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Abstract. The type IIB matrix model, also known as the IKKT model,
has been proposed as a promising candidate for a non-perturbative
formulation of superstring theory. Based on this proposal, various at-
tempts have been made to explain how our four-dimensional space-time
can emerge dynamically from superstring theory. In this article, we re-
view the progress in numerical studies on the type IIB matrix model.
We particularly focus on the most recent results for the Euclidean and
Lorentzian versions, which are obtained using the complex Langevin
method to overcome the sign problem. We also review the earlier re-
sults obtained using conventional Monte Carlo methods and clarify the
relationship among different calculations.
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1 Introduction

The type IIB matrix model, also known as the IKKT model [1], is regarded as one
of the most promising candidates for a non-perturbative formulation of superstring
theory. The model is defined by dimensionally reducing ten-dimensional N = 1 super
Yang–Mills theory to zero dimensions. Therefore, space-time does not exist a priori
in this model. We interpret the eigenvalues of the bosonic matrices as the space-
time coordinates, and hence, space-time is generated dynamically from the degrees of
freedom of the matrices [2]. Since superstring theory is defined in ten dimensions, it is
important to understand how our four-dimensional space-time emerges by studying
this model.

Various attempts have been made to address this question. In the Lorentzian
version of the type IIB matrix model, the indices are contracted by the metric ηµν =
diag(−1, 1, . . . , 1), and the action has the SO(9,1) symmetry. The bosonic action is
unbounded from below, and this is why no one has dared to study the Lorentzian
version numerically for a long time. Instead, the efforts have been focused on the
Euclidean version [3,4,5,6,7,8,9,10,11,12], which is defined by making a Wick rotation
with respect to the temporal direction, and contracting the indices by the Euclidean
metric δµν = diag(1, 1, . . . , 1).

The Euclidean version has the SO(10) rotational symmetry instead of the SO(9,1),
and it is amenable to numerical simulations because the partition function is finite
without any cutoffs [13,14]. However, it suffers from a severe sign problem, which
appears after integrating out the fermions. The complex Pfaffian (determinant in the
simplified four or six-dimensional SUSY models) plays a central role in the sponta-
neous symmetry breaking (SSB) of the SO(10) rotational symmetry [15,16]. In models
where there are no fermionic degrees of freedom, like the bosonic model, or the Pfaf-
fian is real positive, like in the four-dimensional SUSY model, there is no SSB of the
rotational symmetry [3,4,17]. There is no SSB, either, in the phase-quenched model,
which omits the complex phase of the Pfaffian [10]. Thus, to study the SSB of the
rotational symmetry, one should take into account the complex phase, for instance
by reweighting, in which case the important configurations are generally different be-
tween the original model and its phase-quenched version, leading to a severe overlap
problem. To reduce this problem, the factorization method [6,7,8,9,10] simulates a
constrained system, in which the expectation value of the phase factor is calculated
to determine the true vacuum. The results are consistent with the SSB pattern of
SO(10) to SO(3) predicted using the Gaussian expansion method (GEM) [18,19].
While this is an interesting dynamic property, its relevance to our four-dimensional
space-time is unclear.

This observation led to the Monte Carlo simulation of the Lorentzian version
of the type IIB matrix model [20,21,22,23]. The problem of the unbounded bosonic
action was solved using separate cutoffs in the temporal and spatial directions [20].
Although the Pfaffian is real, the model has a severe sign problem due to the bosonic
part of the action Sb, which appears with a factor eiSb in the partition function. To
avoid it, the authors in Ref. [20] used an approximation, and they found that three
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out of nine spatial dimensions start to expand after a critical time. This moment,
which results from the dynamics of the model, may be identified as the birth of the
universe. Later works [21,22] computed the expansion rate of the universe numerically,
which starts with an exponential-law expansion at early times, followed by a power-
law expansion at late times. However, the authors in Ref. [23] found that, because of
the approximation, the effect is due to the domination of almost three–dimensional
configurations with a singular Pauli-matrix structure.

The complex Langevin method (CLM), a stochastic process for complexified vari-
ables, is a promising method for simulating a system that suffers from the sign prob-
lem [24,25]. Recently, the CLM has attracted a lot of attention because the condition
for the equivalence to the original path integral has been clarified [26,27,28,29]. The
authors of Refs. [11,12] applied the CLM to the Euclidean version of the type IIB
matrix model, and they reproduced the SSB of the SO(10) symmetry to SO(3). The
application of the CLM to the Lorentzian version [30,31,32] may elucidate the space-
time structure that emerges when we exclude the approximation to avoid the sign
problem. While this is still an ongoing work, there are some preliminary results [32]
that look quite promising.

In this article, we review the exciting progress in numerical studies on the type
IIB matrix model. The rest of this article is organized as follows. In Sec. 2, we provide
a review of the type IIB matrix model as a promising nonperturbative formulation
of superstring theory. In Sec. 3, we review the numerical studies on the Euclidean
version using the factorization method and those on the Lorentzian version using the
approximation to avoid the sign problem. In Sec. 4 we provide an overview of the CLM
and discuss its application to the Euclidean and Lorentzian versions. Sec. 5 is devoted
to a summary and an outlook. See Refs. [33,34,35,36,37,38] for other recent studies
on the type IIB matrix model, which suggest possible applications to cosmology. The
reader may also consult earlier reviews [39,40,41,42,43,44,45,46] and the references
therein.

2 The type IIB matrix model

In this section, we review the type IIB matrix model, focusing on how the space-
time appears in this model. We also discuss the reason why it can be regarded as a
nonperturbative formulation of superstring theory.

2.1 Symmetries of the type IIB matrix model

The action of the type IIB matrix model [1] is given by

S = Sb + Sf , (1)

Sb = − 1

4g2
tr([Aµ, Aν ][A

µ, Aν ]) , (2)

Sf = − 1

2g2
tr
(

ψ̄α(Γ
µ)αβ [Aµ, ψβ ]

)

, (3)

where the Aµ (µ = 0, 1, 2, . . . , 9) are bosonic N × N Hermitian matrices, the ψα

(α = 1, . . . , 16) are fermionic N × N Hermitian matrices, and the Γµ are the ten-
dimensional gamma matrices. The action is obtained by dimensionally reducing the
ten-dimensional N = 1 super Yang–Mills theory (SYM) to zero dimensions. Hence,
space-time does not exist a priori in this model. Note, however, that the action has
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ten-dimensional Lorentz symmetry; namely, it is invariant under the SO(9,1) trans-
formation in which Aµ and ψα are transformed as a vector and a Majorana-Weyl
spinor, respectively. Since g is merely a scale factor that can be absorbed by rescaling
Aµ and ψα, in what follows, we set g2N = 1 without loss of generality.

