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Abstract: Hyperspectral pansharpening is crucial for the improvement of the usability of images in
various applications. However, it remains underexplored due to a scarcity of data. The primary goal of
pansharpening is to enhance the spatial resolution of hyperspectral images by reconstructing missing
spectral information without compromising consistency with the original data. This paper addresses
the data gap by presenting a new hyperspectral dataset specifically designed for pansharpening
and the evaluation of several deep learning strategies using this dataset. The new dataset has two
crucial features that make it invaluable for deep learning hyperspectral pansharpening research. (1) It
presents the highest cardinality of images in the state of the art, making it the first statistically relevant
dataset for hyperspectral pansharpening evaluation, and (2) it includes a wide variety of scenes,
ensuring robust generalization capabilities for various approaches. The data, collected by the ASI
PRISMA satellite, cover about 262,200 km2 and their heterogeneity is ensured by a random sampling
of the Earth’s surface. The analysis of the deep learning methods consists in the adaptation of these
approaches to the PRISMA hyperspectral data and the quantitative and qualitative evaluation of
their performance in this new scenario. The investigation included two settings: Reduced Resolution
(RR) to evaluate the techniques in a controlled environment and Full Resolution (FR) for a real-world
evaluation. In addition, for the sake of completeness, we have also included machine-learning-free
approaches in both scenarios. Our comprehensive analysis reveals that data-driven neural network
methods significantly outperform traditional approaches, demonstrating a superior adaptability and
performance in hyperspectral pansharpening under both RR and FR protocols.

Keywords: pansharpening; remote sensing; deep learning; hyperspectral images; image fusion; ASI
PRISMA

1. Introduction

Remote sensing (RS) has revolutionized our ability to observe and analyze our planet
from a vantage point beyond the Earth’s surface [1]. The analysis of data gathered by
sensors onboard satellites or aircraft, in fact, allows the inference of useful information
about the land, water, and atmospheric systems of the Earth. This technology has become
fundamental in several fields, such as environmental monitoring [2,3], agriculture [4],
urban planning [5], disaster management [6], and resource exploration [7].

However, the costs of sending a satellite into Earth orbit are very high. They range
from USD 2.6 k/kg with SpaceX to USD 22 k/kg with NASA, with an intermediate value
of USD 17.6 k/kg with Soyuz, the Russian rocket system [8,9]. Minimizing the payload
is therefore the major goal that drives the choice and the design of every component
on a satellite [10]. This constraint, in combination with the need to use as little energy
as possible, results in a huge trade-off between the spatial resolution and the number
of acquired bands when designing optical remote sensing devices. On the one hand,
in fact, several orbital expeditions, such as Landsat 6/7 [11], SPOT 6/7 [12], and Sentinel-
2 [13], include a panchromatic imaging device acquiring data at high resolution [14].
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On the other hand, missions carrying hyperspectral (HS) imaging devices, such as ASI
PRISMA https://www.asi.it/scienze-della-terra/prisma/, accessed on 26 May 2024, have
had to decrease the spatial resolution in favor of a higher number of acquired bands [15].

In this respect, the loss of spatial resolution can be partially solved through the use
of pansharpening [16]. In this context, the panchromatic image is used as a source of
information to extend the spatial resolution of the multispectral (MS) and HS images.

The first attempts at image pansharpening were provided by machine-learning-free
approaches [17], designed to handle data in the range of visible radiations (400–700 nm).
Among these methods, different groups of techniques, such as component substitution
methods (CS), multiresolution analysis (MRA), Bayesian approaches, and matrix factor-
ization techniques, can be recognized [18]. In the first group, the core idea is to use the
projection of a high-resolution version of the spectral image into its spatial component
and then revert the transformation using the panchromatic information instead of the
extracted spatial projection. These methods are usually easy to implement, achieve a
high spatial fidelity, and are robust to misregistration, but they can create significant spec-
tral distortions [18]. Principal component analysis (PCA) [19], intensity–hue–saturation
(IHS) [20], Gram–Schmidt (GS) [21], and GS Adaptive (GSA) [22] are all included in this
group. The MRA group comprises the Decimated Wavelet Transform (DWT) [23], Un-
decimated Wavelet Transform (UDWT) [24], “à-trous” wavelet transform (ATWT) [25],
and Laplacian Pyramid [26]. They typically consist in using a filtered version of the PAN
signal to extract high-resolution details and inject them into the spectral image. Compared
to the CS methods, the MRA techniques are more difficult to implement and computation-
ally more complex, but also achieve a better spectral consistency with the original spectral
information. Some other approaches, for instance, Guided Filter PCA [27], combine the two
techniques to extract the advantages from each but the results on HS images have not been
promising, being the technique with the worst results on HS data in Loncan et al.’s investiga-
tion [18]. The Bayesian approaches are based on the estimation of the posterior probability
of the full-resolution image that would be obtained considering the original panchromatic
and spectral information. These methods typically consider the sensor characteristics to
enhance the resolution, thus achieving good results but also being less generalizable and
more complex to use [18]. Finally, matrix factorization techniques are described by Lon-
can et al. [18] as the only ones purposely used for HS pansharpening, and instead of using
the panchromatic information, they use a high-resolution MS image to convey the spatial
information of the HS data into a higher-resolution space. Even in this case, to exploit the
best factorization to reconstruct the new image, the characteristics of the sensors are taken
into consideration, making them less viable compared to the other methods.

These machine-learning-free approaches assume the possibility of exploiting the
existing relationship between the panchromatic image and the spectral bands in the input
data. However, this assumption may not be valid when handling data outside the range
of visible wavelengths, i.e., when there is a partial or missing spectral overlap between
the panchromatic image and the spectral bands to be processed. Alongside these methods,
neural network-based approaches have been recently developed, showing promising
results even outside the visible part of the spectrum.

