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Abstract. We address the issue of the suboptimality in the p-version discontinuous Galerkin (dG) meth-
ods for first order hyperbolic problems. The convergence rate is derived for the upwind dG scheme on
tensor product meshes in any dimension. The standard proof in seminal work [14] leads to subopti-
mal convergence in terms of the polynomial degree by 3/2 order for general convection fields, with the
exception of piecewise multi-linear convection fields, which rather yield optimal convergence. Such sub-
optimality is not observed numerically. Thus, it might be caused by a limitation of the analysis, which
we partially overcome: for a special class of convection fields, we shall show that the dG method has a
p-convergence rate suboptimal by 1/2 order only.

1 Introduction

Discontinuous Galerkin (dG) finite element methods were introduced in the early 1970s for the numerical
solution of first-order hyperbolic problems [17] and the weak imposition of inhomogeneous boundary
conditions for elliptic problems [16]. In the past several decades, dG methods have enjoyed considerable
success as a standard variational framework for the numerical solution of many classes of problems
involving partial differential equations (PDEs); see, e.g., monographs [8, 9, 10] for reviews of some
of the main developments of dG methods. The interest in dG methods can be attributed to a number of
factors, including the great flexibility in dealing with hp-adaptivity and general shaped elements [7, 5, 6],
as well as in solving convection- dominated PDEs; see, e.g., early works [3, 2] concerning hyperbolic
conservation laws and convection-diffusion problems.

Due to missing tools in the analysis, the convergence rate always contains suboptimality in terms of
the polynomial degree p. In [13], the first optimal convergence rate of hp-dG methods is derived for
linear convection problems by using the SUPG stabilisation. However, the authors provide numerical

1



Z. Dong and L. Mascotto

evidence that the hp-optimal convergence rate is achieved even without such stabilisation. In seminal
work [14], based on (back then) novel optimal approximation results for the L2-orthogonal projection,
the hp-optimal convergence rate is derived for dG methods applied to hyperbolic problems, under the
technical assumption that the convection field is piecewise linear. Moreover, whenever the above as-
sumption is violated, the theoretical analysis in [14] leads to error bounds that are suboptimal in terms
of p by 3/2 order. Such suboptimality is yet not observed in the numerical experiments. Over the last two
decades, the above mentioned technical assumption became standard in hp-dG methods for convection-
diffusion-reaction and hyperbolic problems; see, e.g., [12, 5, 6, 4]. It is still an open question , whether
the p-suboptimality for dG methods by 3/2 order is true or not in general.

Our contribution represents a further step in shedding light on this issue. Notably, we present the a priori
error analysis for hp-dG methods applied to pure hyperbolic problems employing a class of convection
field, including nonpolynomial cases. The new error is h-optimal and p-suboptimal by 1/2 order only.

The rest of the paper is organized as follows: the continuous problem and its dG discretization are ad-
dressed in Section 2; the classical analysis from [13] is re-elaborated in Section 3, whereas the improved
bounds under suitable assumptions on the convection field are the topic of Section 4; we collect the
conclusions in Section 5.

Throughout, we employ a standard notation for Sobolev spaces [1].

2 The continuous problem and its dG formulation

2.1 The continuous problem

Let Ω be a bounded polyhedral domain in Rd , d ∈ N, with boundary Γ. We denote the unit outward
normal vector to Γ at x ∈ Γ by nΓ(x) and introduce the Fichera function b ·n on Γ to define

Γ−:={x ∈ Γ : b(x) ·n(x)< 0} and Γ+:={x ∈ Γ : b(x) ·n(x)≥ 0}. (1)

In the following, the sets Γ− and Γ+ are referred to as the inflow and outflow boundary, respectively, and
clearly form a nonoverlapping partition of Γ.

Given b ∈ [W 1,∞(Ω)]d , c ∈ L∞(Ω), f ∈ L2(Ω), and gD ∈ L2(Γ−), we consider the convection-reaction
problem

b ·∇u+ cu = f in Ω,

u = gD on Γ−.
(2)

Assuming the existence of a positive constant cs satisfying

c2
0 := c− 1

2
∇ ·b≥ cs for a.e. x ∈Ω, (3)

the well-posedness of problem (2) follows, e.g., as in [15].

