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Abstract
In this paper, we deal with Brill-Noether theory for higher-rank sheaves on a polarized nodal
reducible curve (C,w) following the ideas of Brambila-Paz et al. (J Algebraic Geom 6(4):
645–669, 1997). We study the Brill-Noether loci of w-stable depth one sheaves on C having
rank r on all irreducible components and having small slope. In analogy with what happens
in the smooth case, we prove that these loci are closely related to BGN extensions. Moreover,
we produce irreducible components of the expected dimension for these Brill-Noether loci.
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1 Introduction

Classical Brill-Noether theory was born in the last century in order to describe the subchemes
Wk−1

d of Picd(C) parametrizing degree d-line bundles on a smooth curve C having at least
k linearly independent global sections. Geometric properties of these loci (such as non-
emptyness, irreducibily, connectedess, dimension and singularities) have been completely
studied at least for a general curve. For a full treatment of the topic see [1].

The notion of Brill-Noether locus has been extended in the years to vector bundles of
higher-rank (see [20] for an historical overview). These loci are closed subschemes of the
moduli space U s

C (r , d) parametrizing stable vector bundles of rank r and degree d on a
smooth curve C . More precisely, the Brill-Noether locus

BC (r , d, k) = {[E] ∈ U s
C (r , d) | h0(E) ≥ k},
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parametrizes isomorphism classes of vector bundles of rank r and degree d with at least k
independent global sections. A similar definition has been introduced for equivalence classes
of semistable vector bundles.

The higher-rank case is far from being completely understood, for a survey see [22]. We
recall some results about the geometry of these loci which are related to the content of our
paper. The case k = 1 has been studied by [25] and [17]. More general results are due to
Teixidor i Bigas (see [26, 27]) while Brambila-Paz, Grzegorczyk and Newstead have studied
Brill-Noether loci for vector bundleswith small slope (see [8]). In particular, we are interested
in the following seminal result:

Theorem (Theorems A + B of [8]) Let C be a smooth curve of genus g. Let r ≥ 2 and
0 ≤ d ≤ r . Then, the Brill-Noether locus BC (r , d, k) is non-empty if and only

d > 0, kg ≤ r(g − 1) + d and (d, k) �= (r , r).

Under these assumptions, it is irreducible of dimension equal to the Brill-Noether number

βC (r , d, k) = r2(g − 1) + 1 − k(k − d + r(g − 1))

and Sing(BC (r , d, k)) = BC (r , d, k + 1).

We recall that in paper cited above, Brill-Noether loci are described as spaces of particular
extensions of a semistable sheaf by a trivial one. These extensions were introduced in [8]
and in the sequel have been called BGN extensions (see [7]).

Brill-Noether theory for higher-rank extends naturally to the case of nodal irreducible
curves by considering stable torsion free sheaves and their moduli spaces (see [4]). In par-
ticular, in [4], Theorems A + B of [8] have been extended almost completely for any nodal
irreducible curve.

In this paper we deal with Brill-Noether theory for higher-rank on nodal reducible curves
following the ideas of [8].

As in the irreducible nodal case, one cannot consider only locally free sheaves in order
to construct compact moduli spaces: one also needs to take into account depth one sheaves.
Moreover, one has to choose a polarization w on the curve in order to have moduli spaces
for these sheaves. For details, one can refer to Sect. “Depth one sheaves on nodal curves and
related moduli spaces”. If w is a polarization on a nodal reducible curve C , we denote by
U s

(C,w)(r , d) the moduli space of isomorphism classes of w-stable depth one sheaves on C
with multirank r and w-degree d . Then, for any integer k ≥ 1, the Brill-Noether loci can be
naturally defined as the following subsets:

B(C,w)(r , d, k) = {[F] ∈ U s
(C,w)(r , d) | h0(F) ≥ k}.

A similar definition can be given by considering themoduli spaceU(C,w)(r , d), parametrizing
equivalence classes of w-semistable depth one sheaves on C (see Sect. “Brill-Noether loci
on nodal reducible curves”).

The description of these subsets given byMercat in the smooth case works, with necessary
technical adjustment, even for a reducible nodal curve, so we obtain a closed subscheme
structure for these loci (see Proposition 3.1). Unfortunately, even for an irreducible nodal
curve the local study cannot be carried out as in the smooth case unless we consider a locally
free sheaf (see [4] and [5]). For this reason, we restrict our attention to depth one sheaves
having rank r on all irreducible component of C . This gives a moduli space U s

(C,w)(r · 1, d)

whose general element is a locally free sheaf of rank r and degree d (see [28] and [29]).
There, as in the smooth case, we can define the Brill-Noether number βC (r , d, k) and the
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local study of smoothness at a locally free sheaf in B(C,w)(r · 1, d, k) can be done as in the
smooth case (see Proposition 3.3).

The purpose of this paper is to understandwhether the results of Theorems A+B of [8] can
be extended to nodal reducible curves.We recall that Theorems A+B imply that the elements
of the Brill-Noether loci for small slope (i.e. 0 ≤ d ≤ r ) are all given by BGN extensions.
The notion of BGN extension has been generalized to the case of depth one sheaves on a
nodal reducible curve in [12], where the space parametrizing BGN extensions is described as
a moduli space of coherent systems. The behaviour of these spaces is extremely wild, unless
one chooses a polarization which is good (see [11] or Sect. “Brill-Noether loci on nodal
reducible curves” for details). Unfortunately, also by working with good polarizations, not
all elements of the Brill-Noether loci are given by BGN extensions, as Example 4.2 shows.
Nevertheless, we prove that this holds when we consider locally free sheaves by giving the
following partial generalization of Theorems A + B:

Theorem (Theorem 4.1) Let (C,w) be a polarized nodal curve withw good. Let r , k, d ∈ N

such that r ≥ 2, k ≥ 1 and d ≥ 0. Let E be a locally free sheaf in B(C,w)(r · 1, d, k) which
satisfies at least one of the following two conditions:

(a) 0 ≤ d ≤ r;
(b) For any irreducible component Ci of C, the restriction E |Ci is stable and 0 ≤

deg(E |Ci ) ≤ r .

Then

d > 0, kpa(C) ≤ r(pa(C) − 1) + d

and E is obtained as a BGN extension of a locally free sheaf of rank r − k.

Let E be a locally free sheaf on (C,w) of rank r and degree d . We say that E has small
slope if either 0 ≤ d ≤ r or if we have 0 ≤ deg(E |Ci ) ≤ r for any irreducible component
Ci of C . Then, the above theorem can be seen in the framework of Brill-Noether theory for
locally free sheaves of small slope.

In the second part of this paper, under numerical assumptions on d , r , k, we give a method
to construct irreducible components of Brill-Noether loci for sheaves of small slope, using
BGN extensions. In order to do so, we study w-stable BGN extensions defined by irreducible
components of moduli spaces of w-stable sheaves of small slope. The details are rather
technical: we refer to Proposition 4.5 and Theorem 4.6. In Sect. “Components with small
slopes” we give sufficient conditions for the existence of components of the moduli spaces
of depth one sheaves with small slope. These conditions are stated in Proposition 5.1. Then,
using the above technical results, we prove our second main theorem:

Theorem (Theorem 5.5) Let C be either a chain-like or comb-like curve (see Definitions 2.2
and 2.3) with γ irreducible components of genus gi ≥ 2. Let d, s, k ∈ N such that

k ≤ 1 + s(gi − 1) for all i = 1, . . . , γ, s ≥ 2(γ − 1) and γ ≤ d ≤ s.

Then, the Brill-Noether locus B(C,w)((s + k) · 1, d, k) is non-empty whenever w lies in a
suitable open neighborhood of the canonical polarization. Moreover, it has an irreducible
component of dimension βC (s + k, d, k).

We stress that Theorem 5.5 is stated in Sect. “Components with small slopes” for a wider
class of curves (more precisely, for curves satisfying one of the conditions in Proposition
5.1). We report it here in this form for brevity.
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The above results give a partial generalization of Theorems A + B. Nevertheless, we
conjecture that the Brill-Noether locus B(C,w)((s + k) · 1, d, k) is non-empty whenever

2(γ − 1) ≤ s, γ ≤ d ≤ s and kgi ≤ 1 + s(gi − 1),∀i = 1, . . . γ,

for any nodal curve C of compact type and w in a suitable neighborhood of the canonical
polarization (see Conjecture 5.6).

2 Notations and preliminary results

2.1 Nodal curves

In this paper we will deal with connected nodal reducible curves over the complex field. A
comprehensive reference for general theory on nodal curves are [13] and [2, Ch X]. If C is
as above, we will denote by γ the number of its irreducible components and by δ the number
of its nodes. We will assume that each irreducible component Ci is a smooth curve of genus
gi ≥ 2.

