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Modeling the Techno-Economic Interactions of
Infrastructure and Service Providers in 5G

Networks with a Multi-Leader-Follower Game
Lorela Cano, Giuliana Carello, Matteo Cesana, Mauro Passacantando, and Brunilde Sansò

Abstract—The decoupling of infrastructure from services,
which has been so far a mainstream paradigm in the computa-
tional and storage domain, is now becoming a paradigm also for
mobile networks. Indeed, 5G must provide a variety of services
with very diverse requirements, such as throughput, latency, or
reliability, and decoupling infrastructure from service provision-
ing allows to deal with such heterogeneity. In this context, a
new business model, involving two different stakeholders, Infras-
tructure Providers and Service Providers, has emerged. Besides
addressing the technical issues, it is also important to study the
economic feasibility and behavior of such new paradigm and the
techno-economic interactions among the different stakeholders
that play different roles in the mobile network market. In this
paper, we propose a multi-leader multi-follower variant of the
Stackelberg game to model the considered environment. The
proposed model is then fed with realistic data and used to analyze
the system behavior and the impact of the technological features
of the stakeholders on their competitiveness.

Index Terms—multi-stage games, Stackelberg game, 5G, multi-
tenancy, network slicing

I. INTRODUCTION

The decoupling of infrastructure from services, a main-
stream paradigm in the computational and storage domain,
is now being materialized also for mobile networks with the
advent of 5G. Up to date, a typical pre-5G Mobile Network
Operator (MNO) owns and manages by itself the network
resources (infrastructure and spectrum) and provisions services
for its end users. However, over time, there has been a
progressive deviation from this typical MNO business model
which can be witnessed through, e.g., the Mobile Virtual
Network Operator (MVNO) business model and infrastructure
and/or spectrum sharing agreements among MNOs [1]–[3].
The emergence of such new business models, even prior to
5G, has been mainly driven by the need to cut down on
infrastructure cost (so as to improve the return on investment)
and to increase resource utilization (e.g., when scarce such as
spectrum).

As for 5G networks, in addition to delivering higher
throughput mobile broadband services, they are also expected
to provide support for the Internet of Things and for vertical
industries: the International Telecommunication Union Radio-
communication Sector has identified three usage scenarios for
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the International Mobile Telecommunications (IMT) for 2020
and beyond [4], namely enhanced Mobile BroadBand (eMBB),
Ultra-Reliable and Low Latency Communications (URLLCs)
and massive Machine Type Communications (mMTCs). In
these lines, unlike the previous generations, 5G networks will
have to provision heterogeneous services with very distinct
requirements in terms of throughput, latency, reliability, con-
nection density, type of end user devices, etc. As a means
to deal with such heterogeneity and open up the mobile
network to verticals, the decoupling of network infrastructure
and resources from service provisioning is considered a design
principle by several entities, initiatives and research projects
involved/contributing in the 5G architecture definition and
standardization [5]–[7] with Network Function Virtualization
and Software Defined Networking being two key technical
enablers. In this context, a key 5G concept is that of net-
work slicing [6], which allows to create logically separated
networks (slices) over the set of shared physical network
resources where each such slice will be tailored to the service
requirements of a specific tenant (i.e., a business entity which
provides eMBB/URLLC/mMTC services to end users).

Apart from the architectural aspects of 5G, there is a need
to address its economic viability [5] which, by far, has been
studied from the point of view of a single MNO [8]–[10].
However, one of the implications of the 5G architecture is
the emergence of new stakeholders that play different roles
in the mobile network market such as, e.g., infrastructure
providers and mobile service providers, in addition to the
so-called tenants (see, e.g., [6], [10]). The techno-economic
interactions among these new stakeholders (such as resource
demand and pricing, provider selection, etc.) give rise to new
competitive scenarios for the mobile network market requiring
suitable models to be studied, which is the object of this work.

In this paper, we devise a mathematical model to capture the
technological and economic features of the considered scenar-
ios and the techno-economic interactions among stakeholders.
We feed the model with realistic technological and economic
parameters describing different network configurations (either
4G or 5G) and end user services (5G usage scenarios). Then,
the developed model and data are used to deeply analyze
the interactions among stakeholders of the same type and
those playing different roles and how their features, both
technological and economic, influence their behavior and the
resulting mobile market setting.

In this work, we consider two types of stakeholders: Infras-
tructure Providers (InPs) and Service Providers (SPs), while
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end users are represented implicitly. An InP is an entity which
owns spectrum licenses, deploys and manages the infrastruc-
ture of the mobile network and rents/sells its resources to SPs,
but does not provision services for end users. In turn, an SP1 is
an entity which does not own network resources but provisions
services to end users through leased/acquired resources. Here
the resource sold by InPs (acquired by SPs) is the cell capacity
at base station (BS) level and the problem we address is the
pricing of the cell capacity from the InPs’ perspective and the
selection of an InP from which to acquire cell capacity from
the SPs’ perspective.

Specifically, we consider a dense urban area where there are
multiple InPs that own mobile networks and multiple SPs, each
provisioning a single type of service to a given number of end
users in the area. The SPs provision services for their own end
users in the cell area by acquiring cell capacity from only one
of the InPs (i.e., from the BS of one of the InPs) while each
InP can host multiple SPs. All InPs and SPs are considered
profit-maximizers, i.e., each InP offers a cell capacity unit
price that maximizes its profit from the amount of cell capacity
sold to SPs that select the InP, while each SP selects an InP
from which to acquire cell capacity so as to maximize its
profit (revenue from own users given the acquired cell capacity
minus cost of the latter). As the cell capacity of each InP is
fixed and finite, SPs compete among them in selecting an InP
from which to acquire cell capacity, whereas InPs compete
among them over the cell capacity unit prices to be selected by
SPs. In this setting, we formulate the problem of cell capacity
pricing from the InP perspective and InP selection from the
SP perspective as a multi-leader multi-follower extension of
the basic (one-leader one-follower) Stackelberg game [12]; we
will refer to the proposed model as the multi-leader-follower
game (MLFG) as in [13].

We have applied the proposed MLFG to several realistic
scenarios in which services provisioned by SPs are inspired
from usage scenarios for IMT for 2020 and beyond [4] and
characterized by their respective performance requirements
(such as user target rates, connection densities, etc.) as in
[14], while we vary the InPs’ network technology (whether
4G or 5G) and their spectrum bandwidth availability. To devise
meaningful pricing strategies for the InPs across the different
scenarios, we propose an InP cost model that accounts for
the InP’s network technology type and available spectrum
bandwidth based on [10], whereas the SP revenue function
is based on a noted function in literature [15] that allows to
represent how the end user responds to the fee offered by its
SP based on the utility achieved from resources assigned by
the latter [15]. The proposed MLFG has been instrumental
to derive insights concerning these scenarios. Indeed, for all
the considered instances, it is possible to compute either an
equilibrium or an approximation of the equilibrium. Results
show that the technological features of the InPs have a
significant impact on their competitiveness.

1An SP is equivalent to a tenant in the 5G literature terminology. For
instance, in [11], a tenant is either an MVNO, a vertical industry or an Over
The Top provider (OTT). In this paper, we have opted for the term SP since
the focus of our work is not on the 5G architecture.

The layout of this paper is the following. In Section II, we
identify and review works in the mobile networks literature
which are related to ours in terms of methodology and/or
in application. The proposed framework and the mathemat-
ical models behind it are presented in Section III. Then, in
Section IV we explain how the framework has been applied
in the context of migrating from 4G to 5G through the
characterization of InPs and services provisioned by the SPs
and how we set up several scenarios/problem instances for
our computational tests. Numerical results concerning these
problem instances are presented and analyzed in Section V,
whereas conclusions are drawn in Section VI.

II. RELATED WORK

Stackelberg games are widely used in the literature to
model the interaction among multiple self-interested entities
in the field of resource management problems in 5G net-
works [16]; specific application arena include Heterogenous
Networks (HetNets) [17], [18], edge caching [19], edge com-
puting [20], device-to-device communications [21], cognitive
networks [22], Cloud Radio Access Networks (C-RANs) [23].

Whilst the aforementioned work is similar to ours only in
terms of the adopted methodology, the work in [24]–[32] share
with ours the same context and application arena targeting the
techno-economic interactions arising among multiple stake-
holders of mobile radio networks. Among [24]–[32], [25]–[29]
also resort to variants of the Stackelberg game.

[24] resorts to congestion games to address the problem
of partitioning the RAN resources of a Telco Operator (TO)
(analogous to an InP in our framework) among multiple
MVNOs (analogous to SPs in our framework), each with a
fixed number of users. In details, the TO’s RAN consists of
a set of heterogeneous Remote Radio Heads (RRHs) which
the TO leases to MVNOs at a fixed RRH-specific price. Then,
each MVNO decides how to distribute its own set of users over
these RRHs so as to minimize its total cost. Our work differs
in the following aspects: (i) in [24] MVNOs compete over a set
of RRHs whereas our framework applies to the single BS and
(ii) the congestion game proposed by [24] models competition
only among MVNOs while the TO is not a player of the game;
differently, our MLFG allows to model all involved InPs and
SPs as players of the game and in particular thus capturing
competition also among multiple InPs (while a single TO is
considered in [24]).

In [25], an InP owns a virtualized RAN which hosts multiple
MVNOs (analogous to SPs in our framework) each with a
fixed number of users. The InP faces the problem of pricing
and allocating its available BS resources among the users of
all MVNOs so as to maximize its own profit, while satisfying
Service Level Agreements signed with the MVNOs which
are given in terms of a minimum number of subcarriers per
MVNO and a maximum total rate over all MVNO users.
The problem is formulated as a one-leader multi-follower
Stackelberg game (OLMFSG) with the InP acting as the leader
and MVNOs acting as followers. A single InP is considered,
whereas we model competition among multiple InPs.

In [26], multiple service providers with distinct wireless
access technologies (either a Wireless Metropolitan Area Net-
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work (WMAN), a cellular network or a Wireless Local Area
Network (WLAN)) and fixed amount of available bandwidth
compete among them over prices per unit of bandwidth to
be selected by users in a common coverage area. The user
sensitivity to changes in price and the user churn among ser-
vice providers are incorporated in the service providers’ payoff
functions. The authors propose multiple formulations for the
problem, among which a one-leader two-follower Stackelberg
game, assuming one of the service providers announces its
price before the others. The most significative differences
with our approach are: (i) in our framework the selection of
an InP by SPs is modeled explicitly as a game (subgame
of the proposed MLFG), whereas in [26] the selection of
a service provider by users is modeled implicitly (through
the service provider payoff function) and (ii) in the MLFG
of our framework, InPs announce their prices simultaneously,
whereas in the Stackelberg game proposed in [26] one of the
service providers moves first.

Rose et al. ([28]) address the problem of service selection
from the end user perspective and service pricing from a
Network Service Provider (NSP) perspective. They consider
multiple NSPs, each providing multiple types of services,
and multiple users with different Quality of Service (QoS)
evaluation. The NSPs price their offered services so as to
maximize their profit, while each user selects a unique service
from a single NSP so as to maximize its payoff given by the
difference between its evaluation of the QoS of the selected
service and its price. The problem is formulated as a MLFG
with NSPs acting as leaders (by announcing the prices of
their offered services) and users as followers (each selecting
a service and an NSP in response to the service prices
offered by NSPs). A similar modeling approach is used in
[27] which though focuses on the emerging machine type
communications (MTC) and introduces in the framework MTC
service providers. Differently than our approach, [28] and [27]
assume a continuum of end users (which makes each subgame
of stage 2 of the MLFG therein a non-atomic game) while the
set of SPs in our work is assumed discrete and finite.

Along the same lines, [29] proposes a similar MLFG
which however also accounts for a Small Cell Provider (SCP)
(analogous to an InP in our framework), which leases small
cell BSs to the NSPs. The interaction among the SCP and the
NSPs is modeled through an additional OLMFSG in which
the SCP acts as the leader by announcing the spectrum price
per small cell BS and NSPs are followers deciding the amount
of spectrum to purchase to maximize their individual payoffs.
The work in [29] is substantially different from ours: (i) a
single SCP is considered in [29], while we have multiple
InPs; (ii) since the SCP available spectrum is not bounded in
[29], given the spectrum price offered by the SCP, each NSP
can derive its optimal amount of spectrum independently, i.e.,
there is no real competition among the NSPs at stage 2 of the
OLMFSG; (iii) while in [29] end users select a service from
one of the NSPs, in our framework the user – SP association

is given2.
In [32], the available Physical Resource Blocks (PRBs)

of a BS in a C-RAN have to be split among an eMBB, a
mMTC slice and an URLLC slice, each requesting a minimum
amount. The authors model this problem as bankruptcy game
and apply the Shapley value to determine the number of PRBs
assigned to each slice. The problem bears similarities with
a subproblem of our framework, namely the InP capacity
assignment problem (see Section III-C) in which each InP has
a fixed amount of capacity per BS cell and SPs that choose
to be served by a given InP (each providing either eMBB
or mMTC services to a specific market segment of users)
request a minimum and maximum of capacity per cell from the
latter. While [32] opts for a cooperative game approach for the
resource assignment problem, in our framework we propose a
two-step lexicographic optimization problem as the assignment
is handled in a centralized fashion by the InP, which aims to
maximize the total amount of assigned (sold) cell capacity.

Even though our proposed framework is per se generic and
bears conceptual and formulation similarities with [28] and
[29], one of the core contributions of this work is the use
of the proposed framework as a means to investigate realistic
scenarios in terms of network technologies and related costs,
mobile services and related performance requirements, and
user tariffing in the context of migrating from 4G to 5G. To this
extent, inspired from the usage scenarios for IMT for 2020 and
beyond [4], we build up a methodology to evaluate the techno-
economic impact of different dimensioning and architectural
choices for 5G network. Along these lines, [8]–[10] also
target a financially sustainable design and development of 5G
networks to meet user requirements and envisioned demand
for connectivity. However, [8]–[10] focus on the dimensioning
of a single 5G network, while we address competition among
multiple InPs with individual 4G/5G mobile networks.

III. FRAMEWORK

To present our framework, we start by describing the
problem it addresses in Section III-A. Next, we dwell on the
interactions between an SP and its end users in Section III-B
and between an InP and its hosted SPs in III-C. Specifically,
in Section III-B we explain the utility function representing
the QoS requirements of the service provisioned by each SP
and define the SP revenue function based on a noted function
in literature which relates the end user fee to its perceived
utility, whereas in III-C we propose an optimization problem
to model how an InP splits its available capacity among its
hosted SPs given their requirements. Then, in Section III-D
we formulate the addressed problem as a MLFG.

A. Problem statement

We consider a mobile ecosystem such that the network
infrastructure and its resources are decoupled from service

2In our work, the interaction between an SP and its set of users is modeled
through a noted function in literature [15] which represents the user response
to the fee offered by the SP based on the utility perceived by the user from
the amount of resources allocated by the SP. Hence, the optimal user fee is
affected by the equilibrium of the MLFG or vice versa the user response to
the fee offered by the SP affects its strategy in the MLFG.
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provisioning for end users, which gives rise to two types
of actors: InPs and SPs. An InP is the entity that deploys
and maintains the cellular network whose resources it then
sells/rents to one or multiple SPs. In turn, an SP provisions
services for end users through resources acquired/rented from
one of the InPs. From a technical point of view, an InP can
support multi-tenancy, i.e., it can host multiple SPs over its
network infrastructure and resources by relying on the network
slicing paradigm [6]. We assume that InPs do not have end
users of their own, whereas SPs do not own any network
infrastructure.

We consider a geographical area with multiple InPs with
individual RANs, and multiple SPs that provision mobile
services to end users through RAN resources acquired from
InPs. The RAN of each InP consists of a set of BSs and their
respective back-hauling links to connect the former with the
core network. The specific architecture of the BS is abstracted
away to keep the modeling framework as general as possible3.

The InPs’ BSs are assumed to be co-located and their
respective cells to overlap, hence we focus on the area of a
single BS cell provisioned by all InPs simultaneously through
their individual BSs. In turn, this means that an SP can select
any of the InPs to serve its user demand within the cell area.
The BS cell of a given InP is characterized by an average
capacity which depends on the InP’s network technology
and configuration and its available spectrum resources. The
network resources requested by an SP from an InP for a given
cell are expressed in terms of average cell capacity.

Each InP offers its available cell capacity at a certain unit
price lower bounded by its unit cost. Based on the InPs’
available cell capacities and their offered unit prices, each SP
selects an InP from which to acquire cell capacity so as to
maximize its profit (difference between revenues from own
users and cost incurred from the selected InP, both depending
on the amount of acquired cell capacity). The objective of
each InP is to maximize the profit from the total amount
of cell capacity sold to SPs selecting it. It follows that SPs
compete among them for the InPs’ cell capacities (as these
are finite), while InPs compete among them in cell capacity
unit prices to be selected by SPs. Given that InPs and SPs
are all self-interested payoff-maximizers, actions taken by any
of the actors affect all the others (e.g., by lowering its offered
unit price, an InP may be able to attract more SPs or sell more
cell capacity to SPs that select it) and we assume that InPs
announce their cell capacity unit prices simultaneously and
SPs simultaneously select their serving InPs based on these
announced prices, then we resort to hierarchical games to
model the problem. Specifically, we formulate this problem
as a multi-leader-follower game which is an extension of
the basic (one-leader one-follower) Stackelberg game. In the
proposed model, InPs act as leaders and SPs act as followers.
The strategy of each leader is the price per unit of cell capacity
which maximizes its profit from the total amount of sold
capacity, whereas the strategy of each follower is the choice
of an InP which maximizes its profit.

