These exhibit the nice
property of being analytically invertible, thus allowing to avoid computational methods and to retain
the underlying index structure, which would otherwise be lost. We shall assume to have dualised
the full G, = SO(4) group of isometry, so as to choose gauge g = 1. Further assuming vanishing
deformation D = 0, we end up with A := g~ 'Ag + g~ 'D(g) — A € so(4). We thus start by
considering the so(4) subalgebra contained in osp(M|2), with M = 4, reported in B.1.

[Riy Ri] = —5(61k Ryt — 6uxRiL — 81 Ruk + 6L Rik) (4.130)

with indices /, J = {1, 2, 3,4} raised and lowered using the Euclidean metric d;;. The subalgebra
h=s0(3) ={H, = —%a,-fkRjk} can then be separated from the rest m := {M, := R4} by using

indices /,j = {1, 2,3} and exploiting the above relation one can find

/ I /
[Hi, Hj] = §€/ijk [Mi, Hj] = §€/jk/\//k [Mi, Mj] = §€iijk : (4.131)

Expanding the gauge fields and the multipliers as
A, = ALH, AN=Ny+ Ao =y Hi+xM, (4.132)

one can compute, see F.3. for more details, the explicit form of the operators W and Z

W(Ay) = vie,jkAJ;JHk with V= %[yi + (4:{2)/]
Z(xAw) = gip=ay i [(y2 — 4% = (v - x)?16+ (4.133)

+ (v x)y = (V% = A ]x + [y - x)x — xPyly*} « AL Hy
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Looking at the above expressions one realises that v/ and x’/ respectively lie in the kernels of W,
and ij, which are thus not invertible. However it is also not too complicated to recognise that

W + Z are both invertible and in particular that one can write the two inverses as

(W £ 2) i = ar o + xu(azx' + a3 y") + y(ag X' + agy') + ea (ag x7 + a7 y?)+  (4.134)

b I/t k | -+ k b | + b d. |
+ x7yPeap (ag X" + ag y") + xy eapi(aiox’ + ajyy') + apaXx?y €apkxy€cd’ |

with coefficients af, ..., aj; complicated functions of x2, y2, (y - x) which we report in F.3..

OSp(1]2)/SO(1,1). This semi-symmetric coset has been studied in the literature in the context
of holography [123] and we shall here consider it as one of the simplest explicit examples of super
non-Abelian dualisation, showing that the equations of motion (4.121) can indeed be solved. The
interest in such a model comes from its structure, which is that of a 2d Green-Schwarz string
sigma model satisfying the supergravity torsion constraints. Furthermore, dualisation of such a
coset naturally generalises that of the principal chiral model on OSp(1|2), considered in the previous
sections, and it would thus be interesting to study in full details. The T-dual model may also in
principle be approached from the point of view of holography, as it has already been done for certain
classes of T-dual models [63-67]. Performing dualisation with respect to the full isometry group
G, = OSp(1|2) one can choose gauge g = 1 and upon setting D = 0 the multipliers become
A:=g '"Ag+ g 'D(g) — A€ osp(1]2). The starting point for this model is the osp(1]2) algebra

(4.33), which we rewrite in lightcone notation using o, 8 = {+, —} and e, = —1
{Qe, Q1) = [—i‘i {Q+ Q-} = L+f [Li+, Q7] = J_r/Qi (4.135)
[Ly—Las]=Filssr  [Lys L—]=-2iLi  [Lim Q] =%35Q4 .

Upon identifying the four subspaces as

b={Li-}  p=1{Q4}  wm={lLl .}  q=1{Q}, (4.136)

one can see that the commutator structure (4.62) is indeed satisfied. We thus proceed expanding

the gauge field and multipliers as
Ay = AL, _ N=Ng+N+ A+ Ng=yLio +67Qy+xT Ly +x "L +6"Q_ (4.137)

and after some computations, see F.3. for more details, we find that

4xTHx—— 4i6%6~

WA =0 Z0A) = =5 [1 T A (Lt iy

}*Au__ (4.138)
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Hence equation (4.121) can immediately be solved exploiting nilpotency of the fermionic multipliers

Z7l =

1+ y? 4i0+6~
it : ] _ (4.139)

pE— [ (L= iy)[Axtt x4+ (1 +iy)?]

H-gauge fixing. In both examples considered above we have performed dualisation by gauging
the full group G of isometry of the initial model, successively exploiting the K = G gauge freedom
to get rid of the initial coordinates. As mentioned below equation (4.70), the dual models are
then written in terms of dim(G) Lagrange multipliers, which need to be reduced by exploiting the
inherited H-gauge symmetry in order to recover the right number dim(G/H) of degrees of freedom.
To deal with such requirement one can then proceed as in [62], that is by using the multipliers
to construct precisely dim(G/H) invariant quantities under the local H action and using the gauge
transformations to get rid of those multipliers whose disappearance could not lead to the vanishing
of the invariant quantities. This way one is effectively establishing a one-to-one relation between
the invariant quantities and the remaining multipliers, so that the invariants themselves could be
used to describe the T-dual model. This reasoning had already been exploited in [124, 125], where
the authors argued about the possibilty of constructing precisely dim(G/H) H-invariant quantities
out of dim(G) group parameters. We thus conclude with a brief discussion about the construction
of invariant quantities for the two models examined above. To this aim we start by recalling that

under a local Hg transformation g — gh the multipliers A := g~ *Ag + g !1D(g) transform as
A — hAh+h7ID(h) with  heH, (4.140)

so that upon gauging the full group of isometry, choosing g = 1 and setting D = 0 one finds

o0

1 .
A —  hAh=Ad A= Hadé—(/\) with  hi=e €  C:=C'H;. (4.141)
k=0 """

Where we respectively denoted by H; and C' the generators of the Lie algebra h and the local
parameters of the transformation. The latter relation can then be used to determine the explicit

transformation law of the Lagrange multipliers and construct invariant quantities.

For the case of the symmetric space SO(4)/SO(3) it is not hard to exploit the commutation
relations (4.131) and the expansion (4.132) of the multipliers to find that

1 —cosh (C/2)

- AAd?h) =2 [cosh (C/2)5;" + 5

CJ-C’+’S'nC(C/)CkskJ-'] . (4.142)

for z/ = {x, y'} and C? := C'C;. Noting that (Ad;l)k’(Adgl)Hé,-j = dy; one can then immediately
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construct three invariant quantities

y2 = y’y,- x? = X/X/ y-Xi= in/ ' (4-143)
so that dim(H) = 3 out of the dim(G) = 6 multipliers can be gauge fixed, recovering dim(G/H) = 3

dual coordinates as for the initial model.

For the case of the semi-symmetric space OSp(1]2)/SO(1, 1) the above computation is even
simpler, as b is Abelian and one has h = e“L+-_ From the relations (4.135) and the multipliers

expansion (4.137) one then obtains that y is itself invariant and

9+ N eIC/29+ X++ — eICX++ X—— — e—iCX—— 9— — e—IC/QG— , (4144)

from which one can immediately construct the bosonic invariant x™+x~~. Notice that in this case
the gauge transformations act as a phase on the multipliers and hence do not allow to set to zero
any of them. This is in agreement with the fact that the inverse operator Z~! in equation (4.139)
would otherwise not exist. The best one could achieve in this situation is hence setting either
xT+ or x~~ to a non-vanishing constant, effectively getting rid of it and recovering the number

dim(G/H) = 2 of bosonic coordinates of the initial model.



Conclusions and Outlook

In this thesis we have taken a superspace approach to non-Abelian T-duality, aiming for a better
understanding of examples of dualisation procedure in which the background under investigation
enjoys a set of superisometries closing on a certain superalgebra. The well-known process of
gauging bosonic isometries, enforcing the flatness of the gauge fields and integrating them out,
can be nicely extended to the supersymmetric setting and we concentrated on three main families
of models constructed in terms of Lie supergroups, namely principal chiral and coset models on
symmetric and semi-symmetric spaces.

After briefly reviewing the derivation of Buscher's rules for the case of a single bosonic or
fermionic isometry, we highlighted the dualisation procedure for bosonic principal chiral models,
successively extending it to the case of supergroup manifolds and concentrating on the simple,
but physically relevant, concrete example of OSp(1]2). Even for such a relatively simple model, an
explicit and ansatz-based approach to dualisation proved to be quite involved due to the enriched
amount of technical complications deriving from the need for a physical understanding of supergeo-
metries, which have to satisfy a non-trivial set of geometric requirements to be granted the status
of appropriate supergravity backgrounds. The study of such requirements turns out to be much
clearer from a more abstract and algebraic perspective, which allows to perform dualisation of prin-
cipal chiral models in great generality and to draw conclusions about the above specific model with
a faster and more linear argument: while the initial model represents an appropriate supergravity
background, its T-dual falls outside this class of geometries. Beyond this, the more abstract point
of view also allows an intuitive extension of T-duality to coset models based on Lie supergroups and
to explicitly verifiy the exchange in role of the equations of motion and Maurer-Cartan equations,
expected to hold as for the purely bosonic setting, for all the three classes of models investigated.

Dualisation of symmetric and semi-symmetric spaces exhibits more subtleties, as compared to
the case of principal chiral models, since the process of integrating out the gauge fields cannot

be performed in general and obstructions may arise due to the local H-invariance characterising

69
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cosets G/H. The potential impediment can however be confined to the study of a single equation,
involving quantities taking values in the Lie algebra of the subgroup H, in which invertibility of two
linear operators determines on a case-by-case basis the possibility of completing the procedure.
This allows, as a first step, to recover the known dualisability of the symmetric space S3 ~
SO(4)/SO(3) and to introduce a prime concrete example of semi-symmetric dualisation in terms of
the OSp(1]2)/SO(1,1) coset, which exhibits the structure of a 2d Green-Schwarz-like superstring

satisfying the supergravity torsion constraints.

The above results and considerations are far from providing a complete picture on super non-
Abelian T-duality, but certainly suggest some possible directions to take into account to shed more
light on the topic. In first place, it would certainly be interesting to investigate further the breaking
of the supergravity torsion constraints upon dualisation of the principal chiral model on OSp(1|2).
A possible explanation for this phenomenon might lie in the simplicity of the model, which despite
its interesting properties does not describe the dynamics of a string on a supergravity background.
This would require the use a Green-Schwarz action [102], argued to preserve the supergravity inter-
pretation of the backgrounds [83,84], and hence the removal of the fermionic vielbeine contribution
to the metric and the inclusion of a Wess-Zumino term. The gauging procedure used in this work
would not be applicable in such case [126], but this would certainly deserve further investigations.
Another interesting possibility is that the breaking of three-dimensional supergravity requirements
might be the result of a more general breaking pattern ds§3 — dr? + f(r)dsg2 already observed
in [15] for the dualisation of the bosonic compact space S3, and more recently also in the non
compact case of AdS3 [89]. Understanding whether this pattern might exhibit a supersymmet-
ric extension could be used to argue in favour of a lower dimensional supergravity in the T-dual
model, which would represent a novel peculiar feature brought into the game by the dualisation of

non-Abelian fermionic isometries.

Other fascinating directions to pursue are certainly related to a deeper understanding of semi-
symmetric spaces, which often play an important role in the AdS/CFT context. To begin, in
light of the resolution of the potential obstruction for the semi-symmetric coset OSp(1]2)/SO(1, 1)
it would be interesting to complete in full details the dualisation procedure of such model, as
this might serve as a base reference for the study of more complicated examples. Additionally,
in light of the holography perspective from which the above model was initially studied [123], it
would be very fascinating to consider again this direction by looking for a possible holographic
description of the T-dual model. The connection between bosonic T-duality and holography has
already been explored in the literature for certain classes of models [63—67], for which a holographic
interpretation of the T-dual backgrounds has been achieved. It thus seems reasonable that novel
examples of such relation should appear in a super non-Abelian T-duality setting and, beyond the

simple semi-symmetric spaced mentioned above, it would naturally be worth tackling this type of
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analysis for the various examples of semi-symmetric spaces of physical relevance appeaing in the
AdS/CFT literature. This line of research would also benefit from a deeper understanding of the
structure of the operators W and Z, defined in (4.122), involved in the potentially obstructing
equation for coset models. Indeed, criteria for T-dualisability of a background might be extracted
by understanding the invertibility conditions of such operators. These conditions might lead to
some restrictions on the form of the underlying algebra and knowing the latter would immediately
allow for a more systematic study of the dualisation procedure.

Last but not least, another interesting scenario in which the ideas and techniques developed
in the gauging approach to T-duality might potentially find application, is represented by non-
relativistic string theory. In this context, the so-called Lie algebra expansion [127] has indeed
recently allowed the construction of coset-like sigma models [128] thus opening up the possibility

of re-using the T-duality toolkit to attempt gaining further insight on the topic.
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Superspace Conventions

A.1. Setup

Consider a (p, g|2n)-dimensional manifold M with metric g of GraBmann degree zero. This locally
resembles RP-9127 naturally equipped with a block-diagonal graded-symmetric bilinear form da5 =
(—1)IAIBIg 5 41, built out of the flat metric of signature (p, ) in the bosonic block and the standard

symplectic form in the fermionic one, that is

0 -1 0 0 1
0aB = Mab with Nap = pxpmpxd . Jap = n e (A1)
0 Jaﬁ qup 1q><q _ln><n Onxn

The supergroup OSp(p, q|2n) := {A € GL(p, q|2n) : ASTnA = n}, where A>T denotes super
transposition of A, leaves invariant the above bilinear form and hence represents the structure
group of M. This supergroup has %(p+ q)(p+qg—1)+n(2n+1) bosonic generators and 2(p+ q)n
fermionic generators. Upper case letters from the beginning of the latin alphabet A, B,C, D, ...
will refer to tangent space indices, while upper case letters from the middle of the latin alphabet
M, N, P,Q, ... to curved indices. Coordinates on M will be collectively denoted by zV.

We shall adopt the northwest-southeast (NW-SE) summation convention, commonly adopted

in superspace, and in a given set of coordinates the metric tensor will be written as
1. M N
9= EdZ ©dz%gnm (A.2)

with gyy = (=1)MNguyn and ® denoting the graded symmetric tensor product dzM @ dz" :=

dzM @ dzN + (—1)MNdZN ® dzM. The symbol A denotes graded antisymmetric tensor product

'The symbol | - | refers to the GraBmann degree and we shall generally simply replace |A| with A.
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dzM A dzV = dzM @ dzN — (—1)MNdzN @ dzM and k-forms are expanded as

1

Under a change of coordinates zM — ZM(Z) we have the following transformation properties

oM 0 0 ozN o
Ni e —> =
ozN ozM ozM  gZM ozN ! (A4)

dzM - dzZM =dz

leaving the exterior derivative d = dz™dy, invariant and transforming the metric components as

. 0z9 0zP
gmun(Z) = (—1)(Q+M)Nazﬁ angPQ(Z) : (A.5)

One can then introduce frame fields, or vielbeine, e” such that

A

1
g=—-eBoe*nus with e = dzMey 1)NBeMBeNA6AB (A.6)

5 gun = (—

and a set of inverse vielbeine ex, satisfying the relation es — eB = §48 and defining the structure
functions on M
[GA, GB] = fABCG(_‘ . (A7)

In the above we used _ to denote the interior product, while §48 is the Kronecker symbol and
[, —] the graded Lie bracket. By setting 684 = (—1)*B348 we can introduce §*8 and gMV,

respectively the inverses of 45 and gpn, such that
O0%0Ocg =6 <«— (-1)C0pc0“4=065" with 0O=69. (A.8)
A generic (p, q)-tensor S can be expanded on a basis as
S=dz"®..®@dz" Sy, _m, M oy, ® ... @, (A.9)

and its components transform as
§/\/]1___Mqu"'N1 :(_1)2222(Mn+Qn) 227;11 Mm(_l) £:2(/\/k+Pk)Z¢(;1l N/.