2.2 The dG formulation on quadrilateral/hexahedral meshes

We are interested in discretizing solutions to (2) by means of a dG finite element method. To the aim,
consider sequences of meshes {Tn}n consisting of tensor product elements, which can be defined through
an affine mapping ΦK on the reference d-dimensional cube element K̂ :=(−1,1)d . For sake of simplicity,
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we assume the all elements K ∈ Tn are shape regular. We fix a uniform polynomial degree p ∈ N and
denote the space of tensor polynomials of degree p over K̂ by Qp(K̂). Next, we introduce the dG space

Vn := {vn ∈ L2(Ω) | vn|K ◦ΦK ∈Qp(K) ∀K ∈ Tn}.

Given an element K ∈ Tn, we set its diameter and outward pointing normal by hK and nK , respectively.
Given boundary ΓK of element K, we split it into the inflow and outflow parts ΓK

− and ΓK
+ defined as

Γ
K
−:={x ∈ Γ

K : b(x) ·nK(x)< 0} and Γ
K
+:={x ∈ Γ

K : b(x) ·nK(x)≥ 0}. (4)

Next, we define the classical upwind jump operator. Given an internal face F , let K1 and K2 be two
elements in Tn sharing F . Without loss of generality, we assume that K1 is such that b ·nK(x) < 0 for
almost all x in F . Then, we set

bvcF := (v|K1− v|K2)|F = v+− v− ∀v ∈ H1(Ω,Tn). (5)

In the rest of this work, when no confusion occurs, we shall write n instead of nK(x).

Following seminal work [14], we consider the upwind dG variational formulation of (2). More precisely,
introduce the dG bilinear form

Bn(un,vn) := ∑
K∈Tn

(
(b ·∇un,vn)0,K +(c un,vn)0,K

− ((b ·n)bunc,v+n )ΓK
−\Γ−− ((b ·n)u+n ,v+n )ΓK

−∩Γ−

) (6)

and the discrete right-hand side

Fn(vn) := ∑
K∈Tn

(
( f ,vn)0,K− ((b ·n)gD,v+n )ΓK

−∩Γ−

)
∀vn ∈Vn. (7)

The dG method we consider reads

find un ∈Vn such that Bn(un,vn) = Fn(vn) vn ∈Vn. (8)

Furthermore, we introduce the dG norm

|||vn|||2dG := ∑
K∈Tn

(
‖c0vn‖2

0,K +
1
2
‖
√
|b ·n|v+n ‖2

0,ΓK
−∩Γ

+
1
2
‖
√
|b ·n|v+n ‖2

0,ΓK
+∩Γ

+
1
2
‖
√
|b ·n|bvnc‖2

ΓK
−\Γ−

)
.

(9)

with c0 defined as in (3).

It is easy to check that

Bn(vn,vn) = |||vn|||2dG ∀vn ∈Vn. (10)

The well-posedness of method (8) can be found, e.g., in [9, section 2.3].
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3 Standard analysis and suboptimality in terms of the polynomial degree

In this section, we recall the convergence analysis for method (8) from [14] and where suboptimal esti-
mates in terms of p appear.

Preliminary, for all K ∈ Tn, introduce the L2 projector Πp : L2(K)→Qp(K) through the affine mapping
and recall the standard hp-approximation estimates, see, e.g., [14, 11]: for any function u ∈ H`(K) on
the given element K ∈ Tn, the follow relations hold

‖u−Πpu‖0,K .
( hK

p+1

)s
|u|s,K ,

‖u−Πpu‖0,ΓK .
( hK

p+1

)s− 1
2 |u|s,K ,

(11)

with s := min{p+1, `}.
It is easy to check that method (8) is consistent, whence the following Galerkin orthogonality follows:

Bn(u−un,vn) = 0 ∀vn ∈Vn. (12)

Then, we split error u−un into η+ξ, where

η := u−Πpu, ξ := Πpu−un. (13)

Using Galerkin orthogonality (12) and the properties of orthogonal projector Πp, we readily have the
error equation

0 = Bn(u−un,ξ) = Bn(η,ξ)+Bn(ξ,ξ) =⇒ |||ξ|||2dG =−Bn(η,ξ). (14)

Since estimates on term η are standard, error equation (14) allows us to show a bound on term ξ, on
which we now focus on.