3The proposed model remains valid under different realization of the
5G BSs (e.g., a single Active Antenna Unit, a Radio Unit coupled with a
Distributed Unit, etc.).

B. SP service characterization and revenue function

Let V denote the set of SPs. Each SP v is assumed to
provision a single type of service and all end users of v, i.e.,
users subscribing to the service provisioned by v, are assumed
identical. The QoS requirements of the service provisioned by
v are given in terms of a minimum and a target user rate
(both equal for all users of v). Then, the level of satisfaction
of a user of v depends on the rate perceived by the user w.r.t.
these minimum and target rates: we represent it by the utility
function described in Section III-B1. In turn, we adopt the
acceptance probability function proposed in [15] to model
the user response to a fee offered by its SP depending on
its achieved utility, as described in Section III-B2. Based on
these two functions, in Section III-B3 we define the optimal
SP revenue in terms of the amount of capacity acquired from
its selected InP.

1) User utility function: Let xv denote the amount of cell
capacity acquired by SP v from its selected InP. Notice that
the cell capacity of an InP is intended as its total cell rate (i.e.,
the product between its spectral efficiency and bandwidth)
hence xv can be a portion of/all the cell rate of the InP
selected by v. Let Nv denote the number of users of v and
ηv the activity factor of each user of v. We assume that SP
v splits xv uniformly among its identical Nv users. Let Ñv

denote the number of simultaneously active users of v which
we determine4 as Ñv = max{1, ηvNv}, then each user of v
perceives a rate equal to xv/Ñv . The level of satisfaction of
a user of v from xv/Ñv is represented by a variant of the
normalized sigmoid utility function [15], defined as

uv(xv) =



0, if 0 ≤ xv ≤ ÑvX v,(
xv/Ñv−Xv

Xv−Xv

)ξv
1 +

(
xv/Ñv−Xv

Xv−Xv

)ξv , if xv > ÑvX v,

(1)

where X v denotes the minimum user rate characterizing the
service provisioned by v, Xv denotes the user rate which pro-
vides a utility value equal to 0.5, i.e., uv(ÑvXv) = 0.5, while
X v represents the target user rate of the service provisioned
by v, that is the rate value that would make a user of v fully
satisfied in practice5, i.e., uv(ÑvX v) = U , where 0 < U < 1
and U ≈ 1. It follows that

Xv = Xv +
(
X v −X v

)(1− U

U

)1/ξv

,

where ξv denotes the utility elasticity to xv (the higher
the value of ξv , the more step-like the shape of the utility
function).

2) Acceptance probability function: Let pv denote the fee
offered by SP v to each of its users and let av(uv(xv), pv) de-

4The max operator in Ñv = max{1, ηvNv} makes sure that when
ηvNv < 1, the rate perceived by a user of v, i.e., xv/Ñv , does not exceed
the total available capacity/rate xv of SP v.

5The utility function uv(xv) is such that limxv→∞ uv(xv) = 1.
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note the user acceptance probability function proposed in [15]
and defined as

av(uv(xv), pv) = 1− e−Avuv(xv)
µvp−εv

v . (2)

av(uv(xv), pv) relates uv(xv), i.e., the level of utility achieved
by a user of v when SP v acquires xv units of capacity
(see Equation (1)), and pv , where µv and εv denote the
user sensitivity to changes in utility and to changes in the
offered fee, respectively, whereas Av is a normalizing constant.
Assume users of SP v, characterized by µv and εv , achieve
the maximum level of utility uv and are offered the fee pv .
Let qv denote the probability with which these users reject6

pv , i.e.,

qv = 1− av(uv, pv) = e−Avu
µv
v p−εv

v ,

hence the normalizing constant Av = −u−µv
v pεvv log (qv) and,

as a result, av(uv(xv), pv) can be rewritten as

av(uv(xv), pv) = 1− q(uv/uv)
µv (pv/pv)

−εv

v . (3)

3) SP revenue function: Being av(uv(xv), pv) the proba-
bility that a user of SP v accepts the offered fee pv when
it achieves the level of utility uv(xv), then av(uv(xv), pv)pv
represents the fee accepted by the user or, in other words, the
expected revenue of v from the single user when v acquires xv

units of capacity. Then, as the number of users of SP v is equal
to Nv , the total revenue of SP v from xv units of capacity,
when users are offered the fee pv , can be determined as

rv(xv, pv) = Nvav(uv(xv), pv)pv. (4)

Let p∗v(uv(xv)) denote the value of pv which maximizes
rv(xv, pv) for a given xv and let r∗v(xv) be the to-
tal optimal revenue of SP v for xv , i.e. r∗v(xv) =
Nvav(uv(xv), p

∗
v(uv(xv)))p

∗
v(uv(xv)).

If xv ≤ ÑvX v , then rv(xv, pv) = 0 for any pv > 0 as
uv(xv) = 0 (see Equation 1) and av(0, pv) = 0 for any pv >
07 if 0 < Av < ∞, 0 < µv < ∞ and 0 < εv < ∞ (see
Equation 2 and Appendix A for the assumptions on Av , µv

and εv). This means that p∗v(uv(xv)) is indeterminate for xv ≤
ÑvX v , but r∗v(xv) = 0.

Instead, for xv > ÑvX v , which implies uv(xv) > 0 (see
Equation 1), we show in Appendix A that, when 0 < Av < ∞,
0 < uv(xv) < ∞, 0 < µv < ∞ and 1 < εv < ∞, we have

p∗v(uv(xv)) = pv

 log(qv)

W−1

(
− 1

εv
e−

1
εv

)
+ 1

εv

 1
εv [

uv(xv)

uv

]µv
εv

,

(5)

where W−1 denotes the lower branch of the Lambert W
function for the real numbers domain. It follows that for

6The reference rejection probability qv can be determined by polling a
large set of users of SP v with known εv and µv on whether they accept the
fee pv when they achieve the maximum level of utility uv . Then, qv is set
equal to the fraction of users which reject pv [15], [33].

7Notice that even for 0 < Av < ∞, 0 < µv < ∞ and 0 < εv < ∞,
av(0, 0) is indeterminate (see Equation 2). However, in practice, pv = 0
means that SP v obtains zero revenue hence we are interested in pv > 0.

xv > ÑvX v , 0 < Av < ∞, 0 < µv < ∞ and 0 < εv < ∞,
we have

av(uv(xv), p
∗
v(uv(xv))) = 1− e

W−1

(
− 1

εv
e
− 1

εv

)
+ 1

εv , (6)

that is, the acceptance probability at p∗v(uv(xv)) is a func-
tion of only εv and independent of uv(xv). Let a∗v =

av(uv(xv), p
∗
v(uv(xv))) = 1−e

W−1

(
− 1

εv
e
− 1

εv

)
+ 1

εv and av =
1 − qv . Hence, for 0 < Av < ∞, 0 < µv < ∞ and
1 < εv < ∞, we have

r∗v(xv) =


0, if 0 ≤ xv ≤ ÑvX v,

Nva
∗
vpv

(
log(1−av)
log(1−a∗

v)

) 1
εv
(

uv(xv)
uv

)µv
εv

,

if xv > ÑvX v.

(7)

C. InP capacity assignment problem

In the proposed MLFG, the strategy of each SP consists
solely in the choice of InP from which to acquire capacity.
However, the amount of cell capacity acquired by an SP affects
both its revenue (as explained in Section III-B) and its total
cost (product of InP unit price with the amount of cell capacity
acquired by the SP), hence its payoff (difference between
the two). In these lines, given that SPs are rational, none of
them can accept an amount of cell capacity which provides
a negative payoff. We therefore assume that, given the cell
capacity unit price offered by an InP, each SP selecting the
InP communicates a minimum and a maximum amount of cell
capacity that the SP finds suitable, i.e., the minimum amount
of cell capacity that guarantees a non-negative payoff and
the payoff-maximizing amount. Based on such cell capacity
ranges, the InP determines which of the SPs that select it to
serve and how to split its available cell capacity among them
so as to maximize its own profit (payoff) while satisfying their
cell capacity ranges. We refer to this procedure as the capac-
ity assignment problem and formulate it as an optimization
problem detailed in the following paragraphs.

First, we explain how an SP determines its suitable cell
capacity range for a given cell capacity unit price. Consider
an SP v and a cell capacity unit price P > 0 and let:

Xv(P ) =


0, if r∗v(xv)− Pxv ≤ 0, ∀ xv ≥ ÑvX v,

argmax
xv≥ÑvXv

(r∗v(xv)− Pxv) ,

if ∃ xv > ÑvX v | r∗v(xv)− Pxv > 0,
(8)

Xv(P ) =


0 if Xv(P ) = 0,

xv ∈ [ÑvX v, Xv(P )] | r∗v(xv)− Pxv = 0,
if Xv(P ) > 0,

(9)

where r∗v(xv) − Pxv is the profit of SP v when it purchases
xv units of cell capacity at a unit price P . Notice that we
consider X v > 0 for each v ∈ V . For X v > 0, r∗v(xv) = 0
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holds for any xv ∈ (0, ÑvX v] (see Equations (1) and (7)),
which implies r∗v(x) − Px < 0 for any x ∈ (0, ÑvX v] as
P > 0 (being the cell capacity unit price). Therefore, we
look for the payoff-maximizing cell capacity of v, denoted as
Xv(P ), for x ≥ ÑvX v (see Equation 8). If r∗v(xv)−Pxv ≤ 0
for any xv ≥ ÑvX v , then we impose Xv(P ) = 0 otherwise,
if it exists xv > ÑvX v such that r∗v(xv) − Pxv > 0, then
Xv(P ) > ÑvX v > 0.

In turn, Xv(P ) (see Equation (9)) denotes the minimum
amount of cell capacity that provides v with a non-negative
payoff. If r∗v(xv)− Pxv ≤ 0 for any xv ≥ ÑvX v , for which
we imposed Xv(P ) = 0, then we set Xv(P ) = 0 as well.
Otherwise, if Xv(P ) > ÑvX v > 0, then Xv(P ) is set equal to
the unique8 root of equation r∗v(xv)−Pxv = 0 in the interval
[ÑvX v, Xv(P )]. Hence, one has 0 < ÑvX v < Xv(P ) <
Xv(P ). In summary, for the considered SP payoff function,
for X v > 0 and for any unit price P > 0, either Xv(P ) =
Xv(P ) = 0 or Xv(P ) > Xv(P ) > 0.

Let K denote the set of InPs and Ck the cell capacity
of an InP k. Ck is assumed to be a fixed positive quantity.
Now consider an InP k which offers a cell capacity unit
price Pk > 0. Suppose that k is selected by the set of
SPs Vk ⊆ V . Recall that Xv(Pk) and Xv(Pk) denote the
the minimum and maximum amount of capacity requested
by SP v at the cell capacity unit price Pk, respectively. Let
V̂k = {v ∈ Vk |Xv(Pk) > Xv(Pk) > 0}. The InP assigns a
null capacity to any SP v ∈ Vk\V̂k as Xv(Pk) = Xv(Pk) = 0.
In turn, for V̂k ̸= ∅, the capacity assignment problem is
formalized as follows: as Ck is fixed and finite, given the
cell capacity ranges of all SPs in Vk, InP k has to decide:
(1) which SPs in Vk to serve, represented by the binary

variables zvk, for any v ∈ Vk,
(2) how much capacity to allocate to each SP v ∈ Vk,

represented by non-negative variables xvk,
so that its profit, Pk

(∑
v∈Vk

xvk

)
, is maximized while the

cell capacity ranges of served SPs are satisfied (i.e., if zvk =
1, Xv(Pk) ≤ xvk ≤ Xv(Pk), otherwise xvk = 0) and its
available capacity is not exceeded, i.e.,

∑
v∈Vk

xvk ≤ Ck. As
Pk is fixed in the context of the capacity assignment problem,
then the objective function of InP k reduces to

∑
v∈Vk

xvk.
We opted for a two-step lexicographic approach to formulate

the capacity assignment problem. In the first step, InP k solves
problem (10)–(14) to determine the maximum amount of cell
capacity it can sell, i.e., C ′

k =
∑

v∈Vk
x′
vk where x′

vk denotes
the value of variable xvk in the optimal solution of (10)–(14).

max
∑
v∈Vk

xvk (10)

xvk ≥ Xv(Pk)zvk, ∀v ∈ Vk, (11)

xvk ≤ Xv(Pk)zvk, ∀v ∈ Vk, (12)∑
v∈Vk

xvk ≤ Ck, (13)

xvk ≥ 0, zvk ∈ {0, 1}, ∀v ∈ Vk. (14)

8This is always the case for the considered SP payoff function for each
v ∈ V and for each considered instance. A few examples of the payoff
function are provided in Appendix B.

However, there may be multiple equivalent optimal so-
lutions to problem (10)–(14) such that

∑
v∈Vk

x′
vk = C ′

k;
these solutions are equivalent from the InP perspective but
not necessarily from the SPs’ perspective (which may obtain
a different amount of capacity in each of these solutions and
hence a possibly different payoff value). When the first step of
the capacity assignment problem, i.e., problem (10)–(14), does
not have a unique solution, then the InP solves the second step
of the capacity assignment problem, represented by problem
(15)–(20):

min ζk −
∑
v∈Vk

zvk (15)

xvk ≥ Xv(Pk)zvk, ∀v ∈ Vk, (16)

xvk ≤ Xv(Pk)zvk, ∀v ∈ Vk, (17)∑
v∈Vk

xvk = C ′
k, (18)

ζk ≥ zvk − xvk/Xv(Pk), ∀v ∈ Vk |Xv(Pk) > 0, (19)
xvk ≥ 0, zvk ∈ {0, 1}, ∀v ∈ Vk, ζk ≥ 0. (20)

The aim of the second step is to select among the multiple
optimal solutions of the first step, one which satisfies a fairness
criterion from the SPs’ perspective while using up C ′

k entirely
(see Equation (18)) as C ′

k is the optimal amount of the
total assigned cell capacity for InP k determined in the first
step. The fairness criterion consists of minimizing the highest
among all SPs in Vk of the relative difference between the
maximum amount of capacity requested by an SP (i.e., its
payoff-maximizing capacity) and the amount assigned to the
SP by the InP. In other words, the InP’s capacity assignment
accounts for the most “unsatisfied” SP among all. The highest
relative difference is represented by the variable 0 ≤ ζk ≤ 1
and modeled through constraints (19). Consider an SP v with
Xv(Pk) = Xv(Pk) = 0 (which means that it is unprofitable
for v to purchase capacity from InP k at a unit price Pk): the
corresponding optimal value of xvk is equal to zero due to
constraints (16) and (17), and since v is “fully-satisfied”, we
exclude it from the calculation of ζk (see constraints (19)).
In turn, for an SP v with Xv(Pk) > Xv(Pk) > 0, if
xvk = 0 (which implies zvk = 0 due to constraints (16)),
the right hand side of constraints (19) equals 0, i.e., an
SP which is willing to purchase capacity from InP k at a
unit price Pk but it is not assigned any capacity is also
considered as fully-satisfied to avoid ζk being stuck to its
upper bound value equal to 1 regardless of the assignment
of the other SPs. Therefore, only SPs v ∈ Vk such that
Xv(Pk) > Xv(Pk) > 0 and xvk > 0 (and hence zvk = 1
due to constraints (17)) influence the value of ζk. The second
term in the objective function, i.e.,

∑
v∈Vk

zvk, is introduced
to deal with equivalent optimal solutions, although uniqueness
cannot be guaranteed. Since ζk ≤ 1, an increase by one of
the number of served SPs outweighs the increase of ζk from
splitting the capacity over a larger set of SPs. Therefore, by
minimizing ζk−

∑
v∈Vk

zvk, we select optimal solutions which
are characterized by the largest possible number of served
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SPs for the fixed capacity C ′
k, while the capacity assignment

follows the min-max fairness criterion. Notice that for an SP v
with Xv(Pk) = Xv(Pk) = 0, although in the optimal solution
xvk = 0, zvk is set to one by the objective function. However,
this does not affect the optimal solution as such v does not
use up any capacity given that its respective xvk is equal to
zero in optimal solution.

D. Multi-Leader-Follower Game

As mentioned, all InPs’ BSs are co-located hence InPs com-
pete among them to be selected by SPs on a per BS cell basis,
which means that the proposed framework applies to each BS
cell independently. We assume that each InP k announces its
cell capacity unit price Pk to the SPs independently from all
other InPs but simultaneously to them. In turn, once the InP
unit price profile, P = {Pk}k∈K, is known by the SPs, we
further assume that also each SP v acts independently but
simultaneously to all other SPs in deciding from which InP to
acquire capacity in order to serve its users’ demand in the area
of the considered cell. All involved actors are assumed rational
and self-interested, i.e., each of them aims to maximize its
individual payoff. Moreover, actions of any actor can affect
all other actors, e.g., the InP choice of an SP can affect not
only the InPs’ payoffs but also the SPs’ payoffs given that the
cell capacity of each InP is finite and has to be split among
SPs selecting the InP. With this setting in mind, we propose a
Multi-Leader-Follower game to model the interaction among
InPs and SPs. In the proposed model, InPs act as leaders (i.e.,
as the subset of players that move first) by announcing their
unit prices to the SPs, whereas SPs act as followers as they
choose an InP from which to acquire capacity only after the
InPs’ unit prices have been announced. Formally, this game
is a two stage game with observable actions [34]. The game
is also of imperfect information since within a stage players
move simultaneously, i.e., at stage 1 InPs announce their unit
prices simultaneously and at stage 2, for a given InP unit price
profile, SPs make their InP choices simultaneously.

