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ON DIFFERENTIAL PROPERTIES OF MULTIFUNCTIONS

DEFINED IMPLICITLY BY SET-VALUED INCLUSIONS

AMOS UDERZO

Abstract. In the present paper, several properties concerning generalized deriva-
tives of multifunctions implicitly defined by set-valued inclusions are studied by
techniques of variational analysis. Set-valued inclusions are problems formalizing
the robust fulfilment of cone constraint systems, whose data are affected by a
“crude knowledge” of uncertain elements, so they can not be cast in traditional
generalized equations.

The focus of this study is on the first-order behaviour of the solution mapping
associated with a parameterized set-valued inclusion, starting with Lipschitzian
properties and then considering its graphical derivative. In particular, a condition
for the Aubin continuity of the solution mapping is established in terms of outer
prederivative of the set-valued mapping defining the inclusion. A large class
of parameterized set-valued inclusions is singled out, whose solution mapping
turns out to be convex. Some relevant consequences on the graphical derivative
are explored. In the absence of that property, formulae for the inner and outer
approximation of the graphical derivative are provided by means of prederivatives
of the problem data. A representation useful to calculate the coderivative of the
solution mapping is also obtained via the subdifferential of a merit function.

1. Introduction and problem statement

The concept of implicit function has been devised to enable calculations and,
more generally, to deal with solutions of parameterized problems that can not be
explicitly solved. Historically, the study of conditions under which a smooth equa-
tion system determines its variables as a function of parameters, as well as the
continuity and differentiability properties of the function so defined, was the theme
of fruitful speculations in classic analysis. While the first implicit function theorem,
as modernly meant, seems to be due to Cauchy, as a matter of fact functions de-
fined implicitly by equations can be traced back to earlier works authored by the
founding fathers of differential calculus (for detailed historical remarks, see [7, Com-
mentary to Chapter 1] and references therein). When specific features of modern
variational analysis, with the acceptance of set-valued mappings as basic mathemat-
ical objects, led to address more general class of problems, such as inequality and
cone constraint systems, variational inequalities and equilibrium problems, similar
questions have been posed with reference to the multifunction counterpart of the
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original concept of implicit function. As a result, a comprehensive theory of multi-
functions implicitly defined by generalized equations flourished in the last decades
or so, which has been brought now to a high level of development (see, among
others, [5, 7–9, 12, 15–21,23–26,28]). Although generalized equations are a problem
format able to subsume the vast majority of mathematical conditions encountered
in optimization and variational analysis, the treatment of constraint systems arising
in robust optimization seems to be left out by such a formalism. After the seminal
paper [4], robust optimization considers constraint systems of the form

f(x, ω) ∈ C,

for given f : Rn × Rk ⇒ Rm and C ⊂ Rm, where x ∈ Rn represents the decision
vector, whereas ω ∈ Rk the data element of the problem. In many decision envi-
ronments, described and discussed by concrete examples in [4], while the knowledge
of the data may be partly or fully uncertain, reducing to the crude fact that ω
belongs to a given uncertain set Ω ⊆ Rk, on the other hand the constraint system
f(x, ω) ∈ C must be satisfied independently of the actual realization of ω ∈ Ω. This
feature of the problem leads to the concept of robust feasibility, formalized by the
set-valued inclusion

(1.1) Φf (x) = f(x,Ω) = {f(x, ω) | ω ∈ Ω} ⊆ C

and to the related notion of robust optimal solution to uncertain optimization prob-
lems. It is worth noting that the same problem format arises when considering vector
optimization problems, which are characterized by a criterion function affected by
uncertain data elements (see [13]).

In spite of the clear motivation and the urgent demand for skills on the aforemen-
tion issue, to the best of the author’s knowledge the solution analysis of set-valued
inclusions is still very little explored. In fact, an error bound estimate was achieved
in [6], under a C-concavity assumption, by techniques of convex analysis. A different
approach to error bounds and to solution existence has been proposed more recently
in [29], which is based on the C-increase behaviour, a sort of set-valued counterpart
of the decrease principle (see [5]). Conditions for solution existence, global error
bounds and characterizations of the contingent cone to the solution set are also in-
vestigated in [30], following the convex analysis approach initiated in [6]. Besides, a
perturbation analysis of the solution set to parameterized set-valued inclusions has
been started in [31]. More precisely, given a set-valued mapping F : P × X ⇒ Y
and a nonempty closed set C ⊂ Y , the following parameterized set-valued inclusion
problem is considered there: find x ∈ X such that

(SVI p) F (p, x) ⊆ C,

where p plays the role of a parameter. The above class of parameterized set-valued
inclusions implicitly defines the solution mapping S : P ⇒ X as being

S(p) = {x ∈ X | F (p, x) ⊆ C}.

The paper [31] contains sufficient conditions for several quantitative forms of semi-
continuity of S, including those known as Lipschitz lower semicontinuity and calm-
ness in the variational analysis literature.
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The present paper carries on this research line, focussing instead on the Aubin and
Lipschitz continuity of S, as well as on its first-order behaviour. In particular, a first
attempt of studying the graphical derivative of S is undertaken. In consideration of
the fact that, as recognized in [26, Chapter 9], “the notion of Lipschitz continuity
[. . . ] singles out a class of functions which, although not necessarily differentiable,
have a property akin to differentiability in furnishing estimates of magnitudes, if
not the directions, of changes” (and the same could be repeated for multifunctions,
to a certain extent), the subject of the investigations here reported can be regarded
as an introduction to the sensitivity analysis of problems (SVI p).

The contents of the paper are organized in the subsequent sections according to
the following outline. In Section 2 basic notions and tools needed for implementing
the study of the subject by a variational technique are recalled. Since a part of the
analysis refers to concepts that find in merely metric spaces their natural setting,
this section is arranged in two subsections, presenting material in the absence or in
the presence of a vector structure. The two results furnished with a full proof in this
section capture the main ideas behind the approach of study proposed in the paper:
namely, a proper error bound estimate and a behaviour of outer prederivative,
which is adequate to supporting it. In Section 3 the metric space formulation of
results about the behaviour of the solution mapping to parameterized set-valued
inclusion is presented. In particular, a condition for the Aubin continuity of this
set-valued mapping is established in terms of nondegeneracy of the strong slope of a
merit function. It is clear that error bound estimates play a fundamental role here.
Section 4 contains the main findings of the paper and some discussion of them. A
condition for the Aubin continuity of implict multifunctions defined by (SVI p) in
normed vector spaces is expressed in terms of problem data, by means of the outer
prederivatives, and some consequence for its graphical derivative are discussed. The
class of C-concave parameterized set-valued inclusions is shown to exhibit a convex
solution mapping, which is thereby protodifferentiable, with a convex process as a
graphical derivative. In the absence of C-concavity, some formulae for the inner
and outer approximation of the graphical derivative are presented. Elements for a
representation of the coderivative of the solution mapping conclude that section.