When it comes to deep learning approaches, most of the methodologies are based
on MS data [28]. Nonetheless, some attempts in HS pansharpening have been proposed.
In 2019, He at al. [29] proposed HyperPNN, a CNN that, firstly, extracts spatial features
from the panchromatic image and spectral features from the HS image, secondly fuses
the spatial and spectral features with dedicated convolutional layers, and thirdly predicts
the spectral information of the pansharpened image with convolutional layers that focus
only on the spectral signatures. This model was followed in 2020 by the improved version
HySpecNet [30]. In the same year that HyperPNN was proposed, Zheng et al. [31] inves-
tigated the use of the residual network for pansharpening, firstly guiding the upscaling
and enhancing the edge details of the HS data with Contrast Limited Adaptive Histogram
Equalization (CLAHE) and a guided filter to fuse the image with the panchromatic informa-
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tion, and then using a Deep Residual Convolutional Neural Network (DRCNN) to boost the
reconstruction. Xie et al. [32] developed the HS pansharpening method with Deep Priors
(HPDP), exploiting the power of different deep learning modules to improve all parts of
the pansharpening pipeline. In particular, they used a Super Resolution Deep Learning
(SRDL) module to upscale the HS image and fuse it with the panchromatic information by
also considering high-frequency information extracted by the proposed High-Frequency
Net (HFNet). In the end, they obtained the final high-resolution HS image by injecting
the high-frequency structure in the upscaled HS image, using a Sylvester equation. It is
worth noticing that they used MS images for the training to compensate for the limited
number of training samples. Recently, in 2023, He et al. [33] proposed dynamic HS pan-
sharpening that uses a learn-to-learn strategy to adapt the pansharpening to the spatial
variations of an image. Zhao et al. [34] proposed a generative adversarial network with
a fast guided filter [35] for pansharpening, aiming to reduce the computational costs and
retain the spatial information more effectively by highlighting the fusion objects with a
spatial attention module and preserving the latent feature information through adversarial
training. Zhu et al. [36] introduced a probability-based global cross-modal upsampling
(PGCU) technique for pansharpening that leverages global and cross-modal information.
The PGCU module includes information extraction, distribution and expectation estima-
tion, and fine adjustment blocks, showing improvements in performance and enhancing
existing deep learning pansharpening methods.

Despite the increased adoption of CNNs and deep learning in the field of pansharpen-
ing and the increased interest in using HS images for satellite image analysis, the limited
number of HS samples is still an issue. Deep learning techniques, in fact, are data-driven
approaches with the necessity of a high cardinality and high variability of the datasets. This
necessity is a crucial problem in HS pansharpening because the majority of the existing
datasets are not suitable for neural network training. Table 1 reports the most relevant
datasets in the literature used for MS and HS RS pansharpening. It is possible to divide
the existing datasets into different groups by mainly considering three properties: the
wavelength coverage, image resolution, and acquisition set-up of each dataset. Regarding
the wavelength coverage, four datasets present information from the visible to near-infra-
red (VNIR) part of the spectrum, while the remaining ones cover the entire spectrum,
from visible to short-wave infrared (SWIR). Data with a limited spectral coverage for the
design of pansharpening algorithms could limit their applicability to real-world scenarios,
which may require the use of bands and data not covered by those datasets. Another
important aspect is the image resolution, which is associated with the dataset cardinality.
The majority of these are composed of only one single satellite or aerial image covering
a small portion of land (at most a few km2), with a limited variability in the content of
the scene. While datasets like Halls Creek [30] can potentially be tiled in smaller samples
for training or validation purposes, the other ones are limited due to their low cardinality
and low resolution. Furthermore, even if an image is tiled, the variety of the content of
the scenes considered is limited to the area covered by the single image, making it hard to
evaluate algorithms in different scenarios. Finally, most of the datasets in the state-of-the-art
are tagged as “airborne”, which means they are collected by using airplanes or low-altitude
flying devices, while only two are made of satellite-collected images.

The characteristics of these data limit not only the performance of deep learning ap-
proaches but also our ability to properly evaluate their performance. The datasets have both
a low sample cardinality, which is not statistically relevant for a proper evaluation, and a
low variability, which makes the model unsuitable for different environments, consequently
restricting the generalization capabilities of these approaches.

In order to overcome these limitations, in this paper, we present the following:

• A new large-scale dataset covering 262,200 km2 for the qualitative assessment of deep
neural models for HS image pansharpening. Such a dataset, compared with the others
in Table 1, is collected from the PRISMA satellite, preprocessed and adopted for the
retraining of current state-of-the-art approaches for image pansharpening.
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• An in-depth statistically relevant comparison, both in quantitative and qualitative
terms, of traditional machine-learning-free approaches and current deep learning
approaches, adapted to HS data, retrained and tested on the newly proposed large-
scale dataset.

To the best of our knowledge, the study presented is the first one based on a large-scale
dataset, covering a wide variety of ground areas. Although other studies have investigated
the problem of HS pansharpening, they have limited their analysis to a small number of
samples and therefore are not able to clarify the real quality of the tested methods [37]. We
believe that the proposed investigation will be a starting point for the design of new deep
learning approaches for RS image pansharpening.

Table 1. List of existing datasets used for RS image pansharpening. For each dataset, the number of
images of the dataset, the number of bands, and the coverage in terms of wavelength are here reported.
The image resolutions presented in this table are taken from the original dataset descriptions.

