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1 Introduction

In the study of string compactifications, there seems to be a tension between what one can
achieve by solving directly the equations of motion in ten (or eleven) dimensions, and what
is suggested by effective field theory methods. This is famously the case for de Sitter vacua.
But a similar issue presents itself even for negative cosmological constant: in explicit ten-
dimensional solutions,

√
|Λ| is usually of the same order as the masses mKK of the KK modes.

In contrast, effective field theory methods seem to lead quite naturally to “scale
separation”

√
|Λ| � mKK, and indeed rely on it. One might expect for example that many

vacua that seem to be Minkowski in the supergravity approximation actually have a Λ
negative and small once stringy corrections or instantons are more carefully taken into
account. Such effects are so far notoriously difficult to compute reliably, but the AdS vacua
proposed in [1] are of this type.1 A similar strategy is to actively modify a Minkowski
vacuum by introducing (additional) fluxes; in a d = 4 effective description, these give rise
to terms in the potential whose coefficients depend on the flux quanta. Starting with a
Calabi-Yau compactification and taking the flux integer N for F4 to be large, one obtains
|Λ| ∼ N−3/2, mKK ∼ N−1/4, and N = 1 supersymmetry [3] (see also [4]). This however

1Even Minkowski vacua with N = 1 are a priori not protected against instanton corrections, and it
was recently conjectured [2] that such protection is either due to N > 1 or to supersymmetry in higher
dimensions.
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also involves several O6-planes, whose back-reaction is difficult to describe appropriately.2
We will come back to this particular class of solutions soon.

A complementary approach comes from the so-called “swampland program”, which
abstracts general lessons from the many solutions which are solidly believed to exist, in
conjunction with general expectations from quantum gravity. The swampland distance
conjecture [6] predicts a tower of states to appear at the boundary of moduli space, of masses
exponential in the distance from it. Inspired by this, the Λ→ 0 limit was conjectured [7]
to always yield masses m ∼ |Λ|α, with α > 0 of order one. A stronger version of this
conjecture, also considered in [7], would be that α = 1/2 for supersymmetric solutions; this
would indicate that the above AdS4 × CY6 solutions of [3] are somehow invalid.

In this paper we analyze the issue of scale separation from both points of view. We
will first derive some general bounds on the KK scale which apply to any compactification,
and then revisit the particular class in [3]; the two sets of results will be related by the role
of O-planes.

In section 2 we show a general bound for compactifications of any D-dimensional gravity
theory down to d dimensions, whose stress-energy tensor satisfies a certain condition we
call Reduced Energy Condition (REC).

We will show that it implies

m2
KK 6 αmax

{
σ2,

1
n− 1

(
|Λ|+ σ2

D − 2

)}
+ β

(
mD−2
D m2−d

d

)2/n
(1.1)

where n = D − d is the internal dimension; α and β only depend on n; mD and md are the
Planck masses in D and d dimensions respectively; and σ ≥ (D − 2)|dA| is a bound on the
gradient of the warping function A. The combination in the last term is natural; in the
unwarped case, the parenthesis is the inverse volume. There is also a related bound, where
md is replaced by the diameter of the internal space Mn, i.e. the largest distance between
any two of its points. Even though our motivations come from the study of the problem
of scale separation in string and M-theory, the bounds we derive can be of more general
interest as they provide a precise relation among the different physical scales related in a
compactification of any gravitational theory: the KK scale, the scale of the cosmological
constant plus warping effects, and the reduced Planck mass (or diameter).

The REC is satisfied in D = 11 supergravity, and in type II by everything except O-
planes. It was indeed previously argued [8] that O-planes are necessary for scale separation;
however, this required assuming σ � 1, and diagnosed separation based on the proxy∫
RE

6 /
∫
RE

4 , the ratio of the integrated curvatures in Einstein frame. In many cases this
proxy provides a good estimate, but it can easily fail, for example in presence of O-planes [9,
section 2.2]. In contrast, (1.1) is a mathematical statement on the mass of the lowest
eigenvalue of a certain weighted Laplacian, which determines the masses of the spin-two
fields [10, 11]. Indeed scale separation fails if a field of any spin has mass2 ∼ |Λ|.

The strategy involves showing a lower bound on the eigenvalues of the internal Rmn −
(D − 2)∇m∂nA. This makes Mn a so-called Bakry-Émery manifold, on which several

2A strategy using F-theory seven-branes was proposed in [5].
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results are known, adapting some of which [12, 13] we obtain (1.1) and the other bound
we mentioned.

While these results constrain the KK scale, they still seem to allow scale separation, even
without sources. In light of this, we revisit in section 3 a phenomenon that first appeared
in [14, section 7], where an O6-plane singularity can become smooth upon deformation
by Romans mass F0 6= 0. This happens when one adapts the supersymmetry equations
to a situation where the O6 wraps an internal flat cycle. It is not to be understood as a
quantum resolution of the O6, since it appears in supergravity. Rather, there is a topology
change such that the O6 involution no longer has a fixed locus where an O6-plane could sit.

However, this smooth deformation was demonstrated in [14, section 7] for a “generic”
branch of the supersymmetry equations where F6 6= 0; this had an exact NSNS three-form
H, which obstructed promoting the local solution to a global one. It was realized more
recently [15, 16] that a special branch with F6 = 0 does not have this problem. So we look
again at the local behavior near an O6 on this special branch. Our result in section 3 is that
the O6 singularity this time gets modified by F0 6= 0 to a different singularity, which can be
formally interpreted as an O4 partially smeared along two directions.3 Such singularities
appeared elsewhere, for example in [20]; they are still problematic, but they might be an
intermediate step towards a better-defined solution.

This result should be relevant in particular for the above-mentioned class of supersym-
metric4 solutions AdS4 × CY6 of [3]. This was lifted to a IIA supergravity solution in [21],
but with smeared O6-planes. To find a more sensible lift with localized O6-planes, [14,
section 6] suggested to work in a limit where the curvature radii are large, while the string
coupling eφ is small almost everywhere. This idea was recently realized for the special
branch with F6 = 0, where an approximate large-volume solution was found [15, 16].

To sum up, the results of section 2 in this paper constrain the masses of the KK modes
in terms of certain geometric data and of the matter content of the theory, but leave open
the possibility of scale separation in supergravity even without O-planes. This might have
opened the possibility that the O6-planes in AdS4 × CY6 solutions of [3] might have been
smoothed out by F0 as in [14, section 7]; but the results in section 3 seem to exclude
this. Thus the status of scale-separated solutions in supergravity seems to rely on our
understanding of O-plane singularities, as for de Sitter solutions.

2 General bounds

In this section, we will derive general bounds on the KK spectrum of a compactification.
After reviewing the basics in section 2.1, we will describe the geometry of compactifications of
higher dimensional gravitational theories down to d-dimensional vacua within the framework

3It is worth recalling that in other contexts an O6 singularity is not modified at all by F0, such as for
AdS7 solutions [17–19].

4As pointed out in [5], supersymmetry protects many BPS operator dimensions in a CFT, preventing
them from getting large anomalous dimensions. The AdS dual of this statement is the presence of many
fields with small masses, thus hindering scale separation. For example, scale separation was shown to be
impossible for supersymmetric AdS7 solutions [9, section 2.2]. However, the solutions in [3] only have N = 1
supersymmetry in d = 4, which does not protect any operators for the d = 3 CFT duals.
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of Bakry-Émery manifolds, defined in terms of a Riemannian manifoldMg and a real function
f . In section 2.2 we will identify Mg with the internal space of compactifications and f

with a multiple of the warping factor. With this language we can describe many physical
properties of the vacuum, such as the spectrum of spin-two excitations, in terms of natural
objects in Bakry-Émery geometry. We show in section 2.3 that the Bakry-Émery Ricci
tensor can be bounded from below by using the equations of motion, if the stress energy
tensor satisfies a Reduced Energy Condition (REC), which we analyze in section 2.4. We
then proceed in section 2.5 to exploit some known mathematical results to bound the masses
of the spin-two particles.

Albeit our motivations come from the study of compactifications of ten- and eleven-
dimensional supergravity theories, which describe the low-energy limit of String Theories
and M-theory respectively, the results we are going to present in this section are general
and apply to any higher-dimensional gravitational theory that satisfies the REC. As we
show in section 2.4 this is not restrictive, as most classical sources satisfy it.

2.1 General expectations

We will consider a general compactification of a D-dimensional gravitational theory, with
an Einstein-Hilbert (EH) term mD−2

D

∫
dDxRD, down to d-dimensional vacua:5

ds2
D ≡ e2Ads2

d + ds2
n ≡ e2A

(
ds2

d + d̄s2
n

)
. (2.1)

The warping function A only varies over the n-dimensional internal space; ds2
d is a maximally-

symmetric space, with curvature normalized as R(d)
µν = Λg(d)

µν . The “barred” internal metric
ḡmn = e−2Agmn will make our analysis easier later. The reduced action will have an EH
term md−2

d

∫
ddxRd, with

md−2
d

mD−2
D

=
∫

dny√gn e(d−2)A =
∫

dny
√
ḡn e(D−2)A (2.2)

relating the Planck masses in D and d dimensions.
Notice that in any warped compactification there is an ambiguity in defining the

cosmological constant, since a change in its value could absorbed by a constant shift of the
warping: in other words, (2.1) is invariant under

A→ A+A0 , gµν → e−2A0gµν , ḡmn → e−2A0 ḡmn . (2.3)

The mass scales we will consider do suffer from this ambiguity, but fortunately their ratios
do not.

