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Abstract
We study the speed of convergence in the numerical integration with Weyl sums over
Kronecker sequences in the torus,

1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy.
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A classical result of Leopold Kronecker states that if the entries of the vector α in

R
d together with the number 1 are linearly independent over the rationals, then the

sequence {nα}+∞
n=1 is dense in the d dimensional torus Td = R

d/Zd . Indeed Hermann
Weyl has proved that more is true, the sequence {nα}+∞

n=1 is equidistributed, for every
Riemann integrable function f (x) on the torus one has

lim
N→+∞

{
1

N

N∑

n=1

f (nα) −
∫

Td
f (y)dy

}
= 0.
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210 L. Colzani

A quantitative version of this result is the Koksma Hlawka inequality, which in one
variable and for an arbitrary sequence of points states that

∣∣∣∣∣
1

N

N∑

n=1

f (αn) −
∫ 1

0
f (y)dy

∣∣∣∣∣ ≤ V ( f ) · D
(
{αn}Nn=1

)
.

V ( f ) is the total variation of the function f (x) on 0 ≤ x ≤ 1 and D ({αn}Nn=1

)
is

the discrepancy of the sequence of points {αn}Nn=1 in {0 ≤ x ≤ 1},

V ( f ) = sup
0=x0<x1<...<xn=1

⎧
⎨

⎩

n−1∑

j=0

∣∣ f
(
x j+1

)− f
(
x j
)∣∣

⎫
⎬

⎭ ,

D
(
{αn}Nn=1

)
= sup

0≤x<y≤1

{∣∣∣∣
|{n : x ≤ αn ≤ y}|

N
− (y − x)

∣∣∣∣

}
.

In the Koksma Hlawka inequality in several variables the discrepancy with respect
to intervals is replaced by the discrepancy with respect to parallelepipeds with sides
parallel to the axes, and the total variation is replaced by the Hardy Krause variation.
See [15, Section 5 in Chapter 2] and [6, Definition 1.13 and Theorem 1.14]. In one
dimension it is known that there exist absolute constants c andC such that for any infi-
nite sequence {αn}+∞

n=1 one has D
({αn}Nn=1

) ≥ cN−1 log (1 + N ) for infinitely many
values of N , but there are sequences for which D ({αn}Nn=1

) ≤ CN−1 log (1 + N )

for every N . Examples are the van der Corput sequence and the Kronecker sequences
{nα}+∞

n=1 with the continued fraction expansions of the parameters α with bounded
partial quotients. In dimension d > 1 the discrepancy of infinite sequences is larger
than cN−1 log (1 + N ). It is a classical result in the metric theory of Diophantine
approximation that for almost every α in the d dimensional torus Td the Kronecker
sequence {nα}Nn=1 has a discrepancy between cN−1 logd (1 + N ) log (log (2 + N ))

and CN−1 logd (1 + N ) log1+ε (log (2 + N )), for every ε > 0. The case d = 1 has
been proved with the use of continued fractions by Khintchin, while the case d > 1
has been proved with Fourier analysis by Beck. See [2] and [6, Theorem 1.72 and
Theorem 1.91]. Hence, if the function f (x) has bounded Hardy Krause variation,
then for almost every α one has

∣∣∣∣∣
1

N

N∑

n=1

f (nα) −
∫

Td
f (y)dy

∣∣∣∣∣ ≤ c
logd (1 + N ) log1+ε (log (2 + N ))

N
.

The purpose of this paper is to remove some of these logarithms. In [17] Owen and
Pan raised the issue to improve the error estimates obtained with Koksma Hlawka and
discrepancy by fixing a single function, but at the end they proved that with functions
in suitable reproducing kernel Hilbert spaces some powers of logarithms are indeed
necessary for infinitely many N . On the other hand it is known that, under suitable
Diophantine properties of the parameters α and smoothness properties of the functions
f (x), the speed of convergence of the numerical integrationwithWeyl sums on the left
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Speed of convergence of Weyl sums over Kronecker sequences 211

may be smaller than the discrepancy of the sequence {nα}+∞
n=1 on the right. In particular,

functions with speed of convergence c/N are said to have bounded remainders. See
e.g. [5, 8–10, 13, 16, 18, 19] andRemark 13 below. The purpose of this paper is to show
that under the assumption that the Fourier expansion of the function f (x) is absolutely
convergent, then for almost every Kronecker sequence {nα}+∞

n=1 in the torus Td one
can obtain similar estimates, with N−1 logd (1 + N ) log1+ε (log (2 + N )) replaced by
N−1 log (1 + N ) log1+ε (log (2 + N )), with the same exponents of the logarithms in
any dimension d. Moreover, under the assumption that the Fourier transform of the
function is in L log L

(
Z
d
)
, a bit more than absolutely convergent, then for almost

every α one can get rid of the logarithmic factor and obtain a speed of convergence
c/N . On the other hand, an easy application of the triangle inequality shows that the
speed of convergence c/N is best possible and it cannot be improved by any infinite
sequence {αn}+∞

n=1 and any non constant integrable function f (x). In order to compare
our results with others already in the literature, it should be pointed out that our results
and the Koksma Hlawka inequality apply to different classes of functions. The class
of functions with absolutely convergent Fourier expansion, or with Fourier transform
in L log L

(
Z
d
)
, is different from the class of functions with bounded variation. There

are function with absolutely convergent Fourier expansion and unbounded variation,
and there are functions with bounded variation and non absolutely convergent Fourier
expansion. It should also be pointed out that our results are different from results
that involve the smoothness of the functions, for example the ones in [5, 9, 10].
Functions with suitable smoothness have absolutely convergent Fourier expansions,
but not viceversa. Functions with absolutely convergent Fourier expansions may have
a fractal nature and no smoothness. See Remark 14 below. The proofs of our results
are based on fairly elementary tools of Fourier analysis and measure theory. The
discrepancy of the sequences {nα}+∞

n=1 does not enter explicitly into these proofs,
and instead a major role is played by the measure properties of the functions α →
‖m · α‖−1, where α ∈ T

d , m ∈ Z
d − {0}, and ‖m · α‖ denotes the distance of m · α

to the nearest integer.
Since all functions considered in what follows are periodic, it is not a loss of

generality to assume that in the definition of the Kronecker sequence {nα}+∞
n=1 all

entries of the vector α are reduced modulo 1, that is the parameter α is in the torus.
In what follows the Fourier transform and Fourier expansion of an integrable function
f (x) on the torus are defined by

f̂ (m) =
∫

Td
f (x) exp (−2π im · x) dx,

f (x) =
∑

m∈Zd

f̂ (m) exp (2π im · x) .