Dataset Cardinality Images Resolution Type # of Bands Wavelength Coverage

Pavia University 1 610 × 610 airborne 103 430–838 nm
Pavia Center 1 1096 × 1096 airborne 102 430–860 nm
Houston [33,38] 1 349 × 1905 airborne 144 364–1046 nm
Chikusei [39] 1 2517 × 2335 airborne 128 363–1018 nm
AVIRIS Moffett Field [18] 1 37 × 79 airborne 224 400–2500 nm
Garons [18] 1 80 × 80 airborne 125 400–2500 nm
Camargue [18] 1 100 × 100 airborne 125 400–2500 nm
Indian Pines [40] 1 145 × 145 airborne 224 400–2500 nm
Cuprite Mine 1 400 × 350 airborne 185 400–2450 nm
Salinas 1 512 × 217 airborne 202 (224) 400–2500 nm
Washington Mall [29] 1 1200 × 300 airborne 191 (210) 400–2400 nm
Merced [33] 1 180 × 180 satellite 134 (242) 400–2500 nm
Halls Creek [30] 1 3483 × 567 satellite 171 (230) 400–2500 nm
OURS based on PRISMA 190 1259 × 1225 satellite 203 (230) 400–2505 nm

2. Materials and Methods
2.1. Data

In order to assess the performance of the approaches for HS image pansharpening,
we created a new dataset of HS images, collected using the PRISMA satellite. Specifi-
cally, we collected 190 images covering different areas from Europe, Japan, Korea, India,
and Australia, for a total area of about 262,200 km2. The data collection process took into
consideration different areas of the Earth to provide the highest possible variability in
terms of environments and conditions. Each selected scene was manually identified and
carefully chosen to challenge the algorithms in terms of reconstructing elements of different
nature, from forests to cities, streets, mountains, coasts, etc. Particular attention was also
paid to quality control measures of the collected images since we focused only on areas
with a cloud coverage percentage lower than 1%. To further ensure the quality of the
collected images, we performed a procedure of cleaning described in Section 2.1.1, limiting
the possibility of bias derived from the PRISMA sensors [41]. Finally, images representing
mostly water surfaces were removed to reduce any sources of bias related to the intrinsic
characteristics of water [42]. The actual locations of the images are shown in Figure 1, while
in the last row of Table 1, our dataset with a summary of its characteristics, compared with
other existing datasets, is reported.
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Figure 1. Map of the patches acquired using the PRISMA satellite. On average, each patch covers
about 1380 km2 of soil. Each red box corresponds to a land-patch.

The data used for the construction of the proposed datasets were collected by using
the level-2D image data product downloaded from the ASI PRISMA portal for data dis-
tribution, ASI portal: https://www.asi.it/scienze-della-terra/prisma/, (accessed on 26
May 2024). Visible and Near-InfraRed (VNIR), Short-Wave InfraRed (SWIR) cubes and the
panchromatic (PAN) band were extracted from these downloaded products, according to
the Hierarchical Data Format (HDF5) standard. The HS cubes from level-2D refer to the
geocoded at-surface (Bottom-of-Atmosphere) reflectance data [41]. The PAN images are at
a spatial resolution of 5 m per pixel, while the VNIR and SWIR cubes (66 and 174 spectral
bands, respectively) are at a spatial resolution of 30 meters per pixel. Table 2 reports the
details of each cube, while Figure 2 shows some examples of PRISMA data visualized in
true-color RGB. Each PAN image is at a resolution of 7554 × 7350 pixels, while the HS
bands are at a resolution of 1259 × 1225 pixels.

Table 2. Ranges of wavelengths covered by the panchromatic image and by the HS cubes VNIR and
SWIR, and the corresponding number of bands. The PAN image covers most of the range of the
VNIR cube, while the SWIR cube is completely outside that range.

Cube Wavelengths Covered # of Bands Resolution
nm m/px pixels

panchromatic 400–700 1 5 7554 × 7350
VNIR 400–1010 66 30 1259 × 1225
SWIR 920–2505 174 30 1259 × 1225

To reduce possible sources of bias, each collected image was pre-processed by per-
forming an image co-registration step and a cleaning step, with the latter used to remove
bands that contain noisy or invalid data. Each image is then divided into tiles at differ-
ent resolutions, to produce two sets of images for two different training and evaluation
protocols: the Full Resolution (FR) protocol and Reduced Resolution (RR) protocol.

https://www.asi.it/scienze-della-terra/prisma/
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PAN

HS

HS↓

Figure 2. Examples of PRISMA dataset entries, visualized in True Color RGB (641 nm, 563 nm,
478 nm). The PAN image is at a resolution of 5 m per pixel, the HS images are at 30 m per pixel,
and the HS↓ are at 180 m per pixel.

2.1.1. Data Cleaning Procedure

The VNIR and SWIR PRISMA level-2D product cubes cannot be directly used because
of two problems:

• a slight misalignment between the panchromatic image and VNIR and SWIR cubes
(VNIR and SWIR are assumed to be aligned already);

• the presence of pixels marked as invalid from the Level-2D Prisma pre-processing.

To tackle the first problem, we adopted the AROSIC framework [43] to align the VNIR
and SWIR cubes to the corresponding panchromatic images. We manually selected a refer-
ence band for the VNIR and SWIR cube to be used for the calculation of the transformation.
The same alignment was used for all the 240 bands of the VNIR and SWIR cubes.

Invalid bands are removed through a cleaning procedure. From the PRISMA HDF5
data, we also extracted the VNIR_PIXEL_L2_ERROR and SWIR_PIXEL_L2_ERROR matri-
ces. These matrices contain pixel-specific annotations regarding the status of the informa-
tion collected by the satellite. We removed bands having at least 5% of the pixels labeled
as INVALID. More details on the labeling system are available in the PRISMA documenta-
tion [41]. The selected bands were removed from all the scenes collected from PRISMA.
Figure 3a shows the distribution of the invalid bands (x-axis) over all the 190 selected
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PRISMA images (y-axis). Figure 3b shows the average spectral signature for each image
(blue lines) and the spectral bands that were removed (pink stripes). After this cleaning
procedure, the VNIR and SWIR bands were concatenated, thus obtaining a final HS cube of
203 spectral bands.

