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The quantification of the kinetic rates of RNA synthesis, processing, and degradation are largely based on the integrative

analysis of total and nascent transcription, the latter being quantified through RNA metabolic labeling. We developed

INSPEcT−, a computational method based on the mathematical modeling of premature and mature RNA expression

that is able to quantify kinetic rates from steady-state or time course total RNA-seq data without requiring any information

on nascent transcripts. Our approach outperforms available solutions, closely recapitulates the kinetic rates obtained

through RNA metabolic labeling, improves the ability to detect changes in transcript half-lives, reduces the cost and com-

plexity of the experiments, and can be adopted to study experimental conditions in which nascent transcription cannot be

readily profiled. Finally, we applied INSPEcT− to the characterization of post-transcriptional regulation landscapes in doz-

ens of physiological and disease conditions. This approach was included in the INSPEcT Bioconductor package, which can

now unveil RNA dynamics from steady-state or time course data, with or without the profiling of nascent RNA.

[Supplemental material is available for this article.]

Since the development of microarrays first, and high-throughput
sequencing later on, the investigation of the transcriptional activ-
ity of genes has been mostly based on the quantification of total
RNA (Mortazavi et al. 2008). While bringing about a revolution
in the fieldof transcriptional regulation, thequantificationof abso-
lute anddifferential expressionprovides only a glimpse of the com-
plexity of cellular gene expression programs. Indeed, abundance
and responsiveness to modulations of premature and mature
RNA species are set by the combined action of three key steps: pre-
mature RNA synthesis, processing of premature into mature RNA,
and degradation of the latter (Orphanides and Reinberg 2002).
These steps are governed by corresponding kinetic rates, which col-
lectively determine the RNA dynamics of transcripts (Fig. 1A).
However, the specific contributionof each stepof theRNAlife cycle
cannot be deconvoluted from an aggregate quantity like the
amount of total RNA because, in principle, infinite combinations
of kinetic rates can generate the same absolute expression level.

For decades, the study of RNA dynamics relied solely on tran-
scription blockage experiments. However, these methods allow
the quantification of RNA half-lives only, are highly invasive, af-
fect cell viability, and could alter various pathways, RNA decay in-
cluded (Wada and Becskei 2017). To overcome these limitations,
new methods have been developed that are based on the integra-
tive analysis of total and nascent RNA. Nascent RNA can be meta-
bolically labeled with biotinylated, 4-thiouridine (4sU)–modified
nucleotides, purified with streptavidin, and then sequenced
(Dolken et al. 2008; Miller et al. 2011; Rabani et al. 2011;

Wissink et al. 2019). Alternatively, if the modified nucleotides
are chemically derivatized before sequencing, reads from nascent
transcripts can be in silico separated from pre-existing RNA
(Herzog et al. 2017; Baptista and Dölken 2018; Jürges et al. 2018;
Schofield et al. 2018). A number of methods were developed for
the quantification of RNA dynamics via metabolic labeling, in-
cluding INSPEcT (de Pretis et al. 2015), DRUID (Lugowski et al.
2018), cDTA (Sun et al. 2012), GRAND-SLAM (Jürges et al. 2018),
pulseR (Uvarovskii and Dieterich 2017), and DRiLL (Rabani et al.
2014). Eventually, these approaches have started to unveil how
themodulation of RNA dynamics can determine gene-specific reg-
ulatory modes and elicit complex transcriptional responses
(Rabani et al. 2014; de Pretis et al. 2015, 2017; Furlan et al. 2019;
Tesi et al. 2019).

Despite their advantages and popularity, methods based on
RNA metabolic labeling are affected by various pitfalls, especially
when a limited amount of nascent RNA is produced and when
aiming at studying very short responses (Baptista and Dölken
2018).Moreover, thesemethods cannot be readily applied tomod-
el organisms, be it mammals (Matsushima et al. 2018) or plants
(Sidaway-Lee et al. 2014), in vivo. For all these reasons, being
able to study RNA dynamics from just total RNA would be a valu-
able alternative. A few studies have moved in this direction by us-
ing an integrative analysis of premature and mature RNA
abundances (Zeisel et al. 2011; Gray et al. 2014; La Manno et al.
2018; Bergen et al. 2020), yet they have fallen short of quantifying
the full set of RNA kinetic rates and their modulation. Specifically,
the key limitation of all these studies is having considered intronic
expression as a proxy of synthesis rates. Although this greatly sim-
plifies the problem from a mathematical point of view, it neglects4These authors contributed equally to this work.
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that intronic RNA-seq signals result from the joint action of two
processes: the synthesis of premature RNA and its processing
into the mature form. Therefore, these approaches neglected the
contribution of RNA processing and relied on the strong assump-
tion that the rate of processing is constant.

To cope with these key limitations, while avoiding all the
downsides of RNA metabolic labeling, we developed INSPEcT−, a
computational approach that determines RNA dynamics from to-

tal RNA-seq data. INSPEcT− quantifies the full set of kinetic rates
from time course RNA-seq data sets and enables the study of
post-transcriptional regulation between steady-state conditions.
We used INSPEcT− to analyze different time course RNA-seq data
sets, ranging from conditions in which gene expression programs
are mostly controlled by transcriptional changes to conditions in
which post-transcriptional regulation prevails. Finally, we used
this method to characterize post-transcriptional regulation
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Figure 1. The influence of RNA kinetic rates on RNA abundance and responsiveness. (A) Schematic representation of the RNA life cycle, governed by the
kinetics rates of synthesis, processing and degradation. (B) Deterministic mathematical model of the RNA life cycle based on ordinary differential equations
(ODEs), including the solution of the system at steady state. (C–L) Solutions of the ODE system following the modulation of the kinetic rates: Each example
reports, for premature andmature RNA species (left) and for the kinetic rates (right), the ratio to the initial time point. Initial values are indicated within each
panel.
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landscapes in dozens of tissue types and disease conditions.
INSPEcT− is available within the INSPEcT Bioconductor package
(http://bioconductor.org/packages/INSPEcT/), formerly developed
by us for the analysis of RNAmetabolic labeling data (de Pretis et al.
2015), which now allows the user to study RNA dynamics on
steady-state or time course data, with or without nascent RNA
profiling.

Results

The quantification of RNA dynamics unveils the complexity

of gene expression programs

At steady state, the abundance of premature RNA is equal to the ra-
tio of its synthesis to its processing rate, and the quantity of its ma-
ture form is given by its synthesis to degradation rate ratio (Fig. 1A,
B). Thus, although the rate of RNA synthesis influences the abun-
dance of both premature and mature RNAs, processing and degra-
dation rates impact just on premature and mature forms,
respectively.