We are interested in the masses of the KK modes. These are obtained as eigenvalues of
differential operators on Mn similar to the Laplacian. Below we will use the lowest mass of
the spin-two fields as a definition of mKK; notice that making mKK/mΛ large, mΛ ≡

√
|Λ|

is a necessary condition for scale separation to hold.
5We use upper case Latin letters to denote D-dimensional indices, lower-case Greek letters for indices

along the directions of the d-dimensional vacuum and lower-case Latin letters for indices in the n-dimensional
internal space, with n = D − d.
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Many AdS vacua only have one length scale r; obviously then mΛ, md, mKK are all
of order 1/r and there is no scale separation. More generally, if one assumes that the
internal Ricci tensor has a positive bound from below, Rmn ≥ r−2gmn for some r, famous
results [22, 23] then imply bounds on the Laplacian. If moreover one also assumes that
the gradient ∂mA of the warping is negligible, then the equations of motion imply [8]
r ∼ RAdS, the AdS length scale. But in general the Ricci tensor is not positive; it cannot
be negative-definite either [24], but the indefinite case is allowed. One can generate many
such examples via the map

AdSd ×MD−d → AdSd′ ×Hd−d′ ×MD−d (2.4)

where Hd−d′ , d−d′ > 1 is a compact space satisfying Rmn = Λgmn; for example for d−d′ = 2
this can be a Riemann surface with genus g > 2 (since Λ < 0). Indeed the equations of
motion are completely unchanged under (2.4);6 even if MD−d is positively curved in the
original solution, this map produces an example where Rmn also has negative eigenvalues.

There do also exist results on the Laplacian operator when the Ricci tensor has a
negative bound from below [27]. However, when A is not constant, it is difficult to obtain
such a bound from the equations of motion; moreover, we will see below that A also enters
in the differential operators whose eigenvalues give the KK masses.

Fortunately, the two issues are related; the KK operator is natural in a mathematical
framework called Bakry-Émery geometry. This allows to derive eigenvalue results, if a
bound exists for the combination Rmn − (D − 2)∇m∇nA of the Ricci tensor and warping,
which is precisely of the type provided by gravity compactifications.

2.2 Bakry-Émery geometry and compactifications

A Bakry-Émery manifold is just a pair of a Riemannian manifold and a real scalar function
on it; the latter will be for us proportional to the warping function.

The spectrum of excitations around any compactification (2.1) includes a tower of spin-
two particles defined as perturbations δg(d)

µν of the maximally symmetric metric g(d)
µν . Well-

known work [10, 11] shows that, unlike for lower spins, the spin-two tower always decouples
and can be studied independently, without needing to first diagonalize the full spectrum.
Moreover, the operator whose eigenvalues give the masses of these spin-two particles has
a universal form depending only on the internal metric and on the warping factor.

This property has allowed a relatively easy computation of the spin-two spectrum of
many warped AdS vacua where a full diagonalization of the spectrum is currently out of
reach; see for example [9, 28–34].7 Recent studies of how extra dimensions would influence
gravity waves also include [37–39]. The effect of warping on KK reductions was also studied
earlier in [40, 41], and its connection with the problem of scale separation in [42].

6This is not to be confused with the more sophisticated map induced holographically by compactifying a
CFTd−1, which changes the metric on MD−d−d′ and fibers it over Hd−d′ , and preserves supersymmetry [25].
(2.4) was used for example in searching dS4 solutions with O6-planes [26].

7For large supersymmetry, recently a different approach has been developed based on exceptional geometry,
where the full spectrum can be computed for all vacua based on a given internal manifold [35, 36].
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There are many equivalent ways to rewrite the spin-two operator [10]. A natural form
from our current perspective is

∆f (ψ) ≡ − 1√
ḡ

e−f∂m
(√

ḡḡmnef∂nψ
)

= ∆ψ − ∇̄f · dψ , f = (D − 2)A . (2.5)

This is called Bakry-Émery Laplacian [43];8 the spin-two modes hkµν and their masses m2
k

are given by
∆fψk = m2

kψk . (2.6)

Even without working out the full operator as in [10], the weight e(D−2)A can be
understood by rewriting the D-dimensional Einstein-Hilbert action in terms of the D-
dimensional unwarped metric ḡD ≡ e−2AgD:

SEH = mD−2
D

∫ √
−ḡDe(D−2)A(R̄D + . . .) , (2.7)

where the dots refer to terms proportional to derivatives of A. Now ḡD is a pure (unwarped)
product, and the spin 2 fields are simply obtained by varying (2.7) at second order with
respect to the d-dimensional part of ḡD. This shows that the internal differential operators
are naturally weighted with the factor e(D−2)A. Although lower spins do not decouple and
one needs to diagonalize their action before being able to read their mass operators, a
similar argument suggests they can be related to Bakry-Émery Laplacians, possibly with a
different weight. For example, a k-flux term SFk ≡ −

mD−2
D
2

∫ √
−gDF 2

k will be accompanied
by an e(D−2k)A factor coming from the inverse metrics appearing in F 2

k . Aside from the
zero-mode, the bottom of the spectrum of ∆cf can be seen to be lower than the one of ∆f

if c < 1 by rewriting the eigenvalue equation as a Schrödinger problem, as in [12, section 3].
As it is the case in usual Riemannian geometry, the spectrum of the Laplacian is

controlled by the curvature. In Bakry-Émery geometry a natural notion of curvature is the
Bakry-Émery Ricci curvature, defined as Riccif ≡ Ricci−Hess(f), or in index notation:9

Rmn −∇m∇nf . (2.8)

Many standard geometric results that apply in the pure Riemannian case (f = 0) often
carry over to the Bakry-Émery case, by replacing the Ricci tensor with the Bakry-Émery
Ricci tensor (2.8) and requiring a bound on (∇f)2. We are going to present some of
these results in section 2.5, where we will use them to show how a lower bound on the
Bakry-Émery curvature (2.21) translates into an upper bound on all the eigenvalues of the
operator (2.5).

We will now bound Riccif in terms of an energy condition on the stress-energy tensor
of the theory, which we will check in 2.4 for various matter sources.

8When acting on general k-forms, this operator can also be written as ∆f = d†fd+dd†f with d†f ≡ e−fd†ef .
This form makes it closely related to the operator d†fdf + dfd†f , with df ≡ efdfe−f , which has been used by
Witten to prove the Morse inequalities [44].

9This tensor is sometimes called ∞-Bakry-Émery in the literature. The name comes from viewing it as a
special case of the N -Bakry-Émery-Ricci tensor Rmn −∇m∇nf − 1

N
∇mf∇nf . As we are going to see in

section 2.3, the equations of motion naturally bound the ∞-Bakry-Émery-Ricci curvature, and we will thus
avoid this notation and simply call it Bakry-Émery Ricci tensor.
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2.3 Bounding the curvature

We start from the D-dimensional Einstein equations written as10

RMN = 1
2κ

2
(
TMN − gMN

T

D − 2

)
≡ T̂MN (2.9)

where TMN ≡ − 2√
−g

δSmat
δgMN is the stress-energy tensor of the D-dimensional theory.

To specialize (2.9) to metrics of the form (2.1), we first compute the internal and
external components of the Ricci tensor:

R(D)
µν = g(d)

µν (Λ− ∇̄p∇̄pA− (D − 2)∇̄pA∇̄pA) (2.10)
R(D)
mn = R̄mn − (D − 2)∇̄m∇̄nA+ (D − 2)∇̄mA∇̄nA+ (2.11)

− ḡmn(∇̄p∇̄pA+ (D − 2)∇̄pA∇̄pA).

Let us first focus on the external equation obtained from (2.10). Since the external space is
maximally-symmetric, if the stress-energy tensor along these directions also respects this
symmetry, we lose no information by taking its trace, obtaining the scalar equation

Λ− ∇̄2A− (D − 2)(∇̄A)2 = 1
d
T̂ (d) , (2.12)

where T̂ (d) ≡ g(d)µν T̂µν ; equivalently,

Λ− 1
D − 2e−(D−2)A∇̄2(e(D−2)A) = 1

d
T̂ (d) . (2.13)

If the internal space Mn is smooth and compact, integrating this gives

Λ
∫
Mn

dny
√
ḡe(D−2)A =

∫
Mn

dny
√
ḡe(D−2)AT̂ (d) . (2.14)

This equation is often used to derive no-go theorem for dS compactifications of supergravity
theories [25, 45, 46], since for most of the classical sources of eleven and ten-dimensional
supergravity theories the right hand side is non-positive. This excludes O-planes, which
also violate the assumption of a smooth internal space without boundaries; and the Romans
mass F0, which was however excluded in [25] with a separate analysis.

The internal equations (2.11) cannot be reduced to a scalar equation without loss of
information. Some constraints can be obtained by taking its trace [8, 24, 47], but the
Ricci scalar alone often gives too weak a restriction on the geometry for most geometrical
purposes.

Keeping then all the internal directions, the internal equation reads

R̄mn−(D−2)∇̄m∇̄nA= (D−2)
(
−∇̄mA∇̄nA+ḡmn(∇̄A)2

)
+ḡmn∇̄2A+T̂ (D)

mn . (2.15)

10We normalize the Einstein-Hilbert term in the action as SEH = 1
κ2

∫ √
−gDRD with κ2 = (2π)D−3`D−2

D ,
where `D is the D-dimensional Planck length.
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The left hand side is of the form (2.8), but in order to put a bound on it we need to get rid
of the ∇2A term on the right hand side, which does not have a definite sign. We achieve
this by using the external equation (2.12):

R̄mn − (D − 2)∇̄m∇̄nA = Λḡmn+
− (D − 2)(∇̄mA∇̄nA)+

+ T̂ (D)
mn − ḡmn

1
d
T̂ (d) .