0z%  9z% p,p 02N 02N
. W ...... W Ql---Qq aZPI ...... m .

(A.10)
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A.2. Graded Lie derivative and Killing equation

The Lie derivative along a vector field X on M will be denoted by .¥x. This acts on functions f

and vector fields Y as
Zx(f) = X(f) Zx(Y)=[XY]. (A.11)

By requiring .%x to act as a graded derivation on tensor product and commute with interior product

Lx(Y®w) = Zx(Y)®uw + (-1)XY ® Zx(w)

(A.12)
Y Jw)=2x(Y) ~w+ (-D)XY _ Zx(w)

one can determine the graded Lie derivative of the metric and B-field as

(L, Nmn = (=1)YMN Koo Tin + (=1)VN (0K Ten + (—1)MNPE) (oK) e |
(A.13)
for T = {g, B}. The latter can be obtained by considering

L, (Y X _T) =L, (V) X T+ (=D)VYY _ L, (X) 2T+ (=1)VEY L X _ % (T)
and choosing Y = dp, X = dn, Ky = Ky " 0p, so as to extract the components as
O —ON—T =Tun  Om—0On—(LkT) = (LTun 0w, KDop] = (0mKE)op . (A14)

Notice that |0y| = M and |K\’/D =V + P, with V the grading of the isometry generated by Ky, .

A.3. Maurer-Cartan equations
The vielbeine e” satisfy the Maurer-Cartan equation de + %[e, e] = 0. In components this reads
de® — %eA AeBFa =0. (A.15)
To show this one uses Cartan’s formula and that Lie derivative commutes with the interior product
DY _w) = Zx(Y) _w+ ()XY Dx(w) Dxw=dX _w)+ X _(dw) . (A.16)
Indeed, taking Y _ %xw and choosing X =ea, Y = e, w = e€ these two equations lead to

eg _ %, (e°) = Fga©
& eA( ) BA = e - ea deC = fBAC . (A.l?)
eg . Ley(€) = eg _ea _ de¢
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A.4. Cartan structure equations

The torsion and curvature 2-forms

1 1
TC = EeB A eAT st RcP = EGB n e*Ragc® (A.18)

satisfy Cartan’s structure equations
TC = —de + B A QB¢ RcP = —dQcl + QcF A Qel (A.19)
with Bianchi identities
dTC + TB A Qg€ = eB A R5€ dRcP + ReE A QP = QcF A REP. (A.20)

Qg€ denotes the connection 1-form with coefficients Q45 defined by the covariant derivative of

the inverse vielbeine Ve, ep = Qag€ec. The Ricci tensor and scalar curvature are then defined as
RAB = (—1)C(1+A+B)RCABC R := 6BARAB . (A.21)
To obtain (A.19) one starts from the definition of (1, 2)-torsion and (1, 3)-curvature tensors

T(X,Y) 1= VxY = (=1)XYVy X — [X,Y]

(A.22)
R(X.Y)Z :=VxVyZ — (-1)"YVyVxZ - Vx| Z .
which choosing X = en, Y = eg, Z = ec lead to

Tag“ec = [Qa8° — (—1)*F QA" — Fas|ec
RABCDGD = [GAQBCD — (—1)ABGBQACD + (—1)A(B+C+E)QBCEQAED+ (A23)

— (—-1)BCTBQaEQgeP — FasFQecP]ep

A.5. Connection from metric compatibility

Metric compatibility leads to the condition Qscy = 0 for Qapc = QaePdépc, and can be

combined with (A.19) to rewrite the connection components as

1
Qas€ = §[FABC + FCag + (-1)*BFCg4] (A.24)
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where we defined Fag€ := Fag® + Tag® and FCup := (—1)CA+BIGCLFp A Ebep.

To begin, one can obtain the relation {2c(ap) 1= {2cag + (—1)ABQCBA = 0 by looking at
Vz(X Y 2g) = (V2X) Y L g+ (—1)*X L (VzY) 2 g+ (-1)"XIX LY _Vzg, (A25)

imposing that Vzg = 0 and choosing X = ea, Y = eg, Z = ec. In order to determine the
connection in terms of structure functions and torsion one can then lower the index in the Cartan

structure equation

. Tasc = TasPépc
Tagc = Qasc — (—1)*PQpac — Fasc with : (A.26)

Fasc = fagPépc

and take the symmetric part of the equation with respect to the indices B — C. Exploiting the

condition € 4g¢cy = 0 this leads to
Qgyacc = —(=1)*%[Faic) + Taio)] - (A.27)
Looking at the symmetric part in B — C of the condition {2g(c4) = 0 one then finds
Qacya + (—1)*“Qgyac = 0 = Qgyacc = —(=1)*Qac)a . (A.28)
which can be substituted in the former equation leading to
Qacya = (1) BT Fage) + Taio)] - (A.29)

One can then simply write 2gca = Qgcja + 2(Bc)a and use that the first antisymmetric term is

precisely contained in the Cartan structure equation, hence obtaining

Qpca = =[Faca + (=1)*BT(Fagc + (—1)BFace)] . (A.30)

N =

with Feca := Faca + Taca. Finally, recalling that Qgca = QacPopa and (—1)20pad”E = 6pF

one can contract both sides of the above equation with (—1)A64F to raise back the index.

A.6. Supergravity constraints

In this section we introduce a set of requirements that any superspace should satisfy in order to
be given the physical interpretation of appropriate supergravity background [129, 130]. The fun-

damental postulate of any supergravity theory, introduced in direct analogy with general relativity,
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is that the superspace structure group should be a Lorentz group, relating equivalent vielbeine via
a reducible combination of vector and spinor representations. This assumption imposes a strong
restriction on the generic structure supergroup and, practically speaking, imposes connection and

curvature to take values in the Lorentz algebra in such a way that they result to be diagonal

Qap© 0

Qas© =
7B [o Qug”

Ragc? 0
Ragcl = A.31
ABC [ 0 RAB’Y(S ’ ( )

with vector and spinor components related by the commutator of gamma matrices associated to

the Lorentz group
Qag” € Qapc[2,T¢15" Ragy’ € Raged [, T4° . (A.32)
In particular we notice that such constraints lead to the following restrictions on the connection
Qap? =0 =Qus° Qaae) = Qasc + (-1)%Qacs =0, (A.33)

and similarly for the curvature.

This postulate implies another important feature of supergravities, known as Dragon’s the-
orem [101, 129, 131]: a non-trivial relation between supertorsion and supercurvature can be es-
tablished and the latter can be completely expressed in terms of the former. Due to this result,
supertorsion represents the truly fundamental quantity in superspace, while supercurvature is ef-
fectively redundant. This implies that proceeding further in direct analogy with general relativity
and imposing the vanishing of torsion to find a Levi-Civita connection is not a good choice in super-
space, as this would also lead to vanishing curvature, and hence to a trivial geometry. Additionally,
such a choice would be in contradiction with the global supersymmetry perspective, which exhibits
a single non-vanishing component of torsion: imposing all components to vanish would make the
simplest flat superspace fall outside the class of geometries encompassed by our description, thus
immediately breaking the physical interpretation. Despite the restrictions imposed by the above
postulate, superspaces still feature a quite large number of fields and it thus makes sense to look
for a set of requirements which could reduce such set of degrees of freedom to a consistent minimal

one. This motivates the following set of torsion constraints
Taﬁc = kl faﬁc TabC = aﬁc = aﬁfy =0, (A-34)

introduced to establish a connection with the component formulation of supergravity [98—100],

while ensuring consistency with flat superspace. In the above equation k; represents a proportion-
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ality constant, while f,g¢ are the structure constants of the underlying super Poincaré algebra,
and their exact form may vary depending on the dimension. The above set of " canonical” torsion
constraints represent the basis of our analysis for the PCM on OSp(1|2) and its T-dual model,
but it should be kept in mind that not all of them are essentials and one may possibly consider
variations. In fact, the truly fundamental constraint is the first one T3 = kifas®, which ensures
consistency with flat superspace and also comes out as a requirement when imposing kK-symmetry
of the Green-Schwarz action [102,78]. The remaining constraints are often said to be conventional,
as they are generically chosen so as to fix components of the connection or the vielbeine, but might
for example be modified as a result of shifts and field re-definitions [132].

We can now spell out explicitly the equations contained in (A.24) imposing (A.33), (A.34)

(1) Qup® = L[Fap® + 8 Faap + Faa)]

(2) Qab® = [Far® + 6 (Faab + Fava + Taba)]

(3 Q" = 3[Fa" + Top” — 8" (Foap + Toap + Fapa + kafopa)

@ Qp" = %[f op” + 8" (Fsap — Fipa)] (A35)
&) 0 = 3[Fap" + 6% (Fump + Taap + Faps)]

(6) 0 = 3[Fas” + Tas” + 6™ (Foap + Fova)]

@ 0 =3[Fap® + kifap® +6°(Faap + Taap — Fapa — Tapa)]

0 = 3[Fab” + Tap” = 8" (Fsab + kifsab — Foba — Toba)] -

The first thing one can notice is that equations @ and @ define two unconstrained components
of the connection in terms of the structure functions of the geometry. By construction, these
components satisfy the requirement $245c) = 0. The second thing to notice is that equations
@— do not represent four independent constraints on the structure functions and components
of torsion. Indeed, given the graded antisymmetry of Fag® and Tag€ in the exchange of the first

two indices, it is not difficult to notice that exploiting 6.56°¢ = 6,7 and 8,56 = §5° one finds

(5)6cb = —(6)65 (7)cb = —(8)045 - (A.36)

It is thus sufficient to solve equations @ and @ by noting that the symmetric and antisymmetric

parts in the lower indices should vanish separately.

Tabry == ab @ fdaﬁ + Tdaﬁ) (fdﬁa + Tdﬁa) =0 (A 37)
@ .

Fsab + Fspa =0 Fap = —kifop®

Hence one is left with solving equations @ and @ which can however be first simplified by using
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the constraints imposed by @ and @

e Exploiting and , equation @ leads to the condition Q245 = Fup®.

This fixes one further component of the connection and ensures that it correctly satisfies
Qq(bey = 0. Condition will hence represent one of the actual constraints imposed by the
supergravity requirements. This will finally have to be supplemented by (A.32).

e Exploiting and @ equation @ leads to the condition T,587 1= —F,57 + Q58"
This just fixes one of the unconstrained components of torsion, leaving €2,57 still free. Sub-
stituting back into one finds it is satisfied provided that 2445y = 0. This will be ensured

by the requirement (A.32), which will completely fix the latter component of connection.

To summarise, the eight equations on the previous page have been solved for the components
of connection 2,5, Qa7 Qb and torsion T,,Y, T,g7. This requires to constrain the structure
functions F,5° to be constant and F, 45 to be antisymmetric in the last two indices. The connection
component 2,37 is left unconstrained except for the requirement Qa(aﬁ) = 0. Hence, at this
stage, the actual constraints on the structure functions resulting from imposing the supergravity
requirements are and @ One can now finally impose the requirement (A.32), which puts an
additional condition on the structure functions F,,» and completely fixes the connection component
Qaap. also ensuring its graded antisymmetry in the last two indices. Altogether, the resulting

constraints on the structure functions read

j:aﬁc = _klfaﬁc
Fu(be)y =0 (A.38)
3[Fap™ + 6" (Foap — Fopa)] = keFanc[T. Tlg”

where ki, ko are proportionality constants. And the non-vanishing components of connection and

torsion read
Qap® = 2[Fap® + 6/ (Faab + Faba)]

Qap” = Qapc[P, 76"

Qabc = fabc
Qap” = 3[Fap™ + 8" (Fsap — Fopa)] = koFabe[[P, T]5"

(A.39)
Tab’y = - abrY

Taﬁc = klfaﬁc
Taﬁfy = —.7:367 + Qaﬁ’y
Tgafy = —‘7:537 — Qagry .



Orthosymplectic Algebra

B.1. The osp(1]2) algebra

To derive the algebra (3.15) we start from the more general osp(M|2) algebra !

{Qia. Qus} = 01ylap + €apRiy
[Riy, Qkal = —i0k[QJ)a [Lap, Qiy] = —leyaQip) (B.1)
[Log L] = —2i64LgY [Riy, RKY] = —2io KR,

where Qo are GraBmann-odd generators carrying the index | = 1,..., M of the vector repres-

RKL

entation of so(M), generated by R;; = 0xd1 = —Ry;, and the spinor index o = 1,2

of 5p(2,R) =~ sl(2,R), generated by Lag = €ayl €55 = Lpo With €45 = —€go and inverse

€% = —€P% such that €*ey5 = €g,€7* = §5°.

The above algebra reduces to the following one when considering the osp(1|2) case
{Qa Qﬁ} = Lap [Laﬁ' Q’Y] = _ie'y(aQﬁ) [Laﬁv L’yé] = _2i5(a(’yLﬁ)5) . (B.2)

It is here convenient to introduce generators

i

L, 5

(’Ya)aﬁLaB , (B.3)

defined in terms of the 3d gamma matrices (v?)4°, generators of sl(2,R) in the fundamental

'For a complete discussion of which we refer to [93, 133]. Here we use convention according to which paren-
theses and square brackets respectively denote normalised symmetrisation and normalised anti-symmetrisation of the
enclosed indices.
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representation

(7.7} = 26a°1°" [, 771a” = 267 (7)o B.4)
with 7% =diag(—1,+1,+1) = nap  st. 7?Pnpe = Nepn®™ = 67 '
Vctor indices a = 0, 1, 2 are raised and lowered by 1
V=" e =Ny =P YL =n™ s = 1al? (B.5)
while spinor indices are raised and lowered by ¢
(Y)ap = €as(v)’s = (7)o eps (v)% = e (v)s" = (77)%e” . (B.6)
We also have the following identities
€abce?X = 6,69 — 5,76 €apce™ = =267, (B.7)

and combining the anticommutator and commutator of gamma matrices (B.4) one can obtain

(’Ya)aé(’Yb)éﬁ = 5aﬁnab + 5abc(’Yc)a6 = (’Ya)aé(’yb)éﬁ = —5a577‘3b - Eabc(fYc)aB

(B.8)
()2 = 20" = ()as(¥?)’* = 217" .
Moreover, the 3d gamma matrices enjoy the following properties
ag = (ga (¥ =P (1) =0 ©9)

(fya)aﬁ(')'a)po = €pa€Bo t €pp€ac -

These can be understood as descending from those of the 4d sigma matrices upon dimensional

reduction, as noted in Appendix A of [134]. Using the above properties one can verify that?

i .
[,= —E(ny‘.,)O‘ﬁLa[3 = Lag = —i(Y)aplsp (B.10)

and, exploiting the relations (B.8), one can recover the osp(1|2) algebra in (3.15)

, 1
{Qa. Qe = —i(V)apls  [La @yl = —5(0)y"Qs Lo Lp] =€a°Lc.  (B.11)

2We do this by checking consistency of the two definitions using (B.8)

i, 1, 1
La=—5(Y)"Lap = =5 (%)* (¥)apls = —5(=2)8."Lo = L .
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Notice also that the definition of inner products provided in (3.15) has been fixed by setting
STr[LaLp] = Anap STr[RaQp] = iBeag (B.12)

and checking consistency with the following supertrace identity

STr[Ta[Ta. Tc]] = STr[TaTaTc] — (—1)BCSTr[TaTcTa] =
= STr[TaTgTc] — (—1)BCHBEHA ST [TaTaTc] = (B.13)
= STI’[[TA, TB]Tc] ,

which should be satisfied by all triplets of generators (T, Tg, Tc). The triplet (L,, Qo, Qp) forces
A = —B/2, so that choosing B = 1 leads to the desired inner products (3.15).