At the transition between steady states, both the new level of
transcript abundance and the speed of the transition (responsive-
ness) depend on RNA kinetic rates. In the most straightforward
case, differential expression—the regulation of the cellular abun-
dance of premature (P) and mature (M) RNA species—derives
from changes in the rate of RNA synthesis only (k1). This implies
a change in the amount of nascent RNA for a given gene.
Although it is often assumed, this should be experimentally con-
firmed by RNAmetabolic labeling before concluding that changes
in P or M are transcriptional in nature. In all other cases, differen-
tial expression can entail more complex co- and post-transcrip-
tional mechanisms, each governed by processing (k2) and/or
degradation (k3) rate. Solving the system depicted in Figure 1B per-
mits the determination of the impact one ormore kinetic rates can
have on the abundance of P and M when modulated over time:

– Constant kinetic rates define steady states where P and M abun-
dances are calculated as k1/k2 and k1/k3 ratios, respectively (Fig.
1B,C).

– Modulations in the processing rate k2 cause just transient varia-
tions inMabundance but permanent alterations in P abundance
(Fig. 1D).

– M responsiveness to changes in k1 depends on the level of k3
(Fig. 1, cf. E and F; Friedel et al. 2009; Zeisel et al. 2011), and of
k2 (Fig. 1, cf. E and G).

– k1 and k3 can separately generate the same type of M variation if
changing in opposite directions (Fig. 1F,H), whereas only the
modulation of k1 can affect P (Fig. 1F).

– k1 and k3 reinforce each other’s modulation of M when chang-
ing simultaneously in opposite directions (Fig. 1, cf. E and I),
whereas they neutralize each other’s impact on M if simultane-
ously adjusted in the same direction (Fig. 1J).

– Transient alterations in M induced by a temporary change in k1
(Fig. 1K) can be made sharper by a concomitant change in k3
(Fig. 1L; Rabani et al. 2011).

First, these examples indicate that measurements of mature
RNA are in themselves poorly informative of the real transcription-
al state of genes. For instance, the detection of amature RNA is typ-
ically taken as indication that the corresponding gene is
transcriptionally active. This is not necessarily the case for highly
stable RNAs, which might persist long after the gene has become
silent. Second, these examples illustrate how difficult it is to deci-

pher the mechanism responsible for modulating mature RNAs
without determining the corresponding RNA dynamics. For in-
stance, the modulation of mature RNA species is typically seen as
indication of transcriptional regulation, whereas it could originate
from changes in the dynamics of processing and/or degradation,
without any change in the rate of synthesis taking place.
Ultimately, these examples show thenecessity to developmethods
for the quantification of RNA kinetic rates in order to fully disclose
the mechanisms behind complex responses in gene expression.

Experimental and computational pitfalls of RNA metabolic

labeling experiments

The steady-state solution introduced in Figure 1B is underdeter-
mined (two equations and three unknown kinetic rates), and the
original ordinary differential equations system does not allow
the identification of a unique set of kinetic rates as well. The key
to solving these systems is to use RNA metabolic labeling with
short time pulses, so that the quantification of nascent RNA can
be used as a proxy for the synthesis rate (de Pretis et al. 2015).
There are two main types of RNA metabolic labeling experiments:
one involving the purificationof labeled RNA species (Dolken et al.
2008) and the other requiring their chemical derivatization before
in silico identification (Baptista and Dölken 2018). Both categories
of methods are characterized by specific pitfalls, and special care is
needed when designing these experiments, particularly when de-
ciding on number of replicates, sequencing coverage, and length
of labeled nucleotides pulse (Uvarovskii et al. 2019).

Methods based on the purification of nascent RNA present
three main drawbacks: (1) higher costs owing to the need to se-
quence both total and labeled RNA populations, (2) the need to
normalize the signal from the nascent RNA population to that
from the total (or pre-existing) RNA population, and (3) the con-
tamination of labeled with unlabeled (pre-existing) RNA mole-
cules. The need for normalization has been partially addressed
by introducing internal standards (Sun et al. 2012) or through
computational normalization procedures (Rabani et al. 2014; de
Pretis et al. 2015). Rather, the problem of contamination issue is
typically acknowledged but left unsolved. To quantify contamina-
tion and to verify whether it varies with the duration of the 4sU
pulse, we measured the amount of labeled RNA that can be recov-
ered with pulses of 4sU lasting from 10 min to 2 h (Fig. 2A,B). A
model based on a constant rate of 4sU incorporation into nascent
transcripts did not fit our data, suggesting that the incorporation
rate depends on the pulse length (Fig. 2C). Indeed, a model based
on an exponential increase of the incorporation rate did fit the
data better (log likelihood-ratio test P=2× 10−27) (Fig. 2C,D). A
model assuming a constant contamination rate, not dependent
on the 4sU pulse length, further increased data fitting (P=3.1 ×
10−7). Rather, a model in which the contamination increased lin-
earlywith pulse length did not improve the fitting any further, and
reverted to the constant-contamination hypothesis (P=1; a≈0 in
Fig. 2C). Altogether, we determined that 10-min-long 4sU pulses,
which were often used in these studies (Miller et al. 2011; Rabani
et al. 2011, 2014; Sun et al. 2012; Fuchs et al. 2014, 2015; Sabò
et al. 2014; de Pretis et al. 2015; Marzi et al. 2016; de Pretis et al.
2017; Michel et al. 2017), led to 30% of the labeled fraction being
originated through contamination of the pre-existing RNA popu-
lation. In an independent study in which dendritic cells were sub-
jected to 10-min-long 4sU pulses, 30% of the unlabeled RNA was
estimated to contaminate the labeled fraction, suggesting that
the percentage of labeled RNA being contaminated is even higher
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(Rabani et al. 2014). Finally, a 30% contamination rate was also re-
ported by Baptista andDölken (2018). As the contamination rate is
likely to depend on the cell type and on the specific protocol used,
it should be reassessed at every experiment, thus further compli-
cating the design of RNA metabolic labeling experiments.

Methods of RNA metabolic labeling that involve chemical
derivatizationdonot relyon the purificationof the labeled fraction
and therefore do not count normalization and contamination
among their downsides. However, although able to detect labeled
transcripts with excellent specificity, these methods are hampered
by lowsensitivityand theneed foraprolongedpulse time (typically
>60 min). For example, it has been calculated that 2.4% T>C con-
version rates obtained following 24-h-long pulses of 4sU in mouse
embryonic stemcells (Herzog et al. 2017) permit to identify labeled
RNAs at a sensitivity of 23% and 60% for read lengths of 50 bp or
150 bp, respectively (Neumann et al. 2019). Conversion rates
decrease rapidly when the 4sU pulse length is reduced in order to
increase temporal resolution, dropping to 0.5% for a 4-h-longpulse
(Herzog et al. 2017). A reduced conversion rate is likely to worsen
sensitivity. Finally,methods based on RNAmetabolic labeling can-
not be readily applied tomodel organisms,mammals (Matsushima
et al. 2018) or plants (Sidaway-Lee et al. 2014), in vivo.