(2.16)

We now analyze the various terms on the right hand side. The first line is responsible for
relating the scales of the internal and external curvature. The second line is a negative-
definite quadratic form, whose single non-zero eigenvalue is the square of the gradient of the
warp factor. This will play an important role, and we will call σ2

(D−2)2 ≡ supMn
ḡmn∂mA∂nA.

In other words:
(D − 2)|∇̄A| 6 σ. (2.17)

Finally, in the third line of (2.16) we have the combination of stress-energy tensors

T̂ (D)
mn − ḡmn

1
d
T̂ (d) = 1

2κ
2
(
T (D)
mn − ḡmn

1
d
T (d)

)
. (2.18)

As we are going to see in the next section, this quantity is non-negative for a broad class of
matter fields; this includes those of d = 10 and d = 11 supergravity, with the only exception
of O-planes. Our assumptions are also invalidated by string or M-theory corrections, where
the kinetic term is not even of EH type. In this sense, our results will be related to
those for dS compactifications [25, 45, 46]. However, requiring that (2.18) is non-negative
is inequivalent to the Strong Energy Condition, which is violated by a D-dimensional
cosmological constant (such as the Romans mass in massive IIA supergravity) while (2.18)
is not. Since the combination (2.18) only makes sense when reducing the higher-dimensional
theory to lower dimensional vacua, we will call the corresponding condition Reduced Energy
Condition (REC):

REC: T (D)
mn − ḡmn

1
d
T (d) > 0 . (2.19)

Since, as we mentioned, effects that violate (2.19) are also needed to obtain dS compactifi-
cations, from now on we will take Λ < 0.

Summing up, if the Reduced Energy Condition (2.19) holds, there is a bound on the
Bakry-Émery Ricci tensor:

Riccif > −
(
|Λ|+ σ2

D − 2

)
, (2.20)

with f = (D − 2)A. More explicitly, recalling (2.8):

R̄mn − (D − 2)∇̄m∇̄nA > −
(
|Λ|+ σ2

D − 2

)
ḡmn . (2.21)

Of course this bound is only useful if σ defined in (2.17) is finite. We will use this information
in section 2.5, but let us first check the REC for various sources.

– 8 –
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2.4 Stress-energy contributions

In this section, we verify that the Reduced Energy Condition (2.19) is satisfied for a broad
class of contributions to the stress-energy tensor, including those in d = 10 and d = 11
supergravity (with the exception of O-planes).

We start with form field-strengths, with an action of the form

SFk = − 1
2κ2

∫
dDx
√
−g eλφF 2

k , (2.22)

where eλφ is a possible scalar weight. This includes the action for NSNS and RR fluxes in
d = 10 supergravity, and the four-form flux in d = 11. The square of a form is defined as

F 2
k ≡

1
k!(Fk)M1...Mk

(Fk)P1...Pkg
M1P1 . . . gMkPk . (2.23)

More generally we define the inner product F · F̃ ≡ 1
k!FM1...Mk

F̃M1...Mk ; in particular, if
(Fk)M ≡ ιMFk, we have

(Fk)M · (Fk)N = 1
(k − 1)!(Fk)MP1...Pk−1(Fk)

P1...Pk−1
N . (2.24)

This tensor vanishes for a 0-form, since ιMF0 = 0.
In order not to break maximal symmetry of the vacuum, a k-form can always be

decomposed as
Fk ≡ fe ∧ vold + fi (2.25)

where fe and fi are differential forms defined purely on the internal n-dimensional space.
Notice that by construction fe 6= 0 only if k > d. (In type II supergravity, fe and fi are
Hodge dual to each other in Mn.)

With these definitions, the contractions that appear in the stress-energy tensor read

F 2
k = f2

i − e−dAf2
e (2.26)

(Fk)µ · (Fk)ν = −gµνe−dAf2
e (2.27)

(Fk)m · (Fk)n = (fi)m · (fi)n − e−dA(fe)m · (fe)n . (2.28)

Varying (2.22) we compute the stress-energy tensor for a k-dimensional flux Fk. Using (2.26)
the combination (2.18) reads

κ2
(
Tmn −

1
d
ḡmnT

(d)
)
Fk

= e−2A(k−1)eλφ
[
(f̄i)m · (f̄i)n − (f̄e)m · (f̄e)n + ḡmnf̄

2
e

]
, (2.29)

where a bar over f reminds us that the contractions in the products are taken with the
internal ḡ. Notice from (2.29) that a cosmological constant term (such as the Romans
mass F0 in type IIA) does not contribute to the REC. Similarly, the contribution to
the dilaton potential that is present in string theories in non-critical dimension does
not contribute to the REC. That the quantity (2.29) is non-negative can be seen as
follows. For any internal form f , an explicit computation reveals that (?f)2 = f2 and
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−f̄m · f̄n + 1
2 ḡmnf̄

2 = (?f̄)m · (?f̄)n − 1
2 ḡmn(?f̄)2, where ? is computed with the internal

metric ḡ. Applying these relations to the fe term in (2.29) gives

κ2
(
Tmn −

1
d
ḡmnT

(d)
)
Fk

= e−2A(k−1)eλφ
[
(f̄i)m · (f̄i)n + (?f̄e)m · (?f̄e)n

]
> 0 . (2.30)

We now turn our attention to a canonically normalized scalar field φ, such as the dilaton
in string theory in Einstein frame:

Sφ = − 1
2κ2

∫
dDx
√
−g(∇φ)2 . (2.31)

Formally, (2.31) has the same structure as (2.22) for k = 1, upon the identification F1 = ∇φ.
Since in order to do not break the maximal d-dimensional symmetry φ is only allowed to
depend on the internal coordinates, we obtain the same result as in (2.29), specialized to a
purely internal F1:

κ2
(
Tmn −

1
d
ḡmnT

(d)
)
φ

= ∂mφ∂nφ > 0. (2.32)

Finally, we consider localized sources, with an action of the form

Sp = −τp
∫

Σp+1
dp+1σeλ̃φ

√
−g|Σp+1 . (2.33)

This includes D-branes in string theory and M-branes in M-theory, again with φ playing
the role of the dilaton; the parameter λ̃ = (p − 3)/4 in Einstein frame. Separating the
stress-energy tensor in directions parallel and transverse to the worldvolume,

Tij = −1
2 τp ρeλ̃φgij(g⊥)−1/2 i, j parallel ,

Tij = 0 i, j transverse .
(2.34)

We introduced a density function ρ in the internal space, which reduces to a Dirac δ for
completely localized sources.

In order not to break maximal d-dimensional symmetry, we assume the source is parallel
to the all the vacuum directions. Evaluating the combination (2.18) we get

T (D)
mn −

1
d
ḡmnT

(d) = 0 m,n parallel ,

T (D)
mn −

1
d
ḡmnT

(d) = τp ρ eλ̃φe−(7−p)Aḡmn(ḡ⊥)−1/2 m,n transverse .
(2.35)

From (2.35) we see that for positive tension, τp > 0, the Reduced Energy Condition (2.19)
is satisfied, while it is violated by negative tension objects, such as Op-planes in string
theory.

As we mentioned earlier, string and M-theory corrections to d = 10 and d = 11 — and
quantum gravity effects more generally — are not included in our discussion. Indeed, it
can be easily checked that Casimir energies can violate the REC (2.19). As an example,
inclusion of Casimir energies in the Standard Model lead to AdS3 × S1 vacua with scale
separation [48]. Similarly, by including Casimir energies in the internal space, one can
construct scale-separated AdS vacua in String and M-theory with a bounded warping
factor [49].
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2.5 Physical implications

A lower bound on the Bakry-Émery curvature has various geometrical consequences. In
the context of compactifications these directly translate into physical properties of the
lower-dimensional vacuum. In particular we will now see that the bound (2.21) implies
some inequalities on spectrum of spin-two fields, whose masses are given by the eigenvalues
of the Bakry-Émery Laplacian (2.5).

In particular, these are interesting to us because for scale separation the masses of all
the Kaluza-Klein modes have to be much bigger than the mass scale of the d-dimensional
cosmological constant:

scale-separated vacuum: m2
k

|Λ| � 1 . (2.36)

A first spectrum inequality we find uses [12, theorem A.1]:

Theorem 1 Any compactification of a D-dimensional gravitational theory whose stress
energy tensor satisfies the Reduced Energy Condition (2.19) and with warping bounded by
(D − 2)|∇̄A| 6 σ has a spectrum of spin-two excitations whose masses are bounded by

m2
k 6 α(n) max

{
σ2,

1
n− 1

(
|Λ|+ σ2

D − 2

)}
+ β(n)

(
k

sup(e(D−2)A)∫
dny
√
ḡn e(D−2)A

)2/n

. (2.37)

The behavior k2/n is the one expected from the Weyl asymptotic law for the eigenvalues of
the Laplacian. Recalling (2.2), the integral in the second term is md−2

d /mD−2
D , where recall

mD and md are the Planck masses for the gravity theory before and after compactification.
This reproduces the bound in (1.1) for the overall KK scale. It is also immediate to
verify that m2

k → e2A0m2
k under (2.3), so the bound on m2

k/m
2
Λ = m2

k/|Λ| is unambiguous,
as promised.