One can easily see that the action is also invariant under the following transfor-
mations:

{

δ(1)Aµ = iǭ1Γµψ ,
δ(1)ψ = i

2Γ
µν [Aµ, Aν ]ǫ1 ,

(4)

{

δ(2)Aµ = 0 ,
δ(2)ψ = ǫ21N ,

(5)

{

δtranslAµ = cµ1N ,
δtranslψ = 0 ,

(6)

{

δgaugeAµ = i[λ,Aµ] ,
δgaugeψ = i[λ, ψ] ,

(7)

where ǫ1 and ǫ2 are Grassmann odd parameters with Majorana-Weyl spinor indices,
cµ is a vector parameter, and λ is a parameter that is a N × N Hermitian matrix.
The transformations (4) and (7) are nothing but the dimensional reduction of the
supersymmetry transformation and the gauge transformation in ten-dimensionalN =
1 SYM, respectively.

We denote the generators of the transformations (4), (5) and (6) by Q(1), Q(2)

and Pµ, respectively, and define Q̃(1) and Q̃(2) by

Q̃(1) = Q(1) +Q(2) ,

Q̃(2) = i(Q(1) −Q(2)) . (8)

Then, using the equation of motion for ψ

Γµ[Aµ, ψ] = 0 , (9)

we find the relation

[ǭ1Q̃
(i), ǭ2Q̃

(j)] = −2δij ǭ1Γ
µǫ2Pµ , (10)

up to terms proportional to the gauge transformation (7).
Note that, if Eq. (6) is identified with the translation, then Eq. (10) is the algebra

of ten-dimensional N = 2 supersymmetry1. This suggests that the eigenvalues of Aµ

can be interpreted as ten-dimensional coordinates [2]. Thus, space-time is generated
dynamically from the degrees of freedom of the bosonic matrices. Since N = 2 super-
symmetry in ten dimensions is maximal, any theory with this symmetry must include
gravitons, provided that the theory is unitary and has a massless spectrum. There-
fore, the fact that the type IIB matrix model possesses the symmetries generated by
Q(1), Q(2) and Pµ suggests strongly that it includes gravity.

2.2 Connection to the type IIB superstring theory

In this subsection, we discuss the connection of the type IIB matrix model to type
IIB superstring theory, which is a perturbative formulation of superstring theory.

1 This is an on-shell supersymmetry because the equation of motion (9) is used.
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First, the matrix model can be viewed as a matrix regularization of the worldsheet
formulation of type IIB superstring theory [1]. If one considers the Green–Schwarz
action of the IIB superstring in the Schild gauge [47]

SSchild =

∫

d2σ
√
g

(

1

4
{Xµ, Xν}2 −

i

2
ψ̄Γµ{Xµ, ψ}

)

, (11)

then we can use the semiclassical correspondence, valid in the large–N limit,

{ , } → −i [ , ]
∫

d2σ
√
g → tr (12)

to obtain the action (1).
Second, while the worldsheet formulation is the first quantization of superstrings,

the matrix model is expected to give a second quantization because multiple string
worldsheets appear naturally as block-diagonal configurations, where each block rep-
resents a single string worldsheet. The fluctuations of off-diagonal blocks are consid-
ered to represent the interaction between the worldsheets.

Third, the long-distance behavior of the interaction between D-branes in type IIB
superstring theory is reproduced by the one-loop calculation in the matrix model [1].

Finally, by identifying the matrix model “Wilson loops”

WC = tr

M
∏

n=1

exp
{

iǫ(kµnAµ + λ̄nψ)
}

, (13)

with the regularized creation operators of strings, the light-cone string field theory
for type IIB superstrings is derived from the Schwinger-Dyson equations for the loops
under a few reasonable assumptions [48,39]. In the above formula, kµn is identified
with the momentum density on the (fundamental) string, and λn with the fermionic
sources. The short-distance cutoff ǫ is expected to appear dynamically, and vanish
in the large–N limit, in a way that the WC remain finite. This double scaling limit
depends nontrivially on the nonperturbative dynamics of the model [4,49].

We conclude that the matrix model can reproduce the perturbative expansion in
type IIB superstring theory to all orders. In this manner, the matrix model has a direct
connection to a perturbative formulation of superstring theory. In this connection,
we see again that the eigenvalues of the matrices are identified with the space-time
coordinates.

Let us recall the so-called string duality, which states that each perturbative for-
mulation of superstring theory corresponds to a point in the moduli space of the
unique superstring theory. Assuming that this is true, one should be able to obtain
the whole theory by starting from any point in the moduli space using a theory defined
in a non-perturbative manner. Thus, the direct connection to type IIB superstring
theory, together with the fact that the model is defined without relying on pertur-
bation theory, ensures that the type IIB matrix model can be a non-perturbative
formulation of superstring theory.

3 Conventional Monte Carlo methods

In this section, we review the numerical studies of the type IIB matrix model based
on conventional Monte Carlo methods. In particular, we discuss simulations of the
Euclidean IIB matrix model based on the factorization method, and simulations of
the Lorentzian version based on an approximation to avoid the sign problem.
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3.1 Euclidean version of the type IIB matrix model

Historically, the Euclidean version of the type IIB matrix model and related sim-
plified models were studied numerically [3,4,5,6,7,8,9,10,11,12] before the Lorentzian
IIB matrix model. This is because the Euclidean version is finite without any cut-
off [13,14], and taking the large–N limit is more straightforward. Furthermore, the
Euclidean model appears to be simpler to simulate because the action enters the
partition function without an i, as in the conventional approach to simulating lattice
quantum field theories. Therefore, the model without fermions is easy to simulate
using the usual Monte Carlo methods, without a sign problem. Unfortunately, when
we consider dynamical fermions, the system has a strong complex action problem,
which has to be addressed with various methods.

In this section, we consider the factorization method [6,50,51,52,53,7,9,10]. Using
this approach, it is possible to obtain evidence that the SSB of SO(10) rotational
symmetry to SO(3) occurs due to the strong fluctuations of the phase of the Pfaffian.

