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Simple Summary: Advanced image analysis, specifically radiomics, has been recognized as a
potential source of biomarkers for cancers. However, there are challenges to its application in
the clinic, such as proper description of diseases where multiple lesions coexist. In this study, we
aimed to characterize the intra-tumor heterogeneity of metastatic prostate cancer using an innovative
approach. This approach consisted of a transformation method to build a radiomic profile of lesions
extracted from [18F]FMCH PET/CT images, a qualitative assessment of intra-tumor heterogeneity of
patients, and a quantitative representation of the intra-tumor heterogeneity of patients in terms of the
relationship between their lesions’ profiles. We found that metastatic prostate cancer patients had
lesions with different radiomic profiles that exhibited intra-tumor radiomic heterogeneity and that
the presence of many radiomic profiles within the same patient impacted the outcome.

Abstract: Advanced image analysis, including radiomics, has recently acquired recognition as a
source of biomarkers, although there are some technical and methodological challenges to face for
its application in the clinic. Among others, proper phenotyping of metastatic or systemic disease
where multiple lesions coexist is an issue, since each lesion contributes to characterization of the
disease. Therefore, the radiomic profile of each lesion should be modeled into a more complex
architecture able to reproduce each “unit” (lesion) as a part of the “entire” (patient). This work
aimed to characterize intra-tumor heterogeneity underpinning metastatic prostate cancer using an
exhaustive innovative approach which consist of a i) feature transformation method to build an
agnostic (i.e., irrespective of pre-existence knowledge, experience, and expertise) radiomic profile of
lesions extracted from [18F]FMCH PET/CT, ii) qualitative assessment of intra-tumor heterogeneity of
patients, iii) quantitative representation of the intra-tumor heterogeneity of patients in terms of the
relationship between their lesions’ profiles, to be associated with prognostic factors. We confirmed
that metastatic prostate cancer patients encompassed lesions with different radiomic profiles that
exhibited intra-tumor radiomic heterogeneity and that the presence of many radiomic profiles within
the same patient impacted the outcome.
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1. Introduction

In the era of personalized treatment an increasing focus has arisen on biomarkers to
identify a patient’s specific characteristics and assist clinicians in their decision making.
Parallelly to serum and molecular markers, advanced image analysis has recently acquired
recognition as source of biomarkers. Whole-body assessment that attempts to evaluate
multiple lesions (when present) at the same time, repeatability and cost-effectively—as is
performed using conventional imaging—are among the pros of advanced image analysis
over other approaches [1,2]. Specifically, quantitative features extracted from imaging
through mathematical approaches (i.e., radiomics) are capable of categorizing tumors
into different (imaging) phenotypes. Nonetheless, some technical and methodological
challenges are faced with the application of radiomics clinically [3,4]. To successfully
implement radiomics in the real clinical world, sustainable, rigorous, and robust research
plans are needed for study design, model development, training, and testing. Although
these limitations have been extensively acknowledged in recent years, as clearly stated by
reviews, editorials, expert opinions, and position papers, the majority of radiomic studies
lack adequate sample size, rigorous methodology, and appropriate methods for statistics
and data analysis. As a result, no strong evidence about the role of radiomics has been
provided [5], nor understandable answers have been given to explain their clinical signifi-
cance [2,6,7]. Moreover, many studies showed a scarce robustness for radiomics features
and proved that preprocessing data harmonization may have a positive impact, simpli-
fying multi-institutional collaboration for large-scale analytics [4,8,9]. Indeed, radiomic
features are affected by many pre- and postprocessing factors including the scanner, acqui-
sition protocol, segmentation method, software, and parameters setting for extraction [4–6].
Proper methods for feature selection and dimensionality reduction should be employed
to limit redundancy and remove uninformative data from the dataset [4–6]. Moreover,
well-designed trials and multidisciplinarity are also crucial factors in radiomic studies to
informatively contribute to science [10,11].

Predictive and prognostic radiomic models have been extensively proposed for pri-
mary tumors, whereas proper phenotyping of metastatic or systemic disease where multiple
lesions coexist is still missing [12,13]. We recently demonstrated that proper modelling
of radiomic data provides crucial information on lesion heterogeneity in patients with
recurrent prostate cancer (PCa), reflecting the presence of different cellular clusters within
each patient. Indeed, biochemical recurrence will occur in 20–40% of PCa patients after
radical prostatectomy and in 30–50% of cases after radiotherapy within ten years [14]
suggesting that other factors—in addition to those commonly used in clinical practice
(e.g., Gleason score)—play a role in disease progression and prognosis. We previously
showed that [18F]FMCH PET/CT lesion heterogeneity differed in patients with limited
tumor burden (i.e., oligometastatic) as compared with patients with more advanced disease.
Such heterogeneity significantly decreased when considering only lesions within the same
organ with respect to all the lesions and when focusing on metabolically similar lesions fea-
turing comparable SUV_max values [13]. From this experience, we learnt that to maximize
the benefit of subpopulation-specific risk stratification, we have to move beyond single
lesion assessment. Inter-lesion description is needed to build up an “object” representing
the inter-lesion relation network, exhaustively representing the disease within the patient.
Nonetheless, each lesion (and its heterogeneity) contributes to characterize the disease and,
consequently, the patient. Therefore, each lesion’s radiomic profile should be modeled
into a more complex architecture able to reproduce each “unit” (lesion) as a part of the
“entire” (patient).