Initial Action On OSp(1]2)

C.1. Derivation of the action

We recall the chosen parametrisation for OSp(1]2)

aLa —0« a —1 o~ anan aLB -1 -1
g= e tae Qo — ghosEfer g =¢ @ e = Efer8hos (C'l)
and the structure of the current j = g_ldg
j = g;elrjbosgfer + gFelrdgfef ::J'bos +jfer ’ (CQ)

The bosonic contribution can be written as jpos = A?L,, where A9 are the Maurer-Cartan forms
of Sp(2,R) ~ SL(2,R), the bosonic part of OSp(1|2). To calculate the fermionic current one can
define F := 6*Q,, and proceed by using the following formula, which first appeared in [135, 136]

. sinh(M) sinh?(M/2)
Jrer := == VissF ~ Q[F: e Ve | (C.3)
where we introduced notation
Va=d+][A —] and M =adr = [F,—] (C4)

and the hyperbolic functions are understood as formal Taylor series. In the case under consideration,

with only two fermionic coordinates 8%, one finds

Fl - ¢IFIF.0F)) (C5)

bos

. 1
Jfer = _vjbosF - E[F' VJ

We can thus calculate the various contributions

o V. F = dF + [jbos. F] = d0°Qq — 3226%(7?)3Qp
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¢ [FV, Fl= /(9%95 —~ ;eaxaep(%),ﬁ) (Y*)apLs
o [F,dF] = 608 (v?)apl.
o [F.[F.dF]] = £6°6%d6°(Y%)ap(Va)s" Qo
and using the identity (D.8) we can combine such terms into the fermionic current
Jrer = —(1 — é(ﬁ)deaQa + ie%%a + %Aaea(nya)af’caﬁ — %GQdeﬁ(’ya)agLa , (C.6)
so that equation (3.19) is recovered.

Exploiting the inner products (3.15) the action reads
1 . I A a1 5 o
S = 5 STrljAxj] = 5| A (=5Mab) +J° A %% (i€ap) (C.7)
by by

and using that for any two 1-forms o and B one has a a3 = —xaAf and anf = —(—1)'0‘”5‘6/\04,

where |a| and |G| represent their grading, the two terms in the action become

1 1 / 3
——jT A= —=(1+ 192)(A3 A *Xg — i(Va)apA? A *0%d6P — =62d6* A *dBy )
2 2 2 8 (C.8)

) ] .
—iJ% A Ky = —i(1 — i92)(d9°‘ A %0 + (Va)aph? A *0%d6P — Zew A*Na)

so that they can be combined into (3.20).

C.2. Maurer-Cartan forms of SL(2,R)

To explicitly construct the Maurer-Cartan forms A? we start by defining L = x?L , and considering

the following parametric current
J(t) = e thdett such that  j(t=1) =jpos  Jj(t=0)=0. (C.9)
One can thus notice that
Oej(t) = —Lj(t) + e thd(Lett) = —Lj(t) + e thd(ett L) = dL + [(t), L], (C.10)

so that integrating both sides one obtains

J(t) = tdL — [L,ftduj(U)] : (C.11)

0
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Recursively substituting the current into itself one then gets

J(t) = tdL — [L £ duudL l du[L L dvvdL £ dulL L dv[L dWWdL]]]

and after integration finally arrives to

4 5
J() = 1L = S{L, AL+ GIL (L o))~ L L (L AL + o[ [L [ [ L)) + . =
= tki_o (/((—+t)1k)!ad/£(dL) with ady :=[L, -] ; ad?:=1. (C.12)

Exploiting the sl(2, R) algebra [L,, Lp] = €25°Lc and the identity (B.7) one then finds the pattern

ad?k(dL) = R?k=2 2L, for k=1 (C.13)
ad?t1(dL) = R?¥dxPx%,p°L,  for k>0, '

where we defined R? := x9xPn,q and J? = R?(dx?) — (x;dx')x?. The series is then resummed as

0 _ #\k 0 0
j(t):tkzo(/(( t)l)!adi(dL):tho (2(k+)1)' di(dt) 2 2k+2 dikﬂ(d”:

tdL A R™ 7d A, =
R Z 2k+1 2k + 117 Z (2k + 2)! x*x‘ect’La

tdL + R™3[sinh (tR) — tR]JL, — R—Q[cosh (tR) — 1]dxPx eyl 5 =

inh (tR tR —sinh (tR h2 (tR/2
:dxm{smfg)%u S/;Hmea_QW gcma] L, (C.14)

which reduces to (3.24) for t = 1.

C.3. Noether currents for principal chiral models

In this section we work out the Noether currents for principal chiral models and relate them to the

Killing vectors of the model, so as to recover equation (3.29).

Group action perspective. Given the invariance under global left and global right action
Gl:g — 9g.'s Gr:ig — gOr. (C.15)

one can extract the Noether currents by using the standard trick of taking local infinitesimal trans-

formations gr = 1 + €r, with eg = EéTA.
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Under the above actions, the current j respectively transforms as
G.: J — Jj—gl(de)g Gr: J — Jj+Vjer, (C.16)
with V; defined in (C.4). Integrating by parts and exploiting [/, x/] = O, the variations then read
0LSpcm = —L<EL,d(*LN)> and O0RSPcM = —L<ER,d(*RL)> : (C.17)

with the Noether currents Ly := —gjg~! and Ry := as in (3.26).

Coordinate transformation perspective. \We consider for the moment a sigma model including
metric and B-field terms S = Sy + Sg with

1 1
So=5 L dxM A xdxMgyy  and  Sg = 5 Jz dxV A dx™ By . (C.18)

such that gyny = (=1)MNgnn and By = —(=1)MNBpp. Then, considering a local infinitesimal
coordinate transformation §x* = eVE\A} with gradings ’6XA} = A, ‘€V| =V, ’5@‘ =V + A the
variations of the metric term in the action read

1

0Sg = 5 L[(dev)gy A *dxMgpn + €7(de)) A «dxM g+

+dx" A x(deV)e gmn + dx"N A xe (d€Y ) g + dxN A xdxMeYED dp gmn |

1
= *J [2d€v A fy * dngM/\/—l—
2 )y

+ e (deaN55 A *dxMgup + (=1)WVdxV A «dxMoMED gpn + (—1)V(M+N)dXN A *dXME\’jangN)] =

= J de A &) x dxM gy + %evde A *dxM(D%Vg)MN , (C.19)
>
and similarly for the B-field
1
555 = L de n €l B + e/ dx A dxM (L, Bl (C.20)

with the graded Lie derivative given in (A.13). At this stage, requiring the coordinate transformation
to represent an isometry of the full action, the Lie derivative terms vanish and after integrating by

parts one is left with the Noether current
6S = —f Vd(xsy)  with Uy o= ldxMgpn + £ « dxM By - (C.21)
b

For principal chiral models, which have no B-field contribution, this expression reduces to (3.29).



C.5. Killing vectors of the initial model 91

C.4. Left Noether current on OSp(1|2)

In this section we construct the Noether currents associated to the G, invariance of the principal
chiral model on OSp(1]2). Let us recall the left Noether current (3.26)

Ly = gbosdggols + gbos(gferdg;elr)ggjs with Jhos := eXLa Jfer \= e 0 Qa (C.22)

The bosonic contribution has been constructed in (3.32) and to compute the remaining terms we

start by expanding the fermionic group element and exploiting the algebra (B.11) to find

grerdere, = (1 - Q4 3Q7)d(Q + 2Q° + 5;Q°%) = dQ — 3[Q. dQ] + £[Q. [Q. dQ]] =
| | (C.23)
_ éd@ﬁéo‘(va)o@La +(1- é92)d9a0a .

We then use the relation eABe™* = 3%, Ladk(B) to include the effect of the bosonic rotation.

For the L, generators, a few commutators are sufficient to find a pattern and re-sum the series as

) i R2k—2 o b b i R2k b
8hosLaBpps = La + (R902° — xax°)Lp + X% Ly =
o = (2k)! “ 2k +1)!
— L, + R sinh (R)x eca?Ly + R72(cosh (R) — 1) (R25,” — xx®)Lp = (29
1-— hR inh R
= [cosh(R)éab + %xaxb + >N Xcecab]Lb :
and similarly for the Q4 generators
© 2k © 2k
1 (R/2) 1 (R/2) B
gbosQagb = Z Qa - A Z 7Xa(ry )oc Qﬁ =
os T 4 (2k)! 2 A (2k + 1) (C.25)
inh(R/2
= [cosh(R/2)60/3 — Sm(R/)Xa(’Ya)ocﬁ]Qﬁ

Putting together the above ingredients one then finds Ly = L}, L, + LY Qq as in (3.35).

C.5. Killing vectors of the initial model

In this section we construct explicitly the Killing vectors for the principal chiral model on OSp(1]2).
Before specialising to such model, we consider again a more general sigma model including a B-field

term, for which we derived in (C.21) the Noether current associated to the isometries

b= V) = &JdxM gy + &)+ dxV By (C.26)
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with V' denoting either one of the bosonic generators {B,} or one of the fermionic generators
{Fa}. The inner product is taken to be non-degenerate and block diagonal with {B,, Bp) = d2p
and (Fq, Fg) = da3. Our aim here is extracting the components of the Killing vectors from those
of the Noether current and for this reason we proceed assuming to have an explicit expression for
J, which can be expanded as J = dXNJ,(Vl) + *dXNJ,(Vz). Comparing the two sides of the equation
above for V' = B}, and V' = Fg one then finds

V=B: J/(\/l)a5ab = {8 gun J,(\,2)2<5ab = —¢ Bun
(Dex NeM 2)a NeM (C.27)
V=Fg: J/\/ 5043 = (‘1) 5F,39MN J/\/ 56!6 = _(_1) gFﬁBMN .

The two equations involving the metric will now be exploited to extract the components of the
Killing vectors. If the model also has a B-field which does not break the isometries, the equations
involving such field will then be automatically respected. The principal chiral model will not have
problems from this point of view, but later on we shall deal with this in the T-dual model.

Setting V = Bj the equations involving the metric read

@ ng)aéab = ggbgmn + gébgun @ J‘(’l)aéab = ggbg"’w + ggbg’“’ : (C.28)

For the full metric to be invertible (=1)"gypg™™N = 64", the two block diagonal terms g, and
9uw should both be separately invertible and we define their inverse matrices via gmpg?"” = 6" and
9upd®” = 6,"”. We put a hat on the inverses to highlight that those are not the components of the
full inverse metric g™B. This fact can be exploited to solve the second equation for E‘éb, substitute
back into the first equation and solve it for &g’b. In this second step one further needs to invert the
symmetric operator Gmp := gmn + §*Y gmugnu- Its invertibility is ensured by the invertibility of gmp

and we write its inverse as G, GP" = " In the end one finds Killing vector components

€8 = G (UM Gap + 84 IV 6 2 Gpn)

b= GG (IS 8a + G IS0 0 Gpn) G — 5 0] (2
One can then proceed in a very similar way for the case V = Fg. The equations read
(4) I %ap = €3, 9mn + &5 dun (4) IV %0p = —€8,0m — €8 gus  (C.30)
and the resulting Killing vector components are
E = Gy 6ap — 5 IV Sap gun] (C.31)

;/%3 = guu[Gmn(Jr(ll)aéaﬁ - gpavlc(fl)aaaﬁgnp)gmu + Jl(/l)aéaﬁ]
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We now specialise to OSp(1]2) with metric (3.21) and inner products (3.15). From these one finds

: I 2 pN% A / 2 ~ApYV v
Jup = i€up(l — —=0°) = G =—ieP(1+ —6°) such that Gupd®’ =96
1279 1274 16 16 (24 ©w (C32)
Imp = 91Mmp + P XmXp = 9P" = ganP" + gaxPx" such that gmpgpn =om"

with coefficients g1, g»> given in (3.21) and g3 = L gs = 2. Additionally the operator G, reads
91 2091

Lo2ygen . (C.33)

i
Gmp = Imp + 9" Imvgpu = (1 + *92>gmp = G =(1- 3

8

The right sector. To obtain the components of the right set of Killing vectors it is sufficient to

recall the right Noether current (3.30) to extract

i i 1 i
(Rw)j = (1+ 26907 Ru)D = 500 (RS = 5M%0°(r),%  (Ru)E = —(1— 567)8,%.
Using then the inner products (3.15) and the expressions derived above one obtains components

1 1
(68 )€ = AbkS + Bxiex© + EngdkC (R )P = EGU(’YK)UP _—
/ 1 ’
(£6,)° = 59”(Wa)uﬁ(/‘\5ac + Bxax© + EXdEdac) (€6, = —(1 = 46)66™ .

The left sector. Similarly, for the left sector, recalling the Noether current (3.35) one extracts

sinh R R —sinh R 25sinh? (R/2
(I—N>fn _ = 6 — = XX — R2</)ch‘:cma
| 1—coshR inh R
(Ln)2 = 46°(v?) 0 [cosh (R)8,? + %xbxa 4 S'”R X ecs] (C.35)
j sinh (R/2
(L)% = (1~ LeD)fcosh (R/2)8,% — ST yn) (L2 =0

Using again the inner products and the expressions above one then finds

1
(66,0 = —(Ad" + BxoxX* — Sx%ea)  (€[,)° =0
(C.36)
j

i i
(€6,)° = 5NOsx° — Ze*(ryb)m(Ué,,C + VX)) (66,)° = —(1+ §92)(/\/xa<fya)ﬁp — MégP) |

with the coefficients A, B, U, V, M, N introduced in equation (3.37).






