
Integrative Analysis of Epigenetic Modulation in
Melanoma Cell Response to Decitabine: Clinical
Implications
Ruth Halaban1*, Michael Krauthammer2, Mattia Pelizzola3, Elaine Cheng1, Daniela Kovacs7, Mario

Sznol4, Stephan Ariyan5, Deepak Narayan5, Antonella Bacchiocchi1, Annette Molinaro3, Yuval Kluger6,

Min Deng1, Nam Tran2, Wengeng Zhang1, Mauro Picardo7, Jan J. Enghild8

1 Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, United States of America, 2 Department of Pathology, Yale University School

of Medicine, New Haven, Connecticut, United States of America, 3 Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven,

Connecticut, United States of America, 4 Department of Comprehensive Cancer Center Section of Medical Oncology, Yale University School of Medicine, New Haven,

Connecticut, United States of America, 5 Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America, 6 Department of

Cell Biology, New York University School of Medicine, New York, New York, United States of America, 7 San Gallicano Dermatological Institute, Rome, Italy, 8 Molecular

Biology, University of Aarhus, Aarhus, Denmark

Abstract

Decitabine, an epigenetic modifier that reactivates genes otherwise suppressed by DNA promoter methylation, is effective
for some, but not all cancer patients, especially those with solid tumors. It is commonly recognized that to overcome
resistance and improve outcome, treatment should be guided by tumor biology, which includes genotype, epigenotype,
and gene expression profile. We therefore took an integrative approach to better understand melanoma cell response to
clinically relevant dose of decitabine and identify complementary targets for combined therapy. We employed eight
different melanoma cell strains, determined their growth, apoptotic and DNA damage responses to increasing doses of
decitabine, and chose a low, clinically relevant drug dose to perform whole-genome differential gene expression,
bioinformatic analysis, and protein validation studies. The data ruled out the DNA damage response, demonstrated the
involvement of p21Cip1 in a p53-independent manner, identified the TGFb pathway genes CLU and TGFBI as markers of
sensitivity to decitabine and revealed an effect on histone modification as part of decitabine-induced gene expression.
Mutation analysis and knockdown by siRNA implicated activated b-catenin/MITF, but not BRAF, NRAS or PTEN mutations as
a source for resistance. The importance of protein stability predicted from the results was validated by the synergistic effect
of Bortezomib, a proteasome inhibitor, in enhancing the growth arrest of decitabine in otherwise resistant melanoma cells.
Our integrative analysis show that improved therapy can be achieved by comprehensive analysis of cancer cells, identified
biomarkers for patient’s selection and monitoring response, as well as targets for improved combination therapy.
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Introduction

There is growing evidence that tumors are highly heterogeneous

and that treatment guided by tumor genotype, epigenotype, and

gene expression profile may improve outcome. The implementa-

tion of this integrative approach is crucial for the treatment of

melanomas, a lethal disease known to be composed of different

classes, as revealed by multiple approaches [1–4]. Melanomas also

harbor mutations that promote the malignant phenotype, such as

in BRAF, CDKN2A, PTEN, CTNNB1, NRAS, PIK3CA and KIT

[5,6], but except for BRAF (,50%) and common loss of CDKN2A,

these mutations exist in a minor portion of melanoma specimens

(10% or less). Nevertheless, mutation analysis is already a part of

clinical operating procedures, such as in selecting patients for

treatment with PLX4032 (Plexxikon Inc.) and Imatinib (Gleevec,

Novartis Pharmaceuticals), inhibitors specific for activated BRAF

and KIT, respectively.

Epigenomic dysregulation, such as methylation of DNA at CpG

rich islands in promoter regions and histone-tail modifications are

common in cancer cells [7–9] as well as in melanomas [10].

Aberrant DNA methylation is the cause for downregulation of

tumor suppressors, apoptotic factors, DNA repair enzymes,

adhesion molecules and immunomodulators involved in malignant

progression of various cancers [9,11,12]. These epigenomic marks

are cell- and tumor- type specific, they are reversible and thus are

targets for cancer therapy [13,14]. For example, the well-

characterized DNA methyltransferase inhibitor decitabine (5-

Aza-29-deoxy-cytidine, Aza), is active as a single agent in

myelodysplastic syndrome, acute myeloid leukemia (AML) and

chronic myeloid leukemia (CML), and has also been in clinical
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trials for solid tumors, such as melanomas, but with disappointing

results. There are probably multiple factors behind lack of

responsiveness, among them the instability of the drug, failure to

achieve optimal concentration, or failure to exert the intended

activity [15]. However, Aza can sensitize cells to chemotherapeutic

[16] and immunotherapeutic drugs [17–19], and combination

therapy with existing or novel DNA demethylating agents can

become more efficient in treating solid tumors.

Consequently, there is a need for a better understanding of the

molecular effects of clinically relevant concentrations of decita-

bine, and to identify markers that predict tumor sensitivity and/or

can be used to monitor drug efficacy. In the studies described here

we explored the mechanism of action of low-dose decitabine on

melanoma cells that are relatively sensitive or resistance to this

drug, assessed global gene expression, conducted extensive

bioinformatic analysis for biomarker discovery, investigated the

contribution of somatic mutations to decitabine resistance,

validated some of the changes at the protein level, performed

functional analyses, and explored synergistic treatment based on

susceptibility of key proteins to proteasomal degradation. We

demonstrate that the growth inhibitory effects of low-dose

decitabine cannot be attributed to DNA damage response but

rather to reconstitution of growth suppressive pathways; activating

mutation in b-catenin can confer resistance; and Bortezomib can

re-sensitize resistant cells to decitabine.

Results

Cell proliferation and apoptotic responses to Aza
Aza dose-response analyses revealed that five of the melanoma

cell strains (YUMAC, YUSAC2, YULAC, YUSIT1, and YU-

GEN8) were relatively sensitive to the drug with IC50 ranging

between 13–135 nM, and the other three (WW165, YURIF and

501 mel) were relatively resistant with IC50 ranging between 233–

417 nM as determined by cell proliferation assays (Figure 1A, B,
Figure S1 and Table S1). The differences between drug

responses were not due to the number of passages in cultures

(YUSIT1, YUSAC2, WW165 and 501 mel cells were long-term

cultures whereas YUMAC, YULAC and YURIF were melanoma

cells freshly cultured from different tumors). Nor were BRAF, N-

Ras activation or PTEN mutation/loss responsible for the

differences, because all cell strains expressed the activated BRAF

Figure 1. Cellular responses to Aza. Panel A. Growth arrest in response to Aza. Melanoma cells were untreated or treated with increasing
concentrations of Aza for 2 days (under line), released into regular growth medium and counted at 2–3 days intervals. The figure shows
representative growth curves of a sensitive (YUMAC) and resistant (501 mel) melanoma cell strains of two biological replicates. Supplemental data
provide the growth curves (Figure S1) and the population doubling time (Table S1) of all cell strains. Panel B. Aza IC50 response. The vertical line
separates the designated sensitive (top) and resistant cell cells (bottom). Panel C. Apoptosis in response to low-dose Aza (0.2 mM) measured by the
Caspase-Glo 3/7 assay kit. Panel D. Apoptosis in response Aza (0.2 mM) detected by immunofluorescence with anti-caspase-3 active rabbit
antibodies (green arrows point at green fluorescing apoptotic cells). The cell nuclei are stained with DAPI (blue). Bars indicate 20 mm. The histogram
shows percent apoptotic cells measured by counting the number of active caspase-3 positive green fluorescing cells in 10 independent microscopic
fields representing about 800 cells each. The cell base assay shows a lower percentage of apoptotic cells in response to Aza compared to Panel C
because large numbers of affected cells detached during the staining and washing procedures.
doi:10.1371/journal.pone.0004563.g001
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kinase, none harbored N-Ras mutation, and PTEN expression was

lost in only two cell strains, while one PTEN-positive cell strain

carry a known variant (Pro38Ser) (Table 1). The stage of the

original melanoma tumor was also not a factor because the

resistant WW165 melanoma cells were established from primary

melanoma, and all the others from metastatic lesions.