This work aimed to provide three different contributions to access and potentially
exploit cancer imaging phenotypes in PCa. With reference to Figure 1, we first perform a
view-wise radiomic feature transformation model to build an agnostic (i.e., irrespective
of pre-existence knowledge, experience, and expertise) radiomic profile of lesions from
their [18F]FMCH PET/CT assessment (1). Then, we cluster the agnostic radiomic profiles
of lesions according to their similarity (2), and we exploit these clusters to qualitatively
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characterize the similarity of lesions (3) and intra-tumor heterogeneity of patients (4).
Furthermore, we quantitively represent patients’ disease phenotype based on the evo-
lutionary relationship between their lesions’ profiles (5). To do this, tree-shaped objects
were proposed for patient representation. The clinical relevance of the tree-shaped patient
representation was assessed in terms of association with clinical prognostic factors and
patient outcome (6).
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Figure 1. Flowchart of the analyses: at the lesion level, lesions are (1) represented through an agnostic
dimensionality reduction of radiomic vectors and (2) clustered in groups, which are further analyzed
with clinical variables (3). At the patient level, patients are qualitatively described in terms of intra-
patient heterogeneity (4), represented through trees (5), and quantitively analyzed with prognostic
purposes (6).

2. Materials and Methods
2.1. Study Design and Patient Selection

The cohort of the present analysis consisted of 55 male patients (mean age 73 ± 7 years;
median age 75 years, range 58–85) with biochemical failure after first-line curative treat-
ments for PCa, exhibiting at least two lesions showing uptake of [18F]FMCH at PET/CT. All
the scans were performed at the Nuclear Medicine Department of the Azienda Ospedaliero
Universitaria Pisana, using an integrated PET/CT system General Electric Discovery 710
(General Electric Healthcare, Waukesha, WI, USA) as previously detailed [13]. A total of
333 lesions were I, including 149 lymph node (68 regional and 81 distant) metastases and
221 bone lesions. The median number of lesions for each patient was 5. Demographic
and clinical patient data including age, Gleason score (GS) at diagnosis, prostate specific
antigen (PSA) level at the time of [18F]FMCH PET/CT, primary treatment, and androgen
deprivation therapy (ADT; if yes: ongoing or discontinued) were collected. Baseline patient
characteristics are summarized in Table 1.
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Table 1. Baseline patient characteristics.

Variable Number of Patients (%)

Number of metastases

Oligo (<3) 15 (27%)

Multi (≥3) 40 (73%)

Oligo (<5) 26 (47%)

Multi (≥5) 29 (53%)

Intermediate (3 ≤ n < 5) 11 (20%)

Gleason Score (dichotomous)

<7 7 (13%)

=7 24 (44%)

>7 18 (33%)

Missing 6 (10%)

Ongoing therapy (ADT)
Y 24 (44%)

N 31 (56%)

Primary treatment (initial therapy)

RP 15 (27%)

RP+RT 30 (54%)

RT 7 (13%)

Missing 3 (6%)

PSA (dichotomous)

≤1.93 * 11 (20%)

>1.93 33 (40%)

Missing 11 (20%)
ADT: androgen deprivation therapy; N: no; PSA: prostate specific antigen; RP: radical prostatectomy; RT: radiation
therapy; Y: yes. * Value identified as significant in a larger population [13].

2.2. Image Analysis

Image analysis and radiomic feature extraction have been previously detailed [13].
Briefly, the LIFEx software (http://www.lifexsoft.org, accessed on 1 January 2020 [15]) was
used to semi-automatically segment all patients’ lesions and obtain, for each of them, five
conventional parameters related to the standardized uptake value (SUV) and 37 radiomic
features. The 37 radiomic features were grouped, by methodological construction and soft-
ware output, into six different semantic groups (HISTOGRAM, SHAPE, GLCM, GLRLM,
NGLDM, and GLZLM).

2.3. Data Analysis and Statistics

Frequency tables and descriptive statistics were used to summarize the study’s popu-
lation. According to the contributions of this work, analyses consisted of three steps, i.e.,
(1) the construction of lesions textural profile, (2) a qualitative and (3) a quantitative assess-
ment of intra-tumor heterogeneity according to the tree-based patient representation. Each
step is validated by means of a comprehensive characterization of the clinical variables as
detailed in the results section following the present one. Moreover, the quantification of
intra-tumor heterogeneity via tree-based representation was further tested for its prognostic
power through survival analysis.

2.3.1. Lesion Textural Profile

Data depth was applied for radiomic data representation in this analysis. A data depth
is a way of measuring how deep (central) a given observation is with respect to the peer
observations. It can be thought of as a multivariate generalization of boxplots. Indeed,
when analyzing a boxplot of a variable we are assessing the relative position of each sample
in the context of the other samples’ distribution: samples close to the median values are
typical samples and are more probable to be found in the distribution. Contrary to this, the

http://www.lifexsoft.org
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greater the distance from the central values the less typical they are, indicating they are
rarely observed within the phenomenon under analysis (outliers). The same approach can
be extended to observations considering a higher number of variables, and the measure of
the centrality/outwardness of data points is called the depth of the points. Indeed, depths
allow ranking of objects characterized by a number of features d > 1. Several definitions of
data depth—such as Mahalanobis depth, Halfspace (or Tukey) depth, projection depth, and
spatial depth—are available in the literature [16–18] and their properties were reviewed
for radiomic data representation in our context. Exploratory analyses are described in
Supplementary Figure S1.