The constants α(n) and β(n) can be estimated using their definitions in [12, ap-
pendix A]:11

α(n) < 16 · 2ne
n+1

2 , β(n) < 24+n+ 2
n e

n+5
2 π(nΓ(n/2))−

2
n . (2.38)

In particular for n = 6, 7 they are bounded by numbers of order 104 and 105 respectively.
Focusing on string theory, recall that we ran our general argument in the previous

subsections with an EH kinetic term, so A = AE is the warp function in Einstein frame; the
integral in (2.37) and the gradient norm |∇̄A| are computed in the barred metric defined
in (2.1). Even though the mathematical theorems behind theorem 1 are formulated in the
smooth setting, we can check whether these quantities are finite and if the statements make
sense for some physical singularities, such as D-branes in string theory. Near a Dp-brane,
the ten-dimensional Einstein frame metric asymptotes to

ds2
10 ∼ H

p−7
8
(
dx2

p+1 +H(dr2 + r2ds2
S8−p)

)
for r → 0 , (2.39)

11We thank A. Hassannezhad for her patient explanation of her work.

– 11 –



J
H
E
P
1
2
(
2
0
2
1
)
0
8
6

where H is a harmonic function in the transverse directions (prior to back-reaction):
H ∼

(
r
r0

)p−7
for p 6= 7 and H ∼ − log (r/r0) for p = 7. We can then use (2.39) to extract

the barred metric (2.1) as well as the asymptotic weight function ef ∼ H
p−7

2 . An explicit
computation then reveals that for p 6 5 (and trivially for p = 7), σ2 stays finite approaching
the singularity, and thus the general bound (2.21) on Riccif is still meaningful. For this
reason, we expect that the above results also hold for compactifications with such branes.
For p = 6, instead, σ2 diverges, and as currently stated the theorem becomes empty. An
explicit computation shows that Riccif is still bounded from below approaching a D6 brane,
and thus an adapted formulation of the statement might still hold, but at the moment we do
not have a candidate version. In any case, consider that when singularities are present the
eigenvalue problem needs to be formulated with care, as the spectrum could also turn out
to be a continuum (for example, for p 6 5, a singularity of the form (2.39) makes the space
non-compact, being at infinite distance in the barred metric.) We refer the interested reader
to [50], where we discuss a more general mathematical framework in which singularities
relevant for compactifications with brane sources are naturally included. This allows to
obtain rigorous eigenvalue bounds even in the non-smooth setting. Also, notice that we
have excluded Op-planes from the present discussion (recall that those violate the REC) but
for p 6 5 Ricf is bounded from below and they might be included in this framework [51].

A second bound in the literature makes reference to the diameter of Mn, the largest
possible distance between two points. This uses [13, Cor. 4.4]:

Theorem 2 Any compactification of a D-dimensional gravitational theory whose stress
energy tensor satisfies the Reduced Energy Condition (2.19) and with warping satisfying
(D − 2)|∇̄A| 6 σ has a spectrum of spin-two excitations whose masses are bounded by

m2
k 6 n

(
|Λ|+ D − 1

D − 2σ
2
)

+ γ(n) k2

diam(Mn)2 . (2.40)

Once again the diameter should be computed with the metric ḡ. For the constant γ(n) in
the second term, [13, Cor. 4.4] quotes a limit involving an eigenvalue problem with A = 0
on a ball in hyperbolic space, which from [27, Cor. 2.3] is taken to be 4(1 + 2m)2π2 for
n = 2(m+ 1) and 4(1 + π2)(1 + 22m)2 for n = 2m+ 3.

To our knowledge, the bounds (2.37), (2.40) are the first rigorous results valid in general
for the KK scale in gravity compactifications. One might now hope to use them to show
even sharper results; for example, it is natural to conjecture [8] that scale separation is
impossible in type II or d = 11 supergravity without O-planes.

Unfortunately this is unlikely with these bounds alone. To see why, consider for example
the second term in (2.37): for A = 0, it is Vol(Mn)−2/n. If we knew that this is of order
1/RAdS, we would be done. But even for positive-definite Ricci tensor, it is easy to come up
with sequences of vacua that have arbitrarily small volume by taking orbifolds; for example
AdS4 × S7/Zp have Vol(Mn) ∼ R7

AdS/p (see also [52]). In this case the bound (2.37) gets
increasingly useless with larger p.

The second bound (2.40) looks more promising in this respect, since the diameter
is unchanged by taking quotients. There also exists a Bakry-Émery version of Myers’s
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theorem [53] which puts a bound on the diameter; but just like the original with f = 0,
it only works when there is a lower positive bound on the eigenvalues of Rmn −∇m∇nf .
Our lower bound (2.21) is negative, and a bound on the diameter cannot exist in this case,
as the case of a torus with f = 0 readily demonstrates. It is conceivable that a diameter
bound might be proven by using (2.21) in conjunction with other finer properties of Rmn,
perhaps going back to the Raychaudhuri equation; unfortunately we do not see a way to
prove this at this time.

Notice also that a lower bound also exists in terms of the diameter [54, theorem 3],
stating that the lowest spin-two mass satisfies the following

Theorem 3 Any compactification of a D-dimensional gravitational theory whose stress
energy tensor satisfies the Reduced Energy Condition (2.19) and with warping satisfying
(D − 2)|∇̄A| 6 σ has the first non-trivial spin 2 mass bounded by

m2
1 >

π2

diam2 exp

−c(n) diam
√
|Λ|+ σ2

D − 2

 , (2.41)

where c(n) again only depends on the internal space dimension.

The positive constant c(n) can be estimated from the proof of [54, theorem 3]. For n > 3,
we obtain c(n) = n−1

2

(
1 + 4

π

√
2

n−1

)
. So we know that achieving small diameter would

indeed prove scale separation for the spin-two fields.
The cautious words below equation (2.39) on possible extensions to spaces that include

brane-singularities also hold for theorem 2 and 3. In particular, the fact that Dp-brane
sources for p 6 5 are at infinite distance in the barred metric makes the diameter unbounded.
This suggests, for example, a version of (2.40) without the second term, and indeed for
smooth non-compact Bakry-Émery manifold such a theorem exists [55, Thm. 1.1] and can
be readily applied to this case. We refer again to future work [51] where we will try to
address the questions raised by physical singularities more systematically.

To summarize, in this section we have shown that the masses of the spin 2 KK modes
are bounded by the cosmological constant, the gradients of the warping function and the
reduced Planck mass (theorem 1) or the internal diameter (theorem 2 and 3). These results
apply to any theory whose matter content satisfies the REC (2.19), and are currently
formulated for smooth backgrounds, although we expect that physical singularities can
be included as well [50, 51]. In particular, this is true for any classical source in ten- and
eleven-dimensional supergravities, except for O-planes. This can be useful to constrain
separation of scales, but more generally it provides precise relations among the different
physical scales.

3 O6-planes and Romans mass

The general bounds in the previous section do not exclude the possibility that scale separation
might exist even without singularities. For this reason, in this section we will study the
behavior of O6-planes in presence of Romans mass F0 6= 0, completing [14].
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3.1 Review

Let us first give a review of the relevant literature, to motivate our study.
The combination of O6-planes and Romans mass appears to be promising in achieving

scale separation (as well as de Sitter solutions [26]). In particular they are prominent
ingredients in the AdS4 × CY6 proposal [3].

As we mentioned in the introduction, it was found in [14, section 7] that the O6
singularity could become smooth upon turning on F0 6= 0. The curvature and dilaton no
longer diverged; the singularity near the origin was replaced with a smooth S2, on which the
involution defining the O6 acted without a fixed locus. As we mentioned in the introduction,
this is not to be thought of as a quantum resolution of the O6 singularity, since we are
deforming it by the additional field F0; the mechanism is very similar to one in field theory,
where a Chern-Simons coupling can smooth out a moduli space singularity [56].12

This phenomenon was found to happen under two conditions: assuming a certain
symmetry that one would expect near the O6-plane; and working with a “generic” branch
of the supersymmetry equations, where F6 6= 0. However, as mentioned in the introduction,
this branch has an obstruction that prevents it from being compact [15, 16]. So we will
analyze the “special” F6 = 0 branch here with similar techniques as in [14, section 7], to see
if we find again that the O6 singularity gets smoothed out.13

As we mentioned, the fate of O6 singularities is very important in the AdS4 × CY6
solutions. These were originally found by an effective d = 4 supergravity approach,
complemented by some d = 10 intuition [3]. No reason was found for the EFT to break
down here, but skepticism (see for example [57]) focused on whether an O6 might somehow
be inconsistent with F0, and on the fact that a d = 10 uplift appeared to require smearing
the O6 [21]. The first concern was partially answered by [14, section 7]; since then, O6
singularities with F0 6= 0 have appeared in other contexts, such as AdS7 solutions and their
descendants [17–19, 58], undergoing some holographic checks [19].14

The second concern about the smearing was partially addressed more recently. These
solutions are supposed to exist in the limit

gs ∼ R−3 ∼ µ ≡
√
−Λ/3 ∼ N−3/4 . (3.1)

Here N ∈ Z is related to the F4 flux quanta, and gs is a typical value for eφ over the internal
space. Using gs as an expansion parameter, the equations of motion and supersymmetry
simplify considerably; using this, approximate solutions were found at the first nontrivial
order in [15, 16]. These have vanishing internal six-form flux, F6 = 0, as we anticipated.

The approximation works well in most of the internal space, but it breaks down at a
distance . gsls from the O6-planes: in that region, the higher orders appear to get larger
than the first. This is comparable with the distance where the supergravity approximation

12It is also important to stress that the local behavior found in [14, section 7] cannot be extended to an
asymptotically flat solution, since flat space is not a solution when F0 6= 0.

13This was claimed to have no solution in [14, section 7.5], but that subsection contained a mistake, as
already pointed out in [16].