3.1.1 The definition of the model and the SSB

In the Euclidean version, the temporal direction is Wick-rotated as

A10 = −iA0, Γ10 = iΓ 0, (14)

and the indices µ, ν = 1, 2, . . . , 10 are contracted using the Euclidean metric δµν =
diag(1, 1, 1, . . . , 1). We adopt the following representation for the gamma matrices:

Γ1 = iσ2 ⊗ σ2 ⊗ σ2 ⊗ σ2, Γ2 = iσ2 ⊗ σ2 ⊗ 1⊗ σ1, Γ3 = iσ2 ⊗ σ2 ⊗ 1⊗ σ3

Γ4 = iσ2 ⊗ σ1 ⊗ σ2 ⊗ 1, Γ5 = iσ2 ⊗ σ3 ⊗ σ2 ⊗ 1, Γ6 = iσ2 ⊗ 1⊗ σ1 ⊗ σ2

Γ7 = iσ2 ⊗ 1⊗ σ3 ⊗ σ2, Γ8 = iσ1 ⊗ 1⊗ 1⊗ 1, Γ9 = iσ3 ⊗ 1⊗ 1⊗ 1

Γ10 = 1⊗ 1⊗ 1⊗ 1, (15)

where σi (i = 1, 2, 3) are the Pauli matrices.
The partition function of the Euclidean model is given by

ZE =

∫

dAdψe−(Sb+Sf) =

∫

dAe−SbPf M =

∫

dAe−Seff , (16)

where M is a 16(N2 − 1)× 16(N2 − 1) antisymmetric matrix, defined by the linear
transformation

ψα → (Mψ)α = (Γµ)αβ [Aµ, ψβ] , (17)

acting on the linear space of traceless complex N × N matrices ψα. The effective
action Seff is defined as

Seff = Sb − log Pf M. (18)

The dynamical compactification of space-time occurs when the SO(10) rotational
symmetry is spontaneously broken. As an order parameter for the SSB we use the
“moment of inertia tensor” defined by

Tµν =
1

N
tr(AµAν). (19)
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We order its eigenvalues λn (n = 1, 2, . . . , 10) as λ1 ≥ λ2 ≥ · · · ≥ λ10 before taking
the VEV. If 〈λ1〉, . . . , 〈λd〉 grow and 〈λd+1〉, . . . , 〈λ10〉 shrink in the large–N limit,
this signals the SSB of SO(10) to SO(d); namely the dynamical compactification of
the ten-dimensional space-time to d-dimensions. This scenario has been studied using
the GEM in Refs. [18,19]. The results for the SO(d) symmetric vacua with 2 ≤ d ≤ 7
are summarized as follows:

1. The extent of the shrunken directions r = limN→∞

√
λn (n = d + 1, . . . , 10) is

r2 ≃ 0.155, which does not depend on d (universal compactification scale).
2. The ten-dimensional volume of the Euclidean space-time does not depend on
d except for d = 2 (constant volume property). The volume is given by V =
(Rd)

dr10−d = ℓ10 with l2 ≃ 0.383, where we define the extent of the extended
directions by Rd = limN→∞

√
λn (n = 1, 2, . . . , d).

3. The free energy takes a minimum value at d = 3, which suggests the dynamical
emergence of three-dimensional space-time.

While these are interesting dynamical properties, their relevance to our four-dimensional
space-time remains unclear.

3.1.2 Absence of the SSB without the complex phase

The Euclidean model suffers from a severe complex action problem due to the complex
phase of Pf M. It is actually the strong fluctuations of this complex phase that provide
the mechanism for the dynamical compactification of space-time [15,16].

Note first that Pf M is real for nine-dimensional configurationsA10 = 0. Moreover,
Pf M vanishes for two-dimensional configurations A3 = · · · = A10 = 0. Let us define
the phase of the Pfaffian Γ as

Pf M = |Pf M|eiΓ . (20)

When a configuration is d-dimensional (3 ≤ d ≤ 8), we find that

∂mΓ

∂Aa1
µ1 . . . ∂A

am
µm

= 0 , (21)

form = 1, 2, . . . , 9−d, whereAa
µ are the coefficients in the expansionAµ =

∑N2−1
a=1 Aa

µT
a

with respect to the SU(N) generators T a. This is because the configuration is at most
nine-dimensional, up to the (9−d)-th order of perturbations. Thus, the phase of Pf M
becomes more stationary for lower dimensions for 3 ≤ d ≤ 8. This suggests that the
complex phase Γ plays a key role in the dynamical compactification of space-time.

The four-dimensional version of the Euclidean type IIB matrix model was studied
in Refs. [4,17] using Monte Carlo simulations. For this model detM > 0, there is no
sign problem, and the SO(4) rotational symmetry is not broken.

In Ref. [10], the phase-quenched partition function

Z0 =

∫

dAe−Sb |Pf M| =
∫

dAe−S0 , where S0 = Sb − log|Pf M| (22)

was studied numerically. In Fig. 1 (Left), the VEVs 〈λn〉0 are plotted, where 〈· · · 〉0
is the VEV with respect to the phase-quenched partition function (22). We see that
the 〈λn〉0 converge to l2 ≃ 0.4 at large N for all n = 1, 2, . . . , 10. These results are
consistent with the absence of the SSB of the SO(10) rotational symmetry, and the
constant volume property with l2 ≃ 0.383 predicted by the GEM.
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3.1.3 Monte Carlo studies using the factorization method

The partition function (16) has a severe complex action problem, and it was studied
using the factorization method in Ref. [10]. The partition functions (16) and (22) favor
non overlapping regions of the configuration space, and that leads to a serious overlap
problem. Using the factorization method, we can overcome the overlap problem, and
perform importance sampling efficiently [6,7,8,9,10].

The density of states ρn(x) for the normalized observable λ̃n = λn

〈λn〉0
has the

factorization property

ρn(x) =
〈

δ(x − λ̃n)
〉

=

∫

dAe−S0eiΓ δ(x− λ̃n)
∫

dAe−S0

/
∫

dAe−S0eiΓ
∫

dAe−S0

=
1

〈eiΓ 〉0
×

∫

dAe−S0δ(x− λ̃n)
∫

dAe−S0
×

∫

dAe−S0eiΓ δ(x− λ̃n)
∫

dAe−S0δ(x− λ̃n)

=
1

〈eiΓ 〉0

〈

δ(x− λ̃n)
〉

0
〈eiΓ 〉n,x, (23)

where 〈· · · 〉, 〈· · · 〉0 and 〈· · · 〉n,x are the VEVs with respect to the partition functions
(16), (22) and (24), respectively, where

Zn,x =

∫

dAe−S0δ(x− λ̃n). (24)

We denote the quantities in Eq. (23) as

C = 〈eiΓ 〉0, ρ(0)n (x) =
〈

δ(x− λ̃n)
〉

0
, wn(x) = 〈eiΓ 〉n,x. (25)

In this method, it is important that there is no need to calculate C, and that we only
have to calculate wn(x) in the relevant region of x.