We recently developed INSPEcT (de Pretis et al. 2015), a
Bioconductor package that, together with DRiLL (Rabani et al.
2014), combines analyses on total and nascent transcriptomes to
allow, for the first time, quantification of RNA synthesis, process-
ing, and degradation rates. Briefly, for each gene, INSPEcT com-
pares eight different models, corresponding to all the possible
combinations of each of the three kinetic rates in two alternative
analytical forms (constant and impulse/sigmoid). Each model is
plugged within a system of ordinary differential equations (Fig.
1B). The free parameters associatedwith the rates’ functional forms
are optimized to minimize the error when fitting premature and
mature RNAs experimental data. Three key aspects of this method
have been now updated. First, we have introduced a fully deriva-
tive approach able to speed up the execution by 20-fold
(Supplemental Fig. S1). Second, model selection has been stream-
lined, as it now relies on fitting themodel inwhich all rates are var-
iable, avoiding the pair-wise comparison between all nested
alternative models. Third, for each kinetic rate, confidence inter-
vals are now determined in order to be exploited for model selec-
tion and to give critical information to the user. As before,
INSPEcT is suitable for the analysis of both steady-state
(Austenaa et al. 2015) and time course experiments (de Pretis
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Figure 2. Contamination of 4sU labeled RNAwith unlabeled RNA. (A) Yield of labeled RNA at 4sU pulses of different length in 3T9mouse fibroblast cells.
(B) Amagnification of A. (C) Log likelihood score for the fit of four alternativemodels, considering constant (k) or exponential (exp) 4sU incorporation rates,
combinedwith a contamination that is absent (−), constant (k), or linear to the 4sU pulse length (k + a × t). P-values of the indicated log likelihood-ratio tests
are reported. (D) The estimated trend of 4sU incorporation based on the green model in panel A. (E) Changes in ROC areas under the curve (AUC) and in
Spearman’s correlation following the introduction of 30% contamination in simulated data.
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et al. 2017). Currently, only INSPEcT allows both the quantifica-
tion of all kinetic rates at steady state and their temporal resolution
in time course.

INSPEcT’s ability to quantify the kinetic rates absolute values,
and to identify genes with variable RNA dynamics, was bench-
marked using simulated data that closely reproduced signal and
noise of a real data set (Supplemental Figs. S2, S3; de Pretis et al.
2015). However, those data failed to include contamination of
the labeled fraction with unlabeled pre-existing RNA, as an impor-
tant source of bias in RNA metabolic labeling. To measure the im-
portance of contamination, we generated simulated data with and
without it. At a 30% contamination level, the correlation with ex-
pected rate values and the areas under the curve (AUC) from ROC
analysis decreased by up to 30% and 12%, respectively (Fig. 2E), in-
dicating thatmethods based on RNAmetabolic labeling are severe-
ly affected by contamination of the labeled RNA fraction and
prompting the search for alternative approaches.

Temporal quantification of RNA dynamics without RNA

metabolic labeling

As illustrated in Figure 1, themodulationof oneormoreRNAkinet-
ic rates leaves specific marks on the temporal profiles of premature
andmatureRNAs.Conversely, the temporal quantificationof these
RNA species should allow the deconvolution of the underlying

RNAdynamics. Basedon this rationale,weextended INSPEcT to in-
clude a novel computational approach able to quantify RNA dy-
namics using time course total RNA-seq data, without relying on
any RNA metabolic labeling (Fig. 3A; Supplemental Methods). To
keep it simple, INSPEcT+ and INSPEcT− will be used to refer to
the application of the INSPEcT package to total and nascent or to
just total RNA-seq data, respectively.

Briefly, INSPEcT− follows a three-step procedure in which the
ODE system (Fig. 1B) is solved adopting various constraints on the
functional shapes of the RNA kinetic rates (Fig. 3B). In the first
step (priors estimation), processing (k2) and degradation (k3) rates
are forced to be constant and optimized to reduce the chi-squared
error on the mature RNA (M), assuming that premature RNA (P)
behaves linearly between the experimental observations. The re-
sulting k1 priors, together with P and M, are used in the second
step (first-guess estimation) to analytically solve the ODE system.
This returns k2 and k3, which are now constant just between ex-
perimental time points (constant piecewise). In the last step, M,
k2, and k3 are modeled through a combination of smooth func-
tions (constant/sigmoid/impulsive), minimizing both error and
complexity of the model according to the Akaike information cri-
terion (AIC) framework. Finally, k1 rates are updated accordingly,
and confidence intervals are determined for all kinetic rates. The
whole procedure takes ∼10 sec per gene per core (Supplemental
Fig. S1).

A

B

Figure 3. Temporal quantification of RNA dynamics without RNA metabolic labeling. (A) Outline of INSPEcT−. (B) INSPEcT− workflow; for details, see
text. (AIC) Akaike information criterion; (L) likelihood function.
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Validation of INSPEcT− RNA kinetic rates

We compared the RNA kinetic rates of 3T9 mouse fibroblasts cells
that were quantified without (using INSPEcT−) or with metabolic
labeling (using INSPEcT+) (de Pretis et al. 2017). Figure 4A exempli-
fies INSPEcT− output for the H2bc6 gene in 3T9 cells after acute
MYC activation, which closely matches the output of INSPEcT+
both in terms of fold change and time of response (for additional
examples, see Supplemental Fig. S4). At the genome-wide level, the
rates of synthesis, processing, and degradation quantified through
INSPEcT− had a Spearman’s correlation of 0.86, 0.61, and 0.69,
with those quantified through INSPEcT+, respectively (upper-tail
Spearman’s Rho P<1×1016) (Fig. 4B).

To further validate INSPEcT− kinetic rates without comparing
them to the closely related INSPEcT+ approach, we focused on the
rates of synthesis and degradation. INSPEcT− synthesis rates are
expected to closely correspond to the quantification of nascent
RNA. Indeed, whenweperformed a correlation analysis on 3T9 un-
treated cells, on those cells following 4 h of MYC activation, and
on the log2 fold changes between those conditions, we obtained
Spearman’s correlations ranging between 0.87 and 0.90 (Supple-
mental Fig. S5). INSPEcT− degradation rates were compared with
the rates determined by TimeLapse-seq, which relies on 4sU chem-
ical derivatization (Schofield et al. 2018). Even though INSPEcT−
degradation rates were determined on 3T9 mouse fibroblast cells,
which are related but not identical to the mouse embryonic fibro-
blast cells used in the TimeLapse study (total RNA expression
Spearman’s correlation 0.67), the degradation rates determined
with the twomethods are in good agreement (0.50) (Supplemental
Fig. S5). Rather, TimeLapse degradation rates have a lower correla-
tion with INSPEcT+ degradation rates (0.47). Finally, we reana-
lyzed with INSPEcT− a time course of IL7-induced differentiation
in WT and Mettl3-KO mouse T cells (Li et al. 2017; Furlan et al.
2019). METTL3 is the main m6A writer (Roundtree et al. 2017),
and its KO reduced m6A bulk levels to 28% of WT levels. One of
the key functions of m6A is to mediate the recruitment of marked
RNAs to the degradation machinery. Therefore, a reduction in
m6A is expected to lead to reduced degradation rates (Wang
et al. 2014). Indeed, when we compared INSPEcT− degradation
rates between WT and Mettl3-KO cells, they were reduced specifi-
cally for RNAs that were marked by m6A in the WT (Fig. 4C).