The arithmetic genus of C is

pa(C) =
γ∑

i=1

gi + δ − γ + 1. (2.1)

For any subcurve B of C , let Bc be the closure of C \ B. We set �i = Ci ∩ Cc
i , and we

denote by δi its degree, i.e. the number of nodes of C on Ci . We recall that there exists on
C a dualizing sheaf ωC which is an invertible sheaf, moreover for any i = 1 . . . γ , we have
ωC |Ci = ωCi (�i ). Since C is a nodal curve without rational or elliptic components, we have
that C is a stable curve. In particular, ωC is an ample line bundle. The curve C is said to be of
compact type if its dual graph is a tree. In this case we have δ = γ −1 and pa(C) = ∑γ

i=1 gi .

The following lemma gives a technical result useful for the sequel. It is a small improve-
ment of [28, Lemma 1].

Lemma 2.1 Let C be a nodal curve of compact type with γ irreducible components. Fix an
irreducible component D of C, it is possible to order the components of C and to give a
family of subcurves {A j } j=1,...,γ−1 of C such that:

(a) Cγ is the chosen component, i.e. Cγ = D;
(b) For any i = 1, . . . , γ − 1 the curve Ci+1 ∪ · · · ∪ Cγ is connected;
(c) For any i = 1, . . . , γ − 1, Ci ⊆ Ai , Ai and Ac

i are connected.

In particular, this implies that Ai ∩ Ac
i is a node: we denote it by pi .

Proof We proceed by induction on γ . If γ = 2 the result is straightforward. We assume by
induction hypothesis that the result holds for any curve of compact type with at most γ − 1
irreducible components. Fix a component of C and denote it by Cγ . Let m := Cγ · Cc

γ ,
i.e. m is the number of nodes on Cγ . Then Cc

γ has m connected components which will be

denoted by �(1), . . . , �(m). The ordering of these components is arbitrary. By construction
�(k) is a curve of compact type with less than γ components. Since C is of compact type, for
any k = 1, . . . ,m we have that �(k) ∩ Cγ is a single point. Then, there exists a unique Bk ,
irreducible component of �(k), such that Bk ∩ Cγ is not empty. By induction hypothesis we
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have an order of the components of �(k) whose “final” component is Bk satisfying (b). The
ordering on each �(k) induce a natural ordered sequence of all the components of C whose
last element is Cγ .

We now check that this ordering satisfies (b). For any i ≤ γ −1,Ci is contained in a unique
�(ki ). IfCi = Bki thenCi+1∪· · ·∪Cγ = ⋃m

k=ki+1 �(k) ∪Cγ , so it is connected. IfCi �= Bki

then, since Bki = Cl for a unique index l > i , we have that
⋃l

j=i+1 C j = Ci+1 ∪ · · · ∪ Cl

is a connected subcurve of �ki by induction hypothesis and meets Cγ in a point. Then

γ⋃

j=i+1

C j =
⎛

⎝
l⋃

j=i+1

C j

⎞

⎠ ∪
m⋃

k=ki+1

�(k) ∪ Cγ

is connected.
(c) follows from (b). In fact, for any i = 1, . . . , γ −1, let Di be the connected component

of Cc
i containing Ci+1 ∪· · ·∪Cγ . We define Ai to be Dc

i . By construction, it containsCi and
all the possible other connected components ofCc

i different from Di . Hence, Ai is a connected
curve and C j ⊆ Ai implies j ≤ i . In particular, if Ci ⊂ �(k) then Cγ ∪ ⋃

j �=k �( j) ⊆ Ac
i so

Ai ⊆ �(k). ��

Example 2.2 (Chain-like curves) A “chain-like” curve is a curve of compact type with γ ≥ 2
smooth irreducible components which can be ordered as {C1, . . . ,Cγ }withCi ∩Ci+1 = {pi }
and Ci ∩ C j = ∅ whenever |i − j | > 1. This ordering satisfies conditions (b) and (c) of
Lemma 2.1 and it is obtained by choosing as Cγ one of the two components of C having

a single node. It is a “natural” ordering for chain-like curves as it gives A j = ⋃ j
i=1 Ci

for j = 1, . . . , γ − 1. On the other hand, for any i = 1, . . . , γ − 1, one can also chose
and alternative ordering {C̃1, . . . , C̃γ } with C̃γ = Ci . If i = 1 we are simply reversing
the ordering of the curves. If i > 1, we have that Cc

i has two irreducible components

�(1) = ⋃i−1
j=1 Ci and �(2) = ⋃γ

j=i+1 Ci . Using the notation introduced in the proof of the
Lemma, we have B1 = Ci−1 and B2 = Ci+1 so we have

{C̃1, . . . , C̃γ } = {C1, . . . ,Ci−1,Cγ ,Cγ−1, . . . ,Ci+1,Ci }.

Example 2.3 (Comb-like curves) A “comb-like curve” with γ ≥ 2 smooth irreducible com-
ponents is a curve of compact type where all the nodes lie on a single component (the “grip”
of the curve), i.e. with a component with γ − 1 nodes. Its components can be ordered as
{C1, . . . ,Cγ } with Cγ · Ci = {pi } for i = 1, . . . , γ − 1 and Ci ∩ C j = ∅ whenever
i �= j and i, j ≤ γ − 1. This ordering satisfies conditions (b) and (c) of Lemma 2.1 and
we have Ai = Ci for all i = 1, . . . , γ − 1. Any permutation of the indices {1, . . . , γ − 1}
gives an analogous result. Starting from the above ordering, one can also chose the ordering
{C2,C3, . . . ,Cγ−1,Cγ ,C1} which yields Ai = Ci+1 for i ≤ γ − 2 and Aγ−1 = ⋃γ

j=2 Ci .

Finally, we recall some general technical results. Let p be a node and denote by Ci1 and
Ci2 the two components such that p ∈ Ci1 ∩ Ci2 . Following the notations of [24], chap. 8,
we set:

Oxik
= OCik ,p, mxik

= mCik ,p, Op = OC,p m p = mC,p.

Then:

Op = {( f , g) ∈ Oxi1
⊕ Oxi2

| f (p) = g(p)}, mp = mxi1
⊕ mxi2

.
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The isomorphismsOxik
� mxik

obtained by sending f �→ f tik , where tik is a local coordinate
onCik at p, induce an isomorphismOxi1

⊕Oxi2
� mp .We have the following exact sequences

of Op-moduli:

0 → Op → Oxi1
⊕ Oxi2

→ C → 0 and 0 → mp → Op → C → 0. (2.2)

The above exact sequences and standard facts on modules yield the following lemma
giving Ext-groups forOp-modules of depth one where p is as above. Some of these groups
have been computed in [12, Lemma 2.1].

Lemma 2.4 Let N be a Op-module. Then, the following facts hold:

Ext1(Op, N ) = Ext1(Oxi ,Op) = Ext1(Oxi ,Oxi ) = 0 and Ext1(Oxi ,Ox j ) = C for i �= j .

If M � Os
p ⊕ Oa1

x1 ⊕ Oa2
x2 and N � Os′

p ⊕ Ob1
x1 ⊕ Ob2

x2 , we have Ext1Op
(M, N ) �

C
a1b2 ⊕ C

a2b1 . In particular, if either M or N is free we have Ext1(M, N ) = 0.

2.2 Depth one sheaves on nodal curves and relatedmoduli spaces

We recall the notion of depth one sheaves on nodal curves. References for the contents of
this subsection are [24] and [16].

A coherent sheaf E on a reduced curve is said to be of depth one if for any x ∈ Supp(E)

the stalk Ex is an Ox -module of depth one. Let C be a nodal curve with smooth irreducible
componentsC1, . . . ,Cγ . Using the notations introduced above, a coherent sheaf E onC is of
depth one if E is locally free away from the nodes and the stalk of E at a node p ∈ Ci1 ∩Ci2
is isomorphic to Os

p ⊕ Oa1
xi1

⊕ Oa2
xi2

. In particular, vector bundles are depth one sheaves and
any subsheaf of a depth one sheaf is of depth one too.

Let E be a depth one sheaf on C . Its dual sheaf E∗ = HomOC (E,OC ) is of depth one
too and E is reflexive, i.e. HomOC (E∗,OC ) � E . In particular, we recall that Serre duality
yields an isomorphism Hq(E)∗ � H1−q(E∗ ⊗ ωC ) for any q ≥ 0.