By constraining the eigenvalue λn to some value smaller than 〈λn〉0 with n = d+1
[9,10], we can probe the SO(d) vacuum, where the larger eigenvalues λ1, . . . , λn−1

correspond to the extended directions. When N is large enough, the VEV is estimated
by 〈λ̃n〉 ≃ x̄n, where x̄n is the position of the peak of ρn(x). Thus, our task reduces
to finding the minimum of the free energy,

FSO(d)(x) = − 1

N2
log ρn(x) with n = d+ 1, (26)

which amounts to solving the saddle-point equation

1

N2
f (0)
n (x) = − d

dx

1

N2
logwn(x), where f (0)

n (x) =
d

dx
log ρ(0)n (x). (27)

To do this, we simulate the partition function (24) using the RHMC (Rational
Hybrid Monte Carlo) algorithm [54], whose details2 are given in the Appendix A of
Ref. [9]. The quantity wn(x) has a large–N scaling behavior at small x given by

1

N2
logwn(x) ≃ −anx11−n − bn, (28)

2 In RHMC, we introduce the pseudofermion as in Eq. (A.3) of Ref. [9]. Later, it turned
out to be more convenient to update the pseudofermion by the heatbath algorithm instead
of solving the Hamilton equation (A.6) of Ref. [9].
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Fig. 1. (Left) The VEVs 〈λn〉0 with respect to the phase-quenched partition function (22)

up to N = 32. Quoted from Fig. 1 of Ref. [10]. (Middle) 1
N2 f

(0)
n (x) − gn(x)

Nx
up to N = 24,

and − d
dx

Φn(x) for n = 4. Their intersection gives the solution x̄4. Quoted from Fig. 2 of
Ref. [10]. (Right) 1

N2 logwn(x) for n = 3, 4, N = 12, 16 and n = 5, N = 12. Quoted from
Fig. 3 of Ref. [10].

which we use to obtain the large–N limit

Φn(x) = lim
N→∞

1

N2
logwn(x). (29)

The large–N scaling behavior of f
(0)
n (x) in the region 0.4 ≤ x ≤ 1 is approximated by

x

N
f (0)
n (x) ≃ gn(x), where gn(x) = cn(x− 1) + dn(x− 1)2. (30)

In Fig. 1 (Middle), we plot 1
N2 f

(0)
n (x) − gn(x)

Nx
, where the second term is subtracted

to reduce the finite-N effects. We find that the solution x̄n for n = 4 is close to the

GEM prediction r2

ℓ2
≃ 0.155

0.383 = 0.404 · · · . Similar results are also obtained for n = 3
and n = 5.

The free energy at x = x̄n is given by

FSO(d)(x̄n) =

∫ 1

x̄n

1

N2
f (0)
n (x)dx − 1

N2
logwn(x̄n) with n = d+ 1. (31)

The first term becomes negligible at large N in the region 0.4 ≤ x ≤ 1 due to the
scaling (30), and we can estimate Eq. (31) from 1

N2 logwn(x) at x = x̄n ≃ 0.4 obtained
from Fig. 1 (Right). While it is difficult to compare FSO(3) and FSO(4), we clearly see
that FSO(2) is higher than FSO(3) and FSO(4), which implies that the SO(2) vacuum
is disfavored.

3.2 Lorentzian version of the type IIB matrix model

In this section, we review the results obtained for the Lorentzian version of the type
IIB matrix model in Refs. [20,21,22,23]. Here, we introduce infrared cutoffs to cure
the problems associated with the unbounded action and the flat directions of the
Lorentzian model. To avoid the sign problem due to the phase factor eiSb in the
partition function, we use an approximation, which enables us to investigate the
model by conventional Monte Carlo methods. We observe the emergence of (3+1)-
dimensional expanding space-time, where the expansion is exponential at early times
and power law at late times. On the other hand, it turns out that the space has a
singular Pauli-matrix structure, which implies that the emergent space is not smooth.
It turns out that that the approximation used to avoid the sign problem amounts to
replacing eiSb by eβSb for some positive coefficient β (see Section 4).
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3.2.1 Definition of the model

In the Lorentzian model, the indices are contracted using the Lorentzian metric ηµν =
diag(−1, 1, 1, . . . , 1) and we do not Wick-rotate the matrices as in Eq. (14). The
gamma matrices are the same as those in Eq. (15), except for

Γ0 = −Γ 0 = iΓ10 = i1⊗ 1⊗ 1⊗ 1. (32)

The partition function for the Lorentzian model is given by

ZL =

∫

dAdψei(Sb+Sf) =

∫

dAeiSbPf M. (33)

The bosonic part of the action is not bounded from below because

tr(FµνF
µν) = −2tr(F0I)

2 + tr(FIJ )
2, (34)

where Fµν = −i[Aµ, Aν ]. To deal with this problem we introduce the infrared cutoffs
L, κ from the relations

1

N
tr(A2

0)
p ≤ κp

1

N
tr(A2

I)
p, (35)

1

N
tr(A2

I)
p ≤ L2p (36)

for some p (1 ≤ p < 2), as in Refs. [20,21,22,23]. While the Pfaffian Pf M is real
in this case, the model suffers from the sign problem coming from the factor eiSb in
Eq. (33). To avoid this sign problem, we approximate the partition function (33) by3

Z ′
L =

∫

dAPf M δ

(

1

N
trFµνF

µν

)

δ

(

1

N
tr{(AI)

2}p − 1

)

× θ

(

κp − 1

N
tr{(A0)

2}p
)

, (37)

where θ(x) is the Heaviside step function. The partition function (37), which is es-
sentially free from the sign problem, has been studied using the RHMC algorithm.

