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ABSTRACT
In the present paper, several types of efficiency conditions are established for vec-
tor optimization problems with cone constraints affected by uncertainty, but with
no information of stochastic nature about the uncertain data. Following a robust
optimization approach, data uncertainty is faced by handling set-valued inclusion
problems. The employment of recent advances about error bounds and tangential
approximations of the solution set to the latter enables one to achieve necessary
conditions for weak efficiency via a penalization method as well as via the modern
revisitation of the Euler-Lagrange method, with or without generalized convexity as-
sumptions. The presented conditions are formulated in terms of various nonsmooth
analysis constructions, expressing first-order approximations of mappings and sets,
while the metric increase property plays the role of a constraint qualification.
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1. Introduction

Consider a vector optimization problem

(P) MinKf(x) subject to x ∈ R,

where R ⊆ X is a decision set defining the feasible region of the problem, f : X −→ Y
represents the criterion with respect to which decisions in R are to be optimized, and
K ⊆ Y is a convex cone defining the partial order, according to which the outcomes
of decisions are compared in the criteria space. Throughout the paper (X, ‖ · ‖) and
(Y, ‖ · ‖) denote real Banach spaces and it will be assumed that intK 6= ∅. For vector
optimization problems the concept of solution is not uniquely defined but several
notions, reflecting different aspects of the issue, can be considered. Among the others,
the notions of efficient and weakly efficient solution are well recognized and largely
investigated in the literature devoted to vector optimization (see [3,10,15–17,19,20,27]).
Recall that an element x̄ ∈ R is said to be a locally weakly efficient (for short, w-eff.)
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solution to (P) if there exists δ > 0 such that

f(R∩ B(x̄, δ)) ∩ [f(x̄)− intK] = ∅;

an element x̄ ∈ R is said to be a locally efficient (for short, eff.) solution to (P) if
there exists δ > 0 such that

f(R∩ B(x̄, δ)) ∩ [f(x̄)−K] = {f(x̄)}.

Clearly, any locally eff. solution to (P) is also a locally w-eff. one. The present paper
deals with conditions of local weak efficiency for vector optimization problems, whose
decision set R is formalized by uncertain cone constraints, namely problems of the
form

(Pω) MinKf(x) with x ∈ S subject to g(ω, x) ∈ C,

where C ⊆ Z is a (proper) closed, convex cone in a real Banach space (Z, ‖ · ‖), with
C 6= 0, S ⊆ X is a closed set expressing a geometric constraint free from uncertainty,
and g : Ω × X −→ Z is a given mapping. Here Ω represents a given uncertainty
set, which allows one to describe a decision environment characterized by a crude
knowledge of the data. This means that the constraining mapping g, as a structural
element of the problem, is affected by uncertainty, but this uncertainty can not be
tackled by handling probability distributions as in stochastic optimization, because
such an information is not at disposal. The only information about the data element
ω is that ω ∈ Ω. The paper often credited as a first reference in undertaking an aware
and systematic study of optimization problems, whose data are affected by this form
of uncertainty, is [4] 1. There, reasons for such a crude knowledge of the data are
widely discussed. In this circumstance, situations quite common in reality may require
that the cone constraint g(ω, x) ∈ C is satisfied, whatever the actual realization of
ω ∈ Ω is. In other terms, the decision maker is forced to regard as feasible only those
elements of S such that g(ω, x) ∈ C for every ω ∈ Ω. Examples of such situations,
emerging especially in engineering applications, are described in [4]. On this basis the
authors developed an approach hedging the decision maker against the worst cases that
may occur, called robust approach to uncertain optimization, in analogy with robust
control. This ‘pessimistic’ (or ‘ultraconservative’, in the Soyster’s words) approach
to uncertainty opened a flourishing line of research, in scalar as well as in vector
optimization, known as robust optimization (see [4–6] and references therein).

In the case of vector optimization problems such as (Pω), where the objective func-
tion is not affected by uncertainty, this approach reduces to consider as a feasible
region the set

R = {x ∈ S : g(ω, x) ∈ C, ∀ω ∈ Ω}.

Thus, by introducing the set-valued mapping G : X ⇒ Z, defined as being

G(x) = g(Ω, x) = {z = g(ω, x) ∈ Z : ω ∈ Ω}, (1)

1To be more precise, in [4] the authors do indicate as a forerunner of their approach A.L. Soyster, who in
[29] introduced a similar point of view, in dealing with uncertainly constrained problems in mathematical

programming.
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the robust counterpart of the feasible region of (Pω) leads naturally to consider the
so-called set-valued inclusion problem: given a (nonempty) closed set S ⊆ X, a proper,
closed and convex cone C ⊆ Z and a set-valued mapping G : X ⇒ Z

(SVI) find x ∈ S such that G(x) ⊆ C.

In fact, recalling that the upper inverse image of C through the set-valued mapping
G is the set G+1(C) = {x ∈ X : G(x) ⊆ C}, one has

R = S ∩G+1(C).

To the best of the author’s knowledge, problem (SVI) began to be investigated in-
dependently of robust optimization in [7], which focuses on error bound estimates.
Solvability and solution stability issues for (SVI) have been studied more recently in
[30,31]. In the light of the role played by (SVI) in the robust approach to optimization
problems with uncertain constraints, it seems to be natural to assess an impact evalua-
tion of the recent achievements about the solution set to (SVI) and its approximations
within the theory of optimality/efficiency conditions. Some initial results along this
line of research have been obtained in the case of scalar optimization in [30,32]. So, the
present analysis can be regarded as a development of ideas and techniques, presented
especially in [32], towards the specific context of vector optimization, in considering
problems of the form

(PG) MinKf(x) with x ∈ S subject to G(x) ⊆ C.

This analysis will be performed here by well-known techniques: in fact, some first-
order efficiency conditions are obtained by means of the Clarke penalization principle,
through its vector counterpart due to J.J. Ye (see [33]). Some other first-order efficiency
conditions are achieved by exploiting tangential approximations of the solution set to
(SVI), following a modern revisitation of the celebrated Euler-Lagrange method. In
both the cases, the main tools employed come from nonsmooth and variational analysis
as well as from generalized convexity.

Optimality conditions for vector optimization problems with uncertain constraints
are a subject intensively investigated in the last years, in particular through the robust
approach (see, among others, [8,9,18] and references therein). A feature distinguishing
the analysis here proposed is the great generality kept on Ω, in the very spirit of robust
optimization, owing to the introduction of the set-valued mapping G.

The presentation of the contents is organized according to the following arrange-
ment. Section 2 collects some basic technical preliminaries of large employment in
optimization and related fields. Some more specific constructions needed in the subse-
quent analysis will be recalled contextually to their use. In Section 3 first-order neces-
sary conditions for the local weak efficiency of solutions to (PG) are established via a
penalization method, with and without generalized convexity assumptions. In Section
4 different Lagrangian-type necessary conditions for local weak efficiency, leading to
multiplier rules, are formulated in terms outer prederivatives of G, with or without
smoothness assumption on f . Needless to say that, since any eff. solution to (PG)
is also a w-eff. solution to (PG), all the mentioned conditions are necessary for local
efficiency too.

The notations in use throughout the paper are mainly standard. Quite often, capital
letters in bold will denote real Banach spaces, with ‖ · ‖ denoting their norm. The null
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vector in a Banach space is denoted by 0. In a metric space setting, the closed ball
centered at an element x, with radius r ≥ 0, is indicated with B(x, r). In particular,
in a Banach space, B = B(0, 1). Whenever A is a subset of a metric space, B(A, r)
indicates the r-enlargement ofA, whereas the distance of a point x fromA is denoted by
dist (x,A). If W is a subset of the same metric space, exc(A,W ) = supa∈A dist (a,W )
indicates the excess of A over W . Symbols clA and intA denote the topological closure
and the interior of A, respectively. If A is a subset of a Banach space, its convex hull is
denoted by convA and, when A is convex, its relative interior is denoted by riA. All
finite-dimensional Banach spaces will be supposed to be endowed with their Euclidean
space structure. Rn+ stands for the cone of all vectors with nonnegative components.