2. Preliminaries

2.1. Variational analysis tools in metric spaces. Throughout the pre-sent sub-
section (P, d), (X, d) and (Y, d) denote metric spaces. Given a function φ : X −→
R ∪ {±∞} and α ∈ R ∪ {±∞}, define [φ ≤ α] = φ−1([−∞, α]), [φ > α] =
φ−1((α,+∞]) and [φ = α] = φ−1(α). The symbol domφ = φ−1(R) stands for
the domain of φ. Given x ∈ X and r ≥ 0, the closed ball centered at x with radius
r is denoted by B(x, r) = [d(·, x) ≤ r]. If S ⊆ X, define dist (x, S) = infz∈S d(x, z)
and B(S, r) = [dist (·, S) ≤ r]. The symbol ι( · ;S) : X −→ {0,+∞} denotes
the indicator function of the set S. Given two subsets A, B ⊆ X, the excess of
A over B is indicated by exc(A,B) = supa∈A dist (a,B), whereas the Pompeiu-
Hausdorff distance between A and B by haus(A,B) = max{exc(A,B), exc(B,A)}.
To deal with the case of the empty set, throughout the paper the usual conventions
supx∈∅ = −∞ and infx∈∅ = +∞ are accepted and employed, whenever needed.
The topological closure, the interior and the boundary of a set S ⊆ X are denoted
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by clS, intS, and bdS, respectively. Given a set-valued mapping Φ : X ⇒ Y ,
domΦ = {x ∈ X | Φ(x) 6= ∅} and graphΦ = {(x, y) ∈ X × Y | y ∈ Φ(x)} stand for
the domain and the graph of Φ, respectively. Given C ⊆ Y , the upper inverse image
of C through Φ is indicated by Φ+1(C) = {x ∈ X | Φ(x) ⊆ C}. The acronyms l.s.c.
and u.s.c. stand for lower and upper semicontinuous, respectively.

Given a set-valued mapping Φ : X ⇒ Y and a closed set C ⊂ Y , the solution set
of the set-valued inclusion

(SVI ) Φ(x) ⊆ C,

namely the set Φ+1(C), can be conveniently reformulated via level/sublevel sets of
the merit function νΦ,C : X −→ R ∪ {±∞}, defined through the excess as being

(2.1) νΦ,C(x) = exc(Φ(x), C) = sup
y∈Φ(x)

dist (y, C) .

To this aim, observe that, if domΦ = X, then it is [νΦ,C ≥ 0] = X. Thus, in this
case the following equality holds

Φ+1(C) = [νΦ,C = 0].

More in general, in the case X\domΦ 6= ∅, under the convention about supx∈∅,
one has X\domΦ = [νΦ,C = −∞] and hence

Φ+1(C) = [νΦ,C ≤ 0].

Since the elements of X\domΦ are trivial solutions of (SVI ), the equality domΦ =
X will be maintained as a standing assumption in the rest of the paper.

Besides, it is useful to note that, whenever Φ takes bounded values, one has
[νΦ,C < +∞] = X.

Remark 2.1. As one expects, the function νΦ,C defined through (2.1) inherits
various properties from Φ. For the purposes of the present investigations, it is
useful to recall that if Φ : P ⇒ X is l.s.c. at x0 ∈ X, then νΦ,C is l.s.c. at the same
point. If Φ is Hausdorff C-u.s.c. (in particular, u.s.c.) at x0, then νΦ,C is u.s.c. at
the same point (see [29, Lemma 2.3]). Notice that, whenever Φ : P ⇒ X is l.s.c. on
X, then Φ+1(C) is a closed (possibly empty) subset of X.

The concept of Lipschitz continuity can be adapted in different ways if referred
to set-valued mappings. In the context of mappings with bounded values, it seems
to be natural to extend immediately the notion valid for functions via the Pompeiu-
Hausdorff distance. Accordingly, a set-valued mapping Φ : P ⇒ X between metric
spaces is said to be Lipschitz continuous with rate κ > 0 in a subset S ⊆ P if

haus(Φ(p1),Φ(p2)) ≤ κd(p1, p2), ∀p1, p2 ∈ S.

In more general contexts of interest to variational analysis, a more general notion
gained a wide attention, inasmuch as it revealed to be intertwined with profound
phenomena of regularity. This notion1, playing a crucial role in the present paper,
is recalled below.

1Introduced under the name of “pseudo-Lipschitz” property in [1], later on it became popular
as “Lipschitz-likeness” or “Aubin property/continuity”.



ON MULTIFUNCTIONS DEFINED IMPLICITLY BY SET-VALUED INCLUSIONS 5

Definition 2.2 (Aubin continuity). A set-valued mapping Φ : P ⇒ X between
metric spaces is said to be Aubin continuous at (p̄, x̄) ∈ graphΦ with rate κ > 0 if
there exist positive δ and r such that

(2.2) dist (x,Φ(p1)) ≤ κd(p1, p2), ∀p1, p2 ∈ B(p̄, δ), ∀x ∈ Φ(p2) ∩ B(x̄, r).

The value

(2.3) lipΦ(p̄, x̄) = inf{κ > 0 | ∃δ, r > 0 such that inequality (2.2) holds }

is called modulus of Aubin continuity of Φ at (p̄, x̄).

Another Lipschitzian property for set-valued mappings, which is worth being
mentioned in connection with the subject of the present investigations, is calmness.
The behaviour that it postulates can be obtained from condition (2.2), by fixing
p1 = p̄, so it results in a property weaker than Aubin continuity.

From inclusion (2.2), by taking p2 = p̄ and p1 = p ∈ B(p̄, δ), one gets

dist (x,Φ(p)) ≤ κd(p, p̄), ∀p ∈ B(p̄, δ), ∀x ∈ Φ(p̄) ∩ B(x̄, r),

which implies, in particular, the existence of ℓ > 0 such that

(2.4) Φ(p) ∩ B(x̄, ℓd(p, p̄)) 6= ∅, ∀p ∈ B(p̄, δ).