3.2.2 The emergence of (3+1)D expanding space-time

To extract the time evolution of space from the matrix configurations, we fix the
“gauge” by diagonalizing A0 as

A0 = diag(α1, α2, . . . , αN ) (38)

using an SU(N) transformation. In this basis, the spatial matrices Ai can have a band-
diagonal structure with the bandwidth n. When this happens in an actual simulation,
we can regard the n× n submatrices

(ĀI)ab(tρ) = (AI)ρ+a,ρ+b (a, b = 1, 2, . . . , n, ρ = 0, 1, 2, . . . , N − n) (39)

of the spatial matrices as a state corresponding to the time

tρ =
1

n

n
∑

I=1

αρ+I . (40)

3 See the Appendix A of Ref. [21] for an argument for its justification.
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Fig. 2. (Left) The 9 eigenvalues of TIJ (t) are plotted as a function of t for N = 16, n = 4, κ =
4.0, L = 1, p = 1. After the critical time tc, 3 eigenvalues become larger. Quoted from Fig. 2
of Ref. [20]. (Middle) R2(t) normalized by R2(tc) are plotted against x = (t−tc)/R(tc) for the
bosonic model at (N,n) = (128, 20), (256, 24), (384, 28), (512, 32), L = 1, p = 1, without the
constraint (35). Quoted from Fig. 6 of Ref. [22]. (Right) The eigenvalues of Q(t) normalized
by R2(tc) are plotted against x = (t − tc)/R(tc) for the bosonic model with N = 256, n =
18, κ = 1, L = 1, p = 1.5. Quoted from Fig. 1 of Ref. [23].

We define the 9× 9 real symmetric tensor

TIJ(t) =
1

n
tr
(

ĀI(t)ĀJ (t)
)

, (41)

to be the order parameter of the SSB of SO(9) symmetry. The 3 out of the 9 eigen-
values of the tensor TIJ(t) start to increase at a critical time tc as shown in Fig. 2
(Left), which suggests the SSB of SO(9) to SO(3) [20].

It is interesting to study the expanding behavior of the universe in this model
at late times [21,22], which requires simulations at large N . We define the extent of
space at time t as

R2(t) =

〈

1

N
tr

9
∑

I=1

(ĀI(t))
2

〉

. (42)

In Fig. 2 (Middle), R2(t) normalized by R2(tc) is plotted against x = (t − tc)/R(tc)
for the bosonic model. This suggests an exponential expansion of the universe at early
times, followed by a power-law expansion at later times.

On the other hand, the expanding three-dimensional space turns out to have a
Pauli-matrix structure [23]. To see it, let us introduce a n× n matrix

Q(t) =

9
∑

I=1

(ĀI(t))
2. (43)

In Fig. 2 (Right), the eigenvalues qk(t) of Q(t), normalized by R2(tc), are plotted
against x = (t − tc)/R(tc) for the bosonic model [23]. It was found that only 2 of
the eigenvalues expand4. This was attributed to the approximation to avoid the sign
problem, which leads us to take the effect of the complex phase into full account.

4 Complex Langevin Method

In this section, we discuss how the type IIB matrix model can be studied by the
CLM [24,25], which is a promising way to study complex-action systems numerically.

4 In Ref. [23], the appearance of the Pauli-matrix structure was confirmed more explicitly.
It was also shown that the situation does not change even in the large–N limit or in the
presence of supersymmetry.
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The first step in this direction was taken in Ref. [30]. We review the results obtained
by this method for the Euclidean and Lorentzian versions. In the Euclidean version,
we confirm the SSB from SO(10) to SO(3), which was suggested by the GEM as
discussed in Section 3.1.1. We also find that the Lorentzian version without any
cutoff is actually equivalent to the Euclidean version, which implies, in particular,
that the space-time that emerges in the Lorentzian version is actually complex. This
motivates us to introduce a Lorentz-invariant mass term to the action. When the
coefficient is sufficiently large, a classical solution describing real space-time with
expanding behavior dominates the path integral. Furthermore, preliminary results
for the bosonic model suggest the possibility of the SSB of SO(9) symmetry, as the
coefficient of the mass term gets smaller.

4.1 Application of the CLM to the type IIB matrix model

The CLM consists of solving the complexified version of the Langevin equation. The
following exposition is based on the Euclidean version of the type IIB matrix model,
but the Lorentzian version can be worked out similarly. The complex Langevin equa-
tion is given by

d(Aµ)kl(σ)

dσ
= − ∂Seff

∂(Aµ)lk
+ (ηµ)kl(σ), (44)

where Seff is defined by Eq. (18), and σ is the fictitious Langevin time. The traceless
Hermitian matrices (ηµ)kl(σ) are stochastic variables which follow the probability
distribution exp

(

− 1
4

∫

dσtrη2µ(σ)
)

. Note that the Hermiticity of Aµ cannot be main-
tained as the Langevin time σ evolves due to the complex action Seff, which forces
the Aµ to be general traceless complex matrices.

The VEV of an observable O is evaluated from

〈O[Aµ]〉 =
1

T

∫ σ0+T

σ0

dσO[Aµ(σ)], (45)

where σ0 is the thermalization time. The holomorphicity of O plays an essential role
in showing the validity of Eq. (45) [26,27,29].

We call the term ∂Seff

∂(Aµ)lk
in Eq. (44) the drift term, which contains a term

− ∂

∂(Aµ)lk
log Pf M = −1

2
Tr

(

∂M
∂(Aµ)lk

M−1

)

, (46)

where Tr represents the trace with respect to a 16(N2 − 1)× 16(N2− 1) matrix. The
direct calculation of the trace has a cost of O(N6) in CPU time, and we make use of
the “noisy estimator” [55] based on the identity

Tr

(

∂M
∂(Aµ)lk

M−1

)

=

〈

χ∗ ∂M
∂(Aµ)lk

M−1χ

〉

χ

. (47)

The average 〈· · · 〉χ is taken with respect to the Gaussian noise χ, which represents

a 16(N2 − 1)-dimensional vector whose components are complex Gaussian random
variables normalized as 〈χ∗

kχl〉 = δkl. The quantity ζ = M−1χ is calculated by solving

the linear equation M†Mζ = M†χ using the conjugate gradient (CG) method. This
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is possible because M†M is positive semi-definite. The multiplication of M and M†

is done using Eq. (17) and5

ψα → (M†ψ)α = (Γ †
µ)αβ [A

†
µ, ψβ ], (48)

and each one costs O(N3) in CPU time. The total cost of the simulation is domi-
nated by this procedure, and its scaling with N depends on the number of CG steps
necessary for convergence.