By L(X,Y) the Banach space of all bounded linear operators acting between X and
Y is denoted, equipped with the operator norm ‖ · ‖L. In particular, X∗ = L(X,R)
stands for the dual space of X, in which case ‖ · ‖L is simply marked by ‖ · ‖. The
null vector of a dual space will be marked by 0∗. The duality pairing a Banach space
with its dual will be denoted by 〈·, ·〉. Given a function ϕ : X −→ R ∪ {∓∞}, by
[ϕ ≤ 0] = ϕ−1([−∞, 0]) its sublevel set is denoted, whereas [ϕ > 0] = ϕ−1((0,+∞])
denotes the strict superlevel set of ϕ. The acronyms l.s.c., u.s.c. and p.h. stand for lower
semicontinuous, upper semicontinuous and positively homogeneous, respectively. The
symbol domϕ = ϕ−1(R) indicates the domain of ϕ, whenever ϕ is a functional, whereas
if F : X ⇒ Y is a set-valued mapping, domF = {x ∈ X : F (x) 6= ∅}. Throughout
the paper, the set of all locally w-eff. solutions of a problem (PG) will be denoted by
WE(PG).

2. Basic tools of analysis

Let A ⊆ X be a nonempty closed subset of a Banach space and let x̄ ∈ A. Nonsmooth
analysis provides a large variety of concepts for the local, first-order conic approxima-
tion of A near x̄. For the purposes of the present analysis, the following ones are to be
mentioned:

T(A; x̄) = {v ∈ X : ∃(vn)n with vn → v, ∃(tn)n with tn ↓ 0 : x̄+ tnvn ∈ A, ∀n ∈ N},

I(A; x̄) = {v ∈ X : ∃δ > 0 : x̄+ tv ∈ A, ∀t ∈ (0, δ)},

and

Iw(A; x̄) = {v ∈ X : ∀ε > 0, ∃tε ∈ (0, ε) : x̄+ tεv ∈ A},

called the contingent (or Bouligand tangent) cone, the feasible direction cone and the
weak feasible direction cone to A at x̄, respectively. They are known to be linked by
the inclusion relation of general validity

I(A; x̄) ⊆ Iw(A; x̄) ⊆ T(A; x̄),

where strict inclusion may hold (see [28]). Whenever A is locally convex around x̄, i.e.
there exists r > 0 such that A ∩ B(x̄, r) is a convex set, the above inclusion relation
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collapses to

cl I(A; x̄) = cl Iw(A; x̄) = T(A; x̄)

(see [28, Proposition 11.1.2(d)]). In such an event, T(A; x̄) is a closed convex cone,
while I(A; x̄) is a convex cone.

Let Q ⊆ Y be a cone. The sets

Q
⊕

= {y∗ ∈ Y∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ Q} and Q
	

= −Q⊕

are called the positive and the negative dual cone of Q, respectively.

Remark 1. (i) Note that, whenever a set A is locally convex around x̄ (so T(A; x̄) is
convex) the negative dual cone operator allows one to represent the normal cone to A
in the sense of convex analysis at some element x̄ ∈ A in terms of contingent cone as
follows

N(A; x̄) = {x∗ ∈ X∗ : 〈x∗, x− x̄〉 ≤ 0, ∀x ∈ A} = T(A; x̄)
	
.

(ii) The interaction of the negative dual cone operator with some set operations is
described by the following formula: given Λ ∈ L(X,Y) and two closed convex cones
Q ⊆ Y and P ⊆ X, it holds

(P ∩ Λ−1(Q))
	

= cl (P
	

+ Λ∗(Q
	

)),

where Λ∗ ∈ L(Y∗,X∗) denotes the adjoint operator to Λ (see [28, Lemma 2.4.1]). From
this formula one can derive, as a special case, the equality[

Λ−1(Q)
]	

= cl Λ∗(Q
	

), (2)

and, under the qualification condition intP1 ∩ intP2 6= ∅,

(P1 ∩ P2)
	

= P1
	

+ P2
	
, (3)

with P1 and P2 being closed convex cones in X (see [1, Table 4.3 (5)b)]. Note that in the
equality (2) the closure operation can be omitted if Λ−1(riQ) 6= ∅. Such a condition is
evidently satisfied if Λ(X) ⊇ Q and Q 6= {0} (see, for instance, [26, Corollary 16.3.2]).

Let K ⊆ Y be a (proper) convex cone inducing a partial order ≤
K

on Y and let
f : X −→ Y be a mapping between Banach spaces. Then f is said to be K-convex on
the convex set A ⊆ X if the set

epiK(f) = {(x, y) ∈ X× Y : x ∈ A, f(x) ≤
K
y}

is convex. If, in addition, A is a cone and f is also positively homogeneous, then f
is said to be K-sublinear on A. It is well known that if f is K-convex on A, then
f(A) + K is convex, while if A is a cone and f is K-sublinear, then f(A) + K is a
convex cone.

Following [12, Definition 2.3], a mapping f is said to be K-convexlike on a set (not
necessarily convex) A if the set f(A) +K is convex.
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Remark 2. In Section 3 it will be used the fact, which is readily proved by handling
the related definitions, that if ν : X −→ R is a sublinear function on X and e ∈ K,
then the mapping νe : X −→ Y, defined by x 7→ ν(x)e is K-sublinear on X.

Generalized convexity notions apply also to set-valued mappings. Following [7], a
set-valued mapping F : X ⇒ Z between Banach spaces is said to be C-concave on X,
where C ⊆ Z is a (proper) convex cone, if

F (tx1 + (1− t)x2) ⊆ tF (x1) + (1− t)F (x2) + C, ∀x1, x2 ∈ X.

Some examples of C-concave set-valued mappings of interest in optimization can be
found in [31]. For the purposes of the present analysis, the special class of C-concave
set-valued mappings known as fans is to be mentioned. Recall that, after [14], a set-
valued mapping H : X ⇒ Z is called fan if it fulfils all the following conditions:

(i) it is p.h.;
(ii) 0 ∈ H(0);
(iii) it is convex-valued;
(iv) H(x1 + x2) ⊆ H(x1) +H(x2), ∀x1, x2 ∈ X.

Fans may appear in a variety of forms. In Section 4, only fans which are generated by
bundles of linear mappings will be actually employed, i.e. fans HG : X ⇒ Z that can
be represented as

HG(x) = {Λx : Λ ∈ G},

where G ⊆ L(X,Z) is a (nonempty) convex and weakly closed set.

Remark 3. Whenever a fan HG is generated by a bounded set G, it turns out to be
a Lipschitz set-valued mapping, i.e. it holds

haus(HG(x1), HG(x2)) ≤ l‖x1 − x2‖, ∀x1, x2 ∈ X,

with l ≥ sup{‖Λ‖L : Λ ∈ G}, where haus(A,W ) = max{exc(A,W ), exc(W,A)}
denotes the Hausdorff distance between two sets A and W (see [32, Remark 2.14(iii)]).
This happens, in particular, when G is the convex hull of finitely many elements of
L(X,Z), in which case HG is said to be finitely generated.

Remark 4. Since in all the efficiency conditions established in the paper the set-
valued mapping G, defined as in (1), will be assumed to be l.s.c. around a reference
point, it is proper to mention that, if each mapping g(ω, ·) : X −→ Z is continuous
at a point x0 ∈ X, for every ω ∈ Ω, then G turns out to be l.s.c. at the same point.
Indeed, let O ⊆ Z be an arbitrary open set such that G(x0)∩O 6= ∅. Then, according
to the definition of G, there exists ωO ∈ Ω such that g(ωO, x0) ∈ O. Since g(ωO, ·) is
continuous at x0 and O is open, there exists rO > 0 such that g(ωO, x) ∈ O for every
x ∈ B(x0, rO). Consequently, one finds

g(ωO, x) ∈ G(x) ∩O 6= ∅, ∀x ∈ B(x0, rO),

which shows that G is l.s.c. at x0.
Nevertheless, the following example shows that the aforementioned condition is

only sufficient, so the lower semicontinuity of G may take place in many other circum-
stances, sometimes rather pathological. Let Ω = X = Z = R, let χQ denote the char-
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acteristic function associated to the set of all rational numbers and let g : R×R −→ R
be defined by

g(ω, x) = ω[χQ(x) + χQ(ω)].

It is clear that g(ω, ·) is nowhere continuous, for every ω ∈ R\{0}. In spite of this,
with the above elements it results in

G(x) = g(R, x) =

{
R, if x ∈ Q,
Q, if x ∈ R\Q,

which is l.s.c. everywhere in R.

3. Weak efficiency conditions via penalization

Definition 3.1 (K-Lipschitz continuity). Let f : X −→ Y be a mapping between
normed spaces and let K ⊆ Y be a convex cone, with intK 6= ∅. f is said to be K-
Lipschitz on the set D ⊆ X if there exist a constant `f > 0 and a vector e ∈ intK ∩ B
such that

f(x1) ∈ f(x2)− `f‖x1 − x2‖e+K, ∀x1, x2 ∈ D.