The following Lemma generalizes the formula in [3, Lemma 2.5] to the case of nodal
reducible curves.

Lemma 2.5 Let E and F be depth one sheaves onC. Assume that at the node p j ∈ C j,1∩C j,2

we have

Ep j � Os j
p ⊕ Oa j,1

x j,1 ⊕ Oa j,2
x j,2 and Fp j � Ot j

p ⊕ Ob j,1
x j,1 ⊕ Ob j,2

x j,2 ,

then

dim Ext1(E, F) = h1(Hom(E, F)) +
δ∑

j=1

(a j,1b j,2 + a j,2b j,2).

Proof For all q ≥ 1 we have that Extq(E, F) is a torsion sheaf, whose support in contained
in the set of nodes, while Ext0(E, F) = Hom(E, F). In particular, the cohomology group
H p(Extq(E, F)) vanishes if either p = 1 and q ≥ 1 or p ≥ 2 for all q ≥ 0. Then, the
local-to-global spectral sequence for Ext groups (see [14]) yields an exact sequence

0 → H1(Hom(E, F)) → Ext1(E, F) → H0(Ext1(E, F)) → H2(Hom(E, F)) = 0
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so dim Ext1(E, F) = h1(Hom(E, F)) + h0(Ext1(E, F)). Since

h0(Ext1(E, F)) =
δ⊕

j=1

dim(Ext1(Epj , Fpj )),

one can conclude using Lemma 2.4. ��
In order to introduce moduli spaces for depth one sheaves on a reducible curve it is

necessary to introduce the notion of polarization. A polarization on a nodal reducible curve
C (with γ components) is a vector w = (w1, . . . , wγ ) ∈ Q

γ such that

0 < wi < 1
γ∑

i=1

wi = 1. (2.3)

We will say that the pair (C,w) is a polarized nodal curve. Any ample line bundle L on C
induces a polarization wL whose weight on the component Ci is deg(L|Ci )/ deg(L).

Let (C,w) be a polarized nodal curve. For any depth one sheaf E on C we denote by Ei

its restriction to Ci modulo torsion and by rk(E) = r = (r1, r2, . . . , rγ ) itsmultirank, where
ri = rank(Ei ). We define the w-rank and the w-degree of E as:

rkw(E) =
r∑

i=1

riwi and degw(E) = χ(E) − rkw(E)χ(OC ).

The w-slope of E is defined as μw(E) = degw(E)/ rkw(E). E is said to be w-semistable
(w-stable respectively) if for any proper subsheaf F of E we have μw(F) ≤ μw(E)

(μw(F) < μw(E) respectively). We denote by U s
(C,w)(r , d) the moduli space parametrizing

isomorphism classes of w-stable depth one sheaves on C with multirank r and w-degree d
and by U(C,w)(r , d) its compactification, which is obtained by considering S-equivalence
classes of w-semistable depth one sheaves.

For any depth one sheaf E we define

�w(E) = degw(E) −
γ∑

i=1

deg(Ei ). (2.4)

We say that w is a good polarization on C if �w(E) ≥ 0 for all depth-one sheaves and
equality holds if and only if E is locally free. Good polarizations were introduced in [11],
where the authors proved that good polarizations always exist on any stable nodal curve C
with pa(C) ≥ 2. Moreover, if w is good, then OC is w-stable and the converse holds when
C is a nodal curve of compact type (see [11, Theorem 3.10]). It is also conjectured that this
should hold for any nodal curve.

Finally, we recall the notion of coherent system on a polarized nodal curve (C,w) (see [9]
for details). We refer to [6] for treatment of the smooth case. A coherent system is given by a
pair (E, V ), where E is a depth one sheaf onC and V is a subspace of H0(E). If rkw(E) = r ,
degw(E) = d and dim V = k it is said to be of type (r , d, k) (and of multitype (r , d, k) if
rk(E) = r ).

For any α ∈ R, the (w, α)-slope of (E, V ) is defined as

μw,α(E, V ) = μw(E) + α dim(V )/ rkw(E).

(E, V ) is said to be (w, α)-stable if for any proper coherent subsystem (F,U ) of (E, V )

we have μw,α(F,U ) < μw,α(E, V ). We denote by G(C,w),α(r , d, k) the moduli space
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parametrizing (w, α)-stable coherent systems of type (r , d, k). If we fix r = (r1, . . . , rγ ),
we obtain the moduli space G(C,w),α(r , d, k), which is a component of the previous one. For
more details one can see [9].

In this paper we will assume k < r . In [12] the authors proved that for any w there exists
Mw > 0 such that G(C,w),α(r , d, k) is empty whenever α /∈ (0, Mw). Moreover, there are
a finite number of values 0 < α1 < · · · < αL < Mw, called critical values, such that, the
property of (w, α)-stability is independent on the choice of α ∈ (αi , αi+1). Hence, for fixed
w, there are up to finitely many different and not empty moduli spaces G(C,w),α(r , d, k). We
denote by G(C,w),L(r , d, k) the “terminal” moduli space, the one obtained by considering
α ∈ (αL , Mw). If w is a good polarization, then Mw = d/(r − k) and hence d > 0, see [12].
In the same paper, these spaces have been described using BGN extensions (in analogy of
what happens for the smooth case in [8]). We recall that a BGN extension of type (r , d, k)
on (C,w) is an extension

e : 0 → V ⊗ OC → E → F → 0, (2.5)

where V is a vector space of dimension k, F is a depth one sheaf on C with degw(F) = d
and rkw(F) = r − k and e = (e1, . . . , ek) ∈ Ext1(F, V ⊗ OC ) � Ext1(F,OC )⊕k is such
that {e1, . . . , ek} are linearly independent.

3 Brill-Noether loci on nodal reducible curves

Let (C,w) be a polarized nodal curve. Brill-Noether loci can be defined in analogy with
the smooth case as follows. For any d ∈ Q, r = (r1, . . . , rγ ) ∈ N

γ and k ≥ 1 we define
set-theoretically the Brill-Noether loci as:

B(C,w)(r , d, k) = {[F] ∈ U s
(C,w)(r , d) | h0(F) ≥ k},

B̃(C,w)(r , d, k) = {[F] ∈ U(C,w)(r , d) | h0(gr(F)) ≥ k}.
When C is nodal but irreducible, these spaces have been introduced and studied in [4].

Proposition 3.1 B(C,w)(r , d, k) is a closed subscheme of the moduli space U s
(C,w)(r , d). If

it is non-empty, let Z be any irreducible component of B(C,w)(r , d, k) and denote by XZ

the irreducible component of U s
(C,w)(r , d) containing Z. Then Z has codimension at most

k(k − d + r(pa(C) − 1)) in XZ , where r = ∑γ

i=1 wi ri .

Proof In order to give a subscheme structure to the above subsets we follow the approach
of Mercat in the case of smooth curves (see [18–20]). Technical adjustments are needed to
make it work in the case of nodal reducible curves.

We recall that if F is a w-semistable depth one sheaf with rkw(F) = r and degw(F) = d ′
big enough, then F is a quotient of a trivial sheaf onC of rank N = d ′+r(1− pa(C)) (see [24,
Proposition 16, Chapter 7]). Let Q be the Quot scheme parametrizing quotients of ON

C with
fixed Hilbert polynomial p and fixed multirank r and let denote by F the universal family
of quotients. Let Rs ⊂ Q be the subscheme parametrizing quotients q : ON

C → Fq where
Fq is a w-stable depth one sheaf and such that H0(q) : CN → H0(Fq) is an isomorphism.
We denote by F s the restriction of F to Rs × C , it is a coherent sheaf on Rs × C which is
flat over Rs . As usual we denote by pi , i = 1, 2, the projections of Rs × C onto factors. By
[24, Theorem 19, Chapter 7], the moduli space U s

(C,w)(r , d) is a good quotient of Rs for the
action of SL(N ); so we have a proper morphism π ′ : Rs → U s

(C,w)(r , d
′). We recall that we
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have an isomorphism

U s
(C,w)(r , d) → U s

(C,w)(r , d
′)

by tensoring any sheaf F with a line bundle L on C as long as the restrictions Li on the
component Ci satisfy the condition

deg(Li )w j = deg(L j )wi ∀i, j ∈ {1, . . . , γ }.
Hence we can consider the proper morphism π : Rs → U s

(C,w)(r , d) defined by composition.
To give a scheme structure to Brill-Noether loci we proceed as in the smooth case: we will see
B(C,w)(r , d, k) as the image by π of a degeneracy locus R(r , d, k) ⊂ Rs of a suitable map
between vector bundles. We assume that Rs is irreducible, in general it is enough to consider
each irreducible component. We choose an effective divisor D on the curve C satisfying the
following conditions: any x ∈ Supp(D) is a smooth point ofC and degw(OC (D)) = a >> 0.
Then p∗

2(OC (D)) � ORs×C (Rs × D). Let’s consider the following sheaves on Rs :

G1 = p1∗(F s ⊗ p∗
2(OC (D)) G2 = p1∗(F s ⊗ p∗

2(OC (D)|Rs×D)).