Theorem 1 Let �(t) be a positive function defined in {1 ≤ t < +∞}, with �(t) and
t/� (t) increasing, and with

∫ +∞

2

dt

t�(t)
< +∞.
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212 L. Colzani

Also let f (x) be an integrable function on the torus Td with absolutely convergent
Fourier expansion,

∑

m∈Zd

∣∣ f̂ (m)
∣∣ < +∞.

Then for almost all α in the torus with a possible exception of a set � of Lebesgue
measure zero there exist constants c ( f , α) such that for every positive integer N and
every x in Td one has

∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

∣∣∣∣∣ ≤ c ( f , α)
� (N )

N
.

For example, �(t) = log (1 + t) log1+ε (log (2 + t)) with ε > 0 is an admissible
function for Theorem 1. Theorem 2 is similar. Roughly speaking it says that one
can remove the factor �(N ) from the speed of convergence by introducing an extra
logarithmic decay in the Fourier transform.

Theorem 2 Let f (x) be an integrable function on the torus Td , and let 0 < p ≤ 1
and δ = d − 1 + p. If p = 1 assume that the Fourier transform

{
f̂ (m)

}
m∈Zd is in

L log L
(
Z
d
)
,

∑

m∈Zd , f̂ (m) �=0

∣∣ f̂ (m)
∣∣ log

(
1 + 1/

∣∣ f̂ (m)
∣∣) < +∞.

If 0 < p < 1 assume that
{|m|(1−p)/p f̂ (m)

}
m∈Zd is in L p

(
Z
d
)
,

∑

m∈Zd

|m|1−p
∣∣ f̂ (m)

∣∣p < +∞.

Then for almost allα in the toruswith apossible exceptionof a set�of δ dimensional
Hausdorff measure zero there exist constants c ( f , α) such that for every positive
integer N and every x in Td one has

∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

∣∣∣∣∣ ≤
c ( f , α)

N
.

The above theorems seem not too far from being sharp, as far as the requirement
that the Fourier expansions of the functions are absolutely convergent.

Theorem 3 Let f (x) be a square integrable function on the one dimensional torus T,
with the sequences

{∣∣ f̂ (m)
∣∣}+∞

m=1 and
{∣∣ f̂ (−m)

∣∣}+∞
m=1 decreasing. Assume that there

exists a set of positive Lebesgue measure A in the torus with the property that for all
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Speed of convergence of Weyl sums over Kronecker sequences 213

α in A there exist finite constants c ( f , α) such that for every positive integer N one
has

⎧
⎨

⎩

∫

T

∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

T

f (y)dy

∣∣∣∣∣

2

dx

⎫
⎬

⎭

1/2

≤ c ( f , α)

N
.

Then f (x) has absolutely convergent Fourier expansion,

∑

m∈Z

∣∣ f̂ (m)
∣∣ < +∞.

Observe that, since the norm in L2 (T) is dominated by the norm in L∞ (T), when
the above theorem is applied to a continuous function one can replace the square
norm with the supremum norm. In the above theorems one might speculate that the
exceptional sets � are related to the Diophantine properties of the entries of the
vectors α, but in fact every α can be exceptional, even with an arbitrary low speed of
convergence.

Theorem 4 Assume that X
(
T
d
)
is a Banach function space on the torus with a norm

invariant under translations. Assume that X
(
T
d
)
is continuously embedded into a

Banach function space Y
(
T
d
)
continuously embedded into the space of integrable

functions L1
(
T
d
)
,

‖ f (x)‖L1(Td) ≤ c ‖ f (x)‖Y(Td) ≤ C ‖ f (x)‖X(Td) .

Assume that X
(
T
d
)
contains all the exponentials {exp (2π im · x)}m∈Zd and that

for some K > 0 and for all m in Zd one has

‖exp (2π im · x)‖Y(Td) ≥ K ‖exp (2π im · x)‖X(Td) .

Finally assume that {� (N )}+∞
N=1 is an increasing sequence of positive numbers

diverging to +∞. Then for every countable set � of points in the torus there exists a
set F of functions dense in X

(
T
d
)
such that for every α in � and every f (x) in F ,

lim sup
N→+∞

⎧
⎨

⎩� (N )

∥∥∥∥∥
1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

∥∥∥∥∥
Y(Td)

⎫
⎬

⎭ = +∞.

The above theorem is an easy corollary of the principle of condensation of singu-
larities, and likely it is just a slight variation of known results. Indeed, it is known
that no general statements can be made about the rate of convergence in ergodic theo-
rems. In particular, since the functions with Fourier transforms in L log L

(
Z
d
)
are a

Banach space contained in the space of continuous functions, it follows that for every
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214 L. Colzani

ε > 0 and every α, with rational or irrational entries, there exist functions with Fourier
transforms in L log L

(
Z
d
)
with

lim sup
N→+∞

{
N ε sup

x∈Td

{∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

∣∣∣∣∣

}}
= +∞.

Finally, Theorem 2 is best possible in the sense that for every infinite sequence of
points {αn}+∞

n=1 and every non constant integrable function f (x) the speed of conver-
gence c/N cannot be improved.