If x̄ ∈ X and f is K-Lipschitz on a set D = B(x̄, δ) for some δ > 0, then f is said to
be K-Lipschitz near x̄.

The above notion has been used in [33] as a key concept to extend the Clarke
penalization principle from the scalar case to vector optimization problems. This is
done here directly through a local error bound function, whose definition is recalled
below.

Definition 3.2 (Local error bound function). Let x̄ ∈ R ⊆ S ⊆ X. A function
ψ : X −→ [0,+∞] is said to be a local error bound function for R near x̄ if there exists
δ > 0 such that both the following conditions are satisfied:

(i) dist (x,R) ≤ ψ(x), ∀x ∈ B(x̄, δ) ∩ S;
(ii) dist (x,R) = ψ(x), ∀x ∈ R.

Proposition 3.3. ([33, Theorem 4.2(i)]) With reference to a problem (P), let x̄ ∈ R
and suppose that:

(i) f is K-Lipschitz near x̄, with constant `f and vector e ∈ intK;
(ii) ψ : X −→ [0,+∞] is an error bound function near x̄.

Then, for any ` ≥ `f , every local w-eff. solution to (P) is also a local w-eff. solution
of the problem

(P`) MinK [f(x) + `ψ(x)e].

Furthermore, if R is closed, for any ` > `f , every local eff. solution to (P) is also a
local eff. solution of the problem (P`).

Proposition 3.3 enables one to free the original problem from its constraints. Notice
indeed that problem (P`) is unconstrained. For problems such as (PG), where the
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feasible region is structured as a solution set to (SVI), one has to adequate the local
error bound function to the the constraint definition. In the present analysis, the
following merit function νG,C : X −→ R ∪ {±∞} for problems (SVI) is exploited to
treat the data uncertainty in the constraints:

νG,C(x) = sup
z∈G(x)

dist (z, C) = exc(G(x), C).

Henceforth, as a standing assumption it is assumed that domG = X. As a consequence,
one has νG,C : X −→ [0,+∞] and therefore the following characterization of the
feasible region of (PG) holds true:

R = S ∩ [νG,C ≤ 0].

The next lemma singles out a constraint qualification, under which the merit function
νG,C is shown to actually work as a local error bound function. In order to formulate it,
let us recall that, after [11], given a function ϕ : X −→ R∪{±∞} defined on a metric
space (X, d) and x̄ ∈ ϕ−1(R), the strong slope of ϕ at x̄ is defined as the quantity

|∇ϕ|(x̄) =

 0, if x̄ is a local minimizer of ϕ,

lim sup
x→x̄

ϕ(x̄)− ϕ(x)

d(x, x̄)
, otherwise.

In view of the formulation of the next lemma, it is useful to observe that, if as a metric
space X one takes a closed subset S ⊆ X containing x̄ and as a distance d one takes
the distance induced by ‖ · ‖, the above definition becomes

|∇Sϕ|(x̄) =


0, if x̄ is a local minimizer

of ϕ over S,

inf
r>0

sup
x∈B(x̄,r)∩S\{x̄}

ϕ(x̄)− ϕ(x)

‖x− x̄‖
, otherwise.

Lemma 3.4. Let G : X ⇒ Z, S and C as in problem (SVI), and let x̄ ∈ R. Suppose
that:

(i) G is l.s.c. in a neighbourhood of x̄;
(ii) there exist positive σ and r such that

(CQ) |∇SνG,C |(x) ≥ σ, ∀x ∈ B(x̄, r) ∩ S ∩ [νG,C > 0].

Then function ψ = σ−1νG,C is a local error bound function for R.

Proof. From [30, Lemma 2.3(i)] it is known that the lower semicontinuity of G (in the
sense of set-valued mappings) implies the lower semicontinuity for the functional νG,C .
Thus, by hypothesis (i), for some δ0 > 0 it is true that νG,C is l.s.c. on B(x̄, δ0) ∩ S.
Notice that, as a closed subset of a Banach space, B(x̄, δ0) ∩ S is a complete metric
space, if equipped with the induced metric. Besides, without any loss of generality, it
is possible to assume that, if r > 0 is as in hypothesis (ii), it is r < δ0. Notice that
the case B(x̄, r) ∩ S ∩ [νG,C > 0] = ∅ means B(x̄, r) ∩ S ⊆ G+1(C) ∩ S, so it holds
dist (x,R) = 0 ≤ ψ(x) for every x ∈ B(x̄, r)∩S and any ψ : X −→ [0,+∞]. Otherwise,
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it is possible to apply [2, Corollary 3.1] with X = B(x̄, r) ∩ S, according to which

dist (x,R) = dist (x, S ∩ [νG,C ≤ 0]) ≤
νG,C(x)

σ
, ∀x ∈ B(x̄, r/2) ∩ S.

Thus, setting δ = r/2 and ψ(x) = σ−1νG,C , the condition (i) in Definition 3.2 is
fulfilled. Since under the above assumptions R is closed, one has

dist (x,R) = 0 = ψ(x), ∀x ∈ R,

so also the condition (ii) in Definition 3.2 is readily satisfied. This completes the
proof.

With the specialization of ψ above introduced, upon the constraint qualification
(CQ), the penalization principle for vector optimization takes the following form.

Proposition 3.5. With reference to a problem (PG), let x̄ ∈ R = S∩G+1(C). Suppose
that:

(i) f is K-Lipschitz near x̄, with constant `f and e ∈ intK;
(ii) G is l.s.c. in a neighbourhood of x̄ and condition (CQ) is satisfied.

Then, for any ` ≥ `f , every locally w-eff. solution to (PG) is also a locally w-eff.
solution to problem

(PG,`) MinK [f(x) + `σ−1νG,C(x)e] subject to x ∈ S .

For any ` > `f , every locally eff. solution to (PG) is a locally eff. solution to (PG,`).

Proof. Since f is K-Lipschitz near x̄, intK is open and, under the above assumptions,
according to Lemma 3.4, σ−1νG,C is a local error bound function for R, then the first
assertion in Proposition 3.3 can be invoked. This yields that x̄ is a local w-eff. solution
to problem (PG,`), for any ` ≥ `f .

Since R is closed, in the case x̄ ∈ R is a local eff. solution to (PG), it suffices to
apply the second assertion in Proposition 3.3, in order to conclude that x̄ is a local
eff. solution to problem (PG,`), for any ` > `f .

The constraint qualification (CQ) is expressed in terms of νG,C . This function can
be built by means of the problem data. Nevertheless, it would be useful to formulate
conditions ensuring the validity of (CQ) directly on G. This can be done by exploiting
the metric increase property, as introduced in [30].

Definition 3.6 (Metrically C-increasing mapping). Let S ⊆ X be a (nonempty)
closed set and let C ⊆ Z be a closed, convex cone, with C 6= {0}. A set-valued
mapping F : X ⇒ Z between Banach spaces is said to be metrically C-increasing
around x̄ ∈ domF , relative to S, if there exist δ > 0 and α > 1 such that

∀x ∈ B(x̄, δ) ∩ S, ∀r ∈ (0, δ) ∃z ∈ B(x, r) ∩ S : B(F (z), αr) ⊆ B(F (x) + C, r). (4)

The quantity

incC(F ;S; x̄) = sup{α > 1 : ∃δ > 0 for which (4) holds}

is called exact exact bound of metric C-increase of F around x̄, relative to S.
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Several examples of metrically increasing mappings, along with an infinitesimal cri-
terion for detecting the occurrence of this property, are provided in [30]. The next
proposition enlightens the role of the metric increase property as a constraint qualifi-
cation condition.

Proposition 3.7. Let G : X ⇒ Z, S and C as in problem (SVI), and let x̄ ∈ R.
Suppose that:

(i) G is l.s.c. in a neighbourhood of x̄;
(ii) G is metrically C-increasing around x̄, relative to S.

Then condition (CQ) holds true with σ = α−1 and r = δ, for any α ∈ (1, incC(G;S; x̄))
and δ as in (4).

Proof. As already seen, by hypothesis (i) the function νG,C is l.s.c. in B(x̄, δ0), for
some δ0 > 0. According to hypothesis (ii), fixed α ∈ (1, incC(G;S; x̄))), there exists
δα > 0 such that (4) holds. Observe that the nature of the metric C-increase property
around x̄ allows one to assume without loss of generality that δα < δ0.