T-Dual Action On OSp(1|2)

D.1. Details of the procedure

In this section we provide details relative to the dualisation of the principal chiral model on OSp(1]2)
with respect to the OSp(1]2), isometries. Starting from the explicit Lagrangian (3.52), which we

report here for clarity

=

el el [(00)E™1oA" — 5P oA — S A

r\)\l—\
N

1 _ - _ a AB 1~ c ad a
2(6X3)A (axa)A x AYAP (y )gaj— 2xaA A%eqc7+ ) (O.1)
+ilg oglple™ 15g] +/[(5g)g NeAP + i[(0g)g AP + iAg AP+

— i(005)2° + i(20p) 4P + S A*A (1) — 585 A7A%(15)o®
Variations of the gauge fields lead to the equations

A? — A%, = —[(3g)g 17 — 0% + iA%(7?)oBg
Al + Acgcab;(b _ _[(ag)gfl]a + oxd — /Aa(’Ya)aﬁeﬁ
(D.2)

and to solve the latter system for the gauge fields we start from the first couple of equations.

These allow us to find A? and A? in terms of the fermionic fields by defining the matrices M and

95



96 D.1. Details of the procedure

N, that can be easily inverted exploiting the identities in B.1.

M2 =087 — e = (M1),K = 25(8.5 — %85 + e,7%,)
N2 =62 +ec% = (N1)f= 171r2(6ak — XaXK — €,5%,) (D-3)

with rc=Xx

(D.4)

13

>
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Il
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o
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|
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—~
5
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N—
o
O

so that substituting the latter into the second pair of equations and rearranging one obtains

A = 3([(Pe)g® + 35 (M) (1)78; — [(Pg)g™]* - 6° 05
AP Wa)g® = 5(=[()g 1] + 0%°) (N"1)52(15)% 8, — [(Pg)g 1] + 00
with the definitions
() (M) 22 (76)7 6,0, (0.6)

In order to recast Wi and W5 in the form (3.54) and to invert them, we need to make some

simplifications. The first step is exploiting the identity

o 1 - - - . 1 - .
Opbo = (8560 — 650,) = 5(5;;55 —5%65)0a0p =
1 Bai A 1 55 1 5 (D.7)
which also has the raised-index analogue
NP AT 1 00 N2
0re° = _EE 0 . (D.8)
By using (D.7) in the above definitions of Wi and W, we obtain
i (~a\ . p —1\ b acp o _ Ip2 a —1\ a c\ a —1\ bga
)P (M), 1000, = 402 (8 (M) + (1) (M), esc )
(D.9)

()P N0, = 482 (83 (N0, + (10N esc )

N[~
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so that from the explicit form of M~1 and N~ one can find

r2—3
(M_l)aa = (N_l)aa = 2 _1 (M_l)abgabc = _(N_l)abgabc =

r2—1

(D.10)

and rearrange (D.6) to obtain (3.54). The two matrices are then easily inverted using the iden-
tities for the «y-matrices in B.1., leading to (3.55). This allows to solve for the fermionic gauge
fields in (D.5) and to substitute the result back into (D.4) to obtain the equations of motion (3.53).

Substituting the equations of motion back into the Lagrangian (3.52) and choosing gauge g = 1,

we thus get
A AN — a 1 As — N — a
A% = (@)W )™ + S (0R°)(M™H)5% (1) (W g
~ ]_ ~ _ a A — a
A% = +(06°)(Wy 1™ + 5(5Xb)(/V Dp?(v2)P0 (W5 g
(D.11)
A% = —(A%")(M™)p? — i(08°) (Wi )™ (V") aBp (M) 7+
/ Agc - ) — a N - a
+ 5(8)( )(M l)cd(’Yd)ﬁxek(Wl 1)6 (’Yb>ap9p(M l)b
AT = +(0%") (N1 — i(0P) (W5 M )p* (V7)aP B (N 1) 67+
/ cC — ) — a ) — a
- E(ﬁx )(N l)cd(’Yd)ﬁxek(Wz 1)5 (’Yb)apep(/\/ l)b
1 SC\ pa Ab : 1. c a A8
L=— §(nab + €apc X )ATA” — i(€qp + EXC(’Y Jag) A% A” +
/ ~ — / ~ —_
+ §(rya)aﬁeﬁA%\a — 5(%,)oﬁeﬁAff’AO‘+ (D.12)
1 _ 1 - . .
+ 5(8)?3)/4‘3 — E(&)?;,)Aa — 1(004)A% + i(004)A* .

Using the explicit form of M~ N=1 W, 1, W, ! and exploiting the identities (B.8) and (B.7) it is
finally possible to rewrite the gauge fields more explicitly. These are reported below broken down

into terms leading to different contributions to the dual action.

A? = A7 + A3 + A3 with: (D.13)
A= (@) (M)

o i05(06°) . 3 _ »

A3 = (4= 1r2)(1—r2) [2(2 + r2)<7a)pﬁ - 6XC('7C)pBXa —2(1- r2)6pﬁxa - 6Eack(’)’c)pﬁx

_ 62(0x°) . . e

A3 = T {2xcx (4 — r2) —20.7(1 + 2r2) — €& dxd(5 + r2)}
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A? = Al + A5 + A3 with: (D.14)

AT = (0F)(NTH)
05 (06°
Al = 165(06°) ] [2(2 + rz)(’y")p6 - 6)?C(fyc)pﬁ>~<a +2(1 — r2)<5pﬁ>~<a + 6sack(’yc)pﬁ>”<k]

T
a._ 192<5XC) cocaig 2 a 2y _ o~ adg 2
A= G| T ) H 2827 — e (5 4 1)
A% = AT + A with: (D.15)
AY = —(06°) (Wi h),®
- O (0%P
A = 62( ) 5| 2+ ) (1) = 3%(Y)*P % + (1 — r?)e®PKy + Beper(v9) P
@A)
A% = AT + AS with: (D.16)

AT = (907) (W5 1),

5 (Ash
45 1= B o 1% — 35y 5 — (1 )6 — Benck (175 |

The above terms respectively contribute to the expressions

(05%) (3%°) Lq = — (Mo + Eanc %) (AL + AAL + ASAR) ¢
~ i(eap + %1 Jap) SR+
+ 2 0)PB AR — ()AL A+
+ S (0% (A + &) — S(F)(AL + A (D.17)
(087)(20°) Lpo = — (Mo + a5 KV ALAE — i + 151 o) AL A+

—.

+ 5y a)a 96A1 Az—i( Ya)a 9}3%\3[\‘{‘—1—

N

— i(000) AT + i(004) A (D.18)
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e 1 3 . 1. .
(0%)(26°) Loq = 5 (Mab + €abcX)VATAS — i(€ap + 55c(1)ap) AS AT +

2
j T
— 5(12)o O ATAT + 5(0%) A3 + 1(0a) AS (D.19)
o 7 1 oy gagb 1 ;
(067)(0XP)Lps = _E(nab + €abcX)AZAY — i(€np + Exc(’yc)ag)A‘f‘Ag—F
j UV s
+ 5(12)o Op AT AT — 5(3%a) A3 — 1(00a) A3 - (D.20)

It actually turns out that many of the above terms cancel among each other or simply vanish due to
the nilpotency of the fermionic multipliers, thus leaving us with the following relevant contributions

- 1 1 _ e -
(0X9)(0XP)Lpg = —i(€ap + §>"<c(’Yc)aﬁ)A§“A§ + 5(0%:)A] (0X9)(00°)Lpg = +i(06a) A3

i ~ - i ~ -
+ E(Wa)aﬁeﬁAgAi - E(’Ya)aﬁeﬁAiAg

o\ (20PN T : 1. c a Al I A AQ pa NON(ASPY ] ; a
(007)(00°)Lpo = —i(€ap + §XC('Y )ap) AT Alf + E(Wa)aﬁeﬁAl A + (007)(0XP)Lpe = —i(06a) A3

— i(0G4) A% + i(35,) A2

Working these out explicitly one finally obtains (3.58).

Some useful identities. We close this section by briefly summarising some additional identities,

particularly useful in obtaining the explicit form of the gauge fields, resulting from the expressions
of M=, N=1, WL, W5t and (B.8),(B.7). Notice that the identities involving W, ! and W5t are

valid for their purely bosonic part, i.e. upon neglecting the terms proportional to 62.

_ 8 _ _ —4%2 _
WM Da® = 7= = 5™ WD (7)™ = g— 5 = —(W5 D7) (D.21)
(M™M= gy [(1 4 r7)8c + (17 = 3)%eX? + 2%%e4c7]
(Mil)Cdebdk(Mil)ba(Wl_l)ﬁa(’Yk)aﬁ = WP#&‘? — 2)?6)?8 + (1 + r2))?d8dca]
(NN = gy [(1 4+ 17)0c% — (17 = 3)%e%? — 28747

(N e ePak(N71)57 (W5 1)p™* (V) = Gy [2r70e7 — 2%eX7 + (1 + r?)% €]

Additional identities required to obtain the explicit dual action are

(Mil)qb(nab + gcgcab) = MNagq (Wl_l)aﬁ(eaﬁ + %)?c(’)'c)af}) = —€oa (D 22)
(Nfl)pa(nab + X Ecab) = Mpb (Wz_l)pﬁ(eocﬁ + %)?C(’Yc)aﬁ) = €pB
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D.2. Isometries of the T-dual models

In this section we study the residual isometries of the T-dual models by solving explicitly the Killing
equations (A.13). We consider in detail the dual model with respect to the full OSp(1|2), isometry
subgroup and then discuss briefly the dual with respect to SL(2,R),. To begin we rewrite the
metric (3.60), obtained by dualising OSp(1|2)., as follows

L1 = 53

. . oy . ~ 3(2-1)

Gpg = L1[npg(1 + ih(r?)6%) — %p%q(1 +im(r*)6?)] L, = ;4/

@DU = LS)?pEaaéa + [—45pab('ya)aaéa/\b with 4 i v Ill)fﬂ) (D-23)
N : 5 3T P08

Goo = Lo€po (1 + if(r?)6?) L i _3:

We broke down the coefficient L3 defined in (3.59) into two new coefficients L3 and L4 and
absorbed all the prefactors in Lo, L3, L4, leaving L1 untouched. This will allow us to keep track of
such coefficients and their derivatives without looking at their explicit form. We notice indeed that

all coefficients are functions of r? := X%y, such that V u = u(r?) we can easily compute

O,u(r?) = 2%,u'(r?) . (D.24)

Similarly, recalling the definition 62 := §7 y = 6755"755 we can also easily determine that
0a6% = 20, . (D.25)

At this point we have all the ingredients to start computing the partial derivatives of the dual
metric, which will be needed to write down the Killing equations

0abipg = +2% L [Mpg(1 + ih8%) — %,%,(1 4 imB?)] + 2iL1 b %mpq0%+
— L1(NpaSq + Nga%p) (1 + imB?) — 2iL 1 m'%,%,%,6°

Oafpg = 2iL1MMpgBa — 2iL1m%p%q00

0alpo = +2L5X:%p€00 0™ + L~3npaem6°‘+ ) (0.26)
+ 2L4%aE pbe (V7)o K¢ + Lagpba(”)oad”

Oadpo = L3%p€oa + La€pbc(V")oaX"

0abps = 2L5%a€p0 (1 + iF0?) + 2iLof 06,062

OaGps = 21Lof€ps0q

We can now proceed by making a general ansatz for the Killing vectors, so as to be able to explicitly

write the Killing equations and determine the constraints they imposes on the ansatz.
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Bosonic Killing vectors - £, | = 0. These should satisfy the following three equations, obtained
by setting the free indices in (A.13) respectively to (M, N) = {(p, q), (p,0),(p,0)}

€2050pq + €20alpq + (0p€2)Faq + (0pE2)Faq + (0g€2)Tpa + (04€2)Fpa =0 (1)
€2020p0 + €20aTpo + (9p€2)Fao + (9pE2) Fao + (05€2)Tpa + (00E2)Gpa =0 (2) (D.27)
€202000 + £2000p0 + (0p€2)Fas + (00E2)Fao — (90€2)Tpa + (20€N)Fpa =0 (3)
The following ansatz can then be constructed
€1, = €20, + €204 with (D.28)
€2 = 07[AL(r?) + Ax(r?)8%] + %.%°[B1(r?) + Ba(r?)8%] 4+ %%€4.°[D1(r?) + Do(r?)6?]
€2 = [F(r)(ve)p™ + G(r?)Xcb5™ + M(r)x5(v¥)* + U(r*)X%egcn(v?)s16°
and to simplify the substitution into the above equation we also compute its derivatives
0p€2 = 25,07 [ A} + ALB?] + MpeX2[B1 + Bob?] + %:0,°[B1 + B26]+
+ X5 R By + BLYO?] + €% [D1 + D20%] + %,8%4.7[ Dy + D4E?)
0p€2 = [20.7 Ao + 28X By + 28947 D56, (D.29)

0p€e = [2F'Rp(Ye)p™ + 2G'%pXc8p™ + 2GMpclp™ + 2M'ZpRcS (7)™ +
+ M1pcR6(Y0)p™ + M3Rc(7p)p*2U'%p% € den(7)p™ + Upen(71”)5%16°
0p€ = F(7e)o™ + GR0p™ + MRcRb(7")™ + UR%egen(v”),”

At this stage one can proceed by substituting all the above ingredients into the Killing equations
and collecting, for each of them, terms which should vanish independently. This leads to a set of
constraining equations for the coefficients of the ansatz, that one can try to solve.

Equation @ leads to 8 constraints

LllAl + (Ll + I'ZLll)Bl =0
i(LihY Ay + i(Lih + r2(Lih))By + (L1 + r2L})Bo + Ly Ay + iL1hG — LaU ~0
CLUAL — LA — 2Ly + 2L)By + Li(1 — 2B _0

[—i(Lam) Ay — iLymA} — Ly Ay — Ly — i(2Lym + rP(Lym)') By +

—(2Ly + L) By + iLy(h = r?Pm)By + Ly(1 = r?)By — iLymG + 213G’ —2L,U'] =0 (D.30)
—L1Ar+ Li(1 = r?)By + 201 A -
[—iLimA; — LA +iLa(h— r?m)By + Li(1 — r?) Bo+

+2iL1hAL + 2L A) + 205G + LaU + 212 L, U] -

LDy =0

iLyhD} + L1 D)y + 2L4F' ~0
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Equation @ leads to 10 constraints

2L5A; — 2L 1Ay + 2(Ls + r2L)By + 2L1(1 — r?) By + 2L3A) + r2L3B] + 213G — 2L,G" =0
L3Ay +2L1 Ay + r?L3B; — 215G =0
LD, =0
(2L} + BLa)A1 4+ 2(La + rPL}) By + 2L4G + S LU =

L4Dy — LoM — 2L 4F =0

(D.31)
I’2L4D/1—2L2F/ =0
2L4F+(2I’2L47L2)M7L4D1 =0
—2L4M = 2L, M — L4D] =0
(2Ls — SLo)U — S L4A =0
7%2L4A1 + 2L4A/1 — %LQU — 2L2Ul =0

Equation @ leads to 2 constraints

L2G + LLA; + r2LYB ~0
S 27 (D.32)
i(Laf) Ay + (Ls + L) Ao + ir?(Lof) By + r2(Ls + Lb)Bo + 2iLofG =0

Notice that in deriving the constraints for equation @ we exploited the fact that objects anti-

symmetric in two spinor indices should be proportional to ¢, which gives

(00€2)Jao + (0pX1¢)Gac — (00€2)Jpa + (0o€E) Gpa =

5 e 5 o (D.33)
= [€” (aégc)ga'y]epa + [€” (aéfc)ga'y]epo .

