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Abstract. This paper deals with the generalized Nash equilibrium problem (GNEP), i.e. a noncoop-

erative game in which the strategy set of each player, as well as his payoff function, depends on the

strategies of all players. We consider an equivalent optimization reformulation of GNEP using a regular-

ized Nikaido-Isoda function so that solutions of GNEP coincide with global minima of the optimization

problem. We then propose a derivative-free descent type method with inexact line search to solve the

equivalent optimization problem and we prove that our algorithm is globally convergent. The convergence

analysis is not based on conditions guaranteeing that every stationary point of the optimization problem

is a solution of GNEP. Finally, we present the performance of our algorithm on some examples.
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1 Introduction

In this paper we consider the generalized Nash equilibrium problem (GNEP, for short). The GNEP

problem is a noncooperative game in which, in contrast to the standard Nash equilibrium problem, the

strategy set of each player depends on the strategies of all the other players as well as on his own strategy.

Recently, GNEP has emerged as an effective and powerful tool for modelling a wide class of problems

arising in many fields (electricity, telecommunications, transportation and others). For a detailed overview

of GNEP we refer the reader to [5] and references therein.

Let us first recall the definition of the GNEP. There are N players, each labelled by an integer

i = 1, . . . , N. Player i has a real valued payoff function θi(x) that depends on all players strategies

x = (x1, . . . , xN ), where each component xi ∈ Rni represents the strategy of the i-th player. The vector

x ∈ Rn, where n =
N∑
i=1

ni, is also denoted by x = (xi, x−i), where x−i denotes the strategy vector of

all the players different from player i. Throughout this paper we assume that for all i = 1, . . . , N the

function θi is continuously differentiable on Rn and that θi(·, x−i) is convex for all x−i. We further assume
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that the strategy xi of the i-th player belongs to a set Xi (x−i) depending on the rival players’ strategies

x−i.

Given an arbitrary tuple of rival players’ strategies x−i, the aim of player i is to choose a strategy xi
that solves the following optimization problem:

min
xi∈Xi (x−i)

θi(xi, x−i).

A vector of strategies x∗ ∈
N∏
i=1

Xi(x
∗
−i) is a solution of the GNEP if, for all i = 1, . . . , N, one has

θi(x
∗
i , x
∗
−i) ≤ θi(xi, x∗−i), ∀ xi ∈ Xi(x

∗
−i).

In other words, x∗ is a solution of the GNEP if no player can decrease his objective function by unilaterally

changing his strategy. A solution of the GNEP is also termed as generalized Nash equilibrium.

In this paper we focus on a special class of GNEPs referred to as jointly convex GNEPs. More precisely

we assume that there is a closed and convex set X ⊆ Rn, which represents the joint constraints of all the

players, such that

Xi(x−i) = {xi ∈ Rni : (xi, x−i) ∈ X},

for all i = 1, . . . , N. This condition results to be verified in several applications (see e.g. [6]).

A known approach for solving the jointly convex GNEP is to consider an equivalent optimization

reformulation. The basis for this reformulation is the so called Nikaido-Isoda function (NI function, for

short) Ψ : Rn × Rn → R, introduced for the first time in [9]:

Ψ(x, y) =

N∑
i=1

[θi(xi, x−i)− θi(yi, x−i)] .

In particular, the NI function provides an important subset of all the solutions of the jointly convex

GNEP. A vector x∗ ∈ X is called a normalized Nash equilibrium (NNE, for short) of the jointly convex

GNEP if

max
y∈X

Ψ(x∗, y) = 0. (1)

It is worth noting that the Ky Fan’s inequality [1] guarantees the existence of a NNE when X is compact.

It is not difficult to check that a NNE is always a solution of the jointly convex GNEP, whereas the

converse is not true in general.

By means of the NI function, the problem of finding NNE can be reformulated as the optimization

problem (see [5])

min
x∈X

ψ(x),

where

ψ(x) = sup
y∈X

Ψ(x, y). (2)

However, for any given x, the supremum in (2) may not be attained, or it may be attained at more than

one point and, consequently the function ψ would be nonsmooth. In [7] the authors provided a smooth

optimization reformulation of the problem of finding NNE, based on a regularization of the NI function.