Now, let us take an arbitrary x ∈ B(x̄, δα)∩S ∩ [νG,C > 0]. Since, under the current
assumptions, νG,C is l.s.c. at x ∈ B(x̄, δ0), there exists δx > 0 such that νG,C(z) > 0
for every z ∈ B(x, δx). Take any r > 0 such that r < min{δα, δx}. According to (4),
there exists zr ∈ B(x, r) ∩ S such that

B(G(zr), αr) ⊆ B(G(x) + C, r). (5)

Notice that it must be zr 6= x. Indeed, since it is νG,C(x) > 0 (namely, it is
exc(G(x), C) > 0), if it were zr = x, then by inclusion (5) and [30, Lemma 2.2],
one would find

νG,C(x) + αr = exc(B(G(x), αr), C) = exc(B(G(zr), αr), C)

≤ exc(B(G(x) + C, r), C) = νG,C(x) + r,

wherefrom α ≤ 1, in contrast with the fact that α > 1. Furthermore, by applying once
again inclusion (5) and taking into account that νG,C(zr) > 0, so [30, Lemma 2.2] still
works, one obtains

νG,C(zr) = exc(B(G(zr), αr), C)− αr ≤ exc(B(G(x) + C, r), C)− αr
= exc(G(x) + C,C) + r − αr = νG,C(x) + (1− α)r.

As it is zr ∈ B(x, r) ∩ S, from the last inequality chain it follows

νG,C(x)− νG,C(zr) ≥ (α− 1)r ≥ (α− 1)‖zr − x‖.

This inequality says that x fails to be a local minimizer for νG,C and therefore allows
one to get the following estimate

|∇SνG,C |(x) = lim sup

z
S−→x

νG,C(x)− νG,C(z)

‖x− z‖
≥ lim

r↓0

νG,C(x)− νG,C(zr)

‖x− zr‖
≥ α− 1.

By arbitrariness of x ∈ B(x̄, δα) ∩ S ∩ [νG,C > 0], the last inequalities show that
condition (CQ) is satisfied with σ = α−1 and r = δα, thereby completing the proof.
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On the base of the constraint system analysis exposed above, one is now in a position
to formulate necessary weak efficiency condition for problems (PG). To this aim, it
remains to recall some further element of nonsmooth analysis.

Let ϕ : X −→ R∪{±∞} be a function which is finite around x̄ ∈ ϕ−1(R). Following
[22, Section 1.3.2], the set

∂̂+ϕ(x̄) =

{
x∗ ∈ X∗ : lim sup

x→x̄

ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

≤ 0

}
is called the Fréchet upper subdifferential of ϕ at x̄. It is readily seen that, whenever ϕ is
(Fréchet) differentiable at x̄, then ∂̂+ϕ(x̄) = {Dϕ(x̄)}, whereas in the case ϕ : X −→ R
is concave, the set ∂̂+ϕ(x̄) reduces to the superdifferential of ϕ at x̄, in the sense of
convex analysis.

Remark 5. The following variational description of the Fréchet upper subdifferential
of ϕ at x̄ will be exploited in the sequel: for every x∗ ∈ ∂̂+ϕ(x̄) there exists a function
ς : X −→ R, Fréchet differentiable at x̄ and with ϕ(x̄) = ς(x̄), such that ϕ(x) ≤ ς(x)

for every x ∈ X and Dς(x̄) = x∗ (to get it, it suffices to remember that ∂̂+ϕ(x̄) =

−∂̂(−ϕ)(x̄), where ∂̂ denotes the Fréchet subdifferential, and then apply [22, Theorem
1.88(i)]).

Given a mapping f : X −→ Y between Banach spaces and x̄ ∈ X f ′(x̄; v) indicates
the directional derivative of f at x̄, in the direction v ∈ X. If its directional derivative
exists for every v ∈ X, f is said to be directionally differentiable at x̄.

A first-order necessary condition for weak efficiency of solutions to (PG) can be
stated as follows.

Theorem 3.8 (Weak efficiency condition via penalization). With reference to a prob-
lem (PG), let x̄ ∈ R = S ∩ G+1(C) be a locally w-eff. solution to (PG). Suppose
that:

(i) f is K-Lipschitz near x̄, with constant `f and e ∈ intK, and is directionally
differentiable at x̄;

(ii) G is l.s.c. in a neighbourhood of x̄ and metrically C-increasing around x̄, relative
to S;

(iii) ∂̂+νG,C(x̄) 6= ∅.

Then for any α ∈ (1, incC(G;S; x̄)), ` ≥ `f and x∗ ∈ ∂̂+νG,C(x̄) it must be

f ′(x̄; v) +
`

α− 1
〈x∗, v〉e 6∈ −intK, ∀v ∈ I(S; x̄). (6)

Proof. Under the assumptions made, in the light of Proposition 3.7 the condition
(CQ) is satisfied. Thus, it is possible to invoke Proposition 3.5, according to which x̄
turns out to be a w-eff. solution of problem (PG,`), for any α ∈ (1, incC(G;S; x̄)) and
` ≥ `f . This means that there exists δ > 0 such that(

f +
`

α− 1
νG,Ce

)
(B(x̄, δ) ∩ S) ∩ [f(x̄)− intK] = ∅. (7)

Take an arbitrary v ∈ I(S; x̄)∩B. By reducing the value of δ > 0 in (7) if needed, one
can assume that x̄ + tv ∈ S, for all t ∈ (0, δ). Therefore, from the relation in (7) it
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follows

f(x̄+ tv)− f(x̄)

t
+
`νG,C(x̄+ tv)e

(α− 1)t
∈ Y\(−intK), ∀t ∈ (0, δ). (8)

Let x∗ be an arbitrary element of ∂̂+νG,C(x̄). According to the characterization of
upper Fréchet subgradients mentioned in Remark 5, there exists a Fréchet differen-
tiable function ς : X −→ R such that ς(x̄) = νG,C(x̄) = 0, ς(x) ≥ νG,C(x) for every
x ∈ X, and Dς(x̄) = x∗. Therefore, one has

ς(x̄+ tv)− νG,C(x̄+ tv) ≥ 0, ∀t ∈ (0,+∞),

whence

`[ς(x̄+ tv)− νG,C(x̄+ tv)]e

(α− 1)t
∈ K, ∀t ∈ (0,+∞). (9)

By combining (8) and (9) and observing that, for every y ∈ Y\(−intK) it holds
y +K ⊆ Y\(−intK), one obtains

f(x̄+ tv)− f(x̄)

t
+
`ς(x̄+ tv)e

(α− 1)t
∈ Y\(−intK), ∀t ∈ (0, δ).

By passing to the limit as t ↓ 0 in the last inclusion, while taking into account that the
cone Y\(−intK) is closed and that f is directionally differentiable at x̄, one achieves
the relation in (6) for any v ∈ I(S; x̄)∩B. Since the mapping v 7→ f ′(x̄; v)+ `

α−1〈x
∗, v〉e

is positively homogeneous and Y\(−intK) is a cone, the validity of relation in (6) can
be extended to the whole set I(S; x̄). By arbitrariness of x∗, this reasoning completes
the proof.

Among the hypotheses of Theorem 3.8, the most involved is (iii), so it deserves some
comment. In the next remark, some elements for discussion are provided in order to
clarify the meaning of such an assumption.

Remark 6. According to its definition, the merit function νG,C is nonnegative and,
since it is x̄ ∈ G+1(C) one has νG,C(x̄) = 0, so the hypothesis (iii) in Theorem 3.8 is
about the nontriviality of the Fréchet upper subdifferential at a (global) minimizer. A
systematic study of this tool of nonsmooth analysis (actually, not so often considered as
its lower counterpart) and related optimality conditions for constrained minimization
problems can be found in [21,23]. In particular, it was shown that, for given a function
ϕ : X −→ {±∞}, which is defined on an Asplund space and is locally Lipschitz

around x̄, the nonemptiness of ∂̂+ϕ(x̄) is automatic if ϕ is upper regular at x̄, i.e.

∂̂+ϕ(x̄) = ∂+ϕ(x̄), where ∂+ϕ(x̄) denotes the limiting upper subdifferential of ϕ at x̄,
defined through the basic normals to the hypergraph of ϕ (see [22, Definition 1.78]).
In such a circumstance, it holds

∂Clϕ(x̄) = cl∗ ∂̂+ϕ(x̄),

where ∂Clϕ(x̄) denotes the Clarke generalized gradient of ϕ at x̄ and cl∗A marks
the closure of a set A with respect to the weak∗ topology (see, for more details, [23,
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Remark 4.5] and [23, Section 5.5.4]). Note that, as it is possible to check at once, νG,C
is locally Lipschitz around x̄ whenever G is Lipschitz continuous around x̄.

The following example shows that the metric C-increase assumption on G plays an
essential role in qualifying such constraints as set-valued inclusions.