Studying the above set of conditions with Mathematica it is then not too hard to find that

e The first condition from @ can be solved expressing A; in terms of B;. One can then
integrate the third condition to find By = 27—Br2, with B constant. The latter is however set
to zero by the fifth condition.

e The seventh condition from @ sets D1 = A, with A constant. The third condition from @

sets D, = 0.
e The ninth condition from @ sets U = 0 while the first condition from @ sets G = 0.

e From @ the second equation sets A» = 0 and consecutively the first one then sets B, = 0.

The sixth condition requires that F = C, with C another constant.

e At this point only three conditions are left to solve, namely the fifth, seventh and eighth from
@. The fact that A and C are constants only allows the solution with M =0 and C = é.
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Hence, all constraints are satisfied and only two coefficients are non-vanishing, i.e. D1 = A and

F= g. One is then left with the following Killing vector

(=

1.
K. = A(%Pepc?0, + 595(75)@"‘6&) . (D.34)

Fermionic Killing vectors - |¢o,| = 1. These should satisfy the following three equations, ob-
tained from (A.13) by setting the free indices to (M, N) = {(p, q), (p, o), (p,0)}

€3020pg + €X0adpg + (0p€3)Taq + (0p€X)Jag + (4€3)Tpa + (0g€X)Tpa = 0
—€30a0po — €3 0adps — (0p€3)Gac — (0p€3)Jac + (05€3)Jpa + (0o€X)pa =0 @ (D.35)
giaagpa + giaagpa - (apfi)gaa - (5p§§)§aa + (aagi)gpa - (aa£§)~0a = 0

An ansatz similar to the one considered in the bosonic case can then be constructed

£y = €302 + €3 0a with (D.36)
& = [N(*) (g + P(r?)%%exg + T(r*) % euc® (7 )ag + V (r?)%7%p(7?)25]6°
&= 5>\°‘[R1(r2) + RQ(r2)§2] + )?a(’ya)xo‘[sl(rz) + 52(r2)§2] .

for which one has the following derivatives

0pl3 = [2N'Z(Y?)ag + 2P 5%,%%05 + Py erg + 2T %500 ()25 + TEpc (Y9)ag+
+ 2V 5,5%7%(Y7)ag + V8 %6 (77)as + VE (1p)r016°
0p€d = N(¥")ap + PXexp + TR €52 (Y)0p + VEZ6(Y2) 20
OpES = 2%,00*[R] + RL0] + (1p)a®[S1 + S20%] + 2%,%(v?)r*[ S + Sh8?]
0p€S = 2R202%0, + 25:%:(Y")2%0, (D.37)

Substituting all the ingredients in the Killing equations leads to a set of conditions for the ansatz.
Equation @ leads to 6 constraints:

2L (P + iRLh) + 2r2L) P =0
2LY(N + r2V) — 2iL1hSy + 2L,V — 2145, -0
72r2L/1P72l‘L1mR1+4L1(1*I’2)P/74L1P+4L3R/1 =0

(D.38)
[—2L0 (N + r2V) + 2iLymSy + 4Ly (1 — r2)V' — 4L N — 4L,V — 4(Ls + L4)S, =0

—Ll(N—2/\//)+L1(1—I’2)V—(L3—L4)51+2/’2L4S£ =0
2L, T — 2L4R)] ~0
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Equation @ leads to 8 constraints:

—L1(1 = r?)P — L3Ry + 2L5R;, =0
LaRy + Ly T =0
—LyN+ L1(1 = r?)V + 20,8, + (Ls — L3)S; =0
LiN + (Lo — r?L4)S; =0
(L4 r?L5 4+ ir?Lym — il h)P 4 r?LsP" —2r?L4T' 4+ 2LoR) + 2iLof R) =0 (D.39)
—(Lg+ rPLY)P — (Lg — iL1h)T + 2L4R, =0
[(Lh — Ly —ilym)N + (2Lg — L3)N' + (Lg — L3 + r?Ly — r2LG — irPLym + il h)V+

—r2L3V" + 20455 +2L2Sh + 2iL,f St ] =0
(iLih—La—r?L) — 3L3)N — (rPLa + r*L) + 3r2L3)V + (Lo — 2r2L4)So + iLofS1 =0

Equation @ leads to 2 constraints:

(L3+2L4+2L’2)N+r2(L3+2L’2)V+2L252—2iL2f51 =0 (D 40)
P2(Ls + 2L5)P — 2LaRs + 2r2LaT + 2iLofR; ~0 '

Once again, in deriving the constraints for equation @ we used that objects antisymmetric in two

spinor indices should be proportional to the e-tensor, so as to simplify

— (0p€3)Fac — (0p€R) Jao + (05€3)Fpa — (05€X) Jpa =

5 2~ 5 o = (D.41)
= _[E’Y (ﬁégx)ga’y]epo - [E’y (5(55%)9&7]6,00 .

Studying the system of equations with Mathematica one then finds that

The fourth constraint resulting from @ is solved by expressing N in terms of Sy as N = 2/5;.
As a result of the previous step, the second constraint from @ requires to set V' = 0.
In turn, the fourth condition from @ is solved if S{ =0, i.e. for constant S; = B.

At this point one can also solve the second condition from @ by expressing R1 in terms

of T and successively integrate the sixth condition from @ to obtain T = Nt with
C constant. This in turn gives an expression for R which can be used to solve the first

. : _ C(142r?)
constraint from @ by setting P = Wk
Solving then the third condition from @ and the last condition from @ respectively requires
toset C =0 and R, = 0.

Finally, the first condition in @ is solved by setting S» = 0.



D.2. Isometries of the T-dual models 105

At this stage all the constraints are solved and the remaining non-vanishing coefficients are N = 2/B

and S; = B, with B constant. The fermionic Killing vectors thus read
€ay = B(2i6P ()0 + Ka(1?)A%0a) - (D.42)

The overall constant prefactors A and B appearing in (D.34) and (D.42) can then be fixed to
A =1and B = —1/2 by computing the commutators of Killing vectors and matching the result to

(€, 60,) = €. (6,60 = —5(Ta)p%0n [€Qur @) = —i(¥)opéL, - (D43)

Dual model with respect to SL(2,R);. Residual isometries of this model can be studied by
exploiting the above results. One can indeed interpret the dual metric (3.50) as the metric (D.23)
with different multipliers and coefficients. Bosonic multipliers are the same as in the previous
section, while fermions are the ones of the initial model. The coefficients of (3.50) in the form of
(D.23) simplify as L3 = h=m =0 and

1 i 1(r>=2)

b= o L2 =1 b= o =8 o)

(D.44)

The ansatz for the Killing vectors and all the derivatives are then formally the same, so that one

simply has to study again the constraints with the above coefficients. This leads to
- 1 = - . P &
€1, = A(XPepcds + 596(%)[30‘@(1) €q, = B(P(vP)pa%%eqp?0s + 2i[1 — £62]05)  (D.45)

and the constants can be fixed to A=1and B = é by comparison with (D.43).
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D.3. T-dual torsion constraints

We summarise formulae and expressions derived in trying to solve the torsion constraints for the
T-dual models with respect to SL(2,R); and OSp(1|2),. The generic metric (3.67), which includes
the initial model as well as its T-duals, has generic inverse metric (3.71) with coefficients

inv _ i inv _ gg — 9299 — g%rQ inv _ —93
=g 9= 9390 BT 2 grgar
ginv — 9(20506 + 97 — G5 — Gago + 951°) + 20195(~ G5 + 29290 + g71°) + G51°(~ G5 + 9209 + G71”)
¢ 9290(g1 + g3r?)?
gs inv —9395 + 9196
g/nv _ g — D.46
> 919 ® " G290 + g193Gor? (D-46)
i —97 inv gs inv 1
g/nv _ g _ g =
! 9199 8 9199 + G3gor? ° 9o

ginv — 91(291910 + 363) + (29595 + 91(291095 + 29596 — 297 — G5))r” + (915 — 29597)r"
10 26195(91 + 93r?)

Knowledge of the above expressions then allows to write down the coefficients of the inverse
vielbeine as linear functions of those of the vielbeine via (3.78)

1
Ml _ 7§Algmv /\//2 (Algmv +A gmv Blgmv +r BQQIHV)
1
My = 5 [Asgi™ + 65 (A + r°A5)]
1
Mo = —5[Asgs" + 04" (A1 + r*As) + Aagi™ + 65" (Az + r*Ag) — Bags™'+ (D.47)
_ B2gmv _ mV(B1 +r 84) + B3gan]
1 . .
M5 _ §A59/1nv M [Asgmv + A6g/nv + Blgé Bngv]
Nl _ (Dlg/nv + Elgmv +r E3g/nV) /\/ (Elgmv + E3g/nv D2gmv>
N3 _ —I[Dg( inv + r2g§”") + E3( inv + rzgé”v) + Elg/nv] (D48)
N4 _ [D4g/nv + g:/))nV(D1 +r D4) + Elg/nv _ E (g/7nv génV)]
Rl (A gmv + r2A5gmv + Blgan) R2 _ (Asg/nv + Algmv +B g/nV) (D.49)
R3 [ngmv + gé”V(A1 + I’2A3)] R4 _ _7[A3g/nv Asg/nv + gé”V(A1 +r A3) + B4g/n\/]
S = —/Elgg’”’ S3 = /Egg’”"

52 — _I[E2gn + Elgan (Dlgmv + r D g/nV)
2 (D.50)
+ 7(D4glﬂv D2gan + génV(Dl + r2D4) D3gan)]

1 1
54 — [E4gan+E3glo 7D2glﬂv D gInV+§D3( IHV+r29g'IV)7 2 IHV(D1+r D4)] .
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We turn now to the construction of the structure functions, needed for the torsion constraints.

Recalling the expression (3.66) one can write down

fABC = eAmeBn[anemC - amenc] + (_1)BeAHeBU[al/euC + auelfc]—"

(D.51)
+ [eaeg” — (—1)BeA"eB’”] [01,6,,,C — 6meuc] ,

and given the need for faﬁd,fabd,fa57 in the constraints (3.65), one can use the relations
0,u(r) = xau'/r and 046% = 204 to compute

[Onem® — Omen?] = €nm"[(@1)k? + 6%(@2)1]
[aueud + aueud] = 2(’7q)ul/(‘*’3)qd

[auemd - amet/d] = ex{euk(a&)md + ('yq)uA[Xm(w3)qd + (anmq + Xqéfrly)N'B + gqu,ufl4]}

(D.52)
[anem’y - amemry] = GA('Yq)A’YEnmk((:/AL)kq
[0ve.” + 0ue,™] = 07 2E2[8, eun + 6.7 €un] + 2Eaxo[(V7)JEun + (V7) " eun]}
[auem’y - am‘eury] = [(‘54)mp(’Yp)I/’Y + P?Xm5u7] + 92[(‘54)mp(’)’p)ury + plleéu’Y] '
where we defined quantities
(@1)k? = (L16k? + poxix? + puaxeck®) (@), = (1abk® + wsxix? + wex“eck?)
(@3)m? = (L70m? + eXmx? + noxEcm®) (@3)¢% = (1100” + p11xgx? + 12X Ecq?) (D53)
(Wa)k? = (p10k7 + p2xux? + p3x“eck?) (@4)m” = (pabm” + PsXmX” + PX Ecm”) '
(54),71" = (pg0m” + poxmxP + p1ox“€cm®)
and, to shorten the notation, new coefficients
,U'1=2A5+I’Ag “’2:_Aif>/r /1'3:A/1//’—A3 ,LL4=2A6+I’A%
/.L5=—A/6/I’ /.L6=A/2/I’—A4 LL7=2A2—B3 /.L8=2A4—Bé/l’ (D 54)
to = 2A6 pio = —Bi/r w11 = —By/r w12 = —B5/r

w13 = —Ba pis = —B>

p1:2D2+rD/2 pQZ—Dé/I’ ,03:D/1/I’—D4 04 = D1 — E3
ps = D4 —E3/r  ps= Do pr =D3—Ey/r  ps=—E4 (D.55)

pg = —E,/r p10 =0 p11 = —E5/r .
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By then using the ansatz for the inverse vielbeine and the above quantities one finds the expressions
(3.83),(3.84),(3.85) for the structure functions, with the following coefficients