Since radiomic features are usually extracted from different high-throughput methods,
they provide a multi-view textural description of lesions. Accordingly, they are grouped
into different matrices or categories. Specifically, in this study radiomic features were
divided into six semantic groups, namely histogram-derived variables, shape-derived
variables, GLCM-derived variables, GLRLM-derived variables, NGLDM-derived variables,
and GLZLM-derived variables. Collinearity and redundancy among features within these
semantic groups are known to be strong, so for the depth analysis we maintained the same
semantic structure. We computed depth measures separately for each group of variables,
obtaining a depth value for each semantic radiomic group. To quantify the agreement of
information provided by the views, a ranking agreement analysis was performed with R
package SuperRanker [19]. The procedures are discussed in Supplementary Figure S2. Con-
ventional, i.e., SUV-related, features of uptake values, not belonging to any of the radiomic
groups, were excluded from the depth computation and left for results interpretation.

2.3.2. Qualitative Assessment of Intra-Tumor Heterogeneity

Having each lesion described by a reduced and comparable vector of depth measures
(i.e., lesion’s radiomic profile), it is now possible to assess the radiomic profiles of different
lesions and to characterize lesions with similar characteristics. Specifically, lesions’ radiomic
profiles were clustered according to unsupervised minibatch K-means clustering [20].
The dataset of lesions (n = 333, p = 6) was in fed into the algorithm and k was selected
among a range of values through an exhaustive grid search so as to meet intra-cluster
homogeneity. As a result, each lesion was tagged with a membership class, regardless
the patient it belonged to. In this way, groups of similar lesions were identified: lesions
falling in the same group exhibited a homogeneous profile, whereas lesions in different
groups were considered to display a heterogeneous profile. Accordingly, it is possible
to phenotype different groups (types) of lesions, highlighting different pattern templates.
The mean radiomic profile was computed for every class, so as to represent the pattern
templates and compare the detected phenotypes. Each pattern template describes the
lesions’ radiomic phenotypes as assessed and characterized using the lesions’ clinical
and biological characteristics. Specifically, the standard uptake values (SUV_max) were
used to describe differences in lesion intensity, the total lesion activity (TLA) was used to
describe differences in lesion volume, and GLCM entropy was used to describe differences
in lesion heterogeneity [21]. Moreover, lesions’ sites (locoregional lymph nodes, distant
lymph-nodes, and skeletal) were taken into account to assess tumor spreading. To test
the differences, non-parametric t-tests were used for numerical features, whereas the chi-
squared test was used for categorical features. Additionally, since patients in this study
presented multiple sites of disease, we divided the patients in two different groups:

• patients exhibiting lesions with homogeneous radiomic phenotypes—i.e., their lesions
fell into the same group of lesions—were labelled as patients with homogenous disease;

• patients featuring lesions with heterogeneous radiomic phenotypes—i.e., their lesions
fell into more than one group of lesions—were labelled as patients with heteroge-
neous disease.

In this way, the number of different radiomic profiles within a patient expresses the
extent of heterogeneity of their disease. The two groups of patients were characterized
throughout a clinical investigation. Specifically, the personal and clinical characteristics
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were compared in the two groups, including the Gleason Score, the oligo-/multi-metastatic
status, the number of lesions, the type of upfront PCa treatment (initial therapy), the status
of androgen deprivation therapy (ongoing therapy), the prostate specific antigen (PSA)
value, the type of treatment, and the response to therapy. To test the differences, non-
parametric t-tests were used for numerical features, whereas the chi-squared test was used
for categorical features. P-values below 0.05 were considered significant, however, values
below 0.1 were included for discussion as well.

2.3.3. Quantitative Assessment of Intra-Tumor Heterogeneity

As a step forward towards the qualitative assessment of patients’ disease heterogeneity,
we tuned a quantitative pipeline. Specifically, we went beyond the qualitative subtyping
of lesions coexisting in the radiomic phenotypes of patients. We leveraged the lesions’
radiomic profiles to build an insightful patient representation describing the homogene-
ity/heterogeneity extent among the patients’ tumor lesions, so as to assess the patients’
disease as a whole. The similarity between two peer lesions’ profiles can be measured by
their pairwise Euclidean distance. Accordingly, the evolutionary and statistical relationship
among the lesions in a patient was represented by a hierarchical clustering dendrogram
with Euclidean distance and complete linkage. Specifically, for each patient, the square
matrix of the pairwise Euclidean distances among their lesions was computed and fed into
the clustering algorithm. The lesions were represented by the six-dimensional vectors of
depths describing the relative position of the lesion according to the six radiomics semantic
groups. Generally speaking, an agglomerative hierarchical clustering algorithm begins
with treating each lesion as a separate cluster and iteratively aggregates similar lesions,
that is lesions with short pairwise distance, to merge groups of lesions in a single cluster.
The process is illustrated in Figure 2.
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Figure 2. Procedure of hierarchical clustering techniques: the clustering begins with treating each
lesion as a separate cluster and iteratively aggregates similar lesions, that is lesions with short
pairwise distance, to merge groups of lesions in a single cluster. The output of the procedure is called
a dendrogram.