Example 3.9. Let X = Z = R, Y = R2, K = R2
+, C = (−∞, 0] and S = R. Let

G : R ⇒ R be defined by

G(x) = {z ∈ R : z ≤ x2}.

By exploiting the continuity of the function x 7→ x2 on R, it is possible to prove that
G is l.s.c. on R. Let us show that G fails to be metrically (−∞, 0]-increasing around
x̄ = 0, relative to R. According to Definition 3.6, such a property would require the
existence of δ > 0 and α > 1 such that, taking x = 0, for r ∈ (0, δ) there is u ∈ [−r, r]
such that

(−∞, u2 + αr] ⊆ (−∞, r],

or equivalently

u2 + αr ≤ r.

The last inequality can never be satisfied if α > 1 and r > 0, so the required u ∈ [−r, r]
does not exist. In the present case, it is immediate to see that

νG,(−∞,0](x) = sup{d(z, (−∞, 0]) : z ≤ x2} = x2,

so νG,(−∞,0] turns out to be (Fréchet) differentiable at 0. Consequently, one has

∂̂+νG,(−∞,0](0) = {0}.
With the above data, one finds

R = G+1((−∞, 0]) ∩ R2 = {0},

and hence, independently of the choice of the criterion f : R −→ R2, it results in
WE(PG) = {0}. Now, if taking f defined by f(x) = (x, x), which is R2

+-Lipschitz on

R, with e = (
√

2/2)(1, 1), and directionally differentiable at 0, with f ′(0; v) = (v, v),
for any α > 1 and ` ≥ 0 one obtains

f ′(0; v) +
`

α− 1
〈x∗, v〉e = (v, v) +

`

α− 1
〈0, v〉e = (v, v).

Thus the condition (6) can not be verified for every v ∈ I(R; 0) = R.

By introducing proper convexity/concavity assumptions on the problem data S, f
and G, it is possible to establish a first-order necessary weak efficiency condition in a
scalarized form. To this aim, the next remark will be useful.

Remark 7. (i) It is readily seen that, whenever G : X ⇒ Z is C-bounded around a
point x̄ ∈ X, i.e. there exists δ > 0 such that G(x)\C is bounded for every x ∈ B(x̄, δ),
then x̄ ∈ int (dom νG,C).
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(ii) whenever G : X ⇒ Z is C-concave on X the function νG,C is convex on X (see,
for instance, [31, Remark 4.14]).

Theorem 3.10 (Weak efficiency condition via penalization under convexity). With
reference to a problem (PG), let x̄ ∈ R = S ∩ G+1(C) be a locally w-eff. solution to
(PG). Suppose that:

(i) S is locally convex around x̄;
(ii) f is K-Lipschitz near x̄, with constant `f and e ∈ intK, and is directionally

differentiable at x̄, with f ′(x̄; ·) : X −→ Y being K-sublinear;
(iii) G is l.s.c. in a neighbourhood of x̄ and metrically C-increasing around x̄, rel-

ative to S;
(iv) G is C-bounded around x̄ and Hausdorff u.s.c. at x̄;
(v) G is C-concave in X.

Then, for any α ∈ (1, incC(G;S; x̄)), ` ≥ `f there exists y∗ ∈ K⊕\{0∗} such that

〈y∗, f ′(x̄; v)〉+
`

α− 1
〈y∗, ν ′G,C(x̄; v)e〉 ≥ 0, ∀v ∈ I(S; x̄). (10)

Proof. Let us start with observing that, by virtue of the hypotheses of C-concavity,
νG,C is convex on X. Moreover, by hypothesis (iv), it is x̄ ∈ int (dom νG,C). Moreover,
sinceG is Hausdorff u.s.c. at x̄, function νG,C is also u.s.c. at x̄ (see [30, Lemma 2.3(ii)]).
So, remembering that it is also l.s.c. around x̄ on the account of hypothesis (iii), νG,C
turns out to be continuous and hence directionally differentiable at x̄ (remember [34,
Theorem 2.4.9]). From Remark 2 it follows that the mapping v 7→ νG,C(v)e is K-

sublinear on X. As a sum of two K-sublinear mappings, f ′(x̄; ·) + `
α−1ν

′
G,C(x̄; ·)e is

K-sublinear on X. On the other hand, since according to hypothesis (i) S is locally
convex near x̄, the cone I(S; x̄) is convex. It follows that the subset of Y, given by

f ′(x̄; I(S; x̄)) +
`

α− 1
ν ′G,C(x̄; I(S; x̄))e+K,

is a convex cone as an image of a convex cone through a K-sublinear mapping.
Since x̄ is a local w-eff. solution of (PG), by arguing as in the proof of Theorem 3.8,

it is possible to show that[
f ′(x̄; I(S; x̄)) +

`

α− 1
ν ′G,C(x̄; I(S; x̄))e

]
∩ (−intK) = ∅.

This entails that it holds also[
f ′(x̄; I(S; x̄)) +

`

α− 1
ν ′G,C(x̄; I(S; x̄))e+K

]
∩ (−intK) = ∅.

In such a circumstance one can invoke the Eidelheit theorem (see, for instance, [34,
Theorem 1.1.3]). It ensures the existence of y∗ ∈ Y∗\{0∗} and γ ∈ R, such that

〈y∗, f ′(x̄; v) +
`

α− 1
ν ′G,C(x̄; v)e〉 ≥ γ ≥ 〈y∗, y〉, (11)

∀v ∈ I(S; x̄), ∀y ∈ cl (−intK) = −K.
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Since, in particular, it holds

〈y∗, f ′(x̄; 0) +
`

α− 1
ν ′G,C(x̄; 0)e〉 = 0 ≥ γ ≥ 0 = 〈y∗,0〉,

it follows that γ must be 0 and, by consequence, the second inequality in (11) gives
y∗ ∈ K⊕

. This completes the proof.

Example 3.11. Let X = Y = R2, Z = R, K = R2
+ and C = (−∞, 0]. Let G : R2 ⇒ R

be defined by

G(x) = {z ∈ R : z ≤ ϕ(x)},

where ϕ : R2 −→ R is given by ϕ(x) = max{x1, x2}. Since ϕ is sublinear on R2, G is a
fan (see, for instance, [14, Section 2. Examples]) and, as such, it is a concave set-valued
mapping (in particular, (−∞, 0]-concave). Since ϕ is continuous on R2, it is readily
seen that G is l.s.c. and Hausdorff u.s.c. on R2. Moreover, the set

G(x)\(−∞, 0] = {z ∈ R : 0 < z ≤ max{x1, x2} } ⊆ [0, ‖x‖]

is evidently bounded (possibly empty) for every x ∈ R2, so G is (−∞, 0]-bounded on

R2. Since for û = −
√

2
2 (1, 1) ∈ B it is

G(û) +

√
2

2
[−1, 1] =

{
z ∈ R : z ≤ −

√
2

2

}
+

√
2

2
[−1, 1] ⊆ (−∞, 0],

one has that G(û) +
√

2
2 B ⊆ (−∞, 0]. According to [32, Proposition 2.15], this fact is

sufficient to assert that the fan G is metrically (−∞, 0]-increasing around each point

x ∈ R2, relative to S = R2, with inc(−∞,0](G;R2;x) ≥
√

2
2 + 1. In addition, a perusal

of [32, Proposition 2.15] reveals that for a fan H : Rn ⇒ Rm it holds

incC(H;Rn;x) = sup{η > 0 : ∃û ∈ B : H(û) + ηB ⊆ C}+ 1.

As the infimum

inf
u∈B

ϕ(u) = inf
θ∈[0,2π]

max{cos θ, sin θ} = −
√

2

2

is attained at θ = 5
2π, one deduces that actually it holds inc(−∞,0](G;R2;x) =

√
2

2 + 1.
All of this to show that G fulfils all hypotheses (iii)-(v) in Theorem 3.10. Clearly,

one has

G+1((−∞, 0]) = {x ∈ R2 : max{x1, x2} ≤ 0} = −R2
+.

With these problem data, it results in

νG,(−∞,0](x) = sup{dist (z, (−∞, 0]) : z ≤ max{x1, x2} } = max{x1, x2, 0}.
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Consequently, one finds

ν ′G,(−∞,0](x; v) =



0, if x ∈ −intR2
+,

v2, if x ∈ R2\(−R2
+), x2 > x1,

v1, if x ∈ R2\(−R2
+), x2 < x1,

max{v1, v2}, if x ∈ R2\(−R2
+), x2 = x1,

max{v2, 0}, if x ∈ R2\(−R2
+), x2 = 0, x1 < 0,

max{v1, 0}, if x ∈ R2\(−R2
+), x1 = 0, x2 < 0,

max{v1, v2, 0} if x = (0, 0).