Apoptosis in response to Aza treatment was also variable and

generally in agreement with the proliferative responses

(Figure 1C). Low doses of decitabine (0.2 mM) elicited an intense

apoptotic response in YUSIT1, YUGEN8 and YUMAC (3–5 fold

increase over control), intermediate response in YUSAC2,

WW165 and 501 mel (1.5–2-fold increase over control), and no

response in YURIF melanoma cells. Immunostaining with

activated caspase-3 antibodies showed that the differences between

resistant and sensitive cells were at the level of the number of cells

undergoing apoptosis (Figure 1D).

We chose 2-day treatment with low-dose Aza (0.2 mM) followed

by one-day recovery in fresh growth medium for all subsequent

experiments, because this concentration of decitabine discriminat-

ed well between sensitive and resistant cells based on cell

proliferation assays (Figure 1A and Figure S1) and is also the

one likely to be reaching solid tumors in vivo in patients treated

with this agent [15]. Decitabine has very short circulating half-life,

and patients receiving 30–40 mg/m2 per 24 hours (twice the

current approved dose) by continuous intravenous infusion for

72 hours achieved plasma concentrations of 0.12 to 0.16 mM.

The DNA damage response cannot account for low-dose
Aza induced growth arrest

We first assessed whether the DNA damage response is the basis

for growth arrest in response to low-dose Aza treatment in our panel

of melanoma cell strains, because Aza at even 0.1 mM can induce

DNA damage in human lung cancer cell lines [20–23], and

concentrations of ,1 mM and above also activate p53, resulting in

p21Cip1 induction and cell cycle arrest [20–22]. We performed the

Comet assay which measures DNA damage at the level of individual

cells. This test revealed that 0.5 mM and 1.0 mM, but not 0.2 mM

Aza induced DNA damage in the Aza sensitive YUMAC, but not

the resistant YURIF melanoma cells (Table 2). Furthermore,

additional tests excluded the induction of double-strand break DNA

repair and activation of cell-cycle checkpoints after low-dose Aza,

because: a) there were no changes in the levels of phosphorylation of

proteins known to transmit the ATR (ataxia telangiectasia mutated

(ATM) and ATM and Rad-3 related) response, CHK1, and gamma-

H2AX, reported to be activated in response to high dose Aza (1–

10 mm) [20–22] (data not shown); b) there was no accumulation of

p53 phosphorylated forms (Ser37 and Ser20); and c) there was no

induction of BAX, that was expressed at equal levels in these cells, or

additional p53 signature genes, such as GADD45.

Table 1. Sources of patient’s derived melanoma cells.

Melanoma Gender/age Stage/site BRAF status PTEN

WW165 F/62 Primary melanoma, 2.25 mm V600K (GTG-.AAG) WT, Present*

YUMAC M/68 IV, Soft tissue metastasis, right thigh V600K (GTG-.AAG) WT, Null (no protein)

YUGEN8 F/44 IV, Brain metastasis V600E (GTG-.GAG) Null (no gene transcripts)

YUSAC2 M/57 IV, Soft tissue metastasis, left neck V600E (GTG-.GAG) WT/LOH (Present)

YUSIT1 M/67 Metastatic melanoma V600K (GTG-.AAG) WT (Present)

YULAC F/66 IV, Soft tissue metastasis, neck V600K (GTG-.AAG) P38S/LOH (C1143T)

YURIF M/53 IV, Soft tissue metastasis, right thigh V600K (GTG-.AAG) LOH Present

501 mel Not known Lymph node metastasis V600E (GTG-.GAG) WT, Present

*Present indicates normal levels of gene transcripts and protein expression compared to normal melanocytes. There was no induction of PTEN mRNA after Aza
treatment.

doi:10.1371/journal.pone.0004563.t001

Table 2. DNA damage in response to Aza as measured with
the comet assay YUMAC.

Melanoma Aza (mM) %DNA in Tail6SE %Tail Length6SE

YUMAC 0 2.3660.25 11.19060.66

0.2 1.1360.12 8.5560.56

0.5 5.2060.41 18.6760.73

1.0 4.3560.24 16.7960.50

100 mM H2O2 32.8961.30 43.4760.75

YURIF 0 11.7360.44 34.4460.77

0.2 11.3760.49 34.3560.87

0.5 6.9460.48 27.0360.93

1.0 8.2760.49 28.3260.80

100 mM H2O2 69.9961.49 72.4860.95

YUSAC2 0 6.3060.32 23.5260.62

0.2 7.0360.49 24.2660.77

501 mel 0 9.2460.39 26.6860.58

0.2 6.4360.37 22.6660.65

WW165 0 11.5860.41 29.6260.60

0.2 5.8060.38 19.5060.70

YUGEN8 0 8.2260.45 25.9960.73

0.2 6.1960.50 23.7360.80

YULAC 0 8.4860.38 25.4660.60

0.2 4.8560.25 20.4960.57

YUSIT1 0 7.3860.33 23.7660.69

0.2 7.8360.39 24.6360.62

Melanoma cells were untreated or treated with Aza for 2 days, harvested after
one-day recovery in standard growth medium, and subjected to the Comet
assay. Cells were examined with fluorescence microscope, photographed, and
analyzed with CASP software (http://casp.sourceforge.net). The percentage of
the DNA tail area was divided to total DNA area for each cell, and percentage of
DNA tail length divided to total DNA length was counted. The data represent
averages from 100–120 cells6SE; YURIF DNA damage response is a
representative of two biological replicates with similar results. Treatment with
hydrogen peroxide (100 mM) for 10 minutes on ice was used as positive control.
doi:10.1371/journal.pone.0004563.t002
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We concluded that 0.2 mM did not cause DNA damage. We

therefore, explored gene reactivations that lead to changes in

specific signaling pathways as the mechanism of Aza cellular

responsiveness, and attempted to identify markers by interrogating

specific genes revealed by the bioinformatic analyses.