If a is sufficiently big, by Grauert’s Theorem, G1 and G2 are vector bundles on Rs whose
fibers are

(G1)q � H0((F s)q ⊗ OC (D)) and (G2)q � H0((F s)q ⊗ OC (D)|D)

respectively.
For any q ∈ Rs , (F s)q is a depth one sheaf on C which is w-stable and it fit into the

following exact sequence:

0 → (F s)q → (F s)q ⊗ OC (D) → (F s)q ⊗ OC (D)|D → 0.

We have a map of vector bundles � : G1 → G2, such that for any q ∈ Rs the map on the
fibers �q fit into the following exact sequence

0 → H0((F s)q) → H0((F s)q ⊗ OC (D))
�q→ H0((F s)q ⊗ OC (D)|D) → H1((F s)q) → 0.

Let R(r , d, k) be the degeneracy locus in Rs of points q such that rk(�q) ≤ h0(Fq ⊗
OC (D)) − k. If R(r , d, k) is not empty, then, by [2, Chapter 2, page 83], every irreducible
component has codimension at most

(rk(G1) − (h0(Fq ⊗ OC (D)) − k))(rk(G2) − (h0(Fq ⊗ OC (D)) − k)) = k(k − d + r(pa(C) − 1)).

As R(r , d, k) is a closed and SL(N )-invariant subscheme of Rs and π is a good quo-
tient, then B(C,w)(r , d, k) = π(R(r , d, k)) is a closed subscheme of U s

(C,w)(r , d). Moreover,
codimension is preserved as R(r , d, k) is contained in the SL(N )-stable locus. So we can
conclude that if B(C,w)(r , d, k) is not empty its codimension in U s

(C,w)(r , d) is at most
k(k − d + r(pa(C) − 1)). ��
Remark 3.2 The same construction allows us to give a scheme structure to the Brill-Noether
loci B̃(C,w)(r , d, k) = {[F] ∈ U(C,w)(r , d) | h0(gr(F)) ≥ k}. Actually, as in the smooth
case, we do not have any information about its codimension.

Let r ∈ N, in the sequel we will consider w-semistable depth one sheaves on C having
rank r an any irreducible component, i.e. with multirank r · 1 = (r , r , . . . , r). If E is such a
sheaf, we have that rkw(E) = r and d = degw(E) = χ(E)−rχ(OC ), so d is an integer. For
any d ∈ N, the moduli space U s

(C,w)(r ·1, d) has been described in [28, 29]: it is reducible and
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connected, each irreducible component has dimension r2(pa(C) − 1) + 1 and the general
element is a w-stable locally free sheaf whose restrictions to irreducible components are
stable too.

As in the smooth case, we can define the Brill-Noether number

βC (r , d, k) = r2(pa(C) − 1) + 1 − k(k − d + r(pa(C) − 1)), (3.1)

which is an integer under the above assumption.
Assume that E ∈ B(C,w)(r · 1, d, k) is a w-stable locally free sheaf. Then, the Zariski

tangent space TE (B(C,w)(r · 1, d, k)) can be described as in the smooth case (see [20]) in the
following proposition.

Proposition 3.3 (a) If B(C,w)(r · 1, d, k) �= ∅ and B(C,w)(r · 1, d, k) �= U s
(C,w)(r · 1, d), then

any irreducible component has dimension at least βC (r , d, k).
(a) Let [E] ∈ B(C,w)(r · 1, d, k) \ B(C,w)(r · 1, d, k + 1) be a locally free sheaf. The Zariski

tangent space TE (B(C,w)(r · 1, d, k)) is the annihilator of the image of the Petri map:

μE : H0(E) ⊗ H0(E∗ ⊗ ωC ) → H0(E ⊗ E∗ ⊗ ωC );
B(C,w)(r · 1, d, k) is smooth of dimension βC (r , d, k) at E if and only if μE is injective.

Proof (a) follows by Proposition 3.1 since each irreducible component of U s
(C,w)(r ·1, d) has

dimension r2(pa(C) − 1) + 1.
(b) Since E is w-stable and locally free, the moduli space U s

(C,w)(r ·1, d) is smooth at [E]
and the tangent space T[E]U s

(C,w)(r · 1, d) can be identified with Ext1(E, E) � H1(C, E ⊗
E∗), (see [15, Corollary 4.5.2]). Note that if E is not locally free then [E] ∈ U s

(C,w)(r · 1, d)

is a singular point by Lemma 2.5. Let [E] ∈ B(C,w)(r · 1, d, k) \ B(C,w)(r · 1, d, k + 1) with
E locally free. As in the smooth case (see [20]), we can identify the Zariski tangent space
T[E](B(C,w)(r · 1, d, k)) as the kernel of the map

c : H1(Hom(E, E)) → Hom(H0(E), H1(E)),

which, in terms of cocycles and Cech cohomology can be described as the map sending
(φi j ) �→ [s �→ φi j (s)]. Since E is locally free the dual map of c is the Petri map. ��

There is a strong relation between coherent systems and Brill-Noether loci, as the next
proposition shows.

Proposition 3.4 Let (C,w) be a polarized nodal curve. Let 0 < α1 < · · · < αL be the
critical values for coherent systems of multitype (r , d, k). Then

(a) If (E, V ) is (w, α)-stable for α ∈ (0, α1), then E is w-semistable;
(b) If E is w-stable and h0(E) ≥ k, then for all V ⊆ H0(E) with dim V = k, (E, V ) is

(w, α)-stable for α ∈ (0, α1);
(c) Let (E, V ) ∈ G(C,w),L (r , d, k), then E is w-unstable if and only if (E, V ) is (w, α)-

unstable for α < α1.

Proof The proof of (a) and (b), as in the smooth case (see [23]), follows directly from the
definitions of w-(semi)stability and of (w, α)-(semi)stability. The proof for (c) works as in
the smooth case (see [7]). ��

A simple but relevant consequence of the above proposition is the following.
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Proposition 3.5 Let (C,w) be a polarized nodal curve with w good. If B(C,w)(r , d, k) �= ∅
then d ≥ 0. Moreover, if 1 ≤ k <

∑γ

i=1 wi ri then d > 0.

Proof Let [E] ∈ B(C,w)(r , d, k). Then E is w-stable and h0(E) ≥ k. Let V be any subspace
of H0(E) of dimension k. Consider the evaluationmap evV : V ⊗OC → E . If it is surjective,
then E is globally generated, so degw(E) ≥ 0 by [11, Theorem 2.9(b)]. Otherwise, if evV is
not surjective, let F be the image of evV . Then, F is a globally generated sheaf of depth one
and it is a subsheaf of E which is w-stable. Hence we have

0 ≤ degw(F)/ rkw(F) < degw(E)/ rkw(E)

which implies degw(E) > 0. Finally, if k < rkw(E), the evaluation map evV cannot be
surjective. ��

4 Brill-Noether loci for sheaves with small slope

Let (C,w) be a polarized nodal curve. In this paper we are interested in studying Brill-Nother
loci for depth one sheaves having rank r on all irreducible components ofC . Theywill include
the corresponding loci for vector bundles.

We recall that in the smooth case (see [8]) and in the irreducible nodal case (see [4]),
all the elements of Brill-Noether loci for small slope (i.e. 0 ≤ d ≤ r ) are defined by BGN
extensions. This is not true anymore whenC is a reducible nodal curve, as it will be shown in
Example 4.2. However, we will prove that this actually holds when we consider locally free
sheaves. This is stated in the following Theorem, which can be seen as a partial generalization
of Theorems A + B of [8].

Theorem 4.1 Let (C,w) be a polarized nodal curve withw good. Let d, r , k ∈ Nwith r ≥ 2,
k ≥ 1 and d ≥ 0. Let E be a locally free sheaf in B(C,w)(r · 1, d, k) which satisfies at least
one of the following two conditions:

(a) 0 ≤ d ≤ r;
(b) The restriction Ei is stable and 0 ≤ deg(Ei ) ≤ r for all i = 1, . . . , γ .

Then

d > 0, k < r ≤ d + (r − k)pa(C)

and E is obtained as a BGN extension of a locally free sheaf of rank r − k.