The Langevin equation (44) is put on a computer by discretizing it as

(Aµ)kl(σ +∆σ) = (Aµ)kl(σ) −∆σ
∂Seff

∂(Aµ)lk
+
√
∆σ(η̃µ)kl(σ), (49)

where ∆σ is the step size. The factor
√
∆σ comes from the normalization of the noise

η̃µ, which follows a probability distribution proportional to exp
(

− 1
4

∑

σ trη̃
2
µ(σ)

)

.
To extract a reliable result equivalent to the path integral from the CLM, we

need to avoid the following two problems. One is the excursion problem in the anti-
Hermitian direction, which occurs when Aµ is too far from being Hermitian. The
other is the singular drift problem, which occurs when the drift term becomes large
due to the eigenvalues of M accumulating near zero, as can be seen from Eq. (46).

A useful criterion for the absence of both these problems has been proposed in
Ref. [29]. One computes the distribution of the drift norm

u =

√

√

√

√

1

10N3

10
∑

µ=1

N
∑

k,l=1

∣

∣

∣

∣

∂Seff

∂(Aµ)lk

∣

∣

∣

∣

2

, (50)

and when it falls off exponentially or faster, the CLM can be justified. This criterion
is satisfied for all the parameter regions shown in this article.

In the Euclidean model, we do not introduce a “gauge fixing” (38), but in that case,
we need to use the technique called gauge cooling [56,57] to keep Aµ close to Hermitian
matrices. This technique amounts to making a complexified gauge transformation
after each step of solving the discretized Langevin equation in such a way that the

Hermiticity norm NH = − 1
10N

∑10
µ=1 tr(Aµ −A†

µ)
2 is minimized.

4.2 CLM for the Euclidean model

The CLM has been applied to the Euclidean model (16) in Refs. [11,12]. In order to
probe the SSB and avoid the singular drift problem, the action (18) was deformed by
the terms [58]

∆Sb =
N

2
ε

10
∑

µ=1

mµtr(Aµ)
2, (51)

∆Sf = −imf
N

2
tr(ψα(CΓ8Γ

†
9Γ10)αβψβ) , (52)

where the mµ satisfy 0 < m1 ≤ · · · ≤ m10. We expect to see the SSB by sending the
explicit rotational symmetry breaking parameter to ε = 0 after taking the large–N
limit. We consider the order parameter,

λµ =
1

N
tr(Aµ)

2 (µ = 1, 2, . . . , 10), (53)

5 Note that Aµ is no more Hermitian in the CLM.
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Fig. 3. ρµ(mf, ε), which are obtained by the large–N extrapolation based on ρµ(mf, ε,N)
up to N = 128, are plotted for mf = 1.4 (Left), mf = 1.0 (Middle) and mf = 0.7 (Right).
Quadratic fits are made with respect to ε. The curves from top to bottom are 1

2
(ρ1 + ρ2),

ρ3, ρ4, ρ5,
1
2
(ρ6 + ρ7) and 1

3
(ρ8 + ρ9 + ρ10), where we take averages for µ = 1, 2, µ = 6, 7

and µ = 8, 9, 10 to increase statistics. Quoted from Fig. 2 of Ref. [12].

where there is no summation over µ. This way, we avoid using a non-holomorphic
observable, like the eigenvalues of the tensor (19), which would introduce subtleties
in obtaining correct expectation values by the CLM. The mass term (52), on the other
hand, is needed to avoid the singular drift problem in the CLM [58]. Since it breaks
the SO(10) symmetry to SO(7) × SO(3), we study whether the SO(7) symmetry is
further broken to smaller groups as we decrease mf. Notice that the original model is
recovered after taking the limits N → ∞, ε→ 0, mf → 0, in that order.

For mf ≤ 1.4 we take the mµ to be

mµ = (0.5, 0.5, 1, 2, 4, 8, 8, 8, 8, 8) , (54)

so that we can distinguish the SO(d) vacua for d = 2, 3, 4, 7. First, we compute the
ratio for finite N :

ρµ(mf, ε,N) =
〈λµ〉mf,ε,N

∑10
ν=1〈λν〉mf,ε,N

, (55)

where 〈λµ〉mf,ε,N is the VEV with respect to the action deformed by adding the mass
terms (51) and (52) at finite N . Then, we make a large–N extrapolation

ρµ(mf, ε) = lim
N→∞

ρµ(mf, ε,N) (56)

based on the numerical results up to N = 128. In Fig. 3, we plot ρµ(mf, ε) against ε.
Some of the small-ε data are excluded from the fitting, considering the difficulty in
large–N extrapolations in the presence of SSB. We see that the SO(7) symmetry is
broken to SO(4) for mf = 1.4, and to SO(3) for mf = 0.7, 1.0. This nicely confirms the
GEM prediction for the type IIB matrix model (mf = 0) that the SO(10) symmetry
is broken to SO(3).

4.3 CLM for the Lorentzian model

In this section, we apply the CLM to the Lorentzian version of the type IIB matrix
model, which suffers from the sign problem due to the eiSb in the partition function
(33). For simplicity, we consider the bosonic model, which omits Pf M.

The time evolution is extracted similarly to the way presented in Sec. 3.2. In order
to respect the ascending order α1 ≤ α2 ≤ · · · ≤ αN when we complexify αk in the
CLM, we introduce the variables τk (k = 1, 2, . . . , N − 1) as [30]

A0 = diag(α1, . . . , αN ) with α1 = 0, αi =

i−1
∑

k=1

eτk (i = 2, 3, . . . , N). (57)
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We also adopt the following definition of time, instead of Eq. (40):

t0 = 0, tρ =

ρ
∑

k=1

|ᾱk+1 − ᾱk|, where ᾱk+1 =
1

n

n
∑

i=1

αk+i, (58)

with ρ = 1, 2, . . . , N − n and k = 0, 1, . . . , N − n.
Let us introduce the parameters s, k in the action as follows [30].

1. We multiply an overall factor e
i
2 sπ , which corresponds to the Wick rotation on

the worldsheet.
2. We make a replacement A0 → A0e

− i
2kπ , which corresponds to the Wick rotation

in the target space.

Then the partition function (33) becomes6

Z =

∫

dA e−S(s,k)

, (59)

S(s,k) = N

(

−1

2
e

i
2 (1+s−2k)πtr[A0, AI ]

2 − 1

4
e

i
2 (s−1)πtr[AI , AJ ]

2

)

, (60)

where the indices I, J run over 1, 2, . . . , 9. The (s, k) = (0, 0) case is the Lorentzian
model, which we are finally interested in. The (s, k) = (1, 1) case is the Euclidean
model, which we reviewed in Sec. 3.1 and 4.2. The (s, k) = (−1, 0) case corresponds
to the approximated partition function (37), which we reviewed in Sec. 3.2.