Let us consider the function

ψα(x) = max
y∈X

[
Ψ(x, y)− α

2
‖y − x‖2

]
, (3)
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where α is a positive parameter. Since under the given assumptions Ψ(x, ·) is concave, the maximum in

(3) is attained, for each x ∈ X, in an unique point denoted yα(x). In [7] the following properties have

been proved:

• ψα is nonnegative and continuously differentiable on X,

• x∗ is a NNE if and only if x∗ ∈ X and ψα(x∗) = 0.

We remark that similar results can be obtained substituting, in the definition of ψα, the Euclidean norm

with a norm induced by a symmetric positive definite matrix.

Hence any NNE is a global minimizer of the smooth constrained optimization problem

min
x∈X

ψα(x), (4)

with zero optimal value. A classical method for finding NNE, based on the minimization of the function

ψ, is the so called relaxation method, introduced in [12]. A modification of the relaxation method, based

on the minimization of the function ψα, has been presented in [8]. The convergence analysis of the method

in [8] relies in a main assumption which guarantees that every stationary point of problem (4) is a NNE.

The aim of this paper is to propose a new descent type algorithm for finding NNE, by solving the

optimization problem (4). We will show that our algorithm is globally convergent to a NNE under an

appropriate assumption on the payoff functions, which is not stronger than the one considered in [8] and

does not guarantee stationary points of (4) to be NNE. The organization of the paper is as follows: in

Section 2 we state the main assumption underlying our algorithm, we present some classes of GNEPs

verifying it, and we discuss its relationship with the one used in [8]. In Section 3 we formally state our

algorithm and we prove that it is globally convergent to a NNE. Finally, in Section 4 we present some

numerical results.

2 Main assumption

The following assumption will be the key property to construct the descent direction and to guarantee

the convergence of our algorithm:

for any given α > 0 and x ∈ X,
N∑
i=1

〈∇θi(xi, x−i)−∇θi(yαi (x), x−i), x− yα(x)〉 ≥

≥
N∑
i=1

[θi(xi, x−i)− θi(yαi (x), x−i))− 〈∇xiθi(y
α
i (x), x−i), xi − yαi (x)〉] .

(5)

The rest of this section is devoted to a discussion of assumption (5). In the following we present

some classes of GNEPs verifying (5) and then we provide a sufficient condition for assumption (5) to be

satisfied.

Example 2.1. Let us consider that, for all i = 1, . . . , N the payoff functions θi are separable, that is

θi(x) = fi(xi) + gi(x−i),

where fi : Rni → R is convex and gi : RN−ni → R. A simple calculation shows that, for any y ∈ Rn, we

have
N∑
i=1

〈∇θi(xi, x−i)−∇θi(yi, x−i), x− y〉 =

N∑
i=1

[∇fi(xi)−∇fi(yi)] (xi − yi),
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and

N∑
i=1

[θi(xi, x−i)− θi(yi, x−i))− 〈∇xiθi(yi, x−i), xi − yi〉] =

N∑
i=1

[fi(xi)− fi(yi)−∇fi(yi)(xi − yi)] .

Moreover, from the convexity of fi it follows that

∇fi(xi) (xi − yi) ≥ fi(xi)− fi(yi),

hence (5) holds.

Example 2.2. Let us consider the case where the payoff functions are quadratic, i.e. for all i = 1, . . . , N

one has

θi(x) =
1

2
〈xi, Aii xi〉+

N∑
j=1

j 6=i

〈xi, Aij xj〉,

where the matrices Aij ∈ Rni×nj and Aii are symmetric positive semidefinite. Then we have:

N∑
i=1

〈∇θi(xi, x−i)−∇θi(yi, x−i), x− y〉 = 〈(x− y),


A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

 (x− y)〉,

and
N∑
i=1

[θi(xi, x−i)− θi(yi, x−i))− 〈∇xi
θi(yi, x−i), xi − yi〉] =

1

2

N∑
i=1

〈xi − yi, Aii (xi − yi)〉.

Therefore, if the matrix 
1
2A11 A12 · · · A1n

A21
1
2A22 · · · A2n

...
...

. . .
...

An1 An2 · · · 1
2Ann


is positive semidefinite, (5) is satisfied.