Proof Let E ∈ B(C,w)(r · 1, d, k) be a w-stable locally free sheaf. Let V ⊆ H0(E) be
a subspace of dimension k. We claim that the evaluation map evV : V ⊗ OC → E is an
injective map of vector bundles. Since the map induced on the fibers at the point x ∈ C is
the map sending (s, x) �→ s(x), it is enough to verify that s(x) �= 0 for any non-zero s ∈ V
and for any x ∈ C . Let s ∈ V be a non-zero section. We consider the map:

evs : = evV |〈s〉⊗OC : 〈s〉 ⊗ OC → E,

and let L be its image. It is a depth one subsheaf of E which is globally generated by
construction. We denote by Li its restriction to Ci modulo torsion. If Li is not the zero sheaf,
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then, by [9, Lemma 3.3], we have the following commutative diagramm

〈s〉 ⊗ OC
evs L

〈si 〉 ⊗ OCi

evV ,Ci Li

from which we deduce thatLi is a line bundle generated by 〈si 〉where si = s|Ci . In this case,
we have deg(Li ) ≥ 0 with deg(Li ) = 0 if and only if Li = OCi . We prove that if Li �= 0
then we have si (x) �= 0 for any x ∈ Ci , i.e. Li = OCi . On the contrary, we would have
deg(Li ) ≥ 1. We claim this can not happen. Indeed, if we are in case (a), since w is good,
by Equation (2.4), we would have

degw(L) ≥
γ∑

i=1

deg(Li ) ≥ 1 and rkw(L) ≤
γ∑

i=1

wi ≤ 1,

so μw(L) ≥ 1. This is impossible since E is w-stable with slope μw(E) ≤ 1. Instead, if we
are in case (b), Li is a subsheaf of Ei with μ(Li ) ≥ 1, which contradicts the assumption on
the stability of Ei .

Finally, we prove that Li � OCi for any i . Assume, by contradiction, that the restriction
of s to at least one component of C is identically zero. Then we can find two different
components Ci and C j such that p ∈ Ci ∩ C j , si �≡ 0, s j ≡ 0. Then, since E is locally free
and s is a global section of E , we would have si (p) = s j (p) = 0. But we have shown above
that si cannot have zeros since it is a section of Li = OCi .

We have shown that evV is an injective map of vector bundles. The w-stability of E
implies that evV is not an isomorphism and that d = degw(E) > 0. Moreover, we have an
exact sequence

0 → V ⊗ OC → E → F → 0

with F locally free of rank r −k ≥ 1. In particular we have k < r as claimed. By Proposition
3.4(b), (E, V ) is an (w, α)-stable coherent system for α small enough. Then, by [12, Lemma
3.12], we have that the above exact sequence is a BGN extension. By [12, Proposition 2.3]
and [12, Lemma 1.8] we have h0(F∗) = 0 and k ≤ h1(F∗) = d + (r − k)(pa(C) − 1). This
is equivalent to r ≤ d + (r − k)pa(C). ��

Example 4.2 Let C1 and C2 be smooth curves of genus g1 and g2, respectively, such that
3 ≤ g2 < g1. Let C be the nodal curve obtained by gluing C1 and C2 at the points q1 and
q2; we denote by p the node of C . Under these assumptions we have the following facts:

• the moduli space UCi (2, 1) has dimension 4gi − 3;
• the Brill-Noether locus BCi (2, 1, 1) is non-empty, it is irreducible and smooth and has

dimension 2gi − 1, so it is a proper subvariety of U s
Ci

(2, 1). This is a consequence of [8,
Theorems A+B];

• the locus

Yi := {F ∈ U s
Ci

(2, 1) | ∃ L ∈ Pic0(Ci ) s.t. h
0(F ⊗ L) ≥ 1}

is a proper closed subscheme of U s
Ci

(2, 1). Indeed, one can show that Yi has dimension

at most dim(BCi (2, 1, 1)) + dim(Pic0(Ci )).

123



Geometriae Dedicata (2023) 217 :35 Page 13 of 23 35

We consider E1 ∈ BC1(2, 1, 1) and E2 ∈ U s
C2

(2, 1)\ (Y2 ∪BC2(2, 1, 1)). Then
1 E1 is (0, 1)-

semistable and E2 is (0, 2)-stable. Since BC1(2, 1, 1) is smooth, we have h0(E1) = 1 and
E1 is given by a BGN extension

0 → OC1 → E1 → L → 0

where L ∈ Pic1(C1). Let s be a generator of H0(E1); notice that s does not have any zero
by construction. We consider a linear map σ between the fibers of E1 and E2 at the points
q1 and q2, respectively, such that ker(σ ) = 〈s(q1)〉. Then, following [24], we can construct
a depth one sheaf E on C which fits into the exact sequence

0 → E → E1 ⊕ E2 → C
2
p → 0. (4.1)

This, roughly speaking, can be done by gluing the fibers of E1 and E2 at the points q1 and
q2 according to σ . By [10, Proposition 3.2] we have that E is a sheaf with multirank (2, 2),
χ(E) = 4 − 2g1 − 2g2 and E is not locally free. We fix the canonical polarization η on the
curve C and we observe that it is good as C is of compact type by [11, Proposition 2.8]).
Then, we have degη(E) = 2 and μη(E) = 1. One can show that η satisfies the stability
conditions [10, Equation (3.3)] since we are assuming g1 > g2. Then, [10, Proposition 3.6]
guarantees that E is η-stable. Finally, from the exact sequence (4.1), as a consequence of our

choice of σ , we have that H0(E) � H0(E1) ⊕ H0(E2) � H0(E1). So we can conclude
that E ∈ B(C,η)(2 · 1, 2, 1) and any global section of E vanishes on C2: this implies that

ev : H0(E) ⊗ OC → E is not injective so E can not be obtained as BGN extension.

4.1 Constructing irreducible components of Brill-Noether loci via BGN extensions

Wewould like to describe irreducible components of Brill-Noether loci of locally free sheaves
with small slopes, using BGN extensions defining w-stable depth one sheaves.

From now on, we will assume that (C,w) is a polarized nodal curve of compact type with
w good and with γ smooth irreducible components of genus gi ≥ 2. We give an ordering
{C1, . . . ,Cγ } for the irreducible components of C and we define the family of subcurves
{A j } j=1,...,γ−1 according to Lemma 2.1. Let U(C,w)(s · 1, d) be the moduli space of w-
semistable depth one sheaves with multirank s · 1 and w-degree d . The following result
summarizes some technical conditions on w-stability:

Lemma 4.3 In the above hypothesis, we have the following properties.

(a) Let F be a locally free sheaf of rank s and degree d whose restrictions Fi are stable with
degree di . If the following conditions hold:

(�) j : rkw(OA j )d − s�w(OA j ) <
∑

Ci⊆A j

di < rkw(OA j )d + s(1 − �w(OA j )) (4.2)

for j = 1, . . . , γ −1, then F isw-stable. Conversely, a general element ofU(C,w)(s ·1, d)

is locally free, has stable restrictions of degree di satisfying the above conditions.
(b) Irreducible components of the moduli space U(C,w)(s · 1, d) correspond to γ -uples

(d1, . . . , dγ ) ∈ Z
γ with

∑γ

i=1 di = d and which satisfy condition (�) j for j =
1, . . . , γ − 1.

1 We recall that a vector bundle F on a smooth curve is (m, n)-semistable (respectively (m, n)-stable) if, for

any subsheaf G of F , we have deg(G)+m
rank(G)

≤ deg(F)+m−n
rank(F)

(respectively <). For details see, [21].
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(c) If F satisfies condition (�) j for j = 1, . . . , γ − 1 for a polarization w, then the same
holds for any polarization w′ in a neighborhood of w. If w is good then w′ is good too in
a suitable neighborhood.

Proof (a) and (b) are the main results of [28]. We only need to prove that the stability condi-
tions can be expressed as in Equation (4.2) using the language and the notations introduced
in [11]. The conditions of [28] are

rkw(OA j )χ(F) −
∑

Ci⊆A j
i �= j

χ(Fi ) + s(a j − 1) < χ(Fj ) < rkw(OAi )χ(F) −
∑

Ci⊆A j
i �= j

χ(Fi ) + sa j ,

where {A j } j=1,...γ−1 are subcurves that satisfy the requests of Lemma 2.1 and a j is the
number of irreducible components of A j . Using the equalities χ(F) = d + s(1 − pa(C))

and χ(Fi ) = di + s(1 − gi ) we obtain:

rkw(OA j )d − s

⎡

⎣1 −
∑

Ci⊆AJ

gi − rkw(OA j )(1 − pa(C))

⎤

⎦ <
∑

Ci⊆A j

di <

< rkw(OAi )d + s

⎡

⎣
∑

Ci⊆A j

gi + rkw(OA j )(1 − pa(C))

⎤

⎦ .