Whole-genome gene expression profiling in response to Aza
Unsupervised hierarchical clustering based on similarity of

genome-wide expression profiles of the eight melanoma cell strains

confirmed low variability between replicate experiments, indicat-

ing high quality of results (Figure 2A). The clustering of an Aza

treated cell strain with its untreated counterpart shows that

relatively few genes were affected by Aza treatment. The

dendogram also suggested that pre-treatment gene expression by

itself harbors important information with respect to Aza

responsiveness because sensitive YUMAC, YULAC and YUSIT1,

clustered separately from the Aza resistant YURIF and 501 mel

melanoma cell strains

Figure 2. Bioinformatic analysis of whole genome expression arrays. Panel A. Unsupervised hierarchical clustering of absolute intensity
values. The vertical scale indicates 1-pearson’s correlation coefficients as a measure of similarity. Panel B. Heatmap of differentially expressed
sequences after treatment with low-dose Aza. Panel C. DNMT1 expression at the end of 3-days treatment with Aza (0.2 mM). Cell extracts were
subjected to Western blot with anti-DNMT1 antibodies. The same membrane was successively blotted with anti-b-actin antibodies as a measure for
protein load in each well. Panel D. Pie chart of the most over-represented Gene Ontology terms (p-value,1e-3); the size is relative to the number of
represented genes, and the color represents the enrichment p-value. Panel E. SFRP1 transcripts in melanoma cell strains as assessed by the
oligonucleotide array hybridization. The data represent one of two sequence IDs with similar results. The error bars represent the Standard Deviations
(SD). One, two, three stars refer to p-value less than 0.05, 0.01 or 0.001, respectively. We determined p-values by unpaired t-test (Aza vs. Untreated).
The broken line in this and all subsequent figures separates sensitive (left hand side) from resistant (right hand side) cell strains.
doi:10.1371/journal.pone.0004563.g002
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We identified 396 sequence ids, representing 292 genes that

were differentially expressed across the cell strains following

treatment with low-dose Aza (Figure 2B; all microarray data
will be deposited in GEO). At least 50 genes in our list are

already known to be regulated by DNA methylation, such as those

encoding cancer antigens (a set of MAGE and GAGE), H19,

S100A4, IGFBP4, UCHL1, COL1A2, CLU, FN1, and TGFBI

(Figure 2B). We did not see consistent re-expression of genes that

have been previously reported to be under epigenetic control and/

or reactivated by low concentration of decitabine (0.1 mM) in

established uveal melanoma cell lines, such as S100A2 [24], and

two melanoma cell lines, such as Apo2L/TRAIL and XAF1 [18],

or in response to higher concentrations of decitabine, such as

PTEN, HOXB13, APC, RASSF1A, RARB and MGMT [10,25,26].

Surprisingly, the Aza sensitive YUSIT1 displayed the lowest

intensity of absolute change in gene expression compared to the

other melanoma cell strains (Figure 2B). This difference might be

attributed to higher levels of DNMT1 post Aza treatment in these

cells compared to the other cell strains (Figure 2C).

The sequence ids have been evaluated for over-representation

of functional families based on analysis of enrichment of

GeneOntology (GO) terms. Among the highest scoring GO terms

were genes associated with the extracellular region, matrix,

response to wounding and external stimulus, protease inhibitor

activity, and genes associated with acute inflammatory and

immune responses (Figure 2D). However, we could not find

any particular category that could segregate the relatively Aza

sensitive from the resistant cell strains.

To better understand cellular responsiveness to the drug, we

compared the pre-treatment gene expression levels between

sensitive and resistant melanoma cell strains. This analysis

uncovered 94 genes (141 sequences) with differential pre-treatment

expression. Among them was SFRP1 (Secreted frizzled-related

protein 1), the negative regulator of Wnt signaling, whose basal

transcript levels were particularly low in the resistant compared to

the sensitive melanoma cell strains (Figure 2E). Because SFRPs

are known to be regulated by DNA methylation and to be

reactivated by Aza [27,28], and Wnt signaling plays an important

role in melanoma biology [29], we further explored the role of this

pathway in Aza differential responsiveness.

Activated Wnt/b-catenin/MITF pathway confers
resistance to Aza

The known role of Wnt downstream target b-catenin compelled

us to assess the involvement of b-catenin activating mutation in

Aza growth-arrest resistance. Re-sequencing of CTNNB1 exon 3

revealed D32H, and not S37F substitution reported before [30], in

our 501 mel cells, and S33C mutation in YURIF melanoma tumor

and cultured cells, whereas the gene in all the other cell strains was

normal (Figure 3A). YURIF and 501 mel melanoma cells also

expressed high constitutive levels of b-catenin (Figure 3B, b-
catenin), as expected from the increased resistance to proteaso-

mal degradation conferred by the activating mutations. In all the

others, b-catenin levels were low but re-appeared in the presence

of the proteasomal inhibitor MG132. Treatment with Aza

upregulated b-catenin in YUGEN8, and to a lesser extent in

YUMAC melanoma cells, in agreement with the arrays hybrid-

ization intensities.

Among the b-catenin target genes is MITF, encoding a

melanocyte-specific transcription factor that can interact with b-

catenin to modulate the Wnt signaling and cell growth [29]. MITF

transcripts were similar or slightly lower than those in normal

melanocytes (data not shown), suggesting that the gene was not

amplified. However, basal levels of MITF proteins varied among

the cell strains, being particularly high in 501 mel and WW165

cells (Figure 3B, MITF).

The role of b-catenin in conferring resistance to Aza was further

explored by knockdown experiments. Transient CTNNB1-direct-

ed siRNA knockdown caused about 70% reduction in b-catenin

levels compared to Alexa fluor treated cells (Figure 3C) or control

siRNA (data not shown). In addition, there was repression of

MITF, as well as the anti-apoptotic BCL2. Myc, the other known

b-catenin target gene, was downregulated by CTNNB1 knock-

down but only in control cells and not in those treated with Aza

(Figure 3C). Furthermore, downregulation of b-catenin sensitized

the 501 mel resistant cells to Aza mediated apoptosis (Figure 3D),

suggesting that b-catenin signaling shields these resistant melano-

ma cells from undergoing apoptosis. The results are in agreement

with the observations that the MITF promoter is responsive to

Wnt signaling in melanocytes, that b-catenin binds and trans-

activates MITF, and that b-catenin induced melanoma growth

requires MITF [31]. Unfortunately, similar experiments could not

be conducted with YURIF melanoma cells because transfection

with CTNNB1-directed siRNA failed to produce any reduction in

b-catenin protein (data not shown).

We went on to explore the role of individual reactivated genes

and their protein products in Aza responsiveness, focusing on

pathways known to induce growth arrest and/or apoptosis, and

further examination of known Aza effects other then DNA

demethylation.

Activation of p21Cip1 in a p53 independent manner
Although the DNA damage response was ruled out, close

examination of the oligonucleotide gene expression data showed

two-fold increases in CDKNA1 (encoding p21Cip1) transcripts in

some melanoma cell strains (Figure 4A). Therefore, we assessed

p21Cip1 levels in cells treated with low-dose Aza, in the absence

and presence of MG132, supplemented to the medium 6 hr before

harvest in order to prevent proteasomal degradation known to

affect the stability of this protein in melanoma cells [32]. Western

blotting revealed strong induction of p21Cip1 in response to Aza in

YUMAC, YUSAC, and YUGEN8 melanoma cells, and less so or

not at all in the other cell types. The gene was induced in YUMAC

cells null for TP53 (Figure 4 panels A and B, compare p53 to
p21Cip1), conforming our previous conclusion that p53 does not

mediate growth arrest. All the p53 expressing melanoma cell

strains possessed the P72R variant but none carried an inactivating

mutation in exon 4 of p53. P72R is a common allele in

Caucasians, from which these melanoma tumors were isolated.