(a)

(b)
Figure 3. Distribution of the invalid bands for each PRISMA image collected. In (a), the scale indicates
the percentage of invalid pixels for each band of each image collected from the PRISMA satellite.
Bands that are considered invalid for at least one image (with more than 5% of the entries invalid)
were selected for removal. In (b), the average spectral signatures per image and the bands excluded
in the final version of the dataset are shown.

2.1.2. Full Resolution and Reduced Resolution Datasets

Our experimentation was performed adopting two different protocols which require
two different versions of the dataset:

1. Full Resolution (FR)Due to missing reference images, this dataset cannot be used for
model training but only for evaluation purposes. This dataset is made of couples of
the type < PAN, HS >.

2. Reduced Resolution (RR): This dataset was created in order to perform a full-reference
evaluation since it presents reference bands alongside the input HS and the PAN,
and for training the deep learning model. This dataset is made of triplets of the type
< PAN↓, HS↓, HS >.

To create the two versions of the dataset, we tiled and resized the original collected
images with different parameters. Table 3 provides a summary of the characteristics of the
two versions.

The FR dataset is made of tiles of size 2304 × 2304 at the original spatial resolution of
5 m/px, for the PAN image, and 384 × 384 pixels at 30 m/px resolution for the HS bands.
In our experimental set-up, the pansharpening algorithms are used to scale up the HS
bands from 30 m/px by a factor of 6×, thus obtaining a no-reference reconstruction ĤSFR
of HS bands at a size of 2304 × 2304 at a spatial resolution of 5 m/px.
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Table 3. Size and resolution of the input PAN images, HS bands, and pansharpened outputs in both
RR and FR protocols.

Size (px) Resolution (m/px) Usage
FR RR

PAN 2304 × 2304 5 input -
PAN↓ 384 × 384 30 - input

HS 384 × 384 30 input reference
HS↓ 64 × 64 180 - input

ĤSFR 2304 × 2304 5 output -
ĤSRR 348 × 348 30 - output

The RR dataset was obtained by subsampling the FR version and generating triples
of the type < PAN↓, HS↓, HS >. Firstly, the VNIR-SWIR bands were tiled at a dimension
of 384 × 384 pixels, which corresponds to a resolution of 30 m/px (HS). These images
were used as a reference for the evaluation of the algorithms’ performance. Then, the same
cubes were further reduced to 1/6 of their original resolution, obtaining new tiles at size
64 × 64 at a spatial resolution of 180 m/px (HS↓), which are the input of the pansharpening
algorithm. The panchromatic images were also reduced to 1/6 of the original resolution
and tiled at size 384 × 384 pixels at a spatial resolution of 30 m/px (PAN↓), in order to be
used as the input for the pansharpening operation. The pansharpening algorithm is defined
as a function that takes as input the pair < PAN↓, HS↓ >, and it outputs an approximation
ĤSRR of the original HS, which is a 6× version of the HS↓.

2.2. Reduced Resolution Metrics

We used the following evaluation metrics to compare the pansharpened ĤSRR image
and the reference HS:

• ERGAS [44] is an error index that tries to propose a global evaluation of the quality of
the fused images. This metric is based on the RMSE distance between the bands that
constitute the fused and the reference images and is computed as:

RMSE(x, y) =

√√√√ 1
m

m

∑
j=1

(xj − yj)2 (1)

ERGAS(x, y) = 100
h
l

√√√√ 1
N

N

∑
i=1

(
RMSE(xi, yi)

µ(yi)

)2

(2)

where x and y are the output pansharpened image and the reference, respectively, m is
the number of pixels in each band, h and l are the spatial resolution of the PAN image
and HS image, respectively, µ(yi) is the mean of the i-th band of the reference, and N
is the number of total bands.

• The Spectral Angle Mapper (SAM) [45] denotes the absolute value of the angle between
two vectors v and v̂.

SAM(v, v̂) = cos−1 < v, v̂ >

||v||2 · ||v̂||2
(3)

where v and v̂ are, respectively, the flattened versions of ĤSRR and HS. A SAM value
of zero denotes a complete absence of spectral distortion but possible radiometric
distortion (the two vectors are parallel but have different lengths).
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• The Spatial Correlation Coefficient (SCC) [46] is a spatial evaluation index that analyzes
the difference in high-frequency details between two images. The SCC is computed as
follows:

SCC(x, y) =
∑w

i=1 ∑h
j=1(F(x)i,j − µF(x))(F(y)i,j − µF(y))√

∑w
i=1 ∑h

j=1(F(x)i,j − µF(x))
2 ∑w

i=1 ∑h
j=1(F(y)i,j − µF(y))

2
(4)

where µF(x) and µF(y) are the means of F(x) and F(y), respectively, and w and h are
the width and height of an image. F is a filter for the extraction of high-frequency
details, defined as follows:

F =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (5)

• The Q2n index is a generalization of the Universal Quality Index (UQI) defined by
Wang et al. [47] for an image x and a reference image y.

Q2n(x, y) =
σx,y

σxσy
· 2x̄ȳ
(x̄)2 + (ȳ)2 ·

2σxσy

σ2
x + σ2

y
(6)

Here σx,y is the covariance between x and y, and σx and x̄ are the standard devia-
tion and mean of x, respectively. The Q2n metric represents a good candidate to
give an overall evaluation of both the radiometric and spectral distortions in the
pansharpened images.