Example 2.3. Let us consider a generalization of the Example 2.2 as follows:

θi(x) =
1

2
〈x,Qi x〉+ 〈ci, x〉+ ai =

1

2

N∑
p,q=1

〈xp, Qipq xq〉+

N∑
j=1

cij xj + ai

where ai ∈ R, ci ∈ Rn, the matrices Qi ∈ Rn×n are symmetric and Qiii ∈ Rni×ni are positive semidefinite

for all i = 1, . . . , N . Then we have:

N∑
i=1

〈∇θi(xi, x−i)−∇θi(yi, x−i), x− y〉 =

N∑
i=1

N∑
j=1

〈xi − yi, Qiij (xj − yj)〉,

and
N∑
i=1

[θi(xi, x−i)− θi(yi, x−i))− 〈∇xi
θi(yi, x−i), xi − yi〉] =

N∑
i=1

〈xi − yi, Qiii (xi − yi)〉.
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It follows that if the matrix 
1
2Q

1
11 Q1

12 · · · Q1
1n

Q2
21

1
2Q

2
22 · · · Q2

2n
...

...
. . .

...

Qnn1 Qnn2 · · · 1
2Q

n
nn


is positive semidefinite, (5) holds.

We now show a general result that provides a sufficient condition for (5) to be satisfied.

Proposition 2.1. If for each y ∈ X the function Ψ(·, y) is convex on X, then (5) holds.

Proof. Since Ψ is convex on X with respect to x, we have that

0 = Ψ(yα(x), yα(x)) ≥ Ψ(x, yα(x)) + 〈∇x Ψ(x, yα(x)), yα(x)− x〉 ∀ x ∈ X.

Moreover, the gradient of Ψ with respect to x is given by

∇xΨ(x, yα(x)) =

N∑
i=1

[∇θi(xi, x−i)−∇θi(yαi (x), x−i)] +

 ∇x1
θ1(yα1 (x), x−1)

...

∇xN
θN (yαN (x), x−N )

 .

Hence (5) holds. �
It is worth comparing the convexity of Ψ(·, y) and (5). The hypothesis of Proposition 2.1 means

that

Ψ(z, y) ≥ Ψ(x, y) + 〈∇x Ψ(x, y), z − x〉, (6)

for all x, y, z ∈ X. Whereas, (5) is equivalent to condition (6) for z = y = yα(x). The following example

shows that (5) is weaker than convexity of the function Ψ.

Example 2.4. Consider the GNEP with N = 2, X =
{
x ∈ R2 : x1, x2 ≥ 1

}
and payoff functions

θ1(x) = x1 x2 and θ2(x) = x2. The NI function is

Ψ(x, y) = x1 x2 − y1 x2 + x2 − y2,

hence Ψ(·, y) is not convex on X.

Now let us consider yα(x), the unique solution of

max
y∈X

[x1 x2 − y1 x2 + x2 − y2 −
α

2
(y1 − x1)2 − α

2
(y2 − x2)2].

We obtain

yα1 (x) = max{1, x1 −
x2

α
}, yα2 (x) = max{1, x2 −

1

α
}.

Assumption (5) is equivalent to

(x1 − yα1 ) (x2 − yα2 ) ≥ 0,

which is satisfied for all x ∈ X and α > 0.
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The following examples allow us to point out the relationship between our assumption (5) and the

one considered in [8], here reported for the sake of completeness.

Let α > 0 be given. For any x ∈ X such that x 6= yα(x),

N∑
i=1

〈∇θi(xi, x−i)−∇θi(yαi (x), x−i), x− yα(x)〉 > 0. (7)

In [8] the authors showed that (7) suffices to guarantee that every stationary point of problem (4) is a

global minimum and hence a NNE.

We now prove that assumption (5) is not stronger than (7) showing two examples in which (5) holds

but (7) does not. Example 2.6 also shows that (5) does not guarantee that stationary points of (4) are

NNE.

Example 2.5. Consider the GNEP with N = 2,

X =
{
x ∈ R2 : x1 ≥ 1, x2 ≥ 1, x1 + x2 ≤ 10

}
,

and payoff functions θ1(x) = x1 x2 and θ2(x) = −x1 x2. The point x∗ = (1, 9) is the unique NNE. We

note that, for any y ∈ Rn, we have

N∑
i=1

〈∇θi(xi, x−i)−∇θi(yi, x−i), x− y〉 = (x1 − y1) (x2 − y2) + (x1 − y1) (y2 − x2) = 0,

and
N∑
i=1

[θi(xi, x−i)− θi(yi, x−i))− 〈∇xi
θi(yi, x−i), xi − yi〉]

= x1 x2 − y1 x2 − x2 (x1 − y1)− x1 x2 + x1 y2 + x1 (x2 − y2)

= 0,

therefore condition (5) holds, but (7) does not hold for any given α > 0.