Therefore, the different levels of p53 in this panel of melanoma

cells could not be explained by TP53 genetic variation.

TP53-independent induction of p21Cip1 in leukemic cells was

attributed to decitabine-induced re-expression of the tumor

suppressor p73, an upstream regulator of p21Cip1 [33,34].

However, p73 is not expressed or induced in melanoma cells by

Aza. The suppression of CDKN1A by methylation of the proximal

promoter in senescing fibroblasts [35], prompted us to explore

direct methylation and demethylation as the cause for p21Cip1

silencing and reactivation, respectively. Indeed, the CDKN1A

promoter was highly methylated only in 501 mel non-expressing

cells, and underwent partial demethylation after treatment with

low-dose Aza (Figure 4C, 501 mel, compare control to Aza).

Interestingly, a cluster of seven CpG dinucleotides proximal to the

transcription start site (TSS) remained fully methylated after

treatment, which may explain the weak reactivation of p21Cip1 in

501 mel cells (Figure 4A, 501 mel). In contrast, this promoter

region was not methylated in any of the other melanoma cell

Decitabine in Melanomas
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Figure 3. Activated Wnt/b-catenin/MITF pathway confers resistance to Aza. Panel A. Chromatograms showing CTNNB1 activating
mutations in 501 mel cells (GAC/CAC) and YURIF tumor (TCT/TGT) (marked by brackets and arrows), which lead to D32H and S33C mutations,
respectively. The same results were obtained with YURIF short term cultured cells. Panel B. Expression of b-catenin and MITF in melanoma cell strains
relative to b-actin. CTNNB1 mutation status for each cell strain is indicated at the top. Panel C. siRNA knockdown of b-catenin and downstream
targets. Parallel cultures were untreated or treated with Aza (0.2 mM) for 2 days followed by transient transfection with three different CTNNB1 siRNA
or with Alexa Fluor as a control for one day. Cell extracts were subjected to successive Western blotting with b-catenin, MITF, BCL2, Myc, and b-actin.
Panel D. The same cultures as in panel C were assessed for apoptosis employing the Caspase 3/7 assay. Bars indicate SD of 3 replicate wells.
doi:10.1371/journal.pone.0004563.g003
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Figure 4. TP53-independet CDKN1A reactivation and promoter methylation. Panel A. Reactivation of CDKN1A in melanoma cells in
response to Aza (0.2 mM) as revealed by oligonucleotide array hybridization. The data represent one of two sequence IDs with similar results. All other
details as in Figure 2 Panel E. Panel B. Expression of p21Cip1 and p53, with b-actin serving as a control. Parallel cultures of melanoma cells were
untreated (2) or treated (+) with Aza (0.2 mM). MG132 (20 mM) was added 6 h prior to harvesting the cells where indicated (+). The levels of p53
protein were in agreement with gene transcript levels showing that TP53 was inactivated in YUMAC (absolute hybridization intensities values of
,220, compared to 8,000–12,000 in the melanoma cell strains). Here and in all other Western blots numbers on the left mark the location of
prestained protein markers in KDa, heavy and light frames designate Aza resistant and sensitive cells, respectively. Panel C. BS sequencing results of
CDKN1A proximal promoter (2214 to +20 relative to TSS). Melanoma cells were untreated (control), and Aza (0.2 mM) treated as described in Panel B.
Symbols: Arrows indicate the TSS; open and black circles, unmethylated and methylated CG pairs, respectively; dark and light grey circles indicate
about 50% and 10% methylated CG, respectively. Numbers on the bottom indicate bp location relative to TSS.
doi:10.1371/journal.pone.0004563.g004
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strains (Figure 4C), in agreement with basal p21Cip1 gene

transcripts and protein (Figure 4A and B).

Because low-dose Aza induced CDKN1A in several melanoma

cell strains in which the promoter was unmethylated, we

attempted to identify additional genes that behave in a similar

fashion whose reactivation can lead to growth arrest and further

explored the mechanism of Aza activity.

Activation of CLU by DNA demethylation
The global oligonucleotide gene expression data showed

reactivation of TGFb induced genes (CLU and TGFBI), which

encode secreted proteins with potential to be markers for Aza-

responsiveness. Clusterin levels in Aza treated cells were also

assessed in the presence of MG132, because CLU, like p21Cip1, is

sensitive to proteasomal degradation [36]. Western blot confirmed

that protein levels corresponded, in general, to CLU transcripts,

except for 501 mel cells which displayed reactivated gene

transcripts with barely detectable protein, and YUSIT1 cells

which expressed very little CLU mRNA but nevertheless exhibited

high levels of Clusterin after inhibition with MG132 (Figure 5A,
B, relative mRNA levels confirmed by Real-Time RT-
PCR, Figure 6D, and data not shown). Nevertheless, the

presence and absence of the protein correlated with the pattern of

drug sensitivity and resistance, respectively, enhanced by blocking

proteasomal degradation (Figure 5B). However, BS modified

DNA sequencing showed that promoter methylation could not

fully explain Clusterin basal and reactivated expression. CLU

proximal promoter was methylated in a CpG rich island about

120 bp downstream of TSS, which underwent demethylation in

response to Aza to the same extent in YUMAC, YUGEN8,

WW165 and 501 mel cells (Figure 5C). Furthermore, the

promoter was unmethylated in the non-expressing, untreated

YURIF melanoma cells (Figure 5C, YURIF), results reminiscent

of p21Cip1 activation.

Synergistic reactivation with HDAC inhibitor
Aza reactivation of the unmethylated CDKN1A and CLU

promoters suggested de-repression by methylation-independent

mechanism. Because Aza can reverse histone-mediated silencing

of unmethylated CDKN1A and other promoters [37], and the

histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) acts

synergistically with Aza to reactivate hypomethylated promoters

[38], we explored reactivation by TSA and the clinical HDAC

inhibitor PXD101 [39,40]. Indeed, TSA induced p21Cip1 and

Clusterin in YUMAC cells in which the respective promoters are

un- and hypo-methylated, respectively, in a dose dependent

manner, even in the absence of MG132 (Figure 6A, B, left
panels), but not p21Cip1 in 501 mel cells in which the promoter is

fully methylated (data not shown). Likewise, p21Cip1 and Clusterin

levels were increased in YUMAC and YURIF, but not in 501 mel

cells, after overnight treatment with PXD101 (Figure 6A, B,
middle panels). However, there was synergistic reactivation of

p21Cip1 and Clusterin in 501 mel cells when PXD101 was

combined with Aza (Figure 6A, B middle panels). These

results, confirmed at the mRNA level by Real-Time PCR

(Figure 6A, B, right hand panels), are consistent with the

notion that the un- and hypomethylated promoters of these two

genes are suppressed in melanoma cells by acetylated histone H3,

and that Aza can release HDAC1 suppression and can act in

synergy with HDAC inhibitors, as reported for AML and

colorectal carcinoma cells [37].