As previously argued, since the cell capacity of each InP is
fixed and finite and each InP splits its available capacity among
SPs that select it, the InP choice of an SP can affect the choices
of all other SPs. Hence, for a given InP unit price profile
(P = {Pk}k∈K) the independent but simultaneous choice
of an InP by each SP can be represented by a simultaneous
noncooperative game in pure strategies described by the tuple
GV(P ) = {V, {Yv}v∈V , {gv}v∈V}, where the set of players
coincides with the set V of SPs, Yv denotes the strategy set of
player v representing its choice of an InP, whereas gv denotes
the payoff of v which is defined for each SP strategy profile
and depends on the InP unit price profile (i.e., gv = gv(P ,y)).

Further, each InP k can anticipate9 the outcome of GV(P ) for
any P , i.e., k can anticipate the subset of SPs that will select
k at the Nash Equilibrium(a) of GV(P ) and consequently
determine its payoff for P . Therefore, InPs compete among
them in cell capacity unit prices to be selected by the SPs: this
can be represented by another simultaneous noncooperative
game described by the tuple GK = {K, {Pk}k∈K, {Gk}k∈K},
where the set of players coincides with the set K of InPs,
Pk denotes the strategy set of player k representing a unit
price range, whereas Gk denotes the payoff of k which is
defined for each InP strategy profile (i.e., Gk : P → R where
P =

∏
k∈K Pk). We now detail GV(P ) and GK which hereon

we will refer to as the SPs’ game and InPs’ game, respectively.
1) SPs’ game: As detailed in Section III-B, each SP

provides a single type of mobile service to a fixed number
of end users. As none of SPs owns any network infrastruc-
ture/resources, then each SP, to provision the mobile service
for its users in the area of a cell, acquires an aggregate amount
of cell capacity from one of the InPs which it splits among all
of its users in the cell area; the users are then charged by the
SP based on the utility achieved from the amount of allocated
capacity which results in a total amount of revenue per cell for
the SP (see Section III-B3). Therefore, the goal of the SP is to
select an InP from which to acquire cell capacity in order to
maximize its profit (payoff) given by the difference between
the cell revenues incurred from the amount of cell capacity
assigned by the selected InP and the cost of the latter.

For each InP unit price profile P ∈ P , when selecting the
InP from which to acquire capacity, SPs contend among them
for the InPs’ fixed and finite capacities; this gives rise to the
SPs’ game described by GV(P ). Formally, the strategy of an
SP v is modeled by a set of binary variables yv = (yvk)k∈K
such that yvk ∈ {0, 1} for any k ∈ K and

∑
k∈K yvk = 1.

Let y = {yv}v∈V denote a strategy profile of GV(P ). Then,
let xvk(Pk,y) denote the amount of cell capacity obtained
by SP v from InP k at unit price Pk given the SP strategy
profile y: if v does not select k in y (i.e., yvk = 0) then
clearly xvk(Pk,y) = 0, otherwise if v selects k in y (i.e.,
yvk = 1) then xvk(Pk,y) is equal to the value of variable
xvk in the optimal solution of problem (15)–(20) when the
capacity assignment problem is solved by InP k for the set
Vk = {v ∈ V : yvk = 1}, given the cell capacity
ranges [Xv(Pk), Xv(Pk)] for its offered unit price Pk (see
Section III-C)).

The payoff of v from y is defined as

gv(P ,y) =
∑
k∈K

(r∗v(xvk(Pk,y))− Pkxvk(Pk,y)) , (21)

9The equilibrium(a) of the MLFG are determined by means of the sub-
game perfect equilibrium solution concept which is an extension of the
backward induction solution concept for the original one-leader, one-follower
Stackelberg game. The idea behind backward induction is that the leader
assumes that the follower is rational and it anticipates the follower’s best
response to each action of its own. Therefore, the leader’s strategy consists
of selecting the action that maximizes its own payoff given the best response
of the follower. In case of the MLFG we propose here, leaders anticipate the
outcome of the followers’ game, i.e., its Nash equilibrium(a), for any action
profile of their own, which is, in turn, the main idea behind the sub-game
perfect equilibrium solution concept. Details concerning the calculation of
the equilibrium(a) of the MLFG for the considered problem instances are
presented in Section IV-E.
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where r∗v(xvk(Pk,y)) is the total optimal revenue of SP v
(see Equation (7) and Section III-B3) for the amount of
cell capacity xvk(Pk,y), whereas Pkxvk(Pk,y) is the cost
incurred by SP v from purchasing the amount of cell capacity
xvk(Pk,y) at unit price Pk, therefore gv(P ,y) is given in
terms of the total profit10 of v.

By definition, a strategy profile y̆ = [y̆v, y̆−v], where y−v

denotes the strategies of all SPs but v, is a Nash Equilibrium
(NE) of the SPs’ game GV(P ) if for each SP v ∈ V , y̆v =
argmaxyv∈Yv

gv(P , [yv, y̆−v]), i.e., if no SP has an incentive
to unilaterally deviate from y̆. Since there is one SPs’ game
GV(P ) for each InP unit price profile P ∈ P , hereon we will
use the notation y̆(P ) to denote the NE strategy profile(s) of
GV(P ).

2) InPs’ game: Each InP unit price profile P ∈ P may
result in a distinct NE of the SPs’ game, i.e., in a different
partition of the set of SPs over the set of InPs and conse-
quently in different profits for the InPs. To put it differently,
InPs compete among them in cell capacity unit prices to
be selected by the SPs, which we modeled as the game
GK = {K, {Pk}k∈K, {Gk}k∈K}, namely the InPs’ game. The
strategy set of each player k consists of a unit price range,
i.e., Pk = [P k, P ] where P k denotes the cell capacity unit
cost for InP k and P denotes the minimum unit price for
which no SP is willing to buy capacity. A strategy of InP k is
then a cell capacity unit price Pk ∈ Pk. We impose Pk ≥ P k

as we assumed InPs to be rational, i.e., they will not accept
gains lower than their costs and similarly, as all SPs are also
assumed to be rational, they will not purchase cell capacity
at a unit price resulting in a negative payoff; in other words,
any InP k offering Pk ≥ P , would not sell any cell capacity.
The payoff of player k from the strategy (unit price) profile
P = {Pk}k∈K is defined as

Gk(P ) = Pk

(∑
v∈V

xvk(Pk, y̆(P ))

)
, (22)

that is, as the product between the cell capacity unit price of
InP k and the total amount of capacity sold to SPs that select k
at the NE y̆(P ) of the SPs’ game GV(P )). Recall that, under
the assumption that all SPs are rational, each InP can anticipate
y̆(P ) of GV(P ). If for some P ∈ P , the NE of GV(P ) is
not unique, we assume InPs are pessimistic and each of them
independently considers the worst payoff achieved over all the
NE of GV(P ). In turn, if GV(P ) has no NE in pure strategies,
we would look for its NE in mixed strategies11.

10As for each SP v ∈ V ,
∑

k∈K yvk = 1, then r∗v(xvk(Pk,y)) −
Pkxvk(Pk,y) ̸= 0 for at most one InP k ∈ K.

11If there were no NE in pure strategies for GV (P ) for some P ∈ P ,
then we would look for its NE in mixed strategies: formally, we would
relax variables yv , ∀v ∈ V representing the InP choice of SP v (see
Section III-D1), i.e., an SP’s mixed strategy for the game GV (P ) would
be represented by variables γv = {γvk}k∈K | 0 ≤ γvk ≤ 1, ∀k ∈
K,

∑
k∈K γvk = 1, ∀v ∈ V and the expected payoff of v from γ given P ,

g̃v(P ,γ) =
∑

y∈P P (y|γ)gv(P ,y) where P (y|γ) is the probability of
occurrence of the outcome represented by the pure strategy profile y (i.e., a
partitioning of the set of SPs over the set of InPs) given γ (the InPs’ expected
payoff from the equilibrium mixed strategy profile γ̆ would be calculated in
a similar fashion). However, for all considered instances (see Section V-B),
there is at least one NE in pure strategies for GV (P ), ∀P ∈ P .

A strategy profile P̆ = [P̆k, P̆−k], where P̆−k denotes the
unit prices offered by all InPs but k, is an NE of the InPs’ game
GK if P̆k = argmaxPk∈Pk

Gk([Pk, P̆−k]) for any k ∈ K, i.e.,
if no InP has an incentive to unilaterally deviate from P̆ .

IV. SCENARIOS AND COMPUTATIONAL TESTS

In this section, we describe the scenarios that we have
addressed by means of the proposed framework. First, we
explain how we set up different types of InPs based on their
network technology, available spectrum bandwidth, etc., and
propose a cost model largely based on [10] to derive a sensible
cell capacity unit cost for each InP type (Section IV-A). In
Sections IV-B and IV-C we dwell on the set of service types
that we have set up based on usage scenarios for IMT for
2020 and beyond [4] and on the set of SPs providing such
services; in particular, we report how these services have
been characterized based on Key Performance Indicators (KPI)
requirements from [14] and how SPs set up their user fees
based on their service characteristics and user types. The set of
scenarios (problem instances) addressed in our computational
tests is defined in Section IV-D, whereas implementation
details concerning these computational tests are reported in
Section IV-E.

A. InPs

The considered set K of InPs consists of InPs which coexist
in a dense urban area where each of them has either (i)
deployed a legacy (pre-5G) heterogeneous network of macro
cells (MCs) and small cells (SCs) prior to the beginning of the
studied period and does not upgrade to 5G in the meantime
or (ii) just deployed a 5G heterogeneous network of MCs and
SCs. We refer to (i) and (ii) as InP types and denote them
by L and N , respectively. The type of each InP k is then
represented by a binary parameter λk, which equals 1 if k is
of type L and 0 if k is of type N .

We assume that in the considered dense urban area both
MCs and SCs of different InPs are colocated. In these lines,
at the beginning of the studied period, a site is present in a
MC candidate site (and can be used by any of the InPs) if at
least one of the InPs has previously deployed a MC BS in it;
instead, a site is present in a SC candidate site and can be used
by a given InP if the InP itself has previously deployed a SC
BS in it. Let πMC,k(πSC,k) denote the probability that InP k
has not deployed a MC(SC) BS in a MC(SC) candidate site12

prior the beginning of the studied period. Then, as MC sites
are shared, πMC =

∏
k∈K πMC,k is the probability that none

of the InPs has deployed a MC BS in a MC candidate site prior
the beginning of the studied period, i.e., at the beginning of the
studied period, a MC site has to be built with probability πMC .
In turn, since SC sites are not shared, at the beginning of the
studied period, InP k has to build a SC site in a SC candidate
site with probability πSC,k. For an InP k of type L, we
consider πMC,k = πSC,k = 0, i.e., we assume k has deployed
legacy MCs(SCs) BSs in all available MC(SC) candidate sites.

12πMC,k(πSC,k) is intended as an average probability for the considered
area, hence it is the same for all MC(SC) candidate sites.
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Instead for an InP k of type N , πMC,k = πSC,k = 1 imply that
InP k has not previously deployed a legacy network, whereas
0 ≤ πMC,k, πSC,k < 1 means that InP k has previously
deployed a legacy network and can reuse its sites. However,
we assume that, at the beginning of the studied period, type N
InPs will deploy 5G MC and SC BSs in all available MC and
SC candidate sites and that such InPs will compete with the
other InPs solely through their new (5G) network while simply
reusing sites of thier previously deployed legacy networks (if
any).

For MC sites we have considered 3-sector antennas as in
[10], [35], [36], whereas for SC sites, omnidirectional (i.e.,
1-sector) ones.

Let Bk denote the total available bandwidth of InP k and
B̂k ∈ [0, Bk] the amount of bandwidth associated with a
spectrum license whose cost has already been amortized at the
beginning of the studied period, while the remaining amount of
bandwidth Bk−B̂k corresponds to a spectrum license acquired
at the beginning of the studied period. In particular, B̂k = Bk

if InP k is of type L and B̂k = 0 if k is of type N and
has no legacy network. We assume that for each InP k, Bk is
dynamically shared between the MC and the SC layers and,
within the MC/SC layer, the bandwidth is also dynamically
shared (and not a priori partitioned) between the Downlink
(DL) and Uplink (UL) of each MC sector/SC. Further, as
we consider a very dense deployment of SCs, MCs can be
assumed idle, hence Bk is then dynamically shared between
the DL and the UL of each SC.

We have made the simplifying assumption that the DL and
UL spectral efficiencies are equal. For InP k, let νMC,k(νSC,k)
denote the MC(SC) average spectral efficiency13 of both
DL and UL. We assume InPs compete among them to be
selected by SPs on a per SC basis14, hence the capacity Ck

characterizing InP k is set equal to its total (DL+UL) average
capacity of a SC, i.e., Ck = νSC,kBk.

The cost per unit of capacity characterizing InP k, i.e., P k,
is then set equal to the monthly15 cost per unit of capacity
provided in the area of a SC, i.e.,

P k =
1

12LCk

[
(1− λk)

(
ccpxSC,k + (ASC/AMC) c

cpx
MC,k

)
+

+copxSC,kL+ (ASC/AMC) c
opx
MC,kL+ cspecSC,k

]
,

(23)
where L denotes the duration of the studied period in years,
ccpxMC,k(ccpxSC,k) and copxMC,k (copxSC,k) denote the total CAPEX and
total annual OPEX incurred by InP k per MC sector (SC
site)16, AMC(ASC) denotes the area of a MC sector (SC),
respectively, whereas cspecSC,k denotes the spectrum license cost

13We refer to the average spectral efficiency definition in [37] or equiva-
lently to the cell spectral efficiency definition in [38].

14When the average spectral efficiency is considered and the SPs’ users can
be assumed uniformly distributed over the considered geographical area, the
same solution should apply to all SCs in the area.

15Pk is defined as a monthly cost to match the timescale of the SPs’ user
fee (see Section IV-C). Consequently, the InP price strategy Pk ≥ Pk (see
Section III-D2, is a monthly price per unit of average SC capacity.) In these
lines, the payoff of each InP k ∈ K, i.e., Gk , (as defined by Equation (22))
and the payoff of each SP v ∈ V , i.e., gv , (as defined by Equation (21)) also
correspond to a one-month period.

16Notice that for SCs, we refer to the site costs since we consider 1-sector
SC sites.

normalized to the area of the SC and to the duration of the
studied period. The per sector MC cost terms (ccpxMC,k and
copxMC,k) are multiplied by ASC/AMC , i.e., the inverse of the
number of SCs per MC sector, to uniformly split the cost of
the MC sector among all SCs that overlay the MC sector. The
(1− λk) term sets the CAPEX terms to zero for an InP k of
type L (for which λk = 1); however, k will incur the OPEX
of its legacy network. Instead, an InP of type N (for which
λk = 0), incurs both CAPEX and OPEX terms as it deploys
its 5G network at the beginning of the study period.

In details, ccpxMC,k, ccpxSC,k, copxMC,k, copxSC,k and cspecSC,k are
determined as follows:

ccpxMC,k =
1

3

[
(1/|K|)πMCc

c,s
MC + cc,aMC,k + cc,fMC,k+ (24)

+⌈Bk/B0⌉cc,rfMC,k + ⌈mk(Bk/B0)⌉cc,bpMC,0 + cc,bhMC,k

]
,

copxMC,k =
1

3

[
(1/|K|)co,sMC + co,r&u

MC + co,vMC+ (25)

+Ξl&m
MC

(
⌈Bk/B0⌉cc,rfMC,k + ⌈mk(Bk/B0)⌉cc,bpMC,0

)
+ co,bhMC,k

]
,

ccpxSC,k = πSC,kc
c,s
SC + cc,aSC,k + cc,fSC,k + cc,bhSC,k, (26)

copxSC,k = co,sSC + co,r&u
SC + co,vSC + Ξl&m

SC cc,aSC,k + co,bhSC,k, (27)

cspecSC,k = cspec0 (Bk − B̂k)AMCL, (28)

where the cost terms that make up ccpxMC,k, ccpxSC,k, copxMC,k and
copxSC,k and values given to these cost terms are based on the cost
model and respective values in [10]. Notice that in Equations
(24) and (25), the 1/3 multiplier has been introduced to derive
the cost per MC sector since each MC cost term therein refers
to the total cost of all three sectors of a 3-sector MC site. As for
Equations (26) and (27), the values obtained from [10] for the
cost terms cc,sSC , cc,fSC,k, co,sSC , co,r&u

SC , co,vSC (which will be defined
in the consecutive paragraphs) are costs per site for 2-sector
small cell sites but also for 1-sector picocell sites whereas the
values for cc,aSC,k are costs per sector for 2-sector small cell
sites, hence we deemed all these values to be reasonable also
for the 1-sector SC sites considered here without introducing
any multipliers.