(12)

Now, let S = R2 and let f : R2 −→ R2 be defined as

f(x) = (−x1,−x2) = −Id2x,

where Id2 denotes the identity matrix 2 × 2. As a convex set, R2 fulfils hypothesis
(i) around each of its elements. It is possible to check that f is R2

+-Lipschitz with

constant `f =
√

2 (due to the Euclidean structure of R2) and e =
√

2
2 (1, 1) and, as a

linear mapping, it is directionally differentiable with

f ′(x; v) = −Id2v, ∀x ∈ R2. (13)

Clearly, as a linear mapping f ′(x; ·) is R2
+-sublinear, so also hypothesis (ii) in Theorem

3.10 is satisfied. Since R = G+1((−∞, 0]) ∩ R2 = −R2
+ and f(R) = R2

+, it is plain to
see that for the resulting problem (PG) the set of all locally w-eff. solutions is given
by

WE(PG) = {x ∈ −R2
+ : x1x2 = 0}.

Let us check that actually there exists y∗ = (y1, y2) ∈ R2
+\{(0, 0)} satisfying condition

(10) for every x̄ ∈ WE(PG). Take first x̄ = (0, 0) ∈ WE(PG). By taking into account

formulae (13) and (12), the expression in (10), with ` ≥
√

2 and 1 < α <
√

2
2 + 1,

becomes

〈y∗, f ′((0, 0); v)〉+
`

α− 1
〈y∗, ν ′G,C((0, 0); v)e〉 =

〈y∗,−v〉+
`

α− 1

〈
y∗,max{v1, v2, 0} ·

√
2

2
(1, 1)

〉
=

−y1v1 − y2v2 +
`

α− 1
·
√

2

2
max{v1, v2, 0}(y1 + y2) ≥

−y1v1 − y2v2 +
1

α− 1
max{v1, v2, 0}(y1 + y2).

So, by taking y1 = y2 = α− 1 > 0, one obtains

〈y∗, f ′((0, 0); v)〉+
`

α− 1
〈y∗, ν ′G,C((0, 0); v)e〉 ≥ −(α− 1)(v1 + v2) + 2 max{v1, v2, 0}.

Observe that it holds

−(α− 1)(v1 + v2) + 2 max{v1, v2, 0} ≥ 0, ∀v ∈ I(R2; (0, 0)) = R2,
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because if v1 +v2 < 0, then α > 1 implies −(α−1)(v1 +v2) > 0, whereas if v1 +v2 ≥ 0,

then α <
√

2
2 + 1 implies

2 max{v1, v2, 0} ≥ v1 + v2 ≥
√

2

2
(v1 + v2) ≥ (α− 1)(v1 + v2).

In the case x̄ = (x̄1, 0), with x̄1 < 0 (the case x̄ = (0, x̄2) with x̄2 < 0 can be handled
analogously, by symmetry), the expression in (10) becomes

〈y∗, f ′(x̄; v)〉+
`

α− 1
〈y∗, ν ′G,C(x̄; v)e〉 =

〈y∗,−v〉+
`

α− 1

〈
y∗,max{v2, 0} ·

√
2

2
(1, 1)

〉
=

−y1v1 − y2v2 +
1

α− 1
max{v2, 0}(y1 + y2).

Thus, by choosing y1 = 0 and y2 = α− 1 > 0, one obtains

〈y∗, f ′(x̄; v)〉+
`

α− 1
〈y∗, ν ′G,C(x̄; v)e〉 ≥ −(α− 1)v2 + max{v2, 0} ≥ 0, (14)

∀v ∈ I(R2; x̄) = R2.

Indeed, if v = (v1, v2) ∈ R2 is such that v2 > 0, recalling that α <
√

2
2 + 1, one finds

max{v2, 0} = v2 >

√
2

2
v2 > (α− 1)v2;

if v = (v1, v2) ∈ R2 is such that v2 ≤ 0, recalling that α > 1 one sees that inequality
(14) is trivially satisfied.

4. Weak efficiency conditions via tangential approximations

Throughout this section, as a first-order approximation of set-valued mappings the
notion of outer prederivative, introduced in [14], will be employed.

Definition 4.1 (Outer prederivative). Let F : X ⇒ Z be a set-valued mapping be-
tween Banach spaces and let x̄ ∈ domF . A p.h. set-valued mapping HF (x̄; ·) : X ⇒ Z
is said to be an outer prederivative of F at x̄ if for every ε > 0 there exists δ > 0 such
that

F (x) ⊆ F (x̄) +HF (x̄;x− x̄) + ε‖x− x̄‖B, ∀x ∈ B(x̄, δ).

Extended discussions about this generalized differentiation concept can be found,
for instance, in [13,14,24].

For subsequent considerations, it is worth observing that the notion of outer pred-
erivative collapses to the notion of Bouligand-derivative (or B-derivative), when both
F and HF (x̄; ·) are single-valued and HF (x̄; ·) is continuous. More precisely, following
[25], a mapping f : X −→ Z between Banach spaces is said to be B-differentiable at
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x̄ ∈ X if there exists a p.h. and continuous mapping DBf(x̄; ·) : X −→ Z, called the
B-derivative of f at x̄, such that

lim
x→x̄

f(x)− f(x̄)−DBf(x̄;x− x̄)

‖x− x̄‖
= 0.

By exploiting as a constraint qualification the metric C-increase property of G, the
following inner tangential approximation of R has been established in [32], which is
expressed in terms of outer prederivatives and tangent cones. Its proof was provided
in a finite-dimensional setting, but a perusal of the involved arguments reveals that it
can be extended without any modification to a Banach space setting.

Proposition 4.2. ([32, Theorem 3.1]) Let G : X ⇒ Z, S and C as in problem (SVI),
and let x̄ ∈ R = S ∩G+1(C). Suppose that:

(i) G is l.s.c. in a neighbourhood of x̄;
(ii) G is metrically C-increasing around x̄, relative to S;
(iii) G admits HG(x̄; ·) : X ⇒ Z as an outer prederivative at x̄.

Then it holds

HG(x̄; ·)+1(C) ∩ Iw(S; x̄) ⊆ T(R; x̄). (15)

If, in addition,
(iv) HG(x̄; ·) is Lipschitz,

then the stronger inclusion holds

HG(x̄; ·)+1(C) ∩ T(S; x̄) ⊆ T(R; x̄). (16)

Following the well-known Euler-Lagrange scheme for deriving necessary optimality
conditions in the presence of constraints, from the above tangential approximation of
the feasible region of (PG), it is possible to obtain the below first-order weak efficiency
condition.

Theorem 4.3. With reference to a problem (PG), let x̄ ∈ R be a locally w-eff. solution.
Suppose that:

(i) f is B-differentiable at x̄;
(ii) G is l.s.c. in a neighbourhood of x̄ and is metrically C-increasing around x̄,

relative to S;
(iii) G admits HG(x̄; ·) : X ⇒ Z as an outer prederivative at x̄.

Then,

DBf(x̄; v) 6∈ −intK, ∀v ∈ HG(x̄; ·)+1(C) ∩ Iw(S; x̄). (17)

If, in addition,
(iv) DBf(x̄; ·) : X −→ Y is K-convexlike on the set HG(x̄; ·)+1(C) ∩ T(S; x̄);
(v) HG(x̄; 0) ⊆ C;
(vi) HG(x̄; ·) is Lipschitz,

there exists y∗ ∈ K⊕\{0∗} such that

y∗ ◦DBf(x̄; v) ≥ 0, ∀v ∈ HG(x̄; ·)+1(C) ∩ T(S; x̄). (18)
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In particular, whenever f is Fréchet differentiable at x̄, it results in

−Df(x̄)∗y∗ ∈ [HG(x̄; ·)+1(C) ∩ T(S; x̄)]
	

. (19)

Proof. Upon hypotheses (ii) and (iii), the inner tangential approximation given by
(15) can be employed. So, take an arbitrary v ∈ HG(x̄; ·)+1(C) ∩ Iw(S; x̄). As it is
also v ∈ T(R; x̄), there exist sequences (vn), with vn → v, and (tn), with tn ↓ 0, as
n→∞, such that x̄+ tnvn ∈ R. Since x̄ is a local w-eff. solution to (PG), by recalling
hypothesis (i), one obtains

DBf(x̄; vn) +
o(x̄; tnvn)

tn
=
f(x̄+ tnvn)− f(x̄)

tn
∈ Y\(−intK).

By passing to the limit as n→∞, taking into account that Y\(−intK) is a closed set
and the mapping DBf(x̄; ·) is continuous, one achieves the inequality in (17).