The growth inhibitory effect of combination treatment of Aza

with TSA and PDX101 were further explored and shown in

Figure 6Ca, b. In YUMAC melanoma cells, CI-isobol analysis

showed that TSA acted synergistically while PXD101 acted at

most additive when combined with Aza (Figure S2) This suggests

that PXD101 may induce cell arrest by other mechanisms,

independent of gene re-expression [41].

Reactivation of TGFBI
We were interested in reactivation of TGFBI (transforming

growth factor, beta-induced, 68 kDa), because it is one of the

novel genes that was not previously reported to be controlled by

DNA methylation and it belongs to a set of ,11 genes active in

normal human melanocytes, silenced in melanoma cells, and

reactivated by low-dose Aza (COL1A2, CTSK, GLB1L, IL11RA,

MMP1, RND2, SERINC2, STC1, TNFRSF10D, FLJ22662)

(Figures 2B and 7A), and thus has the potential to serve as a

marker for melanoma progression and responsiveness to Aza. The

basal and Aza induced transcript levels of TGFBI were confirmed

at the protein level (Figure 7B). However, unlike CLU, there was

no complete separation between resistant and sensitive cells.

Although TGFBI was not reactivated in two resistant cell strains

(501 mel and WW165), it was induced in the third one, YURIF, to

levels similar to those in sensitive cells (Figure 7B).

Sequencing of BS modified DNA revealed that TGFBI

promoter was unmethylated and partially methylated in expressing

normal human melanocytes and YUSIT1 melanoma cells, and

completely methylated in non-expressing melanoma cells WW165,

YUGEN8, YUMAC and YUSAC2 (Figure 7C and D).

Furthermore, Aza caused demethylation in the three cell strains

examined, YUSAC2, YUGEN8 and YUMAC, in which TGFBI

was reactivated (Figure 7C and D). TGFBI promoter methyl-

ation was not restricted to metastatic cells or to cells in culture,

because it was also methylated in primary melanoma cells freshly

isolated from a 2.2 mm lesion (passage 1) and in five independent

snap-frozen metastatic tumors (data not shown). These results

suggest that TGFBI is indeed controlled by DNA methylation in

melanoma cells and that promoter methylation may serve as a

marker for malignant transformation.

We assessed the contribution of the two TGFb-pathway genes

to the Aza apoptotic response the relatively sensitive YUMAC cell

strain by short-term knockdown with gene-specific siRNA. Clu and

TGFBI siRNA reduced the targeted protein to almost undetectable

levels (Figure 8A). On the other hand, the apoptotic response of

parallel cultures was reduced by 30% and 50% in Clu and TGFBI

knockdown, respectively compared to Alexa fluor control

transfectants, without any further increase in double knockdown

cells (Figure 8B). These results indicated that Clu and TGFBI

can account for some, but not all the apoptotic effect of Aza and

that the two may act on the same pathway.

Synergism between Aza and proteasomal inhibition
Guided by the observation that the two reactivated gene

products Clusterin and p21CIP were sensitive to proteasomal

degradation, we tested if Bortezomib (Velcade), a reversible

inhibitor of the 26S proteasome currently in clinical trials for

cancer patients including melanoma [42], can enhance Aza

growth inhibition, especially in resistant cells. Although the Cmax

of Bortezomib at a standard dose and schedule (IV on days 1, 4, 8,

11 every 3 weeks) is high (80–500 ng/ml), it has a rapid

distribution phase, and a terminal half-life of 9–10 hours. The

clinical data suggest that Bortezomib levels drop to the low ng/ml

range by several hours after dosing and remain at about 1 ng/ml

(2.6 nM) for 24 hours. Bortezomib dose response showed that

melanoma cells were highly sensitive to this inhibitor, with IC50 at

the clinical relevant range of 2–3 nM as calculated by GraphPad

Prism, and a steep curve at the of 1–4 nM range (Figure 9A).
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Figure 5. CLU reactivation and promoter methylation. Panel A. CLU re-expression in melanoma cells in response to Aza (0.2 mM) as assessed
by the oligonucleotide array hybridization. The data represent one of three sequence IDs with similar results. All other details as in Figure 2 Panel E.
Panel B. Clusterin expression as revealed by Western blots with anti-CLU antibodies. The results are representative of two biological replicas. Panel
C. BS DNA sequencing results of the proximal CLU promoter and part of first exon regions. The bar indicated the CG island and the arrows the site of
primers used for amplification. All other details as in Figure 4.
doi:10.1371/journal.pone.0004563.g005
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Figure 6. Reactivation of CDKNA1 and CLU by histone acetylation. The Western blots show p21Cip1 (Panel A) and CLU (Panel B) expression
in YUMAC melanoma cells treated with increasing concentrations of Trichostatin A (TSA) overnight, as revealed by probing with the respective
antibodies using b-actin as a control (left panel). Middle panels show expression of p21Cip1 and CLU after 2-days treatment with Aza (0.2 mM), where
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Low-doses of Bortezomib (2 nM) sensitized the resistant 501 mel

melanoma cells to 0.2 mM Aza (Figure 9B). CI-isobol analysis

showed that the drugs act synergistically (Figure S2). However,

YURIF melanoma cells were even more sensitive to Bortezomib

then YUMAC or 501 mel cells and there was no synergistic

growth inhibition when the two drugs were combined

(Figure 9C).

Discussion

The results of our integrative examination of a panel of eight

melanoma cell strains, three from short-term cultures, although in

need of validation on a larger cohort, revealed underlying

processes important for responsiveness to decitabine. The data

implicated three major components in Aza responsiveness: a)

activation of Wnt signaling; b) re-expression of p21Cip1 in a p53-

independent manner and c) activation of two TGFb pathway

genes.

Comparing the gene expression profile of un-treated and

treated melanoma cells implicated Wnt signaling based on high

expression of the Wnt antagonist SFRP1 only in sensitive cells,

which led us to further explore downstream members of this

pathway and to identify activated b-catenin as a feature

contributing to drug resistance. Although mutations in CTNNB1

are rare in melanomas, activation might be through upstream

modulators because a survey of large collection of melanoma

tumors in tissue microarrays demonstrated that activated b-

catenin in the nucleus is an independent predictor of poor survival

[43]. The oncogenic potential of b-catenin was validated in a

mouse model where stabilized b-catenin repressed p16Ink4a

expression and together with an activated NRas, lead to

melanoma development with high penetrance and short latency

[44]. We showed that the likely effect of activated b-catenin is

upregulation of MITF, a potent melanocyte-specific transcription

factor by itself considered an oncogene [45]. Interestingly only two

of the three resistant cell strains, 501 mel and YURIF, harbored

activated CTNNB1 mutation. The third one, WW165 expressed

constitutively high levels of endogenous MITF (in the absence of

any gene amplification). Wnt/b-catenin pathway also interferes

with responsiveness of CML to the tyrosine kinase inhibitor

Imatinib [46], suggesting a common effect on other cancer cells as

well. Therefore, various components of the activated Wnt/b
pathway, in particular an activating mutation in b-catenin and

high levels of MITF could be considered when selecting patients

for this type of therapy, and devising combination therapy.