We now define the individual cost terms involved in Equa-
tions (24)–(28) and explain how their values have been set in
order to characterize the InPs considered here. First, cc,sMC(cc,sSC)
denotes the MC(SC) site civil works and acquisition cost. cc,sMC

is weighted by πMC and divided by the number of InPs since
we assume that each MC site will be shared by all InPs17.
In turn, for each InP k, cc,sSC is weighted by the probability
that k has to build a SC by itself at the beginning of the
studied period (πSC,k) given that SC sites are not shared. In
these lines, also the MC site rental cost co,sMC is uniformly split
among all InPs (see Equation (25)), whereas the SC site rental
cost co,sSC is not (see Equation (27)).
cc,aMC,k(cc,aSC,k) is the MC(SC) antenna cost for InP k.

cc,fMC,k(cc,fSC,k) are the feeder (cable connecting active antenna
to equipment cabinet), install and test and commission cost per
MC(SC) site for InP k. cc,rfMC,k is a baseline Radio Frequency
(RF) front end cost per MC site for a baseline bandwidth
B0 = 20 MHz for InP k which has to be scaled by ⌈Bk/B0⌉

17Notice thatif there is at least one InP k with λk = 1, for which πMC,k =
0, and hence πMC = mink∈K πMC,k = 0, a site is already present in each
MC candidate site hence cc,sMC is not incurred.
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(i.e., the ratio between the total bandwidth of InP k and the
baseline bandwidth), whereas cc,bpMC,0 is a baseline baseband
processing cost for 3 sectors of a B0 = 20 MHz 2x2 MIMO
channel (see Section 11.5.1.3 in [10]) that needs to be scaled
by ⌈mk(Bk/B0)⌉, where mk is a factor18 that allows to
estimate the relative amount of base band processing for InP
k for B0 = 20 MHz units of bandwidth given its antenna
MIMO order w.r.t. to the baseline (i.e., the B0 = 20 MHz 2x2
MIMO channel). Notice that we have introduced the ceiling
operator in the scaling factors of cc,rfMC,k and cc,bpMC,0 in order
to be conservative as in [10] there is no explicit expression of
the cost scaling operation for none of the two.

In the following, we explain how starting from the cost
model in [10], we set the values of cc,aMC,k, cc,fMC,k, cc,rfMC,k,
mk, cc,aSC,k and cc,fSC,k for each InP k depending on its type.
For an InP k of type L (λk = 1), we have considered the
following values for the MC and SC average spectral efficiency
for both DL and UL: νk,MC = 2.2 bps/Hz and νSC,k = 2.6
bps/Hz, which are the required DL average spectral efficiency
values for IMT-Advanced systems for base urban coverage
and microcellular environments, respectively [38]. Instead, for
an InP k of type N (λk = 0), we have set νMC,k = 6.6
bps/Hz and νSC,k = 7.8 bps/Hz as ITU-R expects the average
spectral efficiency for IMT for 2020 and beyond to be three
times higher than for IMT-Advanced [4],[37]. Since the 5G
radio interface has not been defined yet, we cannot anticipate
the spectral efficiency improvements it will bring about, hence
we have assumed that the required spectral efficiency for IMT
for 2020 and beyond will be achieved through high order
MIMO antennas, although there are several factors that affect
the achieved spectral efficiency [39]. We have considered
the antenna configurations (MIMO order + frequency band)
presented in [10] and, when possible, for each InP k we
have selected antenna configurations that would best match its
MC(SC) average spectral efficiency νMC,k (νSC,k), otherwise
we have associated19 InPs of type L/N with the least/most
complex (and hence expensive) antenna configurations while
some of the cost terms for InPs of type N have also been over-
estimated so as to account for the factor-of-three difference
between the average spectral efficiency of type N and L InPs.
For instance, to choose the MC antenna configurations among
those listed in [10], we were mainly driven by their respective
average spectral efficiency values: the different 2x2 MIMO
operation modes provide average spectral efficiency values
in the range 2.23 – 2.88 bps/Hz whereas 64x2 MIMO ones
provide average spectral efficiency values in the range 5.53 –
7.14 bps/Hz which makes the former suitable for an InP k of
type L (νMC,k = 2.2 bps/Hz), whereas the latter suitable for
an InP k of type N (νMC,k = 6.6 bps/Hz). Instead, for SCs,

18Let Mk denote the product of the number of MIMO streams with the
number of the spatial beams (see Section 11.4.2. in [10]) that correspond to
MC antenna MIMO order for InP k and let M0 denote the value of this
product for the baseline 2x2 MIMO channel where M0 = 2 (see Table 11-9
in [10]). We then set mk = Mk/M0 (see Section 11.5.1.3 in [10]).

19It is worth pointing out that the aforementioned association of InPs to
antenna configurations based on their types has not been used for a network
deployment simulation but it only serves to obtain an estimate of the cost
incurred by an InP for providing a certain average cell capacity based on its
available bandwidth and average spectral efficiency.

as the average spectral efficiencies of the two configurations
listed in [10] are not provided, we associate InPs of type L/N
with the lowest/highest MIMO order configuration. Let M
denote the MIMO order of an antenna. Specifically, for each
InP k of type L, we have assumed that its MCs operate only
at sub-1GHz and low frequency bands with M = 2 antennas,
whereas its SCs operate at low and medium unpaired bands
with M = 2 antennas. Instead, for each InP of type N , we
have assumed that its MCs operate both at sub-1GHz and low
frequencies with M = 4 antennas and at medium frequencies
with M = 64 antennas, whereas its SCs operate at low and
medium frequency bands with M = 4 antennas. Values of
cc,aMC,k, cc,fMC,k, cc,rfMC,k, mk, cc,aSC,k and cc,fSC,k depending on
the antenna configuration(s) associated with the type of InP
k are then set as reported in Table II based on [10]. Some
details concerning these values follow. According to [10], for
sub-1GHz and low frequencies multiband MC antennas are
available, hence an InP k of type L (λk = 1), deploys only
one M = 2 antenna per MC site. Instead, as MCs of an InP
k of type N operate at two frequency band groups (i.e., sub-
1GHz and low frequency bands and medium frequency bands)
that require individual radio equipment, we set cc,aMC,k equal
to the sum of the antenna cost of the two frequency band
groups and cc,fMC,k equal to the sum of feeder, install and test
and commission cost of the two frequency band groups. In
turn, ⌈Bk/B0⌉cc,rfMC,k and ⌈mk(Bk/B0)⌉cc,bpMC,0 for k of type
N have been overestimated by setting cc,rfMC,k and mk equal
to the respective values for M = 64 antennas at medium
frequency bands (which are both higher than the respective
values for M = 4 antennas at sub-1GHz and low frequency
bands).

co,r&u
MC (co,r&u

SC ) denotes the annual rates and utilities for a
MC(SC) site, whereas co,vMC(co,vSC) the annual vendor service
fee. The annual licensing and maintenance cost per MC(SC)
site are calculated as fraction Ξl&m

MC (Ξl&m
SC ) of the active

equipment cost which in case of MC sites corresponds to
the sum of the total RF front end cost (⌈(Bk/B0)c

c,rf
MC,k⌉)

and the total base band processing cost (⌈mk(Bk/B0)c
c,bp
MC,0⌉)

whereas in case of SC sites it corresponds to the antenna cost
(cc,aSC,k) as the RF front end and the baseband processing unit
are part of the integrated active equipment [10].

In particular, the MC(SC) CAPEX and OPEX backhauling
cost of InP k, cc,bhMC,k(cc,bhSC,k), co,bhMC,k(co,bhSC,k) depend on the type
of backhauling selected by k. We have considered the set of
backhauling options presented in [10] which we denote as T .
For each option t ∈ T , the capacity (Cbh

t ), CAPEX (cc,bht )
and annual OPEX (co,bht ) per backhauling link are reported in
Table III. We assume that each InP has deployed individual
backhauling links for the SCs and MCs, i.e., there is no
aggregation of the traffic of the SCs at the underlying MC
site. Then, each InP k determines its best (minimum cost)
option for the SCs, denoted by t∗SC,k, as

t∗SC,k = argmin
t∈T

{⌈
νSC,k Bk

Cbh
t

⌉
(cc,bht + Lco,bht )

}
, (29)

hence cc,bhSC,k =
⌈
(νSC,kBk) /C

bh
t∗SC,k

⌉
cc,bht∗SC,k

and co,bhSC,k =⌈
(νSC,kBk) /C

bh
t∗SC,k

⌉
co,bht∗SC,k

. Similarly, the best backhauling
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option t∗MC,k for the MC sites (i.e., for all three sectors per
site) for InP k is determined as

t∗MC,k = argmin
t∈T

{⌈
3νMC,k Bk

Cbh
t

⌉
(cc,bht + Lco,bht )

}
, (30)

therefore, cc,bhMC,k =
⌈
(3νMC,kBk) /C

bh
t∗MC,k

⌉
cc,bht∗MC,k

and

co,bhMC,k =
⌈
(3νMC,kBk) /C

bh
t∗SC,k

⌉
co,bht∗MC,k

.

Finally, in Equation (28), cspec0 denotes the reference annual
spectrum license cost per unit of bandwidth and unit of geo-
graphical area which, multiplied by the amount of bandwidth
associated with the spectrum license acquired at the beginning
of the studied period (Bk − B̂k), the area of the SC (ASC)
and the studied period (L), provides the spectrum license cost
cspecSC,k per SC for the studied period. cspec0 was derived from the
outcome of the 5G spectrum auction in the UK [40] by first
calculating the average cost per MHz of the total auctioned
spectrum and then dividing the latter with the area of the UK
and the license duration (20 years) [41].

Values given to the cost terms and related parameters
throughout Equations (24)–(28) are summarized in Table II.
Notice that we have not considered cost inflation over time
and that all values obtained from [10] and [40], originally in
GBP currency, have been converted to EUR using a conversion
rate 1.11 EUR/GBP.

B. Service types

In this work, we address the provision of two types of 5G
services motivated by two usage scenarios identified by ITU-
R for IMT for 2020 [4], namely eMBB and mMTC. We have
characterized these services using KPIs of the 5GPPP project
FANTASTIC-5G ([14]) for use cases defined therein. Specif-
ically, for eMBB we consider the KPIs of use case 7 (dense
urban society below 6 GHz) in [14], whereas for mMTC, KPIs
of use case 3 (sensor networks) in [14]. Let deMBB(dmMTC)
denote the density of devices that request eMBB(mMTC)
services. We have set deMBB = 25000 devices/km2 and
dmMTC = 600000 devices/km2 according to the device density
values considered in [14] for the respective use cases. The
average number of devices in the area of one SC that request
services of a given type can be determined as the product of
the device density with the area of the SC, i.e., deMBBASC for
eMMB and dmMTCASC for mMTC. In turn, the area of a MC
sector (AMC) and the area of a SC (ASC), have been derived
from their respective inter site distances, DMC and DSC . As
mentioned, each MC site has three sectors. We also assume
that the cells of a MC site (one per sector) are hexagonal and
that MC sites are located at the corner of these cells, therefore
the MC inter site distance (DMC) is equal to three times the
side of a hexagonal cell [10], [35], [36]. Instead, SC antennas
are assumed to be omnidirectional hence the SC inter site
distance (DSC) is equal to twice the cell radius. Therefore
AMC = (1/(2

√
3))D2

MC and ASC = (1/4)πD2
SC . Values

DMC = 0.5 km and DSC = 0.05 km have been used as
suggested in [14] for a urban area for both use cases 3 and 7
therein.

C. SPs

We consider three market segments for eMBB services, each
served by a unique SP, while a fourth SP provisions mMTC
services. eMBB services are characterized only by their DL
demand; the UL demand, being generally much lower, is
assumed to be equal to zero. Instead, mMTC services are
characterized only by their UL demand, as they are mainly
UL biased [14], while their DL demand is set equal to zero.
Values given to parameters characterizing the service and the
users of each SP are reported in Table IV.

Concerning the user utility function (see Section III-B1),
for SPs providing eMBB services, we set X v equal to the
required value for the user experienced data rate20 in the DL
for use case 7 in [14] (same for all market segments), whereas
X v varies across the eMBB market segments as reported
in Table IV assuming users of different market segments
have different target rates. For the fourth SP (which provides
mMTC services), we set X 4 and X 4 equal to the minimum
and maximum required value for the user experienced data
rate in the UL for use case 3 in [14], respectively. Further,
the elasticity parameter ξv was set to 2 for all eMBB SPs
(minimum value considered in [15]) and to 20 for the mMTC
SP (maximum value considered in [15]) to account for the fact
that the eMBB traffic is more elastic than the mMTC one.

As for the acceptance probability function (see Sec-
tion III-B2), we set the user sensitivity to changes in utility
equal to the value considered in [15] for all SPs, i.e., µv = 2,
but we vary the user sensitivity to changes in the offered
fee (εv) across SPs as reported in Table IV. We assume that
mMTC users have a high sensitivity to changes in the offered
fee (ε4 = 4, which is the value considered in [15]), while the
eMBB market segments served by SPs 1, 2 and 3 are assumed
to have low, medium and high sensitivity to changes in the
offered fee, respectively, represented by values ε1 = 2, ε2 = 3
and ε3 = 4. Given that the considered utility function uv is
such that 0 ≤ uv(xv) ≤ 1 for any xv (see Equation (1)), then,
by definition, the maximum utility level is equal to 1 for all
SPs, i.e., uv = 1. It is reasonable to assume that each SP v will
tailor its reference offered fee pv to the service requirements
of its own users (represented by the utility function here),
hence we set pv = 0.4Xv (1 + 1/ξv). Recall that Xv is the
rate value that provides a user of SP v with a utility value
equal to 0.5 and that Xv = Xv+

(
X v −X v

) (
(1−U)/U

)1/ξv ,
where U = 0.999 has been considered (see Section III-B1).
We set the values of qv as reported in Table IV. We make
the following assumptions on the behavior of the rejection
probability qv as a function of µv , εv , uv and pv:
(i) for any two SPs v, w ∈ V , such that µv = µw, εv = εw,

uv = uw, we assume qv = qw even if pv ̸= pw, i.e., when
users of v and w are equally sensitive to changes in utility
and in the offered fee and they perceive a maximum
level of utility, we expect them to reject the considered
reference offered fee pv and pw, respectively, with the
same probability, since pv and pw reflect their respective
service requirements;

20In [14], the user experienced data rate is defined as the 5 percentile user
rate hence we use its required value as a minimum for the average user rate.
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Notation Definition Unit

λk binary parameter: 1 if InP k of type L, 0 if of type N —
L label to represent an InP that has a legacy network & does not upgrade to 5G —
N label to represent an InP that deploys a 5G network at the beginning of the studied period —
Bk total available bandwidth of InP k MHz
B̂k amount of bandwidth of InP k associated with an amortized spectrum license MHz
πSC,k probability that InP k has not deployed a legacy SC in a SC candidate site —
πMC,k probability that InP k has not deployed a legacy MC in a MC candidate site —
πMC=mink∈K πMC,k probability that a site has to be built in a MC candidate site —
AMC area of a MC sector km2

ASC area of a SC km2

ccpxMC,k per sector total CAPEX of a 3-sector MC site for InP k EUR
ccpxSC,k total CAPEX of a SC site for InP k EUR
copxMC,k per sector total annual OPEX of a 3-sector MC site for InP k EUR/year
copxSC,k total annual OPEX of a SC site for InP k EUR/year
cspecSC,k spectrum license cost normalized to ASC and L for InP k EUR
Pk monthly overall cost incurred by InP k to provide one unit (1 Mbps) of capacity EUR/Mbps/month

TABLE I: InP related parameters

Notation Definition Value Unit

B0 baseline bandwidth 20 MHz
L duration of the studied period 10 years
cc,sMC site civil works & acquisition cost for a MC site 51282 EUR

cc,aMC,k

total antenna cost per MC site for InP k

λk = 1: M=2 antenna at sub-1GHz & low bands 1776 EUR
λk = 0: M=4 antenna at sub-1GHz & low bands + M=64 antenna at medium band 10656 EUR

cc,fMC,k

total feeder, install, test and commission costs for all antennas of a MC site for InP k

λk = 1: M=2 antenna at sub-1GHz & low bands 4884 EUR
λk = 0: M=4 antenna at sub-1GHz & low + M=64 antenna at medium band 9768 EUR

cc,rfMC,k

RF front end cost per 20MHz bandwidth per MC site for InP k

λk = 1: M=2 antenna at sub-1GHz & low bands 12487.5 EUR
λk = 0: M=64 antenna at medium band 39960 EUR

cc,bpMC,0 baseline baseband processing cost for a 3-sector MC with 2×2 MIMO for each 20 MHz 4162.5 EUR

mk

scaling factor for baseband processing cost (see Table 11-9 and Section 11.5.1.3 in [10])
λk = 1: M=2 antenna configuration 1 –
λk = 0: M=64 antenna configuration 6 –

co,sMC annual MC site rental cost 22200 EUR
co,r&u
MC annual rates and utilities cost for a MC site 11100 EUR

co,vMC annual vendor services cost for a MC site 3552 EUR

Ξl&m
MC

fraction of active equipment cost (total RF front end + BBU processing cost)
0.1 –

to calculate annual licensing & maintenance cost for a MC site

cc,sSC site civil works and acquisition cost for a SC site 5328 EUR

cc,aSC,k

antenna cost per SC site for InP k

λk = 1: M=2 antenna at low & medium unpaired bands 277.5 EUR
λk = 0: M=4 antenna at low & medium unpaired bands 555 EUR

cc,fSC,k

feeder, install, test and commission costs per SC site for InP k

λk = 1: M=2 antenna at low & medium unpaired bands 777 EUR
λk = 0: M=4 antenna at low & medium unpaired bands 777 EUR

co,sSC annual SC site rental cost 1110 EUR
co,r&u
SC annual rates and utilities cost for a SC site 599.4 EUR

co,vSC annual vendor services cost for a SC site 0 EUR

Ξl&m
SC

fraction of active equipment cost (SC antenna cost)
0.25 –

to calculate annual licensing & maintenance cost for a SC site
cspec0 spectrum license cost per MHz, unit of area and year [40], [41] 1.6331 EUR/MHz/km2/year

TABLE II: Cost model parameters

Backhauling type (t) Capacity per link (Cbh
t ) CAPEX (cc,bht ) annual OPEX (co,bht )

dark fiber (1 Gbps) 1 Gbps 35409 EUR 1248.75 EUR
dark fiber (10 Gbps) 10 Gbps 36630 EUR 1248.75 EUR
dark fiber (100 Gbps) 100 Gbps 39405 EUR 1248.75 EUR
Ethernet Access Direct (EAD) Managed 1 Gbps 2331 EUR 3496.5 EUR

TABLE III: Capacity and cost of different backhauling options [10]

(ii) for any given µv , uv and pv , we expect qv to be non-
decreasing in εv , limεv→0 qv(µv, εv, uv, pv) = 0 and
limεv→∞ qv(µv, εv, uv, pv) = 1 for each v ∈ V .

