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Abstract

Several vineyard techniques have been proposed to delay grape maturity in light of the advanced maturation driven by increasingly
frequent water and heat stress events that are detrimental to grape quality. These studies differ in terms of their experimental
conditions, and in the present work we have attempted to summarize previous observations in a quantitative, data-driven systematic
review. A meta-analysis of quantitative data gathered across 43 relevant studies revealed the overall significance of the proposed
treatments and evaluated the impact of different experimental conditions on the outcome of antitranspirants, delayed pruning
and late source limitation. Antitranspirants were most effective when applied twice and closer to veraison, while di-1-p-menthene
increased the ripening delay by about 1 ◦Brix compared to kaolin. Larger ripening delays were achieved with delayed pruning of low-
yielding vines or by pruning at later stages of apical bud development. Late defoliation or shoot trimming delayed ripening in high-
yielding vines and represent suitable solutions for late-harvested varieties, but became ineffective where the treatment decreased
yield. This quantitative meta-analysis of 242 primary observations uncovers factors affecting the efficacy of vineyard practices to
delay ripening, which should be carefully considered by grape growers attempting to achieve this outcome.

Introduction
Horticultural crops are extremely sensitive to environ-
mental conditions that can affect production both quan-
titatively (i.e. yields) and qualitatively (i.e. quality traits).
In wine grapes, the relationship between yield and qual-
ity is of primary importance. Research conducted over
past decades has shown that many specialized metabo-
lites in grapes including phenolic and aroma compounds
carry through the fermentation process to define wine
sensory profiles [1].

In a scenario of changing climate conditions, grape
cultivation has been affected at multiple levels, and
changes in grapevine phenology, physiology and grape
ripening have been reported elsewhere [2–5]. Accelerated
grape maturation led by faster sugar accumulation is
of primary concern for the wine growing sector [3].
Under these conditions a decoupling between sugars
(technological maturity) and secondary metabolites
of grapes (phenolic and aromatic maturity) has been
observed [6,7]. This signifies that grapes harvested at
the desired technological maturity have reached only a
sub-optimal phenolic/aromatic maturity or, conversely,

grapes picked at the targeted aromatic/phenolic maturity
display supra-optimal sugar concentrations. Vintage
compression is another detrimental effect of accelerated
ripening, which imposes serious threats to wineries with
regards to fruit intake, management and storage capacity
[8]. In response to these concerning trends, efforts have
been made to investigate vineyard operations to delay
grape maturity. A review published in 2014 reported early
findings on the topic and suggested changes in vineyard
management to counteract climate change-related
detriments to grape quality [9] and a recent review has
incorporated newer studies published thereafter [10].
With an increasing frequency of reports focusing on
delayed ripening, sets of data have become available
in which numerous varieties, regions, environmental
and experimental conditions were tested. However,
review studies on the topic are highly qualitative and a
quantitative summary of previous data is not available.

Meta-analysis (MA) utilizes statistical methods to
compare outcomes of a specified treatment [referred
to as “effect size” (ES)] across multiple similar studies
[11]. This approach is entirely quantitative and in

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/article/doi/10.1093/hr/uhac118/6586545 by guest on 23 January 2023

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/hr/uhac118


2 | Horticulture Research, 2022, 9: uhac118

combination with the systematic review procedure
allows fully data-driven interpretations of the efficacy
of the treatment investigated. Although MA has been
applied mostly to medical or psychological trials, recent
publications in agronomy have adopted it, including a
limited number of papers in grapes and wine [12–15]. As
a consequence of the use of this tool gaining momentum,
guidelines for its correct use and the interpretation of MA
data in agronomy have also been made available [16,17].

The present study is a systematic review of vineyard
techniques to delay ripening. Among the effects of cli-
mate change on viticulture, here we tackled the accel-
erated sugar accumulation by gathering Total Soluble
Solids (TSS) values from a wide range of studies. Sets of
data were then rigorously analyzed using MA to test sig-
nificant differences in TSS between treated and control
grape material. Following a general analysis across all
strategies, the role of different experimental conditions
at the genotypic, environmental and viticultural levels
was dissected within individual strategies. This aimed to
explain the variation of treatment effects across different
studies and identify conditions under which the studied
strategies were more effective.

Results
Compilation of databases for qualitative and
quantitative analysis
Steps of data curation are reported in Figure 1 using the
PRISMA statement layout [20]. The dataset for qualitative
analysis, composed of 51 studies and 297 ES values,
was submitted to EA. The full EA is reported in the
Supporting Information (Section 3). The distributions of
studies (n) and ES values (nES) per treatment category
in the dataset for qualitative synthesis were as follows:
antitranspirants (n = 12, nES = 109); auxin treatment (n = 3,
nES = 3); delayed pruning (n = 10, nES = 64); late defolia-
tion (n = 7, nES = 32); late season irrigation (n = 4, nES = 12);
late trimming (n = 8, nES = 38); peduncle girdling (n = 2,
nES = 4).

In the database for quantitative synthesis (i.e. MA), all
ES values for which SE were not reported were discarded,
causing a further decrease in the number of studies and
ES values (n = 43, nES = 242, Figure 1). The frequencies of
studies and ES values in the MA dataset by treatment are
discussed below.

Publication bias and evidential value in the full
dataset
The p-curve and PET-PEESE methodologies were first
applied to the full set of quantitative data (nES = 242) for
a preliminary investigation of the efficiency of vineyard
practices to delay ripening.

The p-curve of studies on delayed ripening is reported
in Figure 2A (blue line) and compared to a null effect
curve (red dotted line), in which p-values are uniform,
and a curve suggesting an adequate evidential value
(green dotted line) as reported by the authors of this

technique [25]. The distribution of significant p-values
from the collection of studies of interest was signifi-
cantly different compared to the baseline and displayed a
marked right-skewed distribution. As reported in Section
2.6.1, our approach was to utilize the median p-value
if multiple p-values were reported within a given study.
Even adopting a more conservative approach, in which
the largest p-value per study was selected instead of the
median, the statistical conclusion of the p-curve test was
unchanged (data not shown).

In the PET-PEESE model, different treatment categories
were fitted as random terms on the intercept, which was
significant at p < 0.001. Normality of the model residuals
is shown in Figure 2B. Results of the PET model showed
a significant (p = 0.024) estimate of the intercept (1.52
◦Brix; CI: 1.47–1.57). The corrected estimate of ripening
delay obtained using PEESE was 1.28 ◦Brix (CI: 1.23–
1.33). Different fits by treatments are shown in Figure 2C,
while Figure 2D shows the random effect of different
treatments as deviation from the overall model intercept
(represented by the red dotted line). Random effects were
all positive and some displayed large CIs due to limited
observations, namely auxin treatment (3.90 ◦Brix, n = 3),
early trimming (0.36 ◦Brix, n = 8), late season irrigation
(0.28 ◦Brix, n = 4) and peduncle girdling (1.62 ◦Brix, n = 3).
The average ES values returned by PET-PEESE for the
three treatments of interest were 1.22 (antitranspirants),
0.58 (delayed pruning), 0.98 (late defoliation) and 1.29
◦Brix (late trimming).

Meta-regression
Further investigation within individual treatments of
interest (AT, DP, LSL) was performed using MA techniques
applying the same workflow of analysis, which is briefly
explained in the Supporting Information (Section 4) to
aid interpretation of statistical outputs.