Theorem 5 Assume that X
(
T
d
)
is a Banach function space on the torus, which

contains the constants and it is contained in L1
(
T
d
)
. Assume that the norm in X

(
T
d
)

is invariant under translations. If {αn}+∞
n=1 is an infinite sequence of points in the torus

and if f (x) is in X
(
T
d
)
, then for the majority of positive values of N , at least one

every two consecutive, one has

∥∥∥∥∥
1

N

N∑

n=1

f (x + αn) −
∫

Td
f (y)dy

∥∥∥∥∥
X(Td)

≥
∥∥ f (x) − ∫

Td f (y)
∥∥
X(Td)

2N
.

The theorem is an easy application of the triangle inequality, and likely it is just a
slight variation of known results, but we do not have precise references. It should be
emphasized that in this theorem the sequence {αn}+∞

n=1 has to be infinite. For fixed N
better estimates may hold.

The starting point of the proofs the theorems is an elementary lemma.

Lemma 6 For every sequence {αn}+∞
n=1 of points and every integrable function f (x)

one has the Fourier expansion

1

N

N∑

n=1

f (x + αn) −
∫

Td
f (y)dy

=
∑

m∈Zd−{0}

(
1

N

N∑

n=1

exp (2π im · αn)

)
f̂ (m) exp (2π im · x) .

In particular, for a Kronecker sequence {nα}+∞
n=1,

1

N

N∑

n=1

exp (2π inm · α) = exp (π i (N + 1)m · α)
sin (πNm · α)

N sin (πm · α)
.

Proof The first assertion follows from the Fourier expansion of f (x + αn). Observe
that one does not claim pointwise or norm convergence, but only that the function
on the left has the Fourier expansion on the right. The second assertion is a sum of a
geometric series. 	
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Speed of convergence of Weyl sums over Kronecker sequences 215

Lemma 7 Denote by ‖m · α‖ the distance of m · α to the nearest integer, and recall
that one can assume that α varies in the torus. Let �(t) be a positive function defined
in {1 ≤ t < +∞}, with �(t) and t/� (t) increasing.

(1) For every m ∈ Z
d − {0} and every positive integer N,

|sin (πNm · α)|
�(N ) |sin (πm · α)| ≤ π

2

‖m · α‖−1

�
(‖m · α‖−1) .

(2) For every 0 < p < +∞ and every m ∈ Z
d − {0},

∫

Td

(
‖m · α‖−1

�
(‖m · α‖−1)

)p

dα = 2
∫ +∞

2
�(t)−p t p−2dt .

Proof (1) Since 2 ‖t‖ ≤ |sin (π t)| ≤ π ‖t‖, one has

|sin (πNm · α)|
�(N ) |sin (πm · α)| ≤ π

2

‖Nm · α‖
�(N ) ‖m · α‖ .

If ‖m · α‖ < 1/ (2N ) then ‖Nm · α‖ = N ‖m · α‖ and, since t/� (t) is increasing,

‖Nm · α‖
�(N ) ‖m · α‖ = N

�(N )
≤ (2 ‖m · α‖)−1

�
(
(2 ‖m · α‖)−1) ≤ ‖m · α‖−1

�
(‖m · α‖−1) .

If ‖m · α‖ ≥ 1/ (2N ) then, since �(t) and t/� (t) are increasing,

‖Nm · α‖
�(N ) ‖m · α‖ ≤ 1/2

�(N ) ‖m · α‖ ≤ (2 ‖m · α‖)−1

�
(
(2 ‖m · α‖)−1) ≤ ‖m · α‖−1

�
(‖m · α‖−1) .

Hence in all cases the desired estimate holds true.
(2) For every real number s and every non zero integer h the map t → ht + s is

a measure preserving transformation of the one dimensional torus. In particular, for
every function g (t) locally integrable and periodic with period 1,

∫

T

g (ht + s) dt =
∫

T

g (t) dt .

This implies that for every m = (h, k), with h ∈ Z − {0} and k ∈ Z
d−1,

∫

Td
g (m · α) dα =

∫

Td−1

(∫

T

g (hβ + k · γ ) dβ

)
dγ

=
∫

Td−1

(∫

T

g (t) dt

)
dγ =

∫

T

g (t) dt .
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216 L. Colzani

Since the distance to the nearest integer ‖t‖ is a periodic function, it follows that

∫

Td

(
‖m · α‖−1

�
(‖m · α‖−1)

)p

dα =
∫

T

(
‖t‖−1

�
(‖t‖−1)

)p

dt

= 2
∫ 1/2

0

(
t−1

�
(
t−1
)
)p

dt = 2
∫ +∞

2
�(t)−p t p−2dt . 	


Proof of Theorem 1 We shall prove a slightly more general result. By Lemma 6,

1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

=
∑

m∈Zd−{0}
exp (π i (N + 1)m · α)

sin (πNm · α)

N sin (πm · α)
f̂ (m) exp (2π im · x) .

By the Hausdorff Young inequality and Lemma 7 (1), if 1 ≤ p ≤ 2 ≤ q ≤ +∞
and 1/p + 1/q = 1 then

⎧
⎨

⎩

∫

Td

∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

∣∣∣∣∣

q

dx

⎫
⎬

⎭

1/q

≤
⎧
⎨

⎩
∑

m∈Zd−{0}

∣∣∣∣exp (π i (N + 1)m · α)
sin (πNm · α)

N sin (πm · α)
f̂ (m)

∣∣∣∣
p
⎫
⎬

⎭

1/p

= �(N )

N

⎧
⎨

⎩
∑

m∈Zd−{0}

∣∣ f̂ (m)
∣∣p
∣∣∣∣

|sin (πNm · α)|
�(N ) |sin (πm · α)|

∣∣∣∣
p
⎫
⎬

⎭

1/p

≤ π

2

�(N )

N

⎧
⎨

⎩
∑

m∈Zd−{0}

∣∣ f̂ (m)
∣∣p
(

‖m · α‖−1

�
(‖m · α‖−1)

)p
⎫
⎬

⎭

1/p

.