14A related concern is that F0 cannot be introduced in the world-sheet in the NSR formalism; however
this is resolved in the Berkovits formalism [59] (see for example [60] for a concrete application).
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itself breaks down; so in this sense the limit (3.1) would seem to achieve all that could be
hoped to obtain from supergravity. However, if a local analysis in this region showed a
smooth-O6 deformation as in [14, section 7], we would end up with a solution we can trust
everywhere, boosting our confidence in the validity of the AdS4 × CY6 solutions.

Having hopefully convinced the reader that the fate of the O6 singularity with F0 6= 0
is important for scale separation, we will devote the rest of this section to its study.

3.2 Supersymmetry

In this section we will work in string-frame variables. The supersymmetry equations for type
II supergravity can be analyzed conveniently in terms of pure forms Φ±, associated bilinearly
to the internal spinorial parameters ηa±. In IIA they should satisfy the equations [61–63]15

dHΦ+ = −2µe−AReΦ− , J+ · dH(e−3AImΦ−) = −5µe−4AReΦ+ + F . (3.2)

Here µ ≡
√
−Λ/3, dH ≡ d−H∧, F = ∑

Fk is the sum of all internal RR field strengths,
and J+· is an algebraic operator associated to Φ+ (see [14, 63] for more details).

The forms Φ± have a different expression depending on the angle ψ between the spinors,
defined by |η2 †

+ η1
+| = ||η1

+||||η1
+|| cosψ.

• When ψ = 0 everywhere, the ηa are parallel; when F0 6= 0, Λ < 0 this leads to constant
A and φ [64], and so cannot be relevant for configurations with internal sources.

• When ψ = π/2 everywhere, the ηa are orthogonal; this is inconsistent with Λ < 0
altogether [65, 66].

• So we need to consider case where ψ is generic. Here the forms Φ± can be expressed
in terms of a complex one-form v, a real two-form j, a complex two-form ω, satisfying
the SU(2)-structure relations

ιvj = ιvω = ιvω̄ = 0 , j ∧ ω = ω ∧ ω = 0 , ω ∧ ω̄ = 2j2 . (3.3)

It is also useful to define

Jψ ≡
1

cosψj + i
2 tan2 ψ

v ∧ v̄ , ωψ ≡
1

sinψ

(
Reω + i

cosψ Imω
)
, (3.4)

in terms of which Φ+ = e3A−φ cosψ exp[−iJψ], and Φ− = e3A−φ cosψ v ∧ exp[iωψ].

The consequences of (3.2) were spelled out for this latter case in [14, section 5]. The
results depended crucially on a parameter θ, defined as the phase of the zero-form part of Φ+:

(Φ+)0 = e3A−φ+iθ cosψ . (3.5)

The two sub-cases θ 6= 0 and θ = 0 have to be analyzed separately; they lead respectively
to F6 6= 0 and F6 = 0.

15A variety of normalizations is used in the literature for these forms; here we use (Φ̄±,Φ±) = e6A−2φ as
in [14, 16], where (α, β)vol6 ≡ (α ∧ λ(β))6, 6 denoting taking the six-form part and λ(βk) ≡ (−1)bk/2cβk.
Notice also that our dH -closed RR forms F were denoted by G in [16].
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It was argued in [15, 16] that θ = 0 (leading to F6 = 0) is the correct case to consider.
Indeed we now give an argument that F6 = 0 should be the case for any compactification
with an internal three-form source δ3 that is Poincaré dual to a cycle non-trivial in homology.
The equations of motion for the internal fluxes F4, F6 are

d(e4A ∗ F4) +He4A ∗ F6 = 0 , d(e4A ∗ F6) = 0 . (3.6)

The second implies e4A ∗ F6 is a constant. Suppose it is non-zero; then the first implies H
is exact. But then the Bianchi identity

dF2 −HF0 = δ3 (3.7)

says δ3 is exact, in contradiction with the assumption.
So we restrict from now on to the θ = 0, F6 = 0 branch. Here (3.2) reduce to [14,

section 5.2]

Rev = −eA
2µ (3dA− dφ− tanψdψ) = −eA

2µd log(cosψe3A−φ) , (3.8a)

d(e3A−φ cosψJψ) = 0 (3.8b)

and

H = Ĥ + d(tanψImω) , Ĥ = 2µe−ARe(iv ∧ ωψ) , F = etanψImω∧F̂ ; (3.9a)
F0 = −Jψ · d(cosψe−φImv) + 5µ cosψe−A−φ , (3.9b)

F̂2 = −Jψ · d Im(i cosψe−φv ∧ ωψ)− 2µsin2 ψ

cosψ e−A−φImωψ , (3.9c)

F̂4 = J2
ψ

[1
2F0 − µ cosψe−A−φ

]
+ Jψ ∧ d Im(cosψe−φv) , (3.9d)

F̂6 = 0 . (3.9e)

To make sure one has a supersymmetric solution, one needs to solve (3.8), and to make
sure that the Bianchi identities are satisfied, which away from sources reduce to

dĤ = 0 , dĤ F̂ = 0 . (3.10)

One should finally make sure all fields and pure forms transform correctly under any
Op. This is usually defined as

ΩRp if p = 0, 4, 8, ;
Ω(−1)FLRp if p = 2, 3, 6, 7 .

(3.11)

where Rp is an involution reversing 9− p coordinates, and leaving p+ 1 invariant (including
time); of course in IIA only even p are relevant. One should then impose

R∗pφ = φ , R∗pg = g , R∗pB = −B , R∗pFk = −(−1)bp/2c+bk/2cFk ,

R∗pΦ± = −(−1)b
p
2 cλ(Φ±) , R∗pΦ∓ = (−1)b

p−1
2 cλ(Φ̄∓) IIA

IIB ,
(3.12)

where R∗p denotes pull-back; in IIA the upper sign is relevant.
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3.3 The emergent symmetry

We call xi the three internal coordinates parallel to the O6, and yi the transverse coordinates.
So the involution defining the O6 maps (xi, yi)→ (xi,−yi).

Near the O6, we expect the solution to become invariant under translations of the
xi. We might also expect invariance under rotations of the xi and of the yi. However,
following [14] we will relax this and impose symmetry only under simultaneous rotations of
the xi and yi. The total symmetry group is then

ISO(3) . (3.13)

This still implies that all the functions A, φ, ψ in the equations will need to depend only on
the transverse radial coordinate r ≡

√
yiyi, as is reasonable to expect. On the one-forms,

it allows
ω1,0 ≡ yidyi , ω1,1 ≡ yidxi . (3.14)

Separate rotational invariance would allow only ω1,0.
A basis of two-forms invariant under the symmetry (3.13) is

ω2,0 ≡ εijkyidyj ∧ dxk , ω2,1 ≡ εijkyidyj ∧ dyk , ω2,2 ≡ εijkyidxj ∧ dxk

ω2,3 ≡ ω1,0 ∧ ω1,1 , ω2,4 ≡ dxi ∧ dyi .
(3.15)

There are also eight invariant three-forms ω3,i [14, (A.3)].
As in [14], we will postulate this symmetry and see where it leads. So for example the

one-form v will then be a linear combination of (3.14) alone, and not of more general forms
such as dx1, which would be invariant under both yi rotation and xi translation but not
under simultaneous rotation. Likewise, j, ω will be a linear combination of (3.15).

We also need to impose (3.12) for p = 6, which imply

R∗6v = v̄ , R∗6j = −j , R∗6ω = ω̄ , (3.16)

where R6 : yi → −yi. All in all this gives [14, (7.18)]

v = vrω1,0 + iviω1,1 , j =
4∑
i=1

jiω2,i , ω = a0ω2,0 +
4∑
i=1

iaiω2,i , (3.17)

where all the coefficients are real.
The algebraic conditions (3.3) become the quadratic equations

j4 = j3r
2 , a4 = a3r

2 , a2j1 + a1j2 = 1
2a3j3r

2 ,

a2
3r

2 − 4a1a2 = a2
0 = j2

3r
2 − 4j1j2 .

(3.18)

Strictly speaking, these follow already from the conditions in (3.3) involving j and ω alone.
The conditions in (3.3) involving the contraction ιv are to be read as constraints on the
metric, since they involve gmnvn; in general they are automatically satisfied by taking the
vielbein to be of the form

{Rev, Imv, ea} (3.19)
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where ea, a = 1, . . . , 4 are such that j = e1 ∧ e3 + e2 ∧ e4, ω = (e1 + ie3) ∧ (e2 + ie4).
However, in our present setup, the invariant vector fields are linear combinations of yi∂yi
and yi∂xi , and the contractions of these with (3.15) had better be zero. Indeed these are
also satisfied thanks to the first two in (3.18), so all is well.

The metric is determined by the vielbein (3.19). The ea are not always easy to find, but
alternatively one may proceed as follows. The sum g4 ≡

∑4
a=1 e

aea is a rank-four symmetric
tensor. At each point, it defines a positive-definite metric on the four-dimensional quotient
space

TM6/Span(v, v̄) (3.20)

determined by j and ω as for an SU(2)-structure in four dimensions. Inspired by this,
we introduce vector fields Ea, a = 1, . . . , 4 such that ιEaeb = δba, ιEav = ιEa v̄ = 0. The
matrix Π4 ≡

∑4
i=1 e

a ⊗ Ea is a projector, Π2
4 = Π4; using our symmetry assumptions, it

is found to be Π4 = 16 − yiyj(dyi ⊗ ∂yj + dxi ⊗ ∂xj ). We also introduce the bi-vector
(Reω)−1 ≡ −E1 ∧ E2 + E3 ∧ E4, and

I4 = −Imω(Reω)−1 (3.21)

which satisfies I2
4 = −Π4 and is thus an almost complex structure on the spaces (3.20). In

our case, Reω = a0ω0, and (Reω)−1 is easy to guess: it should be invariant under (3.13)
and even under R6, which fixes it to be −(r2a3)−1εijkyi∂xj ∧ ∂yk . Finally then we compute
(g4)mn = −Impjpn.