The tree-shaped output of the algorithm is called a dendrogram and shows the hierar-
chical relationship between peer observations. Therefore, each patient is now represented
by a dendrogram, where the leaves correspond to the lesions and the lengths of the branches
reflect the mutual similarity relationship of the radiomic profiles expressed by the lesions.
Lesions that are close to each other are very similar, thus exhibiting a similar radiomic
profile, whereas distant leaves reflect heterogeneous lesions. For a posteriori evaluation of
the reliability of such a representation with clinical patient-specific features, we extracted
tree-derived descriptors. Accordingly, tree-derived features included the number of lesions,
the sum of the tree branch lengths, dispersion among lesions, and number of different
phenotypes. They were computed and correlated with patients’ clinical variables, such
as Gleason Score, prostate specific antigen levels, the oligo-/multi-metastatic status, the
type of treatment, and the response to therapy. The number of lesions phenotype was
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the number of different, i.e., independent, radiomic patterns expressed by a patient. In a
dendrogram, this number was obtained by computing the best clustering of the patient’s
lesions according to the evaluation of a similarity measures, i.e., the Silhouette index [22],
Davies–Bouldin index [23], and Calinski–Harabasz index [24]. The lesions’ similarities
in the reduced radiomic space was doublechecked with a ranking aggregation algorithm,
as implemented in R package RankAggreg [25]. Supplementary Figure S3 graphically
describes the process.

2.3.4. Perspective Modeling

To further assess the associations between tree-derived descriptors and clinical patient
information, we tested the prognostic and predictive power of patient representation.
Tree-derived features, as listed above, were fed into Cox proportional hazard models in
both univariate and multivariate fashion to predict disease-free survival. Significance of
their power was assessed with p-values of log rank tests and final model performance was
evaluated in terms of concordance index.

3. Results

As for data analyses, results consisted of the description of three sequential parts,
i.e., (1) the lesion textural profile and the (2) qualitative and (3) quantitative assessment of
intra-tumor heterogeneity according to the tree-based patient representation.

3.1. Lesion Textural Profile

Mahalanobis depth definition was chosen as a result of the visual intra-view correlation
inspection (Supplementary Figure S1) and ranking agreement analysis (Supplementary
Figure S2). Data visualization of textural features’ dimensionality reduction is shown in
Figure 3.
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pair of radiomic groups but with higher values for GLZLM and GLRLM.

Every lesion was represented by six depth values—one per radiomic semantic group,
i.e., view—describing its centrality with respect to the peer lesions’ distributions. The
correlation between the views was assessed by plotting the distribution of depth values for
each lesion computed according to one view versus the ones computed according to another
view. As shown in the figure, the correlation between the views was never higher than 0.5,
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except for the correlation between GLRLM and GLZLM, which raised to 0.8, suggesting
the independent information content provided by each view. The exemplification of the
lesions’ radiomic profiles can thus be visualized in Figure 4, where sample lesions are
shown, grouped by the patient they belong.
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Figure 4. The lesion profiles of two patients. Each lesion is represented by the 6 depth measures
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showed two different shapes in the lesion radiomic profile.

Specifically, we presented the lesion radiomic profiles of two patients (#17 and #31)
where depth values of the six radiomic views are listed and plotted in the corresponding
spider plots. Every axis of the spider plots corresponds to a specific view, as highlighted
by the labels, and each line graphically displays the lesion’s radiomic profile in terms of
depth measures. Accordingly, the shape can be intended as the textural phenotype or
signature, providing an agnostic description of its textural phenotype with respect to other
lesions. In patient #17, all four lesions appeared to be very similar in terms of their radiomic
profiles as their shapes match a similar template. HISTO, SHAPE, GLCM, and GLRLM
presented particularly low depth values, whereas NGLDM and GLZLM assumed higher
depth values. In patient #31, the lesions differed since lesions 1 and 2 exhibited almost
identical profiles (with enhanced values of NGLDM and GLZLM), lesion 4 followed their
shape yet with a smaller area, whereas lesion 3 behaved as an outlier, showing very low
depth values for HISTO, SHAPE, GLCM, GLRLM, and GLZLM and displaying a spike
of centrality towards NGLDM. Accordingly, patient #17 exhibited a more homogeneous
disease with lesions entailing the same radiomic description, whereas the disease of patient
#31 was radiomically heterogenous. Starting from this analysis, illustrated through these
two examples, in the following, we aimed to progressively characterize this heterogeneity
with both qualitative and quantitative methods.

3.2. Qualitative Assessment of Intra-Tumor Heterogeneity

As stated above, Figure 4 shows an example of the results of the characterization of
the lesion profiles of two patients. The profile of each lesion of a patient is highlighted