Note that the action satisfies

S(0,0)[A0, AI ] = S(1,1)[Ã0, ÃI ], (61)

where

A0 = e−i 3π8 Ã0, AI = ei
π
8 ÃI . (62)

This implies that, if the Lorentzian model is defined by the contour deformation
(62) from the Euclidean model7, then the two models are equivalent due to Cauchy’s
theorem. The following relation has been confirmed numerically in Fig. 4 [31]:

〈

1

N
tr(A0)

2

〉

L

= e−i 3π4

〈

1

N
tr(Ã0)

2

〉

E

,

〈

1

N
tr(AI)

2

〉

L

= ei
π
4

〈

1

N
tr(ÃI)

2

〉

E

,

(63)

where the VEVs 〈· · · 〉L and 〈· · · 〉E correspond to the Lorentzian model S(0,0) and the
Euclidean model S(1,1), respectively. We see that neither time nor space is real in the
Lorentzian model, and that the emergent space-time is interpreted to be Euclidean.

This observation leads us to add the Lorentz-invariant mass term

Sγ = −1

2
Nγtr(AµAµ) =

1

2
Nγ{tr(A0)

2 − tr(AI)
2} (64)

to the action (1) [31,32]. The coefficient γ of the mass term is a positive parameter
and it is sent to zero after taking the large–N limit. One can view this mass term

6 If we do not omit the Pfaffian, it should be replaced as Pf M(A0, AI) →
Pf M(A0e

−

i
2
kπ, AI) considering that the overall phase of the fermionic action is irrelevant.

7 This seems to be done automatically when one applies the CLM to the Lorentzian model
without cutoffs as one can see from Fig. 4.
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Fig. 4. VEVs of 1
N
tr(A0)

2 (Left) and 1
N
tr(A0)

2 (Right) for the N = 32 bosonic case. E
and L denote the VEVs in the Euclidean and Lorentzian models, respectively. Quoted from
Fig. 1 of Ref. [31].

as an infrared regulator for the Lorentzian model, as it will become clearer in the
presence of ε in Eq. (67). In this regard, note also that the redefinition (62) leads to
the corresponding mass term for the Euclidean model, which is actually unbounded
from below8. Therefore, the mass term is expected to have a significant impact on
the equivalence to the Euclidean model, which otherwise appears to be robust.

In fact, the same mass term was introduced earlier in the study of classical solu-
tions of the Lorentzian type IIB matrix model [59]. The classical equation of motion
with the mass term is given by,

[Aν , [Aν , Aµ]]− γAµ = 0. (65)

For γ > 0, the classical solutions with smooth and expanding space are obtained. For
γ = 0, the solutions are simultaneously diagonalizable Aµ, which may or may not
have expanding behavior. For γ < 0, there are no classical solutions with expanding
behavior.

The partition function of the model that we study using the CLM is given by

Z =

∫

dAe−Seff , (66)

Seff = −iN
(

1

2
tr[A0, AI ]

2 − 1

4
tr[AI , AJ ]

2

)

− i

2
Nγ

{

eiεtr(A0)
2 − e−iεtr(AI)

2
}

− log
∏

1≤k<l≤N

(αk − αl)
2 −

N−1
∑

k=1

τk, (67)

where ε > 0 in the mass term is introduced to make the integral absolutely con-
vergent9. The two terms in the second line of Eq. (67) represent the Fadeev-Popov
determinant associated with the gauge fixing (38) and the Jacobian associated with
the change of variables (57), respectively. We solve the complex Langevin equation in
a manner similar to that presented in Sec. 4.1

d(AI)kl
dσ

= − ∂Seff

∂(AI)lk
+ (ηI)kl(σ),

dτa
dσ

= −∂Seff

∂τa
+ ηa(σ), (68)

where (ηI)kl(σ) and ηa(σ) are Hermitian matrices and real numbers respectively, fol-
lowing a probability distribution proportional to exp

(

− 1
4

∫

dσtrη2I (σ)
)

and exp
(

− 1
4

∫

dση2a(σ)
)

,

8 This is not the case if γ < 0.
9 The CLM works even at ε = 0 and the results agree with the ε → +0 limit.



Will be inserted by the editor 17

Fig. 5. (Left) The expectation values of αi are plotted in the complex plane for γ = 1, 3, 5, 7.
The solid line corresponds to the Euclidean model (see Fig. 4 (Left)). (Middle) The complex
phase of R2(t), θs(t), is plotted against the time t for γ = 3, 5, 7. The dashed line θs(t) = π/8
corresponds to the Euclidean model (see Fig. 4 (Right)). (Right) The extent of space |R2(t)|
is plotted against the time t for γ = 3, 5, 7. Quoted from Figs. 1 and 2 of Ref. [32].

respectively. The Langevin equations (68) are discretized using the second-order
Runge–Kutta method [60]

(AI)kl(σ +∆σ) = (AI)kl(σ) +
√
∆σ(η̃I)kl(σ)

−∆σ

{

β1

[

∂Seff

∂(AI)lk
(A(σ))

]

+ β2

[

∂Seff

∂(AI)lk
(A′(σ))

]

}

, (69)

(A′
I)kl(σ) = (AI)kl(σ) +

√
∆σ(η̃I)kl(σ) −∆σ

[

∂Seff

∂(AI)lk
(A(σ))

]

, (70)

where∆σ is the step size, and the coefficients are taken to be β1 = β2 = 1
2

(

1 + N
6 ∆σ

)

.

The factor
√
∆σ comes from the normalization of the noise η̃, which follows the

probability distribution ∝ exp
(

− 1
4

∑

σ trη̃
2
I (σ)

)

. Note that the same η̃I(σ) is used in
Eqs. (69) and (70). The update of τa is done similarly.

We show our results for various values of γ for N = 32 and ε = 0. We find that
the simulation becomes unstable for large γ. To stabilize the simulation, we insert a
procedure

AI 7→ AI + ηA†
I

1 + η
for I = 1, . . . , 9 (71)

after each Langevin step, where the real positive parameter η should be taken as
small as possible10. Note that η = 1 corresponds to Hermitianizing AI and η = 0
corresponds to doing nothing. In the following, we set η to 0.01. First, we obtain
results for γ = 7, and then decrease γ adiabatically to obtain results for smaller γ.
The results at γ = 1 are almost the same as those at γ = 0, and in fact we can take
η = 0 for γ = 1.

