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A B S T R A C T

Accurate localization plays a crucial role in the operation of self-
driving cars. Inaccurate pose estimates can undermine the reliability
of subsequent actions, often leading to unrecoverable failures. How-
ever, commonly used sensors such as Global Navigation Satellite
Systems (GNSSs) do not meet the reliability standards required by
intelligent vehicles in urban areas, and several Deep Neural Net-
work (DNN)-based methods have emerged in recent years to address
this issue. Despite the outstanding results achieved so far by localiza-
tion techniques, some challenges remain unsolved and compromise
the deployment of deep learning models in real scenarios. This thesis
proposes techniques to address two main problems: providing more
robust DNN models in challenging conditions and developing strate-
gies to add robustness by detecting localization failures. Improving
the reliability of autonomous driving systems is critical, especially
given recent serious accidents involving human road users. To move
towards more reliable deep learning localization systems, this thesis
provides the following three contributions. Firstly, a 3D DNN that
utilizes Light Detection And Ranging (LiDAR) data is proposed. This
model covers the entire localization pipeline, including loop closure
detection and point cloud registration, with a primary focus on the
well-known issue of reverse loop detection. We chose to utilize LiDARs

due to their reliability in accurately reconstructing the 3D navigation
scene and their property of being invariant to lighting conditions. Sec-
ondly, we propose an uncertainty-aware method for global localization
without any initial GNSS measurements. In particular, this approach
enables the matching between a recorded LiDAR observation and a
pre-built map of the navigation environment. Furthermore, thanks to
the employment of a sampling-based uncertainty estimation method,
the proposed DNN allows for the detection of localization failures.
Thirdly, a local refinement localization approach is presented. Different
techniques for estimating uncertainty are integrated into an existing
pose regression Convolutional Neural Network (CNN), enabling direct
estimation of vehicle position and orientation uncertainties. These
estimates are then used in an Extended Kalman Filter (EKF) to mimic
a realistic application scenario. The presented experimental activity is
conducted on publicly available automotive datasets that depict urban
scenarios, such as KITTI, Argoverse2, Robotcar, and Mulran, allowing
the research community to perform future comparisons.
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Qui-Gon: “You almost got us killed!

Are you brainless? “

Jar Jar: “I speak! “

Qui-Gon: “The ability to speak does

not make you intelligent.“
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1
I N T R O D U C T I O N

With the recent advancements of self-driving technologies, we ob-
serve the emerging trend of intelligent vehicles together with their
deployment in urban scenarios. Thanks to this phenomenon, car man-
ufacturers were able to attract the interest of investors and researchers
by promising to revolutionize the automotive industry in just few
years. The primary objective was to improve the urban mobility by
means of vehicles capable to outperform human drivers, leading to a
reduction of the number of accidents, a better traffic management, and
a decrease of air pollution. However, nowadays the current technology
struggles to meet the expectations [10, 167], making investors more
skeptical regarding the achievement of autonomously-driven vehicles
in a short period. Furthermore, serious accidents involving self-driving
cars have recently arose questions about their safety, making more
difficult experimental activities in real scenarios [51].

Accurate localization, i.e., the task of estimating the position and
orientation of a vehicle with respect to a given map, is one of the tasks
to accomplish to ensure a correct and safe navigation and it represents
an open issue in the automotive field, since commonly used Global
Navigation Satellite Systems (GNSSs) are not able to meet the required
standard for autonomous driving in urban areas. Therefore, commonly
used localization systems address such a problem by means of the
scene understanding task, that is localization is achieved by exploiting
observations given by a sensor mounted on-board the vehicle [27, 149,
195]. As localization is performed with respect to the device used for
gathering the observation, this task takes also the name of observer

localization.
In the last decade, Deep Learning had a huge impact in the auto-

motive field, providing perception algorithms that made huge steps
forward in terms of accuracy and generalization capability [64, 100,
142], allowing for a great improvement of autonomous self-driving
systems. In particular, Deep Neural Network (DNN) models have been
applied in a great variety of relevant tasks for autonomous driving [58,
107] including localization [4, 80], and demonstrated to be robust
approaches for extracting high level knowledge from heterogeneous
observations of the surrounding scene. However, this task, also known
as the scene understanding task, still presents several challenges to
overcome that undermine the deployment of self-driving cars in ur-
ban areas. For instance, in these environments complex structures

1



2 introduction

often occur, e.g., intersections, and human road users often perform
unpredictable actions, e.g., a pedestrian crossing a road unexpectedly.

Localization through scene understanding is the main topic ad-
dressed in this thesis work by considering different parts of a com-
monly used localization pipeline and by exploiting DNN-based tech-
niques. This task is particularly relevant for autonomous driving,
since localization failures impact negatively the subsequent actions of
a self-driving car. From a technical perspective, localization is usually
achieved by firstly estimating a rough global pose, which is refined
during a successive step. Regarding global localization, a possible ap-
proach is to use a direct sensor measurement provided by a GNSS, or to
exploit an observation depicting the surrounding scene, e.g., a camera
image, from which an algorithm extracts high-level knowledge that is
matched with an a-priory representation of the environment. Instead,
local estimation techniques leverage on an initial pose estimate, that
reduces the localization hypothesis space, and allow for the matching
of the observed current scene constituents against a local map.

In the state-of-the-art, observer localization represents a well dis-
cussed topic and we could observe the appearance of a large number
of DNN-based approaches in the last decade, by also achieving out-
standing results. Despite the performance shown so far, these models
have several limitations also depending on the device used to perform
localization. For instance, camera-based methods [8, 80] allow for a bet-
ter understanding of the scene due to rich visual information depicted
in images, but perform poorly in presence of challenging lighting con-
ditions, and Light Detection And Ranging (LiDAR) based methods [4,
96, 180] enable a better comprehension of the 3D geometry of a scene
by achieving also very accurate results, but often require computa-
tional expensive DNN architectures or assume the presence of costly
LiDAR on-bard vehicles. Other approaches named multi-modal [28, 46,
166] take advantage from the combination of observations having a
different nature, but the definition of a strategy to find associations
between heterogeneous data is not a straightforward task.

Simultaneouos Localization And Mapping (SLAM) [36, 69, 186] is a
typical method to jointly achieve accurate localization and to perform
a mapping of an unknown environment during navigation, aiming to
a reduction of the localization drift originated from noisy sensor mea-
surements, e.g., intrinsic errors in the odometry estimates. In particular,
two main components intervene during the localization process: the
loop closure detection and local refinement modules. The former
matches a current observation with a previously visited location, and
then the latter provides an accurate localization estimate given such
a match. Finally, SLAM algorithms exploit this localization estimate
to correct the whole vehicle trajectory. Visual SLAM exploits camera
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images to address the previous tasks, but generally fails in presence
of poor illumination, making this approach not particularly reliable
for autonomous driving [40, 128, 198]. Therefore, LiDAR-based SLAM is
usually preferred, since LiDARs are invariant with respect to lighting
conditions and directly provide a 3D reconstruction of the environ-
ment. Moreover, LiDAR-based SLAM usually achieves very accurate
results. Despite several LiDAR-based methods have been proposed in
the literature to face the loop closure detection task, both handcrafted
[86, 165] and DNN-based methods [4, 36] often fail in the presence of
reverse loops, i.e., previously visited locations that present perceptual
differences due to the different acquisition point of view. A similar
issue emerges in the successive localization refinement step, when we
try to estimate the rigid transform that allow us to align the current
LiDAR observation with the detected loop. With LiDAR data, this prob-
lem takes the name of point cloud registration [1, 153, 199], and also
in this case deep learning techniques [7, 25] provide inaccurate results
in the presence of reverse loops. Since LiDAR-based SLAM represents a
particularly robust method for urban localization, in this thesis work
we address the previously mentioned challenges.

Another relevant issue in the autonomous driving field concerns the
reliability of deep learning models that are employed in perception
systems. On the one hand, DNNs demonstrated to achieve outstanding
results on average, on the other hand, it is challenging to understand
whether one can trust a model output or not. Therefore, the ability of
detecting failures in DNNs is crucial by considering that self-driving
cars operates within a critical domain. For instance, a trend in the
automotive research community is to determine the effectiveness of
novel DNNs by mainly measuring their accuracy on a narrow set of
data, without considering that just a single wrong prediction could
cause disastrous consequences in real world. Moreover, we should
consider that training deep learning models on a limited amount of
data exposes them to biases and to an approximated representation of
the world. Therefore, having a model capable to associate a confidence
score to its outputs could really improve the reliability on DNN-based
perception systems together with the overall driving experience, fi-
nally making them more suitable for realistic deployment scenarios.
Human drivers often perform actions in presence of partial knowledge
of the surrounding environment and, nevertheless, they are able to
generally avoid dangerous situations. This behavior results from the
ability of humans in quantifying this lack of information, also referred
as uncertainty, that allows them to understand the risk related to a
particular action and then to act accordingly. Due to the importance of
managing risk with DNNs, the topic of uncertainty estimation in deep
learning models gained an increasing popularity in the literature [52,
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73]. In particular, several approaches were proposed [3, 43, 54, 105,
129] to estimate the aleatoric part of uncertainty, i.e., data uncertainty,
or the epistemic part, i.e., model uncertainty. Despite the presence of
some methods in the literature, the application of uncertainty esti-
mation techniques in DNN-based localization is still limited [24, 81,
122, 134, 148]. With the aim of providing uncertainty-aware DNNs for
urban localization that estimate epistemic uncertainty, two different
proposals are provided in this thesis work, by tackling both the global
and local components of the localization pipeline.

To summarize, in this thesis we examine the issue of urban lo-
calization by concentrating on the reliability of deep learning-based
techniques. The term “reliability“ has a dual meaning in the proposed
work: we investigate how to overcome the shortcomings of LIDAR-
based SLAM systems using DNN models in challenging conditions,
and we also address the problem of providing uncertainty-aware
DNN methods in global and local localization. In particular, the con-
tributions developed during these three years are reported as follows.
The first proposal presented (chapter 3) tackles the entire localization
pipeline and a LiDAR-based approach is proposed to deal with the
problems of global and local localization. In particular, global localiza-
tion is addressed as a place recognition problem, i.e., the recognition of
a previously visited location, with the objective of identifying reverse
loop closures. Instead, the local refinement component deals with the
point cloud registration task, i.e., the problem of estimating a geomet-
ric transform to correctly align two 3D point clouds. Both tasks are
performed by a novel 3D DNN named LCDNet, that is also integrated
within a SLAM system. Despite the impressive results achieved by
LCDNet, it is impossible for such a model to associate a confidence
measure with respect to its predictions. Since SLAM systems are sen-
sitive with respect to the presence of false loops, i.e., observations
wrongfully matched with a previously visited location, another pro-
posal of this thesis aims to introduce an uncertainty-aware technique
for LiDAR-based place recognition. In particular, the proposed method
employs a sampling-based technique for estimating uncertainty in the
feature representation produced by an ensemble model (chapter 4).
Please note, the main goal of this proposal is to provide an exploratory
study about the effect of sampling-based uncertainty estimation tech-
niques in the place recognition problem and is not directly related
to LCDNet. However, loop closure detection within a SLAM method
would be its primary application. Finally, also the local refinement part
of the localization pipeline is tackled in this thesis (chapter 5). In par-
ticular, an existing multi-modal Convolutional Neural Network (CNN)
used for pose regression is modified to exploit three different uncer-
tainty estimation techniques: two sampling-based approaches and a
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direct estimation method. Moreover, an integration within a filtering
algorithm is proposed to demonstrate the importance of epistemic
uncertainty within a realistic automotive scenario.

In brief, the outline of this thesis is reported as follows:

• in Chapter 2, an introduction to the autonomous driving back-
ground is provided by also reporting relevant existing approaches
in the literature. Finally, the relevant open challenges in the ur-
ban localization context are identified, that also represent the
base of this thesis work;

• in Chapter 3, a model named LCDNet is introduced. In particular,
this work tackles the problem of reverse loops in LiDAR-base
SLAM both from a global and local perspective;

• in Chapter 4, we start to face the problem of uncertainty es-
timation in localization deep learning models. In particular a
sampling-based method is proposed to estimate feature-wise
uncertainty in the place recognition task, with the final aim to
detect failures;

• in Chapter 5, an existing multi-modal pose regression CNN

is modified to integrate different uncertainty estimation tech-
niques, making it uncertainty-aware. To demonstrate the benefit
achieved, this model is then integrated within a filtering algo-
rithm;

• finally, in Chapter 6, a summary of the contributions of this
thesis work are presented.

1.1 publications

This section presents a list of publications produced during the three
years of the PhD. The articles are categorized as “already published“,
“to be submitted“, and “published but not strictly related to this thesis“.

1.1.1 Published papers

Cattaneo Daniele, Vaghi Matteo, Valada Abhinav. “Lcdnet: Deep
loop closure detection and point cloud registration for lidar
slam“. IEEE Transactions on Robotics, 2022, pp. 2074-2093. [32]

Vaghi Matteo, D’Elia Fabio, Ballardini Augusto Luis, Sorrenti
Domenico Giorgio. “Understanding the Effect of Deep Ensem-
bles in LiDAR-Based Place Recognition“. International Conference

of the Italian Association for Artificial Intelligence, 2023, pp. 295-309.
[174]
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1.1.2 To be submitted papers

Vaghi Matteo, Ballardini Augusto Luis, Fontana Simone, Sorrenti
Domenico Giorgio. “Uncertainty-Aware DNN for Multi-Modal
Camera Localization“. Robotics and Autonomous Systems journal

(or other similarly relevant journals), in the following weeks.
[173]

1.1.3 Published papers that are not strictly related to this thesis

Fontana Simone, Cattaneo Daniele, Ballardini Augusto Luis,
Vaghi Matteo, Sorrenti Domenico Giorgio. “A benchmark for
point clouds registration algorithms“. Robotics and Autonomous

Systems, 2021, 140, 103734. [49]



2
B A C K G R O U N D

This chapter provides an overview of the background of autonomous
driving. The first part focuses on describing the devices typically used
onboard self-driving cars, which are utilized by a general perception
system. Additionally, it briefly discusses the impact of deep learning
on autonomous driving perception. The second part introduces a typi-
cal localization pipeline and categorizes global and local refinement
methods. Finally, this chapter describes the open challenges that will
be tackled in this thesis work.

2.1 autonomous driving : a brief introduction

Autonomous navigation always represented a central topic in robotics,
since it has many practical applications that can ease human activ-
ities in different scenarios, such as, automotive. However, also the
deployment of robots in dangerous scenarios for human workers, e.g.,

mines or nuclear implants, can improve working conditions and al-
low companies to promptly take actions when severe accidents occur.
Therefore, many challenges and projects have been funded over the
last decades to keep the robotics community focused on this topic.

For instance, after the nuclear implant Fukushima disaster in 2011,
the Defense Advanced Research Projects Agency (DARPA) in United
States launched the DARPA robotics challenge to encourage the devel-
opment of autonomous solutions for complex and dangerous environ-
ments [101]. A decade earlier, at the DARPA grand challenge, where dif-
ferent research groups competed to develop the first fully-autonomous
vehicle navigating off-roads, we could observer the self-driving car
named Stanley completing the competition by navigating several kilo-
meters in the desert for the first time [170]. Few years later, the same
challenge was extended to simulated urban environments [21].

Also in Europe different projects for autonomous cars were pro-
posed in the past. For instance, in 1995 the Eureka Prometheus project
demonstrated that navigating in highways with standard traffic con-
ditions is a feasible task for an autonomous vehicle also with high
cruising speed [168]. Another example is the ARGO project [19] in
Italy, where an autonomously controlled car traveled a distance of
1900km on Italian highways.

Despite the results achieved in the previous projects, one should
consider that vehicles were tested in simple scenarios, e.g., highways,

7
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Figure 2.1: Scheme of the six SAE levels.

where the number of road user is limited and clear road signs and
markings are usually available. Instead, urban areas represent the
most challenging scenarios for a self-driving driving system, since a
vehicle can experience the presence of many different road structures
and must interact with a greater variety of external actors who often
take unpredictable actions. For instance, a pedestrian can cross the
roads unexpectedly without perceiving the presence of an incoming
vehicle or human car drivers can perform hazardous manoeuvres by
breaking the law and road regulations.

With the aim of creating a standard and defining a recommended
practice, the Society of Automobile Engineers (SAE) defined the so-
called SAE levels of autonomous driving in 2014 (fig. 2.1). This standard
comprises six different levels that one can divide in two distinct groups:
the driver support features and automated driving features. The former
technologies require constant attention from human drivers, who must
also be ready to intervene promptly, while the latter technologies, on
the other hand, allow for fully autonomous navigation, reducing the
need for human intervention. This categorization is considered by
institutions, automotive companies and researchers as the reference
standard when developing automotive solutions. In particular, the
current research focuses on the last three levels.

Over the last decade, many companies such as Volvo, BMW, Ford,
General Motors and Tesla have invested a lot of effort and resources
in developing autonomous navigation systems that have also been re-
leased in the automotive market. However, today’s intelligent vehicles
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have mainly reached the SAE 2-3 level, and only recently SAE 4 level
vehicles have been granted the permission to be tested on very limited
public roads. More specifically, some of the existing solutions are the
following:

• Tesla Autopilot is a self-driving product between 2 and 3 SAE

level;

• Waymo Driver is a SAE 4 level navigation software not requiring
a human driver;

• General Motors Cruise is another SAE 4 level self-driving system
that enables driverless navigation in limited urban areas;

• Mercedes-Benz publicly released in the automotive market the
first SAE 3 level technology in 2023;

• DeepRouteAI recently introduced its SAE 4 self-driving software

In the last decade, we could observe how the heads of relevant
automotive companies predicted the advent of fully-autonomous cars
in few years, encouraging investors and stakeholders to invest money
for their projects. However, after several years we are still far away
from the goals set. For example, Tesla CEO Elon Musk announced
in 2016 that Tesla vehicles already had all the necessary hardware to
achieve a fully automated driving experience, and he also stated that
SAE 5 vehicles were one step away from being achieved. However,
nowadays Tesla autopilot is still considered a technology between the
SAE 2 and SAE 3 levels [167].

On the one hand, maintaining high the expectations regarding self-
driving cars has had the advantage of attracting huge amount of
investments over the years, which was useful for funding the research
in the field. On the other hand, as promises began to be unfulfilled and
other trends started to emerge regarding the application of machine
learning algorithm, such as Large Language Models (LLMs), key
investors began to lose interest and to question the ability of current
automotive technologies to achieve SAE 5 level in the near future.

Regarding the previous shift of investors’ interest, the story of Argo
AI represents a perfect example [10]. Founded in 2016, Argo AI was
initially an autonomous driving technology startup that became a joint
venture backed by Ford Motors Co. and Volkswagen Group. Over the
years, the two companies invested more than 3.6 billion dollars in
the project, but as they struggled to find new investors and suffered
large net losses, they decided to dissolve it in 2022. Each company
decided to retain the technology developed and the staff involved in
the project, but they also decided to shift the focus of the research
from SAE 4 autonomous driving to SAE 2-3 technologies. This last
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aspect is very indicative, since it shows that the development of fully
autonomous vehicles in urban areas is a tough challenge that is still
far from being overcome.

There are several reasons behind the difficulties in achieving fully
autonomous systems. Firstly, autonomous navigation involves not
only the development of accurate and reliable systems, but also the
achievement of agreements with the institutions responsible for road
traffic regulation. This last aspect is crucial, as most countries in the
world prohibit even the testing of autonomous vehicles in real-world
scenarios without the appropriate permits. From an ethical point
of view, this scepticism is justified when we consider the negative
impact these experimental vehicles could have on everyday mobility
and human safety. For instance, General Motors Cruise was recently
involved in a serious car accidents by hitting and dragging a person
for several meters [51]. Second, ensuring the reliability of Artificial
Intelligence (AI) systems, which are typically installed in vehicles, is
far from being a straightforward process, especially now with the rise
of deep learning algorithms. For instance, since deep learning models
are ususally trained on a limited amount of data, they are exposed to
biases and limited knowledge of the world. Moreover, collecting and
labelling data for autonomous driving is a difficult task that can also
be expensive.

The main track of this thesis is to tackle the topic of reliability in au-
tonomous driving localization systems and to ensure their robustness
in challenging scenarios. In particular, two main topics are going to be
presented: LiDAR-based loop closure detection and registration, and
uncertainty estimation in Deep Neural Network (DNN)-based localiza-
tion models. In this chapter, a brief introduction to the background
of autonomous driving will be presented before discussing the work
conducted during the PhD.

2.1.1 Sensors typically available on-board autonomous vehicles

Like human drivers, autonomous navigation systems rely on in-
formation gathered from the environment. However, information is
obtained by analysing a large set of sensors data, which involves two
successive steps: pattern recognition and classification. In addition, a
human driver can associate multiple patterns to fully understand the
current scene both from a global perspective and from specific local
details, which are depending on the situation. For example, when
driving in a crowded area with many pedestrians, a human driver has
learned that pedestrians can be unpredictable and that their correct
identification and tracking is crucial to avoid disastrous accidents. Fur-
thermore, the ability to estimate their position within the navigation
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Figure 2.2: Depiction of an autonomous vehicle with several sensors
equipped on-board.

environment makes it possible to increase the focus on pedestrians
close to the vehicle, closeness depending on the vehicle speed.

In the previous example, the knowledge gained by the human driver
results from a collection of different data and their interpretation.
In particular, data can be classified according to their nature, and
we typically use visual and geometric data when driving. Visual
data usually allows us to distinguish between instance classes, while
geometric data usually provides useful information about the presence
of obstacles together with their 3D shape and distance from the vehicle
during navigation.

In the context of autonomous driving, we aim to replicate the typical
behaviour of a human driver, i.e., to collect data from the navigation
environment in order to extract the necessary information to ensure a
correct and safe navigation. To achieve this, different sensors are used
on board an autonomous vehicle, such as cameras, Light Detection
And Ranging (LiDAR) devices, radars and Global Navigation Satellite
Systems (GNSSs), as depicted in Figure 2.2.

Cameras are sensors that provide visual information about the
current scene and are suitable for mass production due to their low
cost. In fact, it is not unusual to see an autonomous vehicle equipped
with several cameras. Since cameras need external light to compute
a visual representation of the current scene, and the quality of the
outcome depends on the lighting conditions of the environment, they
are also known as passive sensors. For this reason, the quality of the
data captured depends on the lighting conditions of the environment
in which an image is captured.

LiDARs sensors observe the scene by emitting light and measuring
the time of flight of the returned signals. A LiDAR sensor records a 3D
set of points also known as a point cloud and, unlike cameras, LiDARs
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actively scan a scene. Furthermore, LiDAR sensors are valuable instru-
ments for obtaining precise geometry of the navigation environment.
However, they can be costly, and cheaper alternatives may not provide
the necessary quality for autonomous driving. One of the best features
of LiDARs is their independence from lighting conditions, since they
use their own light source, making them suitable for both day and
night. On the other hand, they do not perform well in the presence of
fog and highly reflective surfaces. They also suffer from the problem
of distortion when the vehicle on which the LiDARs are mounted is
travelling at high speed even though it can be corrected.

Similar to LiDARs, radars actively observe the scene, but instead of
emitting light, they rely on waves of a much longer wavelength. In
general, radars are less accurate than LiDARs in providing geometric
information about the environment, but they are very useful in detect-
ing obstacles, even in the presence of occlusions. Radars are also very
cheaper than LiDARs.

One of the key elements of navigation is the ability to locate a vehicle
in relation to a map of the environment. To achieve this, GNSSs are
used to provide an estimate of the vehicle’s position and orientation,
also known jointly as pose. GNSSs can achieve really high accuracy, but
their performance varies greatly in the presence of external factors
that degrade the incoming signal. For example, the presence of clouds
or urban canyons, i.e., areas where the incoming signal is occluded
by urban infrastructures, has a negative impact on the accuracy of
the final estimate. In these areas, the estimates provided by GNSSs in
urban areas are often unreliable, making accurate localisation in these
scenarios an open research problem.

2.1.2 Representing the navigation environment

While navigating, drivers must constantly estimate their position
and orientation with respect to the world, as this affects their sub-
sequent decisions. Inaccurate estimates can cause drivers to become
lost or, in more serious cases, to encounter dangerous situations. The
same task is faced by autonomous vehicles and takes the name of
localization.

The localization task involves the reference to a map, that provides a
representation of the world in which an autonomous system performs
navigation. From a technical perspective, a map consists of a set of
local elements composing the navigation environment that can be
used to match sensor data recorded during navigation. Therefore, the
localization task involves the matching between observations gathered
from the current scene and the navigation map. This complements the
GNSS estimates when operating in GNSS-covered areas, but it is the
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Figure 2.3: Example of an urban topological map.

only localization source. When operating in GNSS-denied scenarios,
the achievement of satisfactory results depends also on the map type
used

The most popular map types are the following:

• Topological maps

• Grid maps

• Point Cloud maps

• HD maps

topological maps These maps are used in common naviga-
tion systems, such as those utilized by navigation systems present in
modern smartphones. However, these maps can also find various ap-
plications in robotics. In general, the environment is represented with
a graph, where each node corresponds to a geo-referenced point and
an edge represents an existing path between two nodes. A nice feature
of topological maps is the possibility to enrich nodes and edges with
additional information that can be useful for navigation. For example,
one can specify road attributes such as the number of lanes, the speed
limit or the name of the road. Over the years, companies such as
Google, Here, and TomTom, have provided this type of map, but open
source projects such as Open Street Map (OSM) [61] have also become
popular. An example is depicted in Figure 2.3

grid maps These maps are another type commonly used for robot
navigation, especially in indoor scenes, and depending on the appli-
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Figure 2.4: A 2D Grid map.

cation scenario, these maps encode a known space by using a 2D,
2.5D or 3D representation. 2D grids (Figure 2.4) provide a compact
representation of the scene, where the navigation space corresponds
to a set of two-dimensional cells and is usually represented by a
Bird’s-eye View (BEV). To each cell a corresponding state is assigned,
i.e., free, occupied or unknown, to determine whether a robot can
pass through that part of the map. Technically speaking, the state is
represented by a probability. This representation has the advantage of
using less memory and computing power than the other types. How-
ever, it is suitable for simple scenes where there are no slopes, and,
in general, the third dimension is negligible. 2.5 grid maps provide
a compromise between efficiency and an explanatory representation
of the environment. Specifically, for each cell the elevation data is
reported in addition to the state. As for 3D grids, they subdivide
3D space with a voxel-based representation. On the one hand, they
provide an explanatory representation of the environment, but on the
other hand they are particularly memory consuming as the resolution
increases. A popular and efficient 3D grid extension is OctoMap [70]:
a 3D grid implementation based on a special data structure called
octree. [123]. Octrees are hierarchical trees that efficiently partition
3D space, with each node corresponding to a 3D voxel that can be
recursively subdivided into eight other 3D partitions. Given a target
resolution, the octree algorithm stops when the minimum voxel size
is reached. Octomap also includes the occupancy information of each
cell, allowing a user to perform queries with low computational cost.

point cloud maps These maps are usually created by concate-
nating a set of 3D point clouds. There are several methods for building
a point cloud map that utilize different sensors such as cameras or
LiDARs. Camera-based methods [79] reconstruct a 3D scene starting
from a monocular vision system, stereo cameras or also with RGB-D
cameras, i.e., cameras that also provide depth information. However,
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Figure 2.5: Example of a LiDAR point cloud map where RGB data are associ-
ated to 3D points. Image taken from [121]

the most accurate methods exploit LiDARs (Figure 2.5), which directly
provide 3D point clouds [72]. This representation exploits a simple list
of 3D points to store the navigation environment. In addition to the
geometric information associated with points, such as their position,
other kinds of information can be attached. For instance, it is not
unusual to associate RGB camera data with point clouds or high-level
geometric information such as surface normals.

high definition maps These maps are built by including differ-
ent data sources and providing both low-level and high-level knowl-
edge of the navigation environment. In particular, a HD map com-
prises distinctive landmarks of the scene, that represents a reliable
source of information for a perception system of a self-driving car. For
instance, these markings provide information such as road geometry,
lane attributes, vertical road signs or lane connectivity. In particular,
HD maps aim to always provide centimeter accuracy and to be always
up to date [115]. Figure 2.6 shows an example of an HD map.