F = —2Bl(Sf + r25§) + 4r°B»5,53
Fo:= —2B4(S? + r’S3) — 4B»S1S3 + 4S3(B1 + r*By)
F3:= —2B5(S? + r*S3) + 4B, 5:S3
Fa = 4r°By(S1S4 + S253) — 4B1(5152 + r?S354) + ui[Na(Ny + r>Na) + r* No N3]+
+ rPus[Na N3 + No(Ny + rPNg) ]+
+ Sy[ N1 (7 — paa) + r*No(two + pa3) — r*Naptro — (th1a + r2paz) (N + r*Na)]+
+ S3[rPpio(Ny + r*Ng) — rP Ny (po + paz) — rNo(pz — paa) + r°Na(pia + r’pao)]
Fs := —4B4(S51S + r?S3S4) — 4B2(S51S4 + S2S3) + 85354(By + r*Bay)+ (D.56)
+ o [Ny (Ny + r2Ng) + r?NoNs] — ws[NyNs + No(Ny + r2Ng)] — (1 + rPus) (N3 + NaNs + NipNg)+
+ S1[N1(ps + p12) — No(po + 3p13) — N3(rPpar + 2u13) + Na(pz + paa + rPus + rPuan)]+
+ S3[N1 (ko — 3u13) + No(u7 — 3p1a) — (N1 + r2Na)(2u10 + rPpar) — 2r* Napis+
+ N3(u7 — paa + rug — rPpan)]
Fs := 4B1(S1S4 + S2S3) — 4B5(S5152 + r?S3S54) +
+ pa[r?NoNs + Ny (Ny + rPNg)] + pa[NiNs + No(Ny + r* Ng )]+
+ S1[N1 (o + p13) + No(th7 — ph1a) — Na(aa + r’piz) — pao(N1 + r*Na)]+
+ S3[N1 (s — k7)) — r*No(po + pa3) + r*Napio + (N1 + r*Na) (s + r*pin2)]
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Fri= —r’N3(Myus + Msu1) + S1[2R1B1 + 2r° Ry By — My — r>Mspo]+
+ S3[r?(Mip1z — Mspiis) — 2r*(RaB1 + R1Bs)]
Fg := N3(Msu1 + Mius) + S1[2R1Bs — 2R2Ba + 2R4(B1 + r?Bs) — Myug + Mspo — Mz (7 + r’ug)]+
+ S3[2(Ro — R3)(B1 + r?Ba) + 2Bo(R1 + r?Ry) — 2r*(RaBy + RaBo)+
+ (My + rPMs)(p10 + p13 + r’pa1) + Mspaa + r>Mspis]
Fo := —N3(Mipiy + r*Mspus) + S1[2R1 Bz + 2R2 By — Mipo — Mspuz]+
+ S3[—2R1B1 — 2r°RoBo — Mipaa + r*Mspas)
Fio := MsNo(pq + rpa) — My Ny (uo + rlzl/«l) + 51[2R1Ba + Ms a3 + ,%(2/?131 + Mipiia)]+
+ S3[2R2(B1 + r?Bg) + Myi1s + Mspiya)
Fi1:= M3Nip1 + No(My + rPMz)us + 5 M1 Nips + S3[2B2(Ry + r?Ra) — 2R3B1 + (M + r*Ms) o]+
+ S1[2R3By — 2R4B1 — Mapia — (My + rPMs) i — 5 (2R1B1 + Mipu1a)]
Fio := —MiNap1 — Ms(Ny + r*Na)us — S MiNipq + S1[2R2Bs — Mspiiz + 5 (2R1B1 + Mipaa)]+
+ S3[—2R1By — 2R2B1 + Mg + Msp7]
Fiz = (MsNy — MyNo)(py + r?uo) + Si[—2r(By + r?Bs) — Mipis — Mspa]+ (D.57)
+ S3[—2R1(B1 + r?Bs) — Myip1a — r*Mspqs]
Fia := —(N1y + r*Ng)(Mspy + Myps) + S1[2R2By + 2R1Ba — Miigs + Mspiia]+
+ S3[—2R1B1 — 2r?RyBo + Myju7 + r* Mspo]
Fis := (My + r?Ms)(Nopy + Nius) + S1[2R3B1 — 2B2(Ry + r*Ra) — (My + r*Ms) o]+
+ S3[2B1(R1 + r?Ry) — 2r°R3Bo + (My + r’Ms) (14 + r’piz)]
Fie := (MiNg — M3N1)us + No(My + r*Ms) o — Ms(Ny + r?Na)po + (MsNg — M3No) (1 + rPpo)+
+ S1[2R4Bs + 2(Ra + R3)By — 2Mapyz — (My + r>Ms) i1 ]+
+ S3[2(Ro + R3)Bo — 2R, By — 4Ry (B + r*Ba) + 2B4(Ry + r’Ra)+

+ Mipg + Ms(p7 — paa + rPug) + Ms(iiz — po) — (M1 + r?Ms)p1o]

Fi7 = I’251N3,O7 + r253N3(,04 + I’2,05) - 2E25% — 2I’2E45153
Fig = 51/\/3(04 + r2p5) + f253/\/3p7 — 2E4S% —2E,5153
Fio := (N1 + r*Ng)[S1p7 + S3(pa + r’ps)] + 2r*E4S5 + 26251 S5 (D.58)

Fao := S1(N1pa + r*Nope) + r*S3(N1ps + Nopa)
Fo1 := S1[Nips — Nops + Na(pa + r?ps)] + S3[—N1ps — Nopa + (N1 + r*Na)p7] + 2E4S1S3 + 26253
Fa := —S1(N1ps + Nopa) — S3(N1pa + r*Naps) .






T-Duality Of Principal Chiral Models - Abstract Approach

E.1. Properties of topological deformations

Antisymmetry and derivation. Graded antisymmetry of €2 leads to the first property in (4.5)

QY X) = —(=1)XYQX,Y) = —(~1)X(D(X),Y
{< )= EDTRXY) = mENTDY o by = D(x)LYS (E1)

QY. X) ={D(Y), X) = (=1)"(X, D(Y))
and combining it with the two-cocycle condition (4.3) one recovers the second relation in (4.5)

QX [V, Z]) + (—=1)X0 QY [Z, X]) + (-1)ZEQ(Z, [X,Y]) =
=(D(X), [V, Z]) + (=1)XFAD(Y), [Z, X]) + (-1)7XTND(2), [X, Y]) = (E.2)
= (X, DY, Z]) + (X, [D(Y), Z]) + (X, [V, D(2)]) =0 .

Given a Lie (super)algebra g with generators {Ta} satisfying [Ta, Tg] = fas® Tc one can also write
D in components D(Ta) = DABTg, and define Dag := Da%0cg. Then antisymmetry implies that

(D(Ta), Tg) = —(Ta, D(Tg)) = Dag = —(—1)*Dga (E.3)
and the two-cocycle condition (4.3) leads to the relation

(D(TA). [Te. Tcly + (1) EFNUD(Tg), [Te, Tal) + (1) AHED(Te), [Ta, Tsl) =
 (—1)EBYO D AE £ Pope + (—1)ATE)BHODLE R D5 4 (—1)(CHENAB) D Ef, Dgo o —
= Daffepc — (1) DgFfeac + (—1)ETETN e Dend™NE =

= (DAMfMB'D — (—1)ABDBMfMAP — fABMDM'D>5PC = O , (E4)
where we used the graded antisymmetry of Dag and fagc with respect to any two indices.
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Equations of motion - deformed action. We check that deformations by two-cocycles do not
alter equations of motion and Noether symmetries. Recall that under an arbitrary variation of the

group element g the current transforms as §; = d(g~1dg) + [/, g 10g] and consecutively

550 = 6(5 L Q(JJ)) - L Q(6),j) = L —Q(gog, dj) + Lj. g '0g].J) —

(E.5)
- [ 406 08.1i.1) + 920, lig *56l) =0
where we exploited Maurer-Cartan equation and (4.3) implies cancellation of the two pieces
Qg 'og. [.J]) + Q0. U g '0gl) — QU [g0g.4]) = 0. (E.6)

Grg invariance - deformed action. Before verifying that the deformed action (4.9) retains in-

variance under the global Gg action of the group, we shall construct (4.6). Exploiting the relation

|~

adk(Y)  with  g=¢X X/ Yeg (E.7)

x|

0
gYg Tl = AdgY = ey = )
k=0

and the derivation property of D on the Lie bracket one finds

a0
1
D(g¥g™") =gD(Y)g™' + >, —————adk oadpx) o adk(Y) . (E.8)
Wodo (k+n+1)!
Then, noting that Sé dt(1 —t)kt" = % the second term can be rewritten as
0 1 0 k+n
1 k n (1 — t) t k n
an=O(k—|—n—}—1)!adX ] adD(X) o adx(Y) = J;) dtknzzo Wadx O adD(X) @) adX(Y) =

I
D
[5)
a
<
S—
kA
o
~
CDI
-
[5)
o
x
~—
)
—
X
D
~+
>
~<
ml
o+
>
[ S—
I

=9lg'D(9).Y]g ™", (E.9)

where in the last line we exploited the definition (4.7) and e?dx = Adg for g = €X. Putting

together the two pieces above, one recovers (4.6). Then (4.8) is easily verified using the latter
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and Ad-invariance of the inner product

Q9 Xg,97'Yg) =(D(97*Xg),97'Yg) =
=(g7'D(X)g,.97Yg)+{g ' [gD(97"). X]g. g7 'Y g) = (E.10)
=Q(X,Y) +{gD(g7").[X.Y]) .

This allows to show Gg invariance of (4.9). Under g — gggr one has j — g,;lng and hence

Sq = %f QU.J) - éf (D(9g"J9R). 9r"igrR) = Sa + éf (grD(gr"). [i.J]) =
> = > (E.11)

=5q — fz d{grD(95").J) -

In the last step we used Maurer-Cartan equation and that D, gr are constant in order to write the
extra piece as a boundary term which does not contribute to the action.
A very similar reasoning then shows that the master action (4.12) has the same property: the

multipliers do not transform under g — ggr and it is sufficient to check that

30w ) + (D) F) = 2QUuw ) +(D(g)g ™t Fud+
+ grD(951), liw. Ju]) — (g9rD(g9x g™t Fu) = (E.12)
= 3Qjw ) + (D(g)g ™, Fu) + d(grD(951) ju) .

where in the last step we used g~ F, g = F;, and once again that D, gr are constant.

E.2. T-dual model

Equations of motion. Upon varying the dual action (4.19) with respect to A one finds

~ ~ 1 . ~ 1
65 = L<d6/\, — P+d/\>+<d/\,5<1 —

>P+d7\> + (P_dA, doA) =

i 1 - Dg

. o~ 1 1 ~ 1 =
= fz<5/\'dj_2[1+D/~\d/\' T D/~\P+d/\}>'

where we used the relation (4.20) and the fact that j := j,, with j,, as in (4.16). This immediately

(E.13)

leads to the equations of motion (4.21) after noting that [J,j] = —[ﬁdf\, ﬁPer/N\]. Then,

J satisfies by construction the relation (4.15) and taking the exterior derivative of it one finds

d(xj) = —d[j, A] + D(dj) = D (dj) + [, dA] = D (dj + 3[

J1) (E.14)

which leads to (4.22) upon using the equations of motion (4.21).
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Noether current and Killing vectors. Recalling the transformation law (4.24) of the multipliers
under g — ggr and taking gr ~ 1 + € one finds that oA = Dje. Substituting this into the general

variations (E.13) of the dual action one finds

6S = J<Dedj+ ]] J<€D dj /\_j_] J<ed /\_] (E.15)

where we exploited again the relation (4.15). This immediately leads to the Noether current (4.26).
We can now proceed in deriving the explicit form (4.27) of the Killing vectors. To begin we note

that inserting the equations of motion (4.15) into the master action (4.14) one finds
~ 1 ~ . . .
S= 2] A, —)) with Ji=Ju . (E.16)
b
Even without explicitly computing j, from the expression (4.16) we know we can expand
—) = xdAVXNAT A + dANYAAT 4 (E.17)

for some Xy” and Yy”. Knowing then that the T-dual model contains both a metric and a B-field

term, we can also write the dual action as

1 ~ ~ ~ o
S = zf dAN A «dAMGun + dAN A dAM By | (E.18)
b
so that comparing with the above expression and substituting the expansion of —/ one finds

Gmn = Xpoan Bun = Y 'dan . (E.19)

At this point we also substitute the above expansion for —J into the T-dual Noether current (4.26)

Iy = *Df\j = —d/N\NXNA(DAC + /N\Pf,DAC)TC — *d/N\NY/\/A(DAC + /N\Pf,DAC)TC (E.QO)
and finally compare to the general expression (C.21)
&1 dAM gy + €7+ dAM By = —dAV XN (DA + AP fpa)ocp — »dAMYAA(DAS + AP fpa)ocp . (E.21)

Exploiting the relations (E.19) for the dual metric and B-field and the graded antisymmetry of
Dag and fagc under the exchange of any two indices one can extract the components of the Killing

vectors E% = DpM + APfppM, thus recovering the result (4.27). One can now check the latter
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correctly satisfy the commutation relations [£7,, 7,] = fABC£TC.

(€7, €75] = (DaMAus” — (—1)*BDgMfia”)0p + AV (fua™fue” — (—=1)*Bfnug" fna’)op =

= fag™ D 0p + fag™ AN funPop = fas T, (E.22)

where the first two terms are recombined exploiting the two-cocycle condition as in (E.4), while

the last two by exploiting Jacobi identity.

Structure equation and Hs. From the definition (4.29) of the dual vielbeine one finds

~ 1 1 1 _ 1 o
dé = 1—D,~\d(1 D/\)l—D;\d/\_ . Di\addA(e) = DA[(l Dx)é &] = E
.23
B e L YU VU S S (E.23)
1-Dj 2 21— D5

which is (4.30). In the first step we used 0710 =1 = dO~! = —0~1dOO™? for O =1 — Dj.

Then we used that d(D5) = ad,z and inverted the definition of the vielbeine as dA = —(1 — Dj)é.

To compute H3 we take the exterior derivative of (4.31) and exploit the above relation

Hy = dBy — %<dé, DR®) — (8. adg3® - %(é, Dxd8) = (4, D;&) + %<[é, &, (1 - D)) =

- %<[N, &l & — %<1 _1Dﬂ [6,&], D5&) — ([&, &], Dy &) =
_ %<é, (1 + f%ﬂ)[é, &) = %(é, : _1D7\ 6, &]) . (E.24)

In the first line we inverted the definition of & for dA and on the second line we used {[&, &], Dxé) =

0, which follows from antisymmetry of D5 and the fact that it acts as a derivation on the Lie bracket.

E.3. OSp(1]2)

Supergravity constraints. To study the requirements imposed by supergravity we proceed now
in a slightly different way, that is by taking the constrained structure equations to be satisfied by
the vielbeine in 4d theories [100, 134] and reducing them to 3d. We start by writing the first Cartan
structure equation in (A.19) using 4d spinorial notation, with indices B = {,6556}

deod — gB A Qpod = —Ta¢  da*_gB A Q¥ = -—T*  de¥—&B A Q% =—-T% (E.25)
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The connection is then required to be diagonal, with non-vanishing components Qﬁﬁo‘d‘, Qp%, Qﬁd‘,

and the boson-boson part related to the fermion-fermion ones as

QBBaa = anéﬁa + Qsaéﬁa . (E.26)

Imposing then the following constraints on torsion

. . ) s e o~ o L .
Tpp™™ = 20p705% Tap™ =Tag = Tog" = Top" = Tags" =0, (E.27)

the structure equations become
dea — % f Qp — 8% A Q% = Lg% p &8 (E.28)

de% — & N Qg™ = =3 N ENT 0% — EF AT, 5% — &P A ETT, g

56 _ aP G 186 aYVF . & _ BB A aYF G _ PP L VT &
dé 6‘5/\96 = 265 A8 T'y"yﬁﬁ RN 7',”3[3 &% A &T. .
In three-dimensions the distinction between dotted and undotted indices is lost, so one can proceed

by identifying the two types of indices, which makes the last two equations the same

de®P — &P A Q,* — 8 A QP = 87 A 80T, (E.29)
de% — &0 A Qp* = —16P7 A 80T, 5,0 — 280 A PV T5% . '
Then, using
g = o) 4 5B QB _ fx . @ (E.30)
and choosing
Q[po]va =0 7A_[/w] (Wé)a = 7A_[pa] [wé]a = 7A_p[ﬁvé]a =0, (E31)
the first equation splits into
de®P — 27 A Q.P) = —le* A &P dS =0, (E.32)
while the second becomes
de® — P A Q% = —1eP A T 500" — €0 A PV Ty . (E.33)

With the above choice, S completely decouples from the system and the remaining constraints are
effectively three-dimensional. As mentioned in Appendix A of [134], in the language of o-matrices

commonly adopted in four dimensions this corresponds to the decoupling of the direction associated

2

with the antisymmetric sigma matrix o<, i.e. the second Pauli matrix. Hence we are left with the
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constrained structure equations

de®® —2e7@ A QP — —Le* AP

(E.34)
de® — eﬁ N Qﬁa = —%656 A eﬁWT@WEO‘ — e5 A eB’YTﬁ,Y(;a ,

encoding all the necessary requirements on torsion and connection. The components Tyg 45 and

Taﬁfyé are unconstrained and the diagonal connection components are related by
Qap™ = 20,657 . (E.35)

These have expansion on the vielbeine Q,° = 6759750(5 + e’Ynyaﬁ and off-diagonal components

vanish as needed by (A.33) and metric compatibility implies Q5 = Qgq.