We begin by computing the following error splitting:

Bn(η,ξ) = ∑
K∈Tn

(
(b ·∇η,ξ)0,K +(cη,ξ)0,K

− ((b ·n)bηc,ξ+)0,ΓK
−\Γ−− ((b ·n)η+,ξ+)0,ΓK

−∩Γ−

)
= ∑

K∈Tn

(
((c−∇ ·b)η,ξ)0,K− (b ·∇ξ,η)0,K

+((b ·n)bξc,η−)0,ΓK
−\Γ−+((b ·n)ξ+,η+)0,ΓK

+∩Γ+

)
=: T1 +T2 +T3 +T4.

(15)

We show upper bounds for the four terms on the right-hand side of (15) and anticipate that our analysis
on term T2 will lead to suboptimal bounds in terms of p. Under further assumptions on vector b, we shall
exhibit improved p-bounds in Section 4 below.

We begin with term T1. Using that b ∈ [W 1,∞(Ω)]2, c ∈ L∞(Ω) , and assumption (3), we obtain

T1 ≤ ∑
K∈Tn

‖c−∇ ·b‖∞,K‖η‖0,K‖ξ‖0,K . ‖η‖0,Ω‖c0ξ‖0,Ω . ‖η‖0,Ω|||ξ|||dG. (16)
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As for terms T3 and T4, we have

T3 +T4 . ( ∑
K∈Tn

‖(b ·nK)
1
2 η‖2

0,ΓK )
1
2 |||ξ|||dG . ( ∑

K∈Tn

‖η‖2
0,ΓK )

1
2 |||ξ|||dG. (17)

As for term T2, if we assume that b ·∇ξ ∈ Vn for all ξ ∈ Vn, then T2 = 0. Thus, inserting (16) and (17)
in (15) yields

|||ξ|||dG . ( ∑
K∈Tn

(‖η‖2
0,K +‖η‖2

0,ΓK ))
1
2 .

( hK

p+1

)s− 1
2 |u|s,Ω, (18)

Using a triangle inequality, and combining (11) with (18) leads to a p-optimal error estimate.

Next, we focus on the case of nonzero T2 to investigate the p-suboptimality. Using the definition of η

in (13), and notably the property of orthogonal projection Πp, we can write

T2 := ∑
K∈Tn

∫
K
(b ·∇ξ)η = ∑

K∈Tn

∫
K
(b ·∇ξ−b0 ·∇ξ)η,

where b0 is the vector average over every K of b. We deduce

T2 ≤ ∑
K∈Tn

‖b−b0‖∞,K |ξ|1,K‖η‖0,K .

On each element K ∈ Tn, we have the following approximation property and hp-polynomial inverse
inequality:

‖b−b0‖∞,K . hK |b|W 1,∞(K), |ξ|1,K .
p2

hK
‖ξ‖0,K .

In the light of the two above bounds and (3), we have the following bound on term T2:

T2 . p2‖η‖0,Ω|||ξ|||dG. (19)

Inserting (16), (19), and (17) in (15), and using (11) yield

|||ξ|||dG . (1+ p2)‖η‖0,Ω +( ∑
K∈Tn

‖η‖2
0,ΓK )

1
2 .

(
hs

(p+1)s−2 +
hs− 1

2

(p+1)s− 1
2

)
|u|s,Ω. (20)

Using a triangle inequality, and combining (11) with (20) leads to the following p-suboptimal error
estimate:

|||u−un|||dG .

(
hs− 1

2

(p+1)s−2

)
|u|s,Ω. (21)

The above error bound is optimal in h but suboptimal in terms of p by 3/2 order, which is in accordance
with [14, Remark 3.13]. Notwithstanding, such suboptimality is not observed in practice; see, e.g., [14,
Numerical Example 1].