Protein analysis showed that p21Cip1 was upregulated in a p53

independent manner in two of the sensitive cell strains, but not in a

resistant one. However, p21Cip1 was relatively stable and abundant

in the other five melanoma cell strains, suggesting the emergence

of resistance downstream of this cell cycle suppressor.

Whole genome expression analysis uncovered two reactivated

TGFb-responsive genes Clusterin and TGFBI that were more

prominent in Aza-sensitive compared to resistant melanoma cells,

and their activation enhanced apoptosis as observed by siRNA

mediated gene knockdown. These two proteins can be used as

markers, because they are secreted and have the potential to be

released into the circulation. Furthermore, TGFBI promoter

methylation might be useful as a marker for malignant

transformation because it was unmethylated in normal melano-

cytes and hypo- or fully methylated in freshly isolated primary and

metastatic melanoma cells, as well as melanoma tumors.

Our global gene expression analysis uncovered a total of 292

differentially expressed genes (mostly re-expression) across all

melanoma strains after Aza treatment, with some products known

to be associated with growth arrest. In addition to those described

here, we validated the expression of UCHL1, PTPN6, TNFR1,

SELENBP1, TNFR1, TNFRSF10D, S100A4, and several MAGE

genes by semi-quantitative or real-time RT-PCR, or Western

blots. Some of them, such as PTPN6 (protein tyrosine phospha-

tase, non-receptor type 6), that is expressed primarily in

hematopoietic cells, were significantly induced at the protein level

in the Aza sensitive YUMAC and YUSAC cells, but very little in

the other cell types without any correlation to growth arrest or

apoptotic response (Supplementary Figure S3). We surmise

that other activated pathways, such as genes associated with acute

inflammatory and immune responses or with activity on

neighboring stroma cells, such as IGFBP5 [47], are likely to

influence drug resistance in vivo and should be further explored.

We showed that gene reactivation by low-dose Aza in

melanoma cells is through two known epigenetic activities of this

drug, DNA promoter hypomethylation and histone modification.

Other decitabine-responsive genes in our dataset, such as FN1,

UCHL1, FUCA1, ICAM1, IL8, SERPINE2, TMEM45A and

SFRP2 are also reactivated by HDAC inhibitors [48,49], and

might be modulated through histone modification by Aza as well.

Aza can directly and indirectly modify histones as a function of

DNMT status. DNMT1 interacts with HDAC1 [50] and

elimination of DNMT1 displaces HDAC1 from target promoters

[37]. In addition, Aza can affect histone methylation because

DNMT1 binds also SUV39H1, a H3K9 methyltransferase, and

EZH2 that catalyses the methylation of histone H3 at lysine 27

(H3K27), conferring a suppressive state [51]. Decitabine can also

reduce the suppressive activity H3 K9 di-methylation by inducing

changes in the transcription of enzymes responsible for this

covalent modification [52]. Taken altogether, the observations

reinforce the concept that impact on histone modification should

be considered when dissecting the function of decitabine and

devising combination therapy that is based on gene reactivation.

The protein validation data highlighted the importance of

proteasomal degradation processes in responsiveness to Aza. At

least two of the critical growth suppressor proteins, p21Cip1 and

Clusterin, undergo proteasomal degradation. This observation led

us to infer that a proteasomal inhibitor such as Bortezomib,

currently in clinical trials, can synergize with low-dose Aza to

alleviate resistance. This prediction was fulfilled in the case of 501

mel resistant cells. The synergistic response to this drug

indicated (+) followed by 1-day incubation with PXD101 (1 mm). Left panels: Real-Time PCR data comparing fold-difference in CDKN1A and CLU
transcript in YUMAC and 501 mel cells after treatment with low-dose Aza and PXD101, alone and in combination, compared to non-treated cells.
PXD101 (1 mM) was added for 24 hrs before harvesting the cells. Notice differences in scale of absolute hybridization intensities in YUMAC and 501
mel cells. However, 501 mel expressed about 370 fold less CDKN1A gene transcripts compared to YUMAC cells, apparently insufficient to lead to
detectable p21Cip1 protein. The basal levels of CLU transcripts in YUMAC were about 50 fold higher relative to 501 mel melanoma cells, in agreement
with low protein levels (data not shown). Panel C. Growth response to combination treatment with HDAC inhibitors Trichostatin A (TSA) and
PXD101. The sensitive YUMAC and resistant 501 mel cells were incubated in triplicate wells without or with Aza (0.2 mM and 0.4 mM as indicated)
followed by one-day recovery in regular medium, or medium supplemented with increasing concentrations of TSA (a), or PXD101 (b). Cell viability
was assessed with the CellTiter-GloH Luminescent Cell Viability Assay. Data are presented as percent of control, non-treated cells.
doi:10.1371/journal.pone.0004563.g006
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Figure 7. TGFBI reactivation by promoter demethylation. Panel A. TGFBI re-expression in response to Aza (0.2 mM) as assessed by the
oligonucleotide array hybridization. The heavy line on the ordinate represent the levels of TGFBI- transcript levels in adult melanocytes. The data
represent one sequence ID. All other details as in Figure 2 panel E. Panel B. Validation of TGFBI re-expression at the protein level by Western blots
with anti-TGFBI antibodies employing b-actin as a control. The results are representative of two biological replicas. Panel C. BS sequencing results of
TGFBI proximal promoter and first exon in normal human melanocytes (NBMel) and melanoma cells untreated (control), and Aza (0.2 mM) treated
cells. Panel D. Chromatograms of the distal promoter about -50 to 2100 bp downstream of TSS as shown in C. Boxed nucleotide pairs indicate
position of intact (CG), partially BS modified (C/TG) and deaminated (TG) CG pairs. All other details as in Figure 4.
doi:10.1371/journal.pone.0004563.g007
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combination was unique because the Hsp90 inhibitor 17-AAG

and the IGF1R inhibitor NVP-AEW541 (Novartis), employed at

log-range of concentrations, did not show any synergistic growth

arrest with Aza (data not shown).

Altogether, our results from this limited panel of melanoma cells

suggest that treatment of melanoma patients could be improved by

knowledge of the genetic and epigenetic background of individual

tumors. In addition, they implicate that proteasomal and HDAC

inhibitors might act in synergy with epigenetic modifiers for some

patients.

Materials and Methods

Cells, drug treatments and proliferation assays
Normal human melanocytes were isolated from newborn

foreskins and grown in OptiMEM (Invitrogen, Carlsbad, CA)

with antibiotics, 5% fetal calf serum (regular medium) and growth

supplements [53] and used during their first passage. Melanoma

cells from primary and metastatic melanoma lesions (Table 1) were

from tumor samples excised to improve patient quality of life.

They were collected with participants’ informed consent according

to Health Insurance Portability and Accountability Act (HIPAA)

regulations with Human Investigative Committee protocol.