Upon the hypothesis (iv), the set DBf(x̄;HG(x̄; ·)+1(C)∩T(S; x̄)) +K is a convex
subset of Y. By arguing as in the first part of the proof, one can show that

DBf(x̄; v) 6∈ −intK, ∀v ∈ HG(x̄; ·)+1(C) ∩ T(S; x̄),

which amounts to say[
DBf(x̄;HG(x̄; ·)+1(C) ∩ T(S; x̄))

]
∩ (−intK) = ∅.

Notice that this implies

[DBf(x̄;HG(x̄; ·)+1(C) ∩ T(S; x̄)) +K] ∩ (−intK) = ∅.

By the Eidelheit theorem there exists y∗ ∈ Y∗\{0∗} and γ ∈ R such that

〈y∗, y〉 ≤ γ ≤ 〈y∗,DBf(x̄; v)〉, (20)

∀y ∈ cl (−intK) = −K, ∀v ∈ HG(x̄; ·)+1(C) ∩ T(S; x̄).

Since owing to hypothesis (v) it is 0 ∈ −K ∩HG(x̄; ·)+1(C)∩T(S; x̄), according to the
inequalities in (20) it must be γ = 0. Consequently, the first inequality in (20) gives
y∗ ∈ Y⊕

, whereas the second one yields (18). In the case of Fréchet differentiability of f
at x̄, inclusion (19) is a direct consequence of inequality (18). The proof is complete.

Remark 8. The property of a mapping to be K-convexlike on a set D depends
essentially on the set D. Notice that, if D1 ⊆ D, a mapping K-convexlike on D may
fail to be K-convexlike on D1. Thus, hypothesis (iv) links crucially the behaviour of
DBf(x̄; ·) with the geometry of the set HG(x̄; ·)+1(C) ∩ T(S; x̄). On the other hand,
the K-sublinearity property is stable under convex restrictions, in the sense that if
h : X −→ Y is K-sublinear on a set D ⊆ X, it still remains so on each convex
subset D1 ⊆ D. This fact makes it convenient to consider the following replacement
of hypothesis (iv), with separate (but stricter) requirements on the involved problem
data:
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(iv’) DBf(x̄; ·) is K-sublinear on X, HG(x̄; ·) is C-superlinear on X, and S is locally
convex near x̄.

In such a circumstance, T(S; x̄) is a convex cone as well as HG(x̄; ·)+1(C). Since the set
DBf(x̄;HG(x̄; ·)+1(C)∩T(S; x̄))+K is convex, DBf(x̄; ·) turns out to be K-convexlike
on the set HG(x̄; ·)+1(C) ∩ T(S; x̄).

Example 4.4. Let X = Y = R2, Z = R, K = R2
+ and C = (−∞, 0]. Let Λ1 : R2 −→ R

and Λ2 : R2 −→ R be linear mappings represented by the 1× 2 matrices

Λ1 = (1 1) and Λ2 = (−1 1),

respectively, and let G : R2 ⇒ R be defined as

G(x) = {Λx : Λ ∈ G},

where G = conv {Λ1, Λ2} = {tΛ1 + (1− t)Λ2 : t ∈ [0, 1]}. In other words, G is the fan
finitely generated by conv {Λ1, Λ2}. By consequence, one has

G(x) = {[tΛ1 + (1− t)Λ2]x : t ∈ [0, 1]}
= {[(t t) + (t− 1 1− t)]x : t ∈ [0, 1]} = {(2t− 1)x1 + x2 : t ∈ [0, 1]}.

It is clear that x ∈ G+1((−∞, 0]) if and only if

x ∈ Λ−1
1 ((−∞, 0]) ∩ Λ−1

2 ((−∞, 0])

= {x ∈ R2 : x2 ≤ −x1} ∩ {x ∈ R2 : x2 ≤ x1} = {x ∈ R2 : x2 ≤ −|x1|}.

Notice that, since G(x) = g(G, x), with g(Λ, x) = Λx, and each g(Λ, ·) is continuous
on R2, in the light of what was stated in Remark 4 G is l.s.c. on R2. Moreover, since
for û = (0,−1) it is G(û) = {−1} and therefore it holds

G(û) + B = {−1}+ [−1, 1] = [−2, 0] ⊆ (−∞, 0],

then according to [32, Proposition 2.15] G is metrically (−∞, 0]-increasing around
every x ∈ R2, relative to S = R2, with incC(G;R2;x) ≥ 2. On the other hand, since,
as a fan, G is concave and p.h., for every positive ε it holds

G(x) ⊆ G(x0) +G(x− x0) ⊆ G(x0) +G(x− x0) + ε‖x− x0‖B, ∀x ∈ R2,

one sees that G admits HG(x0; ·) = G as an outer prederivative at each x0 ∈ R2.
Let S = R2 and let f : R2 −→ R2 be defined by

f(x) = (x2, |x1|).

The reader should notice that f can be regarded as the composition of the clockwise
rotation of the plane of an angle π/2, represented by

rotπ/2(x) =

(
0 1
−1 0

)
x,
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and the mapping s : R2 −→ R2 given by s(y) = (y1, |y2|), namely

f(x) = (s ◦ rotπ/2)(x).

Since it is R = R2 ∩G+1((−∞, 0]) = {x ∈ R2 : x2 ≤ −|x1|} and

f(R) = {y = (y1, y2) ∈ R2 : y2 ≤ −y1, y1 ≤ 0, y2 ≥ 0},

for the resulting problem (PG) it turns out

WE(PG) = {x ∈ R : x1 = 0, x2 ≤ 0}.

By employing the definition, it is possible to show that f is B-differentiable at each
point x̄ ∈ WE(PG) and it results in

DBf(x̄; v) = f(v), ∀v ∈ R2.

Consistently with the thesis of Theorem 4.3, one obtains

DBf(x̄; v) = (v2, |v1|) 6∈ −intR2
+, ∀v ∈ HG(x̄; ·)+1((−∞, 0]) ∩ Iw(R2; x̄) = R.

Since the mapping DBf(x̄; ·) is also R2
+-sublinear (having both the components sub-

linear) and hence R2
+-convexlike on R2, HG(x̄; (0, 0)) = {0} and HG(x̄; ·) : R2 ⇒ R

is Lipschitz (remember Remark 3), as a fan finitely generated, then by taking
y∗ = (0, 1) ∈ R2

+\{(0, 0)} one finds

y∗ ◦DBf(x̄; v) = |v1| ≥ 0, ∀v ∈ HG(x̄; ·)+1((−∞, 0]) ∩ Iw(R2; x̄) = R,

in agreement with the condition expressed by formula (18).

The next result provides a refinement of Theorem 4.3, which can be established,
under proper qualification conditions, by replacing general first-order approximations
of the data with the local convexity of S and linear approximations of f and G.

Theorem 4.5 (Multiplier rule via fans). Let x̄ ∈ R be a locally w-eff. solution to
problem (PG). Suppose that hypotheses (i)-(iii) are satisfied and, in addition, that:

(iv) S is locally convex near x̄;
(v) f is Fréchet differentiable at x̄;
(vi) HG(x̄; ·) is a fan finitely generated by G = conv {Λ1, . . . ,Λp};
(vii) the further qualification condition holds(

p⋂
i=1

int Λ−1
i (C)

)
∩ int T(S; x̄) 6= ∅. (21)

Then there exist y∗ ∈ K
⊕\{0∗} and, for each i = 1, . . . , p, x∗i ∈ X∗ and sequences

(z∗i,n)n in Z∗, with z∗i,n ∈ C
	

and Λ∗i z
∗
i,n → x∗i , such that

0∗ ∈ Df(x̄)∗y∗ +

p∑
i=1

x∗i + N(S; x̄). (22)
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Proof. Observe that by hypothesis (v), it is HG(x̄; 0) = {0} ⊆ C, so hypothesis (v) of
Theorem 4.3 is fulfilled. As recalled in Remark 3, since the bundle generating HG(x̄; ·)
is bounded according to hypothesis (vi), HG(x̄; ·) is Lipschitz. Moreover, it is readily
seen that if HG(x̄; ·) is generated by G = conv {Λ1, . . . ,Λp}, it holds

HG(x̄; ·)+1(C) =

p⋂
i=1

Λ−1
i (C).