The behaviour of Φ derived in (2.4) as a further consequence of the Aubin continuity
of Φ, which can be regarded as a local version of inner semicontinuity, is called
Lipschitz lower semicontinuity in [14].

A standard technique for establishing solution existence (solvability) and esti-
mates of the distance from the solution set (error bounds) to inequalities in metric
spaces relies on a quantitative employment of metric completeness via the Ekeland
variational principle, which enables to replace iteration schemes. Such a technique
can be fruitfully implemented by means of the notion of strong slope of a function
φ : X −→ R ∪ {±∞} at a point x0 in a metric space X, defined as

|∇φ|(x0) =

{
0, if x0 is a local minimizer of φ,

lim supx→x0

φ(x0)−φ(x)
d(x,x0)

, otherwise.

After [3, 11], the usage of this tool has become standard in variational analy-
sis. It is well known that, whenever X is a normed vector space (X, ‖ · ‖) and

φ is Fréchet differentiable at x0 ∈ domφ, with derivative D̂φ(x0) ∈ X∗, then it

holds |∇φ|(x0) = ‖D̂φ(x0)‖, while if φ is convex on X and continuous at x0, then
|∇φ|(x0) = dist (0∗, ∂φ(x0)), where ∂φ(x0) denotes the subdifferential of φ at x0 is
the sense of convex analysis.

In what follows, to deal with set-valued mappings depending on a parameter, a
partial variant of the strong slope with respect to the variable x of a function φ :
P ×X −→ R∪{±∞}, defined on the product of metric spaces, at (p0, x0) ∈ P ×X,
will be considered, which is defined as

|∇xφ|(p0, x0) =


0, if (p0, x0) is a local

minimizer of φ,

lim supx→x0

φ(p0,x0)−φ(p0,x)
d(x,x0)

, otherwise.
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A sufficient condition for the behaviour of the solution set to parameterized in-
equalities, which is able to trigger the forthcoming analysis, can be expressed in
terms of partial strong slope. The next lemma, whose role is fundamental accord-
ing to the approach here followed, extends to a metric space setting an analogous
tool of analysis valid in more structured contexts (see [5, Theorem 3.6.3]).

Lemma 2.3 (Parametric basic lemma). Let P , X and Y be metric spaces and let
(p̄, x̄) ∈ P ×X. Suppose that X and a function ν : P ×X −→ [0,+∞] satisfy the
following conditions:

(i) (X, d) is metrically complete;
(ii) ν(p̄, x̄) = 0;
(iii) the function p 7→ ν(p, x̄) is u.s.c. at p̄;
(iv) there exists δ1 > 0 such that, for every p ∈ B(p̄, δ1), each function x 7→

ν(p, x) is l.s.c. on X;
(v) there exists δ2 > 0 such that

σ = inf{|∇xν|(p, x) | (p, x) ∈ [B(p̄, δ2)× B(x̄, δ2)] ∩ [ν > 0]} > 0.

Then, there exist positive η and ζ such that
(t) [ν(p, ·) = 0] ∩ B(x̄, η) 6= ∅, for every p ∈ B(p̄, ζ);
(tt) the following estimate holds

(2.5) dist (x, [ν(p, ·) = 0]) ≤ ν(p, x)

σ
, ∀(p, x) ∈ B(p̄, ζ)× B(x̄, η).

Proof. (t) Take an arbitrary σ̃ ∈ (0, σ). As it is ν(p̄, x̄) = 0, then according to
hypothesis (iii) there exists 0 < δ3 < min{δ1, δ2} such that

(2.6) ν(p, x̄) <
σ̃δ2
3

, ∀p ∈ B(p̄, δ3).

Set ζ = δ3 and fix an arbitrary p ∈ B(p̄, ζ). Then consider the corresponding
function ν(p, ·) : X −→ [0,+∞]. Since it is ζ < δ1, by hypothesis (iv) ν(p, ·) is l.s.c.
on X (and bounded from below). Moreover, because of inequality (2.6), clearly it
is

ν(p, x̄) ≤ inf
x∈X

ν(p, x) +
σ̃δ2
3

.

Thus, by the Ekeland variational principle, which can be invoked owing to hypoth-
esis (i), there exists xp ∈ X such that

ν(p, xp) ≤ ν(p, x̄) <
σ̃δ2
3

,

(2.7) d(xp, x̄) ≤
δ2
3
,

and

ν(p, xp) < ν(p, x) + σ̃d(x, xp), ∀x ∈ X\{xp},
whence one readily obtains

|∇xν|(p, xp) = lim sup
x→xp

ν(p, xp)− ν(p, x)

d(x, xp)
≤ σ̃ < σ.
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Notice that, as it is ζ < δ2, it is true that (p, xp) ∈ [B(p̄, δ2) × B(x̄, δ2)]. This fact
entails that ν(p, xp) = 0 for, if it were ν(p, xp) > 0, one would find contradicted the
hypothesis (v). So, one is forced to admit that ν(p, xp) = 0. Therefore, taking into
account inequality (2.7), it suffices to set η = δ2/3 in order to get

(2.8) xp ∈ [ν(p, ·) = 0] ∩ B(x̄, η) 6= ∅.

By the arbitrariness of p ∈ B(p̄, ζ), the above argument proves the assertion (t) in
the thesis.

(tt) Fix (p, x) ∈ B(p̄, ζ)×B(x̄, η)∩ [ν > 0], where ζ and η are as in the proof of (t),
and set rp,x = ν(p, x)/σ̃, with σ̃ ∈ (0, σ).

Let us consider first the case rp,x ≥ 2η. In such an event, since as a consequence
of (2.8) it holds

dist (x, [ν(p, ·) = 0]) ≤ d(x, x̄) + dist (x̄, [ν(p, ·) = 0]) ≤ 2η,

then inequality (2.5) is immediately proved.
Let us consider now the case rp,x < 2η. Take a positive r̃ in such a way that

rp,x < r̃ < 2η. Since it is ν(p, x) < r̃σ̃ and ν(p, x) ≤ infz∈X ν(p, z) + r̃σ̃, one can
employ the same argument as for the proof of the assertion (t), thus getting x̃p ∈ X
such that

(2.9) d(x̃p, x) ≤ r̃

and

(2.10) |∇xν|(p, x̃p) ≤ σ̃ < σ.

Since on account of inequality (2.9) it holds

d(x̃p, x̄) ≤ d(x̃p, x) + d(x, x̄) ≤ r̃ + η ≤ 3η = δ2,

the only way to avoid a contradiction following from inequality (2.10) is to admit
that x̃p ∈ [ν(p, ·) = 0]. Consequently, it results in

dist (x, [ν(p, ·) = 0]) ≤ d(x, x̃p) ≤ r̃.