2.3. Full Resolution Metrics

For the FR assessment, we decided to use the Q∗ index, as performed by Vivone
et al. [37]. This index is obtained as the product of the spectral distortion index Dλ and the
spatial distortion index Ds.

The spectral distortion index Dλ was computed as proposed in the Filtered-based
QNR (FQNR) quality index [48]. In this definition, each fused HS band is spatially de-
graded using its specific Modulation Transfer Function (MTF) matched filter, (The filter is
defined to ensure the consistency property of the Wald’s protocol [49]. As performed by
Vivone et al. [37], we used the assumption that the HS sensor’s MTFs follow a Gaussian
shape with a standard deviation set equal to 0.3.), then the Q2n index between the set of
spatially degraded HS images and the set of original HS data is computed, and eventually
the unit complementary value is taken in order to obtain a distortion measure:

Dλ = 1 − Q2n(ĤL↓, H) (7)

where ĤL↓ is the pansharpened image which has been spatially degraded using the MTF
filter and decimated to input the spatial dimension and H represents the input HS bands.
As performed by Vivone et al. [37], we adopted the Q (UQI) index instead of the Q2n

index for computational reasons due to the high number of HS bands. As stated by
Vivone et al. [37], a comparable performance can be obtained with this modification, while
drastically improving the computation time.

The spatial consistency Ds was computed as described by Alparone et al. [50]. Adopt-
ing a linear regression framework, the PAN image was modeled as a linear combination of
the fused HS bands. To measure the extent of the spatial matching between the fused HS
bands and the PAN image, the coefficient of determination was exploited [50].

Ds = 1 − R2 (8)
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Finally, the Q∗ index was calculated as:

Q∗ = (1 − Dλ)
α · (1 − Ds)

β (9)

Here the two exponents α and β determine the non-linearity of response in the interval
[0, 1]. The value of these two parameters was set to 1, based on previous work choices [37].

2.4. Methods

We compared eight deep learning and three traditional machine-learning-free ap-
proaches. The selection of the methods was made taking into consideration two fac-
tors: how recent the approach is and the availability of the source code. Concerning the
machine-learning-free approaches, we chose Principal Component Analysis (PCA) [19],
Gram–Schmidt Adaptive (GSA) [22], and HySure [51]. For all these methods, we used the
implementation available in the MINI TOOLBOX PRISMA, (https://openremotesensing.
net/wp-content/uploads/2022/11/Mini-Toolbox-PRISMA.zip, (accessed on 26 May 2024)).
Regarding the deep learning methods, we selected PNN [52], PanNet [53], MSDCNN [54],
TFNet [55], SRPPNN [56], DIPNet [57], FPF-GAN [34], and PGCU-PanNet [36].

Since we are interested in the evaluation of the 6× upscaling pansharpening task, we
modified the methods originally designed for scale factors of a power of 2 (e.g., 2×, 4×, 8×
etc.), while keeping the architectures of the others as in the original implementation. These
methods are:

• SRPPNN [56]: The architecture proposed by Cai et al. [56] is characterized by multiple
progressive upsampling steps that correspond to a first 2× and a secondary latter
4× bicubic upscaling operation. We changed those two upscaling operations by
modifying their scale factors to 3× and 6×, respectively. The rest of the original
architecture was not changed.

• DIPNet [57]: This model is composed of 3 main components. The first two are feature
extraction branches, respectively, for the low-frequency and high-frequency details of
the panchromatic image; here, we changed the stride value of the second convolutional
layer used to reduce the features’ spatial resolution, from 2 to 3, in order to bring
the extracted features to the same dimension of the input bands to perform feature
concatenation. The third component is the main branch, which uses the features
extracted from the previous components along with the input images to perform
the actual pansharpening operation. The main branch can be also divided into two
other components: a first upsampling part and an encoder–decoder structure for
signal post-processing. We changed the scaling factor of the upscaling module from
2 to 3, and in the encoder–decoder part, we changed the stride values of the central
convolutional and deconvolutional layers from 2 to 3.

• FPF-GAN [34]: This model consists of a generative and a discriminative network.
To adapt to the 6× scale, we only modified the discriminator, since the generative
network works with a bicubic upsampling that dynamically adapts to the dimensions
of the target image. Specifically, we changed the stride of the first layer from 2 to 3 and
added an extra group of CONV2D-BATCHNORM-LEAKYRELU after the third block to
accommodate the higher input dimensions in the training. The convolutional layer in
this new block produces the same number of features as the previous one and uses a
kernel of size 3 with stride 2.

• PGCU-PanNet [36]: This approach consists of a module specifically designed for
upsampling MS images, which can be combined with existing methods. For the
training and testing, we chose to use the version that combines the PGCU module
with the PanNet model. In order to train the model with the PRISMA data, we changed
the scale factor used by the initial interpolation to 6× and reduced the number of
hidden features of the information extractor to 32. This last modification is necessary
because in the original model, this value is kept equal to the number of channels in

https://openremotesensing.net/wp-content/uploads/2022/11/Mini-Toolbox-PRISMA.zip
https://openremotesensing.net/wp-content/uploads/2022/11/Mini-Toolbox-PRISMA.zip
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the input (e.g., 4), a condition that is not feasible due to memory constraints when
working with HS data (203 channels in this case).

Each method was retrained on the proposed PRISMA dataset (RR version) by using a
workstation equipped with a Titan V GPU and Ubuntu 22.04 Operating System. The envi-
ronment for the training was written in PyTorch v1.10.0. For all the methods, the training
process lasted 1000 epochs, with a learning rate of 1 × 10−4 and the Adam optimizer.
The loss functions used are the ones adopted in the original papers of each method.