2.1.3 Perception problems in autonomous driving

As mentioned in previous sections, perception systems typically
available on-board autonomous vehicles utilise a variety of sensors
to collect data from the surrounding environment. This data is then
used by perception algorithms to retrieve higher level knowledge, a
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Figure 2.6: Example of a an HD map providing both geometric data and
high level information of the navigation environment. Image
taken from [187].

task commonly referred to as scene understanding. This is crucial for
correct navigation and involves several sub-tasks that are handled
by different components of the autonomous perception system. For
instance, it is common to encounter a situation where one algorithm
handles the detection of obstacles [11, 136] or estimates the trajectory
of other road users, such as vehicles [74] and pedestrians [158], while
another algorithm provides localization estimates by matching scene
constituents observed from a sensor against a navigation map [27].
Moreover, it is possible the exploit the output of distinct models to
enhance the reliability of an estimate in the same task [172]. Alterna-
tively, components may be combined in a pipeline to iteratively refine
an initial estimate [163].

2.1.4 Deep Learning impact in robot perception

As previously stated, the primary objective of self-driving cars is to
operate in complex environments and perform a variety of tasks to
ensure accurate and safe navigation. This is crucial as failures could
result in catastrophic accidents. Providing reliable methods to address
the challenges of urban areas is complex due to the variety of struc-
tures and scene configurations. For example, perception algorithms
must demonstrate generalization capability and robustness despite
factors such as illumination variability or view point variation, that
usually negatively affect their performance.
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In recent years, deep learning methods have proven to meet the
aforementioned requirements. Starting from the outstanding classifi-
cation results obtained by Convolutional Neural Networks (CNNs) on
ImageNet [144], these approaches have become popular for address-
ing various perception problems, dealing with different data sources
and outperforming previous state-of-the-art methods. For instance,
YOLO [142], that is one of the first CNNs for visual object detection,
demonstrated impressive results by processing images in real-time.
Similar results were achieved also in 3D object detection with a 3D
DNN named PointPillar [107]. In other relevant task, such as semantic
segmentation, deep learning models became prominent and popular
architectures can be found in the literature such as Mask R-CNN
[64] for images and RangeNet++ [126] for point clouds data. Finally,
also techniques for localization [80, 140] and 3D reconstruction [58]
followed the deep learning approach.

2.1.5 Methods categorization: a sensor type perspective

As mentioned in section 2.1.1, sensors can provide heterogeneous
data from which we can gain different types of knowledge about the
current scene, e.g., cameras provide visual data, while LiDARs captures
the geometry of the environmental structure. Each sensor type has its
own advantages and disadvantages, which usually depend on some
external factors such as light or weather conditions.

In the literature, existing approaches can be divided in two main cat-
egories: methods that use a specific sensor, and techniques that exploit
data from heterogeneous devices. The former can be further divided
according to the sensor type used, such as camera-based, LIDAR-based

or radar-based techniques. Instead, the latter is generally referred to
multi-modal approaches, i.e., methods providing an output from data
with different nature.

Depending on the task and application scenario, some sensors may
be more appropriate than others, making important to carefully con-
sider the desired outcome before deciding which is the best sensor
for addressing a task. For example, cameras provide rich visual in-
formation about a current scene, which can be particularly useful for
detecting and classifying obstacles [200], but at the same time this
kind of data does not allow for a direct estimation of objects position
and the geometry of the surrounding world [58, 103]. Instead, LiDARs

have the opposite issue: they can provide accurate distances of objects
and allow for the retrieval of the environment geometry, but under-
standing the scene can be challenging due to the sparsity of point
clouds [37, 155].
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Generally, using a single sensor for addressing a task reduces the
complexity of the vehicle perception system, not necessarily meaning
that we cannot achieve accurate results. However, we should consider
a set of appropriate predefined conditions. Nevertheless, in realistic
scenarios, these conditions may not hold, leading to a decrement in
performance. For instance, expecting a constant presence of an ideal
lighting condition within the navigation environment does not repre-
sent a realistic application scenario for self-driving cars. Multi-modal
approaches aim to overcome the previous limitations by employing a
set sensors of different nature such that when a device fails in some
adverse conditions the other components of the perception system are
still able to provide reliable information. These techniques are mainly
built according to one of the following strategies: by extracting local or
global descriptors from separate data sources and then matching the
results [27, 46], or by jointly exploiting heterogeneous data to directly
provide a final estimate [29, 60]. Some approaches assume that all the
sensors used are available on-board during the vehicle navigation, but
other methods exist that exploit data recorded with a device during
an offline stage and use another sensor type during online operations.
Localization is a typical task in which the latter methods are used, e.g.,

a map is built offline with LiDAR, while camera images are used to
find matches with the map for localization, when navigating.

2.2 the localization pipeline

Localization is the process of determining the position and orienta-
tion, i.e., a pose, of a vehicle in relation to a known map. In particular,
when the set of parameters that define the position and orientation of a
rigid body describe a pose in the three-dimensional space, we usually
talk about 6 Degrees of Freedom (6DoF) localization, that is typical
for self-driving cars. However, in some scenarios, we can consider
only three parameters: two for positioning and one for orientation.
In these cases, we use the term 3DoF. For example, in indoor local-
ization, we can assume a flat navigation environment, and a simpler
representation of the space is very often sufficient for a wheeled robot.

Correct localization is crucial in autonomous driving as it enables
the vehicle to plan realistic actions to reach the desired destination.
Additionally, localization is vital for safety, as high accuracy is neces-
sary to avoid dangerous situations. For example, an error of just a few
meters could cause a vehicle to enter the wrong lane or fail to stop
correctly at a crosswalk.

In this research area, urban localization still is an open challenge
due to the intrinsic complexity of the urban environment structure.
In particular, although modern GNSSs generally provide very precise
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Figure 2.7: Example of an urban canyon.

estimates, their accuracy decreases in urban scenes due to the presence
of environmental factors such as urban canyons (fig. 2.7). However,
there are other factors that make GNSSs estimates inaccurate, e.g.,

cloudy weather, and in some cases the sensor measurement is not
available at all when navigating in GNSS-denied environments such as
tunnels.

Since GNSSs are not always reliable in urban areas, autonomous
navigation using only these sensors is not currently feasible. Therefore,
an autonomous vehicle must exploit other information gathered from
the surrounding scene to increase the accuracy of a previous estimate
or sometimes to perform localization without prior knowledge, as
depicted in Figure 2.8. One should consider a localization system as a
set of components that provide different estimates: some of them aim
to provide a rough global pose of the vehicle, while others focus on
the refinement of a previous guess.

Fig. 2.9 shows a possible localization pipeline. Localization is rep-
resented as a two-step process that aims to answer the following
questions: given some clues about the current scene structures, i.e. the
scene observed with a sensor, where is the vehicle roughly located
within the map? After identifying a candidate location, can one ex-
ploit some discriminative local elements to find an accurate pose? For
example, given an image of a well-known city square, such as Times
Square, we can significantly narrow down the area where the camera
device captured the picture if we are able to recognize that location,
even without having any GNSS coordinates. This process involves
identifying the global structure of the scene, which enables us to locate
a specific area in the navigation environment, assuming we have prior
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Figure 2.8: Since the GNSS estimate is not reliable for a safe navigation, ac-
curate localization is achieved by exploiting a sensor observation
to be matched against a local map.
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Figure 2.9: A possible Localization Pipeline without a GNSS. Firstly, an ob-
servation is used to provide a rough global vehicle pose, then
another algorithm refines the initial localization by exploiting
another observation.

knowledge of that location. Once a limited area is identified, one can
use another observation or the same initial image to obtain a more
precise pose estimate. The refinement task involves identifying local
structures that provide important information about the observer’s
location, rather than focusing on the global scene structure. For exam-
ple, the observer’s point of view can be deduced by examining the
position of buildings or the appearance of an intersection.

To summarize to overall process, a localization system initially
receives an input observation, such as a camera image, to determine
the corresponding location within the navigation map where the input
observation was likely recorded. After providing a rough global pose,
a local refinement component addresses the challenge of identifying
more precise matches between the scene constituents depicted in
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another input observation and the scene elements represented in the
candidate map location.

The proposed pipeline is only one of the possible representations
of a localization system deployed on an autonomous vehicle. In fact,
a localization system is a complex structure that relies on a number
of components that cooperate to provide the most accurate pose esti-
mate, and these components can vary under certain assumptions. For
instance, by assuming that GNSS measurements are always available,
one could use exteroceptive sensor observations only to perform a
local refinement [28]. In other cases, odometry-based systems use a
sensor observation to find previously visited locations and to correct
position errors accumulated during navigation, as in Simultaneouos
Localization And Mapping (SLAM) algorithms [36, 69, 186].

2.2.1 Localization in urban areas with deep learning techniques

In the pipeline recently described, localization is accomplished with
two consecutive steps: location recognition and local elements matching.
In the computer vision field, standard algorithms that deal with these
problems employ techniques for the detection of region of interests
within an input observation and extract a feature representation from
key-points. Those representations also known as descriptors are then
employed to directly match observations or to estimate poses by means
of an external algorithm such as PnP or ICP [109, 199].

Scale Invariant Feature Transform (SIFT) [116] is a famous approach
that accomplish both key-points detection and descriptors extraction
in images. As the name suggests, SIFT provides key-points descriptors
invariant to a set of transforms, that is scale and rotation, and due to
its robustness it represented ground-breaking approach in the field
of computer vision. Inspired by SIFT, two other relevant approaches
emerged: Speeded-Up Robust Feature (SURF) [14] and Oriented FAST
and Robust BRIEF (ORB) [143].

While the approaches presented so far are applied to images, other
methods exist for other types of input. For example, Knopp et al. [93]
proposed a key-point based approach that implements surf for 3D
data. Zhong et al. [201] introduced a novel descriptor called Intrinsic
Shape Signature (ISS) to characterise local parts of a point cloud.

Apart from the different types of data considered, all the mentioned
approaches have a common feature, i.e. the procedure used for descrip-
tor detection and extraction aims at finding certain low-level structures
considered relevant by its inventor, and due to this aspect these meth-
ods are also called handcrafted. However, handcrafted techniques have
a major disadvantage: one should expect such algorithms to work only
in the presence of these particular scene structures. Therefore, these
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descriptors usually suffer in terms of generalization capability. How-
ever, before the advent of neural networks handcrafted feature-based
approaches to address the localization problem were widely spread
[27, 149, 195].

In the last decade, we could observe how the computer vision
community was affected by the advent of neural networks, that out-
performed standard approaches based on handcrafted descriptors. In
fact, many DNNs and Deep Learning (DL)-based methods have been
proposed in the literature across the years, which have had a signif-
icant impact in computer vision research. One of the most notable
works that has transformed the field is that of Krizhevsky et al. [100],
where they proposed a CNN that outperformed other approaches
considered state-of-the-art at that time in the classification challenge
on ImageNet. Since then, several architectures have been proposed
across the years [65, 89] and neural networks have been used to tackle
a great variety of tasks [57, 175].

The trend of DL models has impacted localization as well and sev-
eral approaches have been proposed across the lest ten years. In the
literature, we can distinguish approaches according how they are po-
sitioned within the pipeline described in section 2.2 [8, 29, 96, 140]
and we can make a further classification by considering the type of
data fed to DNN models, e.g., camera-based [80] or LiDAR-based [4].
Regarding such distinctions, a deeper introspection will presented in
the following sections.

Training neural networks for localization is not a straightforward
task, especially when the application scenario is the automotive field.
This problem is due to the characteristic of DNNs of being demanding
in terms of training samples, since one of the condition required to
ensure their robustness is to cover a large variety of inputs that well
represent real-world scenarios. In particular, ensuring such coverage
in the automotive field is essential due to the complexity of urban
environments.

During the last decade, different datasets emerged in the automotive
field [23, 55, 187] allowing research to develop several deep learning
methods. However, those datasets are suitable for developing proto-
type applications and provide a very narrow representation of the
world. Recording sufficiently large automotive datasets can be a very
challenging task due to several reasons. Firstly, a variety of sensors
are required on board a vehicle, which can also be very expensive,
such as LiDARs. Second, the on-board sensors require calibration of
intrinsic and extrinsic parameters. Thirdly, distinct sensors collect data
at different frequencies and frames synchronization should be ensured
if one want to compare observations from different devices. Another
important issue is the noise management during the data acquisition
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process, e.g., when the vehicle is moving at high speed LiDAR point
clouds could be affected by distortion and camera acquisition could
provide in blurred images. Finally, providing accurate groundtruth
poses is challenging even with RTK GNSSs due to the issues described
in section 2.1.1. This last problem is particularly relevant in localization,
since without accurate groundtruth poses it is not possible to achieve
accurate localization performance with deep learning models. There-
fore, authors of automotive datasets often perform post-processing
operation by applying algorithm such as SLAM [15, 112].

To overcome the problem of having labeled data to train DNN mod-
els, another trend in the deep learning community has emerged in
recent years, namely the topic of unsupervised learning. Unsupervised
learning aims to define training procedures that do not use labelled
data, but instead use loss functions based on a consistency measure.
An example is the left-right consistency loss used in unsupervised
depth estimation and proposed by Godard et al. [57]. Unsupervised
learning has also been proposed in localization approaches, in some
cases achieving competitive results with respect to certain supervised
methods [2, 194].

Since localization represents one of the main topics of this thesis,
in the next sections a brief introduction to some of the most popular
deep learning methods emerged in the last few years will be provided.
In particular, in section 2.2.2 global localization approaches will be
described, while in section 2.2.3 local refinement methods will be
discussed. Note that, since in this thesis camera and LiDAR data were
exploited, the discussion will be main focused on methods that exploit
this kind of data.

2.2.2 Global localization approaches

Global localization approaches aim to provide a global pose cor-
responding to the point of view where an observation was acquired
without using an initial guess, that is no prior knowledge of the ve-
hicle is given. In particular, some deep learning methods directly
estimate a pose, while others perform observations matching with
the aim of matching a current observation with a previously collected
one, giving a rough estimate of the observer position and orientation.
This last task takes also the name of place recognition and consists in
the matching of a current location, e.g., observed within a camera
image, to a previously visited place, e.g., a city place image from a
database. Observation localization can be categorized according to the
type of input and one can distinguish methods with terms such as
camera-based or LiDAR-based.
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camera-based Camera-based approaches has the characteristic of
using a camera observation to estimate localization, that usually imply
that such an estimate corresponds to the camera pose. PoseNet [80] is
a popular camera localization CNN that performs 6DoF localization
given an input image. The authors also proposed a bayesian version
of PoseNet [83] that also provides uncertainty estimates of the differ-
ent pose parameters. Unfortunately. although both methods achieve
accurate localization, they are not scalable to new environments. In
fact, they can perform localization only within environments depicted
in the training set. However, Vödisch et al. [176] recently proposes a
dual-model for adapting a camera-based approach to new environ-
ments while performing SLAM. Another popular localization CNN was
proposed by Arandjelović et al. [8]. The approach, named NetVLAD,
achieve localization by means of the place recognition task, that is
the method’s output is a correspondence with a previously visited
location instead of a direct pose estimate. In particular, this technique
integrates the well-known VLAD descriptor [9] within the training
process of the network. The cheap cost of camera makes camera-based
methods suitable for the mass production of intelligent vehicles. How-
ever, their performance typically decreases in presence of challenging
lighting conditions or repetitive patterns present in the scene.

lidar-based LIDAR-based methods use DNNs to process input
point clouds, which are sets of 3D points that provide a geometric
representation of the scene. Processing point clouds with a DNN is
not a straightforward process due to the sparsity of the representation,
which makes it more difficult for a model to understand local struc-
tures, and DNNs recently proposed in the literature consider different
data structures, e.g., unordered lists [138], graphs [184] or voxels [204].
PointNetVLAD [4] represents one of the first deep learning-based
methods for the 3D place recognition task. Taking inspiration from
NetVLAD, the authors integrated a NetVLAD layer withing an ex-
isting 3D DNN architecture named PointNet [138]. In recent years,
Komorowski [96, 97] et al. proposed a similar approach by providing
a model which exploits sparse convolutions. The same authors also
proposed a method that initially performs place recognition and then
aligns an input point cloud and a matching candidate [98]. Although
this last method cover the whole localization pipeline, one can consider
it a global method since it does not require a prior localization guess.
A similar method is PointLoc [180]: a 3D DNN for directly regressing
a 6DoF pose given an input point cloud. LiDAR-based methods have
a significant advantage than camera-based approaches: they achieve
high localization accuracy. However, LiDAR sensors are usually very
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Figure 2.10: CMRNet: a local refinement approach. Image taken from [28]

expensive and their employment on-board autonomous vehicle is not
suitable for the mass production.

multi-modal Multi-modal approaches correspond to methods
that take advantage of different sensors, e.g., by matching visual and
LiDAR data. Cattaneo et al. [29] recently proposed a place recognition
method that directly match image and LiDAR data. In particular, ap-
proach a 2D CNN and a 3D DNN learn a common feature space thanks
to a knowledge distillation learning technique. Tang et al. [166] recently
proposed an interesting technique. In particular, they introduced a
DNN model called RSL-Net that enables a direct matching between
radar data and satellite images by synthesizing a radar observation
from an input satellite image, allowing for a direct matching with a
radar scan. Similarly, Yin et al. [193] introduced a novel approach to
perform cross-modal place recognition between radar and LiDAR data
by exploiting a joint training strategy.

2.2.3 Local methods

The approaches that perform localization given a prior knowledge
of their location are also referred as local methods. Such a prior knowl-
edge does not necessarily represents an initial pose guess, but can also
refer to an observation of the scene collected in a previous moment,
e.g., a camera image or a LiDAR point cloud, and these methods aim
to provide the relative transform between the two observations.An
example of a local method is reported in Figure 2.10.



26 background

camera-based Sarlin et al. [148] proposed a camera-based deep
learning models that estimates a pose between an input RGB image
and another reference image. Instead of providing a direct pose esti-
mate, this approach finds a match between a set of deep features and
a 3D model representing a common view of the scene. Note that, in
this work the regression part is addressed by an external alignment
algorithm. Another interesting approach is DeepVo [179], that is a
Recurrent Neural Network (RNN) for estimating visual odometry given
a sequence of consecutive images. In particular, the transform esti-
mated corresponds to the movement of the vehicle’s camera observing
the navigation scene. Taking inspiration from the previous technique,
Li et al. [111] introduced UnDeepVo, a method that implements an
unsupervised learning procedure to estimate visual odometry. More
recently, Ban et al. [13] introduced a novel deep learning model for
visual odometry estimation. In particular, this method utilizes the
information obtained from the tasks of depth regression and optical
flow estimation to obtain accurate relative pose estimates.

lidar-based A common strategy for refining a localization esti-
mate with LiDAR data is to align a current LiDAR observation with a
candidate point cloud that is likely to be part of the same map location.
This task is called point cloud registration and involves estimating a
rototranslation that allows the localization of a current LiDAR observa-
tion. Point cloud registration is a well-knonw problem in the literature
and many registration algorithms have been developed in the past
such as Iterative Closest Point (ICP) [135, 153, 191]. In the last decade,
also the deep learning community tried to exploit DNN for addressing
this task and started to propose models which incorporate popular
feature extractors and computer vision algorithm [7] or take inspira-
tion directly from ICP [182]. Although these methods often achieve
accurate results when registering small point clouds, registration of
large 3D scene still represents an open challenge. A popular deep
learning-based registration method is HRegNet [117]: a hierarchical
DNN model that performs fine registration between two input point
clouds. In particular, the authors introduce an architecture that allows
them to find correspondences between deep feature keypoints and
to perform registration of the input point clouds. Another interest-
ing DNN approach was proposed by Lu et al. [118]. In particular, the
proposed model handles the noise introduced by dynamic objects to
ensure a greater robustness of the registration procedure.

multi-modal A relevant multi-modal method recently proposed
by Feng et al. [46] is 2D3DMatchNet: a DNN that addresses the camera-
to-LiDAR map localization task by matching 2D-3D patches extracted
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from an image and a LiDAR point cloud respectively representing
a portion of the navigation map. During a first step, patches are
identified with an handcrafted detector while the computation the
corresponding descriptors is delegated to a DNN trained to represent
a common feature space between images and LiDAR point clouds.
Given a set of image-to-LiDAR matches, an external algorithm named
EPnP [109] estimates the final pose. Inspired from the previous work,
a similar approach named DeepI2P [110] converts the matching task
to a classification problem. Cattaneo et al. [28] introduced a multi-
model CNN named CMRNet , that performs the camera-to-LiDAR
map registration task. Given an initial pose estimate, their approach
synthesizes a point of view from which observing a LiDAR map,
that is they project the point cloud within a virtual image plane
creating a LiDAR image. Then such a LiDAR image together with a
camera image are fed to a CMRNet, that compares the two point of
views and directly estimate a pose. Another version of the model
named CMRNet++ [31] was recently proposed. Instead of directly
providing a pose, this model estimates the optical flow, i.e., a pixel-wise
mapping, between camera and LiDAR images and delegate the pose
estimation task to an external algorithm [109]. More recently, Chen et

al. [34] introduced a similar method that jointly performs direct pose
regression and optical flow estimation.

2.3 open challenges in deep learning-based localiza-
tion

As we have seen so far in this thesis, autonomous driving is a very
complex topic and, despite the progress made in the last decade, we
are still far from deploying fully autonomous systems in every day sce-
narios. In particular, current perception algorithms must face several
tasks that become really challenging when addressed in urban areas,
where complex structures are often encountered, e.g., intersections and
buildings, and human actors do not always act rationally.

Another indicator that suggests the complexity of the task is the
lack of a standard between the autopilot software available on the
market or research. In fact, there is not a shared view in the community
regarding the suite of sensors to use on-board a vehicle, e.g., Waymo
Driver employs LiDARs while Tesla autopilot relies only on cameras
and radars, or the type of technologies required to navigate, e.g., some
works question the necessity of expensive and hard to maintain maps
[171].

DNNs have demonstrated their ability to tackle robot perception
tasks, but some challenges still remain due to the lack of robustness
and scalability of these techniques without a proper fine-tuning of
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the model parameters. Although deep learning models have led to
significant improvements in the field, their reliability can be limited
due to a lack of transparency, making it challenging to anticipate
possible failures. Moreover, in the case of a system failure, precisely
determining the root cause in a deep learning-based system is not
straightforward. This aspect makes it less socially acceptable and more
difficult to regulate from a legal perspective.

The perception system of an autonomous vehicle is a set of several
components that handle a multitude of tasks such as obstacle detection
or motion planning, and tackling all these aspects is not feasible
within a PhD thesis. Accurate localization represents one of these
crucial tasks to accomplish if one would like to ensure a correct and
safe navigation, that also demonstrates its complexity within urban
areas, where an error of few centimeters can endanger other road
users. Due to the centrality of the problem, localization was the topic
addressed in this thesis work, by focusing mainly on the problem
of enhancing robustness and reliability of some DNN-based methods.
From a technical perspective, two main issues were addressed: the
detection of reverse loops with a LiDAR-based approach (Chapter 3) and
the estimation of uncertainty within DNN-based local (Chapter 5) and
global (Chapter 4) localization methods. There are of course strong
connections between such issues, especially between loop detection
and place recognition in 3D data. Moreover, the pattern followed in
the development of this thesis stems from the consideration that the
deeper the knowledge in localization, the stronger the urgence to
integrate state of the art with methods allowing the inference output
to be also endowed with a reliable measure of its reliability.

2.3.1 The re-visiting problem in LiDAR-based methods

When a robot navigates through an environment, a prior knowledge
of the surrounding is often missing. In this case, without the possibility
of matching current scene constituents with a previous map location,
the robot can only relies on sensor measurements to estimate its own
movement and then to localize itself. However after certain steps, the
localization accuracy starts to decrease due to the intrinsic noise of
sensor measurements, that leads to the accumulation of drift over
time and makes impossible correctly navigating. This is a problem
that affects several approaches such as odometry-based methods [67].
Nevertheless, if a robot re-visit a previously seen location, it is possible
to refine the current localization estimate and to correct the vehicle
trajectory.

The set of methods facing the previous problem are named Simulta-
neous Localization and Mapping (SLAM) algorithms and their main
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goal is to jointly provide a mapping of the unknown navigation envi-
ronment and a correct pose estimate of a robot. Obviously, the quality
of one task is strictly dependent from the other, i.e., it is not possible to
achieve accurate localization without an accurate mapping and vice-
versa. Moreover, the mapping task usually involves the concatenation
of multiple 3D scan [156] or reconstructed key-points from images
[128].

general problem Generally speaking, a SLAM system involves
three distinct tasks: (1) the accumulation of consecutive data acquisi-
tions to build a map, by employing other sensors such as an Inertial
Measurement Units (IMUs), (2) the identification of previously visited
locations, that is the loop closure detection task, (3) Alignment of loop
closures detected to correct the progressive drift accumulated during
the first step. The identification of loops and their correct alignment
with the map built is fundamental to achieve accurate localization,
since serious errors in this part of the localization pipeline usually
lead to failures of the overall algorithm. For instance, false loops rep-
resent one of the worst enemies of SLAM algorithms, considering that
unrecoverable localization errors occur when a current observation is
matched to a wrong map place. Also false negatives, i.e., observations
that have a match to a certain map location and are discarded by
the algorithm, can produce the same effect, but usually over a longer
period of time.

Correctly detecting a loop closure is far from being an easy task. In
fact, when a vehicle navigates within an environment and revisits a
same location, the sensor observations may depict significant structural
differences due to changes in the point of view or to the presence of
external factors that modify the scene representation, e.g., changes in
illumination between day and night. Under these conditions, visual-
based methods often fails [40, 128, 198] making these set of approaches
not particularly reliable for the task.

lidar-based slam As mentioned earlier, visual approaches are
sensitive with respect to adverse environmental conditions that could
arise during long-term navigation. Instead, LiDAR-based techniques
show higher robustness due to the property of LiDAR of being in-
variant to light conditions, making them more reliable in SLAM than
camera-based methods. Furthermore, the performance obtained by
LiDARs are also due to their ability in providing accurate 3D geometric
representation of a scene.

LiDAR-based loop closures detection with DNN-based methods has
became another trend emerged in the deep learning community and
several approaches have been proposed in the last few years [4, 36].
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However, these techniques are not robust in presence of strong view
point variations, such as reverse loops, and achieve worse performance
than state-of-the-art handcrafted methods. Nevertheless, handcrafted
approaches [86, 165] are not computationally efficient, making them
slower than deep learning methods. Furthermore, due to the high
computational time required for computing and matching descriptors,
they do not easily meet the high frequency standard of autonomous
navigation.

While loop closure detection cover the second part of a typical
SLAM pipeline, the successive step is the accurate localization of a
current observation with respect to a previously visited location. In
this task, the main goal of LiDAR-based methods is to perform a regis-
tration of two point clouds, i.e., to find a rigid transform that correctly
aligns the two 3D observations. Iterative Closest Point ICP methods
[1, 153, 199] generally provide an accurate point clouds alignment.
However, they often achieve sub-optimal results in presence of chal-
lenging conditions, such as revers loops, by significantly reducing the
benefit achieved with SLAM. In the last few years, several DNN-based
approaches appeared in the literature addressing the point cloud reg-
istration task such as PointnetLK [7] and PCAM [25]. The former
introduced the popular Lucas & Kanade algorithm [119] within a
3D DNN architecture, while the latter proposed to mix low-level and
high-level geometry to improve the quality of the registration process.
However, also these state-of-the-art methods achieve accurate results
only in presence of small misalignment between point clouds, i.e.,

they cannot perform a correct registration of reverse loops where the
existing rotation between point clouds can be up to 180◦.

SLAM has several practical applications, spacing from autonomous
cars [160] to Unmanned Aerial Vehicles (UAVs) [146], up to self-driving
marine robots [196], making this topic particularly pivotal in the
robotics community, and ensuring a better accuracy and robustness of
DNN methods against the current challenges constitutes a first step to
improve deep learning-based SLAM reliability and safety. Therefore,
considering the superiority of LiDAR in this field with respect to other
sensors, the detection and registration of loops in LiDAR-based SLAM
with a DNN was indeed taken as the first objective in this thesis work.

2.3.2 Uncertainty estimation in DNNs

While AI applications are becoming increasingly present in the
modern society and are significantly changing working activities and
the labor market, their limitations have been started to emerge, e.g., it
is challenging to understand whether one can trust a model output
for exploiting it in a critical decision making process. In particular,
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when considering safety-critical domains, such as autonomous driving,
the deployment of AI-based systems in real-world scenarios remains
limited due to these emerging issues. Therefore, introducing AI within
human activities should be done cautiously if we want to prevent
disastrous consequences [16].

general problem DNNs have demonstrated their superiority in
a large number of fields by achieving unprecedented performance in
the last few years. Therefore, the research community continuously
put a significant effort in realizing novel approaches with the aim of
increasing the accuracy of deep learning systems. However, accuracy
itself just describe the ability of a model to accomplish a specific task
on a set of data, that provides a limited representation of the world,
and it is unlikely to encounter the same conditions in every possible
realistic scenario, making the behavior of a DNN unpredictable most
of the time. Furthermore, a limited amount of data is also used to
train models providing them a partial knowledge of the world and
exposing them to biases [17, 78].