In [42]–[46], the normalizing constant A (see Equation (2) and

Section III-B2) is set equal to 0.1 for ε = 4, µ = 2, p = 1
and u = 1, therefore the corresponding reference rejection
probability q = e−A ≈ 0.9. We then set qv = 0.9 for any SP
v with εv = 4, µv = 2, uv = 1 and the considered pv , in line
with assumption (i), whereas for SPs with εv equal to 3 and 2
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we set qv equal to 0.6 and 0.3, respectively, as per assumption
(ii).

Concerning the number of users or, alternatively, devices21

subscribing to each SP, first let σv denote the market share of
SP v for the service offered by v. We assume that the eMBB
market segment served by SP 1 makes up 20% of the eMBB
market (i.e., σ1 = 0.2), whereas the eMBB market segments
served by SPs 2 and 3 make up 30% and 50%, respectively
(i.e., σ2 = 0.3 and σ3 = 0.5). SP 4 is assumed to serve
the entire mMTC market (i.e., σ4 = 1). Then, the number
of devices in the area of a SC that have subscribed to each
SP are: Nv = σvdeMBBASC , for any v ∈ {1, 2, 3} (eMBB
SPs), and N4 = σ4dmMTCASC (mMTC SP), where deMBB

and dmMTC denote the eMBB and mMTC device density,
respectively, whereas ASC the area of a SC (see Section IV-B).
Further, for eMBB SPs we consider a device activity factor
equal to 0.1, i.e., ηv = 0.1 for any v ∈ {1, 2, 3} as in [5],
[14], whereas for the mMTC SP we assume η4 = 0.01 (as
sensors tend to become active less often).

D. Instances

In our numerical tests, for InPs of type N , i.e., for InPs
which deploy a 5G network, we have considered two particular
cases, labeled as N (1) and N (2). Specifically, N (1) refers to
an InP k for which:
(1) Bk ≥ B̂k = 20 MHz, i.e., k has amortized the spectrum

license cost of 20 MHz of bandwidth from its total
available (Bk) and it may have acquired a new spectrum
license (if Bk − B̂k > 0);

(2) πMC,k = 0.3 and πSC,k = 0.5, i.e., k has not deployed
a legacy MC BS in a MC candidate site with probability
equal to 0.3 and analogously for SCs for which such
probability is assumed equal to 0.5.

In turn, N (2) refers to an InP k for which:
(1) Bk > B̂k = 0, i.e., k does not own any spectrum license

whose cost has been amortized but has acquired a new
spectrum license of Bk units of bandwidth;

(2) πMC,k = πSC,k = 1, i.e., no legacy MC/SC BSs of k are
present in any of the MC/SC candidate sites or, in other
words, k has not previously deployed a legacy network.

Instead, as mentioned in Section IV-A, for an InP k of type
L which does not upgrade to 5G we assume:
(1) Bk = B̂k > 0, i.e., k has amortized the spectrum license

cost of all its available bandwidth, meaning that k does
not acquire any new spectrum licenses;

(2) πMC,k = πSC,k = 0, i.e., k has deployed legacy MC/SC
BSs in all available MC/SC candidate sites hence it does
not deploy additional MCs and SCs during the studied
period.

We then set up several instances with two InPs (|K| = 2)
and four SPs (|V| = 4). Across these instances, we vary the
type and total available bandwidth of the two InPs, but con-
sider the same set of four SPs (as described in Section IV-C).
The instances are described and labeled in Table V where, e.g.,
for the instance labeled as A10, the first InP is of type N (1)

21We use the terms device and user interchangeably.

and its total available bandwidth B1 is equal to 100 MHz,
whereas the second InP is of type L and B2 = 100 MHz.

E. Computational tests

The proposed framework was implemented in Matlab,
whose solvers have been used in the implementation to
calculate Xvk(Pk) and Xvk(Pk) according to Equations (8)
and (9), respectively, and to determine an optimal solution
of the capacity assignment problem formulated as a two-step
optimization problem (see Section III-C).

The value of P (i.e., the minimum monthly price per unit
of average SC capacity which is unprofitable for all SPs) has
been determined as follows: for each SP v, let P v denote the
minimum value of P for which Xv(P ) = 0 (see Equation (8))
and let P

◦
v denote an upper bound for P v (which we calculate

through a heuristic that provides P
◦
v ≤ P v + 0.001); we then

set P = maxv∈V P
◦
v .

To solve the MLFG numerically, we have discretized
the continuous InP price strategy sets Pk = [P k, P ], (see
Section III-D2), i.e., hereon, Pk = {P k, . . . , P}, for any
k ∈ K. Consequently, the resulting set of InP price profiles
P =

∏
k∈K Pk is also discrete and finite. We determine the

Subgame Perfect Equilibrium(a) (SPE) [34] of the two-stage
MLFG as follows:
(1) for each InP price profile P ∈ P , we look for the NE

in pure strategies of the corresponding SPs’ game, i.e.,
for y̆(P ) of GV(P ), (see Section III-D1) from which
we can calculate the payoff Gk(P ) of each InP for the
price profile P according to Equation (22) – if there are
multiple NE in pure strategies for GV(P ), then Gk(P )
is set equal to the minimum payoff attained by k among
all these NE;

(2) we look for the NE in pure strategies22 of the InPs’ game,
i.e., for P̆ of GK (see Section III-D2).

The NE of GV(P ) and of GK were determined through
exhaustive search. In the definition of the NE in pure strategies
for GK and for GV(P ) we have introduced an absolute margin
∆ = 10−6 EUR (recall that the payoffs Gk and gv are all given
in EUR). For instance, the InP price profile P̆ is an NE of the
GK iff

Gk([P̆k, P̆−k]) ≥ Gk([Pk, P̆−k)]−∆, (31)
∀ Pk ∈ Pk, ∀ k ∈ K,

where P̆−k denotes the prices of all other InPs but k. ∆ was
introduced to account for the inaccuracy caused by inherent
tolerances of the Matlab solvers.

Concerning the discretization of the originally continuous
InP unit price strategy sets Pk = [P k, P ], we initially created
a unit price strategy set consisting of 30 logarithmically-spaced
values in the range [P k, P ]. The MLFG resulting from these
discrete InP unit price strategy sets has at least one SPE for all
instances but B4 and B5. Instead, for both B4 and B5, although
there is at least one NE in pure strategies for each SPs’ game,

22As mentioned, the price strategy set Pk of each InP k ∈ K is discrete
which means that the InPs’ game GK is formally a non-cooperative game in
strategic form, hence we look for its NE in pure strategies.
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v service type utility function acceptance probability # users & activity factor

1 eMBB X 1=50 Mbps X 1=5000 Mbps ξ1=2 µ1=2 ε1=2 q1=0.3 σ1=0.2 N1=9.82 η1=0.1
2 eMBB X 2=50 Mbps X 2=2500 Mbps ξ2=2 µ2=2 ε2=3 q2=0.6 σ2=0.3 N2=14.73 η2=0.1
3 eMBB X 3=50 Mbps X 3=500 Mbps ξ3=2 µ3=2 ε3=4 q3=0.9 σ3=0.5 N3=24.54 η3=0.1
4 mMTC X 4=0.00016 Mbps X 4=1 Mpbs ξ4=20 µ4=2 ε4=4 q4=0.9 σ4=1 N4=1178.10 η4=0.01

TABLE IV: Parameters characterizing the service and the users of each SP.

(B1, B2)

(20,20) (20,60) (60,20) (60,60) (80,80) (20,100) (40,100) (60,100) (80,100) (100,100) (120,100)

(N (1),L) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
(N (2),N (1)) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

TABLE V: Instances and respective labels

there is no NE in pure strategies for the InPs’ game and thus
no SPE for the MLFG. Then, for both B4 and B5, for each InP
k, we created an alternative unit price strategy set consisting
of 60 values in the range [P k, P ] with the majority of these
values in price ranges where we expected the NE of GK to be
based on the best response mappings of GK resulting from the
initial discrete InP unit price strategy sets (see Section V-B).
As there was no NE for GK neither for B4 nor for B5 even
for the MLFG resulting from the alternative discrete InP unit
price strategy sets, we settled on suggesting as a solution for
GK an InP unit price profile P ⋄ with a small (0.53% for B4
and 3.89% for B5) maximum relative payoff difference from
the InPs’ best response (see Equation (40) and Section V-B
for details).

V. NUMERICAL RESULTS ANALYSIS

In this section, we report and analyze numerical results con-
cerning the equilibrium(a) of the considered problem for the
instances defined in Section IV-D. To start with, in Section V-A
we explain the notation used in reporting these results. Then,
in Section V-B we discuss the existence and multiplicity
of equilibria across these instances. Instead, in Section V-C
we analyze the impact of the InPs’ network technology and
available spectrum bandwidth on the equilibrium strategies of
the players, i.e., on the capacity unit price offered by the each
InP and the InP choice of each SP.

A. Notation summary

For the sake of brevity, hereon we will simplify the termi-
nology as follows:

• the term equilibrium will refer to equilibrium of the
overall game, i.e., to the sub-game perfect equilibrium
of the MLFG which consists of the Nash Equilibrium
InP capacity unit price profile of the InPs’ game, i.e., P̆
of GK and of the Nash Equilibrium SPs’ choice of InP of
the SPs’ game resulting from P̆ , i.e., y̆(P̆ ) of GV(P̆ ),
where both are Nash Equilibria in pure strategies;

• the term capacity will refer to the average SC capacity
of an InP;

• the term spectral efficiency will refer to the average SC
spectral efficiency of an InP;

• the term unit cost will refer to the total monthly cost per
unit of average SC capacity of an InP;

• the term unit price will refer to the monthly price per
unit of average SC capacity offered by an InP at the
equilibrium.

For all considered instances A1–A11 and B1–B11, the val-
ues of the main parameters characterizing the InPs and the SPs
and the equilibrium outcomes are reported in Tables VII–XIV,
where Tables VII, IX, XI and XIII concern the InPs, whereas
Tables VIII, X, XII and XIV, the SPs. The definitions and unit
of measurements of the notation used across Tables VII–XIV
are provided in Table VI. When reporting numerical values
in the text, the respective units of measurement have been
omitted. Notice also that:

• in Tables VIII, X, XII and XIV, for each SP v (column
two), column three reports the InP selected by v at the
equilibrium, i.e., k for which y̆vk(P̆ ) = 1; in particular,
the symbol – has been reported in all the columns starting
from the third one for each SP for which it is not
profitable to purchase capacity from any of the InPs at
their equilibrium capacity unit prices and hence it cannot
provide services to its users;

• in Tables VII–XIV values for P k, P̆k, Ğk, a∗vp
∗
v(ŭv),

ğv and r̆∗v/x̆vk are reported rounded to two decimals,
whereas values for Ck, C̆ ′

k, Xv(P̆k), x̆vk, Xv(P̆k) and
ŭv are reported rounded to three decimals to highlight
the differences;

• in Tables VIII, X, XII and XIV, when the reported values
for x̆4k across different instances are distinct but the
respective reported values for ŭ4 are equal among them
and/or the respective reported values for a∗4p

∗
4(ŭ4)) are

equal among them, this is due to the aforementioned
rounding. Consider e.g., instances A7 and A8 in Ta-
ble X: for A7, x̆4k = 10.343 Mbps, whereas for A8,
x̆4k = 10.355 Mbps, while for both of them ŭ4 = 0.987
and a∗4p

∗
4(ŭ4) = 0.12 EUR/month. In fact, distinct values

of x̆4k for the two instances imply distinct values of the
respective ŭ4, but the latter differ from one another not
before the fourth decimal; similarly, the respective values
of a∗4p

∗
4(ŭ4) differ not before the third decimal.

B. Existence and multiplicity of equilibria

For the considered instances, it is always possible to find
an equilibrium when the InPs are different, either for the
technology or for the available spectrum bandwidth. Instead,
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Notation Definition Unit

Pk unit cost of InP k (see Equation (23)) EUR/Mbps/month
P̆k ≥ Pk unit price offered by InP k (at the equilibrium) EUR/Mbps/month
P minimum unit price unprofitable for all SPs (see Section IV-E) EUR/Mbps/month
Ck available capacity of InP k (see Section IV-A) Mbps
C̆′

k ≤ Ck capacity sold by InP k at the equilibrium Mbps
Ğk payoff of InP k at the equilibrium (see Equation (22)) EUR/month
Wk subset of SPs that select InP k at the equilibrium and are assigned non-zero capacity —
Xv(P̆k) minimum capacity requested by SP v from the selected InP k at P̆k (see Equation (9)) Mbps
Xv(P̆k) maximum capacity requested by SP v from the selected InP k at P̆k (see Equation (8)) Mbps
x̆vk capacity assigned to SP v by the selected InP k at the equilibrium (see Section III-D1) Mbps
ŭv utility obtained by a single user of SP of v at the equilibrium (see Equation (1)) —
a∗
vp

∗
v(ŭv) monthly fee accepted by a user of SP v for ŭv > 0 (see Section III-B3) EUR/month

ğv payoff of SP v at the equilibrium (see Equation (21)) EUR/month
r̆∗v total revenue of SP v at the equilibrium (see Equation (7)) EUR/month
r̆∗vk/x̆vk revenue per unit of purchased capacity for SP v at the equilibrium EUR/Mbps/month

TABLE VI: Summary of notation used in Tables VII–XIV

if the InPs are very similar, it might be difficult to find an
equilibrium, unless the spectrum bandwidth is very low or very
high. Concerning the equilibria multiplicity, which results23

from the equilibria multiplicity of the InPs’ game at stage
1 and/or of the SPs’ game stage 2, the multiple equilibria
are always equivalent for all players (i.e., for all InPs and all
SPs) since each player obtains the same payoff in all of them,
hence they represent the same system behavior; at stage 1, the
equilibria multiplicity occurs because there is an InP which
is not selected by any SP for any offered unit price, whereas
at stage 2 it occurs because some SPs are not provided with
capacity in any of the equilibria, therefore it is not relevant
which InP they select.

Specifically, no equilibrium was found for instances B4 and
B5 (see Section IV-E); however, for both of them, it is possible
to determine an approximate equilibrium as explained in Ap-
pendix C. In turn, a single equilibrium was found for instances
A8–A11 and B7–B11 and multiple equivalent ones for the rest
of the instances. As for the equilibria equivalence for instances
with multiple equilibria, some illustrative examples follow.

Consider instance A7 (see Tables IX and X) for which the
equilibria multiplicity derives from stage 2. In details, for A7,
the InPs’ game at stage 1 has a unique NE P̆ = (P̆1 =
1.87, P̆2 = 1.80), whereas the SPs’ game at stage 2 for P̆
has two NE denoted by (i) and (ii) in Table X: in (i) SP 3
selects InP 1, whereas in (ii) it selects InP 2, while in both (i)
and (ii) SP 1 selects InP 2 whereas SPs 2 and 4 select InP 1.
In (i), SP 3 requests a minimum amount of capacity equal to
173.051 Mbps and a maximum of 175.857 Mbps from InP 1
given P̆1 = 1.87 whereas in (ii) SP 3 requests a minimum of
160.391 Mbps and a maximum of 176.817 Mbps from InP 2
given P̆2 = 1.80 . However, SP 3 is allocated a null capacity
in both (i) and (ii); in fact, in (i), InP 1 (which serves SPs
2 and 4) does not have enough spare capacity to serve SP 3
(C1 − C̆ ′

1 = 97.257 < X3(P̆1) = 173.051 Mbps), whereas
in (ii) InP 2 has allocated all its available capacity to SP 1
(x̆12 = C̆ ′

2 = C2 = 260 Mbps). Formally, the unique NE of
of the game at stage 1 and the NE (i) and (ii) of the game at

23Let nK denote the number of NE in pure strategies of GK where nK ≥ 1,
and let P̆i denote the unit price profile of the i-th NE of GK where 1 ≤ i ≤
nK. Then let nV

i denote the number of NE in pure strategies of GV (P̆i)
where nV

i ≥ 1. The number of sub-game perfect equilibria of the MLFG is

then equal to
∑nK

i=1 n
V
i .

stage 2 imply two equilibria for instance A7. However, it can
easily be seen that these two equilibria are equivalent for all
SPs: each of the SPs 1, 2 and 4 is served by the same InP, at
the same unit price and with the same amount of capacity in
both equilibria hence each of them obtains the same payoff in
both, while SP 3 is not served in neither equilibria resulting
in a null payoff in both. The two equilibria are equivalent also
from the InPs’ perspective: each InP sells the same amount of
capacity at the same unit price in both equilibria thus obtaining
the same payoff in both.