Hence, by Lemma 7 (2),

⎧
⎪⎨

⎪⎩

∫

Td

⎛

⎜⎝sup
N≥1

⎧
⎪⎨

⎪⎩
N

� (N )

⎧
⎨

⎩

∫

Td

∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

∣∣∣∣∣

q

dx

⎫
⎬

⎭

1/q
⎫
⎪⎬

⎪⎭

⎞

⎟⎠

p

dα

⎫
⎪⎬

⎪⎭

1/p

≤ π

2

⎧
⎨

⎩
∑

m∈Zd−{0}

∣∣ f̂ (m)
∣∣p
∫

Td

(
‖m · α‖−1

�
(‖m · α‖−1)

)p

dα

⎫
⎬

⎭

1/p

= 21/p−1π

{∫ +∞

2
� (t)−p t p−2dt

}1/p
⎧
⎨

⎩
∑

m∈Zd−{0}

∣∣ f̂ (m)
∣∣p
⎫
⎬

⎭

1/p

.
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Speed of convergence of Weyl sums over Kronecker sequences 217

Theorem 1 follows from the case p = 1 and q = +∞. Set

c ( f , α) = sup
N≥1, x∈Td

{
N

�(N )

∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

∣∣∣∣∣

}
.

Then, if f (x) has an absolutely convergent Fourier expansion, c ( f , α) is finite
almost everywhere,

∫

Td
c ( f , α) dα ≤ π

{∫ +∞

2

dt

t�(t)

}⎧⎨

⎩
∑

m∈Zd−{0}

∣∣ f̂ (m)
∣∣

⎫
⎬

⎭ .

	

Observe that the estimate in Lemma 7 (2) and the implicit constants in Theorem 1

are independent of the dimension d. The main characters in the proof of Theorem 1
are the functions α → ‖m · α‖−1 /�

(‖m · α‖−1). These functions are integrable on
the torus. The main characters in Theorem 2 are the functions α → ‖m · α‖−1, which
are not integrable, but almost... Recall that if dμ (α) is a positive Borel measure on
the torus and if 0 < p < +∞, the function spaceWeak− L p

(
T
d , dμ (α)

)
is defined

by the quasi norm

‖g (α)‖Weak−L p(Td ,dμ(α)) = sup
t>0

{
t pμ

({
α ∈ T

d : |g (α)| > t
})}1/p

.

When 1 < p < +∞ this quasi norm is equivalent to a norm, but the case of
interest in what follows is 0 < p ≤ 1. The following lemma describes the numerical
sequences that sum functions in these spaces.

Lemma 8 Let dμ (α) be positive Borel measure on the torus Td .
(1) If {gm (α)}m∈Zd is a sequence of functions in Weak-L1(Td , dμ(α)) with

uniformly bounded quasi norms, ‖gm (α)‖Weak-L1(Td ,dμ(α)) ≤ c for every m,

and if {s (m)}m∈Zd is a numerical sequence in L log L
(
Z
d
)
, then the series∑

m∈Zd

s (m) gm (α) converges absolutely dμ (α) almost everywhere to a function in

Weak-L1
(
T
d , dμ (α)

)
, with

∥∥∥∥∥∥

∑

m∈Zd

s (m) gm (α)

∥∥∥∥∥∥
Weak-L1(Td ,dμ(α))

≤ c
∑

m∈Zd , s(m) �=0

|s (m)| log (1 + 1/ |s (m)|) .

(2) If 0 < p < 1, if {gm (α)}m∈Zd is a sequence in Weak-L p
(
T
d , dμ (α)

)
with

uniformly bounded quasi norms, ‖gm (α)‖Weak-L p(Td ,dμ(α)) ≤ c for every m, and if

{s (m)}m∈Zd is a sequence in L p
(
Z
d
)
, then

∑

m∈Zd

s (m) gm (α) converges absolutely
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218 L. Colzani

dμ (α) almost everywhere to a function in Weak-L p
(
T
d , dμ (α)

)
, with

∥∥∥∥∥∥

∑

m∈Zd

s (m) gm (α)

∥∥∥∥∥∥
Weak-L p(Td ,dμ(α))

≤ c

⎧
⎨

⎩
∑

m∈Zd

|s (m)|p
⎫
⎬

⎭

1/p

.

Proof These are well known properties of the quasi Banach spaces Weak-L p
(
T
d , dμ(

α
))
. For (1) see [21, Lemma 2.3]. For (2) see [20, Lemma 1.8]. See also [11] for a

sort of converse. 	

Lemma 9 Let dμ (α) be a Borel probability measure on the torusTd with the property
that there exist constants c > 0 and d − 1 < δ ≤ d such that for every ball B (y, r)
with center y and radius r one has μ (B (y, r)) ≤ cr δ . Also let p = 1 + δ − d.
Then for every m in Z

d − {0} the function α → |m|(p−1)/p ‖m · α‖−1 is in the space
Weak-L p

(
T
d , dμ (α)

)
, with quasi norm bounded independently of m.

Proof Since μ
(
T
d
) = 1, for every 0 < t ≤ 2 one has the estimate

μ
({

α ∈ T
d : ‖m · α‖−1 > t

})
≤ 1 ≤ 2pt−p.

Assume t > 2. The upper level set
{
α ∈ T

d : ‖m · α‖−1 > t
}
can be decomposed

into strips,

{
α ∈ T

d : ‖m · α‖−1 > t
}

=
⋃

−∞<k<+∞

{
α ∈ T

d : |m · α − k| < t−1
}

=
⋃

−∞<k<+∞

{
α ∈ T

d :
∣∣∣|m|−1 m · α − |m|−1 k

∣∣∣ ≤ (|m| t)−1
}

.

These stripes have thickness 2 (|m| t)−1, and each strip can be covered with at most
c (|m| t)d−1 balls with radius c (|m| t)−1. Under the assumption that μ (B (y, r)) ≤
cr δ , it follows that

μ
({

α ∈ T
d :
∣∣∣|m|−1 m · α − |m|−1 k

∣∣∣ < (|m| t)−1
})

≤ c (|m| t)d−1 (|m| t)−δ .