Unpredictability also results from a lack of transparency of DL mod-
els, since it is challenging to trace the possible reasons that caused a
failure and is not clear how to define an explicit relation between cer-
tain inputs and model outputs considering the millions of parameters
usually involved in the computation.

To overcome the previous issues, different approaches appeared in
the literature with the aim of achieving robustness in Neural Networks
(NNs) by ensuring invariant and equivariant properties with respect to
possible input transforms [185], e.g., subjects of interests can appear
differently within an image according to the observer point of view.
Moreover, other methods propose to reduce the lack of transparency
of deep learning models aiming to better understand their behavior
during inference or training. The former set of techniques lie under
the topic named Geometric Deep Learning (GDL) [20], while the latter
is also referred to Explainable Deep Learning (EDL) [141].

The previous methods aim to increase the generalization capability
or to detect flaws of models originated from training. Although both
GDL and EDL aim to address the mentioned problems in the deep
learning field, they actually provide partial solutions, and how to
act in presence of data not well represented in training datasets still
remain an open challenge. Detecting out-of-distribution (OOD) data is
a well-known issue in deep learning [22], since it as many practical
application such as the detection of treacherous adversarial attacks
[108].
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Figure 2.11: Aleatoric uncertainty (left) originates from the overlapping re-
gion between the two data classes (red crosses and black circles).
Instead, epistemic uncertainty (right) is due to the lack of data
that make impossible to chose the best model (grey lines). Im-
ages taken from [73].

uncertainty estimation Uncertainty estimation in deep learn-
ing models represents the task that aims to detect OOD data by also
providing a quantitative measure. This measure can be interpreted
as the probability that a DNN model is correct in its prediction. The
term uncertainty typically refers to situations where a system op-
erates with incomplete knowledge of the application environment,
where the employment of uncertainty-aware systems can be useful for
discriminating “good“ and “bad“ decisions when managing risk is
crucial. However, uncertainty can originate from different sources and
one can distinguish different typologies. In the literature, an accepted
categorization includes two main classes: aleatoric and epistemic [91].
As described by Hüllermeier and Waegeman [73], aleatoric uncertainty
is produced by random effects within the data generation process that
cannot be measured and, consequently, is irreducible. This uncertainty
is intrinsic to data and is also known as data or statistical uncertainty.
Instead, epistemic uncertainty is the uncertainty originated from lim-
ited knowledge, i.e., ignorance, that can be reduced by providing
additional information. Training a DNN model on a limited amount
of data constitutes a typical example where epistemic uncertainty
arises in deep learning. In fig. 2.11 a schematic representation of both
uncertainties is provided. On the left, aleatoric uncertainty arises due
to the presence of an overlapping region between the two data classes.
Even with the best possible model (grey line), it is not possible to
certainly distinguish a sample lying in that region. On the right, the
figure represents a situation where a limited amount of samples is
available to fit our model. This cannot ensure complete coverage of
the possible instances belonging to the two classes and several models
can provide correct class separation according to data. However, it
is uncertain which one provides the best fit for a given application
scenario.
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Uncertainty estimation in deep learning is an existing topic in
the literature [52], which also finds a place in the area of computer
vision. One of the most relevant study in the field was proposed by
Kendall and Gal [83], where they tackle the problem of estimating
both aleatoric and epistemic uncertainties for depth regression and
semantic segmentation in images.

Regarding epistemic uncertainty estimation in DNNs, Bayesian deep
learning [43, 129] represents one of first frameworks that faced the
problem and from which Bayesian Neural Networks (BNNs) originated.
In BNNs, model’s parameters are not deterministic and a distribution
is placed over the weights, e.g., with a Gaussian prior distribution
W ∼ N (0, 1). Therefore, given a dataset D = {d1, ...,dN}, the posterior
over the weights is defined as p (W|D) by simply applying Bayesian
inference and define the set of plausible model’s parameters given the
data. However, the exact evaluation of this posterior is often unfeasible
due to the complexity of deep learning models and forcing the usage
of approximation techniques [53].

Sampling uncertainty is a popular method to perform posterior ap-
proximation and two relevant sampling-based approaches are surely
Monte Carlo Dropout (MCD) [54] and Deep Ensembles (DEs) [105].
Given a single input, the MCD technique performs several inferences
by applying dropout [164] each time to the model’s weights to synthe-
size slightly different models, which provide their own response to
the input. By aggregating the outputs, we finally obtain a probabilistic
prediction, e.g., by computing mean and variance of samples. Similarly,
DEs also exploit multiple instances of a DNN by training several models
starting from different weights initialization. DEs usually outperforms
MCD in terms of accuracy and uncertainty quality. Fort et al. [50] pro-
vide an intuition regarding the superiority of DE methods, that is MCD

provide samples by only exploiting a single local minimum, while
DE members characterize multiple local minima describing a greater
variety of patterns in data. Both the approaches assume that epistemic
uncertainty can be described with a normal distribution N

(
µ,σ2

)
.

Although DEs improve accuracy and provide a good representation of
uncertainty, they are resource demanding due to the usage of multiple
instances of a model by increasing memory usage and computational
time. In general, without the proper hardware, sampling-based tech-
niques should not be used in application domains requiring high
frequencies, e.g., autonomous driving. To mitigate such issues, tech-
niques such us Multiple-Input Multiple-Output (MIMO) models offer
a good trade off between resources demand and performance. Instead
of employing different instances of a DNN, MIMO architecture com-
prises both independent sub-networks providing different outputs, i.e.,

samples, and shared parts [63].
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Figure 2.12: Depiction of the Normal Inverse Gamma and relation with
evidence and uncertainty derivation. Image taken from [3]

To overcome the disadvantages of sampling-based methods, other
approaches aim to directly provide uncertainty measures by training
a model to estimate the parameters of a distribution. For instance, by
assuming that we can model the uncertainty as a normal distribution
N
(
µ,σ2

)
, a DNN can learn to produce µ and σ as outputs. Kendall and

Gal [83] propose to incorporate maximum likelihood estimation (MLE)
within the training process by defining the following loss function:

L (Θ) = − logp
(
yi|µ,σ2

)
=

1

2
log

(
2µσ2

)
+

yi − µ

2σ2
(1)

where yi is the target of inference. However, this method only esti-
mates the noise present in the input, that is it only deals with aleatoric

uncertainty and it is ignorant with respect to the epistemic uncertainty
of the model used.

Other direct estimation approaches rely on deep evidential learning: a
technique inspired by the Dempster–Shafer theory of evidence [41].
In this case, learning can be considered a data acquisition process
that allows a model to learn the hyperparameters of an evidential

distribution from which one can derive uncertainty. In particular,
each sample fed to the network provide support (evidence) in favour
of that distribution. Sensoy et al. [154] is one of the most relevant
work in evidential deep learning for classification. In particular, their
evidential-based model estimates the parameters of Dirichlet distri-
bution over the possible softmax outputs. More recently, Amini et al.

[3] propose a framework named Deep Evidential Regression (DER) to
apply such a learning strategy within regression problems. In par-
ticular, their method estimates the parameters of a Normal Inverse
Gamma (NIG) distribution

(
x,σ2

)
∼ NIG (γ,ν,α,β). Those parameters

enable the computation of both aleatoric E[σ2] = β
α−1 and epistemic

Var[µ] = β
ν(α−1)

uncertainties together with the model prediction
E[µ] = γ. A schematic representation of the concepts at the base of
DER is depicted in fig. 2.12.
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Figure 2.13: Prediction sets produced by a conformal predictor. Image taken
from [6].

Modeling uncertainty with a predefined distribution shape, e.g., a
Gaussian, can be a strong assumption, and we do not know if our
choice represents a good approximation of the actual uncertainty dis-
tribution. To overcome this problem, distribution free approaches also
started to emerge such as Conformal Prediction [5, 177]. Conformal
Prediction is a statistical method that generates prediction sets from
any model in a rigorous manner. The idea is to calibrate probabilities
of a classifier, e.g., softmax outputs of a neural network, by exploiting
a limited amount of data Xcalib never used during training, with the
aim of providing more realistic confidence scores [6]. A prediction set
C(xtest) includes a group of classes that are labeled by the confor-
mal predictor as possibly correct. In particular, a “good“ conformal
predictor ensures that the true class is included within the prediction
set C(xtest) with at least a probability of 1− α, where α is an user
defined error rate. This property also known as coverage holds only
if the calibration set Xcalib and the test set Xtest are exchangeable,
that is they are drawn from the same distribution. While some may
view this aspect as a limitation, it is worth noting that it is possi-
ble to re-calibrate a deep learning model with minimal data. This
could eliminate the need for re-training and allow for the production
of meaningful class scores within a known application scenario. In
Conformal Prediction, uncertainty is represented as the cardinality
of the prediction set C(xtest), that is the uncertainty of a predictor
increases when the number of possible true classes increases as well.
In fig. 2.13, we can see that as the complexity of the scene increases,
the same happens for the number of classes contained in the predic-
tion set, which always includes the true class. There are also methods
the apply Conformal Prediction in regression problems, taking the
name of Conformalized Quantile Regression [94]. Conformal Prediction
is not necessarily associated to DNN models, but it still finds some
applications in deep learning and in very recent years some novel
approaches emerged [6]. Although Conformal Prediction was not used
in this thesis work, its basic concepts were reported to offer a more
exhaustive overview.
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uncertainty in localization dnns As mentioned in sec-
tion 2.2, observer localization is a crucial task in autonomous driving,
as inaccurate estimates could lead to navigation failures with disas-
trous consequences for road users. Therefore, enabling error detection
in localization systems would improve their reliability and allow a
better management of risky scenarios. Considering the trend of the last
decade of equipping perception systems with deep learning methods,
uncertainty estimation in DNNs could represent a fundamental tool
even for localization systems.

One of the first relevant work in the field is Bayesian PoseNet [81]:
a CNN that addresses the problem of camera pose regression taking
an image as input. In particular, Kendall e Cipolla propose to exploit
MCD sampling to estimate localization epistemic uncertainty. However,
although their approach have had a large impact in the computer
vision community, it presents two main disadvantages: camera-based
localization methods suffer in terms of scalability, i.e., they only work
in the environment represented in the training set, and MCD generally
produces overconfident uncertainty estimates [105]. In another work,
the same authors also proposed a novel loss function to capture data
uncertainty [82]. Another interesting uncertainty-aware approach for
camera pose regression is proposed by Sarlin et al. [148]. The model
does not directly estimate the camera’s 6DoF. Instead, it matches deep
image features with a 3D model of the scene, and the regression part
is delegated to an external algorithm. The proposed CNN explicitly
estimates aleatoric uncertainty maps that allow the authors to discard
confounding image regions that are not useful for localization, such
as dynamic objects. Peretoukhin et al. [133] propose a CNN named
HydraNet to estimate epistemic uncertainty for SO(3) rotations ex-
pressed with unit quaternions from a sequence of images. In particular,
HydraNet architecture comprises two branches: one to perform visual
odometry estimation and one for estimating camera rotations. The
rotation branch involves multiple heads providing different rotation
guesses, that one can consider as samples to use for estimating epis-
temic uncertainty. Recently, Petek et al. [134] propose a DNN model
based on DER [3]. The model does not estimate the uncertainty of
the predicted camera pose directly. Instead, localization is achieved
through an external module. However, the approach identifies objects
within the scene and associates both aleatoric and epistemic uncertain-
ties with the final prediction. These uncertainties are then used in the
localization module to match the detected objects with an HD map.
An interesting application of uncertainty-aware camera localization
was recently proposed by Moreau et al. [127]. Similarly to [81], the
authors propose a camera-based localization model that also provide
uncertainty of predicted pose components. Then, they integrate their
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approach within an Extended Kalman Filter (EKF). However, their
method only estimates aleatoric uncertainty. As it can be seen, most
of the mentioned approaches are camera-based and mainly offer the
estimation of aleatoric uncertainty, while model uncertainty is often
neglected or utilize overconfident methods such as MCD. Therefore,
in this thesis work a multi-modal camera pose regression method
is proposed chapter 5 by utilizing both sampling-based and direct
uncertainty estimation approaches.

Other approaches localize an observer by performing place recog-
nition, i.e., a rough localization estimate is provided by matching an
input observation with an already visited location. Place recognition
is a well-discussed topic in the literature, but approaches that esti-
mate uncertainty within deep learning-based place recognition only
emerged recently and are still limited. A relevant work in the field is
STUN [24]: the first work that estimates aleatoric uncertainty within
image descriptors by also exploiting a knowledge-distillation tech-
nique. In particular, they train a neural network also named teacher

to perform standard place recognition, then another model named
student is trained to imitate the descriptors of the teacher. They pro-
vide a loss function that allows the student network to learn how
to estimate uncertainty in data. Recently, Latoje et al. [104] propose
a visual place recognition technique that estimate aleatoric descrip-
tors uncertainty, which is utilized within a SLAM algorithm. The deep
learning model learn to estimate aleatoric uncertainty as an isotropic
Normal distribution. Finally, uncertainty estimation in place recog-
nition was also recently tackled in LiDAR-based approaches [122]. In
particular, Mason et al. propose an epistemic uncertainty estimation
approach that relies on DEs. However, instead of computing feature-
wise uncertainty in point cloud descriptors, they consider uncertainty
as a degree of accordance of ensemble members with respect to a
similarity measure.Uncertainty-aware deep learning based methods
are quite novel in place recognition. Also for this problem, mainly
camera-based approaches are present in the literature and mainly
focus on aleatoric uncertainty, while a lack of methods that deal with
other kind of observations, other type of uncertainty and DNN archi-
tecture is encountered. Therefore, during the PhD it was proposed an
in-depth study of sampling-based method for epistamic uncertainty
in LiDAR-based place recognition by focusing on DEs.





3
D N N - B A S E D L I D A R L O O P C L O S U R E D E T E C T I O N
A N D R E G I S T R AT I O N

So far in this thesis, the discussion was focused on a general intro-
duction of the autonomous driving field together with the currently
open challenges to be addressed for achieving fully-autonomous nav-
igation. In particular, the main topic of this thesis is to improve the
reliability of deep learning localization techniques with the final aim
of deploying these systems in urban areas, where the presence of
complex scene structures and several other users makes this task par-
ticularly challenging. Furthermore, since the configuration of urban
areas usually undermines the performance of Global Navigation Satel-
lite Systems (GNSSs) (Section 2.1.1), accurate localization is usually
achieved by exploiting other sensors that are used to gather knowl-
edge from the current scene. An example is the localization pipeline
presented in Section 2.2, where we could observe that accurate lo-
calization is usually achieved in a series of consecutive steps, where
we firstly aim to obtain a rough global initial estimate that is usually
refined in a successive moment. The main scope of this thesis is to
tackle the different parts of this pipeline by considering both the global
and local refinement modules.

This chapter introduces a novel 3D Deep Neural Network (DNN)
that faces both the tasks of place recognition, i.e., global localization,
and Light Detection And Ranging (LiDAR) point clouds registration,
i.e., local refinement. In particular, one the of primary application
of such a model is a LiDAR-based Simultaneouos Localization And
Mapping (SLAM) system, since the place recognition module can be
used for detecting loop closures and the point cloud registration
module can provide accurate localization estimates after the detection
of loops. Therefore, the approach proposed in this chapter covers the
whole localization pipeline by also addressing the re-visiting problem
described previously (section 2.3.1).

A typical SLAM algorithm operates to ensure an accurate navigation
and aims to reduce the accumulated drift affecting the localization
estimates obtained from sensor measurements, which typically leads
to failures during long-term navigation. Due to this reasons, SLAM has
become a very popular method to overcome the flaws of sensors-based
localization systems. However, the operations performed by the SLAM

pipeline are critical, since failures usually have a negative impact in
the subsequent activities of the vehicle. For instance, incorrect loop
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detections or inaccurate registrations of point clouds can degrade the
localization quality due to the propagation of the pose error during
the update of the previous robot trajectory. In particular, false loops,
i.e., wrong matches, often lead to unrecoverable localization errors,
making loop closure detection a critical task.

Employing LiDARs within a SLAM algorithm has several advantages,
since the performance of these sensors do not suffer from the im-
pact of external factors such as the presence of poor illumination.
Furthermore, since they provide accurate 3D reconstruction of the
surrounding scene, they demonstrate to be particularly effective for
mapping a navigation environment. Due to these reasons, LiDAR-
based techniques are preferred over visual-based methods [40, 128],
that often fail in challenging conditions. However, despite the high
performance achieved by LiDAR-based approaches, the accuracy of
these methods drastically decreases in presence of reverse loops, that
is observations depicting a previously visited location from a different
point of view that makes its recognition particularly challenging. Also
registration methods suffer of the same problem. Therefore, the model
proposed in this chapter deals with these two specific issues.

The contributions reported in this chapter are the following. A
novel LCDNet for loop closure detection which performs both loop
detection and point cloud registration is proposed (see Figure 3.1). This
method combines the ability of DNNs to extract distinctive features
from point clouds, with algorithms from the transport theory for
feature matching. LCDNet is composed of a shared backbone that
extracts point features, followed by the place recognition head that
extracts global descriptors and the relative pose head that estimates the
transformation between two point clouds. One of the core components
of the proposed LCDNet is the Unbalanced Optimal Transport (UOT)
algorithm that was implemented in a differentiable manner. UOT
allows us to effectively match the features extracted from the two point
clouds, reject outliers, and handle occluded points, while still being
able to train the network in an end-to-end manner. As opposed to
existing loop closure detection methods that estimate the relative yaw
rotation between two point clouds, the proposed LCDNet estimates the
full 6-DoF relative transformation under driving conditions between
them which significantly helps the subsequent Iterative Closest Point
(ICP) refinement to converge faster.

The proposed LCDNet is trained on sequences from the KITTI
odometry [55] and KITTI-360 [189] datasets, and evaluate it on the un-
seen sequences on both datasets. Moreover, following a deep analysis
of the existing literature, a lack of a standard protocol for evaluating
loop closure detection was found. Different works evaluated their ap-
proaches using different metrics such as precision-recall curve, average
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Similarity

LCDNet

Pose

Figure 3.1: The proposed LCDNet detects loops by computing the similarity
between two point clouds and predicting the relative pose be-
tween them. This is a crucial component of any SLAM system, as
it reduces the drift accumulated over time.

precision, Receiver Operating Characteristic (ROC) curve, recall@k,
and maximum F1-score. Even among the methods that use the same
metric for evaluation, there are still substantial differences in the other
parameters chosen for computing the metrics which makes the per-
formance of existing methods not directly comparable. For example,
the definition of a true loop can span from scans within three me-
ters [99] up to scans within 15 meters [205]. Therefore, in this work,
existing state-of-the-art approaches are evaluated according a uniform
evaluation protocol to provide a fair comparison. Exhaustive com-
parisons demonstrate that the proposed LCDNet outperforms both
handcrafted methods as well as DNN-based methods and achieves
state-of-the-art performance on both loop closure detection and point
cloud registration tasks. Furthermore, a detailed ablation studies on
the architectural topology of LCDNet is reported together with the
results obtained from the integration of LCDNet into a recent LiDAR
SLAM library [157]. Additionally, an assessment of the generalization
ability of the proposed approach is provided by performing exper-
iments with a different sensor setup from an autonomous driving
scenario in a completely different city.
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3.1 related work

In this section, an overview of the state-of-the-art techniques for
vision-based and LiDAR-based loop closure detection is provided,
followed by methods for point cloud registration.

Loop Closure Detection: Techniques for loop closure detection can pri-
marily be categorized into visual and LiDAR-based methods. Tradi-
tionally, vision-based techniques for loop closure detection rely on
handcrafted features for identifying and representing relevant parts
of scenes depicted within images, and exploit a Bag-of-Words model
to combine them [40, 128]. In the last few years, deep learning ap-
proaches [8, 198] have been proposed that achieve successful results.
These techniques employ DNN for computing global descriptors to
provide a compact representation of images and perform direct com-
parisons between descriptors for searching matches between similar
places. Recently, [114] proposed a novel approach that employs DNNs

for extracting local features from intermediate layers and organizes
them in a word-pairs model. Although vision-based methods achieve
impressive performance, they are not robust against adverse environ-
mental situations such as challenging light conditions and appearance
variations that can arise during long-term navigation. As loop closure
detection is a critical task within SLAM systems, in this work, LiDARs
are used for the sensing modality since they provide more reliable
information even in challenging conditions in which visual systems
fail.

3D LiDAR-based techniques have gained significant interest in the
last decade, as LiDARs provide rich 3D information of the environ-
ment with high accuracy and their performance is not affected by
illumination changes. Similar to vision-based approaches, LiDAR-
based techniques also exploit local features. Most methods use 3D
keypoints [93, 201] that are organized in a bag-of-words model for
matching point clouds [165]. [18] propose a keypoint based approach
in which a nearest neighbor voting paradigm is employed to determine
if a set of keypoints represent a previously visited location. Recently,
[162] propose a voxel-based method that divides a 3D scan into voxels
and extracts multiple features from them through different modalities,
followed by learning the importance of voxels and types of features.

Another category of techniques represents point clouds through
global descriptors. [66] propose an approach that directly produces
point clouds fingerprints. In particular, this method relies on density
signatures extracted from multiple projections of 3D point clouds on
different 2D planes. [86] introduces a novel global descriptor called
Scan Context that exploits bird-eye-view representation of a point
cloud together with a space partitioning procedure to encode the 2.5D
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information within an image. In a similar approach, [181] propose
a method to extract binary signature images from 3D point clouds
by employing LoG-Gabor filtering with thresholding operations to
obtain a descriptor. The main drawback of these approaches is that
they require an ad-hoc function to compare the global descriptor of
two point clouds which drastically impacts the runtime when the
number of scans to compare increases.

Recently, DNN-based techniques have also been proposed for com-
puting descriptors from 3D point clouds. [4] propose PointNetVLAD
which is composed of PointNet [138] with a NetVLAD layer [8] and
yields compact descriptors. [150] propose OREOS which computes 2D
projection of point clouds on cylindrical planes and is subsequently
fed into a DNN that computes global descriptors and estimate their yaw
discrepancy. More recently, the OverlapNet [36] architecture was in-
troduced, which estimates the overlap and relative yaw angle between
a pair of point clouds. The overlap estimate is then used for detecting
loop closures while the yaw angle estimation is provided to the Iter-
ative Closest Point (ICP) algorithm as the initial guess for the point
clouds alignment. While DNN-based methods are generally faster than
classical techniques, and show promising results in sequences that
contain loops only in the same direction, their performance drastically
decreases when they are faced with reverse loops.

Recently, techniques that exploit graph structures by matching se-
mantic graphs have been proposed [99, 205]. These approaches first
extract semantic information and perform instance retrieval, followed
by defining graph vertices on the object centroids. Subsequently, fea-
tures are extracted by considering handcrafted descriptors or by pro-
cessing nodes through a Dynamic Graph CNN [183]. Finally, loop
closures are identified by comparing vertices between graphs. How-
ever, computing the exact correspondences between two graphs is still
an open problem and existing methods are only suitable when a few
vertices are considered or they can only provide an approximated so-
lution [12]. In this chapter, the proposed DNN-based approach exploits
the recent advancements in deep learning to detect loop closures by
combining high-level voxel features with fine-grained point features.
This method effectively detects loops in challenging scenarios such
as reverse loops and outperforms state-of-the-art handcrafted and
learning-based techniques.

Point Cloud Registration: Point clouds registration represents the task
of finding a rigid transformation to accurately align a pair of point
clouds. The ICP algorithm [199] is one standard method that is often
employed to tackle this task. Although ICP is one of the most popular
methods, the main drawback concern the initial rough alignment of
point clouds which is required to reach an acceptable solution, and
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Figure 3.2: Overview of the proposed LCDNet which is composed of a shared
feature extractor (green), a place recognition head (blue) that
generates global descriptors, and a relative pose head (orange)
that estimate the transformation between two point clouds. Three
loss functions are used to train LCDNet (triplet loss, aux loss,
and pose loss) which are depicted in purple. The topology of the
feature extractor is further illustrated in Figure 3.3.

the algorithm complexity which increases drastically with the num-
ber of points. Other methods tackle the registration problem globally
without requiring a rough initial alignment. Traditionally, these tech-
niques exploit local features [145] for finding matches between point
clouds and employ algorithms such as RANdom SAmple Consen-
sus (RANSAC) [48] for estimating the final transformation. However,
the presence of noise in the input data and outliers generated from
incorrect matches can lead to an inaccurate result. To address these
problems, [202] proposes a global registration approach that ensures
fast and accurate alignment, even in the presence of many outliers.

Recent years have also seen the introduction of deep learning meth-
ods that tackle the registration problem. A typical approach is to
employ a DNN for extracting features which are then used in the
later stages to perform point clouds alignment. [7] propose such an
approach known as PointNetLK, which exploits the PointNet [138]
architecture for feature extraction and employs a variation of the Lu-
cas and Kanade algorithm [119] to perform registration. Deep Closest
Point (DCP) [182] is another approach that employs a Siamese archi-
tecture, attention modules, and differentiable Singular Value Decom-
position (SVD) to regress a rigid transform for aligning two input point
clouds. Recently, [192] proposes a DNN-based method called RPM-Net
which is inspired by Robust Point Matching (RPM). RPM-Net employs
two different neural networks to extract features and predict annealing
parameters that are required for RPM. However, these methods are
only capable of aligning point clouds that are relatively close to each
other (up to 45◦ rotation misalignment), and completely fail to regis-
ter point clouds that are more than 120◦ apart [7]. In contrast to the
aforementioned methods, the approach proposed in this chapter does
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not require any initial guess as input and can handle both outliers and
occluded points. Moreover, unlike existing DNN-based methods, the
approach effectively aligns point clouds with arbitrary initial rotation
misalignment.

3.2 proposed approach

This section provides the details of the proposed LCDNet for loop
closure detection and point cloud registration from LiDAR point clouds.
An overview of the proposed approach is depicted in Figure 3.2.
The network consists of three main components: feature extraction,
global descriptor head, and 6-DoF relative pose estimation head. The
following discussion is organized by providing a description for each
of the aforementioned components and the associated loss functions
for training, followed by the approach for integrating LCDNet into
the SLAM system.

3.2.1 Feature Extraction

The feature extractor stream of the proposed network is based on
the PV-RCNN [159] architecture that was proposed for 3D object
detection. PV-RCNN effectively combines the ability of voxel-based
methods for extracting high-level features, with fine-grained features
provided by PointNet-type architectures. However, LCDNetpresents
several differences with respect to the standard architecture to adapt
it to the task addressed in this chapter. An illustration of the topology
of our adapted PV-RCNN in Figure 3.3.

The input to the network is a point cloud P ∈ R
Jx4 (J points

with 4 values each: x, y, z, and intensity). The output of the pro-
posed feature extractor network is a set of N keypoints’ feature
FRP = {frP1 , . . . , frPN}, where frPi ∈ R

D is the D-dimensional fea-
ture vector for the i-th keypoint. Since the backbone architecture is
used for extracting features, and not for detecting objects, LCDNetonly
retains the 3D voxel DNN and the Voxel Set Abstraction (VSA) module,
discarding the region proposal network, the ROI-grid pooling, and
the fully connected layers towards the end of the architecture. The
3D voxel DNN first converts the point cloud into a voxel grid of size
L×W ×H, where voxel features are averaged across all the points
that lay within the same voxel. Subsequently, a sequence of sparse 3D
convolutions and downsampling operators extract a feature pyramid.
From a technical perspective, LCDNetemploys four pyramid blocks
composed of 3D sparse convolutions, with downsampling rates of
1×, 2×, 4×, and 8×, respectively. Finally, the coarsest feature map is
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Figure 3.3: Network topology of the PV-RCNN architecture upon which
LCDNetis based for the feature extractor component of the pro-
posed proposed LCDNet.

converted into a 2D Bird’s-Eye-View (BEV) feature map by stacking
the features along the Z axis.

The VSA module, on the other hand, aggregates all the pyramid
feature maps together with the BEV feature map and the input point
cloud into a small set of N keypoints features. To do so, first the
Farthest Point Sampling (FPS) algorithm [59] performs downsampling
of the point cloud by selecting N uniformly distributed keypoints. The
VSA module is an extension of the Set Abstraction (SA) level [139].
The standard SA aggregate neighbors point features in the raw point
cloud, whereas, the VSA aggregate neighbors voxel features in the 3D
sparse feature map. For every selected keypoint kpi, and every layer l
of the pyramid feature map, the keypoint features fli are computed as

fli = MP(MLP(M(Sli))), (2)

where MP is the max-pooling operation, MLP denotes a MultiLayer
Perceptron (MLP), and M randomly samples the set of neighbor voxel
features Sli, which is computed as

Sli =
{[

fvoxlj; v
l
j − kpi

]
; s. t.