For instances A1, A2 and B1 as well, the equilibria mul-
tiplicity derives from stage 2. However, for these instances,
unlike for A7, the multiplicity of NE for the stage 2 game
is due to there being at least one SP for which it is not
profitable to buy capacity from any InP , hence each such SP
is indifferent to the InP choice. Recall that for such SPs, in
Tables VIII, X and XII we report the symbol – in all columns
starting from the third one. Consider, for instance, instance B1:
it is SPs 1, 2 and 3 for which it is not profitable to purchase
capacity from any of the InPs, while SP 4 selects and is fully
served by InP 2 (see Table XII). Formally, there are 8 equilibria
for B1 since the stage 1 game has a unique NE (see Table XI),
whereas the stage 2 game has 8 NE resulting from SPs 1, 2 and
3 selecting either InP 1 or InP 2 but acquiring a null capacity
from either, while in all these NE SP 4 is served with the
same amount of capacity and at the same unit price by InP
2. Clearly, payoff-wise, these equilibria are equivalent for all
SPs and all InPs.

For instances A5 and B6 the equilibria multiplicity derives
instead from stage 1. Let us consider instance A5 (similarly
then for B6). For A5, GK has multiple NE which are all unit
price profiles P̆ = (P̆1, P̆2) such that P̆1 = 1.77, whereas
P̆2 can take any value in the considered discrete unit price
strategy set of InP 2, i.e., P2 = {P 2 = 2.24, . . . , P = 14.86}
(see Table VII). Although each such P̆ induces a distinct stage
2 game GV(P̆ ), all these stage 2 games have the same unique
NE reported in Table XII in which all SPs select and are served
by InP 1, hence InP 2 sells a null capacity and obtains a null
payoff. Thus, formally, there are |P2| equilibria for instance
A5, but each player obtains the same payoff in all of them.

In turn, instances A3, A4, A6, B2 and B3 have multiple
NE at both stages. For the NE multiplicity at stage 1 (stage
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2), similar observations to those made for instances A5 and
A6 (A1, A2 and B1) apply from which one can easily see
the equivalence among the resulting equilibria. Nevertheless,
it is worth clarifying that for A3, A4, A6, B2 and B3, each
distinct NE unit price profile at stage 1 results in the same
set of NE at stage 2, which are per se equivalent among
them. For example, instance A3 has 2|P2| equilibria since
each NE unit price profile P̆ = (P̆1, P̆2) with P̆1 = 1.99
and P̆2 ∈ P2 = {P 2 = 8.90, . . . , P = 14.86} at stage one
(see Table VII) results in two NE at stage 2, due to SP 3
not finding it profitable to purchase capacity from any of InPs
hence being indifferent to the InP choice (see Table VIII).

C. Technology and spectrum availability impact on competi-
tion among InPs

Recall that for each InP k, 1) its network technology type
and 2) its available spectrum bandwidth (Bk) affect its average
SC capacity (Ck) and its total cost per unit of average SC
capacity (P k) as explained in Section IV-A. In the following
paragraphs we will then analyze the impact of 1) and 2) on
the competition among InPs to be selected by SPs.

Let us first consider instances A1–A11 for which InP 1
has a new (5G) network (type N (1)) whereas InP 2 has a
legacy (4G) network (type L), while their available spectrum
bandwidths vary across the instances. As for instances A1–
A5 (see Tables VII and VIII), InP 2 does not sell capacity to
any SP, thus obtaining a null payoff, in all the instances but
A2, even when SPs are not fully satisfied from InP 1 (e.g.,
in case of instance A5). InP 1, instead, always serves at least
one SP (but in instance A2). Indeed, for A1, A3, A4 and A5,
InP 1 is preferred to InP 2 by at least one SP because InP
1 can offer a lower unit price since it is more cost-efficient,
i.e., it has a lower unit cost (P 1 < P 2) and because it has
sufficient available capacity. InP 1 has a lower unit cost and a
higher capacity than InP 2 due to InP 1 having a higher spectral
efficiency (resulting in a higher cell capacity for equal amounts
of spectrum bandwidth) and due to B1 ≥ B2. However, notice
that for equal amounts of bandwidth, InP 1 incurs a higher total
cost per cell than InP 2 to attain a higher spectral efficiency
and the total cell cost increases with the spectrum bandwidth.
Instead for instance A2, B2 = 3B1 hence C1 = C2 while
P 1 > P 2 (i.e., P 1C1 > P 2C2), meaning that the legacy (4G)
InP 2, which owns the triple of spectrum holdings of the new
(5G) InP 1, provides the same amount of capacity as the latter
but more cost-efficiently.

As for the SPs, when the spectrum bandwidth is low, and
the unit costs and hence the (equilibrium) unit prices are
high, only SP 4 is served and provided with the maximum
amount of requested capacity from the selected InP (instances
A1 and A2). With the increasing spectrum bandwidth and
decreasing unit costs and hence unit prices (instances A3 and
A4), other SPs are served and provided with the maximum
requested capacity. Finally, in instance A5 all the SPs are
served. Although the maximum requested capacity is not
provided to any of them by InP 1, they all obtain a higher
payoff from selecting InP 1 due to its lower unit price.

Instances A6–A11 are such that for all of them B2 = 100
MHz (see Table V) and hence C2 = 260 Mbps (see Table IX)

given that InP 2 is of type L. Instead, B1 increases with a
step of 20 MHz from A6 to A11 starting from B1 = 20
MHz for A1 (see Table V), therefore C1 increases accordingly
from 156 Mbps for A6 to 936 Mbps for A11 (see Table IX)
given that InP 1 is of type N (1). Among A6–A11, only for
instance A6, the legacy (4G) InP is more cost-efficient than
the new (5G) InP (i.e., P 2 < P 1) and has a higher capacity
(i.e., C2 > C1). Indeed, InP 1 always provides capacity to at
least one SP, but in instance A6. On the contrary, for A7–A11
one has P 1 < P 2 and C1 > C2. With the increasing spectrum
bandwidth of InP 1 and its decreasing unit price, InP 1 serves
an increasing number of SPs. When the spectrum bandwidths
are comparable or InP 1 has a greater amount (A10 and A11),
InP 1 serves all the SPs. In general, InP 1 is able to offer a unit
price higher than its unit cost, while InP 2 is always selling
at a unit price equal to its unit cost but for instance A6. InP
1 does not sell all its available capacity but in instance A9,
when it first serves SP 1, which is served by InP 2 as long as
the spectrum bandwidth of InP 1 is below 80 Mhz.

As for the SPs, SP 1 and SP 4 are always served. SP
2 and SP 3 are not served in instance A6 as they cannot
afford the offered unit prices. Instead, in instance A7, SP
3 can actually afford the unit prices of both InPs but it is
not served as neither InP has sufficient available capacity to
satisfy its minimum requested capacity. When an SP is served,
it is usually provided with the maximum requested capacity.
Exceptions are SP 1 in instance A7 and A8, where SP 1 cannot
be provided with the maximum requested capacity due to the
limited capacity of InP 2, and instance A9, where the available
capacity of InP 1 makes it impossible for it to serve completely
the three SPs that select it.

Instances B1–B11 (see Tables XI and XIV) are analogous
to the respective A1–A11 in terms of spectrum bandwidth
availabilities of the two InPs, but for B1–B11 both InPs have
deployed a new (5G) network and InP 1 is of type N (2), i.e.,
a sheer new entrant, whereas InP 2 is of type N (1), i.e., InP
2 reuses available sites and spectrum licenses from its legacy
(4G) network when it upgrades to the new (5G) network. In
particular, for B1–B11, when the spectrum bandwidths of the
two InPs are equal (i.e., B1 = B2) then also their capacities
are equal (i.e., C1 = C2), which is the case for instances B1,
B4, B5 and B10. However, for these latter instances, the unit
cost of InP 1 is slightly higher than the one of InP 2 (i.e.,
P 1 > P 2), reflecting the disadvantage of InP 1 for being a
new entrant.

For instances B1–B5, when the capacity is low and the unit
cost high, the least cost-efficient InP sells no capacity and
hence obtains a null payoff: this is the case of InP 1 in B1
and B2, and of InP 2 in instance B3. Moreover, for B2 and B3,
the least cost-efficient InP induces no competition (similarly
to A3, A4 and A5), therefore the unit price of the other (most
cost-efficient) InP is determined solely by the SPs’ demand
and its own available capacity. Concerning the SPs, some of
them are not served across B1–B3 because neither P̆1 nor P̆2

are profitable for them.
As for instances B4 and B5, we recall that we did not

find a NE for the InPs’ game, hence we suggested as a
solution the unit price profile P ⋄ = (P ⋄

1 , P
⋄
2 ) which is
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calculated according to Equation (40) and it can be considered
an approximate NE (see Appendix C). In these lines, for both
instances, values reported under P̆1 and P̆2 in Table XI, which
are marked by the symbol ⋄, are in fact the values of P ⋄

1

and P ⋄
2 , respectively. For B4, the SPs’ game for P ⋄ has two

distinct NE in pure strategies denoted as (i) and (ii) when
reported in Tables XI and XII. This NE multiplicity is due
to the fact that the two InPs are very similar (P ⋄

1 = 1.23,
P ⋄
2 = 1.22 and C1 = C2 = 468). However, neither NE is

preferred by all InPs or all SPs. In fact, in both (i) and (ii) SP
4 is served by InP 2 at the same unit price (P ⋄

2 = 1.22) and
with the same amount of capacity (x̆42 = 10.558) hence SP 4
is indifferent between the two NE. Instead, SPs 2 and 3 prefer
(ii), in the sense that they attain a higher payoff from (ii),
whereas SP 1 prefers (i) which means that SPs 1, 2 and 3 are
all better off in the NE in which they are served by the cheapest
InP24. In turn, InP 1 prefers (i), whereas InP 2 prefers (ii) since
each InP is able to sell more capacity and hence attain a higher
payoff when serving both SPs 2 and 3 instead of SP 1. For
instance B5 instead, the SPs’ game for P ⋄ has a unique NE.
In particular, this P ⋄ is such that P ⋄

1 = 1.09 > P ⋄
2 = 0.94

despite P 1 = 0.94 > P 2 = 0.90 which shows that InP 1
leverages the fact that C2 is not sufficiently large for all SPs
to be served by InP 2. In fact, even though P ⋄

1 > P ⋄
2 , at the

unique NE of SPs’ game for P ⋄, SP 3 selects and is served
by InP 1 from which it obtains x̆31 = 190.370 at P ⋄

1 = 1.09.
If SP 3 were to select InP 2 while SPs 1, 2 and 4 still selected
and were served by InP 2, then InP 2 would split C2 = 624
among all SPs and SP 3 would obtain an amount of capacity
equal to 147.825 at P ⋄

2 = 0.94 which would lower its payoff
value by 35.86% w.r.t. the value attained in the NE.

Concerning instances B6–B11, it results that InP 1 becomes
more cost-efficient than InP 2 only for instance B11 for which
B2 > B1. Nevertheless, InP 2 is unaffected by the presence of
InP 1 only for instance B6 for which InP 1 has only 20 MHz of
spectrum bandwidth resulting in a high unit cost (P 1 = 3.55
as opposed to P 2 = 0.73). Specifically, for B6, all SPs select
and are served by InP 2 and P̆2 is determined solely by the
SPs’ demand and the available capacity of InP 2. Instead, in
instances B7–B8, although all SPs still select and are served
by InP 2, the unit price offered by InP 2 at the equilibrium is
dictated by the unit cost of InP 1 (P̆2 is the highest discrete unit
price value lower than P 1). Indeed, as the spectrum bandwidth
of InP 1 increases, its capacity increases whereas its unit cost
decreases making InP 1 more competitive hence forcing InP
2 to lower its offered unit price which in turn increases the
amount of capacity requested by the SPs. When the spectrum
bandwidths are comparable or InP 1 has a greater amount
(B10–B11), the SPs move from InP 2 to InP 1 and InP 2 is
forced to sell at its unit cost. As for the SPs, they are always
fully served, but in instance B9, where SPs 1, 2 and 3 select

24In fact, as reported in Table XII, SPs 1, 2 and 3 attain a higher payoff
when served by InP 2 since in addition to InP 2 offering a lower unit price
than InP 1 (i.e., P ⋄

2 < P ⋄
1 ), the maximum amount of capacity requested by

SPs 1, 2 and 3 at P ⋄
2 is higher than the respective one at P ⋄

1 (i.e., Xv(P ⋄
2 ) >

Xv(P ⋄
1 ), ∀v ∈ {1, 2, 3}) and C2 is sufficiently large for InP 2 to provide

each SP that selects it in each of these NE with its maximum requested
capacity (i.e., x̆12 = X1(P ⋄

2 ) in NE (i) and x̆22 = X2(P ⋄
2 ) and x̆32 =

X3(P ⋄
2 ) in NE (ii)).

InP 2 which is not able to fully serve them whereas SP 4 opts
for InP 1, despite its higher unit price, so as to obtain all the
requested capacity.

On the overall, we notice that there is more head-to-head
competition when InPs are of the same type. Indeed, more
recent 5G InPs are preferred w.r.t. older ones (4G ones), but
if the latter provide much more spectrum bandwidth, thus
resulting more cost-efficient. In this case 5G InP is either less
cost-efficient or does not have sufficient capacity for all SPs.
Further, there should be sufficient bandwidth even for a 5G
InP to be affordable for all 5G services given realistic user
fees.

VI. CONCLUSION

In this work, we address a mobile ecosystem in which
the network infrastructure and resources are decoupled from
services provisioned for end users giving rise to two types
of stakeholders: InPs and SPs. InPs deploy and manage the
mobile network and sell their resources to SPs through which
the latter provision services for the end users. We consider
a case in which there are multiple InPs and multiple SPs
and the resource sold/purchased by InPs/SPs is the amount
of capacity per BS cell assuming the cell area is provisioned
by each InP through its individual BS. We model the problem
of cell capacity pricing from the InP perspective and of the
choice of an InP from which to acquire capacity from the
SP perspective as a multi-leader-follower game. The proposed
model has been applied in the context of migration from 4G
to 5G for several scenarios in which InPs are characterized
by different network technologies and available spectrum
bandwidths, whereas SPs provide different 5G mobile services.
To set up realistic scenarios, the InP cost structure and the
service characterization are based on recent 5G literature.

The analysis of the obtained equilibria shows that more
recent InPs are preferred w.r.t. older ones. Older InPs can be
competitive if they provide much more spectrum bandwidth,
thus resulting more cost-efficient. When the InPs have the
same technology, the new entrant ones are less preferred.
Indeed, they incur a slightly higher unit cost thus being less
competitive.

APPENDIX A
OPTIMAL USER FEE DERIVATION

In the following, we derive the optimal user fee from the
SP perspective, i.e., the fee offered to a user by its SP so
that the SP revenue is maximized. We show that this fee is a
function of the level of utility perceived by the user which is
per se a function of the amount of capacity allocated to the
user by the SP. As explained in Section III-B, each SP v ∈ V
splits its available cell capacity xv uniformly among its users
and the utility perceived by the single user from the allocated
capacity, i.e., uv(xv) is represented by Equation (1). Further,
if a user of SP v perceiving the utility uv(xv) is offered a fee
pv , it will accept it with a probability av(pv, uv(xv)) given by
Equation (2) (or equivalently (3)), therefore, av(pv, uv(xv))pv
represents the fee accepted by the user. It follows that, for
a given amount of cell capacity xv , which implies a level
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Instance P 1 P 2 P̆1 P̆2 C1 C2 C̆′
1 C̆′

2 Ğ1 Ğ2 W1 W2

A1 3.41 8.90 8.50 8.90 156 52 9.592 0 81.55 0 {4} ∅
A2 3.41 2.98 3.41 3.33 156 156 0 10.055 0 33.52 ∅ {4}
A3 1.18 8.90 1.99 {8.90,...,P=14.86} 468 52 460.326 0 917.48 0 {1,2,4} ∅
A4 1.18 2.98 1.99 {2.98,...,P=14.86} 468 156 460.326 0 917.48 0 {1,2,4} ∅
A5 0.90 2.24 1.77 {2.24,...,P=14.86} 624 208 624.000 0 1105.80 0 {1,2,3,4} ∅

TABLE VII: Key equilibrium outcomes related to the InPs — instances A1–A5

Instance v k Xv(P̆k) x̆vk Xv(P̆k) ŭv a∗
vp

∗
v(ŭv) ğv r̆∗v/x̆vk

A1

1 – – – – – – – –
2 – – – – – – – –
3 – – – – – – – –
4 1 7.799 9.592 9.592 0.942 0.12 60.03 14.76

A2

1 – – – – – – – –
2 – – – – – – – –
3 – – – – – – – –
4 2 6.949 10.055 10.055 0.977 0.12 110.61 14.33

A3

1 1 190.156 251.008 251.008 0.622 54.02 30.02 2.11
2 1 163.424 199.007 199.007 0.547 28.08 16.86 2.08
3 – – – – – – – –
4 1 6.556 10.311 10.311 0.986 0.12 124.24 14.04

A4

1 1 190.157 251.008 251.008 0.622 54.02 30.02 2.11
2 1 163.424 199.007 199.007 0.547 28.08 16.86 2.08
3 – – – – – – – –
4 1 6.556 10.311 10.311 0.986 0.12 124.24 14.04

A5

1 1 161.214 250.977 266.747 0.622 54.01 85.48 2.11
2 1 140.492 196.525 208.873 0.537 27.74 60.22 2.08
3 1 158.099 166.741 177.217 0.613 12.57 12.94 1.85
4 1 6.471 9.757 10.370 0.958 0.12 125.47 14.63

TABLE VIII: Key equilibrium outcomes related to the SPs — instances A1–A5

Instance P 1 P 2 P̆1 P̆2 C1 C2 C̆′
1 C̆′

2 Ğ1 Ğ2 W1 W2

A6 3.41 1.80 {3.41,...,P=14.86} 2.08 156 260 0 255.376 0 531.72 ∅ {1,4}
A7 1.74 1.80 1.87 1.80 312 260 214.743 260.000 401.40 468.00 {2,4} {1}
A8 1.18 1.80 1.83 1.80 468 260 393.144 260.000 718.04 468.00 {2,3,4} {1}
A9 0.90 1.80 1.77 1.80 624 260 624.000 10.362 1105.80 18.65 {1,2,3} {4}

A10 0.73 1.80 1.68 1.80 780 260 675.940 0 1136.71 0 {1,2,3,4} ∅
A11 0.62 1.80 1.66 1.80 936 260 678.429 0 1129.28 0 {1,2,3,4} ∅

TABLE IX: Key equilibrium outcomes related to the InPs — instances A6–A11

of utility for the single user equal to uv(xv), the optimal
user fee for SP v is the value of the pv which maximizes
av(pv, uv(xv))pv .