3. Results

Tables 4 and 5 report the numerical results of the different selected approaches with
the RR and FR protocols, respectively.

Table 4. Results of the methods for the Reduced Resolution (RR) protocol. The dimensions (millions
of parameters) of each model are reported alongside the results. Bold text represents the first best
result, underlined text represents the second best result. ↓ means the lower value is best, ↑ means the
higher value is best.

Method # of Parameters (M) ERGAS ↓ SAM ↓ SCC ↑ Q2n ↑
PCA [19] - 8.9545 4.8613 0.6414 0.6071
GSA [22] - 7.9682 4.3499 0.6642 0.6686
HySure [51] - 8.3699 4.8709 0.5832 0.5610

PNN [52] 0.08 12.8840 3.8465 0.8237 0.6702
PanNet [53] 0.19 6.7062 2.7951 0.8705 0.7659
MSDCNN [54] 0.19 9.9105 3.0733 0.8727 0.7537
TFNet [55] 2.36 6.4090 2.4644 0.8875 0.7897
SRPPNN [56] 1.83 6.4702 2.3823 0.8890 0.7708
DIPNet [57] 2.95 5.1830 2.3715 0.8721 0.7929
FGF-GAN [34] 0.27 6.0256 4.0922 0.6741 0.6696
PGCU-PanNet [36] 0.70 5.5432 2.9902 0.8845 0.8386

Table 5. Results of the methods for the Full Resolution (FR) protocol. The dimensions (millions of
parameters) of each model are reported alongside the results. Bold text represents the first best result,
underlined text represents the second best result. ↓ means the lower value is best, ↑ means the higher
value is best.

Method # of Parameters (M) Dλ ↓ Ds ↓ Q∗ ↑
PCA [19] - 0.9411 1.5277 0.0558
GSA [22] - 0.3820 0.0016 0.6170
HySure [51] - 0.4151 0.0009 0.5843

PNN [52] 0.08 0.3801 0.0101 0.6136
PanNet [53] 0.19 0.3507 0.0203 0.6360
MSDCNN [54] 0.19 0.3915 0.0068 0.6044
TFNet [55] 2.36 0.3552 0.0066 0.6405
SRPPNN [56] 1.83 0.3948 0.0139 0.5965
DIPNet [57] 2.95 0.3681 0.0348 0.6098
FGF-GAN [34] 0.27 0.4024 0.0406 0.5740
PGCU-PanNet [36] 0.70 0.4101 0.0039 0.5876

In general, regarding the evaluation with the RR protocol, overall, the most remarkable
methods are DIPNet, SRPPNN, and PGCU-PanNet. While DIPNet obtains the best results in
terms of the ERGAS and SAM metrics, SRPPNN achieves the best value on SCC, followed
by TFNet and PCGU-PanNet. This last model obtained instead the best Q2n followed
directly by DIPNet. Overall, even if a different behavior for the different metrics considered
is noticeable, DIPNet always achieves good results in this first comparison. The fact that
this model obtains the best results in terms of ERGAS and SAM values anticipates the fact
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that it is probably the best among the considered methods from the spectral fidelity point
of view. A more in-depth discussion is provided in Section 4.

Figure 4 reports a graphical comparison between the network-based approaches (in
the RR protocol). The comparison evaluates the performance in terms of ERGAS versus
SAM (Figure 4, graph on the left) and SCC versus Q2n (Figure 4, graph on the right),
along with the number of parameters associated with the neural models. The size of the
circles in the figure corresponds to the number of parameters, measured in millions. This
information is also reported in Tables 4 and 5. Larger circles indicate a higher number of
parameters. Ideally, the optimal approach would be represented by a small circle positioned
in the bottom-left part of Figure 4 left graph and the top-right part of Figure 4 right graph.
In practice, the best neural methods are DIPNet, SRPPNN, and TFNet, which have a
number of parameters that is about 30 times the number of parameters of lower-performing
approaches, such as PanNet and MSDCNN.

Figure 4. Graph comparison of the results of the analyzed methods with the RR protocol. The larger
the size of the circle, the higher the number of parameters (measured in millions).

The results obtained in the FR protocol are presented in Table 5, revealing a significant
shift in the behavior of the models. Notably, TFNet emerges as the top-performing model
in terms of Q∗ index. Surprisingly, DIPNet, which was the winning method in the RR
protocol, demonstrates considerably poorer results compared to the other approaches.
Even the simpler and smaller PanNet outperforms DIPNet, securing the second position in
the comparison.

Analyzing the spatial distortion aspect (Ds), the top-performing model is PGCU-
PanNet, which obtains the best results with a noticeable gap with respect to the second and
third methods, TFNet and MSDCNN. In this case, DIPNet exhibits the weakest performance
among the deep learning models. It is worth mentioning that HySure is the best method
in terms of Ds; however, additional insights regarding its performance can be found in
Section 4, where various issues in the spatial reconstruction of this technique are reported.

On the other hand, from a spectral distortion perspective (Dk
λ), PanNet emerges as

the best approach, followed by TFNet and DIPNet. A comprehensive qualitative com-
parison of these two aspects of the reconstruction is presented in the subsequent section.
Particularly noteworthy is PanNet’s position in the FR leaderboard, which, considering its
comparatively smaller size with respect to other more recent approaches, is notably high in
the ranking. The consistency of TFNet is also noticeable, showing the best performance in
terms of Q∗ while achieving the second place for both the Dλ and Ds metrics.