As the argument leading to the last inequality works for every r̃ ∈ (rp,x, 2η), one
can deduce that

dist (x, [ν(p, ·) = 0]) ≤ rp,x

and hence, by arbitrariness of σ̃ ∈ (0, σ), one can achieve the inequality (2.5). This
completes the proof. □

2.2. Variational analysis tools in normed vector spaces. Throughout the
current subsection, (X, ‖ · ‖) and (Y, ‖ · ‖) denote normed vector spaces. The null
vector in a normed vector space is indicated by 0. Define B = B(0, 1) and S = bdB.
Given a set S ⊆ X, coneS stands for the conic hull of S. The (topological) dual
space of X is denoted by X∗ and its null element by 0∗, while the bilinear form
defining the duality pairing between normed vector spaces is indicated by 〈·, ·〉. The
acronym p.h. stands for positively homogeneous.

The next remark collects some properties of the excess over a cone, which may
occur in a vector space setting, in view of a subsequent employment through the
function νΦ,C .
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Remark 2.4 (Excess over a cone). Let C ⊆ Y be a closed, convex cone.

(i) For any A, B ⊆ Y and t ∈ (0,+∞), as a straightforward consequence of
the sublinearity of the function y 7→ dist (y, C), one has exc(A + B,C) ≤
exc(A,C) + exc(B,C) and exc(tA,C) = texc(A,C).

(ii) For any A ⊆ Y it holds exc(A+C,C) = exc(A,C) (see [29, Remark 2.1(iv)]).
(iii) Since it is dist (y, C) ≤ ‖y|| for every y ∈ Y, then given any r > 0, the

inequality exc(rB, C) ≤ r holds.
(iv) For any y ∈ Y\C and r > 0, it holds exc(y + rB, C) = dist (y, C) + r

(see [29, Lemma 2.1]).
(v) Let S ⊆ Y be a set such that S 6⊆ C. Then, for every r > 0, it holds

exc(S + rB, C) = sup
y∈S

dist (y + rB, C) = sup
y∈S\C

[dist (y, C) + r]

= exc(S,C) + r.

(vi) It is easy to see that for any A, B ⊆ Y, it holds exc(A,C) ≤ exc(A,B) +
exc(B,C).

Given two nonempty subsets K, S ⊆ Y, their ∗-difference (a.k.a. Pontryagin
difference) is defined as

K ∗S = {y ∈ Y | y + S ⊆ K}.

It is readily seen that 0 ∈ K ∗S iff S ⊆ K. In what follows, several conditions will
be expressed in terms of the following quantity

(2.11) |K ∗S| = sup{r > 0 | rB ⊆ K ∗S},

which can be regarded as a measure of how much the set S is inner to K (for more
details on the ∗-difference, see for instance [27]).

Given a set-valued mapping Φ : X ⇒ Y between normed vector spaces, several
notions of first-order approximations of Φ can be found in variational analysis,
which reveal to be suitable in connection with the present approach of study. Let
x0 ∈ domΦ. After [10], a p.h. set-valued mapping HΦ(x0; ·) : X ⇒ Y is said to be
an outer prederivative of Φ at x0 if for every ϵ > 0 there exists δ > 0 such that

Φ(x) ⊆ Φ(x0) +HΦ(x0;x− x0) + ϵ‖x− x0‖B, ∀x ∈ B(x0, δ).

In contrast with [22], a p.h. set-valued mapping HΦ(x0; ·) : X⇒ Y is said to be an
inner prederivative of Φ at x0 if for every ϵ > 0 there exists δ > 0 such that

Φ(x0) +HΦ(x0;x− x0) ⊆ Φ(x) + ϵ‖x− x0‖B, ∀x ∈ B(x0, δ).

For expanding the discussion about outer and inner prederivatives, the reader may
refer to [10,22].

Graphical differentiation represents a different way of approximating set-valued
mappings. It is based on the notion of conical approximation of sets. Given a
nonempty set S ⊆ Y and y ∈ S, let T(S; y) denote, in particular, the contingent
cone to S at y. Recall that T(S; y) is always a closed cone and, whenever S is
convex, T(S; y) too is convex and can be represented as

(2.12) T(S; y) = cl [cone (S − y)]
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(see, for instance, [28, Proposition 11.1.2(d)]). Besides, in view of the technique of
proof employed in a subsequent section, the following variational characterization
of the contingent cone to any set S at y will be helpful

(2.13) T(S; y) =

{
v ∈ Y | lim inf

t↓0

dist (y + tv, S)

t
= 0

}
(see [28, Proposition 11.1.5]).

The graphical (contingent) derivative of Φ at (x0, y0) ∈ graphΦ is the set-valued
mapping DΦ(x0, y0) : X⇒ Y defined via the graphical relation

graphDΦ(x0, y0) = T(graphΦ; (x0, y0)).

Namely, the fact that v ∈ DΦ(x0, y0)(z) means that there exist sequences (zn)n in
X, with zn −→ z, (vn)n in Y, with vn −→ v, and (tn)n in (0,+∞), with tn ↓ 0, as
n → ∞, such that

(2.14) y0 + tnvn ∈ Φ(x0 + tnzn), ∀n ∈ N.

From the very definition, one readily sees that DΦ(x0, y0) is a p.h. set-valued
mapping.

If for each v ∈ DΦ(x0, y0)(z) and choice of the sequence (tn)n in (0,+∞), with
tn ↓ 0, there exist sequences (zn)n in X, with zn −→ z, and (vn)n in Y, with
vn −→ v, such that inclusion (2.14) holds, then Φ is said to be protodifferentiable
at (x0, y0) ∈ graphΦ. Detailed accounts on graphical differentiation can be found
in [2, 7, 26,28].

An aspect which should be the subject of meditation is that, while the concept
of approximation provided by outer/inner prederivatives refer to an element x0 ∈
domΦ and consider the whole set Φ(x0), graphical derivatives refer to an element
(x0, y0) ∈ graphΦ and are affected only by the local geometry of Φ near (x0, y0).