Also observe that if t > 2 the stripes
{
α ∈ T

d : |m · α − k| < t−1
}
are contained

into the larger stripes

{
α ∈ T

d : |m · α − k| ≤ 1/2
}

=
{
α ∈ T

d :
∣∣∣|m|−1 m · α − |m|−1 k

∣∣∣ ≤ (2 |m|)−1
}

.

These larger stripes have disjoint interiors and thickness |m|−1. Since the unit cube

has diameter
√
d, there are at most

[√
d |m|

]
+ 2 non empty stripes. Summing over

these non empty stripes, one obtains

μ
({

α ∈ T
d : ‖m · α‖−1 > t

})
≤ c

√
d |m|d−δ td−1−δ.
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Finally, if 1 + δ − d = p then d − δ = 1 − p and

∥∥∥‖m · α‖−1
∥∥∥
Weak-L p(Td ,dμ(α))

= sup
t>0

{
t pμ

({
α ∈ T

d : ‖m · α‖−1 > t
})}1/p

≤ cd1/2p |m|(1−p)/p .

	

Observe that the proof of the above lemma gives an estimate that depends on the

dimension d,
∥∥‖m · α‖−1

∥∥
Weak-L p(Td ,dμ(α))

≤ cd1/2p |m|(1−p)/p. On the other hand,

if dμ (α) = dα is the Lebesgue measure on the torus Td , then, as in Lemma 7, for
every 0 < p ≤ 1 one obtains an estimate independent of the dimension,

∥∥∥‖m · α‖−1
∥∥∥
Weak-L p(Td ,dα)

=
∥∥∥‖β‖−1

∥∥∥
Weak-L p(T,dβ)

= 21/p.

Proof of Theorem 2 By Lemma 6,

1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

=
∑

m∈Zd−{0}
exp (π i (N + 1)m · α)

sin (πNm · α)

N sin (πm · α)
f̂ (m) exp (2π im · x) .

Since |sin (πm · α)| ≥ 2 ‖m · α‖−1, it follows that

∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

∣∣∣∣∣

≤ 1

2N

∑

m∈Zd−{0}

(
|m|(1−p)/p

∣∣ f̂ (m)
∣∣
) (

|m|(p−1)/p ‖m · α‖−1
)

.

In order to prove the theorem it suffices to show that the above series converges
absolutely for almost every α, with a possible exception of a set of δ dimensional
Hausdorff measure zero. Assume that A is a Borel set with positive δ dimensional
Hausdorff measure. By Frostman’s lemma there exists a probability measure dμ (α)

with μ (A) > 0 and with the property that there exists a constant c > 0 such that
for every ball B (y, r) with center y and radius r one has μ (B (y, r)) ≤ cr δ . If 0 <

1+ δ − d = p ≤ 1, then by Lemma 9 the functions
{|m|(p−1)/p ‖m · α‖−1}

m∈Zd−{0}
are in the spaceWeak-L p

(
T
d , dμ (α)

)
with quasi norms bounded independently ofm.

By Lemma 8, under the assumption that the sequence
{|m|(1−p)/p

∣∣ f̂ (m)
∣∣}

m∈Zd is in
L log L

(
Z
d
)
when p = 1, or in L p

(
Z
d
)
when 0 < p < 1, the sum of these functions

is in Weak-L p
(
T
d , dμ (α)

)
and it is finite dμ (α) almost everywhere. Hence the set

A of positive δ dimensional Hausdorff measure cannot be contained in the exceptional
set � where the theorem fails. 	
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The proof of Theorem 3 is based on a couple lemmas, both already known.

Lemma 10 If f (x) is in L2
(
T
d
)
and if α is a point in the torus, the following are

equivalent:

sup
N≥1

⎧
⎨

⎩

∫

Td

∣∣∣∣∣

N∑

n=1

f (x + nα) − N
∫

Td
f (y)dy

∣∣∣∣∣

2

dx

⎫
⎬

⎭ < +∞, (1)

∑

m∈Zd−{0}

(∣∣ f̂ (m)
∣∣ / ‖m · α‖)2 < +∞. (2)

Proof This is proved in [18] and [16] when the function f (x) is a characteristic
function of an interval in the one dimensional torus, however the same proof works
for square integrable functions on the d dimensional torus. To be convinced and for
completeness let us repeat the proof. By subtracting f̂ (0) to f (x) one can assume
that f (x) has mean zero. Denote by FN (x), with N = 0, 1, 2, 3, ..., the functions

FN (x) =
N∑

n=0

f (x + nα) .

Also denote by K the closure in L2
(
T
d
)
of the convex hull of the sequence

{FN (x)}+∞
N=0. Under the assumption (1) that the sequence {FN (x)}+∞

N=0 is bounded in
L2
(
T
d
)
, the set K is convex and weakly compact. Define the operator

Vg (x) = f (x) + g (x + α) .

Observe that V FN (x) = FN+1 (x). This operator is continuous in L2
(
T
d
)
and it

maps K into K . Then, by the theorem of Schauder Tychonoff, it has a fixed point,
Vg (x) = g (x), that is f (x) = g (x) − g (x + α). The Fourier transform of this last
equation gives

f̂ (m) = (1 − exp (2π im · α)) ĝ (m) = −2i exp (π im · α) sin (πm · α) ĝ (m) .

This implies that 4 ‖m · α‖ |̂g (m)| ≤ ∣∣ f̂ (m)
∣∣ ≤ 2π ‖m · α‖ |̂g (m)|, and

16
∑

m∈Zd−{0}
|̂g (m)|2 ≤

∑

m∈Zd−{0}

(∣∣ f̂ (m)
∣∣ / ‖m · α‖)2 ≤ 4π2

∑

m∈Zd−{0}
|̂g (m)|2 .

Hence (1) implies (2). In order to prove the converse, given α and f (x), as before
define g (x) by ĝ (m) = f̂ (m) / (1 − exp (2π im · α)). If (2) holds true, then g (x) is
in L2

(
T
d
)
and f (x) = g (x) − g (x + α). Finally,

FN (x) =
N∑

n=0

f (x + nα)
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=
N∑

n=0

(g (x + nα) − g (x + (n + 1) α)) = g (x) − g (x + (N + 1) α) .

