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1 Introduction

The recent 𝐵-physics anomalies found in 𝑏 → 𝑐ℓā transitions [1–8] have generated great interest
in the study of beyond-the-Standard-Model (BSM) effects in charged-current semileptonic decays,
and both the LHCb and Belle II experiments have planned intensive physics programs [9, 10] to
investigate the nature of these anomalies. The relevant decay modes are characterised by large
branching ratios and consequently large signal yields. Precise measurements of these large datasets,
require the production of enormous Monte Carlo (MC) samples. As an example, for an ongoing
LHCb analysis with about six million data events selected, a production of roughly three billion
simulated events is needed. In order to perform self-consistent and up-to-date measurements, the
simulation models should include an adequate description of BSM effects and a state-of-the-art
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parameterisation of soft QCD effects. However, the high resource consumption of the simulation
prevents the generation of devoted samples for every possible configuration of decay parameters.

The recently-developed HAMMER [11] software tool allows to perform a fast re-weighting of
a given MC sample to effectively change the decay matrix element into a new desired one, without
the need to regenerate the MC events. The transformation can be done for any possible values of the
parameters governing the decay amplitude, which opens the possibility of using HAMMER to measure
those parameters in fits to collision data. To enable the necessary dynamic re-weight of the MC
distributions, an interface must be implemented between HAMMER and the used fitting framework.

Semileptonic charged-current decays are typically studied via binned template fits, and one of
the most extended and user friendly frameworks that allows to do so in High-Energy Physics (HEP)
is HistFactory [12]. This tool has a limited functionality for template morphing, only being able to
provide interpolations between fixed-shape histograms that have to be provided as input. In order to
use a generic shape parameterisation in HistFactory, in particular the functional forms provided by
HAMMER, new structures have to be developed.

This paper presents the construction of RooHammerModel, a C++ based interface between the
HAMMER tool and the HistFactory and RooFit [13] fitting frameworks. The interface has been con-
structed to be fully flexible regarding the decay mode and parameter configuration, allowing the user
to specify any of the possible configurations available in HAMMER. The technical details of the inter-
action with HAMMER are fully kept inside the class, providing a user experience which is as close as
possible to that of a standard RooFit model for a probability density function. The interface has been op-
timised to minimise the fitting time and memory consumption and has been tested on a typical use case.

The structure of the paper is as follows. Section 2 describes the overall structure of the interface.
Section 3 explains the user configuration. Section 4 explains several aspects of the particular
implementation and the designed solutions to some challenges that arose in the process. Section 5
presents the studies done to test the fitting interface. Section 6 shows a performance analysis. Finally,
some concluding remarks are given in section 7.

2 Structure of the framework

The usage of the interface assumes that the desired simulation samples have been previously
pre-processed with the HAMMER tool (as explained in detail in ref. [11]) and that the corresponding
results, collected in binary files, are available. The overall structure of the interface is similar to a
standard HistFactory fitting script, but incorporating a new class, RooHammerModel, to model the
desired decay components using HAMMER histograms. The technical interaction with HAMMER
is implemented internally within the class, such that the user only needs to specify the desired model
configuration and parameters. The general features of both the new class and the fitter structure are
discussed in the following.

The RooHammerModel class inherits from RooAbsPdf and implements a normalised piecewise
function of arbitrary shape, which is equivalent to a binned probability density function, PDF. It
can be used both in HistFactory and in plain RooFit. The PDF represented by the class is currently
defined in a three-dimensional variable space, although this functionality can be easily extended in
the future to perform fits in a different number of dimensions. Since the shapes are obtained from
the HAMMER tool, any arbitrary set of three variables in the decay can be adequately modelled by
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the class. The class presents some additional methods that allow the extension of typical HistFactory
features to variable-shape histograms, as explained in section 4.

The typical structure of a HistFactory fitting script can be maintained, with some additions
needed to implement the full functionality of the RooHammerModel class.

• As a first step, the set of templates needed to describe the physics model under consideration
are loaded, as well as the data histograms to be fitted. The desired instances of the
RooHammerModel class are created, and they are used to obtain associated initial templates,
which are passed to the HistFactory model (as explained in section 4).

• Afterwards, the HistFactory model is internally transformed into a RooFit probability density
function (PDF), as usually done in this framework.