Antitranspirants

The dataset of ATs summarized through MA consisted
of 105 ES values retrieved from 12 studies. Experimental
trials on ATs were conducted in Australia, China, Europe
and the United States on 13 different grape varieties,
including 5 white and 8 red cultivars (Supporting Infor-
mation, Sections 3.1.9 to 3.1.11). Pooling together 95 ES
values, the forest plot (Figure 3A) returned an average
ES of 0.74 ◦Brix (CI: 0.54–0.94). ES values were symmet-
rically distributed around the CI of the estimated ES in
the funnel plot (Figure 3B) and mostly within the 95%
confidence band. Heterogeneity among observations was
high (I2 = 0.95), reflecting large variation in experimental
conditions which was further investigated using meta-
regression.

The residuals of the AT meta-regression model
were independent (Figure 3C) and normally distributed
(Figure 3D), thus assumptions for the use of linear
mixed models were verified. The final model for ATs
is reported in Table 1. Models with different random
effects on the intercept were compared (Supporting
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Figure 1. Steps of data collection and curation reported using the “preferred reporting items for meta-analysis” (PRISMA) according to [20]. Changes to
the number of studies (n) and ES values (nES) are reported for each step.

Information, Section 5.1.2) and the model with site ×
vintage as a random term was selected. Because vintage
effects can be different depending on the site considered,
the interaction between site and vintage was preferred
to fitting the two random terms separately. Weighted
models did not improve the predictive performance,
thus the final model did not include weights (Supporting
Information, Section 5.1.3). The effects of environmental
factors associated with seasonal temperature (GDDs)
and rainfall or their interaction were not significant.
Among the experimental factors, TSSControl was not
significant, while active compounds and the timing and
number of applications were found to have a significant
effect on the ES. The seasonal rainfall was significant at
p = 0.078 in the final model and the regression coefficient
was 0.122 (Table 1).

When comparing kaolin and di-1-p-menthene, this
MA found significantly larger ripening delays as a result

of di-1-p-menthene applications (p < 0.001). Estimated
effects (Figure 4A) were 1.76 ◦Brix (CI: 1.33–2.19) for di-
1-p-menthene and 0.46 ◦Brix (CI: −0.13 – 1.79) for kaolin
formulates, respectively.

The ripening delay caused by ATs was also impacted
by the timing of application (p = 0.007, Table 1). Estimated
effects of spraying at different stages are shown in
Figure 4B. Pre-veraison applications (estimated ES: 1.43
◦Brix, CI: 1.03–1.83) led to significantly larger ES values
compared to pre-flowering sprays (estimated ES: 0.92
◦Brix, CI: 0.54–1.30), while differences were not significant
for the other application stages. In addition to the
timing of application, the model highlighted a significant
(p < 0.0001) positive effect of repeating the AT application
either pre-veraison or at veraison (Figure 4B). Average
estimates for single and double applications were
0.86 ◦Brix (CI: 0.61–1.11) and 1.77 ◦Brix (CI: 1.43–2.11),
respectively.
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Figure 2. Preliminary meta-analysis of ES values in the global dataset of delayed ripening. A) p-curve showing the distribution of p-values in studies on
delayed ripening (in blue). The curve included 29 statistically significant (p < 0.05) results, 21 of which were < 0.025. The baseline (or null effect) curve
is colored in red, while the expected curve with an adequate evidential value is colored in green. B) Quantile-quantile (Q-Q) plot of the observed
quantiles as a function of theoretical quantiles of a normal distribution with the same mean and standard deviation of the empirical observed
variable. The observed quantiles refer to the residuals of the PET-PEESE model. C) PEESE analysis, showing results of the regression of ES values over
squared SE. Point colors differentiate among treatment categories, fitted as a random term on the intercept. Horizontal lines represent random effects
of single treatments. D) Random effect of treatment categories on the model intercept. The vertical dashed line represents the average ES across all
treatment categories (1.44 ◦Brix, set as 0 in this plot). Each colored point shows the deviation of treatment-specific intercepts from the overall intercept
and labels report the absolute value of the intercept. Error bars indicate 95%-CIs. Point colors differentiate among treatments. Point size reflects the
number of ES values by treatment category, indicated in the legend.

The random term (site × vintage) was significant
(p = 0.010) and random coefficients are reported in the
Supporting Information (Section 5.1.5, Figure 5.1.4).

Delayed pruning

The literature search identified 64 ES values for DP
distributed across 10 studies. Observations on DP were
collected in Europe, Australia and New Zealand and
this technique was only tested on red grape varieties
(Supporting Information, Sections 3.1.9 to 3.1.11).
Preliminary analysis of the pooled ES values (Figure 5A)
showed that the average ripening delay caused by DP
was 1.57 ◦Brix (CI: 1.14–2.00). Experimental conditions
under which delayed pruning was tested were highly
variable, as captured by the high degree of heterogeneity

I2 (92%, CI: 90% – 94%). The funnel plot (Figure 5B)
showed some individual observations outside of the
95% confidence band. There were both large studies that
reported only small effects (top-left corner of Figure 5B)
or small studies with very large effects (bottom-right
corner). However, these were random observations across
multiple studies and they were in the opposite direction
to the expected outcomes. Further exploration of the
outliers showed that their unexpected behavior was not
necessarily driven by a smaller degree of replication.

Significant factors assessed using a linear mixed
model are reported in Table 1, and the residuals of the
model were normally distributed (Figure 5C). Significant
effects (p < 0.05) on the ES values were observed for
two variables, namely pruning stage and YieldControl.
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Figure 3. Preliminary meta-analysis of delayed ripening using antitranspirants. A) Individual ES values of antitranspirants pooled together using the
forest plot methodology. Effects are expressed as standardized mean differences (SMD). B) Funnel plot of single studies of antitranspirants. The area
between the 99%-CI (inner) and 95%-CI confidence levels is colored in blue. Point colors differentiate among study IDs. C) Independence of residuals of
the meta-regression model. D) Q-Q plot of residuals of the meta-regression model.

On the contrary, there was no significant effect of
TSSControl, vine size, pre-pruning, seasonal GDDs and
precipitation. Among the random effects tested in the
model, the vintage × variety interaction maximized the
predictive power of the model (Supporting Information,
Section 5.2.2) and it was significant at p < 0.00001. It was
shown that there was almost a one-to-one relationship
between variety and site in the DP dataset (Supporting
Information, Table 5.2.1), indicating that the fitted term
also accounted for site-to-site variation. The random

variation on the intercept for 19 groups of vintages and
varieties is shown in the Supporting Information (Figure
5.2.4).