It follows that ‖FN (x)‖L2(Td) ≤ 2 ‖g (x)‖L2(Td), the sequence {FN (x)}+∞
N=0 is

bounded in L2
(
T
d
)
. Hence (2) implies (1). 	


In the following lemma,which is a sort of converse ofLemma8, the space dimension
is d = 1.

Lemma 11 Let {s (m)}+∞
m=1 be decreasing sequence of non negative numbers, and let

0 < δ < +∞. If the series
∑+∞

m=1
(s (m) / ‖mα‖)δ converges on a set of α of positive

measure in the one dimensional torus T, then the sequence {s (m)}+∞
m=1 is summable,∑+∞

m=1
s (m) < +∞.

Proof This result is due to Zygmund and it is stated without proof in [11], with the
remark that it follows easily from the theoremofKhintchin onDiophantine approxima-
tion. Indeed the result is stated under the assumption that {ms (m)}+∞

m=1 is decreasing,
the original assumption in the theorem of Khintchin, but an improved version of this
theorem gives the same result under the weaker assumption that {s (m)}+∞

m=1 is decreas-
ing. Here are the details. Let �(m) be a positive function on the positive integers.
Define

�(�) = {α ∈ T : ‖mα‖ ≤ �(m) for infinitely many m ∈ Z} .

Then the Lebesgue measure of �(�) is 0 if
∑+∞

m=1
�(m) < +∞, and it is 1 if

�(m) is decreasing and
∑+∞

m=1
�(m) = +∞. If �(m) = s (m), and if α ∈ �(�),

then s (m) / ‖mα‖ ≥ 1 infinitely often, and the series
∑+∞

m=1
(s (m) / ‖mα‖)δ

diverges. Hence, if the series converges on a set with positive measure, then∑+∞
m=1

s (m) < +∞. 	


Proof of Theorem 3 Assume that f (x) is in L2 (T) and that for a given α and every N
one has

⎧
⎨

⎩

∫

T

∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

T

f (y)dy

∣∣∣∣∣

2

dx

⎫
⎬

⎭

1/2

≤ c ( f , α)

N
.

Then, by Lemma 10, for the same α one has

∑

m∈Z−{0}

(∣∣ f̂ (m)
∣∣ / ‖m · α‖)2 < +∞.
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If the above inequality holds true for all α in a set A of positive measure,
and if

{∣∣ f̂ (m)
∣∣}+∞

m=1 and
{∣∣ f̂ (−m)

∣∣}+∞
m=1 are non increasing, then, by Lemma 11,∑

m∈Z
∣∣ f̂ (m)

∣∣ < +∞. 	


Proof of Theorem 4 For every α in � and every positive integer N denote by Sα,N the
linear operator

Sα,N f (x) = 1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy.

By the assumptions of the theorem, if f (x) is in X
(
T
d
)
, then also Sα,N f (x)

is in X
(
T
d
)
, hence in Y

(
T
d
)
. Hence this operator maps X

(
T
d
)
into Y

(
T
d
)
. The

exponentials exp (2π im · x) with m �= 0 are eigenfunctions,

Sα,N exp (2π im · x) =
(
exp (π i (N + 1)m · α)

sin (πNm · α)

N sin (πm · α)

)
exp (π i Nm · x) .

It follows that the operator norm of Sα,N from X
(
T
d
)
into Y

(
T
d
)
is at least as

large as

sup
m∈Zd−{0}

{∥∥Sα,N exp (2π im · x)∥∥Y(Td)

‖exp (2π im · x)‖X(Td)

}

= sup
m∈Zd−{0}

{∣∣∣∣
sin (πNm · α)

N sin (πm · α)

∣∣∣∣
‖exp (2π im · x)‖Y(Td)

‖exp (2π im · x)‖X(Td)

}
≥ K > 0.

The last inequality follows from the fact that for every α, with rational or irrational
entries, one can choose m in Zd − {0} with m · α arbitrary close to an integer, so that
|sin (πNm · α) / (N sin (πm · α))| gets arbitrarily close to 1. Hence if {� (N )}+∞

N=1

diverges to +∞ the family of operators
{
� (N ) Sα,N

}+∞
n=1 is not uniformly bounded

from X
(
T
d
)
intoY

(
T
d
)
, and the principle of condensation of singularities, theBanach

Steinhaus theorem, guarantees the existence of a set of functions F (α) of second
category in X

(
T
d
)
with the property that for every f (x) in F (α) the sequence{

� (N ) Sα,N f (x)
}+∞
N=1 is unbounded in Y

(
T
d
)
. Finally, if � is a countable set of α,

then F =
⋂

α∈�

F (α) is dense in X
(
T
d
)
. Hence for every α in � and every f (x) in F

one has

lim sup
N→+∞

{
� (N )

∥∥Sα,N f (x)
∥∥
Y(Td)

}
= +∞. 	


Theorem 5 easily follows from the following elementary observation.
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Lemma 12 Let {vn}+∞
n=1 be a sequence of vectors in a normed vector space X, with

‖vn‖X ≥ ε > 0 for every n. Then for the majority of positive values of N , at least
one every two consecutive, one has

∥∥∥∥∥

N∑

n=1

vn

∥∥∥∥∥
X

≥ ε/2.

Proof Assume that for a given N one has

∥∥∥∥∥

N∑

n=1

vn

∥∥∥∥∥
X

≤ ε/2.

Then, by the triangle inequality, for the next N + 1 one has

∥∥∥∥∥

N+1∑

n=1

vn

∥∥∥∥∥
X

≥ ‖vN+1‖X −
∥∥∥∥∥

N∑

n=1

vn

∥∥∥∥∥
X

≥ ε − ε/2 = ε/2.
	


Proof of Theorem 5 Write

(
1

N

N∑

n=1

f (x + αn)

)
−
∫

Td
f (y)dy = 1

N

N∑

n=1

(
f (x + αn) −

∫

Td
f (y)

)
.