Since each element Λ−1
i (C) in the above intersection is a convex cone as well as T(S; x̄)

by hypothesis (iv), the set HG(x̄; ·)+1(C)∩T(S; x̄) turns out to be a convex cone. By
hypothesis (v) it is DBf(x̄; ·) = Df(x̄), so, as a linear mapping it is K-convexlike on
HG(x̄; ·)+1(C) ∩ T(S; x̄). One is therefore in a position to apply Theorem 4.3. Thus,
there exists y∗ ∈ K⊕\{0∗} such that

−Df(x̄)∗y∗ ∈

[
p⋂
i=1

Λ−1
i (C) ∩ T(S; x̄)

]	

.

By virtue of the qualification condition in hypothesis (vii), on account of the relations
discussed in Remark 1, the last inclusion implies

−Df(x̄)∗y∗ ∈
p∑
i=1

(
Λ−1
i (C)

)	
+ T(S; x̄)

	
=

p∑
i=1

cl Λ∗i (C
	

) + N(S; x̄).

This means that there must exist x∗i ∈ cl Λ∗i (C
	

), for every i = 1, . . . , p, such that

−Df(x̄)∗y∗ ∈
p∑
i=1

x∗i + N(S; x̄),

which immediately entails the existence of such sequences (z∗i,n)n in Z∗ as asserted in
the thesis, thereby completing the proof.

Remark 9. It is worth noting that, whenever intC 6= ∅ and x̄ ∈ intS, the qualifi-
cation condition in (21) is satisfied provided that the following Slater-type condition
holds:

∃x0 ∈ X : Λix0 ∈ intC, ∀i = 1, . . . , p. (23)

Indeed, Λix0 ∈ intC implies x0 ∈ Λ−1
i (intC) ⊆ int Λ−1

i (C), for every i = 1, . . . , p.

As one expects, the formulation of the multiplier rule expressed by (22) simplifies if
specialized to a finite-dimensional space setting. This is done in the next result, where
the adjoint operation (which can be viewed as a matrix transposition) is now denoted
by the symbol >.

Corollary 4.6 (Weak Pareto efficiency condition in finite-dimensional spaces). Let
x̄ ∈ R be a locally w-eff. solution to problem (PG), with X = Rn, Y = Rm, Z = Rp,
K = Rm+ and intC 6= ∅. Suppose that hypotheses (i)-(vii) of Theorem 4.5 are satisfied,
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along with condition (23). Then there exist v ∈ Rm+\{0} and ci ∈ C
	

, i = 1, . . . , p,
such that

0 ∈ Df(x̄)>v +

p∑
i=1

Λ>i ci + N(S; x̄). (24)

If, in particular, x̄ ∈ intS hypothesis (vii) can be dropped out and it results in

0 = Df(x̄)>v +

p∑
i=1

Λ>i ci.

Proof. It suffices to apply Theorem 4.5 and to observe that, under condition (23),
Λix0 ∈ intC implies x0 ∈ Λ−1

i (intC) = Λ−1
i (riC) 6= ∅. Thus, by taking into account

what noted in Remark 1(ii), it is true that

[Λ−1
i (C)]

	

= Λ>i (C
	

), ∀i = 1, . . . , p.

If x̄ ∈ intS, then it is T(S; x̄) = Rn and hence −Df(x̄)∗y∗ ∈
[⋂p

i=1 Λ−1
i (C)

]	
. There-

fore, according to Remark 9, condition (23) makes hypothesis (vii) redundant.

Example 4.7. Let X = Y = R2, Z = R, K = R2
+ and C = (−∞, 0]. Suppose that

the set-valued mapping G : R2 ⇒ R and the set S defining the constraint system in
(PG) are as in Example 4.4, namely with G(x) = g(G, x), where g(Λ, x) = Λx and
G = conv {Λ1, Λ2}, and S = R2, in such a way that, as already seen, R = {x ∈ R2 :
x2 ≤ −|x1|}. Suppose that f : R2 −→ R2 is defined by

f(x) = (−(x1 + x2) , −(x1 + x2)).

Since it results in

f(R) = {y = (y1, y2) ∈ R2 : y2 = y1, y1 ≥ 0},

it is clear that for the problem (PG) under consideration it is WE(PG) = {(0, 0)}.
With these problem data, S is evidently locally convex near (0, 0) and f is Fréchet
differentiable at (0, 0), with

Df((0, 0)) =

(
−1 −1
−1 −1

)
.

In Example 4.4 it has already been shown that G is l.s.c. on R2, it is globally metrically
(−∞, 0]-increasing relative to R2, and it admits as an outer prederivative the set-valued
mapping HG((0, 0); v) = G(v). Notice that int (−∞, 0] = (−∞, 0) 6= ∅, (0, 0) ∈ intS,
and the Slater-type condition (23) is satisfied by x0 = (0,−1), inasmuch as

Λ1x0 = −1 ∈ (−∞, 0) and Λ2x0 = −1 ∈ (−∞, 0).

Thus the qualification condition (21) in hypothesis (vii) of Theorem 4.5 can be dropped
out. Let us show that, consistently with the thesis of Corollary 4.6, there exist v ∈
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R2
+\{(0, 0)} and c1, c2 ∈ (−∞, 0]

	
= [0,+∞) satisfying the multiplier rule in (24).

With the above problem data, the condition in (24) becomes(
0
0

)
∈
(
−1 −1
−1 −1

)
v +

(
1
1

)
c1 +

(
−1

1

)
c2 +

{(
0
0

)}
.

This inclusion holds if and only if the following linear system in the unknown (c1, c2){
c1 − c2 = v1 + v2

c1 + c2 = v1 + v2

does have nonnegative solutions for some v ∈ R2
+\{(0, 0)}. In fact this happens to be

true with c1 = v1 + v2 > 0 and c2 = 0, for every v ∈ R2
+\{(0, 0)}.

The next example aims at showing that the condition established in Corollary 4.6
fails, in general, to be also sufficient for weak efficiency.

Example 4.8. Consider a problem (PG) defined by the same data as in Example 4.7,
except for the criterion mapping f : R2 −→ R2, which is now given by

f(x) =
(
x1 + x2, −(x1 + x2)2

)
.

Since in the present case one has

f(R) = {y = (y1, y2) ∈ R2 : y2 = −y2
1, y1 ≤ 0},

it is readily seen that WE(PG) = ∅. Nevertheless, for x̄ = (0, 0) ∈ R one finds

Df((0, 0)) =

(
1 1
0 0

)
,

so condition in (24) becomes(
0
0

)
∈
(

1 0
1 0

)
v +

(
1
1

)
c1 +

(
−1
1

)
c2 +

{(
0
0

)}
,

which leads to the linear system {
c1 − c2 = −v1

c1 + c2 = −v1.

Therefore inclusion (24) is satisfied for instance with c1 = c2 = 0 and v = (0, 1) ∈
R2

+\{(0, 0)}, even though x̄ = (0, 0) is not a locally w-eff. solution of the problem
under consideration.

On the other hand, if ceteris paribus the criterion mapping f is replaced by

f(x) = Id2x,
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so that f(R) = R, still it isWE(PG) = ∅. Consequently, the condition in (24) becomes(
0
0

)
∈
(

1 0
0 1

)
v +

(
1
1

)
c1 +

(
−1
1

)
c2 +

{(
0
0

)}
,

which yields the linear system {
c1 − c2 = −v1

c1 + c2 = −v2.

Since one finds as a unique solution of this system the pair

c1 = −v1 + v2

2
< 0, c2 =

v1 − v2

2
,

in the last case none of the elements in R passes the test expressed by the condition
in (24), which reveals here to be effective.

As a terminal result, the multiplier rules formulated in Corollary 4.6 afford ele-
ments for an impact evaluation of the present approach. As a comment, let us point
out the substantial differences appearing in comparison with similar results. Consider,
for instance, the recent and reliable multiplier rule stated in [8, Theorem 3.1]. Thought
less general in requiring the smoothnes of f (but without any generalized convexity),
Corollary 4.6 does not impose neither Lipschitz continuity assumptions (but surrep-
titiously it does on HG(x̄; ·) through hypothesis (vi)) nor generalized concavity on G.
Besides, no preliminary assumption about convexity and compactness of Ω is made.

On the other hand, the role played by the multipliers ci is evidently less conventional:
all of them refer to the same constraint G(x) ⊆ C. The reader should observe that
their number is not linked to the dimension of the range space of G (each of them
lives in Rp), but depends on the number of generators needed to represent HG(x̄; ·).
In other words, it is a parameter depending on the approximation tool used to express
the rule, not an intrinsic constant of the constraint system.

Even with these features, the rule in Corollary 4.6 leads to deal with linear algebra
tools, as illustrated in the above examples, with a consequent computational appeal.

Acknowledgments. The author is grateful to both the anonymous referees for their
useful remarks.
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