The effect of pruning stage was significant at p < 0.0001
and had the largest contribution (η2 = 65.0%) to
explaining variance of primary literature (Supporting
Information, Section 5.2.5). Model predictions (Figure 5D)
were extrapolated for five sequential pruning stages,
namely late winter dormancy, bud swelling, budbreak,
2–3 leaves unfolded and 7–8 leaves unfolded. Estimated
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Table 1. Factors affecting the ripening delay (i.e. ES) achieved by viticultural practices

Antitranspirants (n = 102)
ESAT = (β0 + λsite x vintage) + βRainfall + βIngredient + βTiming + βSecond + ε

Fixed effects Estimate SE p-value

Intercept 0.901 0.451 0.050
Slope

Rainfall 0.122 0.067 0.078
Chemical (kaolin)1 −1.296 < 0.0001
Timing of application2

Post-fruitset 0.284 0.300 0.347
Bunch closure −0.010 0.437 0.982
Pre-veraison 0.508 0.181 0.007
Veraison 0.164 0.416 0.695

Second application 0.901 0.185 < 0.0001
Random effects (N) Variance SD

Site x vintage (35) 0.207 0.455

Delayed pruning (n = 45)
ESDP = (β0 + λvariety x vintage) + βPruning stage + βYieldControl

+ ε

Fixed effects Estimate SE p-value

Intercept 1.183 0.865 0.178
Slope

Pruning stage3

BBCH 05 (bud swelling) 1.624 0.908 0.081
BBCH 09 (budburst) 1.543 0.692 0.033
BBCH 13 (2–3 leaves) 2.803 0.673 < 0.001
BBCH 18 (7–8 leaves) 4.265 0.702 < 0.0001

Log(YieldControl)4 −2.624 0.552 < 0.0001
Random effects (N) Variance SD
Variety x vintage (19) 1.258 1.121

Late source limitation (n = 56)
ESDP = (β0 + λvariety) + βTSSC + βESYield

+ βYieldControl
+ ε

Fixed effects Estimate SE p-value

Intercept −7.490 2.099 < 0.001
Slope

TSSControl 0.279 0.078 < 0.001
ESYield −0.804 0.125 < 0.0001
YieldControl 0.729 0.111 < 0.0001

Random effects (N) Variance SD
Variety (12) 1.163 1.079

Notes: regression coefficients (β) and p-values are shown for each factor. Significant p-values (< 0.05) are highlighted in bold. Abbreviations: AT = antitranspirants;
DP = delayed pruning; LSL = late source limitation; SD = standard deviation; SE = standard error. 1The reference category for chemical was di-1-p-menthene, with
the estimated coefficient set to 0. 2The reference category for timing of application was “pre-flowering”, with the estimated coefficient set to 0. 3The reference
category for pruning stage was BBCH 01 (late winter dormancy), with the estimated coefficient set to 0. 4YieldControl was log-transformed to fit an inverse
exponential relationship with the ES.

ES values for bud swelling (0.46 ◦Brix, CI: −0.67 –
1.60) and budbreak (0.57 ◦Brix, CI: −0.30 – 1.45) were
positive but the corresponding CIs included 0, as
opposed to estimates for pruning at 2–3 leaves (1.85
◦Brix; CI: 1.10–2.61) or 7–8 leaves unfolded (3.28 ◦Brix,
CI: 2.37–4.19). Positive regression coefficients (Table 1)
and higher estimates (Figure 5D) were observed when
pruning was delayed to later stages of apical bud
development.

The effect of ESYield was not significant, thus this vari-
able was excluded from the fixed effects (Supporting
Information, Section 5.2.4). On the contrary, the regres-
sion coefficient of YieldControl was significant (p < 0.0001,
Table 1). The best fit to describe the relationship between
YieldControl and ES was an inverse exponential function
(Figure 5E).

Late source limitation

The quantitative dataset for LSL was composed of 55
ES values collected from 10 studies, including 32 ES
values in 8 studies for late defoliation and 13 ES val-
ues in 4 studies for late trimming. LSL treatments were
tested in both white and red grape varieties and different
countries and regions worldwide (Supporting Informa-
tion, Sections 3.1.9 and 3.1.11). In the forest plot of LSL
studies (Figure 6A), pooled effects were calculated both
separately for late defoliation and late trimming, and
for the two treatments combined. In all three cases, CIs
of the pooled effects were greater than zero and the
average ES values were 1.04 ◦Brix (CI: 0.80–1.29) for late
defoliation and 1.51 Brix (CI: 0.57–2.44) for late trimming.
In the funnel plot (Figure 6B), the distribution of the ES
values against their SE suggested that there was no trace
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Figure 4. Significant factors affecting the efficacy of antitranspirants to delay ripening. In each panel, primary observations and their distribution are
shown by points (n = 102), while predicted effect and 95%-CIs are indicated by diamonds and error bars. A) Efficacy of two active compounds, namely
di-1-p-menthene and kaolin. B) Effect of the application stage of antitranspirants. A simplified graphical representation of the main reproductive
stages of grapes is shown below to contextualize within grape development (created with BioRender.com). C) Effect of re-applying antitranspirants to
grapevines at a late stage (pre-veraison or veraison).

of publication bias. Levels of study heterogeneity were
lower in late defoliation subgroup (I2 = 43%) than late
trimming (I2 = 79%), and modest when the treatments
were combined together (I2 = 62%, CI: 47–72%).

The model was fitted to 56 observations of late
defoliation and late shoot trimming and the significant
terms are reported in Table 1. The distribution of model
residuals was approximately normal (Figure 6C), and
normality was confirmed by the Shapiro–Wilk test
(Supporting Information, Section 5.3.6). The selection
procedure for random terms was identical to the datasets
of ATs and DP (Supporting Information, Section 5.3.2)
and the best random term was represented by the grape
variety, the addition of which resulted in significance at
p = 0.002. As it was the case for DP, there was a very close
association between sites and varieties (Supporting
Information, Table 5.3.1). The deviation from the
model intercept for 12 grape varieties is shown in the
Supporting Information (Figure 5.3.4).

As for the fixed effects investigated, non-significant
regression coefficients (Table 1) were observed for
treatment type, timing and LAFW ratio parameters
(both absolute and ES values). Environmental variables,
namely GDDs, rainfall and their interaction, were also
non-significant.

There was a significant effect (p < 0.001) of the TSS
maturity at which the control and treated grapes were
compared (TSSControl, Table 1). The variance explained
by this term (η2 = 20.2%) was the second highest after

yield-related variables (ESYield and YieldControl). Significant
ripening delays (i.e. positive ES estimates with CI > 0)
were associated with TSSControl ≥ 23 ◦Brix (Figure 6D).

The LSL model (Table 1) returned highly significant
effects (p < 0.00001) for both ESYield and YieldControl.
The regression coefficients were − 0.804 for ESYield and
0.729 for YieldControl, indicating that ES values increased
inversely to ESYield values (Figure 6E) and proportionally
with yield conditions of control vines (Figure 6F). Vines
with yields greater than 3 kg/m cordon were increasingly
favorable to delay ripening, as shown by the CI of the
fit becoming larger than 0 (Figure 6F). With regards
to the relationship between ES values on yield and
TSS (Figure 6E), unchanged or increased yields (i.e.
ESYield ≤ 0 kg/m cordon) were positively associated
with ripening delays, whereas mild yield reductions
(0.5–1.5 kg/m cordon) led to null effects on TSS, or
eventually advanced ripening when severe (> 2 kg/m
cordon).