By the definition of the �w function (see (2.4)) we have:

�w(OA j ) = degw(OA j ) = χ(OA j ) − rkw(OA j )χ(OC ) = 1 −
∑

Ci⊆A j

gi − rkw(OA j )(1 − pa(C)),

which implies (4.2). ��
(c)Let w′ be a polarization and set ε = (ε1, . . . , εγ ) = w′ −w.Note that, by construction,∑γ

i=1 εi = 0. Assume that (�) j holds for w for any j = 1, . . . γ − 1, we prove that if ε is
sufficiently small, then (�) j holds for w′ for any j = 1, . . . γ − 1. In fact we have

rkw′(OA j ) = rkw(OA j ) +
∑

Ci⊆A j

εi and �w′(OA j ) = �w(OA j ) − χ(OC )
∑

Ci⊆A j

εi .

Condition (�) j for w′ is the following:

rkw(OA j )d − s�w(OA j ) + (d + sχ(OC ))
∑

Ci⊆A j

εi <
∑

Ci⊆A j

di <

< rkw(OA j )d + s(1 − �w(OA j )) + (d + sχ(OC ))
∑

Ci⊆A j

εi ,

hence it holds for εi sufficiently small.
Finally, as being good is an open condition ([11, Corollary 3.15]), if ||ε|| is small enough

we have that w′ is a good polarization too. ��
In the sequel, we will denote by Xd1,...,dγ the irreducible component of U(C,w)(s · 1, d)

corresponding to the γ -uple (d1, . . . , dγ ) according to the above Lemma.

Remark 4.4 Let η be the canonical polarization on C , i.e. the polarization induced by ωC . As
C is a stable curve with pa(C) ≥ 2, η is good (see [11, 2.8]). We claim that the condition
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(�) j for the canonical polarization can be written as follows:

rkη(OA j )d − s/2 <
∑

Ci⊆A j

di < rkη(OA j )d + s/2. (4.3)

Indeed, by [11, 2.8], it follows that for any subcurve B of C we have �η(OB) = B · Bc/2.
Since the curves A j satisfy the requests of Lemma 2.1, we have �η(OA j ) = 1/2 and this
gives the claim.

Let d > 0 and 0 < k < r be integers. We recall that in Subsection 2.2 we have denoted by
G(C,w),L (r · 1, d, k) the terminal moduli space for coherent systems of multitype (r · 1, d, k)
onC . By [12, Theorem 5.1] each non-empty irreducible component Yd1,...,dγ of this space has
dimension equal to the Brill-Noether number βC (r , d, k) (see (3.1)) and its general element
is a pair (E, V ) with E locally free and deg(Ei ) = di . The following proposition gives
sufficient conditions for the w-stability of E .

Proposition 4.5 Let (C,w) be a polarized nodal curve of compact type withw good. Let r , d
and k be as above and consider a non-empty irreducible component Yd1,...,dγ ⊂ G(C,w),L(r ·
1, d, k) with 0 < di ≤ r for any i = 1, . . . γ . Assume moreover that

k ≤ di + r(gi − 1)

gi
for all i = 1, . . . , γ . (4.4)

Then E is w-stable for a general element (E, V ) ∈ Yd1,...,dγ .

Proof Let Yd1,...,dγ be a non-empty irreducible component of G(C,w),L (r · 1, d, k). By
[12, Theorem 5.1(b)], there exists an irreducible component Xd1,...,dγ of the moduli space
U(C,w)((r − k) · 1, d) and a dominant morphism

ψ : Yd1,...,dγ → Xd1,...,dγ (E, V ) �→ coker(evV ),

where evV is the evaluation map of global sections of V . The fiber over a w-stable sheaf
F is isomorphic to Gr(k, H1(F∗)). More precisely, in [12, Proposition 3.3] it is shown that
Gr(k, H1(F∗)) parametrises BGN extensions of F of type (r , d, k) (see Sect. 2.2). The
isomorphism takes e ∈ Gr(k, H1(F∗)) to the coherent system (E, V ) induced by the BGN
extension

e : 0 → V ⊗ OC → E → F → 0 (4.5)

defined by e.
By Lemma 4.3(a), a general F ∈ Xd1,...,dγ is locally free, w-stable, each restriction Fi is

stable of degree di and conditions (� j ) holds, for j = 1, . . . , γ − 1.
Claim (a): for a general F ∈ Xd1,...,dγ and for any (E, V ) ∈ ψ−1(F), we have that E is

locally free and satisfies (�) j for all j = 1, . . . γ − 1.
Since F is locally free we have that E is locally free too (by [12, Proposition 3.3(a)]) and,

by tensoring by OCi the exact sequence (4.5), we get again an exact sequence. The latter
yields deg(Ei ) = deg(Fi ) = di . Since F satisfies Condition (� j ), we have

∑

Ci⊆A j

di > rkw(OA j )d − (r − k)(�w(OA j ) = rkw(OA j )d − r�w(OA j ) + k�w(OA j ),

∑

Ci⊆A j

di < rkw(OA j )d + (r − k)(1 − �w(OA j )) = rkw(OA j )d + r(1 − �w(OA j )) + k(�w(OA j ) − 1).

123



35 Page 16 of 23 Geometriae Dedicata (2023) 217 :35

Now,we recall that sincew is a good polarization, thenOC is w-stable (by [11, Theorem2.9]).
By Lemma 2.1(c), the intersection A j ∩ Ac

j is a single node, so we have 0 < �w(OA j ) < 1
by [11, Proposition 2.12]. This and the above inequalities imply that E satisfies Condition
(�) j , for j = 1, . . . , γ − 1.

Claim (b): for a general F ∈ Xd1,...dγ and general (E, V ) ∈ ψ−1(F), the restrictions Ei

are stable.
Since F is general we can assume that it is w-stable. By Conditions (4.4) and by [12,

Corollary 5.5], for a general (E, V ) ∈ ψ−1(F) the restriction (Ei , Vi ) is an element of
the moduli space GCi ,L(r , di , k). Recall that, since 0 < di ≤ r , elements of GCi ,L(r , di , k)
correspond to BGN extensions of semistable locally free sheaf. More precisely, there exists
a dominant morphism

ψi : GCi ,L(r , di , k) → UCi (r − k, di )

whose fiber over a stable M is ψ−1
i (M) � Gr(k, H1(M∗)). Moreover, for (G,W ) general

in GCi ,L(r , di , k), we have that G is stable. These assertions follows from [8] and [7]. Then,
in order to prove the claim, it is enough to show that (Ei , Vi ) is general in GCi ,L(r , di , k).

A general stable F ∈ Xd1,...dγ is obtained, by the results of [28], as follows: one first
takes, for all i = 1, . . . , γ , a general Fi ∈ U s

Ci
(r , di ) and, for each node p ∈ Ci ∩ C j , one

chooses an isomorphism between the fibers of Fi and Fj at p. The sheaf F is obtained by
gluing F1, . . . Fγ along these fibers according to these choices.

By [12, Proposition 3.4] we have a rational surjective map

Gr(k, H1(F∗)) � ψ−1(F)
Ti

Gr(k, H1(F∗
i )) � ψ−1

i (Fi )

induced by restriction on Ci . This implies that for general (E, V ) ∈ ψ−1(F), the restriction
(Ei , Vi ) is defined by a BGN extension of Fi , i.e., (Ei , Vi ) ∈ ψ−1

i (Fi ). Let Ui be the open
dense subset of ψ−1

i (Fi ) � Gr(k, H1(F∗
i )) corresponding to coherent systems (Ei , Vi ) ∈

GCi ,L(r , di , k) with Ei stable. Then e ∈ ⋂γ

i=1 T
−1
i (Ui ) corresponds to a coherent system

(E, V ) with Ei stable for any i = 1, . . . γ , as claimed.
Now we can conclude the proof of the theorem. Let F ∈ Xd1,...,dγ be a general w-stable

locally free sheaf and let (E, V ) be a general element in ψ−1(F). Then, by Claim (a), E is
locally free, it satisfies conditions (�) j and, by Claim (b), its restrictions Ei are stable. By
Lemma 4.3(a) it follows that E is w-stable. ��

We have now the second main result of this section.

Theorem 4.6 Let (C,w)be a polarized nodal curve of compact typewithw good. Let s, k ∈ N

such that

k ≤ 1 + s(gi − 1) for all i = 1, . . . , γ .