∥∥vlj − kpi

∥∥2 < r
}

, (3)

where fvoxlj is the feature of the voxel j at level l, vlj denotes the
coordinates of the voxel j at level l, and r is the neighbor radius. This
operation is performed at every level of the pyramid to yield

f
pv
i =

[
f1i , f2i , f3i , f4i

]
. (4)
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We perform a similar operation for the input raw point cloud, as well
as the BEV feature map, yielding the aggregated keypoint features

f3Di =
[
f
pv
i , frawi , fbevi

]
. (5)

Lastly, a MLP computes the final keypoint feature vectors strating from
the aggregated keypoint features:

fri = MLP(f3Di ). (6)

As opposed to the original PV-RCNN that processes only the points
that lay in the camera Field Of View (FOV), the task addressed by LCD-
Netrequires the full 360◦ surrounding view. Therefore, the proposed
model employs a voxel grid size of ± 70.4m, ± 70.4m and [−1m, 3m]

in the x,y and z dimensions, respectively, with a voxel resolution size
of 0.1m× 0.1m× 0.1m. A demonstration of the discriminative power
of the proposed feature extractor will be provided in Section 3.3.6,
by comparing it with different state-of-the-art backbones. Moreover,
we also investigate the best choice for the dimensionality D of the
keypoint features.

3.2.2 Global Descriptor

In order to generate a global descriptor for a given point cloud,
the keypoints’ feature set FRP obtained from the feature extractor
are aggregated into a compact G-dimensional vector. To do so, LCD-
Netfirst employs the NetVLAD layer [8] which converts the (N x
D)-dimensional FRP set into a (K x D)-dimensional vector V(FRP) by
learning a set of K cluster centers {c1, . . . , cK}, ck ∈ R

D. NetVLAD
mimics the original Vector of Locally Aggregated Descriptors (VLAD) [75]
using differentiable operations. It replaces the k-means clustering with
learnable clusters and replacing the hard assignment with a soft as-
signment defined as

ak(fr
P
i ) =

ew⊤
k frPi +bk

∑K
k ′=1 e

w⊤
k ′fr

P
i +bk ′

, (7)

where wk ∈ R
D and bk ∈ R are the learnable weights and bias. In

practice, ak(fr
P
i ) represents the probability of assigning the feature

vector frPi to the cluster center ck. The final NetVLAD descriptor
V(FRP) = [V1(FRP), . . . VK(FRP)] is computed by combining the
original VLAD formulation with the soft assignment defined in eq. (7)
as

Vk(FRP) =

N
∑

i=1

ak(fr
P
i )(fr

P
i − ck). (8)
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Since the NetVLAD layer has demonstrated superior performance
for point cloud retrieval [4] than the max-pooling employed in Point-
Net [138], it is also utilized in the proposed model. To further reduce
the dimensionality of the final global descriptor, the global descriptor
head employs a simple MLP that compresses the (K × D)-dimensional
vector V(FRP) into a G-dimensional compact descriptor. We then ob-
tain the final global descriptor f(P) ∈ R

G by employing the Context
Gating (CG) module [125] on the output of the MLP. The CG module
re-weights the output of the MLP using a self-attention mechanism as

Y(X) = σ(WX+ b)⊙X, (9)

where X is the MLP output, σ is the element-wise sigmoid operation, ⊙
is the element-wise multiplication, W and b are the weights and bias
of the MLP. The CG module captures dependencies among features
by down-weighting or up-weighting features based on the context

while considering the full set of features as a whole, thus focusing the
attention on more discriminative features.

3.2.3 Relative Pose Estimation

Given two point clouds P and S, the third component of the pro-
posed architecture estimates the 6-DoF transformation to align the
source point cloud P with the target point cloud S under driving
conditions. This task is performed by matching the keypoints’ features
FRP and FRS computed using the adapted feature extractor from
section 3.2.1. Due to the sparse nature of LiDAR point clouds and the
keypoint sampling step which is performed in the feature extractor, a
point in P might not have a single matching point in S, but it can lay
in between two or more points in S. Therefore, a one-to-one mapping
is not desirable in our task.

In order to address this problem, the proposed mehtod employs
the Sinkhorn algorithm [161], which can be used to approximate
the optimal transport (OT) theory in a fast, highly parallelizable and
differentiable manner. Recent work has shown benefits of using the
Sinkhorn algorithm with DNNs for several tasks such as feature match-
ing [147], scene flow [137], shape correspondence [44], and style trans-
fer [95]. The discrete Kantorovich formulation of the optimal transport
is defined as

T = arg min
A∈RN×N

{

∑

i,j

CijAij; s. t. A is doubly stochastic

}

, (10)
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where Cij is the cost of matching the i-th point in P to the j-th point
in S. In order to employ the Sinkhorn algorithm, an entropic regular-
ization term is added to the formula:

T = arg min
A∈RN×N

{

∑

i,j

CijAij + λAij

(
logAij − 1

)
}

, (11)

where λ is a parameter that controls the sparseness of the mapping (as
λ→ 0, T converges to a one-to-one mapping). However, both eqs. (10)
and (11) are subject to A being a doubly stochastic matrix (mass
preservation constraint), i.e., every point in FRP has to be matched
to one or more points in FRS, and vice versa. In our point cloud
matching task, some points in FRP might not have a matching in FRS,
for example when a car is present in one point cloud but is absent
in the other, or in the case of occlusions. Therefore, we need to relax
the mass prevention constraint. One common approach to overcome
this problem is by adding a dummy point in both P and S (i.e., add
a dummy row and column to A). Another way is to reformulate the
problem as unbalanced optimal transport (UOT) which allows mass
creation and destruction, and is defined as

T = arg min
A∈RN×N

{


∑

i,j

CijAij + λAij

(
logAij − 1

)

+

ρ


KL

(
∑

i

Aij|U(1,N)

)
+KL


∑

j

Aij|U(1,N)






}

,

(12)

where KL is the Kullback–Leibler divergence, U is the discrete uni-
form distribution, and ρ is a parameter that controls how much mass
is preserved. The UOT formulation, compared to the standard OT,
reduces the negative effect caused by incorrect point matching and is
more robust to the stochasticity induced by keypoint sampling [45].
A recent extension to the Sinkhorn algorithm [38] that approximates
the unbalanced optimal transport is shown in algorithm 1. In this
work, the cost matrix C is set as the cosine distance between the key-
points’ features Cij = 1− FRP

i ·FR
S
j/∥FRP

i ∥∥FRS
j ∥. Instead of setting λ and

ρ manually, LCDNetlearns them using back propagation.
After the estimation of the unbalanced optimal transport T , which

represents the set of soft correspondence between keypoints’ features
FRP and FRS, together with their respective 3D keypoints’ coordinates
P and S, for every keypoint pj ∈ P its projected coordinates in S is
computed as

ŝj =

∑K
k=1 Tjksk

∑K
k=1 Tjk

. (13)

Finally, the weighted SVD estimates the rigid body transformation
between the original point cloud P and its projection Ŝ in S. Since both
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Algorithm 1: Unbalanced Optimal Transport
Data: Cost matrix C, number of iterations L, parameters λ and ρ

Result: Unbalanced Optimal Transport T
begin

K← e−C/λ

a← ✶N/N

b← ✶N/N

v← ✶N/N

for i← 1 to L do

u← [a⊘ (Kv)]ρ/(ρ+λ)

v← [b⊘ (K⊺u)]ρ/(ρ+λ)

end

T ← u⊙K⊙ v⊺

end

where ⊘ is the element wise division, and ⊙ is the element-wise multiplication.

algorithm 1 and SVD are differentiable, the proposed relative pose
head is trained in an end-to-end manner by comparing the predicted
transformation ĤS

P with the groundtruth transformation HS
P.

Once the network has been trained, the UOT-based relative posi-
tion head is replaced with a RANSAC-based registration method that
exploits the features extracted by LCDNetto find correspondences. In
this way, we can train the network in an end-to-end manner, and at the
same time estimate accurate relative poses using the robust RANSAC

estimator during inference.

3.2.4 Loss Function

Regarding the global descriptor head, LCDNetutilizes the triplet
loss [152] during training. Given an anchor point cloud Pa, a positive
sample Pp (point cloud of the same place), and a negative sample Pn

(point cloud of a different place), the triplet loss enforce the distance
between the descriptors of positive samples to be smaller than the
distance between negative samples descriptors. More formally, the
triplet loss is defined as

Ltrp = [d(f(Pa), f(Pp)) − d(f(Pa), f(Pn)) +m)]+, (14)

where d(·) is a distance function, m is the desired separation margin,
and [x]+ means max(0, x).

Instead of selecting the triplets in advance (offline mining) for every
anchor in the batch, the proposed training procedure randomly se-
lects a positive sample, and then randomly selects the corresponding
negative sample from all the batch elements that depict a different
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place (online negative mining). The relative pose transformation is
only computed for positive pairs, and the model is trained by compar-
ing the anchor point cloud Pa = {pa

1 , . . . ,pa
J } transformed using the

predicted transformation Ĥ
p
a and the groundtruth transformation H

p
a

as

Lpose =
1

J

J
∑

j=1

∣∣∣Ĥp
ap

a
j −Hp

ap
a
j

∣∣∣ . (15)

In addition, the proposed method employs an auxiliary loss on the
matches estimated by the unbalanced optimal transport T as

LOT =
1

J

J
∑

j=1

∣∣∣∣∣

∑K
k=1 Tjkp

p
k

∑K
k=1 Tjk

−Hp
ap

a
j

∣∣∣∣∣ . (16)

The final loss function is a linear combination of the three aforemen-
tioned components:

Ltotal = Ltrp +Lpose +βLOT , (17)

where β is a loss balancing term which is empirically set to 0.05.
Consequently, due to the combination of triplet loss, UOT, and data
augmentation, the shared feature extractor learns to yield distinc-
tive, rotation and translation invariant keypoints’ features through
backpropagation.

3.2.5 SLAM System

We integrate the proposed LCDNet into a recently proposed SLAM

system, namely LIO-SAM [157] which achieves state-of-the-art per-
formance on large-scale outdoor environments. LIO-SAM is a tightly
coupled LiDAR inertial odometry framework built atop a factor graph.
The framework takes a LiDAR point cloud and Inertial Measurement
Unit (IMU) measurements as input. It includes four types of constraints
that are added to the factor graph: IMU preintegration, LiDAR odom-
etry, Global Positioning System (GPS) measurements (optional), and
loop closure. In order to reduce the computational complexity, LIO-
SAM selectively chooses LiDAR scans as keyframes only when the
robot moves more than a predefined threshold since the last saved
keyframe. The scans in between two keyframes are then discarded.
Moreover, LCDNetis used for detecting loop closures instead of the
Euclidean distance-based loop closure detection module provided in
LIO-SAM. From a technical perspective, for every keyframe Fi added
to the LIO-SAM factor graph, the proposed model computes and
stores the respective global descriptor f(Fi) in a database. When a
new keyframe Fi+1 is added to the graph, the point cloud with the
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most similar descriptor (excluding the past M keyframes) is retrieved
from the database:

W = arg min
j∈{1,...,i−M}

∥∥f(Fi+1) − f(Fj)
∥∥ . (18)

If the distance between the two descriptors is below a certain thresh-
old th, FW is labeled as a loop candidate, and the estimation of the
6-DoF transformation between the two point clouds ĤW

i+1 is provided
by the relative pose head as described in section 3.2.3. Finally, ICP

performs a further refinement of the transformation by employing
ĤW

i+1 as initial guess, and another threshold thicp determines if the
loop closure factor can be added to the pose graph according to the
ICP fitness score. By using this additional geometric consistency check,
we can discard the few remaining false positive detection. It is impor-
tant to note that no IMU nor GPS measurements are used in the loop
detection step.

3.3 experimental evaluation

The experimental activity presented in this section will initially
describe the datasets involved in the evaluation, the implementation
details and the training protocol. Then, the presented quantitative
and qualitative results from experiments will demonstrate that the
proposed LCDNet can (i) effectively detect loop closures even in chal-
lenging condition such as loops in the reverse direction, (ii) align two
point clouds without any prior initial guess, (iii) robustly align point
clouds that only partly overlap, (iv) provide an accurate initial guess
for further ICP alignment, (v) integrate with an existing SLAM system
to provide a fully featured localization and mapping framework, (vi)
generalize to unseen environments.

3.3.1 Datasets

The evaluation of the proposed approach considers three different
autonomous driving datasets. A detailed list of sequences that were
used for training and testing, together with the respective number
of loop closures and route direction of revisited places are reported
in table 3.1. Note that this list does not include the sequences without
loops.

KITTI: The KITTI odometry dataset [55] contains 11 sequences with
LiDAR point clouds and groundtruth poses, six of which contain loops.
However, the groundtruth for some of these sequences is not aligned to
nearby loop closures. Therefore, in this work the groundtruth provided
with the SemanticKITTI dataset [15] is used, which is consistent for
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Table 3.1: Statistics of evaluation datasets.

KITTI

00 05 06 07 08 09

Num. of scans 4541 2761 1101 1101 4071 1591

Num. of loops 790 492 69 97 334 18

Num. of pairs 10 499 6534 2138 2497 2960 252

Route direction Same Same Same Same Reverse Same

% Reverse Loops 3% 5% 0% 0% 100% 0%

KITTI-360 Freiburg

00 02 04 05 06 09 -

Num. of scans 10 514 18 235 11 052 6291 9186 13 247 25 612

Num. of loops 2452 4690 2218 2008 2433 4670 13 851

Num. of pairs 24 499 43 894 21 165 20 361 22 822 53 858 ∼ 411M

Route direction Both Both Both Both Both Both Both

% Reverse Loops 67% 87% 92% 88% 61% 46% 20%

all the sequences. Most of the KITTI odometry sequences contain loop
closures from the same driving direction, except for sequence 08 which
contains reverse loop closures. The proposed approach is evaluated
on sequences 00 and 08 as they contain the highest number of loops
and reverse loops, respectively.

KITTI-360: The recently released KITTI-360 dataset [189] consists of
nine sequences, six of which contain loops. KITTI-360 contains more
loops and reverse loops than the standard KITTI dataset (see table 3.1).
The proposed approach is evaluated on two of the sequences in KITTI-
360 that contain the highest number of loop closures: sequence 02 and
sequence 09.

Freiburg: We recorded our own dataset by driving around the city of
Freiburg, Germany, across different days. We used a car equipped
with a Velodyne HDL-64E LiDAR sensor and an Applanix POS LV
positioning system. The resulting dataset includes many loops, both
from the same and reverse directions. Moreover, differently from the
KITTI and KITTI-360 datasets, our Freiburg dataset includes many
dynamic objects. The Freiburg dataset is thus used to evaluate the
generalization ability of our approach to a different city, different
sensor setup, and across different days by training the models on KITTI
and KITTI-360, and evaluating them on our own dataset collected in
Freiburg, without any re-training or fine-tuning.
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3.3.2 Implementation and Training Details

Following [86], in this work two point clouds represents a real loop
if the distance between the groundtruth poses is less than four meters.
Moreover, loop candidates are not searched in the past 50 scans to
avoid detecting loops in nearby scans. LCDNet is trained on sequences
05, 06, 07, and 09 of the KITTI dataset, validate it on sequences 00 and
08, and test it on the KITTI-360 dataset. A second model, denoted as
LCDNet†, is trained on sequences 00, 04, 05, and 06 of the KITTI-360

dataset, validated on sequences 02 and 09, and tested on the KITTI
dataset.

All models are trained for 150 epochs on a server with 4 NVIDIA
TITAN RTX GPUs, using a batch size of 24 positive pairs. The ADAM
optimizer is used to update the weights of the network, with an initial
learning rate of 0.004 which is halved after epochs 40 and 80, and
a weight decay of 5 · 10−6. In all the experiments, if not otherwise
specified, the number of considered keypoints is N = 4096, the inter-
mediate feature dimension D = 640, the output feature dimension
G = 256, the number of NetVLAD clusters K = 64, the triplet margin
m = 0.5, and the distance function in eq. (14) as the L2 distance. The
number of iterations for the Sinkhorn algorithm is set to L = 5.

In order to help the network to learn viewpoint-invariant features,
a random rigid body transformation is applied to each point cloud,
with a maximum translation of [± 1.5m] on the x and y axes, and
[± 0.25m] on the z axis; the maximum rotation of [± 180◦] for the yaw
(to simulate loop closures from different directions), and [± 3◦] for roll
and pitch.

3.3.3 Evaluation of Loop Closure Detection

To evaluate the loop closure detection performance of LCDNet,
precision-recall curves and the Average Precision (AP) metric are
proposed by considering two different evaluation protocols.

Protocol 1: In the first protocol, the proposed assessment of LCDNetcon-
siders a real loop closure setting. For each scan i of the sequence, the
similarity between the global descriptor f(Pi) and the descriptor of all
the previous scans is computed, excluding the nearby scan as detailed
in section 3.3.1. The scan j with the highest similarity is selected as
the loop candidate, and if the similarity between the two descriptors
is higher than a threshold th, then the pair (i, j) is considered as a
loop. In such a case, a further check of the distance of the groundtruth
poses between the two scans is performed: if the distance is less than
four meters, then the the matched pair is a true positive, and a false
positive otherwise. On the other hand, if the similarity is lower than
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Table 3.2: Comparison with the state of the art in terms of the average preci-
sion evaluated on the KITTI and KITTI-360 datasets.

Method Protocol 1

KITTI KITTI-360

00 08 02 09

H
an

d
cr

af
te

d M2DP [66] 0.93 0.05 0.15 0.66

Scan Context [86] 0.96 0.65 0.81 0.90

ISC [178] 0.83 0.31 0.41 0.65

LiDAR-Iris [181] 0.96 0.64 0.83 0.91

D
N

N
-

ba
se

d

OverlapNet [36] 0.95 0.32 0.14 0.70

SG_PR [99] 0.49 0.13 - -

LCDNet 0.97 0.94 0.95 0.98

LCDNet† 0.998 0.96 0.97 0.99

Method Protocol 2

KITTI KITTI-360

00 08 02 09

H
an

d
cr

af
te

d M2DP [66] 0.31 0.01 0.03 0.17

Scan Context [86] 0.47 0.21 0.32 0.31

ISC [178] 0.14 0.05 0.03 0.04

LiDAR-Iris [181] 0.42 0.17 0.25 0.26

D
N

N
-

ba
se

d

OverlapNet [36] 0.60 0.20 0.05 0.33

SG_PR [99] 0.23 0.13 - -

LCDNet 0.62 0.73 0.69 0.79

LCDNet† 0.89 0.76 0.73 0.80
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the threshold, but if a scan within four meters around the current scan
i exists, then it is considered as a false negative.

Protocol 2: For each scan, the second protocol takes into account all
the previous scans, not only the one with the highest similarity. For
every pair of scans, if the similarity between the two descriptors is
higher than the threshold, the pair is labeled as loop closure, and a
comparison against the groundtruth is performed to compute preci-
sion and recall. Although in a real-world loop closure application only
the most similar scan matters, if an approach is able to detect loops
when the scans are very similar, but fails in more challenging scenarios
(such as occlusions), this will not be reflected in the protocol 1 results.
In protocol 2, on the other hand, all pairs of scans are considered,
and thus approaches that better deal with challenging situations will
achieve better results. Also in this protocol, nearby scans are ignored
to avoid matching consecutive scans.

In both protocols, the variation of the threshold th produces dif-
ferent set of pairs (precision, recall), that are used to generate the
precision-recall curve and to compute the AP.

The proposed approach is compared with state-of-the-art hand-
crafted methods: M2DP [66], Scan-Context [86], Intensity Scan-Context
(ISC) [178], and LiDAR-IRIS [181], as well as DNN-based methods Over-
lapNet [36], and Semantic Graph Place Recognition (SG_PR) [99]. For
all these approaches, the official code published by the respective
authors and the pretrained models provided for DNN-based methods
are used. OverlapNet only provides the model trained with geometric
information, we refer to this model as OverlapNet (Geo). All the DNN-
based methods except for LCDNet† are trained on the KITTI dataset
as described in Section 3.3.1, and evaluated individually on sequences
from both KITTI and KITTI-360 datasets.

Table 3.2 reports the results with the AP metric for protocol 1 and
protocol 2. The best method is highlighted in bold, and the second
best is underlined. Moreover, Figure 3.4 presents the precision-recall
curves for both protocols. As reported, while most approaches achieve
satisfactory results in detecting loop closures in the same direction
(fig. 3.4 (a)), this is not the case for reverse loops as shown in fig. 3.4 (b).
M2DP and SG_PR completely fail on the KITTI sequence 08; Scan
Context, OverlapNet (Geo) and LiDAR-Iris also show a strong decrease
in performance when dealing with reverse loops. For instance, the pre-
vious state-of-the-art method Scan Context achieved an AP of 0.96 in
sequence 00 of the KITTI dataset (which contains only same direction
loops), and 0.65 in sequence 08. The proposed LCDNet, on the other
hand, performs equally well for both reverse and same direction loops,
achieving an AP of 0.94 and 0.97 respectively. This is even more no-
ticeable in the results using protocol 2 where all the other approaches
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Protocol 1 Protocol 2
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(a) KITTI sequence 00
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(b) KITTI sequence 08
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(c) KITTI-360 sequence 02
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(d) KITTI-360 sequence 09

M2DP Scan Context ISC Lidar-IRIS

OverlapNet LCDNet LCDNet†SG_PR

Figure 3.4: Comparison of loop closure detection precision-recall curves on KITTI
(a-b) and on KITTI-360 (c-d) datasets evaluated using both protocols. The
proposed LCDNet† achieves the best performance in all the experiments,
followed by LCDNet as second best method. The improvement over pre-
vious state-of-the-art approaches is even more prominent when dealing
with reverse direction loops, as observed in (b).
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Table 3.3: Comparison of relative pose errors (rotation and translation) be-
tween positive pairs on the KITTI dataset (Seq. 00).

Approach Seq. 00

Success TE [m] (succ. / all) RE [deg] (succ. / all)

H
an

d
cr

af
te

d

Scan Context∗ [86] 97.66% - / - 1.34 / 1.92

ISC∗ [178] 32.07% - / - 1.39 / 2.13

LiDAR-Iris∗ [181] 98.83% - / - 0.65 / 1.69

ICP (P2p) [199] 35.57% 0.97 / 2.08 1.36 / 8.98

ICP (P2pl) [199] 35.54% 1.00 / 2.11 1.39 / 8.99

RANSAC [145] 33.95% 0.98 / 2.75 1.37 / 12.01

FGR [202] 34.54% 0.98 / 5972.31 1.2 / 12.79

TEASER++ [190] 34.06% 0.98 / 2.72 1.33 / 15.85

D
N

N
-

ba
se

d

OverlapNet∗ [36] 83.86% - / - 1.28 / 3.89

RPMNet [192] 47.31% 1.05 / 2.07 0.60 / 1.88

DCP [182] 50.71% 0.98 / 1.83 1.14 / 6.61

PCAM [25] 99.68% 0.07 / 0.08 0.35 / 0.74

O
u

rs

LCDNet (fast) 93.03% 0.65 / 0.77 0.86 / 1.07

LCDNet 100% 0.11 / 0.11 0.12 / 0.12

LCDNet† (fast) 99.79% 0.28 / 0.29 0.30 / 0.30

LCDNet† 100% 0.14 / 0.14 0.14 / 0.14

LCDNet + ICP 100% 0.04 / 0.04 0.09 / 0.09

LCDNet† + ICP 100% 0.04 / 0.04 0.08 / 0.08

LCDNet + TEASER 94.39% 0.66 / 0.77 0.09 / 0.10

LCDNet† + TEASER 99.78% 0.28 / 0.29 0.09 / 0.09

∗ these approaches only estimate the rotation between two point clouds, therefore are
not directly comparable with the other approaches which estimate the full 6-DoF trans-
formation under driving conditions.

show a substantial decrease in performance, while LCDNet achieves
an AP score that is even better for detecting reverse loops than the
same direction loops. Finally, the model trained on the KITTI-360

dataset (LCDNet†) achieves the best performance on all the sequences,
thereby setting the new state-of-the-art on both KITTI and KITTI-360.

3.3.4 Evaluation of Relative Pose Estimation

This section reports the evaluation of the relative pose estimation
between two point clouds. The proposed LCDNet provides a full
6-DoF transformation under driving conditions between two points
clouds. However, Scan Context, ISC, LiDAR-Iris, and OverlapNet only
provide an estimation of the yaw angle. As M2DP, and SG_PR do not
provide any information about the relative pose, the results presented
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Table 3.4: Comparison of relative pose errors (rotation and translation) be-
tween positive pairs on the KITTI dataset (seq. 08).

Approach Seq. 08

Success TE [m] (succ. / all) RE [deg] (succ. / all)

H
an

d
cr

af
te

d

Scan Context∗ [86] 98.21% - / - 1.71 / 3.11

ISC∗ [178] 81.28% - / - 2.07 / 6.27

LiDAR-Iris∗ [181] 99.29% - / - 0.93 / 1.84

ICP (P2p) [199] 0% - / 2.43 - / 160.46

ICP (P2pl) [199] 0% - / 2.44 - / 160.45

RANSAC [145] 15.61% 1.33 / 4.57 1.79 / 37.31

FGR [202] 17.16% 1.32 / 35109.13 1.76 / 28.98

TEASER++ [190] 17.13% 1.34 / 3.83 1.93 / 29.19

D
N

N
-

ba
se

d

OverlapNet∗ [36] 0.10% - / - 2.03 / 65.45

RPMNet [192] 27.80% 1.28 / 2.42 1.77 / 13.13

DCP [182] 0% - / 4.01 - / 161.24

PCAM [25] 94.90% 0.19 / 0.41 0.51 / 6.01

O
u

rs

LCDNet (fast) 60.71% 1.02 / 1.62 1.65 / 3.13

LCDNet 100% 0.15 / 0.15 0.34 / 0.34

LCDNet† (fast) 88.51% 0.66 / 0.93 1.00 / 1.31

LCDNet† 100% 0.18 / 0.18 0.36 / 0.36

LCDNet + ICP 100% 0.09 / 0.09 0.33 / 0.33

LCDNet† + ICP 100% 0.07 / 0.07 0.32 / 0.32

LCDNet + TEASER 94.39% 1.05 / 1.62 0.33 / 0.35

LCDNet† + TEASER 89.39% 0.67 / 0.93 0.33 / 0.34

∗ these approaches only estimate the rotation between two point clouds, therefore are
not directly comparable with the other approaches which estimate the full 6-DoF trans-
formation under driving conditions.
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Table 3.5: Comparison of relative pose errors (rotation and translation) be-
tween positive pairs on the KITTI-360 dataset (Seq. 02).

Approach Seq. 02

Success TE [m] (succ. / all) RE [deg] (succ. / all)

H
an

d
cr

af
te

d

Scan Context∗ [86] 92.31% - / - 1.60 / 5.49

ISC∗ [178] 83.15% - / - 1.71 / 3.44

LiDAR-Iris∗ [181] 96.54% - / - 1.07 / 2.24

ICP (P2p) [199] 4.19% 1.10 / 2.26 1.74 / 149.76

ICP (P2pl) [199] 4.19% 1.11 / 2.30 1.18 / 149.39

RANSAC [145] 24.78% 1.24 / 3.67 1.83 / 32.22

FGR [202] 27.92% 1.23 / 6758.87 1.85 / 18.16

TEASER++ [190] 27.02% 1.25 / 3.16 1.83 / 19.16

D
N

N
-

ba
se

d

OverlapNet∗ [36] 11.42% - / - 1.79 / 76.74

RPMNet [192] 37.99% 1.18 / 2.26 1.30 / 5.97

DCP [182] 5.62% 1.09 / 3.14 1.36 / 149.27

PCAM [25] 97.46% 0.20 / 0.30 0.75 / 1.36

O
u

rs

LCDNet (fast) 83.92% 0.84 / 1.10 1.28 / 1.67

LCDNet 98.62% 0.28 / 0.32 0.32 / 0.35

LCDNet† (fast) 89.07% 0.40 / 0.45 0.57 / 0.62

LCDNet† 98.55% 0.27 / 0.32 0.32 / 0.34

LCDNet + ICP 98.51% 0.20 / 0.25 0.24 / 0.27

LCDNet† + ICP 98.51% 0.20 / 0.25 0.24 / 0.27

LCDNet + TEASER 86.63% 0.85 / 1.10 0.40 / 0.52

LCDNet† + TEASER 98.06% 0.40 / 0.45 0.37 / 0.45

∗ these approaches only estimate the rotation between two point clouds, therefore are
not directly comparable with the other approaches which estimate the full 6-DoF trans-
formation under driving conditions.
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Table 3.6: Comparison of relative pose errors (rotation and translation) be-
tween positive pairs on the KITTI-360 dataset (seq 09).