Cancers 2023, 15, 823 9 of 18

with a different color. The visualization of radiomic profiles as described above allows
a very rapid and visual comparison of intra-patient lesion heterogeneity. In fact, lesions
exhibiting similar shapes presented mutually homogeneous radiomic patterns whereas
lesions displaying mismatched shapes entailed mutually heterogeneous radiomic patterns.
Intuitively, the more the lesions of a patient display a similar pattern, the more homoge-
neous the disease, and vice versa, if a patient presented many different pattern templates,
they are described as exhibiting a heterogeneous disease, with heterogeneity increasing
according to the number of coexisting templates, i.e., radiomic phenotypes. According to
minibatch K-mean clustering, two groups of lesions were identified, independently to the
patients they belong. Figure 5 shows the radiomic templates of the two clusters. Cluster 1
was characterized by a very deep value for NGLDM followed by a relatively deep value
for GLZLM, as for the presence of typical zone homogeneity and voxel contrast.
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In contrast, the HISTO, SHAPE, GLCM, and GLRLM components were less deep,
being outliers compared with the lesion population. Cluster 2 exhibited a pretty regular
shape, with persistent accentuated NGLDM and GLZLM depth values, yet these were
not significantly different from the other components. The site of disease did not play a
significant role in scoring disease heterogeneity, as lesions in either class were not more
often located at any particular site of disease (regional lymph nodes, distant lymph nodes,
and bone metastases; χ2 test, p-value = 0.4202). In contrast, the value of SUV_max, TLA,
site, and GLCM_Entropy, considered surrogated markers of tumor aggressiveness [26],
proliferative activities [27], and a measure of intra-lesion heterogeneity [28,29], respectively,
were significantly different in the two clusters (Table 2).
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Table 2. Clusters of lesions as grouped by mini-batch k-means clustering were characterized in terms
of TLA, SUV, site, and GLCM entropy and results are displayed (p-values).

Parameter Cluster 1 Cluster 2 p-Value

SUV_max

Median 9.8350 10.8707

0.0187 *Std. Dev. 3.9163 7.8156

Q3 12.4980 16.7168

TLA (mL)

Median 4.6851 6.0573

<0.001 ***Std. Dev. 14.4136 90.1964

Q3 14.1085 65.8136

GLCM Entropy

Median 1.4224 1.4524

0.0517 .Std. Dev. 0.4507 0.6868

Q3 1.8524 2.2928

Organ

Regional lymph nodes 24 (15.4%) 32 (18.1%)

0.4202Distant lymph nodes 40 (25.6%) 36 (20.3%)

Skeleton 92 (59%) 109 (61.6%)
GLCM: gray-level co-occurrence matrix; SUV_max: maximum standardized uptake values; Q3: third quartile; Std.
Dev.: standard deviation; TLA: total lesion activity. Significance is labelled with *** where p < 0.001, with * when
p < 0.05, and “.” when p < 0.1.

This underlines the ability of the depth measures to depict different biological features
sustaining the tumor. In particular, the Class 1 cluster hosted the majority of lesions with
lower values of SUV_max, whereas the majority of lesions with higher SUV_max values fell
into Class 2, as highlighted from SUV_max distribution indexes (t-test, p-value = 0.0187).
Therefore, Class 1 featured lesions with a “low” proliferative rate; in Class 2, the lesions
were the ones with increased proliferation. Coherently, Class 1’s lesions presented lower
TLA (mL) values with respect to the Class 2 ones, as the lesions’ activity distribution
parameters were higher in the second group (t-test, p-value < 0.001), characterized by a
heavier right tale (Q3 parameter). GLCM_Entropy of lesions was significantly different as
well, although at a higher significance level. The heterogeneity of lesions was slightly higher
in Class 2 than in Class 1, revealing a relationship between heterogeneity and proliferation
(t-test, p-value = 0.0517). Further to the lesions’ characterizations, we qualitatively divided
patients according to the homogeneity of their lesions’ clusters. In fact, the number of lesion
clusters in a patient is identified as a proxy for revealing patients’ intratumor heterogeneity.
A total of 39/55 patients exhibited lesions featuring different radiomic profiles, since their
lesions belonged to different clusters; thus, they were referred to as heterogeneous. The
lesions of the remaining 16/55 patients presented a unique radiomic pattern, thus falling in
one cluster only; therefore, they were referred to as homogeneous. The results are displayed
in Table 3.

Although no significant difference was found in PSA levels and Gleason score (GS) or
Gleason category (i.e., GS ≤ 7 vs. GS > 7) between these two groups of patients, the number
of lesions and oligo/multi-metastatic status clinical cutoffs were coherently correlated with
the stratification. Indeed, more homogeneous patients presented a lower number of lesions
(t-test, p-value = 0.0001) and a lower total disease volume (t-test, p-value = 0.0651) than the
heterogeneous group. This latter group exhibited a higher proportion of oligometastatic
disease (χ2 test, p-value < 0.0001 with a cutoff of 3 lesions; p-value = 0.0004 with a cutoff
of 5 lesions; p-value = 0.0001 with cutoffs at both 3 and 5 lesions). Furthermore, the type
of treatments and patients’ response to therapy did not significantly differ in these two
groups of patients, suggesting a lack of current decision-making clinical parameters in
assessing a patient’s disease heterogeneity. Accordingly, this supported the necessity of a
more exhaustive and quantitative patient representation.
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Table 3. Tests on PSA, GS, oligo/multi-metastatic status, number of lesions, type, and response
to therapy highlighted differences among the two patients’ phenotypes, i.e., homogeneous and
heterogeneous (p-values).

Parameter Homogeneous Heterogeneous p-Value

PSA

Median 2.81 3.99

0.3189Std. Dev. 1.5036 105.6279

Q3 3.81 14.4974

GS

Median 7.0 7.0

0.7047Std. Dev. 0.8314 1.2447

Q3 8.0 8.0

Nodal lesions

Median 2.0 7.0

0.0001 ***Std. Dev. 0.8314 3.1359

Q3 2.0 10.0

Total Tumor Volume (mL)

Median 1.9114 15.3200
0.0651 .