This motivates Section 4, where we shall exhibit improved estimates in terms of p, under further assump-
tions on convection field b.
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4 Improved bounds for special convection fields

In this section, we show improved p-error estimates, under the following assumption on convection
field b:

b ∈ [W 2,∞(K)]d ∀K ∈ Tn, b = [b1(x1),b2(x2), . . . ,bd(xd)]
T . (22)

Since the j-th, j = 1, . . . ,d, component of b is assumed to be single-valued in the x j variable, without
loss of generality, we can assume that element K is the Cartesian product of intervals I j := (α j,β j),
j = 1,2, . . . ,d.

We can re-write term T2 in (15) as

T2 =
d

∑
j=1

∫
K

b j(x j)∂ jξ η.

Fix j = 1, . . . ,d. The j-th partial derivative of ξ is a tensor polynomial of degree p−1 along direction x j

and p along the others. Define I jb j as the linear interpolant of b j at the end-points of interval I j :(
b j− I jb j

)
(α j) =

(
b j− I jb j

)
(β j) = 0. (23)

Then, we clearly have that I jb j ∂iξ∈Pp(I j) and I jb j ∂iξ∈Vn. Consequently, the definition of orthogonal
projection Πp allows us to write ∫

K
b j∂ jξ η =

∫
K
(b j− I jb j)∂ jξ η.

As α j and β j denote the endpoints of interval I j, standard properties of one dimensional linear interpola-
tion operators guarantee the existence of x̃ j such that

b j(x j)− I jb j(x j) =
b(2)j (x̃ j)

2
(x−a j)(x−b j) ∀x j ∈ I j.

Defining the standard quadratic bubble function on I j

w j :=−(x−a j)(x−b j),

we can thus write∫
K
(b j− I jb j)∂ jξ η =

∫
K

(b j− I jb j√w j

)(√
w j∂ jξ

)
η≤

∥∥∥∥b j− I jb j√w j

∥∥∥∥
∞,K

‖√w j∂ jξ‖0,K‖η‖0,K .

Thanks to assumption (22) and an hp-polynomial inverse estimate involving bubbles, see, e.g., [18,
Lemma 3.42], we deduce∥∥∥∥b j− I jb j√w j

∥∥∥∥
∞,K

. hK |b j|W 2,∞(K), ‖√w j∂ jξ‖0,K .
√

p(p+1)‖ξ‖0,K .

Collecting all the above estimates yields the following improved bound on term T2:

T2 . hp‖η‖0,Ω|||ξ|||dG. (24)
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Inserting (16), (24), and (17) in (15) gives the bound

|||ξ|||dG .
hs− 1

2

(p+1)s−1 |u|s,Ω,

which, combined with a triangle inequality and (11) , eventually entails the error estimate

|||u−un|||dG .
hs− 1

2

(p+1)s−1 |u|s,Ω.

Compared with error estimate (21), the p-suboptimality improved by one order.

5 Conclusion

Employing a special class of convection fields, we derived an improved hp-bound for dG methods dis-
cretising linear hyperbolic problems. The new error bound is suboptimal by 1/2 order in p only, which
improves the 3/2 suboptimal order presented in [14]. Needless to say, the results in this work do not
provide full answers to the open questions in [14], notably on the mismatch between the theoretical and
numerical results on p-convergence. However, it sheds some additional light on such issues and shows
the possibility of deriving sharper hp-error bounds for dG methods.
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[10] V. Dolejšı́ and M. Feistauer. Discontinuous Galerkin method, volume 48 of Springer Series in Computational Mathemat-
ics. Springer, Cham, 2015.

[11] Z. Dong. On the exponent of exponential convergence of p-version FEM spaces. Adv. Comput. Math., 45(2):757–785,
2019.

[12] E. H. Georgoulis, E. Hall, and P. Houston. Discontinuous Galerkin methods for advection-diffusion-reaction problems on
anisotropically refined meshes. SIAM J. Sci. Comput., 30(1):246–271, 2007/08.
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