For ease of notation, hereon, we drop the argument xv of the
utility function uv(xv) as we derive the optimal offered fee for
a fixed level of utility. We also drop the SP subscript v from
all parameters and variables since the optimal fee derivation
is analogous for all SPs. We assume 0 < ε < ∞, 0 < µ < ∞,
0 < p < ∞, 0 < u < ∞, 0 < q < 1, 0 < p < ∞, and
0 < u < ∞. It can be easily argued that these are all sensible
assumptions. First, recall that an SP polls a large set of its
own users characterized by ε and µ (i.e., the sensitivities to
changes in price and utility, respectively) on whether they
accept the fee p when they perceive a maximum level of
utility (u) and then it sets q equal to the fraction of users
that reject it. As explained in Section III-B2, the normalizing
constant A = −pεu−µ log(q), therefore for the assumed values
of p, ε, u, µ and q, we have 0 < A < ∞. Recall also
that a(p, u) = 1 − e−Ap−εuµ

= 1 − q(p/p)
ε(u/u)µ given the

definition of A (as detailed in Section III-B2). Concerning
ε and µ, they are both assumed positive constants in [15]
and positive bounded values are considered in literature ([15],
[33], [42]–[46]). In fact, ε and µ should be estimated through
realistic measurements [15], hence, in practice, it cannot be
that ε = ∞ or µ = ∞ as users cannot be infinitely sensitive to
changes in the offered fee or the perceived utility. Consider the
equivalent definition of a(p, u), i.e., a(p, u) = 1−q(p/p)

ε(u/u)µ

and suppose that 0 < µ < ∞, 0 < p < ∞, 0 < u < ∞,
0 < q < 1, 0 < p < ∞, and 0 < u < ∞ but ε = ∞. It
follows that

a(p, u) =


1 if p < p,

0 if p > p,

indeterminate otherwise,

hence a(p, u)p is maximized by a fee equal to p−∆, where
∆ is an infinitely small positive constant. Now, suppose that
0 < ε < ∞, 0 < p < ∞, 0 < u < ∞, 0 < q < 1, 0 < p < ∞,
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Instance v k Xv(P̆k) x̆vk Xv(P̆k) ŭv a∗
vp

∗
v(ŭv) ğv r̆∗v/x̆vk

A6

1 2 213.666 245.087 245.087 0.608 52.79 7.95 2.11
2 – – – – – – – –
3 – – – – – – – –
4 2 6.589 10.289 10.289 0.985 0.12 123.33 14.07

A7

(i)

1 2 164.024 260.000 264.666 0.643 55.78 79.64 2.11
2 1 148.471 204.400 204.400 0.568 28.79 41.85 2.07
3 1 173.051 0 175.857 0 – 0 –
4 1 6.509 10.343 10.343 0.987 0.12 125.52 14.01

(ii)

1 2 164.024 260.000 264.666 0.643 55.78 79.64 2.11
2 1 148.471 204.400 204.400 0.568 28.79 41.85 2.07
3 2 160.391 0 176.817 0 – 0 –
4 1 6.509 10.343 10.343 0.987 0.12 125.52 14.01

A8

1 2 164.024 260.000 264.666 0.643 55.78 79.64 2.11
2 1 144.708 206.343 206.343 0.575 29.03 50.64 2.07
3 1 163.186 176.446 176.446 0.703 13.45 7.84 1.87
4 1 6.493 10.355 10.355 0.987 0.12 125.97 13.99

A9

1 1 161.214 254.964 266.747 0.631 54.81 86.25 2.11
2 1 140.492 199.647 208.873 0.549 28.17 60.98 2.08
3 1 158.099 169.389 177.217 0.641 12.84 15.04 1.86
4 2 6.482 10.362 10.362 0.987 0.12 126.24 13.98

A10

1 1 152.987 273.711 273.711 0.671 58.26 111.63 2.09
2 1 134.438 213.265 213.265 0.599 29.85 81.00 2.06
3 1 152.816 178.567 178.567 0.719 13.60 33.53 1.87
4 1 6.433 10.396 10.396 0.988 0.12 127.47 13.94

A11

1 1 151.554 275.071 275.071 0.674 58.49 116.33 2.09
2 1 133.396 214.124 214.124 0.602 29.95 84.66 2.06
3 1 152.028 178.832 178.832 0.721 13.62 36.59 1.87
4 1 6.426 10.402 10.402 0.988 0.12 127.65 13.94

TABLE X: Key equilibrium outcomes related to the SPs — instances A6–A11

Instance P 1 P 2 P̆1 P̆2 C1 C2 C̆′
1 C̆′

2 Ğ1 Ğ2 W1 W2

B1 3.55 3.41 3.55 3.41 156 156 0 10.043 0 34.27 ∅ {4}
B2 3.55 1.18 {3.55,...,P=14.86} 1.99 156 468 0 460.143 0 917.88 ∅ {1,2,4}
B3 1.23 3.41 2.06 {3.41,...,P=14.86} 468 156 453.265 0 932.84 0 {1,2,4} ∅

B4 1.23 1.18 1.23⋄ 1.22⋄ 468 468
(i) 426.404 326.953 525.89 399.29 {2,3} {1,4}
(ii) 315.067 438.082 388.58 535.01 {1} {2,3,4}

B5 0.94 0.90 1.09⋄ 0.94⋄ 624 624 190.370 624.000 207.35 584.04 {3} {1,2,4}

TABLE XI: Key equilibrium outcomes related to the InPs — instances B1–B5

and 0 < u < ∞ but µ = ∞. It follows that

a(p, u) =


0 if u < u,

1 if u > u,

indeterminate otherwise,

therefore, if u < u, a(p, u)p = 0 for any offered price p ̸= ∞,
i.e., any p ̸= ∞ generates zero revenue for the SP, whereas
for u > u, a(p, u)p is maximized by any p ̸= ∞. Further, if
u = 0 (where by definition u is the maximum utility perceived
by the user), then it would make no sense to look for the
optimal fee, as no rational user would be willing to pay for
a service which provides no utility. For the considered utility
function (see Equation (1)), u ≤ 1 hence u < ∞. Even if
we were to consider a different utility function, it would still
be reasonable to assume that u < ∞ since the utility is a
function of the allocated capacity which is per se physically
limited. As for p, the value p = ∞ is impractical whereas
p = 0 would result in q = 0 (as no rational user would reject
a service providing a maximum level of utility u when offered
for free) and therefore a(p, u) = 1 − q(p/p)

ε(u/u)µ would be
indeterminate for any value of u and p, which means that the

SP cannot make use of the acceptance probability function if
it were to poll its users with p = 0. Next, for 0 < ε < ∞,
0 < µ < ∞, 0 < p < ∞, and 0 < u < ∞, q = 0 would result
in a(p, u) = 1− q(p/p)

ε(u/u)µ = 1, ∀u ∈ (0,∞), ∀p ∈ (0,∞)
and vice versa, q = 1 would result in a(p, u) = 0, ∀u ∈
(0,∞), ∀p ∈ (0,∞), which means that in both cases the SP
cannot make use of the acceptance probability function. In
practice, if an SP estimated q = 0 (q = 1), we would expect
it to re-poll the users with a higher (lower) value of p until
it attains25 a value of q in (0,1). As for p, while p = ∞ is
impractical, for the assumed parameter values, p = 0 would
instead result in a(p, u) = 1,∀u ∈ (0,∞) and, as a result,
in a(p, u)p = 0,∀u ∈ (0,∞) which is the minimal value
of a(p, u)p hence we look for p ∈ (0,∞). Finally, we have
assumed 0 < u < ∞, where u < ∞ can be justified in the
same fashion as u < ∞ since by definition u ≤ u, whereas
u = 0 is not interest: for the assumed parameter values, when
u = 0, a(p, u) = 0, ∀p ∈ (0,∞), and, as a result, a(p, u)p =

25In practice, it should be unlikely for the SP to attain q = 0 for p → ∞.
Instead, if the SP attained q = 1 for p → 0, it means the service it proposes
has no market.
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Instance v k Xv(P̆k) x̆vk Xv(P̆k) ŭv a∗
vp

∗
v(ŭv) ğv r̆∗v/x̆vk

B1

1 – – – – – – – –
2 – – – – – – – –
3 – – – – – – – –
4 2 6.967 10.043 10.043 0.976 0.12 109.82 14.35

B2

1 2 190.471 250.896 250.896 0.622 53.99 29.60 2.11
2 2 163.699 198.937 198.937 0.546 28.07 16.53 2.08
3 – – – – – – – –
4 2 6.557 10.311 10.311 0.986 0.12 124.23 14.04

B3

1 1 205.287 246.667 246.667 0.612 53.12 13.86 2.11
2 1 178.664 196.304 196.304 0.536 27.71 4.03 2.08
3 – – – – – – – –
4 1 6.580 10.295 10.295 0.985 0.12 123.57 14.06

B4

(i)

1 2 122.136 316.395 316.395 0.743 64.51 246.93 2.00
2 1 113.199 239.532 239.532 0.679 32.43 182.18 1.99
3 1 139.726 186.872 186.872 0.771 14.09 115.34 1.85
4 2 6.207 10.558 10.558 0.991 0.12 132.29 13.75

(ii)

1 1 122.811 315.067 315.067 0.741 64.34 243.12 2.00
2 2 112.740 240.378 240.378 0.681 32.50 185.07 1.99
3 2 139.485 187.145 187.145 0.773 14.10 117.59 1.85
4 2 6.207 10.558 10.558 0.991 0.12 132.29 13.75

B5

1 2 107.215 351.059 352.994 0.787 68.32 342.14 1.91
2 2 102.825 262.305 263.751 0.732 34.11 256.80 1.91
3 1 137.031 190.370 190.370 0.789 14.25 142.52 1.84
4 2 6.026 10.636 10.695 0.992 0.12 135.32 13.66

TABLE XII: Key equilibrium outcomes related to the SPs — instances B1–B5

Instance P 1 P 2 P̆1 P̆2 C1 C2 C̆′
1 C̆′

2 Ğ1 Ğ2 W1 W2

B6 3.55 0.73 {3.55,...,P=14.86} 1.87 156 780 0 650.537 0 1214.45 ∅ {1,2,3,4}
B7 1.81 0.73 1.81 1.68 312 780 0 675.761 0 1137.25 ∅ {1,2,3,4}
B8 1.23 0.73 1.23 1.11 468 780 0 778.145 0 864.84 ∅ {1,2,3,4}
B9 0.94 0.73 0.94 0.90 624 780 10.694 780.000 10.02 704.49 {4} {1,2,3}
B10 0.76 0.73 0.76 0.73 780 780 201.031 684.881 153.28 502.69 {3} {1,2,4}
B11 0.65 0.73 0.72 0.73 936 780 892.532 0 642.29 0 {1,2,3,4} ∅

TABLE XIII: Key equilibrium outcomes related to the InPs — instances B6–B11

Instance v k Xv(P̆k) x̆vk Xv(P̆k) ŭv a∗
vp

∗
v(ŭv) ğv r̆∗v/x̆vk

B6

1 2 171.470 259.799 259.799 0.642 55.74 62.26 2.11
2 2 148.251 204.506 204.506 0.568 28.80 42.33 2.07
3 2 171.615 175.889 175.889 0.698 13.41 0.72 1.87
4 2 6.509 10.344 10.344 0.987 0.12 125.55 14.00

B7

1 2 153.092 273.613 273.613 0.671 58.24 111.30 2.09
2 2 134.515 213.203 213.203 0.599 29.85 80.74 2.06
3 2 152.875 178.548 178.548 0.719 13.60 33.31 1.87
4 2 6.433 10.396 10.396 0.988 0.12 127.46 13.94

B8

1 2 116.180 329.198 329.198 0.761 66.03 282.38 1.97
2 2 108.730 248.547 248.547 0.701 33.15 211.92 1.96
3 2 137.423 189.794 189.794 0.787 14.23 138.29 1.84
4 2 6.143 10.606 10.606 0.992 0.12 133.45 13.69

B9

1 2 105.594 340.210 358.017 0.774 67.23 352.74 1.94
2 2 101.776 253.685 266.963 0.713 33.53 264.58 1.95
3 2 134.005 186.105 195.846 0.767 14.05 176.76 1.85
4 1 6.027 10.694 10.694 0.993 0.12 135.31 13.59

B10

1 2 97.388 387.952 387.952 0.823 71.46 416.81 1.81
2 2 96.566 286.109 286.109 0.776 35.46 312.24 1.83
3 1 131.953 201.031 201.031 0.834 14.65 206.33 1.79
4 2 5.866 10.820 10.820 0.995 0.12 137.49 13.44

B11

1 1 96.699 390.870 390.870 0.826 71.68 422.40 1.80
2 1 96.137 287.976 287.976 0.779 35.56 316.36 1.82
3 1 131.360 202.855 202.855 0.840 14.71 214.98 1.78
4 1 5.853 10.830 10.830 0.995 0.12 137.65 13.43

TABLE XIV: Key equilibrium outcomes related to the SPs — instances B6–B11
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0, ∀p ∈ (0,∞), i.e., there is no optimal fee as the SP incurs
no revenue when the user achieves no utility.

Now, for a given u, we look for p which maximizes
a(p, u)p, which we denote as p∗(u). Recall that a(p, u) =
1−e−Ap−εuµ

(see Equation (2)), therefore to determine p∗(u)
we solve

∂
(
(1− e−Ap−εuµ

)p
)

∂p
= 0,

that is, the equation

1− e−Ap−εuµ

− εAp−εuµe−Ap−εuµ

= 0. (32)

First, let z = εAp−εuµ+1. Equation (32) becomes equivalent
to

1− ze(1−z)/ε = 0. (33)

Then let y = −z/ε which allows to rewrite (33) as

yey = (−1/ε)e(−1/ε). (34)

If we denote a solution of Equation (34) by y∗, then the
optimal offered price for the givel level of utility u, i.e., p∗(u),
corresponding to y∗ is

p∗(u) = [(Auµ) / (−y∗ − 1/ε)]
1/ε

. (35)

It follows that the acceptance probability of p∗(u), given u, is

a(p∗(u), u) = 1− e−A(p∗(u))−εuµ

= 1− e−AA−1(−y∗−1/ε)u−µuµ

(36)

= 1− ey
∗+1/ε.

Notice that a(p∗(u), u) is independent of u and it only
depends on ε (as from (34) y∗ only depends on ε) hence,
hereon, we refer to a(p∗(u), u) by a∗. Equation (34) has one
easily identifiable solution, y∗ = −1/ε, for which, however,
p∗(u) = ∞ as A ̸= 0, u ̸= 0, µ ̸= ∞ and 0 < ε < ∞
(see Equation (35)), whereas a∗ = 0 (see Equation (36))
and, as a result a∗p∗(u) = 0 ×∞ (i.e., the optimal accepted
fee is indeterminate). However, depending on the value of ε,
y∗ = −1/ε may not be the only solution of (34). To determine
all solutions of Equation (34), we proceed as follows. Let
α = (−1/ε)e−1/ε. Equation (34) becomes equivalent to

yey = α, (37)

whose solutions are given by the noted Lambert W function.
As here y = −z/ε = −Ap−εuµ − 1/ε ∈ R, we consider
the real-valued variant of the Lambert W function which we
denote as W : α → y, where α ∈ [−1/e,+∞). The lower
bound of α is due to the fact that the minimum value of the
function f(y) = yey , attained at y = −1, is equal to −1/e.
Since α = −(1/ε)e−1/ε and 0 < ε < ∞, here we also have
that α < 0. W is single valued for α = −1/e, whereas for
α ∈ (−1/e, 0), it is double-valued as illustrated by Figure 1.
The upper branch of W (for which W ≥ −1), is denoted as
W0, whereas the lower branch (for which W ≤ −1) as W−1,
where both W0 and W−1 are per se single-valued functions
of α. It follows that for ε = 1, which implies a value of
α = (−1/ε)e−1/ε = −1/e, Equation (37) admits a single
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Fig. 1: Lambert W function for α ∈ [−1/e, 0).

solution y∗ = W (−1/e) = W0(−1/e) = W−1(−1/e) = −1
(see Figure 1) which coincides with the solution y∗ = −1/ε =
−1 of the equivalent Equation (34) obtained by inspection.
Instead, for ε ∈ (0,∞) with ε ̸= 1, for which α ∈ (−1/e, 0),
Equation (37) admits two solutions: y∗0 = W0(α) and y∗−1 =
W−1(α). In summary, based on the value of ε which results
in α = −(1/ε)e−(1/ε), there are three cases concerning the
solution(s) of Equation (37):

1) For ε = 1, which implies α = − (1/ε) e−(1/ε) =
−1/e, Equation (37) admits a single solution y∗ =
W (−1/e) = W0(−1/e) = W−1(−1/e) = −1 (see
Figure 1)). From (35), the optimal fee for the given level
of utility u corresponding to y∗ = −1, i.e.,

p∗(u) = [(Auµ) / (−y∗ − 1/ε)]
1/ε

= (Auµ) / (1− 1)

= ∞,

as A > 0, u > 0, µ < ∞. Then from (36), the
acceptance probability of p∗(u) for the given level of
utility u, i.e.,

a∗ = 1− ey
∗+1/ε = 1− e−1+1 = 0

and, as a result, a∗p∗(u) = 0 × ∞, i.e, the optimal
accepted fee for the given level of utility u is indeter-
minate.