YUMAC, YULAC and YURIF melanoma cells were from

short-term cultures (passage 2–15). The BRAF activating mutation

was present in all the cell strains used in this study, two cell strains

were null for PTEN, one expressed PTEN variant (Pro38Ser) but

none harbored the N-Ras codon 61 mutation (Table 1). All

primer sequences are available as supplementary data (Table S2).

Decitabine (5-Aza-29-deoxy-cytidine, Sigma Chemical Co, St.

Louis, MO, termed Aza) was dissolved in methanol as 10 mM

stock solution, aliquoted and kept at 220uC. Dose response studies

were performed with sparse melanoma cell cultures seeded in

duplicate or triplicate wells (,5,000 cells/cm2) in regular medium

without or with increasing concentrations of Aza (0.1–1 mM) for

2 days, with fresh drug-containing medium on the second day.

The cells were then released into drug-free medium, harvested at

2–3 days intervals and counted with the Coulter counter. The

IC50 values for cell proliferation were calculated using the manual

from the NIH Chemical Genomics Center (http://www.ncgc.nih.

gov/guidance/section3.html). We defined the (inhibitive) response

of a cell line to be the ratio of the population doubling time of the

control (i.e., non-treated cells) to that of the treated cells. We

assume that the Hill-Slope model of dose-response: y = 1/(1+(x/

IC50)‘slope); y is the response corresponding to the dose x (Text

S1).

Alternatively, viability was assessed with the CellTiter-GloH
Luminescent Cell Viability Assay (Promega Corporation, Madi-

son, WI 53711) at the end of 3 days treatment, and the IC50

values were calculated by GraphPad Software, Inc., La Jolla, CA.

Trichostatin A (Sigma) was prepared as 3 mM stock solution

diluted in ethanol. PXD101 (the Cancer Therapy Evaluation

Program) was dissolved in DMSO as 10 mM stock solution and

used at 1 mM. The effect of Bortezomib (from the oncology clinic

pharmacy) on cell proliferation was assessed over 3 log

concentrations (0.01–500 nM, in triplicate wells), for 72 hr, as

described for Aza. Synergism between two drugs was estimated as

described in the Supplementary method (Text S1).

Apoptotic assays
Apoptosis was measured with the Caspase-Glo 3/7 assay kit

from Promega following the manufacturer instructions. In

addition, we used immunofluorescence with affinity-purified rabbit

anti-caspase-3 active antibodies (AF835, R&D Systems) to assess

the number of apoptotic cells after Aza treatment compared to

controls. DAPI (49,6-diamido-2-phenylindole dihydrochloride,

Sigma Chemicals) was used to visualize nuclear DNA.

Single cell DNA damage assay
The CometAssay Single Cell Gel Electrophoresis Assay kit

(CometSlideTM, R&D Systems, Minneapolis, MN) was used to

assess DNA damage in response to Aza following the manufac-

ture’s instructions. Briefly, melanoma cells were untreated or

treated with Aza (0.2 mM, 0.5 mM and 1.0 mM) for 2 days

followed by one day recovery as described above. As a positive

control we used melanoma cells suspended in PBS and treated

Figure 8. Validation of CLU and TGFBI apoptotic activity. Panel A. Reduction of Clu and TGBFI proteins by gene specific siRNA knockdown
assessed by Western blotting. YUMAC melanoma cells were untreated or treated with Aza (0.2 mM) for 2 days followed by transient transfection with
siRNA directed to Clu, TGFBI, or a mixture of the two, employing Alexa Fluor as a control, as indicated. Cells were harvested the following day and
extracts subjected to successive Western blotting with the respective antibodies, and anti-b-actin as a control. Panel B. Parallel cultures were tested
for apoptosis with the Caspase 3/7 assay. Values are given as percent of control, i.e., non-transfected cultures.
doi:10.1371/journal.pone.0004563.g008
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with 100 mM of hydrogen peroxide for 10 minutes on ice. Cells

were harvested, re-suspended in PBS at 125,000 cells/ml and

50 ml portions were processed, subjected to electrophoreses and

stained with SYBR Green I. Single fluorescing cells (100–120 cells

from each treatment) were photographed, and analyzed with

CASP software (http://casp.sourceforge.net). Quantitative and

statistical data were generated by analysis of the results using the

commercially available image analysis software packages that

calculates tail length and tail moment termed CASP software

(http://casp.sourceforge.net).

RNA isolation and hybridization to DNA microarrays
Approximately 20–30 million cells (normal human melanocytes

and melanoma cells/each) were used for mRNA extraction. The

melanoma cells were treated with low-dose Aza (0.2 mM) for

2 days, followed by one day recovery, total RNA was extracted

with the TRIzol reagent (Invitrogen Life Technologies, Inc.,

Invitrogen Corp., Carlsbad, CA), and Poly(A) mRNA was further

isolated using the PolyATtract mRNA isolation system IV (Pro-

mega, Madison, WI) following the manufacturer’s instructions,

and reversed transcribed to double stranded cDNA.

NimbleGen human whole genome expression microarrays

(array 2005-04-20_Human_60mer_1in2) were used for hybridiza-

tion. The same chip was hybridized with Cy3/Cy5 labeled polyA-

selected cDNA from untreated and Aza treated melanoma cells.

Each hybridization was repeated with dye swapping. The array

hybridizations and data captures were performed by personnel at

NimbleGen Systems Iceland LLC. Vı́nlandsleið 2–4, 113

Reykjavik, Iceland (currently Roche Applied Science, Basel,

Switzerland).

Bioinformatic analysis of global gene expression
Microarray design and data pre-processing. The

NimbleGen oligonucleotide microarrays contain ,380,000

probes with an average of 11 probes per sequence id. The entire

set of sequence ids can be associated with ,19,000 known genes.

Normalization within arrays was performed with Loess-based

methods to correct for biases due to labeling with different dyes on

the two microarray channels. As such, M and A values were

determined where M describes the amount of differential

expression (M = log2(cy5/cy3)) and A associates M with the

magnitude of overall expression (A = (log2cy5+log2cy3)/2).

Normalization between arrays was performed via quantile-based

methods to derive comparable A values (i.e., the average probe-

signal). The steps of normalization within- and between-array

were accomplished with tools provided in the limma Bioconductor

library (8).