Observe that, under the assumption that the norm in X
(
T
d
)
is invariant under

translation,

∥∥∥∥ f (x + αn) −
∫

Td
f (y)

∥∥∥∥
X(Td)

=
∥∥∥∥ f (x) −

∫

Td
f (y)

∥∥∥∥
X(Td)

.

Then apply Lemma 12 with vn (x) = f (x + αn) −
∫

Td
f (y). 	


Remark 13 The motivation for this work comes from an attempt to extend the Koksma
Hlawka inequality and improve, if possible, the speed of convergence ofWeyl sums. In
the literature there are several results on irrational rotations on the torus and functions
with bounded remainders. We quote only a few.

In [14] Krengel and in [12] Kakutani and Petersen proved that no general statements
can be made about the rate of convergence in ergodic theorems. In particular, if T is an
ergodic measure preserving transformation of the interval {0 ≤ x ≤ 1} and if {εn}+∞

n=1
is a positive sequence converging to 0, then there exists a continuous function f (x)
such that for almost every x one has

lim sup
N→+∞

{
ε−1
n

(
1

N

N∑

n=1

f
(
T n (x)

)−
∫ 1

0
f (y)dy

)}
= +∞.
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Moreover, for every 1 ≤ p ≤ +∞,

lim sup
N→+∞

⎧
⎪⎨

⎪⎩
ε−1
n

⎧
⎨

⎩

∫ 1

0

∣∣∣∣∣
1

N

N∑

n=1

f
(
T n (x)

)−
∫ 1

0
f (y)dy

∣∣∣∣∣

p

dx

⎫
⎬

⎭

1/p
⎫
⎪⎬

⎪⎭
= +∞.

Theorem 4 gives an easy proof of these results, in the particular case of a translation
T (x) = x + α.

In [1] Bayart and Buczolich and Heurteaux proved that the expected speed of con-
vergence ofWeyl sums of continuous, ormore generally square integrable functions, is
slightly less than N−1/2. More precisely, they proved that if f (x) is square integrable
and if ν < 1/2 then for almost every (α, x) ∈ T

d × T
d one has

lim sup
N→+∞

{
N ν

∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

∣∣∣∣∣

}
= 0.

They also proved that if ν = 1/2 then there exist continuous functions f (x) such
that for almost every (α, x) ∈ T

d × T
d one has

lim sup
N→+∞

{
N 1/2

∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

∣∣∣∣∣

}
= +∞.

Confirming a conjecture of Erdös and Szüs, in [13] Kesten, and with a different
proof in [18] Petersen, proved that if f (x) is the characteristic function of an interval
{a ≤ x ≤ b}, with 0 < b − a < 1, then there exists c ( f , α) such that for every N

N∑

n=1

f (x + nα) − N
∫

T

f (y)dy ≤ c ( f , α)

if and only if b−a = nα−k for some integers n and k. This result for one dimensional
intervals have been generalizes to Riemann measurable sets in several dimensions in
[8] by Grepstad and Lev. Hence for a characteristic function a bounded remainder
c ( f , α) is the exception not the rule.

In [9] and [10] Hellekalek and Larcher proved that if f (x) is a continuously dif-
ferentiable function on {0 ≤ x ≤ 1} with d f (x) /dx Lipschitz continuous and with
f (0) �= f (1), hence f (x) has a jump discontinuity as a function on the torus T, then
for every α and every x one has

lim sup
N→+∞

{∣∣∣∣∣

N∑

n=1

f (x + nα) − N
∫

T

f (y)dy

∣∣∣∣∣

}
= +∞.

They also proved that if f (0) = f (1), hence f (x) is continuous as a function on
the torus T and the derivative may have at most a jump discontinuity, then for almost
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every α with respect to Lebesgue measure one has

lim sup
N→+∞

{
sup

0≤x<1

{∣∣∣∣∣

N∑

n=1

f (x + nα) − N
∫

T

f (y)dy

∣∣∣∣∣

}}
< +∞.

Observe that a discontinuous function cannot have a Fourier expansion absolutely
convergent. On the other hand, the assumption that f (0) = f (1) and d f (x) /dx
Lipschitz continuous in {0 ≤ x ≤ 1} implies that

∣∣ f̂ (m)
∣∣ ≤ cm−2. More generally, if

f (x) is continuous in the torus and d f (x) /dx is Hölder continuous with exponent
ε > 0, then

∣∣ f̂ (m)
∣∣ ≤ cm−1−ε. Hence Theorem 2 applies with 2/ (2 + ε) < p ≤ 1.

In [5] Dick and Pillichshammer proved that if {αn}+∞
n=0 is a van der Corput sequence

on the interval {0 ≤ x ≤ 1}, and if the Fourier coefficients of the function f (x) have
decay

∣∣ f̂ (m)
∣∣ ≤ c |m|−1−ε for some ε > 0, then

∣∣∣∣∣

N∑

n=1

f (αn) − N
∫

T

f (x)dx

∣∣∣∣∣ ≤ c.

Observe that if
∣∣ f̂ (m)

∣∣ ≤ c |m|−1−ε, then f (x) is in the Sobolev spaceWv (T) of
functionswith square integrable fractional order derivatives up to the orderν < 1/2+ε.
Hence the assumption

∣∣ f̂ (m)
∣∣ ≤ c |m|−1−ε is a sort of smoothness assumption on

the function f (x). However, it should be remarked that the assumptions in the above
quoted papers are quite different from the ones in this paper. The assumption that∣∣ f̂ (m)

∣∣ ≤ c |m|−1−ε is not only on the size of the Fourier transform, but also on the
location on the masses. On the contrary, the assumption that the Fourier transform is
summable, or it is in L log L (Z), is invariant under rearrangement of the Fourier trans-
form. Finally, the assumption that the Fourier transform is summable guarantees that
the function is bounded, and with unbounded functions the conclusions of Theorem
1 and Theorem 2 fail.

Set

sup
N≥0

{∣∣∣∣∣

N∑

n=1

f (x + nα) − N
∫

T

f (y)dy

∣∣∣∣∣

}
= c ( f , α, x) .