Discussion
The aim of this research was to further evaluate the fea-
sibility of vineyard techniques to delay ripening, needed
to combat the accelerated sugar accumulation caused by
changing climate conditions [3, 41]. A quantitative review
of the efficacy of such growing practices was lacking,
and therefore MA techniques were applied to allow the
analysis of data from over 40 independent experiments
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Figure 5. Preliminary meta-analysis (A-B) and meta-regression (C-E) of delayed pruning data. A) Individual ES values of delayed pruning pooled
together using the forest plot methodology. Effects are expressed as standardized mean differences (SMD). B) Funnel plot of single studies of late
pruning. The area between the 99%-CI (inner) and 95%-CI confidence levels is colored in blue. Point colors differentiate among study IDs. C) Q-Q plot of
residuals of the meta-regression model. D) Effect of the pruning stage on the ES. Pruning stages are coded as follows: LD (late dormancy); BS (bud
swelling); BB (budbreak); 2-3 L (2–3 leaves unfolded); 7-8 L (7–8 leaves unfolded). Corresponding BBCH stages and graphical representations were
retrieved from [29]. Predicted effects are shown as points and error bars, indicating predictions and CIs. E) Relationship between vine yield (in kg/m of
cordon) and ES. YieldControl represents the yield of control vines at harvest (i.e. the starting potential crop level of vines subjected to the treatment).
The relationship is shown by the blue line and the grey-shaded area represents the CI of the fit. Yellow points are original observations retrieved from
primary literature.x

reported in the primary literature. MA tests the size of a
treatment effect, the “effect size” ES [11]; in the present
work the delaying effect (i.e. the ES) was quantified as
the difference in TSS between the control grapes and
grapes submitted to a treatment to delay ripening. ES
values calculated from original trials of delayed ripening
were collated into a global dataset and screened prior to
meta-analysis following the PRISMA statement layout

[20]. The application of inclusion/exclusion criteria for
MA led to a database of 43 studies and 242 ES values.

The preliminary investigation of the efficiency of vine-
yard practices to delay ripening was undertaken using
the p-curve and PET-PEESE methodologies, which have
been proposed to test whether there is an adequate
evidential value in collections of studies [25, 26]. The
p-curve technique uses the distribution of significant
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Figure 6. Preliminary meta-analysis (A-C) and meta-regression (D-F) of late source limitation strategies. A) Individual ES values pooled together using
the forest plot methodology. Pooled effects are calculated for late defoliation and late shoot trimming both separately and combined. Effects are
expressed as standardized mean differences (SMD). B) Funnel plot of single studies of late source limitations. The area between the 99%-CI (inner) and
95%-CI confidence levels is colored in blue. Point colors differentiate among study IDs and shapes discriminate between late defoliation (circles) and
late trimming (diamonds). C) Q-Q plot of residuals of the meta-regression model on late source limitation. D-F) Factors affecting the efficacy of late
source limitation treatments, namely late defoliation and late shoot trimming. Predictions for continuous variables are shown with a blue line and the
grey-shaded area represent the CI of the fit. Additional graphics were created using BioRender.com. D) Relationship between the targeted maturity (as
TSS, in ◦Brix) and the ripening delay (ES, in ◦Brix). E) Relationship between ES calculated for yield (in kg/m cordon) and TSS (in ◦Brix). In both cases, ES
values were calculated as the difference between measures of the control – treated groups. F) Relationship between yield of control vines (in kg/m
cordon) and ripening delay (ES).

p-values as an indicator of the presence or absence of an
effect [25]. The marked right-skewed p-curve (Figure 2A)
built from the studies of interest suggested the pres-
ence of an adequate evidential value (i.e. a “true” delay-
ing effect) and little interference of publication bias.
The PET-PEESE procedure approximates the true ES of
a treatment, calculated as the intercept of the regres-
sion between ES and SE values [26]. According to the
PET-PEESE (Figure 2C), the ripening delay caused by the
vineyard strategies investigated could be quantified as an
average reduction of 1.28 ◦Brix at harvest. As expected,

employing different types of vineyard management had a
significant effect on the ripening delay (Figure 2D), which
was investigated by the analysis of the outcomes of three
individual treatments: antitranspirants, delayed pruning
and late source limitation.

Linear mixed models were employed to model the ES
based on variables of interest, outlined in Section 2.6.4
and carefully selected on the basis of viticultural knowl-
edge as well as data availability. These linear mixed mod-
els accounted for a certain portion of “random” variation
[42], which was best represented by the site and vintage.
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Random terms have the advantage of incorporating vari-
ation that is expected to occur in a random fashion (i.e.
sites and vintages are not correlated) and too complex
to summarize with a limited number of variables, and
therefore to focus more directly on the effects of exper-
imental parameters that can be controlled by growers
(e.g. the timing of treatment application or treatment
intensity). Non-significant coefficients of total GDDs and
rainfall, fitted as fixed effects, were likely explained by
significant random terms, as site and/or vintage are the
main drivers of weather differences. In addition to site
and vintage, grape variety was also found to be a useful
random term in the DP and LSL models (Table 1). Because
there was a close association between site and grape vari-
ety utilized in these datasets, it is reasonable to speculate
that the random variation of variety partially reflected
site-to-site variation.

Irrigation is a management practice commonly used
in grapevine cultivation to overcome insufficient rainfall
as well as manipulate canopy growth, grape yield and
quality. In our study it was not possible to account for irri-
gation amounts due to incomplete or missing details in
original papers. The influence of additional irrigation on
the efficacy of vineyard practices used to delay ripening
of grapes is an important research question that deserves
to be investigated in future studies.

Antitranspirants
Water loss by transpiration plays a major role in main-
taining vine vitality, promoting growth and coping with
environmental conditions [43]. Vine transpiration is reg-
ulated by stomata in response to root water availability
through a combination of hydraulic and hormonal sig-
nals [44,45]. Gas stomatal conductance directly affects
ripening, as decreases in this parameter correlate to
lower assimilation of photosynthates [46]. Grape ripen-
ing is also dependent on cuticular transpiration directly
occurring from grape berries, and a restriction in berry
transpiration has been shown to decrease the rate of
sugar accumulation [47–49]. Based on these advance-
ments in the knowledge of water relations in ripening
grapes, it has been proposed that application of ATs may
reduce sugar accumulation and delay ripening [9,10]. The
two prevalent active compounds utilized in AT formu-
lations are the film-forming AT di-1-p-menthene, also
called pinolene, and kaolin formulates, also referred to
as particle film technology. Studies conducted on potted
vines have provided the theoretical framework as to how
ATs affect canopy performance and fruit quality [50,51].
Although experimental trials in these semi-controlled
conditions depict a scenario of positive outcomes derived
by the application of ATs, there is still large variation
among results of in-field applications, which was the
object of study by our MA. Such variation was captured
by the I2 when the ES values of AT trials were pooled
together in the forest plot (Figure 3A), which indicated
that average ES achieved by AT applications was pos-
itive (0.74 ◦Brix) and confirmed the overall efficacy of

using ATs to delay ripening. Interestingly, results of meta-
regression highlighted important implications regarding
the choice of AT formulates as well as the timing and
number of applications (Table 1).

Although kaolin and di-1-p-menthene have different
modes of action, this MA allowed a better characteri-
zation of their potential effect on sugar accumulation
kinetics. This MA suggested that di-1-p-methene formu-
lations led to longer ripening delays (+ 1.27 ◦Brix) com-
pared to kaolin (Figure 4A). A direct comparison of these
two compounds was reported previously [52] over three
consecutive vintages, with di-1-p-menthene resulting in
larger delays compared to kaolin in two vintages. Results
obtained herein confirmed these findings and, in this
case, a much larger number of observations was ana-
lyzed across different sites, varieties and vintages.