• The next key point is the substitution in the model of the relevant initial templates by the
corresponding RooHammerModel objects, which enables the dynamical variation of the
templates’ shape.

• Finally, the fit to data is done with the usual commands.

3 User interface

The decay-rate amplitudes contained in HAMMER make use of the Effective Field Theory, that
encodes all the short-distance effects (including the BSM contributions) in the so called Wilson
coefficients, and the soft-QCD effects in kinematic-dependent form factors [14]. The functional
form of the form factors depends on the chosen phenomenological parameterisation.

The main idea behind HAMMER is that the differential decay rate can be expressed as a linear
combination of terms that depend on the Wilson coefficients. Consequently, the transformation
between distribution shapes that corresponds to a change in Wilson coefficients’ values can be
obtained via linear algebra operations. Furthermore, some of the form factor parameterisation classes
implemented in HAMMER provide the functionality to reweight the distributions changing the value
of the form factor parameters inside the model. These classes are denoted with “Var” in their name.
In these classes, the form factors are linearised in the parameters’ space around the chosen initial
values. With this approximation, the decay rate for the process, as a function of any observable, takes
a linear form also in the form factor parameters. More complete information can be found in [11].

In the interface described in this document, the handling of Wilson coefficients and form-factor
parameters is done by the RooHammerModel class.

3.1 RooHammerModel class

The user can include in the model as many HAMMER-derived decay templates as desired, by
creating one instance of the RooHammerModel class for each of them. The class is configured for a
particular decay via its constructor, shown below. The user has to provide the information of the
decay process and the chosen form-factor parameterisation, matching the information that should
have been passed to HAMMER at the MC pre-processing step. The user can also specify which of
the Wilson coefficients and/or form-factor parameters are to be varied during fitting, by passing lists
of arguments to the constructor.
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Constructor of the class. The default constructor of RooHammerModel is shown below, together
with a description of the arguments to be provided.

RooHammerModel ( cons t char ∗name , cons t char ∗ t i t l e ,
s t d : : s t r i n g _ v i e w WCprocessname ,
s t d : : v e c t o r < s t d : : s t r i n g >∗ _WCparamnames ,
cons t RooArgLis t& _reWCparaml is t ,
cons t RooArgLis t& _imWCparamlist ,
s t d : : s t r i n g _ v i e w FFprocessname ,
s t d : : s t r i n g _ v i e w FFmodelname ,
s t d : : v e c t o r < s t d : : s t r i n g >∗ _FFparamnames ,
cons t RooArgLis t& _FFpa r am l i s t ,
s t d : : v e c t o r < s t d : : s t r i n g >∗ f i l e n ame s ,
s t d : : s t r i n g _ v i e w h i s t o n a m e _ n o e r r o r s ,
s t d : : s t r i n g _ v i e w h i s t o n a m e _ w i t h e r r o r s ,
s t d : : s t r i n g _ v i e w schemename ) ;

• name and title denote the usual name and description attributes of a RooAbsPdf.

• WCprocessname denotes the quark-level weak-decay process, following the HAMMER
naming convention. For example, “BtoCTauNu”.

• _WCparamnames is a vector containing the names of the (subset of) Wilson coefficients to be
floated in the fit, without any particular ordering. The naming convention is the same as in
HAMMER.

• _reWCparamlist and _imWCparamlist contain, respectively, the lists of real and imaginary
parts of the Wilson Coefficients whose names are given in _WCparamnames (the ordering of
the three lists has to match). The parameters can be either RooRealVar or RooFormulaVar.1

• FFprocessname denotes the hadronic decay process, following the HAMMER naming
convention. For example “BtoD*”.

• FFmodelname denotes the chosen form-factor parameterisation, using the HAMMER naming
convention. For example, “BGL”.

• _FFparamnames is a vector containing the names of the (subset of) form-factor parameters to
be floated in the fit, without any particular ordering. The naming convention is the same as in
HAMMER.

• _FFparamlist contains the list of form-factor parameters matching the names given in
_FFparamnames. The parameters can be either RooRealVar or RooFormulaVar.