Std. Dev. 5.7938 44.7814

Q3 7.0262 31.1022

Gleason Category
≤7 5 (55%) 26 (65%)

0.5954
>7 4 (45%) 14 (35%)

Oligo or Multi (>3)
Oligo 7 (70%) 37 (82%)

<0.0001 ***
Multi 3 (30%) 8 (18%)

Oligo or Multi (>5)
Oligo 10 (100%) 29 (64%)

0.0004 **
Multi 0 (0%) 16 (36%)

3 < Lesions ≤ 5

<3 7 (70%) 29 (64%)

0.0001 ***3 < Lesions ≤ 5 3 (30%) 8 (18%)

> 5 0 (0%) 8 (18%)

Initial Therapy

RP + RT 5 (55%) 25 (58%)

0.6293RP 3 (33%) 12 (28%)

RT 1 (12%) 6 (14%)

Ongoing Therapy
N 6 (60%) 25 (55%)

0.7976
Y 4 (40%) 20 (35%)

Combined therapy
N 7 (78%) 26 (66%)

0.8810
Y 2 (22%) 13 (34%)

Response to therapy
N 9 (100%) 29 (74%)

0.4255
Y 0 (0%) 10 (26%)

GS: Gleason Score; N: no; PSA: prostate specific antigen; Q3: third quartile; RP: radical prostatectomy;
RT: radiation therapy; Std. Dev.: standard deviation; Y: yes. Significance is labelled with *** where p < 0.001, with
** when p < 0.01, and “.” when p < 0.1.

3.3. Quantitative Assessment of Intra-Tumor Heterogeneity

Since heterogeneity differences among patients are appreciable according to the dif-
ferent number of coexisting phenotypes within their disease, hierarchical clustering was
used to represent such a patient’s heterogeneity. Furthermore, hierarchical clustering al-
lows us to exploit the hierarchical nature of the lesions in a patient. One dendrogram per
patient was built and the dendrogram-related information was investigated to unveil a
prognostic characterization. Indeed, the similarity among lesions’ radiomic profiles reveled
a biological counterpart. Figure 6 shows a patient tree-based representation. Single lesions’
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biological characteristics such as standard uptake values (SUV_max), total lesion activity
(TLA), and sites of disease metastases (i.e., loco-regional lymph nodes, distant lymph nodes,
or skeleton) are described using a color code.
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Figure 6. A patient tree-based representation. Lesions are colored according to biological characteri-
zation, namely (A) their standard uptake values (SUV_max), (B) total lesion activity, TLA, and (C)
tissue of their sites, such as proximal and distant lymph nodes (squares) or skeleton (circles).

Of interest, close lesions and distant lesions presented different biological characteri-
zation, as highlighted by the specific color encoding. Table 4 showed the discrimination
power of number of phenotypes, number of lesions, sum of tree branch lengths, and lesions’
radiomic dispersions according to type of therapy, number of treatments, oligo/multi-
metastatic status, GS, and PSA.

Table 4. Discrimination power of the number of phenotypes, number of lesions, sum of tree branch
lengths, and lesions’ radiomic dispersion in stratifying patients according to type of therapy, number
of therapies, oligo/multi-metastatic status, Gleason score, PSA, and response to therapy (p-values). The
number of phenotypes has been computed according to Silhouette coefficient (# phenotypes—silhouette),
Calinski-Harabasz index (# phenotypes—CH), and Davies–Bouldin index (# phenotypes—DB).

Parameter # Phentypes_Silhouette # Phentypes_ch # Phentypes_db Dispersion Sum Branches

PSA 0.0214 0.0234 0.0210 0.4953 0.0433

GS 0.0736 0.1976 0.3403 0.4672 0.1909

Nodal Lesions <0.0001 <0.0001 <0.0001 0.0016 <0.0001

Total Tumor Volume 0.0002 <0.0001 0.0004 0.4010 0.0020

Gleason Category 0.0004 0.0006 0.0086 0.0050 0.0061

Oligo or Multi (>3) 0.0002 0.0003 0.0003 0.0008 0.0003

Oligo or Multi (>5) 0.0088 0.0098 0.0119 0.6702 0.2933

3 < Lesions ≤ 5 0.0014 0.0016 0.0020 0.0344 0.0070

Initial Therapy 0.1931 0.2040 0.1908 0.1503 0.1444

Ongoing Therapy 0.6647 0.7010 0.6760 0.7529 0.8379

Combined therapy 0.6245 0.2221 0.5707 0.7968 0.6055

Radiotherapy 0.0003 0.0001 0.0003 0.0207 <0.0001

Hormonotherapy 0.0783 0.6348 0.8975 0.7963 0.0717

Difosfonate 0.1608 0.2336 0.1212 0.1444 0.0727

Abbreviation: GS = Gleason score; PSA = prostate specific antigen.

The time and response to therapy were assessed in a perspective way. The number of
phenotypes, regardless of the similarity index used to compute it, was significantly associ-
ated with PSA levels, the number of lesions and the total tumor volume, Gleason category,
oligo/multi-metastatic status (with cutoffs of 3, 5, and both 3 and 5), and radiotherapy
administration (Yes/No). The dispersion of lesions and sum of branch lengths were dis-
criminative with respect to the number of lesions, Gleason category, oligo/multi-metastatic
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status (with cutoffs of 3, 5, and both 3 and 5) and radiotherapy. Treatment was not corre-
lated with tree-based representation descriptors: type of upfront PCa treatment, ongoing
androgen deprivation therapy, and combination of treatments were found independent
with respect to phenotype counts and lesion dispersion.