Other convenient derivative-like objects for set-valued mappings are code-rivatives.
They act between dual spaces and can be introduced via normal cones to the graph
of set-valued mappings. Accordingly, the Fréchet coderivative of Φ : X ⇒ Y at

(x0, y0) ∈ graphΦ is the set-valued mapping D̂∗Φ(x0, y0) : Y∗ ⇒ X∗ defined by

D̂∗Φ(x0, y0)(y
∗) = {x∗ | (x∗,−y∗) ∈ N̂(graphΦ; (x0, y0))},

where, if S ⊆ X× Y and w0 ∈ S, the subset

N̂(S;w0) =

{
w∗ ∈ X∗ × Y∗ | lim sup

S∋w→w0

〈w∗, w − w0〉
‖w − w0‖

≤ 0

}
denotes the Fréchet normal cone to S at w0. For more material on coderivative,
see [5, 7, 19, 26, 28]. In view of a subsequent employment, let us recall the following
equality linking the Fréchet normal cone (and hence the coderivative) with the
Fréchet subdifferential via the indicator and the distance function:

(2.15) N̂(S;w0) = ∂̂ι(·;S)(w0) =
⋃
κ>0

κ ∂̂dist (·, S) (w0),

where

∂̂φ(x0) =

{
x∗ ∈ X∗ | lim inf

x→x0

φ(x)− φ(x0)− 〈x∗, x− x0〉
‖x− x0‖

≥ 0

}
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denotes the Fréchet subdifferential of a function φ : X −→ R∪{±∞} at x0 ∈ domφ
(see, for instance, [19, Corollary 1.96]).

The next proposition explains how outer prederivatives of a set-valued mapping
Φ can be exploited for estimating the strong slope of the function νΦ,C , at points
which fail to be a solution of the set-valued inclusion defined by Φ and C: roughly
speaking, such first-order approximations of Φ must admit a direction, along which
their values are strictly inner to C.

Proposition 2.5. Let Φ : X⇒ Y be a set-valued mapping between Banach spaces,
let C ⊆ Y be a closed, convex cone and let x0 ∈ X\Φ+1(C). Suppose that

(i) Φ is l.s.c. on x0;
(ii) Φ admits HΦ(x0; ·) as an outer prederivative at x0;
(iii) it holds

(2.16) σH(x0) = sup
u∈S

|C ∗HΦ(x0;u)| > 0.

Then, the following estimate holds

(2.17) |∇νΦ,C |(x0) ≥ σH(x0).

Proof. In the light of Remark 2.1, by virtue of hypothesis (i), the function νΦ,C

turns out to be l.s.c. on x0. Since it is x0 ∈ X\Φ+1(C), one has νΦ,C(x0) > 0.
Then, there exists δ > 0 such that νΦ,C(x) > 0 for every x ∈ B(x0, δ). According
to hypothesis (ii), fixed any ϵ ∈ (0, σH(x0)) there exists δϵ ∈ (0, δ) such that

(2.18) Φ(x0 + v) ⊆ Φ(x0) +HΦ(x0; v) + ϵ‖v‖B, ∀v ∈ δϵB.
By virtue of hypothesis (iii), there exists uϵ ∈ S such that

|C ∗HΦ(x0;uϵ)| > σH(x0)− ϵ,

and hence, recalling definition (2.11), there exists rϵ > σH(x0)− ϵ such that

HΦ(x0;uϵ) + rϵB ⊆ C.

Since the set-valued mapping HΦ(x0; ·) is positively homogeneous and C is a cone,
the last inclusion entails

(2.19) HΦ(x0; tuϵ) + trϵB ⊆ C, ∀t > 0.

By combining inclusions (2.18) and (2.19), one finds

Φ(x0 + tuϵ) + trϵB ⊆ Φ(x0) + [HΦ(x0; tuϵ) + trϵB] + tϵB
⊆ Φ(x0) + C + tϵB, ∀t ∈ (0, δϵ).

Consequently, it results in

(2.20) exc(Φ(x0 + tuϵ) + trϵB, C) ≤ exc(Φ(x0) + C + tϵB, C), ∀t ∈ (0, δϵ).

On the other hand, by Remark 2.4(ii) and (v), recalling that Φ(x0) 6⊆ C as well as
Φ(x0 + tuϵ) 6⊆ C for every t ∈ (0, δϵ), because δϵ < δ, so x0 + tuϵ ∈ [νΦ,C > 0], one
obtains

exc(Φ(x0 + tuϵ) + trϵB, C) = νΦ,C(x0 + tuϵ) + trϵ

and
exc(Φ(x0) + C + tϵB, C) = νΦ,C(x0) + tϵ.
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In the light of inequality (2.20), the above equalities yield

νΦ,C(x0)− νΦ,C(x0 + tuϵ)

t
≥ rϵ − ϵ, ∀t ∈ (0, δϵ),

whence one gets

sup
x∈B(x0,t)\{x0}

νΦ,C(x0)− νΦ,C(x)

‖x− x0‖
≥ rϵ − ϵ > σH(x0)− 2ϵ, ∀t ∈ (0, δϵ).

Thus, one obtains

|∇νΦ,C |(x0) = lim
t↓0

sup
x∈B(x0,t)\{x0}

νΦ,C(x0)− νΦ,C(x)

‖x− x0‖
≥ σH(x0)− 2ϵ.

By arbitrariness of ϵ the estimate in (2.17) follows from the last inequality. □
The proof of Proposition 2.5 should help to understand a possible reading of the

crucial condition (2.16): it prescribes a behaviour of Φ near x0, which results in the
existence of a descent direction for νΦ,C , with a rate controlled by σH(x0).

Remark 2.6. As a caveat regarding condition (2.16), it must be noticed that such
a requirement can be satisfied only if intC 6= ∅.

3. Lipschitzian behaviour in metric spaces

Pursuing the research line presented in [31], the study of properties of the solution
mapping S associated to (SVI p) will be carried out by means of the merit function
νF,C : P ×X −→ R ∪ {±∞}, given by

(3.1) νF,C(p, x) = exc(F (p, x), C) = sup
y∈F (p,x)

dist (y, C) .

Such an approach allows one to embed the analysis of the quantitative stability
properties of S into a framework, which is suitable for applying the parametric
basic lemma.

In what follows, consistently with the material exposed in Section 2, dom F = P×
X will be kept as a standing assumption, so it is true that [νF,C(p, x) ≥ 0] = P ×X.

Proposition 3.1 (Parametric solvability and error bound). Given a parameterized
problem (SVI p), let (p̄, x̄) ∈ P ×X. Suppose that:

(i) (X, d) is metrically complete;
(ii) x̄ ∈ S(p̄);
(iii) the set-valued mapping p⇝ F (p, x̄) is Hausdorff C-u.s.c. at p̄;
(iv) there exists δ1 > 0 such that for every p ∈ B(p̄, δ1) each set-valued mapping

x⇝ F (p, x) is l.s.c. on X;
(v) there exists δ2 > 0 such that

σ∇ = inf{|∇xνF,C |(p, x) | (p, x) ∈ [B(p̄, δ2)× B(x̄, δ2)]\graphS} > 0.