The significant effect of the timing of AT application on
the ripening delay (Table 1) may be explained by a change
in vine physiological performance arising from varying
canopy size, age and management strategies [43]. Confi-
dence intervals were higher than 0 for the estimates of
all application stages, signifying positive outcomes of AT
sprays to delay sugar accumulation (Figure 4B). However,
it was shown that later applications (pre-veraison) led to
significantly larger ES values compared to pre-flowering
sprays. Larger ripening delays were also observed when
early applications were followed by a second spray of ATs
close to veraison (Figure 4C), whereby the second appli-
cation increased the ripening delay by about 1 ◦Brix com-
pared to single sprays. These results may be explained by
the compensation of early effects during the subsequent
vegetative growth. Lower effectiveness resulting from
early applications may also be due to rainfall events,
which are more frequent early in the season, since earlier
studies reported that di-1-p-menthene remains on leaves
for about 40 days [53]. In the AT model, the effects of
total seasonal GDDs and rainfall were not significant
and likely accounted for by the random term (site ×
vintage, Table 1). However, the timing of rainfall was not
incorporated, but this dynamic variable may explain the
increased efficacy of antitranspirants when re-applied
close to ripening initiation.

Previous studies have demonstrated that vine yield
and its relationship to leaf area (i.e. the crop load, or
LAFW ratio) drive fruit ripening and define its final
quality [54]. Due to missing yield data for a large
unpublished study, it was not possible to investigate
yield effects on the efficacy of ATs in this MA. Models
for DP (Section 3.3.2) and LSL (Section 3.3.3) highlight
the importance of considering yield conditions to fully
understand the factors involved in delayed ripening
using these techniques, and therefore characterization
of the effect of yield levels on the use of ATs remains of
great importance in future studies.

Delayed pruning
Vineyard pruning is vital for grapevine production as it
allows retention of the desired number of buds, directly
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affecting crop load, and control of canopy size and shape
which impacts grape microclimate and facilitates vine-
yard mechanization [43,55]. Grapevines are traditionally
pruned during winter dormancy but DP until budbreak
or later has recently been regarded as another useful
tool to delay ripening [9,10,56]. Accordingly, the forest
plot of DP returned an average delaying effect of 1.57
◦Brix, which was however derived from a highly variable
dataset (Figure 5A).

The physiological foundation of DP (also called late
pruning) is the acrotony of budbreak among buds posi-
tioned along a vertical cane, meaning that apical buds
exert hormonal inhibition towards basal buds through
the production and basipetal translocation of auxins [57].
DP aims to postpone pruning activities until after apical
buds have burst, to exploit the inhibitory effect exerted
towards basal buds and with the assumption that signifi-
cant reserves would be allocated to apical buds, causing a
delay in the development of basal buds destined for grape
production. Original studies have investigated the effect
of DP at different stages, which is a key consideration for
grape growers. Nevertheless, there is little agreement on
how late pruning has to be performed with respect to
maintaining yield and enhancing fruit composition [10].
It is assumed that the later vines are pruned, the larger
delays of vine phenology and potentially ripening are
achieved, due to a greater utilization of reserves which
become unavailable for the development of basal shoots
for fruit production. However, previous studies have also
shown overcompensation effects in vines subjected to
LP [58]. In the meta-regression of DP data, regression
coefficients (Table 2) and estimates by pruning stage
(Figure 6A) confirmed this hypothesis, with increasingly
larger ripening delays achieved by pruning at later stages
of development of apical buds.

Potential side-effects of DP on yield components have
been discussed in earlier studies, and trends depicted
by re-analyzing original studies reinforce these observa-
tions (Supporting Information, Figure 4.2.17). Negative
consequences on yield can be explained by the fact that
resources directed towards the development of apical
buds would not be available for the development of
fruit [58]. It was observed that the relationship between
yield effects and ripening delay was not significant. On
the contrary, the DP model returned a significant effect
of YieldControl (Table 1), which represented the absolute
yield of treated vines in original studies. Crop load levels
(i.e. LAFW ratios) were also retrieved from the original
studies, however these were too few to be included in the
model and in their place, crop variables were selected,
thus avoiding a compromise in sample size. Based on
the 95% – CI of the fit, this MA suggests that DP can
be employed to delay ripening (i.e. CI > 0) when the
potential yield is ≤2.5 kg/m cordon. Larger yields nullified
the delay until about 5 kg/m cordon and eventually
seemed to cause the opposite effect (i.e. advanced
ripening). The increased efficacy of delayed pruning
in low-yielding vines is likely to be attributed to the

relationship between crop load and ripening kinetics
and resembles the curvilinear relationships drawn by
previous authors to describe such relationships [54].
Ripening is accelerated in low-yielding vines [59] and
faster sugar accumulation in control vines intensifies the
discrepancy between TSS of control and treated grapes.

Limitation of carbon sources during ripening
Targeted apical-to-the-cluster defoliation or shoot trim-
ming close to veraison have been proposed as valuable
tools to delay ripening [9,10]. These types of canopy
management are common techniques to modify vine leaf
area and are widely utilized thanks to several mecha-
nized solutions for their ability to directly impact fruit
quality [54]. Traditionally, leaf removal has been per-
formed at flowering or at any time leading up to veraison
to increase fruit exposure to sunlight, with potential ben-
efits for grape quality parameters [15]. Shoot trimming
is instead applied for practical reasons, such as control-
ling canopy size and shape and facilitating machinery
access in the vineyard. In the past decade, several studies
have explored the effect of leaf area reduction as a tool
for source limitation, with the aim to reduce photosyn-
thetic capacity and improve grape quality. Young apical
leaves proximal to the shoot apex are the primarily active
source of photosynthates to support sugar accumulation
in ripening grapes, and the maximum photosynthetic
rate is achieved when leaves are 40-days old [60–62]. It
was therefore hypothesized that a reduction of apical
leaf area could lead to slower sugar accumulation and
thus a ripening delay [9]. The forest plot of late source
limitation studies confirmed the efficacy of late source
limitation to delay ripening, with an average ES of 1.16
◦Brix (Figure 6A).

Among the variables investigated in the LSL model,
yield conditions and the TSS maturity targeted for har-
vest significantly impacted the intensity of the ripen-
ing delay caused by LSL (Table 1). Importantly, the non-
significant regression coefficient for treatment type indi-
cated that late apical defoliation or late trimming can
be used interchangeably without changing the ES val-
ues. The efficacy of late shoot trimming is known to
be dependent on vine vigor, soil fertility and environ-
mental factors [9]. Our meta-analysis intended to select
studies as comparable as possible during the screening
procedure. Further analysis, as well as additional trials on
late shoot trimming, are needed in the future for a more
in-depth analysis of this individual treatment. Similarly,
across the explanatory variables investigated, the timing
of application seemed to be of little importance in the
hierarchy of factors influencing ES values.

Arguably, the difference in TSS values at which the
control and ripening grapes were compared (Figure 6D)
is explained by the shift from active sugar accumulation
to passive sugar concentration via water loss occurring
when TSS reaches 20–25 ◦Brix [47,48,63]. TSS differences
between control and treated grapes may be exacerbated
when control grapes begin to shrivel, providing a possible
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explanation for the proportional increase of targeted TSS
and ES values. Because ripening delays may start to be
evident at TSS ≥ 23 ◦Brix, LSL seems to be more suitable
to delay ripening in late-harvested varieties, such as
red grapes for medium-to-full bodied wines, rather than
white varieties harvested at earlier stages.