After some simplification, the final result for the internal metric can be written as an
S2-fibration over R3. Defining ŷi ≡ yi/r:

ds2
6 = r2v2

r
tan2 ψ

dr2 + 2a−1
0 r4(a1j3 − a3j1)DŷiDŷi

+
(

a3
0

a3j2 − a2j3
(δij − ŷiŷj) + r2v2

i
tan2 ψ

ŷiŷj
)

dxidxj ; (3.22)

Dŷi ≡ dŷi + r−2a2j1 − a1j2
a1j3 − a3j1

εijkŷjdxk .

(The term DŷiDŷi is a fibred version of ds2
S2 = dyidyi.) The fibration is topologically

trivial, so it can also be written as an R3 fibred over S2 as in [14, section 7.3.2]:

ds2
6 = r2v2

r
tan2 ψ

dr2 + r2

2
a3

0
a1j3 − a3j1

ds2
S2

+ r2
(

2a−1
0 (a3j2 − a2j3)(δij − ŷiŷj) + v2

i
tan2 ψ

ŷiŷj
)
DxiDxj ; (3.23)

Dxi ≡ dxi + r2a2j1 − a1j2
a2j3 − a3j2

εijkŷjdŷk .

The advantage of (3.22) is that the fiber metric is independent of the base coordinates;
however, in what follows (3.23) will result in simpler expressions. From both perspectives,
the invariance under simultaneous rotations (the SO(3) subgroup of (3.13)) can be seen as
the lift of a base isometry to that of the total space, as usual for a fibration.
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Positive-definiteness of (3.22) requires β13 ≡ a0(a1j3− a3j1), while for (3.23) it requires
β32 ≡ a0(a3j2 − a2j3). The two conditions are equivalent because (3.18) implies r2β13β32 =
1
4a

2
0 + a−2

0 (a2j1 − a1j2)2 > 0.
The setup in this section is very similar to that in [58], where the S2 was fibered on a

three-dimensional (locally) maximally symmetric space Σ3. A symmetry similar to (3.13)
also appears there; the basis of forms [58, (3.16)] is linearly related to our (3.15). In
particular the case Σ3 = R3 is directly related to the present section, but more generally
one expects the curvature of Σ3 to become irrelevant in the local limit we are interested in
here. However, some of the ji, ai coefficients in (3.18) were set to zero in [58] because of
the particular applications that motivated that paper.

3.4 The differential system

The differential equations in section 3.2 can be reduced using the symmetry in section 3.3.
This is the same method used in [14, section 7.3], but as we will see the results are quite
different.

We start our analysis from the three-form equation (3.8b). Two of its components can
be readily solved, giving

j2 = 0 , j1 = c1
eφ−3A

r3 , (3.24)

where c1 is an unfixed constant, which will interpret geometrically momentarily. After
imposing (3.24), only a single non-trivial equation is left:

j4(3A′ − φ′) + j3r + j′4 + rv0vi
cos3 ψ

sin2 ψ
= 0 . (3.25)

From (3.18) it now also follows that a0 = rj3. We then have to impose the Bianchi equations
for the fluxes. From dĤ = 0 we obtain a single independent equation:

a0vi(rA′ + rψ′ cotψ − 3)− r(a0vi)′ + 2a2vr secψ = 0 . (3.26)

The Bianchi identities for F̂ are more involved. Expanding (3.9b), we obtain that F0 is
given by

F0 = 5µe−A−φ cosψ + 2vie−φ cos2 ψ

j3r2 − e−φ sin2 ψ

rvr

(
−1
r

+ φ′ + tanψ ψ′ − v′i
vi

)
. (3.27)

This is a first order differential equation that has to be solved. To organize the other Bianchi
identities we first define

F̂2 =
4∑
i=0

f2iω2i, F̂4 =
4∑
i=0

f4iω4i . (3.28)
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Upon expading (3.9c) and (3.9d) we read f40 = f20 = 0. In terms of the newly introduced
variables, dĤ F̂2 = 0 gives 4 non-trivial differential equations:

0 = 2r(4a1e−AF0µrvr csc(2ψ) + f ′21) + 6f21 , (3.29a)
0 = a0e−AF0µr

2vi cscψ + f22 , (3.29b)

0 = 4a3e−AF0µr
2vr csc(2ψ) + f ′24

r
+ f23 , (3.29c)

0 = 4a2F0µrvr csc(2ψ)− a0F0µrvi cscψ + eAf ′22 ; (3.29d)

while dĤ F̂4 = 0 produces a single differential equation:

0 = 4e−Aµr2vr(2a2f21 + 2a1f22 − a3f24) csc(2ψ) + 2rf ′41 + f ′44
r

+ 8f41 . (3.30)

Generically, any equation where an f ′ij appears is in danger of being a second order
differential equation once the definition (3.28) of fij is substituted. However, an explicit
computation shows that this is not the case for the particular combination in (3.30).
Similarly, (3.29d) can be reduced to a first order equation by substituting f22 from (3.29b).

As a result, only (3.29a) and (3.29c) would become second order equations if we
subsitute f21 and f24 right away. To avoid this, we keep these two components of the fluxes
as variables. Finally, (3.8a) gives an extra first order equation.

Summing up, at this stage we have 11 first order differential equations and two remaining
algebraic equations,

0 = r2
(
a2

3 − j2
3

)
− 4a1a2 , 0 = a3j3r

2 − 2a2c1eφ−3A

r3 , (3.31)

for the 11 unknown functions

a1, a2, a3 , j3 , vr, vi, f21, f24, A, ψ, φ . (3.32)

The system can thus be further reduced. Without loss of generality, we can assume
a2 6= 0 and j3 6= 0 and solve the remaining algebraic equations (3.31) by setting

a3 = 2c1e−3A+φa2
r5j3

, a1 = r2 (a2
3 − j2

3
)

4a2
. (3.33)

Plugging this back in the differential system we find an extra algebraic combination, which
can be used to solve for f24 as

f24 = −2c1
e−4Avi
sinψ

(
F0µeφ + a2eA cosψ

j2
3r

5

)
. (3.34)

We then find that three more of the differential equations are redundant, leaving us with
seven equations for eight variables. This apparent tension is resolved once we account for
possible redefinitions of the coordinate r. This can be more easily seen introducing the
variables

ρ0 ≡ vrr, ρ1 ≡ r3j3e3A−φ, ρ2 ≡ ra2, ρ3 ≡ rvi, f̃21 ≡ r3f21 , (3.35)
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where the last four quantities now transform as functions under a change of the coordinate r.
As a result of these redefinitions, the remaining system becomes autonomous (i.e. without
an explicit r dependence) and it is left invariant by the transformation

dr → eQdr , ρ0 → e−Qρ0 , (3.36)

where Q is an arbitrary function of r. Another way to understand this property is by
looking at the six-dimensional metric; after the chain of substitutions in this section, (3.23)
becomes

ds2
6 =

(
−2ρ2(δij − ŷiŷj) + ρ2

3
tan2 ψ

ŷiŷj
)
DxiDxj + ρ2

0
tan2 ψ

dr2 − ρ2
1e2φ−6A

2ρ2
ds2

S2 , (3.37)

with Dxi ≡ dxi + c1
ρ1
εijkŷ

jdŷk. We can immediately see that (3.36) cancels from the metric.
Moreover, the constant c1 controls the internal fibration, turning it off completely when
it vanishes.

To summarize so far, the freedom in (3.36) to fix ρ0 gives the same number of equations
and variables. In our solutions below, we will fix the gauge by choosing ρ0 such that the
grr component of the metric (3.37) reduces to e−2A:

grr = ρ2
0

tan2 ψ
= e−2A . (3.38)

This is the same gauge in which the massless solution is usually written, allowing for a
direct comparison of the massless limit.

All in all, we are left with a system of seven first order differential equations for seven
variables:

ρ′1 = −e2A−φρ3
cos2 ψ

sinψ , (3.39a)

ρ′2
ρ2

= φ′ + cotψ ψ′ − ρ′3
ρ3

+ 2µe−2A tanψ − F0µe−5A+φ ρ1ρ3
ρ2

cotψ , (3.39b)

ρ′3
ρ3

= 4A′ − φ′ + cotψ ψ′ + e2A−φ ρ
2
3 cos4 ψ + 2ρ2 sin2 ψ

ρ1ρ3 sinψ cos2 ψ
, (3.39c)

f̃ ′21 = F0µe−8A

2ρ2
1ρ2 cos2 ψ

(
ρ4

1e2φ − c2
1e6Aρ2

2

)
, (3.39d)

ψ′ = cotψ
(
3A′ − φ′

)
+ 2µe−2A , (3.39e)

φ′ = ρ′3
ρ3
− tanψ ψ′ + e−2A

sinψ
(
F0eA+φ − 5µ cosψ

)
− 2e2A−φ ρ3 cos2 ψ

ρ1 sinψ , (3.39f)

4A′ = 2F0µ

sinψ ρ3(e−5A+2φρ1ρ
−1
2 + eAc2

1ρ
−3
1 ρ2)− 2e−2A sinψ

cos2 ψ
(F0eA+φ − µ cosψ) (3.39g)

+ 2e2A−φρ−1
1 ρ3 sinψ + 2c2

1e8A−3φ ρ2
2ρ3

ρ5
1 sinψ + 4e5A−φ f̃21ρ2

ρ2
1 cosψ .