Altogether, the reanalysis of experimental data previously
generated by us and others (genome-wide correlations in 3T9 cells,
single gene examples, comparison with nascent RNA, TimeLapse,
and the confirmation of reduced decay in the context ofMettl3-KO
cells), validates INSPEcT− kinetic rates, indicating that their quan-
tification is possible even in the absence of RNAmetabolic labeling
data.

To further andmore comprehensively validate INSPEcT− abil-
ity to quantify rates changes,weused simulateddata for 1000genes
(Supplemental Figs. S2, S3). For each gene, both nascent and total
gene expression time course simulated data were included and an-
alyzed using the INSPEcT+ (considering both types of data) and IN-
SPEcT− (considering total RNA data only) approaches. Moreover,
the simulated data includedmatching temporal profiles of RNA ki-
netic rates, which represented the ground truth for their pattern of
modulation (“expected”). INSPEcT− kinetics rates changed over
time similarly to INSPEcT+’s and closely recapitulated the expected
response (Fig. 4D). The ability of our procedure of model selection
to correctly classify variable rates was quantified using F1 scores,
the harmonic mean of precision and recall (Fig. 4E). These results
were in line or superior to those obtained with the INSPEcT+ ap-

proach, especially for degradation rates. In particular, both ap-
proaches have a specificity higher than 0.8, implying a low
number of false positives (Supplemental Fig. S6).

A reduction in the number of time points only partially af-
fects the quality of the classification, regardless of the availability
of nascent RNA profiling (Fig. 4E). In particular, we found that
the classification of genes modulated with sigmoidal functions
are particularly resistant to a reduction in the number of time
points. Rather, genesmodulatedwith impulse functionsmost ben-
efited froman increasing number of time points. This suggests that
the cost of increasing the number of time points is not always jus-
tified by a corresponding growth in performance. Additional de-
tails on the impact of time series design on the quality of
classification and practical hints for the design of these experi-
ments are provided in the Supplemental Methods and
Supplemental Figures S7–S9.

A possible problem with the INSPEcT− approach lies in the
underdetermination issue affecting the equations presented in
Figure 1B. Indeed, themodulation ofmature RNA can be potential-
ly explained by changes in either synthesis or degradation.
Analogously, themodulation of premature RNA can be potentially
explained by changes in either synthesis or processing rates.
Although this ambiguity can be solved by profiling nascent
RNA, which is a proxy for the rate of synthesis, it remains a poten-
tial confounding factor when only total RNA is considered. To
quantify the importance of this issue, we repeated the ROC analy-
ses by predicting the change in each rate based on the score of the
other rates. Swapping the scores decreased INSPEcT−AUCs close to
random levels (0.5) (Supplemental Fig. S10), indicating that the in-
formation gained for different rates is not interchangeable and
showing that indetermination is not amajor issue of our approach.
This analysis also revealed that INSPEcT+ is more affected by the
indetermination issue (Supplemental Fig. S10). In particular,
when nascent RNA is profiled, changes in degradation rates can
be attributed by error to synthesis and/or processing rates. This is
likely because of contamination of labeled RNA with unlabeled
transcripts. Indeed, when using simulated data not affected by
contamination, the indetermination of INSPEcT+ is fully resolved
(AUCs close to 0.5).

Altogether, these analyses indicated that the rates’ absolute
values and their changes over time could be estimated even in
the absence of nascent RNA data.

Reanalysis of public data sets illustrates the additional information

gained with INSPEcT−
We used INSPEcT− to reanalyze four publicly available RNA-seq
time course data sets, corresponding to conditions with varying
proportions of transcriptional and post-transcriptional regulation
(Fig. 5A,B). The analysis of time course RNA-seq data sets is typical-
ly limited to the quantification of absolute and differential gene
expression, as depicted in Figure 5C. Rather, INSPEcT− returned
the quantification of the temporal changes in premature RNA
and of the RNA kinetic rates (Fig. 5D), markedly extending what
can be gained from the original data.

First, we focused on the temporal response to MYC acute ac-
tivation inmouse fibroblasts, which we had recently characterized
by profiling both total and nascent RNA (de Pretis et al. 2017). In
that study, the integrative analysis of both data types with the
INSPEcT+ approach revealed that MYC acts predominantly by
modulating the rate of synthesis of its target genes, with an impor-
tant, albeit less prevalent, impact on processing and degradation
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Figure 4. Validation of INSPEcT− kinetic rates. (A) H2bc6 RNA dynamics quantified in 3T9 mouse fibroblast cells following the acute activation of MYC
with (INSPEcT+) and without (INSPEcT−) RNA metabolic labeling. Solid bold lines indicate the model fit; thin solid and dashed lines indicate mean and
standard deviation of experimental data for total and premature RNA; dashed lines indicate 95% confidence intervals for the kinetic rates models.
(B) Scatter plots of RNA kinetic rates quantified in untreated 3T9 cells using INSPEcT+ and INSPEcT−. Regression curves and Spearman’s correlation coef-
ficients are indicatedwithin each panel. (C) Boxplot of the changes in degradation rates during the differentiation of T cells quantified with INSPEcT−. Rates
changes are displayed for m6A+, m6A−, or all RNAs in untreated cells. One-tailed Wilcoxon test P-values are displayed on the top. (D) Temporal changes of
the RNA kinetic rates for simulated genes, relative to the initial time point (left), compared with those quantified through INSPEcT+ (middle) and INSPEcT−
(right). (E) For each kinetic rate, quantified with or without metabolic labeling data, F1 scores are reported that measure the quality of the classification
(P-value cutoff 0.05), considering both precision and recall. Scoremeans and standard deviations are reported based on three simulated data sets obtained
at increasing number of time points.
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involving around one-third of targets (Sabò et al. 2014; de Pretis
et al. 2017). In agreement with those results, reanalysis with
INSPEcT− (which neglects any available nascent RNA data) con-
firmed that 85% of MYC targets were impacted at the level of their
synthesis rate, whereas 32% of them were affected in either pro-
cessing or degradation (Fig. 5D).

Second, we quantified for the first time all kinetic rates in
plants, focusing on the temporal response to ethylene in Arabidop-
sis thaliana (Chang et al. 2013). Ethylene causes growth inhibition,
which is initially independent and then dependent on the EIN3
transcriptional regulator. After 4 h, EIN3 binding reaches its max-
imum, leading to a strong transcriptional response (Chang et al.
2013). Indeed, our analysis confirmed that ethylene response is
primarily controlled at the transcriptional level (Fig. 5C).

Third, we reanalyzed the total RNA-seq data set on the tempo-
ral polarization of CD4+ T cells with polarizing cytokines from
Tuomela et al. (2016). As expected, in comparison to the one elic-
ited by a master transcription factor of the likes of MYC, the re-
sponse was more mixed and less dependent on the modulation

of synthesis rates: 72%of genesweremodulated at the level of their
processing and/or degradation rates (Fig. 5D).

Finally,we reanalyzed the total RNA-seq temporal response to
the activation of miRNA-124 (Eichhorn et al. 2014). We expected
to see a strong and specific post-transcriptional regulation of the
miRNA target transcripts, and, indeed, these were seen to be pri-
marily controlled at the level of their stability, leading to a reduc-
tion in total RNA, whereas nontarget transcripts remained mostly
unaffected (Fig. 5C).