1Note that the name and the value fields, used to instantiate these RooFit variables, are not in any way related to the internal
interaction with HAMMER and its naming conventions. This choice gives full freedom to the user in naming the observables.
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• filenames is a vector of names for the HAMMER buffer files to be used. If the vector
contains more than one element, the files will be combined inside the class. This behaviour
is aimed at combining the sub-files obtained from a separate pre-processing of different
sub-samples of the MC dataset for a given specie.

• histoname_noerrors denotes a user-defined name, chosen at HAMMER pre-processing
time, given to the HAMMER histogram object that constitutes the core of the PDF. This
histogram does not have errors associated to the bins, only central values. The motivation for
using two versions of the histogram, with and without bin errors, is explained in section 4.

• histoname_witherrors denotes a user-defined name, chosen at HAMMER pre-processing
time, given to a HAMMER histogram object that contains both bin errors and central values.
The usage of this histogram is explained in section 4.

• schemename denotes a user name given to the form-factor scheme, chosen at HAMMER
pre-processing time.

Note that the constructor above is generic to any decay channel and decay-amplitude param-
eterisation. The possibility to pass RooFormulaVars as observables to the model is particularly
interesting in an analysis. A specific use-case scenario, for example, could be the need to include
some relationship between Wilson coefficients to perform a model-dependent fit.

3.2 Fitting script

The RooHammerModel interface can be employed as a standalone RooFit object, and is therefore
usable in any program developed with the RooFit package. However, it has been developed with
particular focus on the HistFactory package and an example script is provided as a guideline to
perform a standard fit.

In this script, a model with two decay channels is configured. The shape of one of the two
decay channels can vary according to the CLNVar HAMMER form factor parameterisation. The
construction of the part of the fitting model that does not depend on HAMMER and the overall
manipulation of the likelihood can be done as usual in HistFactory.

A particularly interesting HistFactory feature that has been extended to the new scheme is the
treatment of model-template uncertainties, using the Barlow-Beeston Lite method [15]. Both the
fitting script and the RooHammerModel have been adapted to be able to use the bin errors computed
by HAMMER, as explained in section 4. The inclusion of template-uncertainties in the model can
be activated as usual, via RooStats::HistFactory::Sample::ActivateStatError.

4 Technical implementation

This section describes the strategy and techniques adopted to overcome several challenges identified
during the process. These methods can also be used to develop alternative interfaces of HAMMER
with other fitting frameworks.
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4.1 Handling of the HAMMER objects

To reduce the memory consumption, the number of HAMMER::HAMMER instances loaded in memory
while fitting is kept to only one for each specie in the model. That single instance is created at
construction time, and kept as a data member of the associated RooHammerModel. Any copy of a
particular RooHammerModel object attempted in the fitting framework will not result in the creation
of a new HAMMER::HAMMER instance, but on the creation of a pointer to the instance stored in the
original RooHammerModel object. The internal usage of thread-safe standard-library pointers,
ensures that our class can be safely used in a multi-threaded environment.

4.2 Histogram caching

To avoid unnecessary computations during fitting and speed-up the process, the three-dimensional
histogram that represents the model obtained from HAMMER for a given decay channel is only
updated if any of the Wilson coefficients or form-factor parameter values is changed at the current
minimisation step. Otherwise, no reweight is performed and a cached version of the previous
histogram is used.

4.3 Treatment of empty bins

If the number of events in the MC sample used to model a component in HAMMER is low for a given
binning scheme, it may happen that some bins are empty, even if the underlying model for those
bins is not zero. This would be problematic in a fit using HistFactory if the data sample to be fitted
happens to have some events in the affected bins. To prevent this potential situation, every histogram
retrieved from HAMMER is automatically corrected for empty bins inside RooHammerModel. This
correction is implemented by adding to the nominal histogram a constant flat histogram where the
bin content value is an arbitrarily small number [6], conventionally set to 10−10. Note that this
approach avoids an iteration over the bins to check whether or not they are empty, and the effect on
the non-empty bins is negligible. This correction is applied whenever the model is reweighted.

4.4 Model normalisation

To preserve the statistical definition of PDF, the histogram that represents the physical distribution
in RooHammerModel is always re-normalised after any change in shape, such that its integral on the
defined phase space is always equal to one. The re-normalisation is done after correcting for empty
bins. Note that this normalisation makes the RooHammerModel distribution insensitive to any change
in a HAMMER parameter that represents an overall multiplicative factor to the total amplitude. If
such a parameter exists in the desired model, the associated object passed to RooHammerModel must
be constant.2 Apart from the automatic model normalisation, the RooHammerModel class provides
all needed analytical integrals in any region of the phase space and for any desired dimensionality
up to 3D.