Then, there exist positive η and ζ such that

(t) S(p) ∩ B(x̄, η) 6= ∅, for every p ∈ B(p̄, ζ);
(tt) the following estimate holds

(3.2) dist (x,S(p)) ≤
νF,C(p, x)

σ∇
, ∀(p, x) ∈ B(p̄, ζ)× B(x̄, η).
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Proof. It suffices to apply the parametric basic lemma (Lemma 2.3) with ν = νF,C ,
after having noted that, by Remark 2.1, under the current hypotheses νF,C(·, x̄) is
u.s.c. at p̄ and each function νF,C(p, ·) is l.s.c. on X, for every p near p̄. Then, it
remains to remember that S(p) = [νF,C(p, ·) = 0]. □

It is worth remarking that, as a consequence of assertion (t), one gets that each
problem (SVI p), for every p near p̄, does admit a solution. In other words, it is
p̄ ∈ int domS. The error bound inequality (3.2) says that νF,C works as a residual
in estimating the distance from the solution set to (SVI p). While to compute the
term in the left side of (3.2) one needs to find explicitly the solutions to (SVI p),
what might be considerably difficult, the residual in the right-side is expressed in
terms of problem data, so is expected to be more easily computed.

An important consequence of the above error bound can be established upon an
additional hypothesis on F . This leads to the next result about the Lipschitzian
behaviour of S.

Theorem 3.2 (Aubin continuity of S). Given a parameterized problem (SVI p), let
(p̄, x̄) ∈ P ×X. Suppose that all the hypotheses of Proposition 3.1 are in force and
suppose, in addition, that

(vi) there exist positive τ and s such that for every x ∈ B(x̄, s) each set-valued
mapping p⇝ F (p, x) is Lipschitz with rate ℓ in B(p̄, τ).

Then, p̄ ∈ int domS, S is Aubin continuous at (p̄, x̄) and the following estimate
holds

(3.3) lipS(p̄, x̄) ≤ ℓ

σ∇
.

Proof. From assertion (t) in Proposition 3.1 it follows that p̄ ∈ int domS and that
there exist positive ζ, η such that the estimate (3.2) holds true. So, setting δ =
min{ζ, τ} and r = min{η, s}, by remembering the inequality in Remark 2.4(vi), one
obtains

νF,C(p1, x) ≤ exc(F (p1, x), F (p2, x)) + exc(F (p2, x), C)

≤ ℓd(p1, p2), ∀p1, p2 ∈ B(p̄, δ), ∀x ∈ B(x̄, r) ∩ S(p2).
Thus, on account of inequality (3.2), it results in

(3.4) dist (x,S(p1)) ≤
ℓ

σ∇
d(p1, p2), ∀p1, p2 ∈ B(p̄, δ), ∀x ∈ B(x̄, r) ∩ S(p2),

which shows that condition (2.2) is satisfied with rate κ = ℓ/σ∇. The estimate in
the assertion comes as a direct consequence of the definition of modulus of Aubin
continuity, in the light of inequality (3.4). □

A comparison of Theorem 3.2 with [31, Theorem 3.3] should be useful in order to
evaluate its impact. The latter result provides a sufficient condition for the calmness
of S, under a milder set of hypotheses. Nonetheless, inasmuch as Aubin continuity
implies calmness, Theorem 3.2 establishes an enhanced Lipschitzian property of S.

In the same vein, it is worth noting that, since Aubin continuity implies Lipschitz
lower semicontinuity as seen in Section 2, Theorem 3.2 contains a sufficient condi-
tion also for the Lipschitz lower semicontinuity of S. Of course, in establishing a
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stronger Lipschitz behaviour, the invoked hypotheses are stronger than those ap-
pearing in [31, Theorem 3.1], which is a condition specifically tailored for Lipschitz
lower semicontinuity.

The next example aims at illustrating the crucial role played by the condition in
hypothesis (v) of Proposition 3.1.

Example 3.3. Let P = X = R and Y = Rm be endowed with their usual (Eu-
clidean) metric structure. Consider the parameterized set-valued inclusion (SVI p)
with data F : R× R⇒ Rm and C defined by

F (p, x) = {y = (y1, . . . , ym) ∈ Rm | min
i=1,...,m

yi ≥ x2 − p} and C = Rm
+ .

Fixed p̄ = 0, it is clear that x̄ = 0 ∈ S(0). More generally, since it is readily seen
that F (p, x) ⊆ Rm

+ iff x2 − p ≥ 0, for the problem under consideration the solution
set-valued mapping S : R⇒ R can be computed explicitly, resulting in

S(p) =

 R, ∀p ∈ (−∞, 0],

(−∞,−√
p] ∪ [

√
p,+∞), ∀p ∈ (0,+∞).

The set-valued mapping p⇝ F (p, 0) is evidently Hausdorff Rm
+ -u.s.c. (though failing

to be u.s.c.) at p̄ = 0. Moreover, as a consequence of the continuity of the function
x 7→ x2 − p, each set-valued mapping x ⇝ F (p, x) = (x2 − p){(1, . . . , 1)} + Rm

+ is
l.s.c. on R. From the definition of F , one deduces

νF,C(p, x) =

 0, ∀(p, x) ∈ graphS,
√
m|x2 − p|, ∀(p, x) ∈ (R× R)\graphS.

Consequently, fixed any (p, x) ∈ (R× R)\graphS, one obtains

|∇xνF,C |(p, x) =
∣∣∣∣ ∂∂x√m(p− x2)

∣∣∣∣ = 2
√
m|x|.

Thus, if considering the graphS near its point (0, 0), one sees that for any fixed
δ > 0 there exists (p, 0) ∈ [B(0, δ) × B(0, δ)]\graphS such that |∇xνF,C |(p, 0) = 0.
This leads to conclude that σ∇ = 0, so hypothesis (v) of Proposition 3.1 in this
case is not satisfied. One can check that, whereas the nonemptiness in assertion (t)
actually takes place, the function νF,C fails to work as a residual for dist (x,S(p)).
Indeed, taking x = 0, one finds

dist (0,S(p)) =

 0, ∀p ∈ (−∞, 0],

√
p, ∀p ∈ (0,+∞).