In [16] Liardet, and again in [19] Schoissengeier, proved that if c ( f , α, x) is
finite at a particular point x0, c ( f , α, x0) < +∞, then c ( f , α, x) is finite at
every other point x , and c ( f , α, x) ≤ 2c ( f , α, x0). Indeed the proof holds true
also in several variables. In [19] there is also a study of properties of the set of
B ( f ) = {α ∈ T, c ( f , α, x) < +∞}. In particular, it is proved that if the comple-
ment of B ( f ) in the torus has a cardinality smaller than the continuum, then f (x) is
a trigonometric polynomial. The results stated in one variable, easily extend to sev-
eral variables. Hence, if f (x) is not a trigonometric polynomial, in Theorem 2 the
exceptional set � has measure zero but the cardinality of continuum.

In [17] Owen and Pan proved that there exist reproducing kernel Hilbert spaces of
functions on Td with bounded Hardy Krause variation with the property that for every
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sequence {αn}+∞
n=1 in T

d exist functions in these spaces with

lim sup
N→+∞

⎧
⎪⎪⎨

⎪⎪⎩

∣∣∣∣
1

N

∑N
n=1 f (x + αn) − ∫

Td f (y)dy

∣∣∣∣

N−1 log(d−1)/2 (1 + N ) log−1 (log (2 + N ))

⎫
⎪⎪⎬

⎪⎪⎭
= +∞.

Hence in the Koksma Hlawka inequality some powers of logarithms are indeed
necessary.

Remark 14 As already mentioned, Theorems 1, 2, and the classical Koksma Hlawka
inequality apply to quite different classes of functions. The Fourier coefficients of
functions with bounded variation on the one dimensional torus have decay

∣∣ f̂ (m)
∣∣ ≤

c |m|−1, but functions with bounded variation may be discontinuous, and discontin-
uous functions cannot have absolutely convergent Fourier expansions. On the other
hand, by a theorem of Zygmund, a function with bounded variation and Hölder con-
tinuous of any positive exponent has an absolutely convergent Fourier expansion. By
a theorem of Bernstein, a function Hölder continuous with exponent δ > 1/2 has
an absolutely convergent Fourier expansion, and a look at the proof shows that the
Fourier transform is in L log L (Z), and also that

{|m|(1−p)/p f̂ (m)
}
m∈Z is in L p (Z)

if p > 4/ (3 + 2δ). See [22, Chapter VI.3]. On the other hand, there are functions with
Fourier transforms in L log L (Z) which do not have bounded variation or without the
smoothness required by the theorem of Bernstein. An example is theWeierstrass func-

tion f (x) =
∑+∞

n=0
an cos (2πbnx), with 0 < a < 1 < b and ab > 1. Observe that

if |m| = bn then f̂ (m) = 2−1 |m|log(a)/ log(b), and that −1 < log (a) / log (b) < 0.
Also observe that this function is Hölder continuous with exponent − log (a) / log (b)
and it is roughly self affine, f (x) = cos (2πx) + a f (bx), and this suggests that its
graph has fractal dimension 2 + log (a) / log (b).

Remark 15 The assumption ‖exp (2π im · x)‖Y(Td) ≥ K ‖exp (2π im · x)‖X(Td) in

Theorem 5 is necessary. Indeed it is possible to find Banach function spaces X
(
T
d
)

contained into the space of continuous functions Y
(
T
d
) = C

(
T
d
)
such that the

assumption on the norms of the exponentials is not satisfied, and such that under
suitable Diophantine assumptions on the vector α for any function f (x) in X

(
T
d
)
and

every N ≥ 1 one has

sup
x∈Td

{∣∣∣∣∣
1

N

N∑

n=1

f (x + nα) −
∫

Td
f (y)dy

∣∣∣∣∣

}
≤ c

N
‖ f (x)‖X(Td) .

Examples are the spaces X
(
T
d
) = Cd,δ

(
T
d
)
with derivatives up to the order d

Hölder continuous of exponent δ > 0. We hope to return to this matter in another
paper.

Remark 16 The decay of the Fourier transform can be related to the smoothness of the
function. In particular, functions in Sobolev spaces Wv

(
T
d
)
with square integrable
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fractional order derivatives up to the order ν > d/2 have absolutely convergent Fourier
expansions. Quadrature rules for functions with different degree of smoothness have
been extensively studied. See e.g. [4] for quadrature rules on compact manifolds, the
torus is included. In particular, it is known that for every ν > d/2 and every N > 0
there are distributions of points {αn}Nn=1 in T

d and weights {cn}Nn=1 with the property
that for every function in the Sobolev space Wv

(
T
d
)
,

∣∣∣∣∣

N∑

m=1

cn f (αn) −
∫

Td
f (x) dx

∣∣∣∣∣ ≤ cN−ν/d ‖ f ‖Wv(Td) .

This order of approximation in the Sobolev norm is optimal. The Kronecker
sequences {nα}+∞

n=1 in Theorem 1 are quite explicit distributions of points on the torus,
but do not give such optimal order of approximation. Observe that these estimates are
not in contradiction with Theorem 5, since these distribution of points {αn}Nn=1 are
finite, while Theorem 5 applies only to infinite sequence.

Remark 17 The paper of Beck [3] has developed a new chapter of uniform distribution,
the strong uniformity, with the discrete samplings {nα}+∞

n=1 replaced by continuous
rotations {tα}0<t<+∞, and in [7] Grepstad and Larchert studied bounded remainder
sets for these continuous rotations. Indeed, the above theorems have an analog with
Weyl sums replaced by integrals and the discrete parameter N replaced by a continuous
parameter T ,

1

T

∫ T

0
f (x + tα) dt −

∫

Td
f (y)dy

=
∑

m∈Zd−{0}

(
T−1

∫ T

0
exp (2π i tm · α) dt

)
f̂ (m) exp (2π im · x)

=
∑

m∈Zd−{0}

(
exp (π iTm · α)

sin (πTm · α)

πTm · α

)
f̂ (m) exp (2π im · x) .
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