In conclusion, TFNet emerges as the most successful approach when evaluating with
the FR protocol. TFNet exhibits a commendable ability to strike a balance between pre-
serving spectral and spatial information throughout the pansharpening process. When
compared to SRPPNN, DIPNet, and PGCU-PanNet, TFNet demonstrates superior gener-
alization capabilities when transitioning from the training resolution of 180 m/px to the
native resolution of 30 m/px of the PRISMA satellite HS images.
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4. Discussion

With the aim of better understanding the metrics and the results achieved in our
analysis, we also propose a qualitative comparison. The objective of this investigation
is to illustrate the ability of the analyzed models to preserve the spatial and spectral
information after the pansharpening process, without creating distortions. As this study
will demonstrate, it is also important to visualize the results of a pansharpening process
because an evaluation based on metrics is not always sufficient in terms of indicating the
best possible approaches.

Figures 5–7 show the results of the best models on three images of the FR protocol.
Here are shown center crops of dimensions 512 × 512 of the pansharpened images (5 m per
pixel) alongside the same crop of the original input image (30 m per pixel). For visualization
purposes, the images have been linearly stretched between the 1st and 99th percentile of
the image histogram. In the first row, the images are visualized in True Color (641 nm,
563 nm, and 478 nm), and in the second row, the images are in False Color Composite
(1586 nm, 1229 nm, and 770 nm). Concerning the spatial information, as can be seen here
and as already highlighted by the quantitative comparison, PGCU-PanNet presents the
best-looking structures and details overall. Among the considered methods and especially
in comparison with DIPNet, TFNet reconstructs much cleaner images, with good edges
and a lot more detail. TFNet still achieves good results compared to DIPNet. In Figures 5–7,
the actual superiority in terms of structure reconstruction obtained by PGCU-PanNet with
respect to TFNet, and in particular DIPNet, can be observed. TFNet still achieves sharp
results, but still lacks the fine-grained details enhanced by PCGU-PanNet. Overall, DIPNet
presents the most blurred results, with a very low number of details and the presence of
artifacts, particularly noticeable in the False Color Composite version of the reported scenes.

(a) Input (30m/px) (b) DIPNet (5m/px) (c) PGCU-PanNet (5m/px) (d) TFNet (5m/px) (e) PAN (5m/px)

Figure 5. Pansharpening results on a 512 × 512 tile of a test set image. For visualization purposes,
the images have been linearly stretched between the 1st and 99th percentile of the image histogram.
In the first row, images are visualized in True Color (641 nm, 563 nm, and 478 nm), and in the second
row, the images are in False Color Composite (1586 nm, 1229 nm, and 770 nm).
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(a) Input (30m/px) (b) DIPNet (5m/px) (c) PGCU-PanNet (5m/px) (d) TFNet (5m/px) (e) PAN (5m/px)

Figure 6. Pansharpening results on a 512 × 512 tile of a test set image. For visualization purposes,
the images have been linearly stretched between the 1st and 99th percentile of the image histogram.
In the first row, images are visualized in True Color (641 nm, 563 nm, and 478 nm), and in the second
row, the images are in False Color Composite (1586 nm, 1229 nm, and 770 nm).

(a) Input (30m/px) (b) DIPNet (5m/px) (c) PGCU-PanNet (5m/px) (d) TFNet (5m/px) (e) PAN (5m/px)

Figure 7. Pansharpening results on a 512 × 512 tile of a test set image. For visualization purposes,
the images have been linearly stretched between the 1st and 99th percentile of the image histogram.
In the first row, the images are visualized in True Color (641 nm, 563 nm, and 478 nm), and in the
second row, the images are in False Color Composite (1586 nm, 1229 nm, and 770 nm).
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Figure 8 shows zoomed crops at a dimension of 128 × 128 of areas of the same images
processed by the best neural-based and the two best machine-learning-free methods. As can
be seen, even if HySure numerically represents the best approach from the spatial point of
view (see Table 5, Ds index), a pattern of artifacts occurs over all the images processed by
the HySure algorithm. This last comparison shows a potential problem in the adoption of
Q∗ index as a metric for the no-reference analysis, when this type of artifact occurs in the
pansharpened images.

Figure 9 reports the average differences between the spectral signatures of each method
and the reference method, alongside the normalized version of the same difference, com-
puted on five different tiles. These tiles have been randomly extracted from the test set.
From this comparison, it is possible to notice how DIPNet’s average error is much smaller
with respect to the other approaches. Compared with the results from the quantitative eval-
uation with the FR protocol, where DIPNet reaches third place, this is the only surprising
behavior. This unexpected result could provide insight into a possible flaw in the adoption
of the spectral component of the Q∗ metric, as is usually implemented in the literature.

Figure 10 shows the spectral signatures of both input and pansharpened images for
each method. Here we have considered only selected groups of pixels, specifically labeled
as Forest, Urban, Agriculture, and Water, highlighted in red in the images alongside the
graphs. The best method is expected to show signatures closer to the input ones; we have
reported both the machine-learning-free and the best deep learning approaches. It is worth
noting that all the methods tend to show increased spectral signature differences in the
range of 1000 nm to 1500 nm, suggesting this band range is particularly challenging for
pansharpening techniques. From this qualitative comparison and in accordance with the
numbers in Table 5, PCA, HySure, and FGF-GAN are the worst-performing methods in
terms of spectral fidelity. For all the reported classes, these methods perform badly over
the entire spectrum with performances worse than GSA. Regarding the deep learning
approaches, DIPNet seems to show the lowest difference from the input, despite the score
obtained in terms of Dλ (see Table 5). TFNet and PGCU-PanNet instead have a behavior
more coherent with the results obtained in the quantitative evaluation with the FR protocol.
It should be noticed that PanNet seems to perform better from a spectral fidelity point
of view with respect to TFNet, which, however, performs better than all of the machine-
learning-free approaches. Another consideration can be made in relation to the spectral
signature difference between PanNet and PGCU-PanNet. The latter method, which is
a combination of a specific upsampling module and the original PanNet architecture,
achieves much worse results than the actual PanNet. This finding indicates that advances
in the MS domain within the visible wavelength spectrum can offer partial benefits in
HS applications. Even if, from the FR protocol comparison and in the visual comparison,
the model outperforms the others in terms of spatial image enhancement, the spectral
reconstruction performs in a poor way with respect to its simpler counterpart.