Example 2.6. Consider the GNEP with N = 2, X =
{
x ∈ R2 : x1 ≥ 1, x2 ≥ 1

}
and payoff functions

θ1(x) = 1
2 x

2
1 and θ2(x) = x2. The unique NNE is x∗ = (1, 1).

We see that, for any y, we have

N∑
i=1

〈∇θi(xi, x−i)−∇θi(yi, x−i), x− y〉 = (x1 − y1)2,

and
N∑
i=1

[θi(xi, x−i)− θi(yi, x−i))− 〈∇xi
θi(yi, x−i), xi − yi〉] =

1

2
(x1 − y1)2,

therefore (5) holds. In the following we show that assumption (7) does not hold.

Given an arbitrary α > 0, the gap function is

ψα(x) = max
y∈X

[
1

2
x2

1 + x2 −
1

2
y2

1 − y2 −
α

2
(y1 − x1)2 − α

2
(y2 − x2)2

]
= max

y1≥1

[
− (1 + α)

2
y2

1 + αx1 y1

]
+ max
y2≥1

[
−α

2
y2

2 + (αx2 − 1) y2

]
+

(1− α)

2
x2

1 −
α

2
x2

2 + x2.
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It easy to show that the component functions of yα are given by:

yα1 (x) =

 1 if x1 ≤ 1 + 1
α ,

α
1+α x1 if x1 > 1 + 1

α ,

and

yα2 (x) =

 1 if x2 ≤ 1 + 1
α ,

x2 − 1
α if x2 > 1 + 1

α .

The gap function for this GNEP is

ψα(x) =



x2
1

2 (1+α) + 1
2α if x1, x2 ≥ 1 + 1

α ,

( 1−α
2 )x2

1 + αx1 − α2+α−1
2α if 1 ≤ x1 ≤ 1 + 1

α ≤ x2,(
1−α

2

)
x2

1 − α
2 x

2
2 + αx1 + (α+ 1)x2 − α+3

2 if x1, x2 ∈
[
1, 1 + 1

α

]
,

−α2 x
2
2 + (α+ 1)x2 − α+2

2 if 1 ≤ x2 ≤ 1 + 1
α ≤ x1.

Let us consider the case 1 ≤ x1 ≤ 1 +
1

α
≤ x2, we get

∇ψα(x) =

(
(1− α)x1 + α

0

)
.

In particular, for x1 = 1 we have ∇ψα(x) =

(
1

0

)
. Therefore the points (1, x2) with x2 ≥ 1 +

1

α
are

stationary points of problem (4), but they are not NNE since ψα(1, x2) =
1

2α
6= 0. Hence, in particular,

(7) does not hold.

3 Solution method

In this section we present our algorithm and we prove that it is globally convergent to a NNE. In the

following result we prove that (5) does not guarantee that the vector yα(x)− x is a descent direction for

ψα, however, it provides a useful condition that can be exploited to construct a descent type algorithm.

Theorem 3.1. If (5) holds, then for each x ∈ X the vector yα(x)− x satisfies the following condition:

〈∇ψα(x), yα(x)− x〉 ≤ −ψα(x) +
α

2
‖yα(x)− x‖2. (8)

Proof. The function ψα is continuously differentiable on X and its gradient is given by (see [2])

∇ψα(x) =

N∑
i=1

[∇θi(xi, x−i)−∇θi(yαi (x), x−i)] +

 ∇x1θ1(yα1 (x), x−1)
...

∇xN
θN (yαN (x), x−N )

+ α [yα(x)− x] .

Therefore

〈∇ψα(x), yα(x)− x〉 =
N∑
i=1

〈∇θi(xi, x−i)−∇θi(yαi (x), x−i), y
α(x)− x〉

+
N∑
i=1

〈∇xi
θi(y

α
i (x), x−i), y

α
i (x)− xi〉+ α ‖yα(x)− x‖2

(9)
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In view of (5), we obtain

〈∇ψα(x), yα(x)− x〉 ≤
N∑
i=1

[θi(y
α
i (x), x−i))− θi(xi, x−i)] + α ‖yα(x)− x‖2

= −Ψ(x, yα) + α ‖yα(x)− x‖2

= −ψα(x) +
α

2
‖yα(x)− x‖2.