Altogether, these analyses illustrate how the quantification of
RNA dynamics from total RNA-seq data sets can unveil the under-
lying mechanisms controlling premature and mature RNA abun-
dances and their variations.

Temporal quantification of RNA dynamics without assumptions

on the functional form

In this study, changes in premature and mature RNA, as well as in
the kinetic rates, are modeled by fitting sigmoid or impulse

A B C D

Figure 5. Characterization of time course RNA dynamics: reanalysis of four published data sets with INSPEcT−. (A) Experimental design of the considered
RNA-seq time courses. (B) Expected balance between transcriptional and post-transcriptional responses in the different experiments. (C ) The typical output
of differential RNA-seq analyses: heatmap of differentially expressed genes. (D) The additional information gained by reanalyzing those data with
INSPEcT−, which includes the gene-level modulation of premature RNAs, as well as the temporal changes of the kinetic rates of synthesis, processing,
and degradation. For the miR-124 data set, reported rates are first-guess estimates, owing to lack of replicates in the time course.
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functions. Sigmoids are the most elementary nonlinear functions
for modeling a smooth transition between two steady states.
Impulse models, which combine an early response followed by
an additional transition to a steady state, were previously proposed
and successfully used for themodeling of transcriptional responses
(Chechik et al. 2008; Chechik and Koller 2009). Moreover, they
were already adopted in the context of RNA dynamics modeling
(Rabani et al. 2011, 2014). However, despite their flexibility and
broad applicability, these functional forms place a constraint on
themodeling, whichmay poorly adapt to other temporal response
patterns, such as oscillatory or more complex responses.

To deal with these cases without introducing additional or
overly complicated functions, we implemented a modeling ap-
proach based on linear piece-wise functions, available for both
INSPEcT+ and INSPEcT− (see Supplemental Methods). Briefly,
confidence intervals are determined for first-guess kinetic rates
(Fig. 3B), thus revealing the degree of dissimilarity from a constant
model without assuming alternative functional forms. To test this
approach, we built data sets including simulated genes modulated
by a circadian oscillation of synthesis rates or by a circadian oscil-
lation of both synthesis and degradation rates opportunely out of
phase (Fig. 6A). Models returned by both INSPEcT+ and INSPEcT−
and obtained by fitting sigmoid or impulse functions had a poor
goodness of fit for the oscillating genes (Fig. 6B). Rather, we found
that both approaches can successfully model these circadian oscil-
latory patterns when agnostic of a priori knowledge of the func-
tional forms (Fig. 6C).

RNA-dynamics from steady-state total RNA-seq data

At steady state and in the absence of nascent RNA profiling, no in-
formation on the rate of synthesis is available. However, the ratio
of premature tomature RNA abundance is equal to the ratio of deg-
radation to processing rate (k3/k2) (Fig. 1B). Although this ratio
does not allow the deconvolution of the individual contributions
of the two rates, its change over different conditions indicates al-
terations in post-transcriptional regulation. INSPEcT− uses the ra-
tio of premature to mature RNA species to provide an excellent
estimate of the k3/k2 ratio (Fig. 7A). The modulation of the ratio
across conditions, such as time points, is also accurate (Fig. 7B).
This suggests that steady-state post-transcriptional regulation can
be studied even in the absence of RNA metabolic labeling.

Based on this rationale, we used INSPEcT− to characterize the
landscape of human post-transcriptional regulation with an un-
precedented breadth, covering 35,000 genes and more than 600
RNA-seq samples. By leveraging natural language processing ap-
proaches that we had recently implemented in the Onassis
Bioconductor package (Galeota et al. 2020), each data set was as-
signed to a specific tissue type and disease condition, ultimately
covering 26 tissues and 24 diseases. We focused on RNA-seq data
sets depleted of ribosomal RNA species and therefore enriched of
both premature and mature RNAs. Moreover, we relied on RNA-
seq coverage data that had been homogeneously reanalyzed across
data sets as a part of the recount2 project (Collado-Torres et al.
2017), thus minimizing potential batch effects owing to different
analysis pipelines and normalization methods. We found that the
amount of premature RNA (P) increaseswith the abundance ofma-
ture RNA (M) following a power law that depends on the gene type
(protein coding, pseudo, or long noncoding genes) (Fig. 7C).
Noncoding transcripts have a higher proportion of premature
RNA compared with other gene types. One possible reason for
this is that RNA processing rates are particularly low for noncoding

genes, which was indeed recently reported using metabolic label-
ing (Mukherjee et al. 2017). Significant deviations from these
trends, for each gene class, point to post-transcriptionally regulat-
ed genes (Fig. 7C; Supplemental Methods).

To validate the null model implemented in INSPEcT, which
relies on the global power law relationship between the expression
of premature and mature RNAs, we first verified that it does not
depend on the level of gene expression. Indeed, the proportion
of regulated genes is similar at different levels of expression
(Supplemental Fig. S11). Moreover, we reasoned that the genes de-
viating from thismodel, if theywere post-transcriptionally regulat-
ed, should be enriched inmiRNA targets. Indeed, their enrichment
is maximum in correspondence of the power law slope identified
with the INSPEcT null model (Supplemental Fig. S12).

Each gene, within each sample, was classified as post-tran-
scriptionally regulated (red in Fig. 7D), nondifferential (white),
or not expressed (blue). Unsupervised clustering of the heatmap
columns resulted in the spontaneous grouping of samples from
similar tissues and disease conditions (Fig. 7D; Supplemental Fig.
S13), suggesting that post-transcriptional regulation is coordinat-
ed across similar biological conditions. The observed sample clus-
tering did not simply arise from gene expression patterns of tissue-
specific genes, because it was 30% different from the clustering ob-
tained based onmature RNA (Supplemental Fig. S14). This analysis
allowedus to rank samples and genes according to their propensity
to be regulated at the post-transcriptional level. On one hand, this
revealed that post-transcriptional regulation is particularly com-
mon in specific conditions (Fig. 7D,E). On the other hand, this in-
dicated that the three gene classesweremarkedly different in terms
of post-transcriptional regulation, with protein coding and pseudo
genes being regulated more frequently than noncoding ones (Fig.
7D). Finally, we analyzed the function of the 1000 genes with the
lowest frequency of post-transcriptional regulation and found
them to be associated with basic cellular processes such as protein
folding, organelle organization, and metabolic processes (P<1 ×
1030). On the contrary, the 1000 genes with the highest frequency
were enriched in miRNA targets and were found to be related to
more specific cellular processes, including various diseases, B cell
activation, autoimmune response, differentiation, and morpholo-
gy (P< 1×102).