2) For 0 < ε < 1, which implies α = − (1/ε) e−(1/ε) ∈
(−1/e, 0) and hence W (α) being double-valued, Equa-
tion (37) admits two solutions: y∗0 = W0(α) > −1 and
y∗−1 = W−1(α) = −1/ε < −1. Let a∗0 denote the accep-
tance probability of p∗0(u) for the given level of utility
u and, analogously, a∗−1, the acceptance probability of
p∗−1(u) for u. From (35), we have

p∗0(u) = [(Auµ) / (−y∗0 − 1/ε)]
1/ε

= [(Auµ) / (−W0(α)− 1/ε)]
1/ε

.
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Due26 to −1 < W0(α) < 0 and 0 < ε < 1, which imply
−∞ < −W0(α)− 1/ε < 0 and given that 0 < A < ∞,
0 < u < ∞, µ < ∞ and 0 < ε < 1, then

p∗0(u) ∈


(0,∞) if 1/ε is an even integer,
(−∞, 0) if 1/ε is an odd integer,
C otherwise,

which means that if 1/ε is not an even integer, then
p∗0(u) is an infeasible solution. From (36),

a∗0 = 1− ey
∗
0+1/ε = 1− eW0(α)+1/ε ∈ (−∞, 0)

as 0 < W0(α)+ 1/ε < ∞ for which 1 < eW0(α)+1/ε <
∞ . As −∞ < a∗0 < 0, we can conclude that even when
1/ε is an even integer, p∗0(u) is infeasible as it cannot
be accepted with a negative probability.
As for y∗−1 = W−1(α) = −1/ε, we have that

p∗−1(u) =
[
(Auµ) /

(
−y∗−1 − 1/ε

)]1/ε
= [(Auµ) / (1/ε− 1/ε)]

1/ε
= ∞

as A > 0, u > 0, µ < ∞ and 0 < ε < 1 whereas

a∗−1 = 1− ey
∗
−1+1/ε = 1− e−1/ε+1/ε = 0,

and, as a result, a∗−1p
∗
−1 = 0×∞.

3) For 1 < ε < ∞, α = − (1/ε) e−(1/ε) ∈ (−1/e, 0),
therefore W (α) is double-valued and consequently
Equation (37) admits two solutions: y∗0 = W0(α) =
−1/ε > −1 and y∗−1 = W−1(α) < −1. As for case 2,
a∗0 and a∗−1 denote the acceptance probability of p∗0(u)
and p∗0(u), respectively, for the given level of utility u.
From (35) and (36), we get

p∗0(u) = [(Auµ) / (−y∗0 − 1/ε)]
1/ε

= [(Auµ) / (1/ε− 1/ε)]
1/ε

= ∞

as A > 0, u > 0, µ < ∞ and 1 < ε < ∞, while

a∗0 = 1− ey
∗
0+1/ε = 1− e−1/ε+1/ε = 0,

hence a∗0p
∗
0 = 0×∞.

Concerning the solution y∗−1 = W−1(α),

p∗−1(u) =
[
(Auµ) /

(
−y∗−1 − 1/ε

)]1/ε
= [(Auµ) / (−W−1(α)− 1/ε)]

1/ε ∈ (0,∞),

as 0 < A < ∞, 0 < u < ∞, µ < ∞, 0 < −W−1(α)−
1/ε < ∞ (due27 to −∞ < W−1(α) < −1 and 1 < ε <
∞) and ε > 0. In turn, as −∞ < W−1(α) + 1/ε < 0
and, as a result, 0 < eW−1(α)+1/ε < 1,

a∗−1 = 1− ey
∗
−1+1/ε = 1− eW−1(α)+1/ε ∈ (0, 1).

Then, due to 0 < p∗−1(u) < ∞ and 0 < a∗−1 < 1,
0 < a∗−1p

∗
−1(u) < ∞.

26Recall that here α < 0 and since W0(α) is strictly increasing in α, then
W0(α) < W0(0) = 0.

27Recall that here α < 0 and since W−1(α) is strictly decreasing in α
then W−1(α) > limα→0− W−1(α) = −∞.

p∗(u) =

 Auµ

−W−1

(
− 1

εe
− 1

ε

)
− 1

ε

 1
ε

= p

 log(q)

W−1

(
− 1

εe
− 1

ε

)
+ 1

ε

 1
ε (u

u

)µ
ε ∈ (0,∞),

which is accepted with a probability

a(p∗(u), u) = 1− e
W−1

(
− 1

ε e
− 1

ε

)
+ 1

ε ∈ (0, 1),

hence the optimal accepted fee a(p∗(u), u)p∗(u) ∈ (0,∞).

APPENDIX B
EXAMPLES OF THE SPS’ PAYOFF FUNCTION

The payoff of an SP (defined in Equation (21)) is the
difference between its revenue (see Equations (7) and (1)) and
its cost for a given amount of acquired cell capacity at a given
cell capacity unit price. We drop the SP subscript v from the
aforementioned formulas and write in extensive form the SP
payoff as function of the amount of acquired cell capacity x
at a given cell capacity unit price P as follows:

g(x) =



−Px, if 0 ≤ x ≤ ÑX ,

Na∗p
[

log(1−a)
log(1−a∗)

]1/ε (
1
u

)µ/ε 
(

x/Ñ−X
X−X

)ξ

1+

(
x/Ñ−X
X−X

)ξ

µ/ε

− Px,

if x > ÑX .

(38)

Let µ = ε = 2, Na∗p
(

log(1−a)
log(1−a∗)

)1/ε
= 1, u = 1, Ñ = 1,

X = 1 and X = 10. For these values of parameters, in
Figures 2 and 3 we plot g(x) in terms of x for all combinations
of two different values for each of the remaining parameters:
i.e., for values 2 and 20 for ξ (the utility elasticity) and for
values 0.03 and 0.1 for P (the cell capacity unit price). Values
2 and 20 are the minimum and maximum values considered
for ξ in this work (see Section IV-C) and also in literature [15].
As for P , given the considered values for all other parameters,
values 0.03 and 0.1 are simply two values that allow to
illustrate the two different cases concerning the calculation of
the minimum and maximum amount of cell capacity requested
by the SP for a given cell capacity unit price P , i.e., X(P )
and X(P ), where

X(P ) =

0, if g(x) ≤ 0, ∀x ≥ ÑX ,

argmax
x≥ÑX

g(x), if ∃ x > ÑX | g(x) > 0,

X(P ) =

{
0, if X(P ) = 0,

x ∈ [ÑX , X(P )] | g(x) = 0, if X(P ) > 0.

Notice that for 0 < x ≤ ÑX , one has g(x) < 0 as in this range
g(x) = −Px (see Equation (38), Figures 2 and 3). Hence, we
look for X(P ) and X(P ) for x > ÑX . From Figures 2b
and 3b, we can see that for both values of ξ, when P = 0.1,
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g(x) < 0, ∀x ≥ ÑX , as a result, we force X(P ) = X(P ) =
0. Instead, from Figures 2a and 3a we can see that, for both
values of ξ when P = 0.03, one has:
(1) there exists x > ÑX such that g(x) > 0, therefore,

X(P ) > ÑX > 0 and g(X(P )) > 0;
(2) g(x) has a unique zero in [ÑX , X(P )], hence there is a

unique value for X(P );
(3) X(P ) > X(P ) > ÑX > 0, as g(ÑX ) < 0 whereas

g(X(P )) > 0.
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Fig. 2: SP payoff function examples for utility elasticity ξ = 2.

APPENDIX C
APPROXIMATED EQUILIBRIA

For the InPs’ game GK, since there are two players (InPs)
for each considered instance, the existence and multiplicity
of its NE in pure strategies can be also depicted graphically
through the InPs’ best response functions. The best response
P∗
k of any InP k is the set of strategies

P∗
k (P−k) = {Pk ∈ Pk |

Gk([Pk,P−k]) ≥ max
P ′

k∈Pk

Gk([P
′
k,P−k])−∆},

∀ P−k ∈
∏

j∈K\{k} Pj ,

(39)
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Fig. 3: SP payoff function examples for utility elasticity ξ =
20.

that is, P∗
k (P−k) is the set of all InP k unit prices that

maximize its payoff within a margin28 ∆ (see Section IV-E)
given P−k, i.e., given the unit prices offered by all other InPs
but k.

For two illustrative instances, A5 and B9, in Figures 4a
and 4b, we have plotted in blue (∗ markers) the best response
function of InP 2, that is the payoff-maximizing unit price(s)
for InP 2 for each possible unit price that InP 1 can offer
(i.e., P∗

2 (P1) for any P1 ∈ P1 = {P 1, . . . , P}) and in
red (◦ markers) the best response function of InP 1, that
is the payoff-maximizing unit price(s) for InP 1 for each
possible unit price that InP 2 can offer (i.e., P∗

1 (P2) for any
P2 ∈ P2 = {P 2, . . . , P}). The NE InP unit price profile(s)
P̆ of the InPs’ game for A5 and B9 are then represented by
all intersections between P∗

1 and P∗
2 in Figures 4a and 4b,

respectively. For instance A5 (see Figure 4a), as also reported
in Table VII, there are |P2| = 30 NE such that P̆1 = 1.77

28The absolute payoff margin ∆ = 10−6 EUR introduced in the NE
definition (see Equation (31)) to deal with numerical issues brought about
by solver tolerances (as explained in Section IV-E) has been applied to best
response definition accordingly.
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Fig. 4: InPs’ best response functions for GK — example of
multiple NE (a) and unique NE (b).

EUR/Mbps/month and P̆2 ∈ P2 = {P 2 = 2.24, . . . , P =
14.86} EUR/Mbps/month. In fact, as previously mentioned,
all these NE are equivalent for both InPs in terms of achieved
payoffs (Ğ1 = 1105.80, Ğ2 = 0) EUR/month: in each
such NE, i.e., for each such P̆ , InP 1 offers the unit price
P̆1 = 1.77 EUR/Mbps/month (which is strictly lower than
P 2 = 2.24 EUR/Mbps/month, i.e., the lowest unit price that
InP 2 can offer) and is selected by all four SPs in the unique
NE of the respective GV(P̆ ) (see Table VIII), while InP 2,
not being selected by any SP and therefore not selling any
capacity even when it offers P̆2 = P 2, is indifferent between
all unit prices it can offer, each proving it with zero payoff
(i.e., for InP 2 any unit price P2 ∈ P2 is a best response
to P̆1). Instead, for instance B9 (see Figure 4b) there is a
single intersection between P∗

1 and P∗
2 , therefore a unique

NE for GK, P̆ = (P̆1 = 0.94, P̆2 = 0.90) EUR/Mbps/month,
as reported in Table XIII as well; at the unique NE of the
respective GV(P̆ ), InP 1 is selected only by SP 4 to which
it sells capacity at its minimum unit price P̆1 = P 1 = 0.94
EUR/Mbps/month, i.e., at a unit price equal to its unit cost,
while all the other SPs (1, 2 and 3) select the more cost-
efficient InP (2) which at the equilibrium offers a unit price
P 2 < P̆2 < P 1 (see Tables XIII and XIV).

As anticipated in Section IV-E, for instances B4 and B5,
there is no NE in pure strategies for the InPs’ game GK

resulting from the initial discrete InP unit price strategy sets
Pk (each made up of 30 logarithmically-spaced discrete values
in [P k, P ]), although there is at least one NE in pure strategy
for each SPs’ game GV(P ) for any P ∈ P . For this setting,
the absence of NE for GK for B4 and B5 can be witnessed in
Figures 5a and 5b, respectively, where the InPs’ best response
functions, i.e., P∗

1 and P∗
2 , do not intersect.

If we were to linearly interpolate P∗
1 and P∗

2 depicted in
Figure 5a and determine the intersection of their interpolations,
then, for instance B4, we would expect the NE InP unit
prices to be within the following ranges: P̆1 ∈ [P 1 =
1.23, 1.34] EUR/Mbps/month and P̆2 ∈ [P 2 = 1.18, 1.29]
EUR/Mbps/month. Analogously for B5 (see Figure 5b), we
would expect P̆1 ∈ [1.03, 1.13] EUR/Mbps/month and P̆2 ∈
[P 2 = 0.90, 0.99] EUR/Mbps/month. On this basis, for each
InP k ∈ K, we set up29 an alternative unit price strategy set
Pk made up of 60 discrete values in [P k, P ] such that the vast
majority of these values lie in the respective aforementioned
range where we expect the NE unit price to be for InP k.
However, even for the MFSG resulting from these alternative
discrete InP unit price strategy sets, for both B4 and B5, there
still is no NE in pure strategies for GK although, there is at
least one NE in pure strategies for GK(P ) for any P ∈ P . In
absence of an NE for GK, we consider as a solution for GK

the InP unit price profile(s) denoted by P ⋄ and determined as

P ⋄ = argmin
P=[Pk,P−k]∈P

[
max
k∈K

δk([Pk,P−k])

]
, (40)

where

δk([Pk,P−k]) =

max
P ′

k∈Pk

Gk([P
′
k,P−k])−Gk([Pk,P−k])

max
P ′

k∈Pk

Gk([P ′
k,P−k])

is the relative difference between the payoff of InP k from
P = [Pk,P−k] and the maximum payoff that k can obtain
by unilaterally deviating from P . In Equation (40), we set
P ⋄ equal to the InP unit price profile(s) which provide the
minimum value for maxk∈K δk([Pk,P−k])

30.

29The alternative discrete InP unit price strategy sets were set up as
follows. For instance B4, P1 consists of: 50 linearly-spaced values in
[P 1 = 1.23, 1.34], 5 linearly-spaced values in [1.35, 2.06] and 5 linearly-
spaced values in [2.07, P = 14.86] whereas P2 consists of: 50 linearly-
spaced in values in [P 2 = 1.18, 1.29], 5 linearly-spaced values in [1.3, 2.18]
and 5 linearly-spaced values in [2.19, P = 14.86]. For instance B5, P1

consists of: P 1 = 0.94, (P 1 + 1.03)/2, 50 linearly-spaced values in
[1.03, 1.13], 3 linearly-spaced values in [1.14, 1.83] and 5 linearly-spaced
values in [1.84, P = 14.86] whereas P2 consists of: 50 linearly-spaced
values in [P 2 = 0.90, 0.99], 5 linearly-spaced values in [1, 1.95] and 5
linearly-spaced values in [1.96, P = 14.86].

30If GK had a NE P̆ , then P ⋄ = P̆ and min
P∈P

max
k∈K

δk(P ) = 0.
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(b) Instance B5

Fig. 5: InP best response functions for GK — initial,
logarithmically-spaced sets Pk for any k ∈ K.

For both B4 and B5, we have calculated P ⋄ for the
MFSG resulting from the alternative Pk described above
(i.e., for the Pk, ∀k ∈ K made up of 60 discrete values
in [P k, P ] with the vast majority of these values where
we expect the NE to be by looking at Figures 5a and 5b,
respectively). It results that for both B4 and B5 there is
a unique P ⋄. For B4, P ⋄ = (P ⋄

1 = 1.23, P ⋄
2 = 1.22)

EUR/Mbps/month with maxk∈K δk(P
⋄) = 0.53, whereas for

B5, P ⋄ = (P ⋄
1 = 1.09, P ⋄

2 = 0.94) EUR/Mbps/month with
maxk∈K δk(P

⋄) = 3.89, hence we deemed these P ⋄ as
reasonable solutions for GK. Notice also that, although these
P ⋄ are not NE of GK for B4 and B5, it turns out that for
B4, P ⋄

1 = 1.23 ∈ [P 1 = 1.23, 1.34] EUR/Mbps/month and
P ⋄
2 = 1.22 ∈ [P 2 = 1.18, 1.29] EUR/Mbps/month, and

for B5, P ⋄
1 = 1.09 ∈ [1.03, 1.13] EUR/Mbps/month and

P ⋄
2 = 0.94 ∈ [P 2 = 0.90, 0.99] EUR/Mbps/month, which are

the InP unit price ranges where we would expect the NE of
GK to be by looking at the best response functions of GK for
the initial MFSG illustrated in Figures 5a and 5b, respectively.

For both B4 and B5, the respective values of P ⋄
1 /P ⋄

2 are
reported in Table XI under P̆1/P̆2, whereas the outcomes of
the respective SPs’ game GV(P ⋄) in Table XII. In particular,
for B4, GV(P ⋄) turns out to have two distinct NE in pure
strategies denoted by (i) and (ii) in Tables XI and XII and
analyzed in Section V-C.
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