�

Taking into account (8), the idea behind the algorithm to be proposed is to perform a line search

along yα(x)−x, if it is a descent direction for ψα, or to reduce the parameter α otherwise. A similar idea

was proposed in [11, 13] for solving monotone variational inequalities using the gap or D-gap function

approach. We remark that we do not need to compute any derivative of the payoff functions and that

we use an Armijo type stepsize rule, for which only evaluations of the function ψα are necessary. Now

we formally state our algorithm as follows.

Algorithm

0. (Initial step)

Let η, γ ∈ (0, 1), and β ∈ (0, η). Let {αk} be a sequence strictly decreasing to 0.

Choose any x0 ∈ X and set k = 0.

1. (Stopping criterion)

If ψαk
(xk) = 0 then STOP, else set k = k + 1.

2. (Minimization of ψαk
)

2a. (Initialization) Set ` = 0 and z0 = xk−1.

2b. Compute yαk(z`) = arg max
y∈X

[
Ψ(z`, y)− αk

2
‖y − z`‖2

]
.

If −ψαk
(z`) +

αk
2

∥∥yαk(z`)− z`
∥∥2
< −η ψαk

(z`)

then (line search)

set d` = yαk(z`)− z`

compute the smallest nonnegative integer m such that:

ψαk
(z` + γm d`)− ψαk

(z`) ≤ −β γm ψαk
(z`)

set t` = γm,

else (update of xk) set xk = z` and return to step 1.

2c. (Update of z`) Set z`+1 = z` + t` d
`, ` = `+ 1, and return to step 2b.

Theorem 3.2. If (5) holds and the set X is bounded, then the algorithm proposed either stops at a NNE

after a finite number of iterations, or generates a sequence {xk} such that any of its cluster points is a

NNE, or generates a sequence {z`}, for some fixed αk, such that any of its cluster points is a NNE.
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Proof. First, we show that the algorithm is well defined, i.e. that the line search procedure is always

finite. To this end assume, by contradiction, that there are `, k ≥ 0 such that the inequality

ψαk
(z` + γm d`)− ψαk

(z`) > −β γm ψαk
(z`),

holds for all m ∈ N. Then we have:

ψ′αk
(z`; d`) = lim

m→+∞

ψαk
(z` + γm d`)− ψαk

(z`)

γm
≥ −β ψαk

(z`).

Combining (8) and step 2b, we get:

ψ′αk
(z`; d`) ≤ −ψαk

(z`) +
αk
2
‖d`‖2 < − η ψαk

(z`),

therefore

(η − β)ψαk
(z`) < 0,

which is impossible because η > β and ψαk
(z`) ≥ 0. So the line search procedure is always finite.

There are three possible cases.

Case 1. The algorithm stops at xk after a finite number of iterations. From the stopping criterion it

follows that xk is a NNE.

Case 2. The algorithm generates an infinite sequence {xk}. From condition at step 2b we have

ψαk
(xk) ≤ αk

2 (1− η)

∥∥xk − yαk(xk)
∥∥2 ∀ k ∈ N.

Since xk and yαk(xk) belong to X which is a bounded set, the norm ‖xk − yαk(xk)‖ is bounded above.

Because lim
k→∞

αk = 0, we have

lim
k→∞

ψαk
(xk) = 0. (10)

Let x∗ be any cluster point of {xk} and xks a subsequence converging to x∗. From the definition of ψαk

it follows that for each y ∈ X we have

ψαks
(xks) ≥ Ψ(xks , y)− αks

2
‖xks − y‖2 ∀ s ∈ N.

Moreover Ψ is continuous, lim
k→∞

αk = 0, and (10) holds, thus passing to the limit we obtain

0 ≥ Ψ(x∗, y).

Since y is arbitrary, we have proved that max
y∈X

Ψ(x∗, y) = 0, that is x∗ is a NNE.

Case 3. The algorithm generates an infinite sequence {z`} for a fixed αk = α. Let us consider two

possible subcases: either lim sup
`→∞

t` > 0, or lim sup
`→∞

t` = 0.