Meta-regression highlighted the primary importance
of yield conditions (i.e. absolute yield values) as well as
treatment effects on yield (Table 1). Modelling of cross-
sectional LSL observations clarified that ripening delays
were achieved as a result of limiting conditions for ripen-
ing, such as when the treatment was applied to high-
yielding vines, whereby the sugar accumulation process
occurs at a slower pace. Vines with yields greater than
3 kg/m cordon were increasingly responsive to ripening
delays, as shown by the CI of the fit becoming larger than
0 (Figure 6F). These findings also stress the importance
of carefully planning cropping levels to avoid under-
cropped situations, as these treatments are less likely
to delay ripening in vines with low yield or high leaf
area. It is therefore emphasized that simple tools such
as achieving a suitable balance between leaf area and
yield are in some cases enough to delay ripening, and
should be carefully assessed before considering other
techniques such as those investigated in this study [9,64].
The relationship between YieldControl and ES observed in
the LSL treatment displayed an opposite trend compared
to DP, the latter being more effective to cause larger
delays in low-yielding vines compared to high-yielding
ones (Figure 5E versus Figure 6F). The different modes of
action through which these techniques delay ripening
possibly explain this inconsistency, since DP aims to
delay grapevine phenology starting at the beginning of
the season while the intent of LSL is to cause a limita-
tion in carbon allocated to grapes at the onset of ripen-
ing or soon thereafter. With regards to the relationship
between ES values on yield and TSS (Figure 6E), it was
shown that yield reductions occurring as a consequence
of vine treatments can lead to null effects when mild
(0.5–1.5 kg/m cordon) or can advance ripening when
severe (> 2 kg/m cordon). Such an impact of ESYield is
a factor of tremendous importance, as the outcome of
the treatment can be compromised when yield is neg-
atively impacted by the application of late defoliation
or trimming. ESYield is unpredictable and largely out of
the growers’ control, whereas growers can actively adjust
pruning decisions to reach yield levels favorable to delay
ripening.

LAFW ratio is an important physiological indicator
of sink/source relationships in the grapevine, which are
linked to ripening dynamics and the final fruit compo-
sition [54,65,66]. Earlier studies have demonstrated that
LAFW ratios in the range of 10 to 14 cm2/g are optimal
to fully ripen fruit, while higher and lower ratios corre-
spond to limiting and excessive conditions for ripening
respectively [54,67]. Because the LAFW ratio is calculated
as the ratio between leaf area and fruit weight (i.e. yield),
these results suggest that yield conditions are the main

explanatory variable for the delay of ripening obtained
by LSL.

Meta-analysis to uncover stability and drivers of
agronomic practices
Our meta-analysis of techniques to delay ripening
exemplifies the feasibility of using statistical methods to
unlock trends across a large collection of experimental
trials. Meta-analysis as a statistical method selects a
group of studies characterized by the same general
research question from a population following a protocol
of selection criteria and aggregates them to formulate an
accurate answer on the issue they have in common. With
an increasing amount of data being collected and pro-
cessed in agricultural research, it is expected that meta-
analysis will be increasingly applied in the future. In the
field of grape and wine research, several management
practices other than those aiming to delay ripening have
been extensively tested in field experiments. The results
of these field experiments can be included into meta-
analyses, enabling power of advanced statistics to be
used to achieve a fuller interpretation of the factors that
influence treatment efficacy and their relative impor-
tance. Further, our analysis focused on a single aspect
of ripening (i.e. sugar accumulation); meta-analyses
may be applied to uncover additional trends that may
otherwise remain obscured such as vine physiology,
yield or other quality parameters (for instance organic
acids or color). Similarly, this technique may be applied
to fully characterize the treatment effects used in
several other crops. Trends arising by these increasingly
popular meta-analytic studies should be interrogated
parallel to results of physiological studies on a given
management practice to provide a more comprehensive
understanding of the effects of agronomic practices. The
benefits of meta-analysis are even more appealing when
considering the urgency of quickly identifying mitigation
strategies to a fast-changing climate. Field experiments
have to deal with the perennial nature of grapevines,
as well as their seasonal growth and limited tested
conditions (soil, variety, training system, planting density,
etc.). Meta-analysis has the power to combine such
unique conditions to characterize whether a treatment
is effective in a rapid and accurate manner.

Conclusions
The evidence for the need to delay ripening to reduce
the pressure of climate change and its detrimental
effects on grape quality has led to an increasing
number of experimental trials exploring techniques
to delay sugar accumulation. In addition to highly
variable environmental conditions, there are often
different experimental systems to which treatments
are applied. This study represents the first attempt at
a data-driven exploration on how these factors affect
delayed ripening. In the present study, meta-analysis was
applied to quantitative data collated from 43 primary
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studies. Delayed ripening was tackled strictly from the
perspective of sugar accumulation, using the difference
between TSS of control and treated grapes at harvest as a
measure of ripening delays. Based on extensive research,
it was assumed that slower sugar accumulation leads to
benefits in terms of grape and wine quality. Relationships
between effects on TSS and other quality traits of
grapes may further benefit from the meta-analysis
approach in future research, although different analyti-
cal methodologies utilized for the analysis of specialized
metabolites in very low concentrations may represent
an additional source of variation that is difficult to
overcome.

A preliminary untargeted meta-analysis of 242 obser-
vations highlighted that several techniques explored in
the primary literature are useful to delay sugar accumu-
lation, decompress harvest and enhance grape quality.
It was also shown the treatment efficacy varied across
the different treatment categories considered, which was
expected due to differences in the foundation and mech-
anism of action of these treatments. Further exploration
of the effect of environmental and experimental condi-
tions was carried out fitting linear mixed models on three
selected treatments that would be the easiest to imple-
ment, namely antitranspirants, delayed pruning and late
source limitation.

Antitranspirants represent a viable tool to delay ripen-
ing, and this meta-analysis showed that their efficacy
is dependent upon the choice of active compound, with
formulates of di-1-p-menthene considered more effec-
tive than kaolin-based sprays. As for the timing of appli-
cation, spraying close to or at veraison is preferred to
delay ripening, which could otherwise be obtained by a
combination of early- and late applications, such as at
pre-flowering and pre-veraison or at bunch closure and
veraison.

Delayed ripening by pruning vines at budbreak or
thereafter aims to shift grapevine phenology to a later
period and was found to be dependent on the pruning
stage and yield conditions. Pruning at later stages of
apical bud development correlated with larger ripening
delays. Additionally, it was shown that the efficacy
of delayed pruning was higher in low-yielding vines
compared to high-yielding ones. It was predicted that
vines bearing less than 3 kg/m cordon would respond
positively to delayed pruning.

Reducing apical leaf area either at veraison or later
during ripening offers another possible option to delay
ripening. There was no difference in the outcome of late
defoliation and late shoot trimming, and both techniques
should be considered more suitable for the production of
red grapes, which are normally harvested at higher TSS.
The efficacy of late source limitation treatments was
dependent upon yield conditions, with larger ripening
delays obtained under more limiting conditions, such
as when applied to high-yielding vines. The extent to
which late source limitation treatments delay ripening is
also affected by treatment effects on yield, and ripening

delays are achieved when yield is unchanged or increased
by late defoliation or late trimming.

Intra- (i.e. vintage, site, variety) and inter-study vari-
ation is a confounding variable that is often overlooked
in qualitative reviews. Techniques for meta-analysis pro-
vide a powerful tool to elucidate hitherto hidden data
from within the results of multiple experimental trials,
resulting in a more accurate and quantitative measure
of treatment effects and uncovering aspects that can
support growers’ decisions to achieve the desired quality
outcome.