2If relevant, the parameter representing an overall multiplicative factor can be dealt with externally in the fitting
framework, forming part of a yield parameter that multiplies the RooHammerModel PDF.
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4.5 Template uncertainties in the fit

The limited size of the MC samples used to describe the model in the fit intruduces a source of
systematic uncertainty on the fit parameters. One way to include this uncertainty automatically in
the fit is the Barlow-Beeston method [15]. In this approach, the logarithmic likelihood used for the
fit is supplemented with constraints that depend on values and statistical errors for each bin in each
of the MC samples.

A faster and simpler version of the previous method, called Barlow-Beeston lite, is implemented
and commonly used in HistFactory fits. In this version, only one constraint is added per bin,
accounting for the total bin content and uncertainty associated to the combination of all the MC
samples. On a technical level, the method involves a single-step computation of the relative errors
for each bin before the fit, and the computation at every minimisation step of the total constraint
parameters per bin, using the previously-obtained relative errors and the updated component fractions.
It should be emphasised that, within this method, neither the change in fractions nor the change in
component shapes is taken into account in the determination of the relative bin errors.

The RooHammerModel class has been constructed to be used in combination with the Barlow-
Beeston lite method, and the way HAMMER is used by the class has been optimised for this approach,
as we explain in the following. We define 𝑁FF and 𝑁WC as the numbers of form-factor parameters and
Wilson Coefficients that the user configures to be variable. If both 𝑁FF and 𝑁WC are relatively large, the
number of internal calculations required by HAMMER to process a histogram without evaluating bin
errors approximately scales as (𝑁FF ×𝑁WC)2. On the other side, if the bin errors also need to be com-
puted, the number of HAMMER calculations approximately scales as (𝑁FF ×𝑁WC)4. Given the enor-
mous resource consumption of the second case, we use a strategy to reduce the total number of required
computations, exploiting the approximation inherent to the Barlow-Beeston lite method. The strategy
consists on doing a double pre-processing of each decay component with HAMMER, producing two
separate histograms: a histogram including bin uncertainties but fixed Wilson coefficients and form-
factor parameters, and another histogram without bin uncertainties but with the desired parameters set
to be variable. The usage of the two histograms together gives all the information needed for fitting, and
the required pre-processing time is considerably smaller than that of an alternative single histogram
with full features enabled. The histogram without uncertainties will constitute the core of the PDF
model, while the histogram with uncertainties will be accessible through a dedicated method of the
class called getHistogramWithErrors. As a technical note, the RooHammerModel class assumes
that both histograms are present in the same buffer file that results from the HAMMER pre-processing.

The previous setup can be used in a fit configured with HistFactory in the following way: firstly
the desired RooHammerModel objects are instantiated and the proxy histogram for each of them
is retrieved via getHistogramWithErrors. These histograms are passed to the HistFactory model
as standard templates. Then, the HistFactory model is compiled into a RooFit model, using the
dedicated HistFactory methods. This triggers the computation of the relative bin errors used in the
Barlow-Beeston lite method, and the creation of the associated nuisance parameters and constraints
to be included in the model. Therefore, the relative error parameters are evaluated at the starting point
of the fit.3 Finally, the RooCustomizer class allows to substitute the proxy templates in the model
with the corresponding RooHammerModel objects, to make use of the shape variation during fitting.

3This approach assumes the initial values of the parameters not to be too far away from those at the best-fit point.
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4.5.1 Uncertainty of the yield parameters.

If the discussed implementation of the Barlow-Beeston method is used and some of the fit observables
are to be interpreted as component yields, an extra consideration should be taken into account,
concerning the uncertainty on those parameters.

In HistFactory, any MC-template-based model that describes the histogram of a particular
component can be mathematically expressed as:

𝑛(𝑥𝑏) = b · ℎ(𝑥𝑏), (4.1)

where 𝑛(𝑥𝑏) is the expected number of events in a bin of coordinates 𝑥𝑏, b is a fit parameter and
ℎ(𝑥𝑏) is the MC template, that contains the number of events in the associated MC sample for the
considered bin. When performing the fit using the Barlow-Beeston method, the uncertainty on b

will account for both the statistical fluctuations of the data and the MC sample. It should be noted
that b does not represent a yield, but a scaling factor to the MC template.