3.4. Perspective Modelling

For univariate Cox models, dispersion, number of lesions, sum of branch lengths,
number of phenotypes according to Silhouette and Calinski–Harabasz indexes, and PSA
were not significant (p-values = 0.438, 0.679, 0.432, 0.549, and 0.48, respectively). The
number of phenotypes according to Davies–Bouldin and combined therapy were significant
(p-values = 0.04146 and 0.0233, respectively). As shown in Figure 7, the best cutoff value
for the Davies–Bouldin-based number of phenotypes to discriminate between responder
and not responder patients was 3 (p-value = 0.05).
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The type of therapy was not significant (p-value = 0.9), as highlighted in Figure 9.
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The best multivariate model was the one that contained dispersion, number of lesions,
sum of branch lengths, Davies–Bouldin-based number of phenotypes, and combined
therapy, resulting in a 0.86 concordance with a p-value of 0.09 using the log rank test.

4. Discussion

In this manuscript we describe a novel statistical approach for analyzing radiomic data
and accordingly describe, represent, and quantify disease heterogeneity in patients with
metastatic PCa. Radiomic features have been introduced as imaging biomarkers as they
represent an index of the degree of tumor heterogeneity [1,30]. However, radiomic features
have the limitations of instability and scarce robustness due to the use of different scanners,
acquisition, and post-processing settings [4,6]. Therefore, a normalization strategy to make
them agnostic and robust is needed. Further, redundancy and collinearity have to be
tacked in order to produce insightful models and extract useful knowledge. The statistical
approach for agnostic dimensionality reduction we propose in this work takes advantage of
data variability in order to normalize features’ contributions in a descriptive or perspective
model. Pertinently, the measure of data depth provides a center-outward ordering of points
in a set and leads to a non-parametric multivariate statistical description of data, in which
no distributional assumptions are needed. Among depth definitions, we preferred the use
of Mahalanobis depth because with this model the computed distribution appeared more
dispersed about its center of symmetry than distributions stemming from other depths,
leading to clearer results (Supplementary Figure S1). The depth computation resulted in a
dimensionality reduction strategy where the 37 radiomic features describing the lesions
were summarized in six agnostic measures. Accordingly, the six depth values formed an
agnostic multi-view lesion profile to be used for the descriptive and prognostic modeling of
intra-tumor heterogeneity. Notably, the correlation found among the six semantic groups
was negligible (less than 0.5) except for GLRLM and GLZLM (0.8). This was expected as
the length and zones are very similar structures and coherently produce correlated results,
whereas other groups’ features independently capture different aspects of texture [31,32].
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According to the depth-based feature transformation, we presented agnostic radiomic
profiles of lesions grouped by the patient they belonged to (Figure 4). Based on such
profiling, we can depict intra-tumoral heterogeneity in some patients that are characterized
by the contemporary presence of "typical" and "atypical" lesion radiomic profiles. In other
patients, only "typical" lesions were observed. Coherently, disease heterogeneity was found
to be independent from disease site and burden as well as treatment. However, it was
proven to reflect the number of coexisting phenotypes within a patient. Moreover, we
observed a stronger association between the number of lesions and disease heterogeneity
rather than the volume of lesions and disease heterogeneity, although both indicators
are currently considered as prognostic factors. This becomes critical in a population as
one in the current work existed in more than two thirds of heterogeneous clusters of
lesions. Interestingly, radiomic features provided information coherent with SUV-derived
parameters. When multiple lesions were present, the contribution of all of them—regardless
of the hosting tissue and number—to the tumor biology and ultimately the outcome is
crucial, confirming our previous findings [12,13]. Beside imaging-related information,
clinical variables describing the status/severeness of the diseases coherently correlated
with heterogeneity measures, whereas therapy did not denote any specific correspondence
with tumor heterogeneity; although patients who underwent more than one treatment had
a worse outcome. In fact, different regimens of therapy are typically performed in recurrent
or more aggressive tumors. Of note, radiotherapy implementation seemed to follow a
latent heterogeneity assessment. We can speculate that radiotherapy may select some
cellular clones, impacting on tumor biology, heterogeneity, and ultimately the outcome.
Patients presenting “typical” and/or “atypical” phenotypes presented different outcomes.
Specifically, in our series heterogeneity directly impacted on outcome, with having more
than three phenotypes (high heterogeneity) negatively associated with outcome (Figure 7).
The proposed patient representation frames a quantitative approach that was needed as a
step forward with respect to the qualitative assessment of heterogeneity. The hierarchical
clustering devises a comprehensive and unique object able to summarize the statistical units
(lesions) by their grouping policy (patients). Upon these objects, many studies are available
to perform inference, classification, clustering, and prediction [33–35]. In this work, we
proved how tree-based representations insightfully entail tumor heterogeneity information
in the context of PCa. Such information has been revealed to be significant in predicting the
response to therapy beyond clinical assessment. In fact, tree-derived indicators describing
the morphology and the shape of the tree structures were used to prove their prognostic
power through survival analyses. Most of the current clinical-based biomarkers struggle
in relating tumor heterogeneity with cancer progression, whereas our approach showed
promising results. Furthermore, the tree objects prevent the predictive statistical analyses
from being hampered by radiomic limitation, above all inter-scanner variability. Specifically,
the tree-based representation disentangles the statistical units from scanner peculiarities
as it resorts to a relative distance measure. By leveraging the Euclidean distance between
lesions to build up the tree representation, hierarchical clustering acts as standardization
and normalization strategy. As a consequence, the obtained objects confirm their agnostic
nature. Of note, the proposed pipeline displays a modular structure that makes it suitable
for different kinds of metastatic or multi-lesion tumors. The dimensionality reduction
strategy, distance, and linkage selection in the hierarchical clustering algorithm can indeed
be changed and tuned on case study data. Particularly, the proposed approach would be
useful in those tumors for which no a priori ordering of lesions is known, for instance in
lymphoma. According to the task to be performed, trees can be fed into the classification,
clustering, or survival models with the aim of supporting clinical practice in effective
treatment planning and monitoring.