Abbreviations: AT Antitranspirants; CI Confidence
intervals (95% unless otherwise indicated); DP Delayed
pruning; ES Effect size (calculated as valueControl –
valueTreated for all parameters); GDD Growing degree
days; LAFW Leaf area to fruit weight (ratio); LSL Late
source limitation; SE Standard error; TSS Total soluble
solids

Material and methods
Research question and selected response
variable
The aim of this MA was to investigate whether previous
data provide enough evidence that vineyard operations
can effectively cause a ripening delay. ES values (i.e.
ripening delays) were characterized as differences in the
sugar concentration of treated and control grapes on the
same day. This allowed us to incorporate a quantitative
measure of the ripening delay in addition to the pres-
ence/absence of the delay, represented by positive and
negative ES values respectively. The response variable of
interest ES was calculated as described in Equation 1.

ES = TSSC − TSST (1)

where TSSC and TSST are the TSS of the control and
treated group respectively, expressed using the ◦Brix
scale. Data reported using other scales (e.g. ◦Baume) were
converted using tabulated values. ES values were not
standardized using transformations, such as Cohen’s d
and Hedges’ g, as was done in other meta-analyses [18].
This was done to avoid problems arising when applying
such transformations [19] and because untransformed
TSS values were considered more meaningful from
a viticultural viewpoint, as decreases or increases in
TSS on the same day can be readily translated into
a quantitative measure of ripening advancements or
delays. Standard errors (SE) of the ES were calculated
according to Equation 2 as follows:

SEES =
√

SEC
2 + SET

2 (2)

where SEC and SETwere the standard errors of the con-
trol and treated group respectively. This formula nor-
mally includes a correction term related to the corre-
lation between the two groups. Herein it was assumed
that there was independence of the treated and control
groups and therefore the correction was omitted. In the
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absence of different specifications, the sizes of the two
groups were considered to be equal. When only one SE
was available, it was assumed that variances of the two
groups were equal.

Literature search
The literature search was conducted by the first author
in the following databases listed in order of consul-
tation: Web of Science Core Collection, PubMed and
Google Scholar. In Web of Science (search results: 26),
the search was conducted using the following key:
TI = (grape∗ OR Vitis vinifera OR berries) AND TI = (delay∗

OR late) AND TI = (ripening OR sugar OR maturity)
NOT TI = (transcript∗). In PubMed (search results: 6):
(((grape∗[Title] OR V. vinifera[Title]) AND (delay∗[Title]
OR late[Title])) AND (ripening[Title] OR sugar[Title] OR
maturity[Title])) NOT (transcr∗[Title]). At this stage,
duplicates were removed and irrelevant studies were
discarded based on title and abstract information.
Papers were classified in macro-categories, each one
corresponding to a treatment applied to delay ripening:
auxin treatment, antitranspirants, delayed pruning, late
defoliation, late season irrigation and late trimming.
Using these categories as additional keywords, the search
was then extended to Google Scholar and proceedings
of the main conferences in the field (search results:
4): GiESCO, International Symposium of Grapevine
Physiology and Biotechnology, CO.NA.VI (through BIO
Web of Conferences journal). Based on the first author’s
knowledge of the active research groups in the field of
interest, researchers’ websites and ResearchGate pages
were also consulted. Steps in data curation were tracked
following the “Preferred reporting items for meta-
analysis” (PRISMA) statement [20]. To interpret data of
other authors with the least subjectivity and maximize
data-driven outputs, studies were de-identified using ID
numbers.

Inclusion and exclusion criteria
Inclusion and exclusion criteria for the MA were initially
applied by the first author and then repeated by the
second author and are listed here below in the same
order as they were used for study selection.

1) Publication quality requirements: we included
published original articles, pre-print articles, books,
industry reports, technical reports, dissertations,
theses and conference proceedings written in
English. Articles and proceedings were only included
if published in journals and conferences related
to the field of agriculture and food, preferentially
viticulture and oenology.

2) Publication year: only material published between
2000 and 2020 was considered eligible.

3) Availability of data of interest: only studies that
reported TSS measured in treated and control grapes
(means ± SE or SD) on the same day, preferen-
tially when control reached the targeted commercial
maturity, were selected. Numeric values of means

and SE per treatment were preferred but very often
were replaced by graphics of TSS accumulation over
time (i.e. ripening kinetics) in the original articles. In
many instances tabulated data were provided but SE
values were missing as per the common use of com-
pact letter display to indicate significant differences.
In case of missing data, a first attempt consisted in
retrieving means and SE values from graphics using
the software ImageJ I.x with the “Figure Calibration”
plugin [21]. This was done only if the type of disper-
sion measure utilized (SD vs SE) and number of repli-
cates (n) were specified in figure captions or method-
ology sections. The equality between graph-derived
and actual data was tested on a set of TSS (114)
and SE (105) values available in both numerical and
graphical formats using the Passing-Bablock regres-
sion (the full analysis is reported in the Supporting
Information, section 3.3.3) [22]. When it was not
possible to retrieve data from graphics, correspond-
ing authors were contacted to request TSS data.
TSS datasets of twenty-three papers were requested,
with eleven replies and datasets provided for seven
studies.

4) Validity of design and statistical analysis: require-
ments for inclusion were that the study was of a
randomized design, conducted in the field (no green-
house or potted vines), with 2 or more replicates
per treatment. Only data analyzed with relevant
statistical tests were included, as these details were
necessary to calculate p-values for the ES values.

5) Multifactorial designs and multiple vintages: in
studies conducted over multiple vintages, individ-
ual ES values per vintage were included separately.
Similarly, in multifactorial studies (e.g. combining
crop load manipulation and differential irrigation),
we included separate ES values of the delaying treat-
ment within each level of the second factor investi-
gated.

Explanatory variables
Categorical and numerical variables annotated from
original papers were used to summarize the geographi-
cal, environmental and experimental conditions for each
of the ES values. Growing degree days (GDDs) were used
to approximate temperature trends at the experimental
sites for each vintage, as this parameter was widely
reported in the original studies. To standardize our
methodology, GDDs were calculated in the period
between 1 Apr-31 Oct for the northern hemisphere
and 1 Oct-30 Apr for the southern hemisphere and
using a base temperature of 10◦C [23]. In case of
missing GDDs or differences in calculation boundaries
or base temperatures, GDDs were extrapolated from
weather databases. Local or regional databases were
consulted (Supporting Information, Section 2.1) as well
as the Global Surface Summary of the Day (GSOD)
weather station network (United States National Oceanic
and Atmospheric Administration National Center for

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/article/doi/10.1093/hr/uhac118/6586545 by guest on 23 January 2023



Previtali et al. | 15

Environmental Information 2020). GSOD data of tem-
perature and rainfall were obtained using the “GSODR”
package in R [24]. Using geographical coordinates of the
experimental sites, GSOD stations were identified as
close to the vineyard as possible and daily precipitation
and temperature data downloaded.

Exploratory analysis
The dataset for qualitative synthesis was submitted to
exploratory analysis (EA), comprising three sections. The
traditional EA investigated the distribution of ES values
and studies according to publication and experimental
factors. The frequency and association of keywords and
title words was also explored. In the authority ranking
section, the number of citations and the design of the
experiment were investigated to verify the validity of
the studies. Functional EA explored different statistical
methods applied in the original papers and the distri-
bution of ES and SE values based on the way they were
obtained from original studies.

Meta-analysis
P-curve

Publication bias among all papers was investigated using
the p-curve method [25]. This methodology assumes
that p-values are uniformly distributed, associated with
the hypothesis of interest and statistically independent.
Accordingly, only p-values meeting these assumptions
were included. For papers with multiple p-values, the
median of all p-values below 0.05 was utilized. The
p-curve was produced using the p-curve app version 4.06
available online (www.p-curve.com).