Assume that there exists a non-empty irreducible component Xd1,...,dγ of U(C,w)(s ·1, d) such
that 0 < di ≤ s for i = 1, . . . , γ . Then, if r = s + k, we have the following facts:

• there exists an irreducible component Z ofB(C,w)(r ·1, d, k)with dimension βC (r , d, k);
• Z is birational to a fibration over Xd1,...,dγ in grassmannian varieties.

In particular, the Brill-Noether locus B(C,w)(r · 1, d, k) is non-empty.

Proof First of all, we will prove that the general F ∈ Xd1,...,dγ is a w-stable locally free sheaf
with h0(F) = 0. Indeed, by Lemma 4.3 (a), F is obtained by gluing general stable locally
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free sheaves Fi of rank s with deg(Fi ) = di . The relation between F and its restrictions is
given by the exact sequence (see [24])

0 → F →
⊕

i

Fi → T → 0

where T has support on the nodes of C and the rank of T at each node is exactly s. By
[25, Theorem I.3.2], a general Fi ∈ UCi (s, di ) has h

0(Fi ) = 0 since for gi ≥ 2 we have
di + s(1 − gi ) ≤ 0. Then, the above sequence implies h0(F) = 0.

By the assumptions on k, we have k ≤ 1+s(gi −1) ≤ di +(r−k)(gi −1),which implies
kgi ≤ di + r(gi − 1). Since C is of compact type, this implies kpa(C) ≤ d + r(pa(C) − 1).
Then, by [12, Theorem 5.1(b)], there exists an irreducible component Yd1,...,dγ of the moduli
space G(C,w),L(r · 1, d, k) and a dominant morphism ψ : Yd1,...,dγ → Xd1,...,dγ whose fiber
over F is isomorphic to Gr(k, H1(F∗)). By Proposition 4.5, for a general coherent system
(E, V ) ∈ Yd1,...,dγ we have that E is w-stable. Moreover, for a general coherent system
(E, V ) ∈ Yd1,...,dγ we also have that h0(E) = k: this follows from the cohomological exact
sequence induced by exact sequence (4.5) since h0(F) = 0 for F general in Xd1,...,dγ . Then
the forgetfull map

Yd1,...,dγ

f B(C,w)(r · 1, d, k) (E, V ) E

is well defined as rational map. This proves that B(C,w)(r · 1, d, k) is non-empty.
Let Z be the image of f (more precisely, the closure of the image of the domain of f ).

Consider (E, V ) ∈ Yd1,...,dγ general. Since h0(E) = k , we have that f −1(E) = {(E, V )}.
This implies that

dim Z = dim Yd1,...,dγ = βC (r , d, k)

by [12, Theorem 5.1(c)]. Finally, a general element E of Z is a locally free sheaf, w-stable,
with h0(E) = k and the Petri map μE is injective, see [12, Proposition 2.13]. By Proposition
3.3, B(C,w)(r · 1, d, k) is smooth at E and it has dimension βC (r , d, k). This implies that Z
is an irreducible component of B(C,w)(r · 1, d, k). ��
Remark 4.7 Let Z be the irreducible component of B(C,w)(r · 1, d, k) defined by Xd1,...,dγ

in Theorem 4.6. As consequence of the proof we have that if E ∈ Z is locally free and
h0(E) = k (i.e. E /∈ B(C,w)(r · 1, d, k + 1) ), then Z is smooth at E .

In light of Theorem 4.6, in order to obtain irreducible components of B(C,w)(r ·1, d, k), it
is worth to search for non-empty irreducible components Xd1,...,dγ ⊂ U(C,w)((r − k) · 1, d)

such that 0 < di ≤ r −k for all i = 1, . . . , γ . This is equivalent to ask that all the restrictions
Fi of a locally free sheaf F ∈ Xd1,...,dγ have slope μi in (0, 1]. For brevity, in this case, we
will say that Xd1,...,dγ is a component with small slopes.

5 Components with small slopes

Let C be nodal curve of compact type with γ smooth irreducible components with genus
gi ≥ 2 for all i = 1, . . . , γ . Let s, d ∈ N+. In this section we are looking for sufficient
conditions for the existence of components with small slopes of U(C,w)(s ·1, d) for a suitable
good polarization w. We recall that η denotes the canonical polarization on C (see Remark
4.4).
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Proposition 5.1 Let C be a nodal curve as above. Assume that one of the following conditions
hold:

(a) γ ≤ d ≤ s
2 + 1;

(b) s/2 + 1 < d ≤ s, s/2 ≥ (γ − 1) and there exists i ∈ {1, . . . , γ } such that ηi d ≥ s/2;
(c) s/2 + 1 < d ≤ sγ and s/2 ≥ (γ − 1), let n,m ∈ N be such that d = nγ + m with

0 ≤ m < γ and assume

n + 1 − s

2(γ − 1)
< ηi d < n + s

2(γ − 1)
(5.1)

for all but at most one index i ∈ {1, . . . , γ }.
Then, there exists an open neighborhood U of the canonical polarization such that for any
w ∈ U, U(C,w)(s · 1, d) has a non-empty component Xd1,...,dγ with small slopes.

Proof First of all, we chose an ordering of the components of C according to Lemma 2.1.
Hence, in case (b) we can assume that ηγ d ≥ s/2 whereas in case (c) we can require that
condition (5.1) holds for all i = 1, . . . , γ − 1.

Assume now that we are either in case (a) or (b). We will show that (up to the above
reordering) X1,1,...,1,d−γ+1 is not empty for the canonical polarization η, which is good as
we have seen in Remark 4.4. By Lemma 4.3(b), it will be enough to show that d1 = · · · =
dγ−1 = 1 satisfy conditions (�) j for j = 1, . . . , γ − 1 and 0 < d − γ + 1 ≤ s. Lemma
4.3(c) will imply the result for a suitable neighborhood of η.

We have that d1 = · · · = dγ−1 = 1 satisfy condition (�) j for η (i.e. conditions (4.3)) for
any j = 1, . . . γ − 1 if and only if

rkη(OA j )d − s/2 < a j < rkη(OA j )d + s/2 (5.2)

where a j ≥ 1 is the number of components of A j .
We prove now the inequality on the left of (5.2). Under our assumption, we are able to

prove the stronger inequality

rkη(OA j )d − s/2 < 1 (5.3)

for any j = 1, . . . γ − 1.
Indeed, in case (a), Inequality (5.3) follows immediately from the assumption d ≤ s/2+

1. If we are in case (b), assume, by contradiction, that there exists a curve A j such that
rkη(OA j )d ≥ s/2+ 1. Then, since Cγ is not a component of A j for all j = 1, . . . , γ − 1 by
construction, we have

d = d
γ∑

i=1

ηi ≥ rkη(OA j )d + ηγ d ≥ s/2 + 1 + s/2 ≥ s + 1

which is impossible since d ≤ s. Finally, we have (in both cases)

1 ≤ a j ≤ γ − 1 ≤ s/2 < rkη(OA j )d + s/2. (5.4)

which implies the inequality on the right of (5.2).
One then concludes by observing that dγ = d − (γ − 1) is such that 1 ≤ dγ ≤ s by

assumption.
Assume now that we are in case (c). By the hypothesis on d , we have n ≤ s and n ≤ s−1

if m �= 0. Consider any component Xd1,...,dγ where, for any i = 1, . . . γ , di is either equal
to n or to n + 1. In particular we have di = n + 1 for exactly m values of i . We will prove
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Xd1...,dγ is a non-empty component with small slopes for the canonical polarization. The
conditions (�) j for η can be written as follows:

rkη(OA j )d − s/2 <
∑

Ci⊆A j

di < rkη(OA j )d + s/2. (5.5)

Notice that we have

na j ≤
∑

Ci⊆A j

di ≤ (n + 1)a j (5.6)

where, as before, a j is the number of components of A j . Assumption (5.1) implies

rkη(OA j )d − s/2 < na j + s

2(γ − 1)
a j − s

2
= na j + s

2

(
a j − (γ − 1)

γ − 1

)
≤ na j

and

rkη(OA j )d + s/2 > (n + 1)a j − s

2(γ − 1)
a j + s

2
= (n + 1)a j + s

2

(
(γ − 1) − a j

γ − 1

)
≥ (n + 1)a j

which implies the desired conditions using (5.6). ��
Remark 5.2 The conditions (b) and (c) give constraints to the geometric configuration of the
curveC . For example, in case (b), roughly, there is a component with very high genus or with
a lot of nodes on it. More precisely, one has that there exists a unique j such that η j ≥ 1/2.
This is equivalent to say that

δ j ≥ pa(C) − 2g j + 1

where δ j is the number of nodes on C j .