This system is left invariant by the independent rescalings

r → ek0r, A→ A+ k1, φ→ φ+ k2, ρ3 → ek3ρ3 , (3.40)
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where ki are real constants; the other functions and the parameters transform as

ρ1 → ek0+2k1−k2+k3ρ1 , ρ2 → e2k3ρ2 , f̃21 → ek0−k1−k2 f̃21 ,

F0 → e−k0−k1−k2F0 , µ→ e−k0+2k1µ , c1 → e2k0+k1−k2c1 .
(3.41)

These can be used to achieve small curvature and dilaton, and to adjust the flux quanta so
that they are integer. However, they cannot be used to achieve parametric separation of
scales: interestingly, the combination diam2

ḡ|Λ|, which appears in the bounds for m2
k
|Λ| such

as (2.41) and theorem 2, does not rescale.

3.5 Boundary conditions

As usual, the next step is to study the possible boundary conditions for this system. For
example, the internal space can end where the S2 shrinks; the latter can combine with the
dr2 term in the metric to give a smooth space. More generally, one may look for singularities
which have a known interpretation as the back-reaction of O-planes and D-branes. To find
these local behaviors, we used two techniques.

The first is a non-linear analogue of the Frobenius method: it consists in postulating a
power series expansion, often with fractional or negative exponents, suggested by a physical
behavior one wants to achieve. The coefficients are then determined order by order by the
differential equations.

The second is backward numerical evolution: one takes a random value for all variables,
and evolves the system (3.39) numerically backwards in r. The evolution stops at a value
r = r0 where some of the functions diverge or go to zero. The leading powers of the variables
near r0 can be determined by inspecting the numerical data.

These two techniques are complementary: some boundary conditions of obvious physical
significance can be obtained easily by power series expansion, but are not easily found
numerically. This indicates that they are not attractors for the system, but require fine
tuning. On the other hand, some numerical attractors can only be interpreted physically
with some effort, or not at all. We summarized some notable local behaviors found with
both methods in table 1;16 let us go through some of them in more detail.

Regular point. As an example of the Frobenius method, the S2 shrinks regularly if the
functions behave as

ρ1 = b2b
3
3F0r

b1(5µ+ 3b1b23) +O(r3) , ρ2 = − b22
2b21

+O(r2) , ρ3 = b3r +O(r3) ,

f̃21 = µF0r
3

3b43
+O(r5) , ψ = b1r +O(r3) , (3.42)

eφ = 5µ+ 3b1b23
b3F0

+O(r2) , eA = b3 +O(r2) ,

16In our gauge (3.38), the subleading powers are all separated by integers from the leading ones. This
is unlike in [58], which as we commented earlier studied a related system, and where many of the same
singularities also appeared.
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ρ1 ρ2 ρ3 f̃21 tanψ eφ eA interpretation

1 0 1 3 1 0 0 regular
0 1/2 −3/4 0 −1/2 −1/4 −1/4 partially smeared O4
0 −1/2 1/4 0 1/2 −3/4 −1/4 O6
1 1/2 3/4 0 1/2 3/4 1/4 D6
0 0 −1 −1 −1 0 0 boundary
0 1/2 0 0 −1/2 1/2 0 σ

Table 1. Some notable boundary conditions. The numbers denote the leading powers of the
corresponding variables. The regular, D6-brane and O6-plane require fine-tuning, while the others
occur as attractors.

where bi are three constants, and we took c1 = 0. By (3.37), the local metric is then, at
leading order,

ds2
10 ∼ b23ds2

AdS4 + b22
2b21

dxidxi + 1
b23

(dr2 + r2ds2
S2) . (3.43)

We indeed see that the parenthesis reconstructs an R3. The other fields are also smooth.
This local behavior is not an attractor, so it is not found by numerical evolution without
fine tuning. In any case, this behavior cannot look like an O6-plane from far away: the S2

shrinks without a point charge. So this will not be relevant for the rest of the paper.

Boundary. On the other hand, one may want to look for a different type of smooth
behavior, more similar to that in [14, section 7]. The idea is that the local metric would
look like

dr2 + ds2
5(r) (3.44)

around r = r0, with the first derivatives ∂rds2
5(r0) = 0 and similar conditions for the other

fields. This would represent an actual boundary for the space, but it could be glued to
a second copy of the same solution to obtain a compact smooth space. (The numerical
evolution might even continue automatically past such a value, in appropriate variables,
but it is more common for it to stop as in [14, section 7].) We found numerical candidates
for such points as numerical attractors: for an open set in the space of all initial values,
backwards numerical evolution stops at such a point. This is denoted as “boundary” in
table 1.17 We were then able to find a corresponding local solution by the power series
method. Unfortunately we found that the partial derivative ∂r ρ2

3
tan2 ψ

(r0) 6= 0: this is the
coefficient of the term (ŷiDxi)2 in (3.37). So this cannot be a smooth point. We then
looked more broadly for behaviors of the type (3.44), attractors or not; but in no case we
were able to achieve full regularity.

A more general smooth boundary with ψ 6= π
2 can be directly excluded from the

differential system (3.39). Indeed, from the factor −ρ2
1e2φ−6A

2ρ2
in front of the ds2

S2 term in
the metric (3.37), we see that a smooth boundary where the sphere does not shrink would

17f̃21 diverges, but the corresponding component of the physical flux as defined in (3.9) is finite.
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require a non-vanishing ρ1 with a zero derivative at r = r0. From (3.39a), ρ′1 = 0 requires
ρ3 to vanish, since we are assuming ψ 6= π

2 . Thus, if ρ3 were to vanish as a power series, the
term ρ′3

ρ3
in (3.39f) would diverge as ∼ r−1 and it could not be compensated by any of the

other terms in the equation, which by assumption would go to (possibly zero) constants.
It does happen sometimes that the numerical evolution stops at a point where ψ and

ρ3 go to zero linearly and all other variables are finite, but again (3.39a) shows that ρ′1 6= 0.
These results already dash the hopes that motivated this section: had we found a regular

boundary, we could have hoped to glue it to the solution perturbative in gs from [15, 16],
completing it. In any case, we will carry on to describe other boundary conditions, to see
what alternatives are available.

O6-plane, D6-brane. The local solution

ρ1 = b1 +O(r) , ρ2 = − b2√
r

+O(r1/2) , ρ3 = b3r
1/4 +O(r3/4) ,

f̃21 = −b
5
1b

4
5 − µc2

1b
2
1b2b3b

2
4b

3
5 + 2c2

1b
2
2b3b

9
4F
−1
0

4b31b2b54b54
+O(r) , (3.45)

ψ = b5F0
√
r

b4
+O(r3/2) , eφ = b5r

−3/4 +O(r1/4) , eA = b4r
−1/4 +O(r3/4)

leads to the metric

ds2
6 ∼

1√
r

(
b24ds2

AdS4 +
(
b2(δij − ŷiŷj) + b23b

2
4

b25F
2
0
ŷiŷj

)
DxiDxj

)
+
√
r

(
dr2

b24
+ b21b

2
5

b2b64
ds2

S2

)
.

(3.46)
This has the usual structure h−1/2ds2

‖ + h1/2ds2
⊥ of Dp-branes and Op-branes in the string

frame, with h ∼ r; there are three transverse directions, p = 6. The linear behavior can be
interpreted as the local expansion of hO6 = 1− r0

r , r0 = lsgs around the locus {r = r0}, the
boundary of the excluded hole around the source.

The local behavior for a D6-brane can also be found with the power series method, but
we will not give the details here; the leading powers can be found in table 1.

Neither the O6 nor the D6 are attractors: they can only be found numerically by a
great deal of fine tuning. This will play a role in the next section.

Partially smeared O4. The following singularity is the one that occurs most often in
numerical evolution: not only it is an attractor, its open basin of attraction appears to
be the largest. We first found it numerically, and then reproduced it in a power series
expansion as

ρ1 = b1 +O(r) , ρ2 = −b2
√
r +O(r3/2) , ρ3 = b3r

−3/4 +O(r1/4) ,

f̃21 = f̃21,0(bi) +O(r) , ψ = π

2 − b6
√
r +O(r3/2) , (3.47)

eφ = b5r
−1/4 +O(r1/4) , eA = b4r

−1/4 +O(r3/4)

ds2
6 ∼

1√
r

(
b24ds2

AdS4 + b22b
2
5(ŷiDxi)2

)
+
√
r

(
dr2

b24
+ b2(δij − ŷiŷj)DxiDxj + b21b

2
5

b2b64
ds2

S2

)
.
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(The explicit expression of f̃21,0(bi) is not particularly interesting.) Now there are five
directions multiplied by h1/2 =

√
r, so p = 4. Again the linear behavior of h can arise

near the hole boundary of an O4.18 In principle it could arise by expanding either ds2
O4 =

h−1/2ds2
‖ + h1/2(dr2 + r2ds2

R2×S2) or ds2
smO4 = h−1/2ds2

‖ + h1/2(dr2 + r2ds2
S2 + ds2

R2). The
first possibility represents an O4 sitting at the tip of the cone C(R2 × S2), which is a badly
singular space, unclear to make sense even in string theory. The second represents an O4
smeared along the ds2

R2 = (δij − ŷiŷj)DxiDxj directions, and appears to be the most likely
interpretation. (For more details see section 4.1.1 of [20], where such singularities appeared
often.) As mentioned earlier, smearing an O-plane is of dubious physical validity. Moreover,
this particular smearing is even more formal than usual: it seems to occur in the direction
ŷidxi, which depends on the transverse coordinates. (Another way of seeing this problem is
that the form along which one would measure O4 charge, ω2,1 ∧ ω2,2, is not closed.)