We analyzed more closely the functionality of the genes un-
dergoing post-transcriptional regulation under specific condi-
tions. Genes altered in T cell samples were associated with the
regulation of T cell number and proliferation andwith immunode-
ficiency. Genes altered in heart sampleswere associatedwith cardi-
ac hypertrophy, abnormal contractility, and cardiomyopathy.
Indeed, a subset of these samples could be associated with the car-
diomyopathy disease (Fig. 7D). Focusing on the RNAs regulated in
the brain, the corresponding genes were associated with several
diseases, including glioma, autism, and neoplasm of the nervous
system, and with biological processes such as hormone secretion
and synaptic transmission. Compared with genes expressed in
the brain, the 3′ and 5′ UTR regions in the subset of the regulated
transcripts are longer, have a lower percentage of CGs, and have
lower free energy, (Fig. 7F), indicating a higher likelihood of har-
boring regulatory motifs. In particular, their 3′ UTRs are enriched
in motifs containing the ACA sequence (Fig. 7G). In mammals,
ACA is where the majority of N6-methyladenosines (m6As) occur,
m6A being the most abundant RNA modification and an impor-
tant determinant of post-transcriptional regulation (Linder et al.
2015; Roundtree et al. 2017). We used AURA (Dassi et al. 2012,
2014) to search for motifs of RNA-binding proteins within these
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Figure 6. Modeling RNA dynamics without assumptions on the functional form. (A) Simulated data composed by 500 constant genes and 500 genes
subject to the circadian oscillation of synthesis (top) or synthesis followed by degradation rates (bottom). (B) Chi-square goodness of fit of sigmoid or im-
pulse models on the data sets in A using INSPEcT+ or INSPEcT−. (C) ROC analysis of the classification of synthesis (top) or synthesis and degradation rates
(bottom) using INSPEcT+ or INSPEcT− with linear piecewise functions.
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UTR regions (Fig. 7H). Among the enrichedmotifs we found those
for ELAVL1, also known as HuR, an important regulator of tran-
scripts stability (Mukherjee et al. 2011). In addition, we identified
motifs for severalm6A readers and erasers (Edupuganti et al. 2017).
Finally, we identified the binding proteins FUS and TARDBP, im-

portant factors in amyotrophic lateral sclerosis (ALS) (Paez-
Colasante et al. 2015). The genes associated with the motifs of
these factors have a marked overlap (Fig. 7I). For example, >92%
of the genes containing the FUS motif in their 3′ UTR and >78%
of those containing the TARDBP motif also contain the ELAVL1

A

C

E

F

G H I

B D

Figure 7. Characterization of steady-state RNA dynamics: reanalysis of 620 RNA-seq data sets with INSPEcT−. At steady state, the ratio between prema-
ture (P) and mature (M) RNA corresponds to the ratio between degradation (k3) and processing (k2) rates. Absolute values (A) and the temporal variation
(B) of k3/k2 ratios determined by INSPEcT− on simulated datawere compared to the ground truth (“expected”). (C) Median abundances of premature and
mature RNAs per gene across 620 RNA-seq data sets for the indicated gene classes. Density scatter plots were fitted with a linear model, whose slope is
reported. (D) Heatmaps displaying the classification in terms of post-transcriptional regulation for each gene (row) in each sample (column). k3/k2 ratios
were quantified for each gene in each sample and compared with the global trend depicted in C. Each gene is either not expressed (blue), is not differential
(white; ratio between the dashed lines in C), or is differentially post-transcriptional regulated (red; ratio above the dashed lines). Above the heatmaps, two
color bars indicate the tissue type and disease conditions of each sample. (E) Boxplot of the percentage of genes that are post-transcriptionally regulated for
the samples associated to each cell type, color matched with D. (F) Distributions of length, %GC, and free energy for 3′ and 5′ UTRs of genes post-tran-
scriptionally regulated in the brain compared with all genes expressed in the brain (background). (G) Sequence logo of the selected RNA-binding protein
motifs in the 3′ UTR regions of brain regulated genes. (H) Frequency and P-values of enrichment for selected motifs of RNA-binding proteins found in UTR
regions of brain regulated genes. (I) Hypergeometric P-value for the overlap between the genes associated to the factors in H.
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and IGFBP2 motifs (P<2×1041). Collectively, these data confirm
that m6A-directed post-transcriptional regulation is pervasive in
the brain (Yoon et al. 2018) and potentially relevant for ALS.
Finally, this analysis provided sets of candidate regulated genes,
as well as RNA-binding proteins that could be responsible for their
atypical dynamics of expression.

Altogether, these results illustrated the type and range of in-
formation that INSPEcT− is able to provide from the study of
RNA dynamics when individual conditions are compared in the
absence of nascent RNA data.

The impact of different RNA-seq protocols

Themeasurement of the abundance of both premature andmature
RNA is pivotal in all the approaches that aim to quantify RNA dy-
namics, with or without nascent RNA. Premature RNA is typically
quantified by intronic RNA-seq signals, whereas the abundance of
mature transcripts is obtained by subtracting intronic from exonic
signals. Numerous studies support the concept that intronic RNA-
seq reads are a robust proxy for the abundance of premature RNA
and the rate of RNA production (Ameur et al. 2011; Rabani et al.
2011, 2014; Zeisel et al. 2011). In particular, in a recent report
(Gaidatzis et al. 2015), a comprehensive analysis was conducted
that showed the high correspondence between intronic RNA-seq
signals and both nascent and chromatin-associated RNA signals.
To further confirm the notion that intronic and exonic signals
are closely related to premature and mature RNA, respectively,
we took advantage of a study inwhich the nuclear and cytoplasmic
RNA fractions were distinctly profiled. As expected, intronic reads
are markedly enriched in the nuclear fraction and depleted in the
cytoplasmic fraction, and our quantifications of premature and
mature expression have Spearman’s correlations of 0.75 and 0.88
with the abundance of nuclear and cytoplasmic RNA, respectively
(Supplemental Fig. S15).

Throughout this study, in order to maximize intronic signal,
we conservatively decided to take into consideration only total
RNA-seq experiments in which RNA molecules had not been
poly(A)-selected. However, we found that standard coverage
(20 million aligned reads) RNA-seq libraries prepared with various

protocols, including poly(A) selection, are also suitable for these
analyses (Supplemental Fig. S16A; Adiconis et al. 2013). Indeed,
Spearman’s correlations between Ribo-Zero and poly(A) selection
protocols are in the order of 0.85–0.9 for both premature RNAs
and their ratios to mature RNAs.

To test INSPEcT− on a poly(A)-selected RNA-seq data set, we
reanalyzed the temporal response to the induction of RAF.
Additional data from the same study revealed that the gene expres-
sion response was primarily controlled at the transcriptional level
(Uhlitz et al. 2017). Despite the low coverage in the time course of
the total RNA-seq samples, INSPEcT− confirmed a modulation in
the synthesis rate of 90% of the genes with altered kinetic rates
(Supplemental Fig. S16B).

These data and results indicate that there is enough intronic
signal available in samples subjected to poly(A) selection, despite
the depletion of premature RNA species, and that the quantifica-
tion of premature and mature RNA species is robust to the choice
of the RNA-seq protocol, thus broadening the scope of our
approaches.