Approach Seq. 09

Success TE [m] (succ. / all) RE [deg] (succ. / all)

H
an

d
cr

af
te

d

Scan Context∗ [86] 95.25% - / - 1.40 / 6.80

ISC∗ [178] 86.26% - / - 1.51 / 7.08

LiDAR-Iris∗ [181] 97.63% - / - 0.72 / 3.80

ICP (P2p) [199] 21.24% 1.06 / 2.22 1.34 / 66.34

ICP (P2pl) [199] 21.29% 1.07 / 2.24 1.38 / 66.23

RANSAC [145] 29.69% 1.12 / 3.14 1.48 / 23.42

FGR [202] 30.46% 1.12 / 6011.39 1.44 / 17.35

TEASER++ [190] 30.32% 1.14 / 2.91 1.46 / 19.22

D
N

N
-

ba
se

d

OverlapNet∗ [36] 54.33% - / - 1.38 / 33.62

RPMNet [192] 41.42% 1.13 / 2.21 1.02 / 3.95

DCP [182] 30.10% 1.04 / 2.30 1.06 / 64.86

PCAM [25] 99.78% 0.12 / 0.13 0.51 / 0.64

O
u

rs

LCDNet (fast) 89.49% 0.76 / 0.94 0.99 / 1.19

LCDNet 100% 0.18 / 0.18 0.20 / 0.20

LCDNet† (fast) 98.87% 0.43 / 0.44 0.59 / 0.63

LCDNet† 100% 0.20 / 0.20 0.22 / 0.22

LCDNet + ICP 100% 0.10 / 0.10 0.15 / 0.15

LCDNet† + ICP 100% 0.11 / 0.11 0.15 / 0.15

LCDNet + TEASER 90.57% 0.76 / 0.94 0.22 / 0.25

LCDNet† + TEASER 99.10% 0.43 / 0.44 0.22 / 0.23

∗ these approaches only estimate the rotation between two point clouds, therefore are
not directly comparable with the other approaches which estimate the full 6-DoF trans-
formation under driving conditions.
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in this section do not include them. Moreover, the proposed evaluation
compares LCDNetwith state-of-the-art handcrafted methods for point
cloud registration: ICP [199] using point-to-point and point-to-plane
distances, RANSAC with FPFH features [145] and Fast Global Registra-
tion (FGR) [202], all implemented in the Open3D library [203], and
TEASER++ [190] using the official implementation. A comparison with
DNN-based methods RPMNet [192], Deep Closest Point (DCP) [182]
and Product of Cross-Attention Matrices (PCAM) [25] is also provided.
To provide a fair evaluation, all the latter DNN-based approaches are
trained on the same data, following the same protocol, and using
the same number of keypoints used to train the proposed LCDNet.
Following [39], for the aforementioned handcrafted methods a first
downsample is applied to the point clouds using a voxel size of 0.3
meter, while the latter DNN-based methods and LCDNet perform
point cloud registration using 4096 sampled points, which is a much
sparser representation. Scan-Context, LiDAR-Iris, ISC, and Overlap-
Net, on the other hand, operate on spherical projections of the points,
and thus they process almost all the points in the original cloud. We
evaluate two versions of the method described in this chapter. The first
one, denoted as LCDNet (fast), leverages the output of the UOT-based
relative position head to estimate the transformation. In the second
version, denoted as LCDNet, the UOT-based head is replaced with a
RANSAC estimator, as described in section 3.2.3. The models trained
on KITTI-360 are denoted as LCDNet† (fast) and LCDNet†, respectively.
The performance of LCDNet followed by a further ICP registration are
also evaluated. The latter evaluation is only reported as a reference
to show the best alignment achievable. Finally, a further investiga-
tion is conducted to understand whether TEASER++ is a better pose
estimator by replacing RANSAC in LCDNet.

All the methods are evaluated in terms of success rate (percentage
of successfully aligned pairs), translation error (TE), and rotation error
(RE) averaged over successful pairs as well as over all the positive pairs.
Two pairs are successfully aligned if the final rotation and translation
error is below five degrees and two meters, respectively. The results
on the KITTI and KITTI-360 datasets are reported in tables 3.3 to 3.6.
We observe that LiDAR-Iris achieves the best performance among
the handcrafted methods and PCAM demonstrates superior results
compared to existing DNN-based approaches when dealing with same
and reverse direction pairs. However, as opposed to the other methods,
PCAM only performs point cloud registration and do not provide any
information regarding loop closure detection. Whereas, the proposed
LCDNet and LCDNet† achieve the highest success rates and lowest ro-
tation errors compared to all the methods, with a success rate of 100%
in three out of four sequences. PCAM, on the other hand, achieves the
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lowest translation errors in most sequences, but is not robust to reg-
istration under partial overlap, as discussed in section 3.3.5. The fast
versions of the proposed method achieve results comparable with, and
in some sequences even better than existing approaches, while being
much faster than most point cloud registration methods, as reported
in section 3.3.8. By replacing RANSAC in LCDNet and LCDNet† with
TEASER++ the success rates decrease and the translation errors sig-
nificantly increase, while the rotation errors remain similar. During
the proposed experimental evaluations, we also observed that while
the rotation and translation invariance obtained by LCDNet primarily
arise from the proposed data augmentation scheme, many existing
loop closure detection approaches (not reported in the comparison)
did not converge at all when trained with the same scheme. There-
fore, we argue that data augmentation by itself is not sufficient, and a
well-designed architecture and loss function is necessary to achieve
invariance.

3.3.5 Partial Overlap

In this section, the proposed evaluation aims to demonstrate the
ability of LCDNet in detecting loops and regressing the relative pose
between point clouds that only overlap partially. In particular, the
evaluation follows the protocol used in section 3.3.3 (protocol 1) and
section 3.3.4. To do so,partial overlapping pairs are simulated by
removing a random section of each point cloud. The proposed com-
parison aims to observe the performance of LCDNet against state-
of-the-art approaches on the sequence 08 of the KITTI dataset under
two settings: by removing a random 45◦ and 90◦ sector, respectively.
Table 3.7 reports the results of this experiment in terms of average
precision (AP), success rate, mean translation error and mean rotation
error. Although the AP of LCDNet drops moderately when a 90◦

section is removed, LCDNet† still achieves an AP higher than all the
existing approaches evaluated on the complete overlap test (table 3.2).
Not that PCAM, which achieves remarkable results in the full overlap
registration test, struggles when dealing with partial overlapping point
clouds with a success rate that drops from 95% to 56%, a translation
error that increases from 0.41m to 3.32m, and a rotation error that
raises from 6.01◦ to 34.64◦. LCDNet and LCDNet†, on the other hand,
retain an almost perfect success rate and slightly lower translation and
rotation errors.

Also an investigation on the MulRan dataset [87] was performed for
this experiment, as the LiDAR mounted on their vehicle is obstructed
by the radar sensor for approximately 70◦ rear FOV. Therefore, in
reverse direction scenarios, the scans share only a very limited overlap.
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In preliminary evaluations, all the considered approaches failed in
detecting reverse loops. We can argue that this is a limitation of all
scan-to-scan methods, and that scan-to-map approaches should be
considered in these scenarios.

3.3.6 Ablation Studies

This section presents ablation studies on the different architectural
components of the proposed LCDNet. All the models presented in
this section are trained on the KITTI dataset, and evaluated on the se-
quence 08 using the AP, mean rotation error (RE) and mean translation
error (TE) metrics. Sequence 08 is selected as the validation set since
it is the most challenging sequence, containing only reverse direction
loops. Since RANSAC does not influence the training of the network,
in this section the rotation and translation errors are computed using
the LCDNet (fast) version.

The first comparison considers the proposed feature extractor built
upon PVRCNN presented in Section 3.2.1 with three different back-
bones: the widely adopted feature extractor PointNet [138], the dy-
namic graph CNN EdgeConv [183], and the recent state-of-the-art
semantic segmentation network RandLA-Net [71]. All backbones were
modified in order to output a feature vector of size D = 640 for
N = 4096 points, similar to our backbone. Table 3.8 reports the results
of this evaluation. The ability of the adapted feature extractor pre-
sented in Section 3.2.1 to combine high-level features from the 3D voxel
DNN with fine-grained details provided by the PointNet-based voxel
set abstraction layer is demonstrated by the superior performance
compared to other backbones, outperforming them in every metric by
a large margin. The proposed backbone built upon PV-RCNN achieves
an average precision of 0.94 compared to 0.67 achieved by the second
best backbone. For relative pose estimation, PV-RCNN achieves a
mean rotation error of 3.13◦ and a mean translation error of 1.62m
compared to 16.85◦ achieved by EdgeConv and 3.55m achieved by
RandLA-Net.

Table 3.9 presents ablation studies on the architecture of the relative
pose head, the dimensionality of the extracted point features, the effect
of the auxiliary optimal transport loss presented in Equation (16), and
the number of keypoints. First, a comparison is proposed between the
proposed UOT-based relative pose head presented in Section 3.2.3 and
a MLP that directly regresses the rotation and translation, similar to
[150]. In particular, three models are trained using different rotation
representations. The first model, MLP(sin-cos) uses two parameters to
represent the rotation: the sine and cosine of the yaw angle. MLP(quat)

represents the rotation as unit quaternions, and MLP(bingham) uses
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Table 3.7: Comparison of loop closure detection (AP) and relative pose errors
(rotation and translation) under partial overlap on the sequence 08

of the KITTI dataset.

Approach 45◦

AP Success TE [m] (all) RE [deg] (all)

H
an

d
cr

af
te

d

Scan Context∗ [86] 0.52 27.33% - 57.70

LiDAR-Iris∗ [181] 0.43 97.84% - 2.78

ICP (P2p) [199] - 0% 2.42 160.46

ICP (P2pl) [199] - 0% 2.45 160.46

RANSAC [145] - 15.51% 4.88 43.77

FGR [202] - 16.55% 44 439.37 30.30

TEASER++ [190] - 16.42% 4.03 30.32

D
N

N
-

ba
se

d OverlapNet∗ [36] 0.09 1.11% - 70.69

PCAM [25] - 84.67% 1.04 11.80

O
u

rs LCDNet 0.79 100% 0.20 0.38

LCDNet† 0.83 100% 0.19 0.36

Approach 90◦

AP Success TE [m] (all) RE [deg] (all)

H
an

d
cr

af
te

d

Scan Context∗ [86] 0.40 17.40% - 72.05

LiDAR-Iris∗ [181] 0.22 96.28% - 5.13

ICP (P2p) [199] - 0% 2.42 160.46

ICP (P2pl) [199] - 0% 2.45 160.42

RANSAC [145] - 13.78% 5.50 48.74

FGR [202] - 14.49% 235 332.54 34.20

TEASER++ [190] - 15.98% 4.37 34.99

D
N

N
-

ba
se

d OverlapNet∗ [36] 0.01 0.68% - 85.68

PCAM [25] - 55.62% 3.32 34.64

O
u

rs LCDNet 0.59 99.93% 0.24 0.46

LCDNet† 0.70 100% 0.21 0.37

∗ these approaches only estimate the rotation between two point clouds, there-
fore are not directly comparable with the other approaches which estimate the
full 6-DoF transformation under driving conditions.

Table 3.8: Ablation study on the backbone network architecture.

Backbone AP TE [m] RE [deg]

PointNet [138] 0.67 5.15 34.14

EdgeConv [183] 0.52 5.44 16.85

RandLA-Net [71] 0.55 3.55 20.08

PVRCNN [159] 0.94 1.62 3.13
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Table 3.9: Ablation study on the different architectural components of the
proposed LCDNet evaluated on sequence 08 of the KITTI dataset.

Relative Feature Auxiliary Num AP TE [m] RE [deg]

Pose Head Size D Loss Keypoints

UOT

640 ✓ 4096

0.94 1.62 3.13

MLP (sin-cos) 0.75 2.14 21.05

MLP (quat) 0.78 2.43 35.16

MLP (bingham) 0.75 2.27 22.69

UOT

640

✓ 4096

0.94 1.62 3.13

128 0.92 1.85 3.19

64 0.92 1.99 3.33

32 0.86 2.23 4.09

UOT 640
✓

4096
0.94 1.62 3.13

✗ 0.83 6.00 4.71

UOT 640 ✓

8192 0.94 1.28 1.99

4096 0.94 1.62 3.13

2048 0.85 4.68 3.73

1024 0.69 5.17 4.75

512 0.50 4.79 4.85

the Bingham representation proposed in [132]. From the first set of
rows in Table 3.9, one can observe that the proposed relative pose
head significantly outperforms the MLP-based heads, especially in the
rotation estimation. The proposed relative pose head achieves a mean
rotation error of 3.13◦ compared to 21.05◦ achieved by the best MLP

model. Moreover, the UOT-based head favors keypoint features that
are rotation and translation invariant, thus enabling the backbone
to learn more discriminative features, consequently also improving
the loop closure detection performance. The MLP based heads, on the
other hand, require rotation specific features in order to predict the
transformation, which hinders the performance of the place recogni-
tion head, which can be observed from the lower average precision
achieved by these models.

Subsequently, to study the influence of the dimensionality of point
features on the performance of the proposed approach, four models
are trained by varying dimensionality D as 640, 128, 64, and 32. From
the results shown in the second set of rows in Table 3.9, we observe
that the performances decrease with lowering the dimensionality D.

Another evaluation is performed to test the performance of LCDNet
without the auxiliary loss presented in Equation (16). From the results
shown in the third set of rows of Table 3.9, it can be seen that when
training without the optimal transport loss, the performance in terms
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Figure 3.5: Comparison of time (left) and RMSE (right) between ICP without
initial guess and ICP with the LCDNet prediction as the initial
guess on the sequence 02 of the KITTI-360 dataset. Results on
other sequences show similar behaviour, and are thus not reported
for brevity. The initial guess provided by LCDNet significantly
reduces both runtime and final error on sequences containing
reverse loops.

of average precision and relative transformation decreases significantly.
This demonstrates that the auxiliary optimal transport loss enables
the network to learn more distinctive features, which benefits the
performance of both loop closure detection and relative transformation
estimation.

Finally, the last set of rows of Table 3.9 reports the performance
variation of LCDNet with respect to changes in the number of selected
keypoints N. Predictably, the performances increase with adding more
keypoints. However, the average precision does not improve when
increasing the number of keypoints to 8192. Therefore, due to the
higher memory and computation required, the final proposed model
uses 4096 keypoints.

3.3.7 ICP with Initial Guess

In this experiment, we evaluate the performance of employing LCD-
Net as an initial guess for further refinement using ICP. A comparison
of the runtime and the final Root Mean Squared Error (RMSE) of ICP

without any initial guess is provided together with the results obtained
by ICP that utilizes LCDNet relative pose estimate as an initial guess.
The time of ICP with initial guess also includes the network inference
time. Results from this experiment are presented in fig. 3.5 and two
qualitative results are shown in fig. 3.6. While only dealing with the
same direction loops, ICP achieves satisfactory results and the initial
guess does not improve the performance significantly. However, when
reverse loops are present, ICP often fails in accurately registering the
two point clouds. In this case, the initial guess from LCDNet greatly
reduces both the runtime and final errors of ICP as observed in fig. 3.5.
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(a) Source (b) Target (c) ICP without ini-
tial pose

(d) Alignment
from LCDNet

(e) ICP with LCD-
Net initial guess

Figure 3.6: Qualitative comparison of ICP alignment with and without using
the LCDNet prediction as an initial guess. ICP alone (c) is not able
to register the source (a) and the target (b) when the initial rotation
misalignment is high. Whereas, LCDNet effectively aligns them
(d). The final ICP alignment with the prediction of the proposed
LCDNet as the initial guess further improve the results (e).

From fig. 3.6, we can see that ICP fails when the rotation misalign-
ment between the two point clouds is significant. On the other hand,
LCDNet accurately aligns these two point clouds and it improves the
results even further while using ICP with LCDNet prediction as initial
guess. On average, ICP with LCDNet initial guess is 4 times faster than
ICP without any initial guess and achieves an RMSE which is 22 times
lower. Note that in the results presented in fig. 3.5, the whole point
clouds is used to perform the registration with ICP.

3.3.8 Runtime Analysis

In this section, we compare the runtime of LCDNet with existing
state-of-the-art approaches for loop detection. All experiments were
performed on a system with an Intel i7-6850K CPU and an NVIDIA
GTX 1080 ti GPU. We use the official implementation of existing ap-
proaches as described in Sections 3.3.3 and 3.3.4. Results from this
experiment are presented in Table 3.10 in which the descriptor extrac-
tion time also includes the preprocessing required by the respective
method. The pairwise comparison represents the time required to
compare the descriptors of two point clouds. In the map querying
column, we report the time for comparing the descriptor of one scan
with that of all the previous scans in the KITTI-360 sequence 02, which
amounts to 18 235 comparisons in total. For methods that do not re-
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Table 3.10: Comparison of runtime analysis for the loop closure task.

Method Descriptor Pairwise Map GPU

Extraction Comparison Querying Required

[ms] [ms] [ms]

M2DP [66] 169.28 0.01 5 ✗

SC [86] 3.66 0.11 2000 ✗

SC-50 [86] 3.66 0.11 6.96 ✗

ISC [178] 1.97 0.53 9000 ✗

LiDAR-Iris [181] 8.13 5.39 98 000 ✗

OverlapNet [36] 16.00 6.00 109 000 ✓

LCDNet 94.60 0.01 5 ✓

Table 3.11: Comparison of runtime analysis for the point cloud registration
task.

Method Descriptor Pairwise Total [ms] GPU

Extract. [ms] Reg. [ms]

H
an

d
cr

af
te

d

SC [86] 3.66 0.11 7.43 ✗

ISC [178] 1.97 0.53 4.47 ✗

LiDAR-Iris [181] 8.13 5.39 21.65 ✗

ICP (P2p) [199] - 25.53 25.53 ✗

ICP (P2pl) [199] 8.16 35.83 52.15 ✗

RANSAC [145] 24.99 299.66 349.64 ✗

FGR [202] 24.99 188.74 238.72 ✗

TEASER++ [190] 24.99 94.89 144.87 ✗

D
N

N
-

ba
se

d

OverlapNet [36] 16.00 6.00 38.00 ✓

RPMNet [192] 366.75 121.29 854.79 ✓

DCP [182] 19.56 78.76 117.88 ✓

PCAM [25] 187.71 80.77 456.18 ✓

O
u

rs LCDNet (fast) 94.60 4.70 193.9 ✓

LCDNet 94.60 1135 1324.2 ✓
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quire an ad-hoc function to compare descriptors (LCDNet and M2DP),
we use the efficient FAISS library [76] for similarity search in order to
build and query the map. Scan Context also introduces the ring key

descriptors which enable fast search for finding loop candidates, at
the expense of detection performances. We also report the runtime of
scan context using the ring key, denoted as Scan Context-50. However,
it is important to note that the results reported in 3.3.3 were computed
without the ring key.

As shown in Table 3.10, the methods that require an ad-hoc com-
parison function (ISC, LiDAR-Iris, and OverlapNet) are not suited
for real-time applications, since they require up to 100 seconds to
perform a single query. Whereas, LCDNet queries more than 18 000

scans in five milliseconds. Although it is possible to further reduce
the time required to query the map when integrating the loop closure
approaches in a SLAM system, such as using the covariance-based
radius search [36], in this experiment we evaluate the runtime in the
case where no prior information about the current pose is available.

We report the runtime for aligning two point clouds by LCDNet and
existing approaches in table 3.11. For methods that perform both loop
closure and point cloud alignment (SC, ISC, LiDAR-IRIS, OverlapNet,
and LCDNet), the descriptor extraction time is shared between the two
tasks. While LCDNet (fast) is faster than most DNN-based approaches
for point cloud registration (RPMNet and PCAM), LCDNet is slightly
slower than RPMNet. On the other hand, some approaches are much
faster than both LCDNet and LCDNet (fast); however, they either
only estimate a 1-DoF transformation (SC, ISC, and LiDAR-Iris), or
achieve unsatisfactory performances (ICP, RANSAC, FGR, TEASER++,
and DCP). It is important to note that the point cloud registration
task does not need to run in realtime, since it is only required after
a loop closure is detected. Moreover, LCDNet is the only method
that performs both loop closure detection and 6-DoF point cloud
registration under driving conditions.

3.3.9 Qualitative Results

Figure 3.7 reports the qualitative results from LCDNet and LCDNet†
on sequences from both the KITTI and KITTI-360 datasets. The figure
shows the true positive, false positive, and false negative scans overlaid
with the respective groundtruth trajectories. We observe that while
LCDNet effectively detects same direction and reverse direction loops,
it also fails to detect some loops (false negative) and detects some
loops where there should be no loops (false positive). LCDNet† further
improves the performance by reducing the number of false positives
and false negatives, while still maintaining accurate true positive



3.3 experimental evaluation 71

LCDNet LCDNet†

(a) KITTI sequence 00

(b) KITTI sequence 08

(c) KITTI-360 sequence 02

(d) KITTI-360 sequence 09

Figure 3.7: Qualitative loop closure detection results of LCDNet on KITTI (a-b) and
KITTI-360 (c-d) datasets. Green points are true positive detections, red
points are false positive, and blue points are false negative. The left
column shows results of LCDNet trained on the KITTI dataset, while
the right columns shows results of LCDNet† trained on the KITTI-360

dataset. While both LCDNet and LCDNet† effectively detects loops in
all the sequences, LCDNet† further reduces the number of false positive
and false negative detections.
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Figure 3.8: Performance of LIO-SAM with the original loop closure detection
method (left) compared to our approach (right) on sequence 02

of the KITTI dataset.

detections. On the KITTI sequence 08, LCDNet yields some false
negative detections that are almost completely eliminated by LCDNet†,
although few false positive scans are still detected. On sequence 02

of the KITTI-360 dataset, LCDNet presents a large amount of false
negatives which are significantly reduced by LCDNet†. Similarly, on
the KITTI-360 sequence 09, LCDNet presents a few false positive
detections that are completely eliminated by LCDNet†.

3.3.10 Evaluation of Complete SLAM System

The proposed approach is integrated into LIO-SAM [157], which is
a recent state-of-the-art LiDAR SLAM system, by replacing its loop
closure detection pipeline with LCDNet. The entire SLAM system is
evaluated on the sequence 02 of the KITTI dataset. In particular, the
evaluation includes a comparison between the original implementation
of LIO-SAM and LIO-SAM integrated with LCDNetL̇IO-SAM with
LCDNetdetects loop closures where the original LIO-SAM fails to do
so due to the presence of the accumulated drift. Figure 3.8 reports the
results obtained with both SLAM systems and shows the distance error
between LIO-SAM keyframes and groundtruth poses. We can observe
that the high error (red) associated with the path of the original LIO-
SAM is caused by the failed loop closure detection, since the system
drifts significantly along the z-dimension. Conversely, LCDNet detects
such loops, perform the closure and improve the overall performance
of LIO-SAM.

A public release of the proposed LCDNet is available at http://rl.
uni-freiburg.de/research/lidar-slam-lc.

http://rl.uni-freiburg.de/research/lidar-slam-lc
http://rl.uni-freiburg.de/research/lidar-slam-lc
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Figure 3.9: Comparison of precision-recall curves evaluated using protocol 1

on data from the generalization experiments in Freiburg.

3.3.11 Generalization Analysis

Finally, in this section, the generalization ability of the proposed
LCDNet is assessed by analyzing the performance in unseen environ-
ments and on different robot platforms. Both LCDNet and LCDNet†
are evaluated in real-world experiments in Freiburg using a car with
a rack of LiDAR sensors mounted on the roof as shown in fig. 3.10

(bottom right). Note that in these experiments, LCDNetand LCDNet†
are neither retrained nor fine-tuned on any data from Freiburg. The
KITTI and KITTI-360 datasets on which these models were on, were
primarily recorded in narrow roads, but the streets of Freiburg also in-
clude dual carriageways, therefore we increase the range at which two
scans are considered to be a real loop from 4 to 10 meters. Figure 3.9
shows a comparison of the precision-recall curves of the proposed
approach with handcrafted and DNN-based methods using proto-
col 1 (section 3.3.3). Results using protocol 2 are not reported for this
experiment as there are more than 400 million positive pairs in this
trajectory.

As shown in Table 3.12, Scan Context achieves the best performance
among the handcrafted methods, with an AP of 0.74. Nevertheless, the
proposed LCDNet and LCDNet† outperform all the other approaches
achieving an AP of 0.79 and 0.88, respectively. Since the data from
Freiburg consists of many reverse loops, existing approaches often fail
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Table 3.12: Comparison with the state of the art on data from the generaliza-
tion experiments in Freiburg.

Method AP

H
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d
cr
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d M2DP [66] 0.60

Scan Context [86] 0.74

ISC [178] 0.38

LiDAR-Iris [181] 0.73
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-

ba
se

d

OverlapNet [36] 0.59

LCDNet 0.79

LCDNet† 0.88

Figure 3.10: Qualitative results of the proposed approach on data from the
generalization experiments in Freiburg. The final map generated
from LIO-SAM integrated with LCDNet is overlaid on the geo-
referenced aerial images. Image on the top shows the entire map,
while the images in the bottom show zoomed in segments and
the car used to collect the dataset. The color of the point cloud
is based on the Z-coordinates of the points from lowest (blue) to
highest (green).
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to detect them, leading to a decrease in their performance. The ap-
proach proposed in this work demonstrates exceptional performance
even though it has never seen scans from Freiburg during training.
Moreover, we employ the proposed modified version of LIO-SAM
to generate the trajectory and the map of the experimental runs in
Freiburg. Figure 3.10, shows the resulting map overlaid on the aerial
image. The results show that the map is well aligned with the aerial
image and there is no evidence of any drift. This demonstrates that
LCDNet effectively corrects the accumulated drift. It is important to
note that the precision-recall curve and the AP of the proposed LCD-
Net are computed based only on the global descriptor extracted by
the place recognition head. However, in the modified SLAM system,
an additional consistency check (section 3.2.5) based on the transfor-
mation predicted by the relative pose head allow to further discard
the remaining false positive detections.

Finally, the Freiburg dataset is also used to demonstrate the point
cloud alignment ability of the proposed approach in new environ-
ments. Since an accurate pose is not available for each LiDAR frame,
groundtruth transformations are generated using the GPS poses and
ICP, and discarding pairs that produce an inaccurate alignment. First,
for each frame the identification of possible pairs is made by consid-
ering its neighbors within a distance of 10m. In order to avoid the
pairs that are composed of consecutive frames, given a point cloud the
previous and the following n = 100 frames are discarded. Secondly,
for each pair the yaw angle difference ∆yaw is computed and three
difficulty levels are defined. Then, for each frame a selection of random
pair is performed for every category whenever possible. Moreover, the
maximum number of ICP iterations is set to nicp = 1000, and only
pairs with a fitness score fit >= 0.6 and an inlier correspondences
rmse <= 0.3m are considered. Finally, we randomly sample the re-
sulting pairs to have about the same number of same direction and
reverse direction loops. The resulting number of pairs amounts to
4246, of which 2106 are reverse loops.

The results reported in table 3.13 show that LCDNet effectively
generalizes to new environments for the point cloud registration task.
LCDNet and LCDNet† achieve a success rate of 98.94% and 99.81%,
respectively, compared to the second best method that achieves 92.49%.
The overall mean translation error of LCDNet† is more than two times
smaller, and the rotation error is an order of magnitude lower than
PCAM.
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Table 3.13: Comparison of relative pose errors (rotation and translation) be-
tween positive pairs on the Freiburg dataset.