Subcase 3a. If lim sup
`→∞

t` > 0, then there exists t∗ > 0 and a subsequence {t`s} such that t`s ≥ t∗ > 0

for all s ∈ N. Since the sequence {z`} is infinite, we have:

ψα(z`s)− ψα(z`s+1) ≥ β t`s ψα(z`s) ≥ β t∗ ψα(z`s) ≥ 0. (11)

The sequence {ψα(z`)} is monotone decreasing and bounded below, hence

lim
`→∞

[ψα(z`)− ψα(z`+1)] = 0,
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and in particular

lim
s→∞

[ψα(z`s)− ψα(z`s+1)] = 0. (12)

Using (11) and (12), we obtain lim
s→∞

ψα(z`s) = 0 and thus lim
`→∞

ψα(z`) = 0. If z∗ is any cluster point of

{z`}, then from the continuity of ψ we have lim
`→∞

ψα(z`) = ψα(z∗), hence ψα(z∗) = 0, i.e. z∗ is a NNE.

Subcase 3b. If lim sup
`→∞

t` = 0, then lim
`→∞

t` = 0. From the step length rule it follows that for all

` ∈ N,
ψα(z` + γ−1 t` d

`)− ψα(z`) > −β γ−1 t` ψα(z`). (13)

By the mean value theorem we have:

ψα(z` + γ−1 t` d
`)− ψα(z`) = 〈∇ψα(z` + δ` γ

−1 t` d
`), γ−1 t` d

`〉, (14)

for some δ` ∈ (0, 1). In view of (13) and (14) we obtain:

〈∇ψα(z` + δ` γ
−1 t` d

`), d`〉 > −β ψα(z`) ∀ ` ∈ N. (15)

Let z∗ be any cluster point of {z`}. Since lim
k→∞

t` = 0, passing to the limit in (15) and taking a subsequence

if necessary, we get:

〈∇ψα(z∗), d∗〉 ≥ −β ψα(z∗), (16)

where d∗ = yα(x∗)− x∗.
Moreover, for all ` ∈ N, we have:

−ψα(z`) +
α

2
‖z` − yα(z`)‖2 < − η ψα(z`),

hence passing to the limit and taking a subsequence if necessary, by Theorem 3.1 it follows that

〈∇ψα(z∗), d∗〉 ≤ −ψα(z∗) +
α

2
‖d∗‖2 ≤ − η ψα(z∗). (17)

¿From (16) and (17) we get

(η − β)ψα(z∗) ≤ 0.

Since η > β and ψα(z∗) ≥ 0, it follows that ψα(z∗) = 0, i.e. z∗ is a NNE. �

Remark 3.1. Note that in the Algorithm the sequence {αk} can be chosen adaptively, for example

(see [11]) such as:

αk =

{
αk−1 if ψαk−1

(xk−1) ≤ νk−1,

µαk−1 otherwise,
(18)

where 0 < µ < 1 and {νk} is a sequence decreasing to 0. Indeed, if the algorithm generates an infinite

sequence {xk} with {αk} chosen by (18), then either lim
k→∞

αk = 0, which can be treated as in the Case 2

of Theorem 3.2, or one has

αk = ᾱ and ψᾱ(xk) ≤ νk ∀ k > k̄,

hence lim
k→∞

ψᾱ(xk) = 0. Then, for each cluster point x∗ of {xk}, we have ψᾱ(x∗) = 0, that is x∗ is a

NNE.

Remark 3.2. The version of the algorithm discussed in this paper determines the stepsize using an

Armijo-type rule. It can be proved that the same global convergence result holds with an exact line search

as well.
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4 Numerical results

In the following we consider three examples to test the algorithm presented in the previous section. We

implemented the algorithm in MATLAB and we used the Optimization Toolbox to compute yαk . We set

the algorithm parameters as follows: η = 0.5, β = 0.4, γ = 0.5, and αk = 5/5k. The algorithm stops

whenever ψαk
(xk) < 10−12.

For each example numerical results are summarized in two tables. We solved each example applying

our algorithm starting from different points in the set X. In the first table the behaviour of the algorithm

for different initial points is reported. For each initial point (first column) the number of optimization

problems solved to compute yαk is given in column two, the number of outer iterations, i.e. the number

of k updates, is given in column three, and the number of inner iterations, i.e. the number of performed

line searches, is given in column four.