To obtain the associated yield parameter, we can sum eq. 4.1 over all the bins, leading to

𝑁obs = b · 𝑁MC, (4.2)

where 𝑁obs and 𝑁MC are, respectively, the total number of events in the data sample and in the MC
sample. The measured value for the component yield can be obtained by multiplying b and 𝑁MC.
This is typically done in HistFactory by adding multiplicative normalisation factors (1/𝑁MC) in the
model, that allow to redefine the scaling factor such that its central value corresponds to that of
the yield. This is automatically done in RooHammerModel, where the MC-derived PDF is always
normalised to one. However, the uncertainty of the yield can not be directly computed as 𝜎(b) ·𝑁MC,
since 𝑁MC has an uncertainty on its own, of statistical nature. Additionally, the uncertainties of b
and 𝑁MC are correlated, since the effect of a statistical fluctuation in 𝑁MC is implicitly included in
the b uncertainty, as part of the fluctuations done by the Barlow-Beeston procedure. As a solution, it
is possible to obtain a relation among the uncertainties of the quantities in eq. 4.2 by expressing
𝜎(b) in terms of 𝜎(𝑁obs) and 𝜎(𝑁MC), noticing that 𝑁obs and 𝑁MC are fully uncorrelated:

𝜎(b) = 𝜎

(
𝑁obs
𝑁MC

)
=

1
𝑁MC

√√
𝜎(𝑁obs)2 + 𝜎(𝑁MC)2

𝑁2
obs

𝑁2
MC

. (4.3)

Re-ordering terms in the previous expression and making use of eq. 4.2, we obtain:

𝜎(𝑁obs) = 𝜎(b)𝑁MC

√︄
1 − 𝜎(𝑁MC)2

𝑁2
MC

b2

𝜎(b)2 . (4.4)

The previous expression can then be used to compute the uncertainty on the yield parameter 𝑁obs

when using the presented implementation of the Barlow-Beeston method, combining the information
from the fit parameter b and the information from the total number of events in the MC sample (with
its uncertainty). Note that the correct uncertainty is always smaller than 𝜎(b)𝑁MC, and the size of
the difference between them depends on both the data and MC samples.
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4.6 Passing observable variables to RooHammerModel

In a typical HistFactory fit, the collection of RooRealVar objects representing the fit variables is
automatically constructed when the model is converted into a RooFit one, and can be accessed
by the user from that moment onward. These RooRealVar objects have to be passed to the
RooHammerModel instances. If this was done in the constructor, as in a typical RooAbsPdf, the
RooHammerModel objects would have to be created after the HistFactory model compilation stage.
However, in such a scenario the RooHammerModel would not be available at the beginning of the
process, to provide the proxy histograms with bin uncertainties (see section 4.5). With the aim of
economising the memory consumption, avoiding duplicated objects, the solution adopted for the
RooHammerModel class is to have a constructor (shown in section 3.1), where the fit variables
are not passed, and then use a devoted method of the class, called SetObservables, to set the
variables at the point in the code where they are available. Apart from this default scheme, the
RooHammerModel class has an additional constructor, where the fit variables are also passed, in
order to operate as usual if used standalone in a generic RooFit fitting framework.

4.7 Parallelisation

A generic HAMMER amplitude-reweighting process is divided in two steps: the pre-processing of
MC files, not discussed in this document, and the readout of the histograms, which happens inside
the RooHammerModel class.

The first step can be parallelised in terms of MC events, running the HAMMER pre-processing
in several CPU processes over separate simulated-data sub-samples, to produce separate HAMMER
buffer files. The implementation of the RooHammerModel class allows to profit from this
parallelisation scheme, by having a constructor that takes as input a list of buffer-file names (see
section 3.1). The information from the different files will be internally combined by summing the
histograms, using the corresponding HAMMER functionality [11].