There is another requirement, needed for three-dimensional supergravity theories, that thanks
to the abstract approach we can now take into account more easily. The components of the three-
form Hs should be restricted and the non-vanishing ones should depend on a scalar superfield L

and its derivatives as described in [134]
Hy=eane®® rnegl+egnel ne™Dol — LeP neg? A ey®(iD? +8S)L (E.36)

where Dy, is the superspace covariant derivative, D? = DD, and S is another scalar superfield.

Useful identities. \We report here a set of identities needed in the study of the OSp(1]2) model.

To begin we introduce generic quantities taking values in some Lie superalgebra g
U:=Up+ Ur V=V, +Vf, (E.37)

where we split purely bosonic and purely fermionic contributions. In order to compute the action

of ﬁ on V we exploit the above splitting and obtain the following expansion

1 1 1

1 F ady 1F adub + ade [1 + adUb][l + (1 + adub)_l o ade]
[1F (1 Fady,) toady] M1 Fady] ' =

i [ 1 K 1 (E.38)
= +— o adU j| =
= 1 F ady, f 1 F ady,
1 Ad 1
= o O
1F adub 1F adUb Ur 1F adUb
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which due to the nilpotency of fermions terminates at some power k = N¢. For OSp(1|2) we have
U:= t"PLas + x*Qu V= v Los + n*Qq (E.39)

and the above expansion terminates at k = 2, leaving us with three contributions to compute. To

begin we define X2 := x*Xo = X*XPéqp and
U ug” = —L6%uysu =1 —355% 03 with U2 1= Uppu®P (E.40)

Using the latter we can start computing the action of the bosonic term in the expansion on V

= (Vo + V) = i adg, (Vi + V) . (E.41)

1-—- adUb k=0

Exploiting the commutators (4.33) one obtains

ad2U};<\/b) = (2u2)k—1(u2\/0¢[3 — 2u,yauéﬁv’Y5)Laﬁ for k=1 (E.42)
ad (V) = —2i(20%) un VP Lo for k>0
and
adgf (Vr) = (3u*)*n*Qq for k>0 (E.43)
adZf L (Vr) = —i(u?) < up®nP Qa for k>0 '
which lead to
;(Vb +Vf) = ! [(1—u?)v*® —2u YsPv® — 2ju ("‘vm'y]L s+
1 —ady, 1—2u? v 7 “
2 .
+ m”ﬁ[%a — 1ug™]Qa = (E.44)
= V' Lap + 1" Qq
and consecutively to
ady, 0 —————(V) = "% Lop + iV'%xP Qs . (E.45)
1-— adUb
One can then compute the terms in the expansion (E.38) recursively, thus obtaining
1 1 2 p Br/(Vad) _ iy, ot (B
1—7adub oady, o 1—7adub(v) = 1—72u2[(1 — ) @xP) — 2uy* ug ' x0) — 2/u7°‘n’( x'Y)]Lang
2 .
+ 52V X 06% — 1up*]Qa =

= V"L os + 1" Qq (E.46)
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and consecutively

ady;, o [ adg oady, o m(\/) _ n//(axﬁ)Laﬁ 4 /V”"‘ﬁxﬁQa
b b
and the last term
ad ad 1 ( )
O o) o) o —
1 —ady, - ady, oo ady,
1 .
= m[(l - ”Z)WI/(aXm - 2Ll/yau(56’r]”(’yxé) — 2/u,yo‘77”(5x'7)]/_aﬁ+
2 . )
+ 5V X0 — 1up®]Qa -

One can then put together the above pieces, obtaining the following expression

1 1
1—ad (V) = 172u2[(1 — %) 2% — 2u7°‘u(55275 _ 2"Uw(azﬁ)ry]Laﬁ+
—ady _

2
2 — 12

+ (*[6s° — ius”1Qg

with

ZoB . yoB (77/ + n//)(axﬁ) _
2
2—u?

[77(0‘ _ /nwu’y(a]xg)+
i

(2 - u?)(1 - 2u?)
(=% —i(v + V") Pxp+
_ 1_;2112[(1 — U2)UC¥5 _ 2Uﬂyau56\/’y§ . 2“«”7(0‘\/6)7])(5-’-

C(2- u2)(11 —2u?) [3n% —i(5 — v?)nPus®]x .

:\/o‘ﬁ+

+ [(]_ _ %U2>Va6 _ 3UfyaU66V75 o 3I'ufy(ocvﬁ)’y]x2

a

=7

(E.47)

(E.48)

(E.49)

(E.50)






T-Duality Of Symmetric And Semi-Symmetric Spaces

F.1. Initial model

Equations of motion and Noether current. Variations of the action (4.64) read
85 = | (sm.am)+ 55p. @)~ 5¢6a.p) (F.1)

and upon recalling that for g — g + dg the current transforms as j — j + 4/, with §; = d(g~'dg) +

[/, g 16g], one can use (4.62) to project on the four subspaces, thus obtaining

5p = d(g 0g)lp + [A (g 68)lp] + [, (g d8)ls] + [m. (g7 6g)lq] + [a. (87 08) |wm]
6m = d(g”"0g)lm + [A. (g7'08)Im] + [P. (87 08)lp] + [m, (g 68)ls] + [a. (g "6g)lq]  (F2)
6q = d(g™'0g)|q + [A (g7 108)lq] + [P, (8 08)|m] + [m. (g7 08)lp] + [a. (&~ "0g)ls] -

Substituting and rearranging one then recovers (4.65). The Noether current associated to the
G g— g[lg invariance of the initial action is then obtained by letting g, ~ 1 + ¢ so that

dg = —ge and dm, 6p, §q are simply the projections of —g~ldeg on the respective subspaces.

LaxcConnection. Recalling Maurer-Cartan equations (4.66) and equations of motion (4.65)

Fa+5[m m]+[p.ql =0 . p
VA*m—g[p.p]+§[Cl,Cl] =0
Vap+|[m, g =0 2
MC: < EOM: {Vaqg+([p.2+m—m]=0 (F.3)
1 1 _ k
Vam+ §[P,P] + 5[6], ql=0

Vap—1[q,2+*m+m]=0
Vaq+[m,p]=0

121
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since d(xA), d(xp), d(xqg) do not appear in the above equations, one can safely take the following

ansatz for the Lax connection, with coefficients a, b, ¢, w, t to be determined
J=aA+bm+cxm+wp+tqg. (F.4)

One can then construct the curvature F; := dJ+ £[J, J] of the connection and rearrange terms in
the form of the above equations. In doing so, one should be more careful than with the principal
chiral model, as some terms, such as dp,dq or [m, p], [m, q] appear both in equations of motion
and Maurer-Cartan equations. For this reason one should split such terms and in doing so there
is some extra arbitrariness appearing, which could be taken care of by introducing new coefficients
to be determined. For example, when splitting the term wdp between the second Maurer-Cartan
equation and the third equations of motion one could write wdp = *(W +a)dp+ 5 (W —a)dp, so
that each of the two contribution could be used for one of the two equations. Repeating this for

all the necessary terms one finally obtains

Fy = a{dA+ 3[A Al + 55 [m m] + “L[p, ]} + 42 {dp + %2E[A, p] + L2 [m, q]}+

+b{dm—|—a[A m]+ W+;L[p D]+ t4Jgu q, q}+t+p{dq+ ta+cr[A CI]+ Wb+>\[ ,P]}+

t+o t+p
+ c{d* m+ a[A, xm| 42 [p. p] + 524[q. q]}+
ﬂ{O|CH- L=I[A, ] + F2E[p, »m] + L2 [p, m]}+
wse{dp + %2B[A p] + 25 (g, +m] + “’ wala,ml} (F.5)

where we introduced a, 3, p, 0,7, A, 4, V to be determined. In order for the first four brackets to
match the Maurer-Cartan equations and the last three brackets to match the equations of motion

one needs that a =1 and

2 2 . w+B8 _ th+y _
b —c?=1 wt =1 wib 1 g
wip t24v _ t+o _ whb+X _
2b =1 2b 1 t+p 1 t+p 1
wl—p t2—v _
st = —K 5w = K (F.6)
t—o __ we _ 1 wb—X\ _
t—p 1 t—p K t—p 1
w=B _ 1 te __ 1 th—y _ 1
w—a w—a K w—a

From the above constraints one immediately recognises that o« = 3 and p = o, then

e combining the first two conditions on the second line and the two conditions on the third line

one finds that v = w? and u = t2

e combining the fourth condition on the first line with the third condition on the fifth line one

finds that y = w and oo = tb
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e combining the fourth condition on the second line and the third condition on the fourth line
one finds that A =t and p = wb

At this point all the extra coefficients have been fixed in terms of b, ¢, w, t and one can find, for

example from the first condition on the second line and the second condition on the third line,

that b = 3(¢2 + w?) and ¢ = £ (t2 — w?). The second condition on fourth and fifth line are also

consistent with this provided one uses wt = 1. Now one can impose b?> — c? = 1, thus finding

2 wh(k? — 1) + 2wt (k2 + 1) + t4 (k% — 1)

2 _
—c° = 1.2 1 = k-=1. (F.7)

Hence the flatness of the lax connection (F.4) can be cast into the Maurer-Cartan equations and
equations of motion of semi-symmetric space sigma models provided that kK = +1. With this
restriction, all the above constraints are satisfied and all coefficients are written in terms of w and
t, which must be such that wt = 1. The simplest choice is to set w = z and t = z~!, which

finally leads to

a=1 %(22—%2’2) c= —i(z2—z*2) W=z t=2z"1 (F.8)

b —
a=3(z+z23)=p p=%Z+z =0 Y=z A=z""1 p=2z72 v=z

F.2. T-dual model

Equations of motion in p,q. To solve (4.105) in the fermionic subspaces we first write them as

p: — (3 +adg )(p) — D5, (qw) = =Va,Ay +adz (M) F9)
q: (3 - adi\h)(%J) = Dg, (pw) = —Va,Aq + ad/”\p(mw) :
which in matrix form read
1 -
—(5 + adj —Dx —Va,Np +adi (m,
(2 /\h) 1 A [Pw] _ AMNp /\q( w)] . (F.lO)
—Dj (5 — ad/~\b) qu —Va,Nq +adg (my)
R-1
To invert R~ we first define ¢y 1= ﬁ so that it can be rewritten as
-1 —1
—C —Dx —C 0
R~ = * =1 | @2=my, (F.11)
—D;\m c_ 0 c_
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with

10 0 - Dy
1 = M = ™ . (F.12)
0 1 oDy 0

Consequently one finds

R= (1, — M) [C+ O] _ i MK [C* 0] _ i M2 (1, + M) [g* 0] . (F.13)
k=0 C_

0 c 0 c k=0

and (4.108) is recovered after noting that

k
iMZk:i —cyoDj oc_oDjg 0 _
k=0 k=0 0 —c_oDg ocyoDf
(F.14)
1
_ 1+C+OD/~\mOC,OD/~\m 0
0

1+C70D7\mOC+OD/~\m
Hybrid action. Using the properties of the inner product we write the action (4.70) explicitly as

2
+ </~\pv Va,qw + [My, Pul) + </~\qv VA, Pw + [My, qu])+

1 < 1
Sw = L<mw, *My) + 5 Pus Gu) + Ny, Fay + 5[Me, mo] + [Pu, qul)+ (F.15)

R, Vs + [P ] + 5[, @al) + (D(AW). M)+ 5(D(P). ) + 5(D(), 40

and substituting xmy, in the first term with (4.105) the terms can be rearranged into

1 ~ -
Sw = L 5{Mu, AR = D5 (Au)) + Py, Fa,)+
1 - . - -
+ 5¢Pu Vahq + {300 = Dx (pu) = (o, mu] = [y, ] + VaAg}+ (F.16)
1 ~ ~ ~ ~
+ §<Qwv Va,No + {—%Pw — Dj_(qu) — [Ng, mu] = [Ny, pw] + Va, Ao}y

Now the curly brackets are precisely the equations of motion (4.106) in the subspaces p and q,

hence vanish identically and one can proceed by substituting the solution (4.107) for p,, and qu,

1 . N
S, — L (M, dAm — D5 (Au)) + Ry, Fa, )+ (F.17)
1 ~ ~ - 1 ~ - -
+ §<VAM/\p- R21(Va,Np) + R22(Va,Ag)) + §<VAw/\q: R11(Va,N\p) + R12(Va,Ag))+

1 ~ 1 ~
+ §<(R11 o ad,~\q + R0 adf\p)mw, VAW/\q> + §<(R21 o ad,~\q + Ry 0 adf\p)mw, vAw/\p> .
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At this point one needs to recombine the last line with the first term on the first line. This can
be achieved by noting that V.X,Y € g the entries R;; of the matrix (4.108) satisfy the following

relations

(R11(X),Y) = (X, R2(Y))  (R12(X),Y) =X, Ra(Y))  (Ra1(X),Y) = (X, Raa(Y))
(F.18)
which allow to bring the operators acting on my, to the other side of the inner product. Combining

the two terms one then recovers the definition of T given in (4.110)

Sy = L %<mw, )+ Ay, Fa, )+ (F.19)

1 ~ ~ ~ 1 - - -
+ §<VA,,J/\p' R21(Va,Ap) + R22(Va,Ag)) + §<VAW/\qv R11(Va,Np) + R12(Va,Ag)) -

Finally, exploiting the expression (4.111) one can immediately rearrange the first term as (my,, T) =

(T, %P+T>, thus recovering the hybrid action (4.112). We finally notice that the above relations

for the components Rj; of (4.108) are easily derived after using the definition (4.109) of ci to
find that {c+(X),Y) = (X, cx(Y)). For example, this implies that

(cyoDj_oc_oDg (X),Y)=(X, Dz ocyoDg oc_(Y)) VX, Y eg (F.20)

and in turn allows to find

(R11(X), Yy = =D (~=1)*(cy 0 Dx_oc_oDf ) oci(X),Y) =
k=0

= —(X,c_0 Y (-1)K(Dj_ocyoDs oc)k(Y)) = (F.21)
k=0

a0
= —(X, Y, (=1)"(c- 0 Dj o cy oDy ) oc (Y)) = —(X,Raa(Y)) .
k=0
The remaining relations are obtained using analogous reasonings after noting that

ng = Rll o D/~\m o C_ Rgl = —R22 o D/~\m oCy . (F.22)

Equations of motion. To vary the action (4.112) with respect to the multipliers and A, it is

important to notice that for a generic variation the first term in the action gives

6<<T, 115P+T>> (5T, ) — (55 o %T, H%P_T>, (F.23)
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where M := m,, as in (4.111) and we used the relation

1 _ 1 1
6<1i5>:+1i505501i5' (F.24)
and exploited (F.18) to find
X— vy (L xv) wxve (F.25)
'1xs /" 1EsT e '

The only non-trivial terms to vary are the entries R;; of (4.108). These only depend on 7\;], Aw and

have variations
67\le1 = Rppo ad5/~\m oRy1 + Ri10 ad6/~\m o Ry

5/~\m Ry = Ro1 0 ad6/~\m o0 Ry + Ry o ad6/~\m o Ri»

(F.26)
5/~\mR12 = R12 o ad6/~\m o) R12 + Rll o adé/N\m o R22
0x, Ro1 = Ro1oadsz o Ro1 + Ry oadsg o R
5/~\th1 = R0 ad6/~\h oRi1+ Ripo ad5/~\b o Rap
0, Raz = Raz 0 adsf, © Raz + Ra1 0 adgs, o Riz (F.27)

67\6R12 = Rq10 ad5/~\h oRi»+ Ripo ad5/~\b o Ro»
57\h Ro1 = Roo o adaf\h oRy1 + Ry 0 ad(5,~\h oRy1 .