Second table is devoted to describe the algorithm steps starting from one initial point. For each outer

iteration of the algorithm the value of k, αk, and xk are given in the first three columns. The value of

ψαk
(xk) is reported in column four. Then columns five to nine describe the inner iterations. In columns

five, six, and seven the value of `, z`, and ψαk
(z`) are given respectively. Finally, column eight tells

whether line search is performed and column nine gives the corresponding stepsize.

Example 4.1. Let us consider the two-player GNEP described in Example 2.5. The unique NNE is

(1, 9) and therefore the algorithm reaches it starting from any point. Tables 1 and 2 report numerical

results on such example as described above.

starting # optimization # outer # inner

point problems iterations iterations

(1, 1) 5 3 1

(1, 8) 4 2 1

(2, 3) 4 2 1

(2, 4) 5 2 2

(2, 6) 5 2 2

(3, 4) 4 2 1

(3, 7) 3 1 1

(4, 3) 4 2 1

(4, 6) 3 1 1

(5, 5) 4 2 1

(6, 4) 4 2 1

(8, 1) 4 2 1

(9, 1) 4 2 1

Table 1: Numerical results for Example 4.1 for different initial points.

Example 4.2. Let us consider a two-player GNEP with payoff functions

θ1(x1, x2) =
1

2
x2

1 and θ2(x1, x2) = x2,

11



k αk xk ψαk
(xk) ` z` ψαk

(z`) line search stepsize

0 5 (2, 4) 2

1 1 0 (2, 4) 5.5 yes 1

1 (1, 6) 0.5 no –

(1, 6) 0.5

2 0.2 0 (1, 6) 2.1 yes 1

1 (1, 9) 0 no –

(1, 9) 0

Table 2: Steps of the algorithm on Example 4.1

and the set X =
{
x ∈ R2 : x1 ≥ 1, x2 ≥ 1, x1 + x2 ≤ 10

}
. The unique NNE is (1, 1) and therefore

the algorithm reaches (1, 1) starting from any point. The corresponding numerical results are given in

Tables 3 and 4.

starting # optimization # outer # inner

point problems iterations iterations

(1, 4) 4 2 1

(1, 9) 5 3 1

(2, 5) 4 2 1

(2, 8) 5 3 1

(3, 3) 4 2 1

(3, 7) 5 2 2

(4, 4) 4 2 1

(5, 2) 4 2 1

(6, 3) 4 2 1

(7, 3) 5 2 2

(9, 1) 5 2 2

Table 3: Numerical results for Example 4.2 for different initial points.

k αk xk ψαk
(xk) ` z` ψαk

(z`) line search stepsize

0 5 (7, 3) 4.1833

1 1 0 (7, 3) 12.75 no –

(7, 3) 12.75

2 0.2 0 (7, 3) 22.0167 yes 1

1 (1, 1.6667) 0.1778 yes 1

2 (1, 1) 0 no –

(1, 1) 0

Table 4: Steps of the algorithm on Example 4.2
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Example 4.3. We consider a GNEP with N = 5, where each player i controls a single variable xi ∈ R,

the payoff functions are given by:
θ1(x) = 1

x1
+ x2

θ2(x) = 1
x2

+ x3

θ3(x) = x3 + x4

θ4(x) = x4 + x5

θ5(x) = x5 + x1

and the set X =

{
x ∈ R5 : 10 ≤

5∑
i=1

xi ≤ 20, xi ≥ 1 ∀ i = 1, . . . , 5

}
. In this example the algorithm

converges to (8.5, 8.5, 1, 1, 1) starting from all the considered initial points. The corresponding numerical

results are given in Tables 5 and 6.

starting # optimization # outer # inner

point problems iterations iterations

(2, 2, 5, 3, 8) 9 5 3

(1, 2, 5, 10, 1) 12 6 5

(5, 5, 3, 2, 5) 8 5 2

(1, 7, 4, 2, 1) 15 6 8

(4, 1, 6, 4, 5) 12 6 5

(2, 2, 4, 6, 4) 9 5 3

(1, 5, 7, 1, 1) 13 6 6

(2, 2, 2, 5, 5) 9 5 3

(5, 4, 1, 5, 3) 11 6 4

(2, 1, 2, 2, 8) 12 6 5

(4, 4, 7, 2, 3) 8 5 2

Table 5: Numerical results for Example 4.3 for different initial points.
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