Selection of differentially expressed genes. A probe-level

moderated t-statistic and the corresponding p-value were

calculated via the limma library (9). In particular, an empirical

Bayes method was employed to moderate the standard errors of

the estimated log-fold changes, resulting in more stable inference

and improved power (9). Multiple testing issues have been taken

into account when determining the cutoff p-values. Next, we

mapped probes to sequences by initially establishing a sequence’s

p-value distribution, and subsequently performing a t-test to

determine whether this distribution was likely to have a mean of

1e-4 at an alpha level of 0.05. In effect, we are testing whether

most of the probes had p-values below this threshold. Sequences

that were significant, and whose probes were concordant in sign

Figure 9. Bortezomib Augments the Aza growth-arrest re-
sponse in a synergistic manner. Panel A. Dose-dependent effects
of Bortezomib on cell proliferation. YUMAC melanoma cells were
seeded in 24 well plates, incubated with increasing concentration of
Bortezomib for 72 h, and cells from triplicate wells were harvested and
counted with Coulter counter. Panels B and C. Growth responses of
501 mel and YURIF melanoma cells to 0.2 mM Aza (red), 2 nM
Bortezomib (green) and combination (purple), compared to non-
treated cells (black). Values are average of duplicate wells. Bars indicate
double standard errors that ranged between 5–10% of total counts.
Similar results were obtained with 1 nM Bortezomib in combination

with Aza. The figures show one of two replicate experiments with
similar results.
doi:10.1371/journal.pone.0004563.g009
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(i.e., no more than three discordant probes per sequence id) were

retained. This pipeline was applied to identify differentially

expressed genes after the Aza treatment (292 genes); and

differentially expressed genes in untreated Aza resistant and

sensitive cells (94 genes). WW165, 501 mel and YURIF were

considered as the resistant, and the other five as sensitive strains for

these analyses based on the IC50 values.

Functional grouping of differentially expressed

genes. Differentially expressed sequences were evaluated for

enrichment of GeneOntology (GO) terms, considering all the three

ontologies: Molecular Functions, Cellular Component and

Biological Processes (Harris et al., 2004). GO terms were

assigned to each sequence id based on its Entrez gene id. A

statistical test based on the hypergeometric distribution was used

to determine the significance of the enrichment of each term. The

final sets of GO terms were ranked based on their p-value and the

most significant (p-value,1e-3) were selected.

Text mining. We performed text mining to better

characterize genes that showed differential expression after Aza

treatment. Specifically, we queried the literature for genes with

known promoter hypermethylation in cancer, and for genes that

have been shown to be regulated by treatment with epigenetic

modifiers. We used a 2-step term mapping procedure called

MarkIt [54] to properly flag a gene name with its appropriate

Entrez Gene ID (http://www.ncbi.nlm.nih.gov/sites/entrez).

Validation of gene expression
Protein levels were assessed by Western blots as described [55].

The membranes were probed with the following antibodies: anti-

Clusterin (C-18, goat, sc-6419), anti-DNMT1 (K-18, goat, sc-

10221), anti-p53 (pS20 sc-18079R rabbit), anti-p53 (pSer37, sc-

28464-R), all from Santa Cruz Biotechnology CA; anti-MITF

(clone D5) and anti-BCL2 (clone 124) mouse monoclonal

antibodies from DAKO; anti-p53 (AF1355, goat) from R&D

Systems; anti-p21Cip1 mAb (C24-4420) from BD Transduction

Laboratories, Canada; anti-b-Actin mAb (A1978) from Sigma-

Aldrich, St. Louis, MO 63103; anti-b-catenin (rabbit polyclonal

from Dr. David Rimm, Pathology department, Yale University)

[56]; and anti-TGFBI (rabbit polyclonal from Dr. Jan Johannes

Enghild, diluted 1:10,000).

Quantitative real-time RT-PCR was carried out in triplicate

employing cDNA, using ABI 7500 Fast Real-Time PCR Systems

and Power SYBRGreen (Applied Biosystems, Foster City, CA).

The genes and primers used for probing are listed in Table S2.

The expression of ACTB was used as a reference to normalize for

input cDNA. The relative expression values were computed by the

comparative Ct method.

Downregulation of gene by siRNA
CTNNB1 (b-catenin) was knock-downed with three different

gene specific siRNA purchased from Qiagen, Valencia, CA as

follows: CTCGGGATGTTCACAACCGAA (Hs_CTNNB1_5);

CAGCGGCTTCTGCGCGACTTA (Hs_CTNNB1_8); CAG-

GATGATCCTAGCTATCGT (Hs_CTNNB1_9). Alexa Fluor

488 siRNA was used to monitor transfection efficiency as well as a

control. An additional control was Allstars negative control siRNA

from Qiagen (Cat number: 1027280). Melanoma cells were

treated with Aza (0.2 mM) for 2 days and siRNAs were added at

10 nM employing the HiPerFect transfection reagent kit following

the manufacturer instructions (Qiagen). The cells were harvested

the following day and were assessed in parallel for protein

expressions and apoptosis (triplicate wells). The extent of target

gene knockdown (b-catenin), as well as downstream targets,

MITF, Myc (b-catenin target genes), BCL2 (MITF target gene)

[45], were assessed at protein levels by successive Western blotting

with antibodies to b-catenin as a control.

Five different siRNA purchased from Qiagen were tested for

Clusterin and TGFBI knockdown as revealed by Western blot

analysis of the respected protein and one from each group was

chosen for further experiments (CLU: ACAGACCTGCAT-

GAAGTTCTA, and TGFBI: CGGGAAGGCGATCATCTC-

CAA) as described for CTNNB1 knockdown.

Analyses of proximal promoter methylation by bisulfite
DNA sequencing

Genomic DNA (2 mg) was modified by sodium bisulfite (BS) and

subjected to PCR amplification with primers that can bind to

bisulfite treated DNA in non-CpG regions (Table S1) [53]. The

amplified PCR products were gel-purified and the fragments were

sequenced by Applied Biosystems 3730 capillary instruments at

the W. M. Keck Foundation Biotechnology Resource Laboratory

at Yale employing fluorescence-labeled dideoxynucleotides.

Supporting Information

Figure S1 Growth responses of melanoma cells to increasing

concentrations of Aza. Melanoma cells were untreated or treated

with increasing concentrations of Aza for 2 days (underlined),

released into regular growth medium and duplicate wells were

counted at 2–3 days intervals. The Standard errors of most

measurements were smaller then 10%, i.e., smaller than the

symbols. Blue, none; Brown, 0.1 mM; Green, 0.2 mM; Red,

0.5 mM; and Black 1.0 mM. The results are representative of two

biological replicas.

Found at: doi:10.1371/journal.pone.0004563.s001 (0.14 MB TIF)

Figure S2 Isobologram of combination therapy of Decitabine

(Aza) with Bortezomib, TSA and PDX in different melanoma cell

strains. The colors correspond to particular drug combinations,

and the individual points correspond to different drug dosages. If

most points of a combination fall far below the additive effect line,

then the combination is considered synergistic

Found at: doi:10.1371/journal.pone.0004563.s002 (0.05 MB TIF)

Figure S3 PTPN6 activation in response to Aza. Panel A.

PTPN6 expression in response to Aza (0.2 mM) as assessed by the

oligonucleotide array hybridization. The data represent one

sequence ID out of two with similar results. All other details as

in Figure 2 panel E. Panel B. Validation of PTPN6 expression at

the protein level by Western blotting with anti-PTPN6 mAb (anti-

SHP-1 Ab-1 mAb, Lab Vision, Thermo Scientific, Fremont, CA),

employing b-actin as a control. The results are representative of

two biological replicas.

Found at: doi:10.1371/journal.pone.0004563.s003 (0.59 MB TIF)

Text S1

Found at: doi:10.1371/journal.pone.0004563.s004 (0.05 MB

DOC)

Table S1

Found at: doi:10.1371/journal.pone.0004563.s005 (0.04 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0004563.s006 (0.05 MB

DOC)
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