The limitations of the present study include the relatively small population analyzed
and the consequent use of clinical variables as dichotomous (e.g., Gleason score). In-
deed, this study included a sub-group (i.e., patients with at least two lesions identified by
[18F]FMCH PET/CT) of a larger cohort of recurrent PCa patients prospectively enrolled in



Cancers 2023, 15, 823 16 of 18

an observation trial [13]. Nonetheless, this approach, even if proposed in recurrent PCa
patients imaged with [18F]FMCH, might be successfully applied to patients affected by
metastatic neoplasms or systemic diseases (e.g. lymphoma) imaged with other tracers (e.g.,
[18F]FDG).

5. Conclusions

The proposed approach, developed in PCa patients imaged using [18F]FMCH PET/CT,
allowed us to clearly represent the coexistence of different radiomic profiles for lesions within
each patient and providing insightful information regarding lesion heterogeneity. Collectively,
radiomics has brought a rare opportunity for advanced image analysis and it can be used
together with artificial intelligence to refine the concept of “personalized medicine”.
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depth measures: scatterplots of the Mahalanobis, Tukey, Simpli-cial depths on non-standardized
data (left panel) compared to standardized data (right panel), Figure S2: Dependency of information
provided by the radiomic views, according to ranking agreement analysis (SuperRanker), Figure S3:
Lesions’ similarity-based clustering was doublechecked with a ranking aggregation procedure.
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J. Nucl. Med. 2020, 61, 488–495. [CrossRef]

32. Sollini, M.; Cozzi, L.; Antunovic, L.; Chiti, A.; Kirienko, M. PET Radiomics in NSCLC: State of the art and a proposal for
harmonization of methodology. Sci. Rep. 2017, 7, 358. [CrossRef]

http://doi.org/10.1148/radiol.2020191145
http://doi.org/10.1016/j.remnie.2019.11.002
http://doi.org/10.1007/s00259-020-05073-6
http://www.ncbi.nlm.nih.gov/pubmed/33150459
http://doi.org/10.1186/s41824-020-00078-8
http://www.ncbi.nlm.nih.gov/pubmed/34191173
http://doi.org/10.1186/s13550-021-00858-8
http://www.ncbi.nlm.nih.gov/pubmed/34837532
http://doi.org/10.1159/000481438
http://doi.org/10.1158/0008-5472.CAN-18-0125
http://doi.org/10.1007/s00362-013-0555-5
http://doi.org/10.18637/jss.v091.i05
http://doi.org/10.1016/j.crad.2011.08.012
http://doi.org/10.1016/0377-0427(87)90125-7
http://doi.org/10.1109/TPAMI.1979.4766909
http://doi.org/10.1111/j.1349-7006.2012.02348.x
http://www.ncbi.nlm.nih.gov/pubmed/22632272
http://doi.org/10.23736/S1824-4785.17.02807-2
http://www.ncbi.nlm.nih.gov/pubmed/26329494
http://doi.org/10.3390/diagnostics11071162
http://www.ncbi.nlm.nih.gov/pubmed/34202253
http://doi.org/10.1007/s00259-022-05765-1
http://www.ncbi.nlm.nih.gov/pubmed/35347437
http://doi.org/10.1007/s00330-020-07598-8
http://www.ncbi.nlm.nih.gov/pubmed/33492473
http://doi.org/10.2967/jnumed.118.222893
http://doi.org/10.1038/s41598-017-00426-y


Cancers 2023, 15, 823 18 of 18

33. Wang, H.; Marron, J.S. Object oriented data analysis: Sets of trees. Ann. Stat. 2007, 35, 1849–1873. [CrossRef]
34. Georgina, F.A. Multiclass classification of tree structured objects: The k-nn case. BIOMAT 2013, 323–343. [CrossRef]
35. Flesia, A.G. Unsupervised Classification of Tree Structured Objects. BIOMAT 2009, 280–299. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1214/009053607000000217
http://doi.org/10.1142/9789814520829_0019
http://doi.org/10.1142/9789814271820_0018

	Introduction 
	Materials and Methods 
	Study Design and Patient Selection 
	Image Analysis 
	Data Analysis and Statistics 
	Lesion Textural Profile 
	Qualitative Assessment of Intra-Tumor Heterogeneity 
	Quantitative Assessment of Intra-Tumor Heterogeneity 
	Perspective Modeling 


	Results 
	Lesion Textural Profile 
	Qualitative Assessment of Intra-Tumor Heterogeneity 
	Quantitative Assessment of Intra-Tumor Heterogeneity 
	Perspective Modelling 

	Discussion 
	Conclusions 
	References