Concerning the parallelisation at histogram-readout time, the most relevant possibility is the
parallelisation of the likelihood evaluation over different sets of bins. This can be done using
the standard method RooFit::NumCPU in the fit, that allows the users to specify the number of
processes to be run in parallel. It should be noted that the parallelisation done with this method
relies on multi-processing, not on multi-threading.4 This implies that the parallel workers load
internally independent instances of the likelihood objects, including the HAMMER objects. On
one side, this guarantees code safety under parallelisation, since there is no cross-talk between the
different processes. On the other side, the multiple loading of the objects implies a higher memory
consumption for a parallel fit, which should be considered by the user.

5 Testing the framework

This section presents a set of generate-and-fit pseudo-experiments, called “toy” experiments, aimed
at checking the fitting procedure using the new RooHammerModel class and the techniques explained
in the previous section in a typical fit configured with HistFactory. The experiments are designed to
test a realistic fitting situation from a technical viewpoint, with a simple physics scenario.

4Note that the HAMMER tool provides a set of thread-safe specific methods that are useful for multi-threading
parallelisation schemes.
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5.1 Technical setup of the experiments

For each pseudo-experiment, the event generation of all the needed samples is done using Rapid-
Sim [16], with a LHCb configuration, and EvtGen [17], although the conclusions of the checks are
general to any experimental setup. The samples whose decay amplitude is to be re-weighted are pre-
processed with HAMMER, to produce the corresponding HAMMER buffer files. A fit is done using a
set of the samples (see the next sub-section) to construct the physics dataset and another set to construct
the fitting model, making use of RooHammerModel when relevant. The previously discussed imple-
mentation of the Barlow-Beeston lite method is used, to account for the uncertainty on the templates.

The fit results are collected for a large number of pseudo-experiments, and their statistical
agreement with the generated parameter values and uncertainties is used to check the validity of the
framework.

5.2 Benchmark physics scenario

As a particular physics scenario, a combination of two decay channels is chosen:5 𝐵
0 → 𝐷∗+`−a`

and 𝐵
0 → 𝐷∗+𝜏−a𝜏 , with 𝐷∗+ → 𝐷+𝜋0 and 𝜏− → `−a`a𝜏 . It is assumed for this scenario that

neither the neutrinos nor the 𝜋0 are reconstructed experimentally, so the visible final state, common
to both the muonic and tauonic decays, is 𝐷+`−.

To investigate this combination of decays, three variables are used in the fit: the muon energy in
the 𝐵

0 rest frame, 𝑞2 = (𝑝(𝐵0) − 𝑝(𝐷+))2 and 𝑀2
miss = (𝑝(𝐵0) − 𝑝(𝐷+) − 𝑝(`−))2, where 𝑝(𝑃)

denotes the four-momentum of particle 𝑃. No experimental resolution effects are considered in these
studies, although the usage of the 𝐷+ to compute the previous variables instead of the 𝐷∗+ leads to a
broadening of the distributions, because of the non-reconstructed 𝜋0.

For each experiment, four samples with the previous decays are generated: muonic_data
and tauonic_data, that are combined to represent the physics dataset, and muonic_model and
tauonic_model, that provide the templates for the fit model. The muonic_data sample is generated
using the CLN parameterisation [18], while the muonic_model sample is generated with a pure
phase-space model. Both the tauonic_data and tauonic_model samples are generated with a
pure phase-space model. In the experiments, HAMMER is used to reweight muonic_model from
phase space to CLN. Apart from generating different events for each experiment, the total number
of events in each sample, 𝑁data

muonic, 𝑁
data
tauonic, 𝑁

model
muonic and 𝑁model

tauonic, is also fluctuated, according to a
poissonian distribution.

The parameters to be measured in each fit are: the combined yield, 𝑁total = 𝑁data
muonic+𝑁

data
tauonic; the

ratio of yields, 𝑅(𝐷∗) = 𝑁data
tauonic/𝑁

data
muonic, and three form-factor parameters of the CLN parameterisa-

tion, 𝜌2, 𝑅1 and 𝑅2. Since the CLN form factors are not linear on the corresponding parameters [18],
the presented toy study also tests the validity of the linear approximations done by HAMMER (see
section 3). As a technical note, since the form-factor parameters in HAMMER are constructed as dif-
ferences with respect to central values set by the user at the pre-processing step, the three parameters
that are actually measured in the fit correspond to those differences, denoted by Δ𝜌2, Δ𝑅1 and Δ𝑅2.