In deriving the latter one uses that c4+ only depends on Ay and from (4.20) has variations 5,~\h(:4_r =

Fcyo ad57\b o cq. For example, also using 67\mD/~\m = adg; _ and exploiting again (4.20), one has

1 1
0x Ri1 = ocroadsx oc_oDj o
Am (l—i-C_s_on\moC_oD/~\m * Am Am 1+ cyoDj oc_oDg
+ L D d 1
ocroDs oc_oadsz o ocy =
1+C+OD/~\mOC’OD/~\m + Am OAm 1+C+OD7\mOC,OD/~\m +

1
1+ cyoDg oc oDy

Z—Rlloadéf\mOC_ODf\mO OC++R1203d6/~\mOR11 =
= Rlloadéi\m o R +R120ad6/~\m o Ry1, (F28)

where in the last step we used a rearrangement analogous to that in the last step of (F.21).
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Similarly, varying with respect to 7\6 and using 6,~\th_r = Fcy o ad(5,~\‘J o ¢+ one finds

1 1
0z Ri1 = 003 cy oDz oc_oDi o +
Ny 11 <1+C+OD/~\mOCOD/~\m Ay =t Am Am 1+C+OD/~\mOC,OD/~\m
+ L D o D ! +
OoCy O X O00x C_O 5 O o C
1+cyoDg oc_oDg * A Am 1+cyoDg oc_oDg *
1
+
1+cyoDg oc_oDg

067\1;C+:

1
1+ croDg oc_oDj
1
1+cyoDg oc_oDg

= Rlloadéi\hochon\moc_oD;\mo ocy+ (F.29)

—Rlzoadf\hoc,on\mo OC+_Rlload67\hOC+:

1
oCy+
1+C+OD/~\moCoD/~\m> *

= R oadg, © <_1 oy oD, ocoD5, 0

+ Ripo0 ad5/~\h oRy =
= Ry 0 ad5/~\h oRi1+ Ripo ad6,~\h o Ry .
In the last but one step we used a rearrangement analogous to that in the last step of (F.21). The

variations of the hybrid action can then be quickly computed by exploiting the above findings and

making use of the notation (4.118). This way one has
63,5 = adgs, + OF o adsz 0 O1 + O] o adys © O
67\h7— = OJ{ o adéf\h(RzlvAw/N\p + RszAwi\q) + O; o ad57\h(R11VAw7\p + ngvAw/N\q)

05,5 = adsz, 0 O1 + Ol o adg,
Oz, T = ada/N\p(RllvAw/N\p + R12Va,Ag) + 05V 4 04,

0, T = VA, 0w + OI o adéA;n(R11VAw7\p + R1oVa,Ag) + OE o adé?\m(R21VAw7\p + RoaVa,Aq)
5/”\q5 = adsz, 002+ O; o adgz,
5/~\q7— = adéf\q(R21VAw/~\p + RQQVAw/N\q) + OJ{VAwéf\q

54,5 =0
Au (F.30)

{%5 — Ol oadsz 001+ Ol oadg; ©0;

6a,T = —(Dx,, + O oads + O] oadj )5A, .
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Upon using the latter it is sufficient to recognise that, for i = 1,2, one has

1. . 1 1
2L A __[:L—ST'HSP_T]

- - 1 1

(01 (1), O(7i)] = —[(’)10 T, ozol_spg] _ [olo g o2ol+5p_r]
(F.31)
[M, O;(m)] 71 T, 0 71 P.T 71 T, 0 71 P_T
; = — e — 0
Y 1+ 7' 1-5* 1-S" 7' 1+S ~

1 - - 1 1
S0, 0, =~ 00 LT 00 1P T

and use the definitions of p, § from (4.107) to recover the equations of motion (4.113). It is
then straightforward to check that the equations (4.115) hold true upon substituting the equations
(4.106), satisfied by p, m, g, and exploiting the T-dual equations of motion (4.113) together with

Jacobi identities.

F.3. Examples

S3 ~ SO(4)/SO(3). For symmetric spaces, upon dualising the whole isometry group and setting
D = 0, the operators W and Z from (4.122) reduce to
0 0
W :=adp, +adp, © Y, adiﬁﬂ o adp, Z :=adp, 0 ), ady< oadp, . (F.32)
k=0 k=0

Hence, given the commutators

I
2

]
2

i

[Hi' Hj] = 2

E,ijk [/\//,‘, Hj] = 8,'J‘kMk [/\//,', MJ'] = E,ijk , (F.33)

and the expansions A, = ALJH,' and A = y'H; + x'M;, it is simple to compute

i i
adn, (Au) = 5y Aeij" Hi adn,, (Auw) = X' ALei M (F.34)
After a few more commutators, using €;p€x/P = 0ik0j1 — 8;10;k, one finds the following pattern

ad%\’; o ad/\m(Aw) = *8<):|-) [(y . X)A(Id — (y . Aw)x’]ylgl.j/M/ for k=1

(F.35)

1/y2\*
adiﬁ“oadAm<Aw>—+4<y4> [ - )AL = (- Aw)x'] My for k=0
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so that using Y7~ o(y2/4)k = 4%% one can easily re-sum both as

0 [ee}
D add 0 ada,, (Aw) = ada,, (Aw) + )| ad3 o adp,, (Au) =
k=0 k=1
i i , o
= fx’AJwe,-jkl\/lk — 72[(y “Xx)A, — (v - Aw)x’]yfe,-jk/\/lk =
> 24 = %) (F.36)
i o .
= sy Ay — (- 0ALY — (4= )R Te My
i ad?**1 o adp_(Ay) = ! [(v - x)AK — (v - A)xK]M
Ay Am \Fw 4_y2 y y k

k=0

Acting once more with ady,, and rearranging, the expressions (4.133) are obtained. One can then

take the sum and difference of W,/ and Z,' and construct an ansatz for the their inverses
(W +2) 1 = at o + xw(adx! + aty!) + yu(afx! + aty') + e (ag x? + ay?)+  (F.37)
+ x%yPe ! (ag XK + af ) + xTyPeapk (aigx! + aty!) + afoxyPeanx yecd’

This leads to a set of conditions for the coefficients of the ansatz which can be solved in both

cases and, defining z := x - y for shortness, take the explicit form

A a2 (2 — 42 —222[x2(y2 —2) — (Y2 — &) + z* —a
L XO(y?—4)2 —222[2y%(y? — 4) — 4x2(y2 — 4) + x*(y? — 2)] + x?2*
2

+ 4(y* =4[22 =X (y* - 4)] _
1

2T A 227 ) A A+ (w0 -]
L 22 =228 -2y + X% (y? — 2)] 4 z(4x? + x* — 4y?)(y? — 4)? L
N | PR O e e R e [ T
L (164 xt—4y?)(y® —4y)? —222(y2 — 4)[16 + y2(x2 — 4)] + z*(y2 — 4) .
& (B2~ 2)[2% —22202(y> —2) —4(y2 —4)} + (X" — D)2 -4 °
+ 8iz(y? —4) o (F 38)
% = (x* —4y2)(y2 — 4)2 —222[x2(y2 —2) — 4(y2 — 4)] + z* % '
L 8i(y? —4)? o
= C(XF—4y?)(y2 — 42 —222[x2(y2 —2) —4(y2 —4)| + ¢ 7
. 2102 42— 22208 — 292 4 X2y - 21+ 2 _ar
% T - A 220202 —2) 4 - D) + (- 7]
o 8iz(y* —4)(y* — x> —4) _ -
B P 7 e e R e e e T I R
ot = 4y? —4)[22 — x*(y* - 4)] -
B (x%y2 = 22)[24 - 222{x2(y2 = 2) —4(y2 - M} + (X - 42) (02 -4 TR
withaj = a3 = —a; ajp=-a3 =a, a =—a] =ay
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OSp(1]2)/SO(1,1). For this semi-symmetric coset, upon dualising the whole group of isometry
and setting D = 0, the operators W and Z from (4.122) reduce to

o6} o6}
W :=adp, + N+ (adn, —M")o > S*Flo(ady, +M)  Z:= (adp,—M')o Y S**o(adp, +M) .
k=0 k=0

Recall then the expansion of the gauge field and multipliers
A, =AL,_ N=Ng+N+ A+ Ng =YLy +6TQr+x Ly +x "L +6"Q_, (F.39)
as well as the osp(1]2) algebra in lightcone notation

Qi) =1L Q)= Loe Las Q] = Fi
{Qe, Q) = Loy {Qr.Q-} =Ly L, Q7] = FiQx (F.40)
+

[Li—Lis] =Hilsy [Lys L] =—2iL, [L+— Qi) =

We start computing the action of R;; defined in (4.108) on the fermionic subspaces. These act as
1:p—p Ri2:q—p Ro1:p—q R g —q (F.41)

and are nothing but combined actions of ada, and cy, defined in (4.109). We can thus exploit the

above algebra to notice that
adp, (Q+) = +5y(Q1) adp, (Q1) = +ixTF(Q<) | (F.42)

and use these to extract the eigenvalues of ¢y as

I+
w\

Q1) =2 32120k, (@2) = 2 3 (-2 (+4)(@) = 2 Q) = a:(@s) (F43)

and similarly for c_(Q+) = ar(Q+). We can now proceed with R;;. For example, noting that

—c oadp, o c-oadp, (Q+) = —xTx7~a2(Q), one can easily extract

o0
Ri1(Q4) = Z —cyoadp, ocoada,) o (Qr) = —ay Z xFrxTTa2)R(Qy) =t 1 (Qx)
and after repeating the same for the other operators we find

R11(Q4) = n1(Q4) R12(Q-) = n2(Q1) Ro1(Q4) = m1(Q-) Rxn(Q-) =na(Q-) (F.44)
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where we defined

ottt 52 _ix—— 22
—ay IXTTay X~ ag

o py e T (Fas
22 P Xt x a2 T xttx—a? (F.45)

We can now proceed in computing the action of the various operators involved in W and Z on the

gauge field A, := AL, _. First of all we notice that
adp, (Ay) =0 adp,, (Aw) = —IAxT Ly —x L), (F.46)

where the first relation follows from the fact that b is Abelian. Then, to compute N(A,) and
M(Aw) we exploit the relations

adp, (Ay) = —5A07Q. ad, (Ay) = $A07 Q- (F.47)

and nilpotency of the multipliers (8%)% = 0 = (67)2, which implies the vanishing of any term

containing more than once the operators ada, or ada,. This leads to

N(Ay) = (adp, 0 O3 + adp, 0 Os)(Ay) =
= {adp, o (Riz 0adp, + Ri10adp,) + adp, o (Rzz 0 adp, + Re1 0 ada,) }H(Aw) =

. _ (F.48)
= [/\q, —él’llAQJrQ_;.] + [/\p, él’ggAQiQ_] =
= —él’llA92L+_ — £r22A92L+_ =0 ,
where in the last line we defined 62 := 676~ and used r» = —ry; to cancel the two terms.
Proceeding similarly for M we then find
M(Ay) = —5roA0? Ly — Lr1 ABPL_ (F.49)
and can thus start collecting the following terms
(adp, + N)(Ay) =0 (adp, + M)(Aw) = AT L+ XL _ = Xem (F.50)
with AT = —ix T+ 52267 A AT = ixT [ 5267A. .

To compute W, Z we need now to repeatedly act with S := adp, + L defined in (4.123) on A e m

adp, (N) = iy T L —iyNTTL (F.51)
LX) = [Ap, ira AT 02Q 4] + [Ag, —iro ™ 0TQ1] = —iniANTT02 L —iroh™62L__
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so that we find

STt .= iy[l - %92]

SA)=ATtSt L+ TSl with , (F.52)
— . . I
S5 = —/y[l + %9 ]
Recalling that r» = —r11 we see that S~ = —S™T and we can thus easily compute
e} 0 o0
DS = AT Y (ST L+ AT Y (ST Lm = s (AT L+ AT L) = Xeem

k=0 k=0 k=0
0 0 0
Z 52k+1(>\) —\tt Z(S++)2k+1L++ I S Z(Sff)QkJrlL__ _ 50(>\++L++ —~ AL )=X,em
k=0 k=0 k=0
(F.53)

where we defined . ”
Z S++ Z S++ 2k+1 . (F54)

We shall later compute the latter sums, but for the moment we can directly proceed in computing

the final ingredient, namely the action of (adp, — M)A, with x = {e, o}. We easily find

adp,, (Ax) = 2i(x AT —xTEAT)L, -

(F.55)
MT () = (inahy ™ + i A1),
so that we can combine the two terms into
(adp, — MT)(Ax) = 2i(x 7 [1 = 2220225 T — xTH[1+ 522072\ 7 ) Lye (F.56)
and rewrite the operators W, Z as
W(Au) = (adp, — M")(Xo) Z(Ay) = (adp, = MT)(Xe) - (F.57)
Recalling the definitions (F.53) of A, and (F.50) of A% we then easily find
W(Ay) = 2i(x 7 [1— 52=02| At — xTT[1 + 52207 |\, )Ly = (F.58)
= 2050 (x T T[1 = 20 ATT — xTH[1 + 5207 AT )Ly =

= 25ox X ([1 — 222071 + 5256°7] — [1 + 5267 [1 — 52-6°])AL,_ =0
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and
Z(Ay) = 2i(x 7 [1 — s2=0? NI — x++[1 + 52207 N; ) Ly = (F.59)
= 2ise(x T T[1 = 320X — xTH[1 4+ 52207 N )Ly =
= 2500t ([1 = B[ ] (14 ] 1 AL -
=4xTTX s [1 + 2 92]AL+_ :
Where in the last line of the computation for Z we exploited (F.45) to notice that 32 = —2&

and combine the 62 prefactors. All we are now left with is the computation of se 1= >/ ,(S+F)2k.

Recalling that S** := iy[1 + 2262] one can easily find
(STHK = (iy)* + k(i) irnb® (F.60)

so that upon defining z := iy it is immediate to obtain

0¢] 0¢]
Z K4 2k(2)%K Lirg6?) = (1 + irn620;) Z o= ——[1-22%6%] . (F61)

Substituting the latter into Z(A,) and recalling the definitions (F.45) one finally recovers (4.138).
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