To conclude this sectionwewill focus on two classes of curves of compact type: chain-like
and comb-like curves. In these cases we prove the existence of components with small slopes
for 0 < d ≤ s.

Proposition 5.3 Let C be a chain-like curve with γ ≥ 2 smooth irreducible components.
Assume that

s ≥ 2(γ − 1) and γ ≤ d ≤ s.

Then, there exists a neighborhoodU of the canonical polarization η such that for anyw ∈ U,
U(C,w)(s · 1, d) has a non-empty component Xd1,...,dγ with small slopes.

Proof We assume that the components ofC are ordered "in a natural way" (see Example 2.2),
so that A j = ⋃ j

i=1 Ci for j = 1, . . . , γ − 1. We will prove that there exists a non-empty
component Xd1,...,dγ ⊂ U(C,η)(s · 1, d) satisfying the requests of the Theorem. Then, using
Lemma 4.3(c) we will obtain the result for a suitable neighborhood of η.

By Lemma 4.3(b), the component Xd1,...,dγ corresponds to a γ -uple (d1, . . . , dγ ) ∈ Z
γ

with
∑

di = d and which satisfies Condition (4.3) for all j = 1, . . . γ − 1.
For j = 1, . . . , γ − 1, consider the system

(♦) j :
{

(
∑ j−1

i=1 di ) + 1 ≤ ∑ j
i=1 di ≤ d − (γ − j)

d
∑ j

i=1 ηi − s/2 <
∑ j

i=1 di < d
∑ j

i=1 ηi + s/2 − (γ − j − 1).

Note that if (d1, . . . , d j ) satisfies (♦) j , then it satisfies (4.3) too (for the same index j).
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Claim: For all j = 1, . . . , γ −1, there exists (d1, . . . , d j ) ∈ N
j
>0 which satisfiesCondition

(♦) j . We will prove the claim by recurrence.
Step (A) We prove that there exists an integer d1 satisfying the conditions

(♦)1 :
{
1 ≤ d1 ≤ d − (γ − 1)

dη1 − s/2 < d1 < dη1 + s/2 − (γ − 2)

Note that the system admits real solutions if and only if

(A1) : dη1 − s/2 < d − γ + 1 and (A2) : dη1 + s/2 − γ + 2 > 1.

The above conditions follows easily from the assumption s ≥ 2(γ − 1). Indeed

dη1 − s/2 ≤ dη1 − (γ − 1) < d − γ + 1

dη1 + s/2 − γ + 2 ≥ dη1 + (γ − 1) − γ + 2 ≥ dη1 + 1 > 1.

Now we prove that the above system actually admits integer solutions. Assume first that
d = γ . In this case, since s ≥ 2(γ − 1) we have:

η1d − s/2 = η1γ − s/2 ≤ η1γ − (γ − 1) = γ (η1 − 1) + 1 < 1.

Then, by (A2) it follows that d1 = 1 is the unique solution for (♦)1.
Assume now that d ≥ γ + 1. Note that if dη1 − s/2 < 1, then, by (A2), it follows that

d1 = 1 is again an integer solution. So we only need to check the case dη1 − s/2 ≥ 1. As
s ≥ d , we have that

dη1 + s/2 − γ + 2 = (dη1 − s/2) + (s − γ + 2) ≥ (1) + (d − γ + 2) = d − γ + 3 > d − γ + 1,

so d − γ + 1 is an integer solution for (♦)1. This concludes the proof of Step (A).
If γ = 2, then we are done. Indeed, since 1 ≤ d1 ≤ d − 1 and d1 satisfies (�)1: a

component satisfying our request is Xd1,d−d1 . Hence, from now on, we can assume γ ≥ 3.
Step (B) Assume now that 1 ≤ j ≤ γ − 2. We will prove that if (d1, . . . , di ) ∈ N

i
>0

satisfies (♦)i for all i = 1, . . . , j , then there exists d j+1 ∈ N>0 such that (d1, . . . , d j , d j+1)

satisfies (♦) j+1.
We consider the system

{
(
∑ j

i=1 di ) + 1 ≤ x ≤ d − (γ − j − 1)

d
∑ j+1

i=1 ηi − s/2 < x < d
∑ j+1

i=1 ηi + s/2 − (γ − j − 2).

It admits real solutions if and only if

(B1) : d
j+1∑

i=1

ηi + s/2 − (γ − j − 2) > 1 +
j∑

i=1

di and (B2) : d
j+1∑

i=1

ηi − s/2 < d − (γ − j − 1).

Equation (B1) follows from ♦ j and the assumption s ≥ 2(γ − 1):

d
j+1∑

i=1

ηi + s/2 − (γ − j − 2) = d
j∑

i=1

ηi + s/2 + (γ − j − 1) + (dη j+1 + 1) >

j∑

i=1

di + (dη j + 1) >

j∑

i=1

di + 1.

For (B2) it is enough to use s ≥ 2(γ − 1):

d
j+1∑

i=1

ηi − s/2 < d
j+1∑

i=1

ηi − (γ − 1) ≤ d − (γ − 1) + j = d − (γ − j − 1).

123



Geometriae Dedicata (2023) 217 :35 Page 21 of 23 35

Finally, the same argument of the proof of Step (A) allows us to show that there exists
integer solutions. Let x be an integer solution, we set d j+1 = x − ∑ j

i=1 di . It follows that
1 ≤ d j+1 ≤ d − 1 < s and that (d1, . . . , d j+1) satisfies (�) j+1.

Step (C) By recurrence we produce a γ -uple (d1, . . . , dγ ) ∈ N
γ
>0 with

∑γ

i=1 di = d ,
which satisfies (�) j for any j = 1, . . . , γ − 1 and with 1 ≤ di ≤ s − 1. Then Xd1,...,dγ is a
non-empty irreducible component of the moduli space U s

(C,η)(s · 1, d). ��
Proposition 5.4 Let C be a comb-like curve with γ ≥ 3 smooth irreducible components.
Assume that

s ≥ 2(γ − 1) and γ ≤ d ≤ s.

Then, there exists a neighborhoodU of the canonical polarization η such that for anyw ∈ U,
U(C,w)(s · 1, d) has a non-empty component Xd1,...,dγ with small slopes.

Proof We can assume that the components of C are ordered so that Cγ is the “grip” of C ,
i.e. Cγ is the component with γ − 1 nodes (see Example 2.3). As in the previous case, we
are looking for a γ -uple (d1, . . . , dγ ) ∈ N

γ
>0 with

∑
di = d and which satisfies the stability

Condition (4.3) for any j = 1, . . . γ − 1 for the canonical polarization. With the chosen
ordering, we have A j = C j for all j = 1, . . . , γ − 1 so that the above stability condition
can be written as

dη j − s/2 < d j < dη j + s/2. (5.7)

We can assume that dη j < s/2 + 1 for all j = 1, . . . , γ since, otherwise, we can conclude
using Proposition 5.1(b). Then, it is easy to see that for all j = 1, . . . , γ − 1, d j = 1
satisfy the Inequality (5.7). Since γ − 1 < d by assumption we have that X1,...,1,d−(γ−1) is
a non-empty irreducible component of the moduli space U s

(C,η)(s · 1, d). ��
As a consequence of Propositions 5.1, 5.3 and 5.4 and Theorem 4.6, we obtain the fol-

lowing result:

Theorem 5.5 Let C be a curve of compact type with γ ≥ 2 smooth irreducible components
Ci of genus gi ≥ 2. Let d, s and k be integers such that

k ≤ 1 + s(gi − 1) for all i = 1, . . . , γ .

Assume, furthermore, that one of the following conditions holds:

• d, s and γ satisfy one of the three conditions of Proposition 5.1;
• C is either a chain-like or comb-like curve, s ≥ 2(γ − 1) and γ ≤ d ≤ s.

Then, setting r = s + k, the Brill-Noether locus B(C,w)(r · 1, d, k) is non-empty whenever
w lies in a suitable open neighborhood of the canonical polarization. Moreover, it has an
irreducible component of dimension βC (r , d, k).

We conclude the section with the following conjecture:

Conjecture 5.6 The Brill-Noether locus B(C,w)((s + k) · 1, d, k) is not empty whenever

2(γ − 1) ≤ s, γ ≤ d ≤ s and kgi ≤ 1 + s(gi − 1),∀i = 1, . . . γ,

for any curve of compact type and w in a suitable neighborhood of η.
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