Generation values. In each experiment, the muonic and tauonic samples constituting the physics
dataset are produced using the generation values 𝑁total = 106 events, 𝑅(𝐷∗) = 0.3 and Δ𝜌2 =

5Charge conjugation is implied in what follows.
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Δ𝑅1 = Δ𝑅2 = 0, with central form-factor parameter values 𝜌2 = 1.207, 𝑅1 = 1.401 and 𝑅2 = 0.854.
The respective yields of the muonic and tauonic samples used to construct the fitting model are
generated with the same central values as their physics-dataset counter-parts, such that the parameter
uncertainties originating from both the physics dataset and the model templates are comparable in size.

5.3 Results of the validation

A set of 1000 toy experiments have been performed with the previous setup, leading to 995 successful
fits. In each fit, the pull variable for each parameter \ is evaluated as follows:

\pull =
\̂ − \true

𝜎\

, (5.1)

where \true is the value used for generation, and \̂ and 𝜎\ are the fit estimates for the value and
uncertainty, respectively. An exception is done for the yield-like parameters 𝑁total and 𝑅(𝐷∗), for
which 𝜎\ is computed as explained at the end of section 4.5.

The obtained pull distributions for the successful fits are shown in figure 1. For all the
distributions, the parameters of a Gaussian fit are consistent with those of a standard Gaussian within
three standard deviations. This demonstrates that, in the studied configuration, the fit provides
unbiased estimates for the parameters, with the correct coverage properties.

6 Performance assessment

The average CPU time per minimization step is used to asses the performance. For this study, the
chosen benchmark model consists on a single component, 𝐵0 → 𝐷∗+`−a`, which is represented by
a RooHammerModel object. To focus on a computationally more involved case from the HAMMER
side, instead of the CLN parameterisation previously inspected we now use the BGL222 scheme pre-
sented in ref. [19], allowing us to float six form factor parameters in the fit. The Wilson Coefficients are
fixed to their SM values, and the total yield is also fixed. Having form factor parameters as the only fit
variables ensures that the internal reweighting performed by the RooHammerModel class occurs at ev-
ery step, since caching of the histogram shape is not possible in that configuration. The number of bins
used in the model is 3600. The minimisation of the likelihood function is performed by Minuit [20],
which is configured through the RooMinuit class in RooFit. The study is done on a CentOS-7-
x86_64 architecture, using a 2.2 GHz Intel Core Processor (Broadwell, IBRS). Regarding software
versions, RooHammerModel v1.1 is used, in combination with HAMMER v1.1.0 and ROOT v6.16.

In the first place, we evaluate the average time per minimisation step taken by the fit when a
single process is used and the Barlow-Beeston method is deactivated, finding a value of 48 ms. If
the likelihood evaluation is parallelised over four processes, the time is reduced by a modest 20%.
This result points to the internal reading of the HAMMER histogram by RooHammerModel having
a dominating effect, since this action does not profit from the parallelisation, while the per-bin
evaluation of the already read histogram is much less time consuming. It should be noted that, in a
more general model with floating parameters other than the HAMMER related ones, the automatic
histogram-caching functionality of RooHammerModel will reduce the relative importance of the
histogram-reading from HAMMER, reducing the average time per minimisation step and improving
its scaling with parallelisation. Finally, we evaluate the average time per minimisation step when the
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Figure 1. Pull distributions for the fit parameters, corresponding to the ensemble of toy experiments used to
validate the framework. The result of a gaussian fit to each distribution is superimposed as a red curve.

Barlow-Beeston method is activated. In that configuration, a time of 130 ms is found when using a
single process, and this metric is not found to improve with parallelisation.

7 Conclusions

This article describes an interface of the HAMMER tool with the well known data-analysis framework
HistFactory. The interface, based on C++, is generic for any decay channel, has a user-friendly
interaction and can be integrated in plain RooFit if desired. It has been optimised in terms of
speed and memory handling, and has been tested in detail. The particular solutions adopted for the
data analysis and computing challenges encountered when developing the interface are carefully
described. We hope that they might serve as an inspiration to other groups trying to interface
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HAMMER with other fitting frameworks. The code of the interface is provided in the following
open-access Gitlab repository: https://gitlab.cern.ch/InterfacingHammer/roohammermodel. The
description and studies presented in this paper correspond to RooHammerModel v1.1.
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