Comparison with existing methods

The analysis of premature and mature RNA abundances, without
the quantification of nascent RNA, has been already used to study
RNA dynamics (Table 1). Few methods were developed that only
allow characterizing steady-state RNAdynamics. SnapShot-Seq en-
ables the inference of splicing kinetics by the differential coverage
that introns have in their 5′ and 3′ ends, whereas this is not ame-
nable for gene-level analyses (Gray et al. 2014). Alternatively, by
assuming invariant splicing kinetics SnapShot-Seq allows the
quantification of absolute RNA synthesis (∼ intron RNA-seq sig-
nal) and decay rates (∼ exon/intron signals) for individual genes.
With similar assumptions, two additional tools were developed:
EISA (Gaidatzis et al. 2015), which infers changes in synthesis
and degradation, and REMBRANDTS (Alkallas et al. 2018), which
only focuses on the latter and includes a term to manage the cou-
pling between transcription and processing. The onlymethod able
to dealwith time courses is the one described by Zeisel et al. (2011),
which models RNA synthesis and degradation dynamics from a

Table 1. Comparison of INSPEcT− with available tools for the analysis of RNA dynamics based on total RNA-seq data

INSPEcT− EISA SnapShot-Seq REMBRANDTS Zeisel

Steady state Absolute rates Synthesis — — • — —
Processing •a — •b — —

Degradation •a — • — —

Differential rates Synthesis — • — — —

Processing •a — — — —

Degradation •a • — • —

Time course Absolute rates Synthesis • — — — •c

Processing • — — — —

Degradation • — — — •c

Differential rates Synthesis • — — — —

Processing • — — — —

Degradation • — — — —

Rates couplingd • — — • —

Unbounded response complexitye • — — — —

Simulated data • — — — —
Software • — — • —

aAggregated datum.
bCannot be resolved at the gene level.
cConstrained to the experimental measure of RNA processing rate.
dManaging the coupling between transcriptional and post-transcriptional responses.
eAssumption-free on the maximum complexity of the responses (e.g., compatible with circadian oscillations).
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time course of premature andmature RNA abundances. Thismeth-
od requires knowing a priori the rate of RNA processing; it assumes
that this rate is constant throughout the time course and is not
suitable for steady-state analyses.

To quantitatively compare the results obtained with
INSPEcT− against other tools, we took advantage of a recently pub-
lished study in which changes in RNA degradation were indepen-
dently quantified through the block-of-transcription approach
(Slobodin et al. 2020). As part of that study, the investigators
showed that the drug camptothecin (CPT) slows down RNA poly-
merase II elongation and reduces RNA degradation, mediated by
changes in m6A RNA modifications. When those data were ana-
lyzed with EISA and REMBRANDTS, they both returned changes
in RNA stability that were opposite to those experimentally mea-
sured by block of transcription (Spearman’s correlation of −0.35
and −0.31, respectively) (Supplemental Fig. S17), suggesting that
RNA degradation was actually increased for most transcripts in-
stead of being reduced. This is likely because of impact of CPT
on the RNA processing machinery, which invalidates the basic as-
sumptions of both EISA and REMBRANDTS. In fact, EISA assumes
that the processing rates are invariant between conditions, where-
as REMBRANDTS assumes that changes in the processing rates are
opposed to changes in the synthesis rate. Instead, the analysis of
those data with INSPEcT− confirmed that substantial changes in
post-transcriptional regulation occurred (Supplemental Fig. S17),
whereas our method does not distinguish the contribution of pro-
cessing or degradation rates. In addition, the INSPEcT− enrich-
ment in miRNA targets is higher than the one obtained with
REMBRANDTS regulated genes (Wilcoxon test P-value 4.7 ×1042)
(Supplemental Fig. S12). Overall, at steady state, INSPEcT− relies
on the modulation of the ratio of premature to mature RNA abun-
dance as previously proposed (Gaidatzis et al. 2015), implements a
novel null model to find significant deviations, and avoids as-
sumptions regarding the step of premature RNA processing (La
Manno et al. 2018). The analyses presented in Supplemental Fig-
ures S12 and S17 suggest that the procedure implemented in IN-
SPEcT− for the analysis of steady-state conditions safeguards
from the confounding effect of a modulation of both processing
and degradation machineries.

Altogether, INSPEcT− is compatible with the broadest range
of experimental designs, can generate and take advantage of sim-
ulated data, is available as a well-documented software, and offers
a graphical user interface (Table 1; de Pretis et al. 2020).

Discussion

The deconvolution of RNA dynamics from transcriptional geno-
mics data is an emerging field of research, which the development
of RNA metabolic labeling has fuelled by enabling the analysis of
nascent transcription (Dolken et al. 2008; Rabani et al. 2011; Bap-
tista and Dölken 2018). We recently developed INSPEcT, a Biocon-
ductor package that, through mathematical modeling of nascent
and total RNA-seq data sets, allows the quantification of the kinet-
ic rates governing the RNA life cycle (de Pretis et al. 2015). We ex-
tensively used this tool for the analysis of the RNA dynamics
controlling several classes of coding and noncoding transcripts
(Austenaa et al. 2015;Marzi et al. 2016; de Pretis et al. 2017). Aware
of the challenges the integrative analysis of nascent and total RNA-
seq data poses, we have now expanded the packagewith INSPEcT−
to include the possibility to use total RNA-seq data sets only, with-
out requiring any information on nascent transcripts.

Based on experimental data generated by us and others, the
RNA kinetic rates calculated by INSPEcT−, using time course total
RNA-seq experiments, were validated through comparison with
those obtained by using RNAmetabolic labeling. Moreover, degra-
dation rates quantified through INSPEcT− were validated in
Mettl3-KO cells, where, as expected, they are reduced following
the depletion of m6A RNA modifications. Finally, the ability of
INSPEcT− to quantify changes in all the kinetic rates was bench-
marked on simulated data sets. In particular, INSPEcT− quantifica-
tions of transcripts half-lives were found to be improved compared
with INSPEcT+, which is affected by the contamination of unla-
beled RNA. By reanalyzing various time course data sets of total
RNA-seq, we illustrated INSPEcT−’s ability to unravel underlying
RNA dynamics and hence provide a deeper understanding of the
resulting gene expression programs. INSPEcT− prevents all the ad-
ditional experimental work required in nascent RNA profiling and
safeguards from a number of pitfalls afflicting RNA metabolic la-
beling experiments, primarily the difficulty in working with limit-
ed RNA amounts and/or tight temporal resolutions, the necessity
to normalize the quantification of pre-existing transcripts to that
of nascent transcripts, and the contamination of the latter with
the former. Although at steady state these downsides could be ac-
cepted in exchange for the ability to deconvolute all RNA kinetic
rates, in time course conditions they might not be justified when
considering INSPEcT− straightforwardness.

Finally, we also showed that INSPEcT− could unveil RNA-seq
dynamics under steady-state conditions by providing the first
comprehensive analysis of post-transcriptional regulation using
hundreds of publicly available data sets, covering a multitude of
tissues and disease conditions. The analysis revealed a signature
of brain genes, some of which are involved in ALS, which is poten-
tially post-transcriptionally regulated by m6A RNAmodifications.