In Fig. 5 (Left), we plot 〈αi〉 in the complex plane for γ = 1, 3, 5, 7. Notice the
chosen aspect ratio 1 : 6. For γ = 7, the distribution of 〈αi〉 is close to the real
axis, which suggests that one of the classical solutions represented by Hermitian Aµ

dominates11 at large γ. As γ becomes smaller, we observe that the distribution moves

10 This is similar to the dynamical stabilization used in Lattice QCD applications of the
CLM; its justification is not rigorous [61].
11 This can be understood theoretically by rescaling the matrices as Aµ 7→ √

γÃµ, which

brings the partition function into the form Z ∼
∫
dÃe−γ2S̃[Ã]. Since γ appears only in the

exponent, the path integral is dominated by some saddle-point configuration at large γ.
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Fig. 6. (Left) The expectation values 〈λI(t)〉 are plotted against the time t for γ = 3. The
dashed line represents a fit of 〈λ1(t)〉 to 〈λ1(t)〉 = aebt + c with a = 3.55(9), b = 0.38(5) and
c = −5(1). (Right) The magnitude Apq of each element of AI is plotted against p and q for
γ = 3. Quoted from Fig. 3 of Ref. [32].

away from the real axis, but the flat region at both ends extends, suggesting the
emergence of real time in that region12. The result for γ = 1 is close to the Euclidean
model, and it is qualitatively different from the results for γ ≥ 3.

In order to see the properties of space, we consider

R2(t) = e2iθs(t)|R2(t)| . (72)

Note that R2(t) defined in Eq. (42) is complex due to the complex weight in the
partition function for the Lorentzian model (33). In particular, θs(t) = 0 corresponds
to real space, while θs(t) = π/8 corresponds to the Euclidean model. In Fig. 5 (Middle)
and (Right), we plot θs(t) and |R2(t)|, respectively, against the time t for γ = 3, 5, 7.
The block size used in defining ᾱk in Eq. (58) and ĀI(t) in Eq. (39) is chosen to be
n = 4. From Fig. 5 (Middle), we find that space becomes real at late times, while the
phase θs(t) becomes slightly positive near t ∼ 0. From Fig. 5 (Right), we find that
the expanding behavior of |R2(t)| is analogous to that observed for classical solutions
[59]. Scaling behavior is observed for different values of γ, and decreasing γ results in
extending the time direction, and making space more expanded at late times.

In Fig. 6 (Left), we show 〈λI(t)〉 for γ = 3, where λI(t) are the eigenvalues of
TIJ(t), the order parameter of the SSB of SO(9) symmetry defined in Eq. (41). We

solve the ninth-order equation 〈det(z1− T (t))〉 =
∑9

k=0〈ck〉zk = 0, where 1 is the
9×9 unit matrix, so that the coefficients ck maintain the holomorphicity with respect
to Aµ. We observe that only one direction expands and the other directions remain
small. The largest eigenvalue 〈λ1(t)〉 can be fitted nicely to an exponential function.
In Fig. 6 (Right) we plot

Apq =
1

9

9
∑

I=1

|(AI)pq|2 (1 ≤ p, q ≤ N = 32) (73)

against p and q for γ = 3. We observe a clear band-diagonal structure with the off-
diagonal elements being quite small, which is important in defining the submatrices
(39). A similar behavior is observed for γ = 5, 7, which justifies our choice n = 4
of the block size for γ ≥ 3 in the present case. Such band-diagonal structure is not
observed for γ ≤ 2.

12 This property can be understood as a result of classicalization due to the expanding
space, which makes the action large at late times [62,63].
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5 Summary and outlook

In this article, we reviewed the progress in numerical studies on the type IIB ma-
trix model. The numerical simulations of the Euclidean model using the factorization
method and the CLM yield results that are consistent with the SSB of the SO(10) ro-
tational symmetry to SO(3), in agreement with the GEM. While this is an interesting
dynamical property, its relevance to the real world is unclear.

The Lorentzian version was studied first by using the approximation introduced
to avoid the sign problem. This showed the exponential, followed by the power-law,
expansion of three out of nine directions after a critical time. On the other hand, the
obtained three-dimensional space was found to have a singular Pauli-matrix structure,
which implies that the emergent space is not smooth.

This motivated the application of the CLM to the Lorentzian model. Without
any cutoffs, the Lorentzian model was found to be equivalent to the Euclidean model,
and that the emergent space-time obtained from the Lorentzian model should be
interpreted as Euclidean.

To overcome this situation, we proposed to add a Lorentz-invariant mass term.
Our preliminary results for the bosonic model are very promising. When the mass
parameter γ is large enough, the path integral is dominated by one of the classical
solutions, having Lorentzian signature and expanding behavior. As γ becomes smaller,
the extent of the emergent time increases and the emergent space is expanding more
at late times. The expansion at late times is consistent with an exponential behavior.
The signature of space-time is Lorentzian at late times, while it seems to change to
Euclidean at early times. We speculate that an expanding space-time with Lorentzian
signature emerges at late times in the γ → +0 limit after taking the large–N limit.

When space has an expanding behavior, we observe a clear block-diagonal struc-
ture, which is important in extracting the time-evolution from the matrix configu-
rations that we obtain from the model. We also observe that space appears to be
continuous instead of having the Pauli-matrix structure that was observed previously
by using the approximation to avoid the sign problem.

In the bosonic model, we observed that only one out of nine spatial directions
expands. This may be understood from the action of the original type IIB matrix
model. Since the spatial directions expand exponentially, the tr[AI , AJ ]

2 term be-
comes dominant. The fluctuation of this term can be made small by having only one
expanding direction.

As a future prospect, it is important to study the impact of the fermionic matrices
on the dynamical generation of space-time. We expect supersymmetry to play an
essential role in realizing the expansion of three spatial directions. It is known that
Pf M vanishes if we set Aµ to zero except for two of them [13,15], which strongly
suppresses the (1 + 1)-dimensional space-time and possibly also (2 + 1)-dimensional
space-time considering the exponential expansion of space. As we have done in the
Euclidean model, we have to introduce the fermionic mass term to avoid the singular
drift problem in the CLM. It remains to be seen whether we can reduce the fermionic
mass to the extent that enables us to see the effects of supersymmetry needed to
make the space-time (3 + 1)-dimensional.
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