PET-PEESE

Precision effect test (PET) was performed on the full
dataset following guidelines previously reported [26].
Briefly, ES values were regressed on their SE values using
a weighted least squared regression in which weights
were represented by the inverse variance of the ES values.
The only modification was the addition of treatment
categories as a random effect on the intercept. Following
authors’ recommendations, the true estimate of the ES
was corrected using the precision effect estimate with
standard error (PEESE) technique [26,27].

Preliminary analysis of individual treatment categories

It was assumed that ES values were derived from differ-
ent populations, therefore random effects models within
each treatment category were fitted to estimate the stan-
dardized mean difference (SMD) of the overall ES. The
Sidik-Jonkman estimator of the variance of true effect
sizes (τ 2) was employed [28]. Forest plots were used to
summarize SMD estimates and confidence intervals (CIs)
for single studies and as a preliminary analysis of the
overall effect and heterogeneity (I2) across the studies.
Funnel plots were produced to check publication bias
within each treatment category as reported in [11].

Meta-regression

Three treatment categories were selected that had a
sufficient number of ES values (n > 35), namely anti-
transpirants (AT), delayed pruning (DP) and late source
limitation (LSL). For each of these treatments, a meta-
regression was used to understand the effect of exper-
imental conditions of interest on treatment outcomes.
Variables of interest were carefully selected for each
model and their selection was driven by knowledge of
key factors from a viticultural perspective as well as data
availability. GDDs, rainfall and their interaction (GDDs ×
rainfall) were included in models for all three treatments
to explore the impact of climatic conditions. As GDDs
and rainfall data were 1000-fold and 100-fold larger than
ES values, these terms were both divided by 100 to fit
the model and then back-transformed in model outputs.
Another common term across the models was TSSControl,
which was the TSS maturity (in ◦Brix) of control grapes on
the same date at which ES was calculated. Introducing
this term allowed exploration of possible changes to
the ES caused by harvesting at variable targeted TSS
levels, with implications for industry as varying ranges
of TSS are targeted for different varieties and desired
wines styles. In addition to these common fixed effects,
treatment-specific models are outlined below along with
explanation of the corresponding variables of interest.

Antitranspirants

The statistical linear mixed model fitted to explain
ripening delays achieved by application of AT,
fitted to 102 observations (full dataset available as
“DB1_Antitranspirants” at the link provided in the Data
Availability Statement), is described in Equation 3 as
follows:

ESAT = (
β0 + λsite×vintage

) + βGDDs + βRainfall + βGDD×Rainfall

+ βTSSControl
+ βIngredient + βTiming + βSecond + ε (3)

where β0 is the intercept, the following β values are
regression coefficients for each fixed term, λ represents
the contribution of random effects and ε the residual
random variance. The interaction of site × vintage was fit-
ted as random term on the intercept (λsite×vintage). Models
weighted by SEES or the number of replicates (N) were
tested but did not increase the predictive power (Sup-
porting Information, Section 4.1.3). Ingredient was the
active component of the product sprayed (i.e. kaolin vs di-
1-p-menthene). Timing reflected the phenological stage
at which antitranspirants were sprayed, related to the
BCCH stage according to [29] and expressed in ordered
categorical codes. Second was created as a dummy vari-
able indicating whether the treatment was repeated at a
second stage (level 1) or not (level 0).

Delayed pruning

The linear mixed model utilized to explore factors affect-
ing the ripening delay achieved with DP, fitted to 45 obser-
vations (full dataset available as “DB2_Delayed pruning” at
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the link provided in the Data Availability Statement), is
described in Equation 4 as follows:

ESDP = (
β0 + λvintage×variety

) + βGDDs + βRainfall

+ βGDD×Rainfall + βBuds/vine + βTSSC + βPre−pruning

+ βPruning stage + βYieldControl
+ βESYield

+ ε (4)

where β0 is the intercept, the following β values are
regression coefficients for each fixed term, λ represents
the contribution of random effects and ε the residual ran-
dom variance. The vintage × variety interaction was fitted
as a random term on the intercept (λvintage×variety). Bud-
s/vine was a general indicator of vine size based on tar-
geted bud counts. Pre-pruning was a dichotomous variable
(Y/N) stating whether vines were pre-pruned and hand-
finished or only pruned once. Pruning stage indicated the
stages at which vines were pruned, fitted as categorical
variable expressed using ordered stages of the BBCH
scale [29]. As delayed pruning exploits the advanced
development of apical buds versus basal buds, it is worth
specifying here that phenological stages recorded in this
variable referred to apical buds as in the original papers.
Two variables referring to vine yield were added to the
model, namely ESYield and YieldControl. ESYield was the effect
size calculated for yield, calculated as difference in yields
between the control and the treated group, in the same
order as they are listed. For standardization purposes,
yields were converted to reflect kg/m of cordon using
intra-row spacings and planting density as needed when
yield data were reported in t/ha or kg/vine in original
articles. The effect size is a quantitative measure of the
magnitude of the experimental effect and, as such, does
not account for absolute values in the control or treated
groups. Therefore, YieldControl was fitted as an additional
variable reporting absolute yields of control vines in each
experimental trial, again expressed as kg/m of cordon.

Late source limitation

The linear mixed model utilized to explore factors
affecting the ripening delay achieved by LSL, fitted to
56 observations (full dataset available as “DB3_Late source
limitation” at the link provided in the Data Availability
Statement), is described in Equation 5 as follows:

ESLSL = (
β0 + λvariety

) + βGDDs + βRainfall + βGDD×Rainfall

+ βTreatment type + βTreatment timing + βTSSControl

+ βESLAFW + βLAFWControl
+ βESYield

+ βYieldControl
+ ε

(5)

where β0 is the intercept, the following β values are
regression coefficients for each fixed term, λ represents
the contribution of random effects and ε the residual
random variance. In the model for late source lim-
itation, variety was fitted as a random term on the
intercept (λvariety). Treatment type was a dichotomous
variable specifying whether late apical defoliation or

late shoot trimming was used. Treatment timing was
the stage at which treatments were applied, recorded
using numerical TSS values (in ◦Brix). A TSS level of 9
◦Brix was used as a surrogate for veraison, according
to earlier observations [30,31]. Yield and leaf area-to-
fruit weight (LAFW) ratios were incorporated in the
model. Similarly to the DP model, two parameters
were fitted for each of these two physiological param-
eters, including their ES values (ESLAFW and ESYield) and
absolute levels in the control vines (LAFWControl and
YieldControl).

Statistical analysis
Data collation from single studies was done in Microsoft
Excel (2020). The original and treatment-specific datasets
are available at the link provided in the Data Avail-
ability Statement section. Statistical analysis was per-
formed using R (R Foundation for Statistical Computing,
Vienna, Austria) version 4.0.5 in RStudio (RStudio Inc.,
Boston, MA, USA) using a range of available packages
and custom-made code. EA plots were produced using
“ggplot2”, “plotly” and “leaflet” [32–34]. Functions of the
packages “meta” and “metafor” were utilized for MA of
the data [35,36]. Linear mixed models were fitted using
the “lmerTest” package and results analyzed with various
functions of “lattice” and “lme4” [37–39]. Predictions and
CIs for fixed and random terms were computed using the
“ggeffects” package [40].
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