Approach Success TE [m] RE [deg]

(succ. / all) (succ. / all)

H
an

d
cr

af
te

d

Scan Context [86] 59.30% - / - 1.36 / 52.70

ISC [178] 55.51% - / - 1.52 / 51.02

LiDAR-Iris [181] 69.95% - / - 1.52 / 51.02

ICP (P2p) [199] 29.06% 0.83 / 2.60 1.21 / 89.79

ICP (P2pl) [199] 28.73% 0.88 / 2.62 1.22 / 89.83

RANSAC [145] 29.96% 1.01 / 3.54 1.34 / 31.29

FGR [202] 27.72% 0.97 / 313 258 1.27 / 13.46

TEASER++ [190] 29.49% 0.99 / 3.37 1.31 / 11.94

D
N

N
-

ba
se

d

OverlapNet [36] 42.79% - / - 1.31 / 70.91

RPMNet [192] 32.05% 0.87 / 2.57 1.09 / 46.99

DCP [182] 12.25% 1.26 / 5.22 1.19 / 87.04

PCAM [25] 92.49% 0.40 / 0.67 0.50 / 4.28

O
u

rs LCDNet 98.94% 0.39 / 0.42 0.32 / 0.37

LCDNet† 99.81% 0.28 / 0.28 0.18 / 0.18

LCDNet + ICP 99.79% 0.22 / 0.23 0.16 / 0.16

LCDNet† + ICP 99.86% 0.21 / 0.22 0.14 / 0.14

LCDNet + TEASER 33.61% 1.09 / 3.74 0.17 / 0.42

LCDNet† + TEASER 33.37% 1.15 / 4.45 0.13 / 0.27
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3.4 final discussion

In this chapter, the novel LCDNet architecture for loop closure
detection and point cloud registration was presented. LCDNet is
composed of a shared feature extractor built upon the PV-RCNN
network, a place recognition head that captures discriminative global
descriptors, and a novel differentiable relative pose head based on
the unbalanced optimal transport theory which effectively aligns two
point clouds without any prior information regarding their initial
misalignment.

An extensive experimental activity was performed on the KITTI
odometry and KITTI-360 datasets, demonstrating that LCDNetsets the
new state-of-the-art and successfully detects loops even in challenging
conditions such as reverse direction loops, where existing methods fail.
The proposed LCDNet† achieves an average precision of 0.96 on the
sequence 08 of the KITTI dataset which contains only reverse direction
loops, compared to 0.65 AP of the previous state-of-the-art method.
The proposed relative pose head demonstrates impressive results,
outperforming existing approaches for point clouds registration and
loop closure detection as well as different heads based on the standard
MLPs. LCDNet aligns opposite direction point clouds with an average
rotation error of 0.34◦, and 0.15m for the translation components,
compared to 1.84◦ and 0.41m achieved by LiDAR-IRIS and PCAM,
respectively. Moreover, LCDNet is robust to partial overlapping point
cloud, retaining a 100% success rate when removing a 90◦ sector from
each point cloud, while the second best method drop from 95% to 55%.
In this chapter, we could observe that the relative pose prediction from
the proposed approach can further be refined using ICP for accurate
registration. Moreover, the integration of LCDNet with LIO-SAM was
proposed to provide a complete SLAM system which can detect loops
even in presence of strong drift. Additionally, LCDNet demonstrated
its generalization ability by deploying such a model on a different
robotic platform and in an unseen city from that which was used for
training.





4
S A M P L I N G U N C E RTA I N T Y I N L I D A R - B A S E D P L A C E
R E C O G N I T I O N

In Chapter 3, a Simultaneouos Localization And Mapping (SLAM)
approach exploiting Light Detection And Ranging (LiDAR) data was
introduced, tackling the localization problem both from a global
and local perspective. In particular, the proposed 3D Deep Neural
Network (DNN) named LCDNet jointly identifies loop closures and
performs the registration of a LiDAR input with a candidate point
cloud, representing a previously visited location. Despite the pro-
posed method achieves accurate results and demonstrates its robust-
ness against adverse conditions, such as reverse loops, it remains
challenging to understand whether this model is likely to fail.

As reported in Section 2.3.1, false loops detection is a serious issue,
since a single wrong match can lead to an unrecoverable failure of the
localization system. Therefore, on one hand LCDNet shows impressive
recall and precision in LiDAR-based place recognition, on the other
hand this model experience the lack of an explicit tool for detecting
failures, that could be crucial for the critical task of loop closure
detection. The same flaw is generally experienced in other existing
approaches [62, 96].

A naive and commonly used solution to the underlying problem
is to fix a threshold on a similarity score computed over the feature
representations of the loop candidates, assuming that the considered
DNN enables the computation of global descriptors. However, this
threshold becomes an hyperparameter that one should tune according
to the deployment scenario. For example, if distinct locations of the
navigation environment are perceptually similar, the descriptors pro-
duced by the model could lie in a very close region of the feature space,
implying an higher similarity score together with a larger probability
to be wrongfully matched.

Perceptual aliasing is not the unique reason behind hypothetical
failures, since other uncontrolled environmental factors could affect
the quality of an input observation. For instance, dynamic entities,
e.g., pedestrians and cars, often occlude other scene elements that
an algorithm could utilize to provide a more accurate localization
estimate. Moreover, due to the lack of transparency of deep learning
models, the presence of these objects could lead to undesired and
unpredictable effects within the feature representation extracted from
a model input.

79
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Figure 4.1: The main goal of this work is to provide an ensemble-based
method to address the LiDAR-based place recognition task. In
particular, different models are trained by means of a knowledge
distillation learning strategy to produce similar feature spaces
among ensemble members and to enable uncertainty estimation.
In a later step, this uncertainty can be used to detect localization
failures by improving the accuracy of the overall system. Finally,
we compare our approach with other ensemble-based strategies
by exploring the advantages and flaws of each method.

In recent years, several deep learning methods for LiDAR-based place
recognition [4, 8, 62, 96] have demonstrated outstanding performance,
making them valuable tools also for SLAM systems [72]. As mentioned
earlier, using models’ estimates without considering their potential
uncertainty can lead to treacherous situations and have serious conse-
quences when making decisions during navigation, endangering the
safety of both passengers and other road users. Therefore, the ability
to accurately estimate the uncertainty associated to the output of DNN
models is of paramount importance for mitigating the risks inherent
in the deployment of these technologies. This will allows autonomous
systems to make more informed decisions during navigation, reducing
potential hazards. For instance, human drivers constantly take deci-
sions without a complete knowledge of the surrounding environment
and, nevertheless, they are still able to manage very complex situations
without negative consequences most of the time. This phenomenon
happens since the ability of measuring “what we do not know“ can
improve the driving experience, making human drivers more cautious
when they do not fully understand what is happening within the
current scene. From a technical perspective, uncertainty refers to situ-
ations where information is incomplete or unavailable, often arising
due to the inherent complexity of an environment or the limitations
of a model in accurately representing a specific aspect of reality.

In order to overcome the previous problems and to deal with am-
biguous scenes, this chapter presents an approach for estimating
uncertainty in a DNN for LiDAR-based place recognition. In particular,
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the proposed method is based on the popular technique of Deep En-
sembles (DEs) [105], with the aim of sampling model uncertainty, i.e.,

epistemic uncertainty, directly on feature elements composing the final
point cloud descriptor. In terms of performance, DEs usually provide
high uncertainty quality, making them a solid choice among the ex-
isting uncertainty estimation techniques [50]. However, as described
in this chapter, the application of these technique in the context of
place recognition is not straightforward. Furthermore, in the place
recognition field, there have been relatively few methods to estimate
uncertainty, with the majority of these approaches focusing primarily
on aleatoric uncertainty [24].

To summarize, a novel approach for accurately estimating epistemic
uncertainty during the retrieval process is introduced. In particular, the
proposed strategy incorporates multiple models that share a common
feature space obtained with the application of knowledge distillation
method, that allows for a direct comparison of the distinct models
output. Finally, an extensive experimental activity is proposed to ob-
serve the recall capability of the uncertainty-aware method and to
assess the ability of the proposed uncertainty-aware model in elimi-
nating unreliable predictions. Figure 4.1 depicts the place recognition
approach described in this chapter, where the proposed global local-
ization pipeline can be mainly divided in two successive steps. Firstly,
multiple models generates distinct feature-based representations of
input point clouds, from which we derive feature-wise uncertainty.
Secondly, localization is performed only if the total uncertainty falls
below a specific threshold.

Note that, the proposed technique is not directly related to LCD-
Net, since the main goal is to provide a more general insight of
sampling-based uncertainty estimation methods deployed in the place
recognition field. However, one of the most intuitive application still
remain the detection of loop closures.

4.1 related work

Before introducing the proposed approach, this section will briefly
discuss the state-of-the-art topics that have been addressed. In particu-
lar, this section will begin with an overview of DNNs for LIDAR-based
place recognition. Following this, a brief summary of DNN-based uncer-
tainty estimation approaches will be provided together with methods
applied in the context of place recognition.
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4.1.1 LiDAR-based place recognition with DNNs

In the last decade, many deep learning-based approaches emerged
to deal with the place recognition problem by exploiting observations
gathered from different sensors. In the literature, we can identify
techniques that use only image data [8], 3D data such as LIDAR [4],
and multi-modal based methods [30].

Deep learning-based LiDAR place recognition demonstrated supe-
rior performance than other modalities by showing robustness across
challenging scenarios [4, 96, 97, 197]. Due to such promising results,
in this work we decided to focus on LIDAR-based approaches.

One of the groundbreaking works in this field is PointNetVLAD
[8], a DNN that combines PointNet [138] for extracting features and
VLAD [77] for computing the final descriptor from a point cloud. In
the meantime, several other methods appeared in the literature [150],
aiming also to address the problem in crowded areas [33] or todefine
yaw invariant architectures [120]. More recently, Komorowski et al.

[96] proposed MinkLoc3D, a DNN that exploits sparse convolutions
to extract discriminative descriptors.

In this work, we decided to consider PointNetVLAD and Min-
kLoc3D as the reference architectures in our in-depth study. On the
one hand, PointNetVLAD is a very popular model for place recog-
nition, making it suitable for representing a baseline approach. On
the other hand, MinkLoc3D is a novel approach that demonstrates
to outperform several state-of-the-art approaches, making it another
good baseline candidate. Moreover, we argue that measuring the effect
of deep ensembles respecting a traditional and a modern architecture
represents an interesting case.

4.1.2 Uncertainty estimation methods for DNNs

Nowadays, epistemic uncertainty estimation in neural network ap-
proaches represents a particularly discussed topic. One of the first
attempts at modeling uncertainty is through Bayesian Neural Net-
works (BNNs) [43, 129], where a prior is associated with each model’s
weight. However, their application is limited to light-weighted archi-
tectures due to the intractability of the posterior distribution.

To overcome the previous issue, Kingma et al. [90] and Laksh-
minarayanan et al. [105] proposed two sample-based strategies for
estimating epistemic uncertainty: the former exploits dropout sam-
pling, the latter uses a set of predictions provided by a deep ensemble,
i.e., a set of instances of a specific model architecture. In general, deep
ensembles achieve higher prediction accuracy together with a better
representation of uncertainty among the sampling-based approaches.



4.1 related work 83

Nevertheless, sampling techniques have the disadvantage of being
expensive from a computational perspective.

More recently, Amini et al. [3] proposed an approach for a direct
estimation of uncertainty in DNN models named Deep Evidential Re-
gression (DER). In particular, this approach can estimate both aleatoric
and epistemic uncertainty with a single step. However, the approach
relies on a large number of hyperparameters, which tuning is chal-
lenging by employing a “trial and error“ approach during training.

4.1.3 Uncertainty estimation in place recognition

In recent years, localization approaches that deal with the uncer-
tainty estimation problem emerged [42, 81, 173] and more recently
also in the place recognition field. For instance, Cai et al. [24] proposed
STUN: a DNN-based approach that exploits a knowledge-distillation
technique for estimating aleatoric uncertainty in a visual place recog-
nition task. Another notable work is proposed by Latoje et al. [104]
by integrating an aleatoric uncertainty-aware visual place recognition
model within a SLAM system. Please note, the previous approaches
estimate aleatoric uncertainty, while we aim to model the epistemic
component.

Regarding LiDAR based place recognition, Mason et al. [122] recently
proposed an ensemble-based strategy for estimating epistemic uncer-
tainty. In particular, they train multiple DNNs with different parameters
initialization to extract discriminative point-cloud global descriptors.
Then, they represent a navigation map as a set of n database copies,
where n corresponds to the number of models used. For each model,
they compute the similarity score between an input query and the cor-
responding database entries. Considering all models, the final match is
the location with the highest average similarity score over the different
database copies.

To the best of our knowledge, only their work exploits an ensemble-
based method for place recognition. However, such an approach
presents some flaws that we aim to overcome. For instance, such
a method requires different database replicas, and epistemic uncer-
tainty corresponds to similarity variance rather than features variance,
making more arduous to obtain a model introspection in presence of
challenging inputs. Moreover, they claim that the negative average
similarity of the candidate match represents another “natural“ way to
quantify the model uncertainty. However, we argue that this assump-
tion is flawed for reasons reported in Section 4.2.3. As we will describe
later, our method exploits a knowledge-distillation learning technique
to allow us a direct comparison between feature spaces created by
each model.
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4.2 proposed approach

In this section, the proposed uncertainty-aware place recognition
pipeline will be presented. The first part of the discussion will be
focused on the possible implementations of DEs in place recognition,
bringing out the issues that one can encounter when creating a com-
mon feature space between ensemble members. Moreover, it will be
explained how to represent feature-wise uncertainty by aggregating
multiple predictions and how similar methods in the literature works,
by highlighting the differences respecting this work.

4.2.1 Ensemble-based LiDAR place recognition

In the context of place recognition, we achieve the main goal by
generating a compact and discriminative representation of an input
observation, such as an image or point cloud. This representation,
commonly referred to as Embedding Vector (EV), is then used to find
previously visited locations that have been encoded using the same
strategy. From a technical perspective, an EV is a vector of m real
numbers denoted as v = (f1, ..., fm) designed to represent an input
observation, enabling the computation of a distance metric respecting
other vectors. The final goal is to encode distinct map places with
distinct vectors V = v1, ..., vn, such that observations belonging to the
same location are positioned in close proximity within the feature
space, while observations from different locations are more distant
to each other. By generating accurate and robust EVs, it is possible to
effectively match and retrieve previously visited locations, i.e., vinput

and vretrieved are the most similar according to a predefined measure,
thereby facilitating effective navigation and localization.

DNN models designed for place recognition are typically trained
with a metric learning approach [26]. This involves the use of a loss
function that aims to create a discriminative feature space by compar-
ing positive and negative pairs of samples. Positive examples consist
of observations corresponding to the same place, while negative ones
consist of samples belonging to different locations. This comparison
aims to reduce or increase the distances between EVs, that is the train-
ing loss penalize the model whether those expectations are not met.
In an ensemble-based approach, where multiple networks are trained
independently, the output of the system is generated by aggregating
the predictions of these individual networks. In particular, a typical
strategy is to compute metrics such as the mean and variance over the
ensemble predictions, where the mean corresponds to the final infer-
ence and the variance corresponds to the model uncertainty. However,
since the output of each model is an EV v comprising several elements,
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Figure 4.2: Pipeline followed by our method to create ensemble members.
Firstly, we train a teacher DNN with a standard metric learning
approach (top-left), then we train a student model to imitate
the teacher feature space (bottom-left). By doing that, we are
able to train different ensemble members to which correspond
similar feature spaces (bottom-right). As we will show later, when
training different models with a standard triplet loss, we obtain
unique feature spaces (top-right) where a direct aggregation of
results leads to undesired effects.

in place recognition we could perform different aggregation steps over
the i-th features of the output samples V . For example, given a set of
EVs V = {v1, ..., vn}, the output of an ensemble could be the mean and
variance of each feature computed as follows:

E[µv] =
1

n
·

n
∑

i=1

vi, Var[µv] =
1

n
·

n
∑

i=1

(vi − E[µv])
2 (19)

where i corresponds to the i-th member of the ensemble.
While the application of an ensemble-based approach may appear

straightforward in theory, the process of averaging features can some-
times lead to undesired results in practice in the context of EVs aggre-
gation. This is because a direct comparison of the vectors within the
set V may not always be meaningful, and can result in inaccurate or
unreliable estimates. One potential issue arises from the randomiza-
tion processes that occur during a standard training procedure. Since
metric learning is generally an unsupervised process, it is difficult to
ensure that each member of the ensemble produces the same feature
space and, although a ground-truth is used to build positive and
negative sample pairs, it is not possible to explicitly control how each
model learns that space. As a result, even if two independent models
are able to extract effective EVs from the same input observation, the
actual values of the vectors may differ. As another example, two mod-
els could learn the same feature space, but the vector generated by the
former may be an unknown permutation of the latter.
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To address the issue of variability in the feature spaces generated by
different members of an ensemble, we propose the use of a popular
method known as knowledge distillation. This approach allows us
to create an ensemble in which each member is capable of represent-
ing similar feature spaces for LiDAR-based place recognition. This is
achieved through a two-step process. First, a DNN model, referred to
as the teacher, is trained using the triplet loss function in Equation (20),
with the aim of producing a target feature space:

Ltriplet =

n
∑

i=1

[d(vp, va) − d(vn, va) +m]+ (20)

In the equation, v is a generic EV, a,p and n refer to anchor, positive and
negative samples respectively, d is a distance metric and m represents
a margin. More specifically, anchor a represents a generic input point
cloud, positive sample p is another observation referring to a the same
place depicted in a, and negative sample e is a point cloud recorded
in a distinct location respecting a and p.

In knowledge distillation, the target feature space serves as a refer-
ence for the other members of the ensemble, known as the students.
Put differently, we train additional models with the goal of imitating
the EVs generated by the teacher. To achieve this, we use the teacher

network to produce ground-truth EVs of the training set. These ground-
truth EVs are then used to train the different student models that will
become part of the ensemble. This straining strategy takes also the
name of teacher-student approach, that employs the loss function in
Equation (21) to train each member of the ensemble.

Lts = d(f(pi),g(pi)) (21)

This loss function is designed to optimize the performance of the
ensemble members, i.e., they achieve accurate place recognition, and
ensure that they are able to accurately imitate the EVs generated by the
teacher model. In the equation, f and g are the teacher and student
model respectively, d is a distance measure computed over the output
EVs, e.g., smoothL1 in our case, and pi is an input point cloud. Please
note, only the student model g(·) is trained in this case, while the
f(·) weights do not change since we aim to keep the target feature
space fixed. In Fig. 4.2, we show the difference between creating
an ensemble where members are trained with a triplet loss and a
knowledge-distillation approach.

4.2.2 Exploiting ensemble predictions

Once our ensemble is trained, we are able to extract features mean
and variance from a generic set of predictions V by using Equation (19).
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As desired from an ensemble-based approach, we expect to obtain an
increment of the overall performance, that in the case of a retrieval
system should result in a better recall, that is we are are able to achieve
an optimal rate of correct matches. In particular, by training several
models, we are able to cover a wider range of patterns within data,
that is we are able to provide better point cloud EVs. If one model
provides a poor quality embedding, the other ensemble members can
mitigate the issue. To match an input query with a map location, we
simply compute the similarity between query and database EVs and
choose the match with the highest similarity score:

s(vq, vdb) =
vq · vdb

||vq|| ||vdb||
(22)

Moreover, we can take advantage of ensemble uncertainty to detect
possible failures and decide to not exploit a particular prediction
for localization. In this work, we decided to represent the model
uncertainty as the total amount of uncertainty associated to the final
descriptor ve = (vµ, vσ2) generated by the ensemble:

uEV =

m
∑

i=1

fσ
2

i (23)

where fσ
2

i represents the variance associated to feature i obtained from
vσ2 , that is vσ2 = (fσ

2

1 , ..., fσ
2

n ). Once obtained uEV , we can decide to
discard or not the associated predictions according to a predefined
threshold.

4.2.3 Comparison with existing approaches

To the best of our knowledge, only Mason et al. [122] recently
proposed a deep ensemble method for addressing the task of LiDAR-
based place recognition. However, there are some differences between
their work and the approach proposed in this thesis. In particular,
we propose a method to produce feature-wise uncertainty estimates,
while they represent uncertainty as a degree of accordance between
ensemble members. From a technical perspective, the members of
their ensemble-based approach describe distinct feature spaces, that
are not directly comparable. However, they calculate separated sim-
ilarity scores across m replicas of a query vq and the map database
entries VD = (vdb,1, ..., vdb,n), where m corresponds to the number of
ensemble members. Then, after obtaining different similarity scores
S = (s1, ..., sm) for each database entry, the match candidate is the
location with the highest average similarity score sµ. In their case,
a possible representation of uncertainty is the similarity variance
ssigma2 of EV copies. The authors also affirm that a natural repre-
sentation of uncertainty can be the negative similarity score obtained
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from the ensemble, that is ue = −sµ. They also state that the usage
of this representation leads to better results. However, we argue that
with this last design choice one cannot capture an actual representa-
tion of model uncertainty. For instance, given an average similarity
of sµ = 0.5, there is a huge difference between the case where all
the ensemble members provided a similarity score of s = 0.5 and the
case where half of the members provided s = 0. and the other half
s = 1.. The main flaw is that we loose information regarding the actual
dispersion of samples and we embed the concept of uncertainty to
the measure that the model optimize during training, i.e., sµ. Due
to previous consideration, we compare our approach respecting the
similarity variance formulation.

As we will describe in Section 4.3, the previous method has the
advantage to considerably improve the overall recall capability at
the expense of maintaining distinct database instances. Instead, our
approach has the ability to encode ensemble predictions with a single
representation and to better detect localization failures in order to
improve the recall capability of the proposed system.

4.2.4 Training Details

A DNN architecture for place recognition comprises two main com-
ponents: a feature extractor followed by a feature aggregation layer.
Our experimental setup is based on the implementation of two widely
used DNNs for 3D place recognition: MinkLoc3D [96] and Point-
NetVLAD [4]. MinkLoc3D requires a sparse voxelized representa-
tion of the scene as input and employs a Feature Pyramid Network
architecture [113] to extract relevant features. On the other hand,
PointNetVLAD [4] extracts features directly from a point cloud using
PointNet as its feature extractor. For feature aggregation, MinkLoc3D
uses a Generalized Mean Pooling (GeM) layer, while PointNetVLAD
employs a VLAD layer [9]. No modifications were made to the archi-
tecture of either neural network considered in this study, since our
main objective is to observe the effect generated by the employment
of deep ensembles within standard 3D DNNs.

From a technical point of view, and inspired by the training configu-
ration of MinkLoc3D, we have fixed the configuration settings for both
the teacher-student and triplet-loss training methods, as well as the two
DNNs. Specifically, the batch size expansion described by Komorowski
et al. [96] was disabled and the batch size was fixed to 64. Moreover,
due to limited memory space available on the GPU, the batch size
for training MinkLoc3D and PointNetVLAD using the Knowledge-
Distillation pipeline was reduced to 32 and 8 respectively. Initially, we
trained models for 40 epochs, but we observed that halving the epochs
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improved the uncertainty quality for the teacher-student approach
without particularly worsening the accuracy of teacher models. A
possible explanation is that an extended training leads to a reduction
of ensemble members diversity, which is an important property to
ensure if we want to obtain high quality uncertainty.

With regard to the training methods, for the triplet-loss function [68]
we trivially used Equation (20). However, the teacher-student method
involves comparing the feature vector extracted by the student network
with the corresponding ground-truth vector extracted by the teacher
network. To evaluate the distance between these vectors, we used
smoothL1 distance as the cost function.

4.3 experimental activity

In the following section, we report our extensive experimental ac-
tivity to compare the ensemble-based methods previously discussed.
In particular, we compare our teacher-student ensemble with [122]
and with a naive ensemble approach that follows a similar idea to
our method, but without using a knowledge-distillation technique.
In particular, we evaluate the recall gain obtained by each ensemble
modality and the capability of detecting localization failures accord-
ing to a threshold-based strategy that exploits system uncertainty
generated by the ensemble. Such an assessment is performed across
different datasets never used during the training stage of ensemble
members.

4.3.1 Datasets

To train DNN models and to validate our approach, we choose three
popular automotive datasets: Oxford Robotcar [121], NUS InHouse [4]
and MulRan [88]. Please note, for all the methods considered we used
only the Oxford Robotcar dataset for training, while others were only
used to validate our system.

Oxford and NUS InHouse datasets are characterized by urban scenes
collected during multiple traversals of the city of Oxford and Singa-
pore, respectively. Scenes depicted in these datasets can present tricky
examples for a place recognition system due to the presence of external
actors, e.g., cars, bicycles, and pedestrians, that may occlude relevant
scene constituents. Furthermore, the presence of different light and
weather conditions causes an increasing recognition difficulty. Sim-
ilarly, MulRan also comprises tricky environments characterized by
repetitive scenarios, inducing perceptual aliasing.

Regarding Oxford Robotcar and NUS InHouse datasets, we exploit
the benchmark provided by Uy et al. [4]. For the MulRan dataset, we
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considered DCC and Riverside locations by selecting two runs for
each: one for building a database set and the other for a query set. In
particular, we exploited the pre-processed point clouds provided by
Knights et al. [92].

When training models with a triplet-loss, we consider positive cor-
respondences as point clouds with a maximum distance of 10 meters,
whereas negative matches are point clouds situated more than 50

meters apart. Differently, during evaluation, a match is positive if the
retrieved database sample is at a maximum distance of 25 meters from
the query.

Point clouds belonging to each dataset are pre-processed by apply-
ing a set of transformations following the pipeline described by Uy
et al.[4]. In particular, such transforms comprehend ground plane re-
moval and 3D downsampling to obtain point clouds with 4096 points.
Finally, points coordinates are re-scaled within a range of [−1; 1].

4.3.2 Evaluation Strategy and Metrics

For the evaluation, we follow a similar method reported in [4, 96,
122]. We consider a dataset D = {d1,d2, ...,dn}, where each element
di corresponds to the i− th traversal, i.e., a specific run performed
by the vehicle during recordings. We represent a query set as Q =

{q1,q2, ...,qn}, where qj refers to the j− th traversal. We compare each
di with all the queries in Q by excluding qj when i = j. The goal is
to evaluate only queries recorded during a different traversal than d.
We label a match as correct if the spatial distance between the query
point cloud and the most similar database point cloud is within 25m.
To assess the retrieval capability of the approaches considered, we
employ the recall R@1, R@5, and R@10. We use these recall measures
also to highlight the feature spaces differences in the exchangeability
test shown in the following subsection.

Finally, to understand if a method can detect localization failures,
we observe the recall trend when progressively removing queries
according to a dynamic threshold λ applied on uEV , that is we discard
an EV if uEV > λ. Ideally, higher uncertainties should correspond to
a higher likelihood of prediction errors. For each step, the recall is
computed only considering the number of queries labeled as reliable.

4.3.3 Feature Space Interchangeability: Triplet vs TS ensemble

In the following experiment, we compare the feature spaces pro-
duced by each trained model. In particular, we aim to demonstrate
that only using student models allows us to exchange feature spaces
without altering recognition performance, that is features from dif-
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QUERY
m1 m2 m3 m4 m5

m1 73,29 1,42 1,11 1,11 1,37

m2 0,85 72,13 0,68 0,84 1,04

m3 0,98 0,83 73,19 0,94 1,11

m4 1,20 0,88 1,41 73,40 1,24D
A

TA
B

A
SE

m5 1,46 0,84 1,17 0,78 72,69

QUERY
m1 m2 m3 m4 m5

m1 71,21 68,25 68,74 69,34 69,32

m2 67,24 71,63 66,88 67,34 68,50

m3 68,14 67,19 71,38 68,28 68,82

m4 69,60 68,28 68,96 71,17 69,48D
A

TA
B

A
SE

m5 69,96 70,06 69,81 69,99 71,34

Table 4.1: Triplet vs knowledge-distillation feature space interchangeability:
from top to bottom, we represent the recall@1 of PointNetVLAD

trained using triplet loss (top) and knowledge-distillation (bottom)
loss functions. Only the knowledge-distillation method allows us to
exchange database and query sets across different student models.

QUERY
m1 m2 m3 m4 m5

m1 92.37 0.75 0.25 0.28 1.40

m2 0.87 92.20 0.49 0.48 0.21

m3 0.58 1.31 91.86 0.74 0.49

m4 1.34 0.76 1.25 92.33 0.93D
A

TA
B

A
SE

m5 0.98 0.55 0.77 0.14 92.07

QUERY
m1 m2 m3 m4 m5

m1 93.44 92.49 92.94 92.83 92.99

m2 92.93 93.36 93.09 93.07 93.14

m3 92.85 92.66 93.60 93.14 93.07

m4 93.05 92.89 93.30 93.48 93.23D
A

TA
B

A
SE

m5 93.24 92.82 93.15 93.11 93.63

Table 4.2: Triplet vs knowledge-distillation feature space interchangeability:
from top to bottom, we represent the recall@1 of MinkLoc3D trained
using triplet loss (top) and knowledge-distillation (bottom) loss
functions. Only the knowledge-distillation method allows us to
exchange database and query sets across different student models.
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ferent models are directly comparable. Considering a set of models
M = {m1, ...,mn}, we employ the following protocol: we use one
model mk to create a set of EVs representing a database Dk, the re-
maining members to produce different query sets from Qj and, finally,
we observe the R@1 following the protocol described in Section 4.3.2.
In Table 4.1 and Table 4.2, we demonstrate the comparability between
the database built with a model and the query set obtained from
another ensemble member when using a knowledge-distillation ap-
proach. In particular, in the former table we conducted the experiments
with PointNetVLAD and with MinkLoc3D in the latter case. As can
be seen, we can achieve similar performance no matter how we build
a pair (Dk,Qj), and such property holds independently from the ar-
chitecture used. Please note, experiments were performed on the test
set of the Oxford dataset.