Other singularities. Several other attractors exist. The behavior we call σ in table 1 is
quite common; it does not obviously match an O-plane or D-brane singularity. Another,
less common one has ρ1 ∼ ρ2 ∼ r1/2, ρ3 ∼ r−1, tanψ ∼ r−1/2, with the other variables
going to constants.

3.6 Matching with the perturbative solution

As we have seen in section 3.5, there is a rich variety of local behaviors allowed by the
system (3.39) near a boundary. A natural question to ask is then which of those can arise in
the completion of the perturbative solution in [16], even though from the previous analysis
we have indications that a completely smooth boundary seems to be forbidden.

The solution in [16] was obtained perturbatively in gs � 1 in the limit (3.1), with the
additional Ansatz

ψ = gsψ1 +O(g3
s) , eφ = gse3A0+g2

sφ2+O(g4
s) , eA = eA0+g2

sA2+O(g4
s) . (3.48)

On a general Calabi-Yau, the solution can be summarized as

Jψ ∼ JCY , ω = − i
2ψ1

v̄1 · Ω , eA0 ∼ 1− gsϕ , (3.49)

ImΩ ∼ (1 + gsϕ)ImΩCY − gs ∗CY K , ReΩ ∼ (1− gsϕ)ReΩCY + gsK ,

v ∼ 1
2gse

A0∂CYf̃ +O(g3
s) , ∆CYf̃ = 8gsF0ϕ , ∆CYK = 2gsF0ReΩCY

One also obtains 3A2 − φ2 = 1
2ψ

2
1 − 1

5F0f? for the subleading order.
This general solution was also made more explicit by taking the Calabi-Yau to be

T 6/Z2 × Z2. As in the previous subsections, the coordinates are called xi, yi, and the O6
involution maps (xi, yi) → (xi,−yi); but all coordinates are now periodically identified,
with unit period. The generators of the Z2×Z2 can be taken to be (x1, x2, x3, y1, y2, y3)→

18Another difference with (3.45) is the behavior of ψ. In (3.45), ψ → 0; the pure Φ± become SU(3)-
structure type, as for the ordinary O6-plane with F0 = 0 (see for example [14, section 3]). In (3.47), ψ → π/2;
indeed the flat-space O4 solution is of SU(2)-structure type, as can be seen by T-dualizing the O6 twice.
Notice that in IIA an AdS4 solution cannot have SU(2) structure everywhere [65, 66].
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(−x1,−x2, x3,−y1,−y2, y3) and → (−x1, x2,−x3,−y1, y2,−y3). Because of this discrete
identification, besides the O6-plane at {y1 = y2 = y3 = 0} we also have three more, at
{x1 = x2 = y3 = 0}, {x1 = y2 = x3 = 0} and {y1 = x2 = x3 = 0}.

The data in (3.49) are given in [16, section 6.2] for this case, but we are interested in
the behavior near one of these O6-planes, which without loss of generality can be taken to
be the one at {y1 = y2 = y3 = 0}; in other words we take a limit where yi � xj , ∀i, j. We
specify the constants in [16, section 6.2] as qF0 = 4, h = L3; moreover we need to rescale
(xi, yi)→ L(xi, yi). This leads to

JCY = dxi ∧ dyi , ΩCY = (dx1 + idy1) ∧ (dx2 + idy2) ∧ (dx3 + idy3) ,

v = gsF0
πr3 Z

−1/2yi(−iZ−1/4dxi + Z1/4dyi) , j = J0 −
i

2ψ2
1
v ∧ v̄ = ω2,4 + 1

r2ω2,3

ω = − i
r
y1(Z−1/4dx2 + iZ1/4dy2) ∧ (Z−1/4dx2 + iZ1/4dy2) + cycl. (3.50)

= − i
r

(1
2Z
−1/2ω2,2 + iω2,0 −

1
2Z

1/2ω2,1

)
;

eA0 = Z−1/4 , ψ1 = gsF0
πr2 Z

−1/2 , f? ∼ −
2gsF0
πr

.

Z = 1− gs/r, r =
√
yiyi is the usual harmonic function for the O6 in flat space.

Comparing the quantities in (3.50) with our definitions in section 3.3, we extract the
leading behaviors of the functions appearing in the system (3.39), obtaining also that c1
has to be of order gs or smaller.

We can now evaluate the perturbative solution at an r � gs, where it should be
reliable, and we use it to extract the initial data to compute a numerical solution of the
system (3.39), evolving towards the locus where the O6 would be expected to be. As a
check of this numerical method, we first performed the analysis for a tiny n0 ≡ 2πF0 � 1,
a limit in which the solution should reproduce the massless one with high accuracy. This
works out correctly, as it can be seen from the example in figure 1a, where the numerical
solution is indistinguishable from the perturbative one describing a massless O6. This check
is non-trivial from the point of view of the system (3.39), since the O6 boundary condition
appeared to be fine-tuned and not a generic attractor, as we stressed in section 3.5.

We then increased n0 up to 1, keeping gs and all the other perturbative parameters
fixed, and we obtained that near the end the solution starts deviating from the perturbative
one (3.50). Surprisingly, however, it does not remain of the O6 kind, but it switches to the
partially smeared O4 type in table 1, with the functions locally behaving as in (3.47). An
example is shown in figure 1b.

Increasing n0 even more, the singular behavior changes again approaching the class σ in
table 1. To make sure this behavior is generic in the space of the perturbative parameters,
we ran ∼ 105 numerical evolutions with randomly selected parameters. In all the cases we
only obtained either smeared-O4 singularities or σ-type singularities. For all the latter, we
have checked that decreasing n0, without making it tiny, always resulted in smeared O4
solutions, showing that the behavior discussed above as function of n0 is generic. Finally,
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(a) n0 = 10−10

0.11 0.13 0.15
r

2

1
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(b) n0 = 1

Figure 1. Numerical solutions obtained by imposing boundary conditions at r = 2, with gs = .1,
c1 = 0, for different values of n0. In solid red (green) we show the behavior of eA (eφ) compared to the
behavior of the perturbative solution (dotted). For n0 = 10−10 the functions are indistinguishable, but
for n0 = 1 the functions deviate from the perturbative ones, approaching the O4 singularity (3.47).

for gs extremely small (< 10−3) the system evolves towards another class of singularities at
r � 1, briefly mentioned at the end of section 3.5, whose meaning is not clear.

The solutions of [15, 16] are approximate, and are expected to receive small corrections
at the next level in gs. To account for this, we again performed ∼ 105 evolutions, adding
up to 10% random noise to the boundary conditions determined from (3.50). Again the
O4 singularity was by far the most common, but sporadically other non-smooth behaviors
also appeared (in about < 0.05% of the cases). Among these, we found a small number of
candidate O6 solutions. This agrees with our observation in section 3.5 that these require
fine tuning. So it is possible that some perturbations of (3.50) can be glued to an O6
behavior, as one might have expected. We stress once again that the present analysis is
only local; in particular we have not imposed the F4 flux quantization.

In an even smaller number of cases, the evolution stops at a point where ρ3 = ψ = 0
and all the other variables are finite and non-zero; at this point the metric remains finite,
but as discussed in section 3.5 this solution is not smooth when glued to a second copy.

3.7 Summary

This section was motivated by the hope that the O6-planes that originally motivated the
AdS4 × CY6 solution of [3] could be replaced by smooth loci. This phenomenon arose
generically in [14] in a similar context, for a local solution obtained by deforming the
O6-plane by Romans mass F0, which however could not be made compact. Moreover, the
general bounds of section 2 left this possibility open.

We found in section 3.5 that there is no such a local behavior. Among the attractor
boundary conditions for the supersymmetry equations, there is one solution that closely
resembles that in [14, section 7], but if we glue it to a second copy of itself to avoid a
boundary, we find in fact an angular point in one of the metric coefficients.

We also found in section 3.6 that it is quite hard to glue the solution in [16] even to
the local O6 singularity for the system. Generically the solution is instead attracted to the
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formal partially smeared O4 singularity (3.47). It is possible that the smeared O4 originates
from the limitations of our local Ansatz, which assumes ISO(3) symmetry near the O6. It
might also be related to the intersections of the various O6-planes that are usually present
in models of this kind. If the construction of [3] works for any Calabi-Yau, as seems to be
suggested by the approximate uplift in [16], it might be possible to avoid such intersections.
But on the other hand maybe they are inherent to the problem, and supersymmetry secretly
knows about them.

This state of affairs might perhaps be ameliorated with more precise numerical work,
given that the O6 boundary condition is not an attractor for the general supersymmetry
system. But as already pointed out in [15], achieving this gluing would be in any case only
a marginal improvement over the approximate solutions in [16]. For gs � 1, those could
be trusted in most of the internal space; their approximation breaks down at a distance of
order a few gs around the O6-planes. The full system studied in this section can be trusted
beyond that, but also breaks down at radius O(gs) in string units. The real motivation for
the study in this section was to avoid a singularity altogether; that would have boosted our
confidence in the solution enormously, but as we saw it cannot be achieved.

Finally, there is also the possibility that with a more general Ansatz the smeared-O4
singularities can turn into fully localized O4-planes, and it would be interesting to explore
how such configurations would be related to the original models in [3] and whether they
also enjoy separation of scales.
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