Overall, we can confirm that the results shown in Table 5, namely DIPNet, PanNet,
and TFNet, are the best approaches, with a performance higher in comparison to the
machine-learning-free approaches. Based on these three models, the investigation suggests
that methods which incorporate structural information into low-resolution images, allow-
ing the network to determine and optimize the feature extraction process from spectral and
spatial data, tend to perform better.

Images at a higher resolution are available at https://thezino.github.io/
HSbenchmarkPRISMA/, (accessed on 26 May 2024).

https://thezino.github.io/HSbenchmarkPRISMA/
https://thezino.github.io/HSbenchmarkPRISMA/
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(a) GSA (b) HySure (c) DIPNet (d) PGCU-PanNet (e) TFNet

Figure 8. Zoom of areas from the test images. Crops of dimension 128× 128, at a resolution of 5 m/px,
in True Color (641 nm, 563 nm, and 478 nm). As can be seen, repeated artifacts along the edges can be
observed for the HySure method.

Figure 9. Cont.
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Figure 9. Differences between the spectral signatures of the fused images with respect to the input
image. The difference is evaluated as the average of the differences for each pixel of the five images
reported in the row below the graph. The graph on the left shows the average spectral difference,
while the graph on the right shows the difference normalized for each band.

Figure 10. Spectral signatures obtained in six different areas, labeled as Forest, Urban, Agriculture,
and Water areas. For each area, the spectral signatures of the input bands and those obtained by each
pansharpening method are presented. The area used to extract the signatures is the one in the red box
highlighted in each image. The image thumbnails are in True Color (641 nm, 563 nm, and 478 nm).
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5. Conclusions

The increasing availability of HS remote sensing data presents new opportunities
for studying the Earth’s soil. However, this type of data is typically collected at a low
resolution, posing challenges in terms of their effective usability in RS tasks. Therefore,
the process of image pansharpening becomes crucial in the enhancement of HS remote
sensing images.

In the literature, deep learning approaches have shown promising results. These
methods, however, are data-hungry and state-of-the-art datasets struggle to support suffi-
cient amounts of data. To overcome this limitation, we have proposed a newly collected
large-scale dataset using the PRISMA ASI satellite for the training and assessment models.

To the best of our knowledge, this work is the first to present an analysis based on a
large and varied HS dataset for pansharpening in the state of the art (consisting of more than
1000 tiles, of which more than 200 have been used for the testing). The dataset tiles have
been collected from 190 PRISMA images with 203 bands, (The original number of PRISMA
spectral bands is 240. The number reported above was obtained after the proposed pre-
processing procedure.) covering both the VNIR and SWIR parts of the spectrum, making
this investigation the optimal benchmark for hyperspectral pansharpening.

The comparison includes machine-learning-free and deep learning techniques tested
using two experimental protocols for a 6× upscaling factor: RR and FR. The former is used
for training and testing, and the latter to test the methods on the original resolution, evalu-
ating their ability to generalize the upsampling operation at different starting resolutions
with respect to the training phase.

The RR protocol consists of a comparison between the reconstructed data and the
original HS images as target references. The results show that the neural networks gener-
ally work better than the machine-learning-free methods in terms of spatial information
improvement and spectral information coherency. In particular, DIPNet and TFNet archi-
tectures outperform all the other techniques evaluated. In the FR protocol, the comparison
with ground truths has not been possible, and therefore, quantitative and also qualita-
tive evaluations have been reported to provide a complete understanding of the methods
investigated. Based on both assessments, the architecture that achieves the best overall
performance is TFNet, which remains coherent with the RR results. PanNet proves to be
a good alternative mainly on account of its capability of spectral reconstruction and its
limited number of parameters, which makes it the best option in the case of environments
with computational resource constraints. Finally, DIPNet shows worse results when it
comes to spatial reconstruction, not demonstrating good abilities of adaptation when the
original resolution is involved and thus not being the best option for tests in real-world
applications. However, from the qualitative investigation, it seems to be the one that
causes less spectral distortion, remaining a valid option for tasks where spectral fidelity is
particularly important. It is also worth noticing that machine-learning-free methods are
generally worse at reconstructing the spectral information, degrading the signals.

The investigation conducted in this work clearly shows that data-driven neural archi-
tectures are generally better for HS pansharpening, in terms of both spectral and spatial
reconstruction, using a dataset that allows for meaningful analysis of the different ap-
proaches. On the contrary, the machine-learning-free methods are not adaptable to the new
environment based on HS data and wavelengths outside the visible part of the spectrum.

HS data give us the best spectral information possible and are used in many different
tasks, from semantic segmentation to unmixing. In remote sensing, the problem of low
spatial resolution affects all of these tasks and needs to be addressed with algorithms
specifically designed for these kinds of data. In our opinion, to further improve our
understanding of and ability to perform HS pansharpening, the availability of statistically
relevant datasets for testing and training can lead to future improvements not only in
the field of pansharpening but also in all those tasks that consider pansharpening as a
fundamental step in their pipelines. Starting from this analysis, new HS methods should
be developed based on an evaluation of the relationship between the different portions of
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the spectrum and the spatial information from the panchromatic data. Another interesting
direction could be the integration of this knowledge with the recent generative models
and their ability to reconstruct new and lost information could significantly improve the
performance of pansharpening techniques and consequently other tasks.
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