(3.5)

Clearly, the inequality

dist (0,S(p)) = √
p ≤ κp = κνF,C(p, 0), ∀p ∈ (0, ζ),

can not be true for any choice of positive κ and ζ. For a similar reason, it is
worth noting that the expression (3.5) reveals that S fails to be Aubin continuous
at (0, 0). Nevertheless, one can check by using its definition that the set-valued
mapping p⇝ F (p, x) is Lipschitz continuous with rate ℓ = 1 in R, for every x ∈ R.
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4. First-order analysis in normed vector spaces

Unless otherwise stated, throughout the present section, (P, ‖·‖) and (Y, ‖·‖) will
be normed vector spaces, whereas (X, ‖ · ‖) will be assumed to be a Banach space.
Whenever considered, the product space P×X will be assumed to be equipped with
the max-norm ‖(p, x)‖ = max{‖p‖, ‖x‖}. Moreover, in view of the employment of
condition (2.16), it will be assumed intC 6= ∅.

In a normed vector space setting, a sufficient condition for error bounds and the
Aubin continuity of a multifunction, defined implicitly by (SVI p), can be established
in terms of outer prederivative as follows.

Proposition 4.1. Given a parameterized set-valued inclusion (SVI p), let (p̄, x̄) ∈
P× X. Suppose that:

(i) x̄ ∈ S(p̄);
(ii) the set-valued mapping p⇝ F (p, x̄) is Hausdorff C-u.s.c. at p̄;
(iii) there exists δ1 > 0 such that for every p ∈ B(p̄, δ1) each set-valued mapping

x⇝ F (p, x) is l.s.c. on X;
(iv) there exists δ2 > 0 such that, for every p ∈ B(p̄, δ2), each set-valued mapping

x⇝ F (p, x) admits an outer prederivative HF (p,·)(x; ·) : X⇒ Y at each point
x ∈ B(p̄, δ2);

(v) it holds

σH(p̄, x̄) = inf{σHF (p,·)(x) | (p, x) ∈ [B(p̄, δ2)× B(x̄, δ2)]\graphS} > 0,

where σHF (p,·)(x) is defined as in (2.16).

Then, there exist positive η and ζ such that the estimate (3.2) holds true with σ∇
replaced by σH(p̄, x̄).
If, in addition,

(vi) there exist positive τ and s such that for every x ∈ B(x̄, s) each set-valued
mapping p⇝ F (p, x) is Lipschitz with rate ℓ in B(p̄, τ),

then S is Aubin continuous at (p̄, x̄) and the following estimate holds

(4.1) lipS(p̄, x̄) ≤ ℓ

σH(p̄, x̄)
.

Proof. If (p, x) 6∈ graphS, then it is F (p, x) 6⊆ C, or, equivalently, it holds x ∈
X\F+1(p, ·)(C). Thus, under the above hypotheses it is possible to apply Proposi-
tion 2.5. Consequently, for every (p, x) ∈ [B(p̄, δ2)× B(x̄, δ2)]\graphS one obtains

|∇xνF,C |(p, x) ≥ σHF (p,·)(x),

which implies

σ∇ ≥ σH(p̄, x̄).

The last inequality, on account of hypothesis (v), enables one to apply Proposition
3.1 and, under the hypothesis (vi), Theorem 3.2. This completes the proof. □

Proposition 4.1 has the following consequence on the graphical derivative of S,
which is relevant to the sensitivity analysis of (SVI p).
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Corollary 4.2 (Lipschitz continuity of DS(p̄, x̄)). Given a parameterized set-valued
inclusion (SVI p), let (p̄, x̄) ∈ P×X. Under the hypotheses (i) – (vi) of Proposition
4.1, domDS(p̄, x̄) = P and DS(p̄, x̄) : P⇒ X is Lipschitz continuous on P with rate
κ ≤ ℓ/σH(p̄, x̄).

Proof. The thesis follows from the Aubin continuity of S in the light of [26, Exercise
9.49]. Indeed, a perusal of the argument suggested there certifies that the finite-
dimensional setting does not affect the reasoning. □

Other useful properties of DS(p̄, x̄) can be established in the presence of a specific
geometric property of F , which appeared in connection with the study of set-valued
inclusions already in [6].

Definition 4.3 (C-concavity). A set-valued mapping Φ : X ⇒ Y between normed
vector spaces is called C-concave in X, where C is a convex cone in Y, if it holds

Φ(tx1 + (1− t)x2) ⊆ tΦ(x1) + (1− t)Φ(x2) + C, ∀x1, x2 ∈ X, ∀t ∈ [0, 1].

A remarkable class of C-concave set-valued mappings emerging in the context of
robust convex optimization is singled out below.

Example 4.4. Let f : X×Ω −→ Y be a given mapping, with Ω 6= ∅, and let C ⊆ Y
be a convex cone. If each single-valued mapping f(·, ω) : X −→ Y is C-concave in
X, i.e. for every x1, x2 ∈ X and t ∈ [0, 1] it holds

f(tx1 + (1− t)x2, ω)− tf(x1, ω)− (1− t)f(x2, ω) ∈ C,

for every ω ∈ Ω, then the set-valued mapping Φf : X⇒ Y defined by

Φf (x) = {y = f(x, ω) | ω ∈ Ω} = f(x,Ω)

turns out to be C-concave in X. Indeed, taken any pair x1, x2 ∈ X and t ∈ [0, 1], if
y is an arbitrary element of Φf (tx1 + (1− t)x2), then there exists ω ∈ Ω such that

y = f(tx1 + (1− t)x2, ω) ∈ tf(x1, ω) + (1− t)f(x2, ω) + C

⊆ tΦf (x1) + (1− t)Φf (x2) + C,

which shows that

Φf (tx1 + (1− t)x2) ⊆ tΦf (x1) + (1− t)Φf (x2) + C.

It is worth noting that if, in particular, f : X×Ω −→ Rm is given by f = (f1, . . . , fm),
where fi(·, ω) : X −→ R is concave for every i = 1, . . . ,m, and ω ∈ Ω, then f turns
out to be Rm

+ -concave. Thus, the set-valued inclusion Φf (x) ⊆ Rm
+ expresses in this

case the robust fulfilment of the convex inequality system
−f1(x, ω) ≤ 0

...
−fm(x, ω) ≤ 0,

which typically defines the feasible region in robust convex optimization (see [4]).