In conclusion, the characterization of RNA dynamics can un-
cover the mechanistic details underlying complex transcriptional
responses. INSPEcT− allows, for the first time, to quantify themag-
nitude and the modulation of all RNA kinetic rates without requir-
ing RNA metabolic labeling data. Hence, it provides a new
perspective on what knowledge can be gained from total RNA-
seq data sets, including those previously published, which can
now be used not only for measuring abundance and variation in
expression but also for unveiling the contribution of the different
phases in the RNA metabolism. We expect that our approach will
be useful for the analysis of RNA dynamics in the context of single
cells, as well as direct RNA sequencing data (e.g., Nanopore-based),
with (Erhard et al. 2019; Furlan et al. 2020; Maier et al. 2020) or
without RNA metabolic labeling. Finally, INSPEcT− is ideal for
the identification or prioritization of conditions that are likely to
be of high interest to the study of RNA modifications and of their
pivotal role in controlling RNAmetabolism (Roundtree et al. 2017;
Furlan et al. 2019). Altogether, INSPEcT is a unifying computation-
al tool able to unfold these layers of regulation inmost experimen-
tal scenarios, independently from the availability of information
on nascent transcription, and is suitable for both steady-state
and time course profiling of total RNA-seq.

Methods

Expression data quantification

Premature, mature, and total RNA expression levels were quanti-
fied through a dedicated routine of the INSPEcT package.
Premature and total RNA were estimated as length and library
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size normalized read counts that overlap gene introns and exons,
respectively. Mature RNA was estimated as the difference between
total and premature RNA. If a gene had multiple isoforms, we col-
lapsed the exons of its transcripts and defined introns as the gaps
between adjacent collapsed exons.

The RNA-seq data sets reanalyzed in this study can be found
under the following NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo) or Sequence Read Archive
(SRA; https://www.ncbi.nlm.nih.gov/sra) accession numbers:
MYC activation (Fig. 5), (GEO) GSE98420; A. thaliana, (SRA)
SRP017925; T cell differentiation, (GEO) GSE52260; and miRNA
induction, (GEO) GSE60426. RNA-seq data for Figure 7 were re-
trieved using the recount R/Bioconductor package available at
https://bioconductor.org/packages/recount/.

For additional details, see Supplemental Methods Section 1.

Mathematical modeling of the RNA life cycle

We modeled the RNA life cycle through a set of two ordinary dif-
ferential equations, which describe the modulation of premature
(P) and mature (M) RNA, respectively, as functions of synthesis
(k1), processing (k2), and degradation (k3) rates. This is the core
of the inference procedures implemented in INSPEcT. For addi-
tional details, see Supplemental Methods Section 2.

Temporal inference of RNA kinetic rates

The time course inference procedure starts with the fit of k1 as a
piecewise linear function and of k2, k3 as piecewise constant func-
tions. This step overfits the expression levels, but it also provides a
fast solution to check the quality of input data and a first quantifi-
cation of the kinetic rates that is used to initialize the parameters of
further modeling steps. For additional details, see Supplemental
Methods 3.1.

The second stage of the inference procedure aims at control-
ling the noise associatedwith the experimental data and to statisti-
cally assess the rates responsible for premature and mature RNA
modulation. Three alternative routines are available to perform
this task (for additional details, see Supplemental Methods 3.2):

1. The integrative functional approach, which restricts the shape
of kinetic rates to constant, sigmoid, or impulse functions and
exploits the parameterization to numerically solve theODE sys-
tem. The comparison between inferred and experimental ex-
pression levels guides models optimization (standard chi-
square minimization) and selection (AIC minimization by
default).

2. The derivative functional approach, which is similar to the in-
tegrative one, but the parameterization regards one RNA spe-
cies, either mature or total RNA, and two kinetic rates. The
missing quantities needed to estimate the cost function for
model optimization and selection are expressed as functions
of the parameterized quantities and their time derivatives.
This allows bypassing the numerical solution of the ODE sys-
tem, reducing the computational cost, and is the default meth-
od in the INSPEcT package.

3. The nonfunctional approach, which is able to detect gene re-
sponses of any shape as it relies on the piecewise parameteriza-
tion but is also more affected by noise than the first two
alternatives.

Validation of the temporal inference

Simulated data were exploited to characterize the performance of
INSPEcT+ and INSPEcT− on the classification of constant and var-
iable rates. They were generated through a revised approach in-
cluded in the INSPEcT package, which now takes into account

nascent RNA contamination (for additional details, see
Supplemental Methods Section 4.2). We characterized the con-
tamination process with a dedicated experiment based on nascent
RNA profiling at different labeling times. Experimental and
computational details are available in Supplemental Methods
Section 4.1.

The performance in the classification of the kinetic rates as
constant or variable was evaluated through specificity, sensitivity,
area under the ROC curve, and/or F1 score, comparing observed to
expected (simulated) classification results. For additional details,
see Supplemental Methods Section 4.3.

RNA kinetic rates inference at steady state

At steady state, the only quantity that can be inferred regarding the
RNA life cycle kinetics is the ratio between post-transcriptional
rates (k3 over k2), which is equal to P over M. A modulation of
this ratio between conditions indicates an uneven regulation of
processing and degradation rates.

INSPEcT− identifies significant post-transcriptional regula-
tions as data points that deviate from a linear model fitted in the
log2P, log2M space. This approach allows filtering out trivial regu-
lations owing to the coupling of synthesis, processing, and degra-
dation machineries. For additional details, see Supplemental
Methods Section 5.

We applied the steady-state INSPEcT− approach on a large
data set (669 samples and 35125 genes) of non-poly(A)-selected
RNA-seq experiments retrieved querying the SRA database. The
corresponding data were retrieved using the R/Bioconductor pack-
age recount, and the corresponding metadata were annotated
through the Onassis R/Bioconductor package. For additional de-
tails, see Supplemental Methods Section 6.1.

We determined distinct nullmodels in the log2P, log2M space
for protein coding genes, pseudogenes, and noncoding genes ac-
cording to the GENCODE annotation (for additional details, see
Supplemental Methods Section 6.2). We identified sets of genes
atypically regulated in samples sharing the same tissue and/or dis-
ease annotations, which we investigated through functional en-
richment analysis (for details, see Supplemental Methods
Sections 6.3 and 6.4). Finally, we characterized the features of
UTR regions of protein coding genes post-transcriptionally regulat-
ed in brain by comparing their length,GC content, and free energy
to the background. We applied the regulatory enrichment tool of
the AURA2 database to search for known motifs of RNA-binding
proteins (see Supplemental Table S1). For additional details, see
Supplemental Methods Section 6.5. Gene and samples identifica-
tions of the recount data set, as well as the Gene Ontology enrich-
ment analysis results, are available in Supplemental Table S2.

Software availability

The INSPEcT R/Bioconductor package, including both the
INSPEcT+ and INSPEcT− approaches, is available at https://
bioconductor.org/packages/INSPEcT/, together with software doc-
umentation and instructions for its installation.

Data access

R scripts that allow reproducing all main and supplemental figures
and other key results included in this study are available as
Supplemental Code.
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