4.3.4 Recall capability

In Table 4.3, we report the recalls R@1, R@5, R@10 of the baseline
approaches [4, 96] and the ∆ recalls obtain by the other methods. Our
evaluation scheme comprises a variation of the backbone architecture
and the training method. In particular, columns indicated with T-
S refers to the results obtained with a single network trained in a
knowledge-distillation strategy, Naive Ensemble is an ensemble where
members were trained with a standard triplet loss, and T-S Ensemble
is the method proposed in this PhD work. Finally, we also report the
performance obtained with an ensemble that relies on different query
and database replicas [122]. At first glance, we can see a difference
between the performance achieved with our method across the two
different architectures. As explained in Section 4.2.4, we trained the
teacher-student models by reducing the overall number of epochs since
we noticed that model over-training leads to better recall in general
but also to a lower uncertainty quality. With MinkLoc3D, we found the
optimal trade-off between the number of training epochs and the recall
performance. Unfortunately, we could not achieve similar results with
PointNetVlad. A possible explanation is that ensuring both ensemble
diversity and discriminative features is more challenging for this task
with a less accurate architecture. In general, the approach of Mason
et al. [122] slightly outperforms the other methods. However, with
this technique we need to maintain separated replicas of database
and queries implying n simultaneous searches to extract the most
likely match, where n represents the number of ensemble members.
Furthermore, as we will report in the next section, while this method
achieves higher recall, it produces lower quality uncertainty.
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PNV Baseline T-S
Naive

Ens.

T-S

Ens. (ours)

Mason

et al. [122]

Data R@1 R@5 R@10 ∆1 ∆5 ∆10 ∆1 ∆5 ∆10 ∆1 ∆5 ∆10 ∆1 ∆5 ∆10

O. 71.1 86.6 91.7 -2.9 -1.7 -1 0.7 0.3 0.3 -1.9 -1.1 -0.6 1.7 1.2 0.9

U.S. 66.8 84.3 90.2 0.3 -0.5 -0.6 1.2 -0.3 -0.1 1.2 0.4 0.5 2.1 0.2 -0.2

R.A. 62.7 80.5 85.6 -2.8 -1.8 -0.2 1.5 0 -0.1 -1.1 -1.2 -0.9 2 1.1 0.9

B.D. 63.8 81.7 87.2 -1.5 -3 -2 1.8 -0.2 0.2 -0.7 -1.1 -0.7 2.6 0.5 0.8

DCC 62.8 65.9 67.8 0 0.4 0.6 1.9 1.4 1.5 0.1 0.7 0.6 1.8 1.4 1.2

R. 54.9 67.4 72.3 -1.9 -1.4 -1.3 1.9 0.7 -0.1 -0.6 -0.1 -0.2 2.2 0.9 0.4

(a)

ML3D Baseline T-S
Naive

Ens.

T-S

Ens. (ours)

Mason

et al. [122]

Data R@1 R@5 R@10 ∆1 ∆5 ∆10 ∆1 ∆5 ∆10 ∆1 ∆5 ∆10 ∆1 ∆5 ∆10

O. 92.4 97.9 98.8 0.9 0.2 0.1 -0.3 -0.3 -0.3 1.3 0.3 0.1 2.2 0.5 0.2

U.S. 84 94.5 96.4 0.7 0 0.3 1.9 0 -0.1 3.1 1.3 0.9 4.9 2 1.4

R.A. 75.9 89.8 93.1 4.2 3.5 2.1 4.5 3 2.1 6.6 4.4 2.8 9.5 5 3.4

B.D. 80 93.3 96.3 1.6 -0.2 -0.3 0.1 -0.6 -0.5 3.1 0.7 0.2 5.7 1.7 0.9

DCC 76.9 86.4 89.5 2.1 -0.6 -1.3 3.5 1.8 1 2.3 -0.4 -1.2 4.5 2 1.2

R. 56.4 69.1 74.9 -0.1 -1.9 -2.4 0.4 0.5 -0.5 0.8 -0.7 -2.1 2.1 1 0.7

(b)

Table 4.3: In this table, we show different recalls r@1, r@5 and r@10 achieved
by the baseline model [96] across different datasets. For the other
approaches, we report the ∆ recall with respect to the baseline
method. All the methods reported were trained only on the Oxford
Robotcar dataset
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Figure 4.3: Uncertain queries removal test on PointNetVLAD model consider-
ing Oxford [121] and InHouse [4] datasets. x-axis represents the
percentage of query removed in the interval of [0%, 90%], while
y-axis reports the ∆% R@1, R@5 and R@10. We compare Naive
Ensemble (Left), Ours (Centre) and [122] (Right) approaches.

4.3.5 Localization Failures Detection

A desirable behavior from an uncertainty-aware system is to provide
the possibility of detecting possible failures. In the context of place
recognition, we would like to decide whether a prediction is reliable
or not to perform localization, i.e., by fixing a threshold on the total
feature uncertainty and discard EVs accordingly.

We use a similar evaluation protocol of Section 4.3. However, for
each dataset and each traversal instance di , we order queries qj in
descending order according to the total uncertainty computed with
Equation (19), and we progressively discard queries to observe the
presence of an increasing trend in terms of R@1, R@5, R@10. Since we
compute a new ordering for each run, the results show the average
recall obtained by simulating multiple traversals of a vehicle within
the navigation map. Note that the mentioned assessment pipeline has
the following goal: to observe the recall capability of our system on
a subset of queries that we label as reliable. We report the results
obtained with PointNetVLAD in Figure 4.3 and Figure 4.5, while
in Figure 4.4 and Figure 4.6 we can find the results obtained with
MinkLoc3D. We decided to split the datasets in two different groups,
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Figure 4.4: Uncertain queries removal test on MinkLoc3D considering Oxford
[121] and InHouse [4] datasets. x-axis represents the percentage
of query removed in the interval of [0%, 90%], while y-axis reports
the ∆% R@1, R@5 and R@10. We compare Naive Ensemble (Left),
Ours (Centre) and [122] (Right) approaches.
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Figure 4.5: Uncertain queries removal test on PointNetVLAD considering
MulRan [88] dataset. x-axis represents the percentage of query
removed in the interval of [0%, 90%], while y-axis reports the ∆%
R@1, R@5 and R@10. We compare Naive Ensemble (Left), Ours
(Centre) and [122] (Right) approaches. Due to the worse recall
obtained by all the reported methods, we consider this dataset
more challenging.

since both models struggle to achieve high recall measures. Therefore,
we label the former group as trivial and the latter group as challenging.

Our goal is to observe the uncertainty quality of the considered
approaches in the presence of those two different scenarios. From
the results obtained with our approach (center column), it is possible
to determine a strong relation between high uncertainty and wrong
matches. In fact, by gradually removing uncertain queries we are able
to ensure a better recall capability of our system. Furthermore, our
method shows excellent results within challenging scenarios as re-
ported in Figure 4.6. The variance-based similarity approach of Mason
et al. also shows improvements but after discarding a considerable
amount of queries. This suggests that feature-wise variance is more
powerful than similarity variance to represent the model’s uncertainty.
As expected, uncertainty extracted with a Naive Ensemble does not
produce the desired results.

4.4 final discussion

In this chapter, we provide an in-depth study of the deep ensemble
effect in LiDAR-based place recognition. In particular, we propose a
deep ensemble implementation that exploits a knowledge-distillation
approach to approximate a unique feature space between members,
and we compare it with the method of Mason et al. [122], which instead
relies on different feature space replicas.

From our extensive experimental activity, we can conclude that
both strategies increase the overall system recall. In particular, the
approach of Mason et al. achieves slightly better performance, but
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Figure 4.6: Uncertain queries removal test on MinkLoc3D considering MulRan
[88] dataset. x-axis represents the percentage of query removed in
the interval of [0%, 90%], while y-axis reports the ∆% R@1, R@5

and R@10. We compare Naive Ensemble (Left), Ours (Centre) and
[122] (Right) approaches. Due to the worse recall obtained by all
the reported methods, we consider this dataset more challenging.

our method better associates wrong predictions to high uncertainty
estimates. Furthermore, our feature-level uncertainty demonstrates
its effectiveness especially in challenging scenarios never represented
in the training set, and we perform query-to-database search only a
single time, since we exploit a unified feature space.

Furthermore, since our method estimates uncertainty directly on EV,
it enables the discovery of features that generate anomalies giving a
better introspection of the neural network model. This aspect put the
basis for future works to improve the explainability of such systems.

Finally, the approach proposed in this chapter does not directly
address the problem of loop closure detection, but it remains one of
its primary applications.





5
U N C E RTA I N T Y- AWA R E D N N F O R M U LT I - M O D A L
P O S E R E G R E S S I O N

So far in this thesis, an approach that covers the entire localization
pipeline was presented (Chapter 3) together with a method to address
the uncertainty estimation problem in global localization (Chapter 4).
Instead, in this chapter the main focus is the local refinement part of
the localization pipeline and we integrate three different uncertainty es-
timation techniques within an existing pose regression Convolutional
Neural Network (CNN), with the aim of providing uncertainty esti-
mates with respect to the predicted output pose components. Similarly
to Chapter 4, the following approach deals with the task of estimating
epistemic uncertainty. However, in contrast with the previous chapter
where uncertainty was estimated directly on the features extracted by
a Deep Ensemble-based model, this work quantifies the uncertainty of
the individual pose components provided by a regression CNN. This
allows for the determination of an area in which the vehicle is likely to
be located, since the proposed approach provides a variance measure
of both translation and rotation components, that can be also used
to detect and discard localization failures. Providing an uncertainty-
aware localization Deep Neural Network (DNN) can be particularly
useful to understand the degree of confidence that such a model has
with respect to the predicted position and orientation, allowing us
to explicitly use this knowledge in the decision making process. For
instance, accurate positioning can be more relevant when the goal is
to prevent the vehicle from encroaching the opposite lane.

Estimating epistemic uncertainty in deep learning models for pose
regression has other several advantages. Firstly, reliable pose uncertain-
ties are easier to understand from the human perspective, increasing
the transparency of the deep learning model used. Secondly, since
this uncertainty can be geometrically interpreted, it can be potentially
used within a filtering algorithm such as Kalman filter [35]. Similarly to
Simultaneouos Localization And Mapping (SLAM), Kalman filter aims
to compensate the robot drift resulting from the intrinsic noise that af-
fects sensors such as odometry and Inertial Measurement Units (IMUs).
However, differently from SLAM, this algorithm performs localization
by integrating the estimates of the so-called motion and observation

models. Generally, the motion model estimate the vehicle movement,
while the observation model evaluate the estimated robot location
by means of the expected observation of the current environment.

99



100 uncertainty-aware dnn for multi-modal pose regression

Kalman filtering explicitly define the uncertainty of both models and
exploit it to compute an optimal weighted average over the motion and
observation estimates. Therefore, in this chapter we aim to provide
a DNN for localization that can be potentially exploited in a filtering
algorithm.

Regarding the proposed approach, we consider a multi-modal cam-
era localization method, that exploits camera images, a Light Detection
And Ranging (LiDAR) point cloud map and rough initial poses (Fig-
ure 5.1). In particular, the proposed technique leverages on an existing
CNN model named CMRNet [28], that we make uncertainty-aware.
In particular, this approach synthesizes a virtual point of view from
which to observe the LIDAR map, given an initial rough camera pose
estimate. Then, by comparing this point of view with the one provided
by the actual camera image, CMRNet predicts the refined camera pose.
CMRNet has several desirable properties that one would desire from
a localization CNN: it achieves accurate localization, it is scalable to
scenarios never seen during the training stage, and it is cost effective,
since LiDAR data are matched from a pre-built 3D map of the naviga-
tion environment and not to data from expensive sensors mounted
on-board a vehicle. Due to these practical reasons, this technique repre-
sented an interesting local refinement approach to be extended during
this thesis work.

In the literature, only few DNN-based camera pose regression ap-
proaches exist that also estimate uncertainty [42, 80], and often they
do not provide a direct pose uncertainty [134] or measure only its
aleatoric part [148]. To bridge the gap within uncertainty estimation
techniques for DNN-based camera localization, in this chapter we
propose the integration of sampling-based and direct state-of-the-art
methods for epistemic uncertainty estimation within a multi-modal
camera localization CNN, and show that they can provide calibrated
uncertainties and that some of them can also be used to detect local-
ization failures. Moreover, one of the main contributions is to have
developed a version of a camera localization DNN model that is able
to estimate uncertainty by using Deep Evidential Regression (DER)
[3]. The performance of the proposed uncertainty-aware model is
evaluated in terms of localization accuracy and uncertainty quality.
In particular, the assessment is performed on three different datasets:
KITTI [55], KITTI 360 [112] and Argoverse2 [187]. Finally, to further
validate the proposed approaches in a realistic scenario, we employ
the different uncertainty-version of CMRNet as the observation model
of an Extended Kalman Filter (EKF) tested on KITTI and KITTI360.
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Figure 5.1: In this chapter, an uncertainty-aware localization DNN is pre-
sented. Our approach refines an initial pose estimate by compar-
ing an image with a given LiDAR map and associate uncertainty
measures to the final prediciton.

5.1 related work

With the advent of neural networks, several DNN-based approaches
for camera localization emerged in the last decade. In general, a possi-
ble categorization of methods includes two categories: camera pose
regression [82, 85, 140, 148, 194] and place recognition [8, 62, 206]
techniques. Using an image, pose regression techniques predict the
pose of a camera, while the place recognition approaches find a cor-
respondence with a previously visited location, depicted in another
image. Multi-modal methods, which employ both images and LiDAR

data, propose to jointly exploit visual information and the 3D geom-
etry of a scene to achieve higher localization accuracy [27, 130, 188].
Recently, DNN-based methods emerged also for image-to-LiDAR-map
registration. An example is CMRNet [28], which performs direct re-
gression of the camera pose by implicitly matching RGB images with
the corresponding synthetic LiDAR image generated using a LiDAR

map and a rough camera pose estimate. Its ultimate goal is to refine
an initial localization guess, e.g., a GPS localization measure. CMRNet
is map-agnostic, that is it can be deployed in any scenario where a
pre-built 3D LiDAR map is given. Feng et al. [47] proposed another
multi-modal approach, where a DNN is trained to extract descriptors
from 2D and 3D patches by defining a shared feature space between
heterogeneous data. Localization is then performed by exploiting
points for which 2D-3D correspondences have been found. Similarly,
Cattaneo et al. [30] proposed a DNN-based method for learning a com-
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mon feature space between images and LiDAR maps to produce global
descriptors, used for place recognition. Although the previous multi-
modal pose regression techniques achieve outstanding results, none
of them estimate the epistemic uncertainty of their predictions. This
is a severe limitation, especially considering the final goal: to deploy
them in critical scenarios, where it is important to detect when the
model is likely to fail. Epistemic uncertainty estimation in Neural Net-
works (NNs) is a known problem. In the last years, different methods
have been proposed to sample from the model posterior [90, 106] and,
more recently, to provide a direct uncertainty estimate through evi-
dential deep learning [3, 124, 154]. NNs uncertainty estimation gained
popularity also in the computer vision field [83, 84], and different
uncertainty-aware camera-based localization approaches have been
proposed. For instance, Kendall et al. [80] introduced Bayesian PoseNet,
a DNN that estimates the camera pose parameters and uncertainty by
approximating the model posterior employing dropout sampling [54].
However, this uncertainty estimation method produces over-confident
pose estimates. Another approach was recently proposed by Deng et

al. [42], where an uncertainty-aware model leveraging on Bingham
mixture models estimates a 6DoF pose from an image and the relative
uncertainty. However, this method mostly deals with ambiguity within
relatively small scenarios. Recently, Petek et al. [134] proposed an ap-
proach to camera localization that exploits an object detection module,
which is used to enable localization within sparse HD maps. In partic-
ular, their method estimates the observer pose using the uncertainty
of the objects in the HD map using a DER approach [3]. However, their
technique does not employ a model that directly estimates the pose
epistemic uncertainty. Another interesting approach is HydraNet [133],
which is a neural network for estimating uncertainty on quaternions.
The authors’ model architecture incorporates an approach similar
to ensemble. In particular, this model leverages on a set of distinct
network heads, that are trained separately and provide distinct ro-
tation estimates. However, this method does not address the issue
of regressing a 6DoF pose. All the mentioned techniques deal with
the problem of camera localization using only images, they learn to
localize a camera in the environment represented in the training set. In
contrast, CMRNet is map-agnostic, i.e., by being able to take in input
a LiDAR-map, it can perform localization also in previously unseen
environments, where it is possible to better assess the effectiveness of
uncertainty estimated. Furthermore, to the best of our knowledge, this
is the first work to implement a DER-based approach for direct camera
localization.
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5.2 proposed approach

In our analysis of the literature, we could single out three more
significant methods for estimating epistemic uncertainty in a DNN:
Monte Carlo Dropout (MCD) [54], Deep Ensemble (DE) [106], and
DER [3]. Although they all assume that epistemic uncertainty can
be described by a normal distribution, they are different techniques
and require different interventions on the network to which they
are applied. Therefore, in this section, we first introduce it and then
describe the modifications required in CMRNet to estimate uncertainty
using each of the three different methods.

5.2.1 Introduction to CMRNet

CMRNet is a regression CNN used to estimate the 6DoF pose of a
camera mounted on-board a vehicle navigating within a LiDAR map
[28]. In particular, this model takes two different images as input: an
RGB image and a LiDAR image obtained by synthesizing the map as
viewed from an initial rough camera pose estimate Hinit. CMRNet
performs localization by implicitly matching features extracted from
both images, and estimates the misalignment Hout between the initial
and the camera pose.

In particular, Hout is computed as: tr(1,3) = (x,y, z) for translations,
and unit quaternion q(1,4) = (qx,qy,qz,qw) for rotations. We propose
to estimate its epistemic uncertainty by providing a reliability value
for each pose component. The estimation of possible cross-correlations
between the pose components has not been considered in this thesis
work.

5.2.2 Uncertainty-Aware CMRNet

We define an input camera image with Ic, an input LiDAR image as
Il, a set of trained weights with W and an uncertainty-aware version
of CMRNet as a function f(Ic, Il,W).
Monte Carlo Dropout: The idea behind MCD is to sample from a
posterior distribution by providing different output estimates given
a single input, which are later used for computing the mean and
variance of a Gaussian distribution. This sampling is performed by
randomly deactivating the weights of the fully-connected layers using
a random dropout function d(W,p) multiple times during model
inference, where p represents the dropout probability. Therefore, for
MCD there is no modification of the network architecture. We applied
the dropout to the regression part of the original CMRNet architecture.
When many correlations between RGB and LiDAR features are found,
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we expect to obtain similar samples, despite the dropout application,
that is, we expect our model to be more confident with respect to its
predictions. For each pose parameter µi, we compute the predicted
value and the corresponding epistemic uncertainty as follows:

Eµi =
1

n
·
∑

n

f(Ic, Il,dregr(W,p)),

Var[µi] =
1

n
·
∑

n

(f(Ic, Il,dregr(W,p)) − Eµi)
2

(24)

where n is the number of samples drawn for a given input. Please
note that Eµi and Var[µi], for the orientation, are computed after the
conversion from unit quaternion to Euler angles.
Deep Ensemble: DE-based approaches perform posterior sampling by
exploiting different models trained using different initialization of the
weights, but sharing the same architecture.

Using different parameterizations of the same model leads to the
recognition of a wider range of data-patterns, and to an increment of
the overall accuracy [50]. On the other hand, when receiving in input
patterns not well-represented in the training set, all the NNs in the en-
semble would give out low-quality results, so leading to an increment
of variance. In our case, we expect to obtain large epistemic uncer-
tainty when each model identifies a different set of correspondences
between RGB and LiDAR features, leading to significant different pose
estimates. By training CMRNet n times with different random ini-
tializations, we obtain a set of weights Wset = {W1, ...,Wn}, which
describe different local minima of the model function f(·). For each
pose parameter µi we compute the predicted expected value and the
corresponding epistemic uncertainty as follows:

Eµi =
1

n
·

n
∑

j=1

f(Ic, Il,Wj),

Var[µi] =
1

n
·

n
∑

j=1

(f(Ic, Il,Wj) − Eµi)
2

(25)

where n represents the number of models of the ensemble. Eµi and
Var[µi] of rotations are computed after the conversion from unit
quaternion to Euler angles.
Deep Evidential Regression: While adapting to MCD and DE methods
does not require particular modifications of CMRNet, the technique
proposed by Amini et al. [3] requires substantial changes both in the
training procedure and in the final part of the architecture. In Deep
Evidential Regression, the main goal is to estimate the parameters
of a Normal Inverse Gamma distribution NIG(γ,ν,α,β). A neural
network is trained to estimate the NIG parameters, which are then
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Figure 5.2: In this picture the CMRNet + DER approach is shown. The last
FC-layers (red) are modified according to the method proposed by
Amini et al. [3] for estimating the parameters mi = (γi,νi,αi,βi)

of different Normal Inverse Gamma (NIG) distributions. During
training, LG (green) and Levd (grey) loss functions are computed
both for translation and rotation components.

used to compute the expected value and the corresponding epistemic
uncertainty, for each pose parameter:

Eµ = γ, Var[µ] =
β

ν(α− 1)
(26)

To train the model, the authors propose to exploit the Negative Log
Likelihood LNLL and the Regularization LR loss functions to maxi-
mize and regularize evidence:

L(W) = LNLL(W) + λ ·LR(W) (27)

LNLL = − logp(y|m) LR = Φ · |y− γ| (28)

where Φ = 2ν+α is the amount of evidence, see [3] for details, and
λ represents a manually-set parameter that affects the scale of uncer-
tainty, p(y|m) represents the likelihood of the NIG. Note that, p(y|m)

is a pdf that follows a t-Student distribution St(γ, β(1+ν)
να , 2α) evalu-

ated with respect to a target y. In evidential deep learning, evidence
Φ represents a quantity in favor of a particular property, that is the
confidence that a model associates to a certain output. Thus, with LR

we aim to scale the prediction error according to the model confidence
and make to model capable of producing poor evidence in presence of
out-of-distribution (OOD) data, and inflated evidence otherwise. For a
complete description of loss functions and theoretical aspects of DER,
please refer to the work of Amini et al. [3]. To integrate DER within
CMRNet, we need to deal with the following issues: how to apply DER

for regressing multiple parameters, how to manage rotations, and how
to aggregate the results when computing the final loss. We changed
the last FC-layers, which predict the rotation q(1,4) = (qx,qy,qz,qw)
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and translation tr(1,3) = (x,y, z) components, in order to estimate
the NIG distributions associated to each pose parameter. As it can
be seen in Fig. 5.2, we modified CMRNet to regress Euler angles
instead of quaternions, then we changed the FC-layers to produce
the matrices eul(4,3) and tr(4,3), where each column |γi,νi,αi,βi|

′

represents a specific NIG [3]. Since the original CMRNet model repre-
sents rotations using unit quaternions q(1,4), we cannot compute the
LNLL and LR loss functions directly, as addition and multiplication
have different behavior on the S3 manifold. As mentioned above, we
modified the last FC-layer of CMRNet to directly estimate Euler angles
eul(1,3) = (r,p,y). We also substitute the quaternion distance-based
loss used in [28] with the smooth L1 loss [56], which will be later used
also in LR and LD, by also considering the discontinuities of Euler
angles. Although the Euler angles representation is not optimal [151],
it allows for easier management of the training procedure and en-
ables a direct comprehension of uncertainty for rotational components.
As we will demonstrate in Sec. 5.3, this change does not produce a
significant decrease in accuracy. Since CMRNet performs multiple
regressions, it is necessary to establish an aggregation rule for the
LNLL and LR loss functions, which are computed for each predicted
pose parameter. With the application of the original loss as in [3] we
experienced unsatisfactory results. We are under the impression that,
in our task, LNLL presents an undesirable behavior: since the negative
logarithm function is calculated over a probability density, it is not
lower bound, as the density gets near to be a delta.

We propose to overcome the previous issues by avoiding the com-
putation of the logarithm and considering a distance function that
is directly based on the probability density p(y|m), that is the pdf
of the t-Student distribution. Therefore, we replaced LNLL with the
following loss LD and we also reformulate LR:

LD =
1

n
·

n
∑

i=1

d(p(yi|mi)
−1, 0) LR =

1

n
·

n
∑

i=1

d(yi,γi) ·Φi (29)

Similarly to LNLL, the idea behind LD is to penalize predictions
according to the confidence level output by our model with respect
to the deviation between a target and an estimated values. However,
since this loss function admits a lower bound and is defined in the
positive interval, it allows direct computation of a distance metric
d(·) on the vector of inverse densities. To ensure a better numerical
stability, we clip p(yi|mi) when it returns too low density values, i.e.,

< 0.04. Regarding LR, we simply scale the distance error on each
pose component with the respective evidence. We the compute the
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mean error by managing rotations and translations separately. The
final evidence loss is computed as follows:

Levd = LD + λLR (30)

We noticed that the localization accuracy achieved was not satisfac-
tory when employing only Levd during training. Therefore, we opted
to also employ the original geometric loss function LG

tr used in [28],
and to employ the smooth L1 loss on rotations as geometric loss LG

rot.
The overall loss is therefore computed as follows:

Lrot = LG
rot + sevdrot ·L

evd
rot Ltr = LG

tr + sevdtr ·L
evd
tr (31)

Lfinal = srot ·Lrot + str ·Ltr (32)

where the s hyper-parameters represent scaling factors.

5.2.3 Integration within an EKF

Although the previously presented uncertainty-aware versions of
CMRNet enable the estimation of epistemic uncertainty, it remains
unclear how to exactly take advantage of such estimates. A possible
application is to exploit uncertainty for establishing whether the model
output is reliable or not, e.g., by fixing a threshold on the computed
uncertainty and discarding those outputs whose uncertainty is larger
than the threshold. However, we argue that, despite a threshold-based
strategy can be handy to discover possible failures, its deployment in
a more realistic scenario is limited. Therefore, in order to fully exploit
the proposed uncertainty-aware CMRNet, we propose its integration
within an EKF, where CMRNet represents the observation model.

Since our goal is to deploy our CNN on a terrain autonomous ve-
hicle, we used a 3DoF velocity model [169] where the vehicle state
at time t is xt = (x,y, θ). In particular, the robot motion is controlled
through translation and rotational velocities ut = (ν,ω) whose direct
measurement is provided by an IMU. After ∆t time, the next robot
state is computed by using the following equation:

xt+∆t =




x

y

θ


+




− ν
ω sin θ+ ν

ω sin(θ+ω∆t)

ν
ω cos θ− ν

ω cos(θ+ω∆t)

ω∆t


 (33)

Please note, although we employ a 3DoF velocity model, the Kalman
state use a 6DoF representation, i.e., z, roll and pitch are initialized
with an initial guess, but then they are not altered by the motion model.
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Initially, since we consider only three pose parameters, one can argue
that such a velocity model is too simple for a real application. However,
our aim is to validate the effectiveness of the proposed uncertainty
estimation methods also when the filtering algorithm relies on an
approximated motion model.

After estimating the next robot state, the new pose is used to syn-
thesize a virtual point of view. This allows for obtaining a LIDAR
image. Then, by providing to CMRNet the camera and LiDAR images
at time t+∆t, our model estimates the error of the motion model state
and jointly provides the uncertainties associated to the predicted pose
parameters. The uncertainty estimates are used to define a diagonal
covariance matrix Q6,6, representing the measurement covariance.

In order to preserve the Normal assumption of both motion and
observation models required by the EKF, we have to perform lineariza-
tion both for the state transition matrix G [169] and the measurement
matrix H by computing the respective jacobian matrices. Since, CMR-
Net provides direct observations of Kalman states, the computation of
jacobian(H) is straightforward.

A general overview of the EKF algorithm is provided in Alg. 2. For
the detailed implementation of the EKF prediction and update steps,
please refer to [169].

Algorithm 2: EKF Algorithm

Function EKF_step(xt, ut, ∆t, R):

new_state := EKF_prediction(xt, ut, ∆t, R);
RGB, LiDAR = synthezize_view(new_state) ;
z, Q := CMRNet_estimate(RGB, LiDAR);
new_state = EKF_measurement_update(z, Q);
return new_state

Function main(x0):

define initial state covariance matrix P6x6;
define state transition covariance matrix R6x6;
xt := EKF_init(x0, P);
while new control ut is received do

compute ∆t ;
xt := EKF_step(xt, ut, ∆t, R);

end

5.3 experimental activity

The experimental activity described in the following section has
a dual purpose. On the one hand, it proves that the localization
performances of the proposed models achieve comparable results con-
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cerning the original CMRNet implementation, providing at the same
time reliable uncertainty estimates. On the other hand, we propose
two possible applications of the estimated uncertainties: a rejection
scheme for detecting localization failures and the integration of the
proposed approach within an EKF.

5.3.1 Dataset

The proposed models were trained and tested on three different
datasets: KITTI [55], KITTI360 [112] and Argoverse2 [187]. Each dataset
was recorded within an outdoor environment and includes camera
images, LiDAR point clouds and accurate groundtruth poses. Please
note, this aspect implies that for each proposed method we have three
distinct training procedures, i.e., one for each dataset.

Regarding the KITTI dataset, we followed a similar experimental
setting proposed in [28] by using images and LiDAR data from se-
quences 03 to 09 (∼ 10k samples) for training, and sequence 00 (∼ 4.5k
samples) for the assessment of the estimated uncertainty quality. Run
00 presents a negligible overlap of approximately 4% compared to
the other sequences, i.e., resulting in a fair validation containing a
different environment never seen by CMRNet at training time. Please
note, the tuning of hyperparameters reported in Section 5.3.2 and the
ablation study proposed in the Section 5.3.4 were performed only on
this dataset. We exploited the ground truth poses provided by [15]
to create accurate LiDAR maps. In addition, in this work we consid-
ered the KITTI360 and Argoverse2 datasets. With KITTI360 dataset,
sequences from 03 to 10 (∼ 40k samples)were used for training, run
02 (∼ 10.5k samples) for testing and sequence 00 (∼ 11.5k samples) for
validation.

In the case of Argoverse2, the first 4 training runs (∼ 64k samples)
were used for training, validation run 0 (∼ 15.6k samples) was used
for testing and validation run number 1 (∼ 20k samples) for finally
validating the proposed methods. Since images included in this dataset
present a very large field of view, images were resized and then
cropped to have a same size of KITTI images by taking inspiration
from [31].

To mimic real-life usage and differently from [28], for each dataset
we removed all dynamic objects (e.g., cars and pedestrians) from
within the LiDAR maps, allowing some mismatches between the RGB
image and the LiDAR image. Such a removal makes the task more
difficult since now CMRNet has also to implicitly learn how to discard
incorrect matches. This aspect also explains why we used validation
run 1 of Argoverse2 dataset to test our models, since Argoverse2

testing runs does not provide 3D objects groundtruth labels.
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Finally, to simulate the initial rough pose estimate, we added uni-
formly distributed noise both on translation [−2m;+2m] and rotation
components [−10◦;+10◦]. Please refer to [28] for more details about
the pre-processing operations that were also used for KITTI360 and
Argoverse2 datasets.

5.3.2 Training Details

For all three methods (i.e., MCD, DE, DER), we followed a similar
training procedure as in [28]. We trained all models from scratch for
a total of 400 epochs, by fixing a learning rate of 1e−4, by using the
ADAM optimizer and a batch size of 24 on a single NVidia GTX1080ti.
The code was implemented with the PyTorch library [131]. CMRNet
is a map agnostic model and can be potentially deployed in any
scenario where a 3D map is given. However, the model is camera
dependent, since the camera intrinsics affect both RGB images and
LiDAR projections. Therefore, when a different dataset is considered,
we re-trained the model from scratch.

Regarding the KITTI360 dataset, due to the considerable amount
of samples, each epoch a subset of random samples were selected
for a total amount of 20k. On the one hand, we still used all the
training data, but we sped up the training process without decreasing
the model performance. A similar approach did not lead to optimal
results with Argoverse2, forcing us to exploit the entire training set.
It is likely that this issue arose due to the pre-processing operations
performed on the input images.

Concerning the DE models, random weights initialization was per-
formed by defining a random seed before each training.

For DER we initially fixed the scaling parameters (srot, str, λrotλtr) =
(1., 1., 0.01, 0.1) and (sevdrot , sevdtr ) = (0.1, 0.1). However, we experienced
an increment of Levd after approximately 150 epochs. Therefore, we
decided to stop the training, change (sevdrot , sevdtr ) = (5e−3, 5e−3), and
then proceed with the training. This modification mitigated overfitting.
Deactivating Levd during the second training step led to uncalibrated
uncertainties. Please note, that those hyperparameters were optimized
by observing the results only on the KITTI dataset.

5.3.3 Evaluation metrics

We evaluated the proposed methods by comparing both localiza-
tion estimates and uncertainty calibration accuracies. In particular, we
assessed the localization by measuring the euclidean and quaternion
distances between the ground truth and the estimated translation/ro-
tation components. Note that, differently from [28], our primary goal
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is not to minimize the localization error. Instead, we aim to provide
a reliability estimate by means of epistemic uncertainty estimation
without undermining CMRNet performance.

We verified the accuracy of the estimated uncertainty using the
calibration curves proposed by Kuleshov et al. [102]. From a technical
perspective, a well-calibrated uncertainty-estimation curve should
follow a y = x trend. This procedure allows us to reveal whether
the trained model produces inflated or underestimated uncertainties,
by comparing the observed and the ideal confidence level. In this
work, different curves are shown for each pose component, since
the proposed models produce distinct uncertainty estimates for the
position and rotation parameters.

5.3.4 Localization assessment

Our experimental activities encompass the evaluation of the local-
ization performances using all the methods presented in Section 5.2,
with respect to the original CMRNet proposal. Concerning CMRNet
+ MCD, we applied the dropout to the FC layers with a probability
of 0.3 and obtained the approximated epistemic uncertainty by ex-
ploiting 30 samples. Our extensive experimental activity proves this
setting provides the best trade-off between accuracy, uncertainty cali-
bration, and computational time. We implemented a similar approach
to identify the suitable number of networks as regards the CMRNet
+ DE approach. Here we identified the best performances in using 5

networks, not noticing any performance gain by adding more models
to the ensemble.

Table 5.1 shows the obtained localization results, together with
the statistics of the initial rough pose distribution for all the three
considered datasets. MCD decreases the performances of the original
CMRNet in all the three cases, resulting in the worst method among
those evaluated. On the other hand, CMRNet + DE achieves the
best results in terms of accuracy, at the expense of having to train
and execute n different networks. This method reduces the errors’
standard deviation, as expected from ensemble-based method.

Finally, it was found that CMRNet + DER achieves results com-
parable to the original CMRNet implementation, indicating that our
modifications did not have any negative effect on accuracy. However,
the model shows slightly worse performance in terms of translation
error when tested on the Argoverse2 dataset. As the loss function
hyperparameters were fixed based on an ablation study conducted
on KITTI dataset, it is possible that this parameterization may not be
optimal with respect to translation error. However, CMRNet + DER
still achieves high accuracy in terms of rotation error. Moreover, as
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Table 5.1: Localization Results

KITTI
Transl. Error (m) Rot. Error (deg)

median mean/std median mean/std
Rough Initial Pose 1.88 1.82 ± 0.56 9.8 9.6 ± 2.8
CMRNet (no iter) 0.52 0.65 ± 0.45 1.3 1.6 ± 1.2
CMRNet + MCD 0.58 0.69 ± 0.44 1.8 2.1 ± 1.3
CMRNet + DE 0.47 0.57 ± 0.39 1.2 1.5 ± 1.1
CMRNet + DER 0.54 0.65 ± 0.46 1.8 2.1 ± 1.4

KITTI360
Transl. Error (m) Rot. Error (deg)

median mean/std median mean/std
Rough Initial Pose 1.87 1.82 ± 0.56 9.8 9.6 ± 2.8
CMRNet (no iter) 0.40 0.48 ± 0.35 1.2 1.3 ± 0.8
CMRNet + MCD 0.44 0.52 ± 0.34 1.8 1.9 ± 1.0
CMRNet + DE 0.33 0.40 ± 0.29 1.0 1.2 ± 0.7
CMRNet + DER 0.39 0.48 ± 0.35 1.6 1.8 ± 1.0

Argoverse2
Transl. Error (m) Rot. Error (deg)

median mean/std median mean/std
Rough Initial Pose 1.89 1.84 ± 0.56 9.8 9.6 ± 2.8
CMRNet (no iter) 0.58 0.71 ± 0.49 1.1 1.3 ± 0.9
CMRNet + MCD 0.63 0.74 ± 0.47 1.6 1.8 ± 1.0
CMRNet + DE 0.52 0.61 ± 0.42 0.9 1.0 ± 0.7
CMRNet + DER 0.63 0.77 ± 0.53 1.5 1.8 ± 1.1

Localization results of different CMRNet versions. We present the results of
the original model without any iterative refinement (no iter), but the same
strategy proposed in [28] could be applied to all the other methods. Note that,
we do not generally alter CMRNet accuracy with the proposed DER-based
approach.
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Table 5.2: Ablation study - CMRNet + DER

Levd LG sevd
Loc. Error (mean/std) Calib. Error (mean/std)

Tr. (m) Rot. (°) Tr. Rot.

LNLL - 1. 1.23 ± 0.57 2.0 ± 1.7 .080 ± .069 .135 ± .082

LD - 1. 0.91 ± 0.53 2.6 ± 1.5 .041 ± .041 .080 ± .074

LNLL 1e−1 0.90 ± 0.56 1.8 ± 1.4 .090 ± .056 .172 ± .120

LD 1e−1 074 ± 0.49 2.5 ± 1.4 .035 ± .027 .093 ± .079

LNLL 5e−3† 0.68 ± 0.49 1.7 ± 1.3 .107 ± .073 .150 ± .010

LD 5e−3† 0.65 ± 0.46 2.1 ± 1.4 .063 ± .040 .076 ± .060

† is the two training steps procedure described in Section 5.2. The best results
achieved among the two approaches that exhibit similar localization perfor-
mance with respect to the original CMRNet (last two rows) are highlighted
in bold. It is evident that the proposed implementation (last row) exhibits
superior accuracy and calibration results. Please note, this ablation study
was conducted on KITTI dataset.

described in the following section, it also demonstrates to produce
high-quality uncertainty. In any case, some applications may benefit
from this approach as it provides a direct estimate of epistemic un-
certainty., i.e., a reduced computational time and space required for
inference, because of the absence of sampling. Table 5.2 reports a brief
ablation study performed to find the optimal training parameteriza-
tion from which we obtained the best DER-based model (last row). As
already mentioned, this study was performed on KITTI dataset.

5.3.5 Uncertainty Calibration

The quality of the uncertainty estimates, i.e., the mean calibration
errors for the translation and rotation components, are reported in Ta-
ble 5.3. The errors represent the mean distances between the ideal (i.e.,

y = x) and the observed calibration, for each confidence interval. Fur-
thermore, in Figures 5.3 and 5.4 we show the calibration curves of the
most relevant pose parameters. Only the x, y, and yaw components
are reported since these are typically the most important parameters
in the localization system of an urban terrain vehicle. All three meth-
ods obtain good uncertainty calibration, i.e., they provide realistic
quantities. However, CMRNet + DER shows a better performance
in terms of mean calibration errors, considering the most important
pose parameters for a ground vehicle (x, y, and yaw). Having a well-
calibrated uncertainty-aware model with normal distributions has a
major advantage, as its realistic uncertainty estimates can be employed
within error filtering algorithms, such as Kalman filters.
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Calibration Plots

KITTI KITTI360

(a) Monte Carlo Dropout

(b) Deep Ensemble

(c) Deep Evidential Regression

Figure 5.3: Calibration curves computed on KITTI and KITTI360 validation
sets.
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Calibration Plots - Argoverse2 dataset

(a) Monte Carlo Dropout (b) Deep Ensemble

(c) Deep Evidential Regression

Figure 5.4: Calibration curves computed on Argoverse2 validation set.

Table 5.3: Calibration Errors - mean/std

KITTI CMRNet+MCD CMRNet+DE CMRNet+DER

x 0.045 ± 0.025 0.077 ± 0.040 0.042 ± 0.023

y 0.066 ± 0.032 0.093 ± 0.056 0.081 ± 0.052

z 0.148 ± 0.082 0.062 ± 0.036 0.067 ± 0.027

roll 0.126 ± 0.069 0.068 ± 0.033 0.080 ± 0.043

pitch 0.162 ± 0.092 0.050 ± 0.041 0.106 ± 0.063

yaw 0.069 ± 0.049 0.089 ± 0.057 0.042 ± 0.035

KITTI360 CMRNet+MCD CMRNet+DE CMRNet+DER

x 0.054 ± 0.044 0.064 ± 0.040 0.018 ± 0.010

y 0.042 ± 0.028 0.092 ± 0.061 0.026 ± 0.013

z 0.171 ± 0.098 0.045 ± 0.022 0.080 ± 0.056

roll 0.157 ± 0.092 0.149 ± 0.088 0.098 ± 0.054

pitch 0.162 ± 0.091 0.123 ± 0.069 0.108 ± 0.069

yaw 0.076 ± 0.042 0.067 ± 0.038 0.092 ± 0.052

Argoverse2 CMRNet+MCD CMRNet+DE CMRNet+DER

x 0.028 ± 0.014 0.079 ± 0.046 0.037 ± 0.022

y 0.036 ± 0.022 0.076 ± 0.043 0.046 ± 0.030

z 0.146 ± 0.081 0.060 ± 0.038 0.053 ± 0.032

roll 0.146 ± 0.081 0.056 ± 0.036 0.099 ± 0.054

pitch 0.161 ± 0.091 0.066 ± 0.042 0.099 ± 0.055

yaw 0.106 ± 0.059 0.078 ± 0.047 0.067 ± 0.035
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Table 5.4: Localization Results - Discarded Predictions

KITTI
Transl. Error (m) Rot. Error (deg) Discarded

Pred.median mean/std median mean/std
MCD 0.58 0.68 ± 0.43 1.7 2.0 ± 1.2 27.2%
DE 0.42 0.50 ± 0.32 1.1 1.3 ± 0.8 24.7%
DER 0.49 0.58 ± 0.38 1.6 1.9 ± 1.1 22.0%

KITTI360
Transl. Error (m) Rot. Error (deg) Discarded

Pred.median mean/std median mean/std
MCD 0.51 0.52 ± 0.34 1.7 1.8 ± 1.0 27.5 %
DE 0.29 0.34 ± 0.22 1.0 1.1 ± 0.6 24.9 %
DER 0.35 0.41 ± 0.26 1.5 1.6 ± 0.8 23.8 %

Argoverse2
Transl. Error (m) Rot. Error (deg) Discarded

Pred.median mean/std median mean/std
MCD 0.62 0.73 ± 0.46 1.5 1.7 ± 0.9 28.5 %
DE 0.46 0.54 ± 0.36 0.8 0.9 ± 0.5 25.3 %
DER 0.57 0.67 ± 0.45 1.4 1.6 ± 0.8 22.6 %

5.3.6 Inaccurate Predictions Detection

By measuring the calibration error, we test the ability of an uncer-
tainty estimator to produce realistic uncertainties. However, we still
need to prove a direct proportion between the DNN prediction error
and the corresponding uncertainty degree. Besides offering realistic
uncertainty estimates, an uncertainty-aware model should assign a
large uncertainty to an inaccurate prediction [3]. For instance, a higher
level algorithm could exploit a CMRNet estimate according to its
associated uncertainty, e.g., by deciding whether to rely only on the
measure provided by a Global Navigation Satellite System (GNSS) or
even the subsequent correction performed by the CNN.

To assess that the proposed model provides large uncertainties
in presence of very inaccurate predictions, we introduce the follow-
ing threshold-based strategy. For both translation and rotation, we
compute the trace of the covariance matrix and compare them to a
threshold that allows us to discard predictions with large uncertainty.
In particular, the covariance matrix is a diagonal matrix that reports
the variances of the pose parameters predicted by the uncertainty-
aware CMRNet. We define two distinct covariance matrices, that is
Ctr for translations and Crot for rotations, from which we compute
traces tr(Ctr) and tr(Crot).

Rather than deciding an arbitrary value for the thresholds, we use
the value at the top 15% of the traces of the entire validation set,
respectively for translation and rotation. A prediction is discarded if
the following condition is not satisfied: tr(Ctr) /∈ A∧ tr(Crot) /∈ B,
where A and B represent the sets of predictions whose uncertainty
traces does not belong to the top 15% percentile.
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KITTI

KITTI360

Argoverse2

Figure 5.5: Prediction errors vs CMRNet confidence level. High confidence
coincides with small uncertainty (except for MCD). Blue color cor-
responds to MCD, orange to DE, and green to DER. With DE and
DER we can assign large uncertainty to inaccurate predictions.

The aim of this assessment is to observe the impact of the discarding
strategy on model performance when a small number of samples
are labelled as unreliable. We would like to observe an increment of
localization accuracy by also minimizing the amount of discarded
predictions, i.e., we argue that unreliable poses should present large
traces for both tr(Ctr) and tr(Crot).

In Table 5.4 we report the translation and rotation errors, together
with the percentage of discarded predictions from the validation set
of each dataset. As can be seen, with CMRNet + DE we are able to
detect inaccurate estimates and improve the overall accuracy. With
CMRNet + DER we obtain a large localization improvement, outper-
forming the original model. Furthermore, CMRNet + DER discards



118 uncertainty-aware dnn for multi-modal pose regression

Figure 5.6: Qualitative comparison between original CMRNet and our un-
certainty aware models on a slice of the KITTI 00 run. While the
original CMRNet provides inaccurate estimates in the proximity
of the depicted curve, CMRNet + DE and CMRNet + DER are
able to identify localization failures and finally to discard them.

fewer predictions than the other methods, which means that it is
able to produce more consistent uncertainties with respect to the dif-
ferent pose components. Although CMRNet + MCD provides good
uncertainty calibration, this model is not able to produce inflated
uncertainty estimates corresponding to poor prediction accuracy. In
fact, we obtain the same localization results reported in Table 5.1 even
though such a method discards the largest amount of samples.

In Fig. 5.5, we report the localization accuracy of each proposed
method by varying the top% threshold used for discarding predictions.
As can be seen, when the model confidence increases (low uncertainty),
its accuracy increases as well. Another advantage of CMRNet + DE and
CMRNet + DER is shown in Fig. 5.6. In this qualitative analysis, each
plot represents the same piece of the path (125 frames) of the KITTI 00

run; in this curve, all methods show large localization errors. However,
by exploiting DE and DER we are able to detect most localization
failures. This is an interesting property since both DE and DER can also
be exploited as a tool to discover in which scenes CMRNet is likely to
fail, even for datasets without an accurate pose groundtruth.
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5.3.7 EKF results

To further assess the effectiveness of the different proposed un-
certainty estimation strategies, i.e., MCD, DE, DER, together with the
localization capability of CMRNet, we show the results obtained with
the proposed implementation of the EKF described in Section 5.2.3.
In particular, the proposed evaluation is performed on KITTI and
KITTI360 datasets by considering sequence 00 in both cases, and it
aims to simulate a realistic use-case scenario. Unfortunately, since
Argoverse2 dataset mainly includes runs with a short path, it is not
suitable for this type of evaluation. In particular, each uncertainty-
aware model version is integrated within the EKF as the observation
model that dynamically provides its own uncertainty estimates Q.
Please note, we re-trained each model according to the dataset con-
sidered during evaluation. However, the data included in validation
sequences was never used during the training procedure, i.e., they
represents a novel environment for uncertainty-aware CMRNet.

Regarding the EKF parameters, we set the elements of the diagonal
covariance matrices P and R, representing the initial state uncertainty
and the state transition uncertainty respectively, by aiming to find the
optimal trade-off between the velocity model and observation model
estimates. In particular, we fix the uncertainty translation and rotation
parameters of P as σ2

tr,P = 0.5 and σ2
rot,P = 0.125. Similarly, we set

σ2
tr,R = 0.5 and σ2

rot,R = 0.0625 for the covariance matrix R. Please
note, these parameters are tuned by observing the filter performance
only on KITTI dataset, and then we employ the same parametrization
during the assessment performed on KITTI360. Finally, we use the
IMU data provided by both datasets to update the localization estimate
of our motion model.

The results of the proposed evaluation on KITTI dataset are reported
in Table 5.5, while Table 5.6 show performance on KITTI360 dataset.
Please note that the naming convention used, such as EKF + DER,
refers to an implementation of the EKF that utilizes the CMRNet +
DER observation model. Moreover, Figure 5.7 shows the heatmaps
representing the trajectory error of the different EKF implementations,
i.e., different observation models. We report also the results obtained by
the velocity model, that obviously achieves poor localization accuracy
due to the cumulative drift. Please note that similar results are obtained
by correcting the velocity model with CMRNet without employing
any filtering algorithm. On KITTI dataset we observe that the EKF
implementation that exploits EKF + DER achieves comparable results
with respect to sampling-based methods, but with the advantage of
utilizing a single model, avoiding any sampling and reducing the
computational costs. However, on KTTI360 dataset CMRNet + DE
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Table 5.5: EKF Results - KITTI

KITTI Translation Error (m)

Motion model EKF + MCD EKF + DE EKF + DER

max 297.22 4.50 3.99 4.88

mean/std 127.93 ± 84.86 0.82 ± 0.61 0.80 ± 0.56 0.79 ± 0.61

median 108.62 0.66 0.65 0.63

Rotation Error (deg)

Motion model EKF + MCD EKF + DE EKF + DER

max 21.56 24.09 10.20 10.24

mean/std 7.37 ± 5.60 1.49 ± 2.10 1.31 ± 1.43 1.34 ± 1.28

median 6.18 0.93 0.81 0.97

Table 5.6: EKF Results - KITTI360

KITTI 360 Translation Error (m)

Motion model EKF + MCD EKF + DE EKF + DER

max 3967.20 9.69 3.76 11.95

mean/std 3472.73 ± 236.92 0.47 ± 0.69 0.43 ± 0.37 0.60 ± 0.80

median 3480.25 0.34 0.32 0.43

Rotation Error (deg)

Motion model EKF + MCD EKF + DE EKF + DER

max 174.88 11.46 10.93 6.43

mean/std 136.79 ± 35.57 0.86 ± 0.89 0.79 ± 0.83 0.99 ± 0.92

median 144.83 0.60 0.54 0.73

shows better translation accuracy than the other methods. However,
EKF + DER obtain the best result in terms of maximum rotation error,
that is relevant since we are considering a safety critical scenario. It can
be seen in Figure 5.7 that in KITTI360 map there is a short path where
each method struggles to obtain accurate results (warm colors). In that
case, we observe the desired property of ensembles, i.e., the mitigation
of the overall prediction error, and the proposed EKF + DE is able to
lower translation error. However, we argue that achieving these results
with EKF + DER is quite impressive, since we utilize a single model
without expensive sampling and both the model hyperameters and
filter parameters were not tuned on KITTI360 dataset. Furthermore,
the proposed EKF implementation represents a very simple localization
system that, nevertheless, achieve good results. With the integration
of additional GNSS measures and the employment of a more realistic
motion model, it is likely that a filtering algorithm would further
improve the localization accuracy, also with the direct uncertainty
estimation method proposed with CMRNet + DER.
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EKF trajectory heatmap error.

KITTI KITTI360

(a) Monte Carlo Dropout

(b) Deep Ensemble

(c) Deep Evidential Regression

Figure 5.7: Heatmaps representing the localization results of the proposed
EKF implementations integrating the proposed uncertainty-aware
CMRNet as the observation model. We evaluated each implemen-
tation on the validation runs of KITTI (left) and KITTI360 (right)
datasets.
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5.4 final discussion

In this chapter, an application of state-of-the-art methods for uncer-
tainty estimation in a multi-modal DNN for camera localization was
proposed. In particular, we considered two sampling-based methods,
i.e., MCD and DE [54, 106], and a direct uncertainty estimation approach
named DER [3]. To evaluate these methods, we proposed to integrate
them within CMRNet [28], which performs map-agnostic camera lo-
calization by matching a camera observation with a LiDAR map. The
experiments performed on KITTI, KITTI360 and Argoverse2 datasets
evaluated the localization accuracy and uncertainty calibration, by
also assessing the direct proportion between the increase in accuracy
and the decrease in the estimated uncertainty. Moreover, we further
evaluate the different uncertainty-aware models by integrating them
within an EKF with the final aim of providing a realistic application
scenario. Although CMRNet + MCD showed good localization accu-
racy and uncertainty calibration, it cannot guarantee that in presence
of large uncertainty, we also obtain large errors. However, we could
observe that the calibrated uncertainty provided by MCD leads to the
desired effect when used within the proposed EKF. CMRNet + DE also
achieves very accurate localization and well-calibrated uncertainty,
resulting in an overall improvement in localization accuracy when
a lower variance of the error distribution is experienced. Due to the
ability of Deep Ensembles in increasing the overall accuracy of a
DNN model, CMRNet + DE obtains very low localization error when
employed in our EKF also when in presence of challenging scenes
when the filter estimates start to drift. Finally, without undermining
its original localization accuracy, we applied a DER-based approach to
CMRNet showing the ability to provide well-calibrated uncertainties
that can be also employed to detect localization failures using a one-
shot estimation scheme.Moreover, we demonstrated the competitive
results obtained by EKF + DER. This represents a huge improvement
considering that we employed only one model that directly provides
uncertainty pose estimates. To the best of our knowledge, this is the
first work that integrates a DER-based approach in a DNN for camera
pose regression.

Please note that we plan to submit the approach proposed in this
chapter to a journal in the following weeks.



6
C O N C L U S I O N S

This thesis presented different methods that exploit Deep Neural
Networks (DNNs) to perform vehicle localization in urban areas. In
particular, the primary focus was to enhance localization deep learn-
ing techniques with the aim of improving their reliability, as they
are deployed in safety-critical scenarios. The first part of this thesis
addressed the entire localization pipeline by tackling the problems of
both global and local localization. In particular, the proposed Light
Detection And Ranging (LiDAR)-based approach utilizes a 3D DNN to
perform the tasks of loop closure detection and point cloud registra-
tion, and it is finally deployed within a SLAM system. The decision
to use a LIDAR-based approach is due to the general robustness pro-
vided by LIDAR sensors, which makes them a solid choice considering
the demanding standards of autonomous driving. Although the previ-
ous model achieved impressive results, particularly in the presence of
reverse loops, it does not explicitly provide a confidence measure for
its predictions, making it more challenging to detect possible failures.
To address this typical issue affecting deep learning methods and also
DNN for localization, the second part of this thesis was centered on
the topic of uncertainty quantification within neural networks. Specifi-
cally, the main focus was epistemic uncertainty, which refers to model
uncertainty. To address this issue in the entire localization pipeline,
two different uncertainty-aware approaches were proposed: a global
localization method and a local refinement technique.

The three main contributions of this thesis work can be summarized
as follows:

• a 3D DNN named LCDNet was introduced to face the problems
of LiDAR-based loop closure detection and point cloud registra-
tion. The proposed technique achieved outstanding results espe-
cially in the presence of reverse loops, by outperforming other
state-of-the-art methods. Furthermore, LCDNet demonstrated its
effectiveness in a real-case application, by integrating it within
an existing Simultaneouos Localization And Mapping (SLAM)
system. Finally, the proposed method shows great generalization
capability by performing accurate localization on a self-collected
dataset;

• an exploratory study was proposed regarding the usage of a
sampling-based technique named Deep Ensembles within the
problem of LiDAR-based place recognition. In particular, the
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proposed method faced the task of sampling feature-wise uncer-
tainty by exploiting a knowledge distillation training strategy
aiming to define comparable feature spaces between ensemble
members. From the evaluation performed, we observed the abil-
ity of the proposed method to detect global localization failures,
especially in challenging environments;

• finally, starting from an existing multi-modal localization re-
finement Convolutional Neural Network (CNN), three different
uncertainty estimation methods were integrated within such a
model, i.e., Monte Carlo Dropout (MCD), Deep Ensemble (DE),
and Deep Evidential Regression (DER). In particular, a notable
contribution was the adaptation of DER, which required different
changes to the original CNN architecture and to the training pro-
cedure. Moreover, DER demonstrated to obtain well-calibrated
uncertainty estimates and generally achieved comparable re-
sults to the other methods when integrated within an Extended
Kalman Filter (EKF). This result is quite impressive considering
that we only employ a single model that does not perform any
uncertainty sampling.
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