Remark 4.5. The notion of C-concavity for set-valued mappings is evidently a
generalization of that of concavity, as presented in [30, Definition 2.3]. Consequently,
several further examples of C-concave set-valued mappings, including among others
the class of fans introduced by Ioffe (see [10]), can be found therein.
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The C-concavity of F in P×X yields the following important geometric property
of S.

Proposition 4.6 (Convexity of S). With reference to a parameterized set-valued
inclusion (SVI p), suppose that F : P × X ⇒ Y is C-concave on P × X. Then,
S : P⇒ X is a convex set-valued mapping.

Proof. Taken arbitrary p1, p2 ∈ domS and x1, x2 ∈ X, with xi ∈ S(pi), i = 1, 2,
by virtue of the C-concavity of F one has

F (t(p1, x1) + (1− t)(p2, x2)) ⊆ tF (p1, x1) + (1− t)F (p2, x2) + C

⊆ tC + (1− t)C + C ⊆ C, ∀t ∈ [0, 1].

This inclusion shows that

tx1 + (1− t)x2 ∈ S(tp1 + (1− t)p2), ∀t ∈ [0, 1].

By arbitrariness of xi ∈ S(pi), from the last inclusion one can deduce that

tS(p1) + (1− t)S(p2) ⊆ S(tp1 + (1− t)p2), ∀t ∈ [0, 1],

thereby completing the proof. □
As one expects, the convexity of S, that is the convexity of its graph, induces a

similar geometric property in its graphical approximation, as stated next.

Corollary 4.7 (Sublinearity of DS(p̄, x̄)). With reference to a parameterized set-
valued inclusion (SVI p), let (p̄, x̄) ∈ graphS. If F : P × X ⇒ Y is C-concave on
P×X, then DS(p̄, x̄) : P⇒ X is a closed sublinear set-valued mapping (a.k.a. convex
process).

If, in addition, graphS is closed, then S is protodifferentiable at (p̄, x̄).

Proof. Since by Proposition 4.6 graphS is convex, so is T(graphS; (p̄, x̄)). Having
a closed, convex cone as a graph, the set-valued mapping DS(p̄, x̄) : P ⇒ X must
be closed and sublinear.

As for the second assertion, it is useful to recall that a sufficient condition for
protodifferentiability is graph regularity (see [26, Proposition 8.41]), which in turn
comes here as a consequence of the convexity of the graph along with the outer
semicontinuity (see [26, Example 8.39]), the latter property being guaranteed by
the fact that the graph of S is closed (see [7, Theorem 3B.2(c)]). □

Convexity interacts also with Aubin continuity yielding an enhanced Lipschitzian
behaviour of S, according to the assertion below.

Corollary 4.8 (Lipschitz continuity of S under truncation). With reference to a
parameterized set-valued inclusion (SVI p), let (p̄, x̄) ∈ graphS. Suppose that all the
hypotheses (i) – (vi) of Proposition 4.1 are fulfilled. If F : P×X⇒ Y is C-concave
on P× X, then S has a Lipschitz continuous graphical localization (not necessarily
single-valued) around (p̄, x̄) ∈ graphS, i.e. there exist neighbourhoods V of p̄ and
U of x̄ such that the truncated mapping p⇝ S(p)∩U is Lipschitz continuous on V .

Proof. Observe that, in the light of Proposition 4.6, S is convex. Consequently,
it takes convex values. Since S is also Aubin continuous at (p̄, x̄) by virtue of the
hypotheses taken, the convexity of its images allows one to apply [7, Theorem 3E.3],
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after having noticed that this result can be extended to normed vector spaces with
the same proof. □

In the absence of convexity of S, the following formulae provide inner and outer
approximations of DS(p̄, x̄) in terms of proper prederivatives.

Theorem 4.9 (Inner approximation of DS(p̄, x̄)). Given a parameterized set-valued
inclusion (SVI p), let (p̄, x̄) ∈ P× X. Suppose that:

(i) x̄ ∈ S(p̄);
(ii) the set-valued mapping p⇝ F (p, x̄) is Hausdorff C-u.s.c. at p̄;
(iii) there exists δ1 > 0 such that for every p ∈ B(p̄, δ1) each set-valued mapping

x⇝ F (p, x) is l.s.c. on X;
(iv) there exists δ2 > 0 such that, for every p ∈ B(p̄, δ2), each set-valued mapping

x⇝ F (p, x) admits an outer prederivative HF (p,·)(x; ·) : X⇒ Y at each point
x ∈ B(p̄, δ2), such that σH(p̄, x̄) > 0;

(v) F admits an outer prederivative HF ((p̄, x̄); ·) : P× X⇒ Y at (p̄, x̄).

Then, the following approximation holds

(4.2) DS(p̄, x̄)(p) ⊇ H+1
F ((p̄, x̄); (p, ·))(C), ∀p ∈ P.

Proof. Take an arbitrary v ∈ H+1
F ((p̄, x̄); (p, ·))(C). Observe first of all that, since

DS(p̄, x̄) and HF ((p̄, x̄); ·) are both p.h. set-valued mappings, it suffices to prove the
validity of inclusion (4.2) in the case (p, v) ∈ B×B. That said, in order to prove that
v ∈ DS(p̄, x̄)(p), one has to show that (p, v) ∈ graphDS(p̄, x̄) = T(graphS; (p̄, x̄)).
On account of the characterization recalled in (2.13), this can be done by showing
that

lim inf
t↓0

dist ((p̄, x̄) + t(p, v), graphS)
t

= 0.

The last equality means that for every τ > 0 and ϵ > 0 there must exist t ∈ (0, τ)
such that

(4.3)
dist ((p̄, x̄) + t(p, v), graphS)

t
≤ ϵ.

Fix positive ϵ and τ . Since under the current hypotheses it is possible to apply
Proposition 4.1, one gets the existence of ζ and η such that the estimate

(4.4) dist (x̄+ tv,S(p̄+ tp)) ≤
νF,C(p̄+ tp, x̄+ tv)

σH(p̄, x̄)
, ∀t ∈ (0,min{ζ, η})

holds true. By hypothesis (v), there exists 0 < δϵ < min{ζ, η, τ} such that

F ((p̄, x̄) + t(p, v)) ⊆ F (p̄, x̄) + tHF ((p̄, x̄); (p, v)) + ϵtσH(p̄, x̄)B, ∀t ∈ (0, δϵ).

As it is v ∈ HF ((p̄, x̄); (p, v)) ⊆ C, from the above inclusion one obtains

F ((p̄, x̄) + t(p, v)) ⊆ F (p̄, x̄) + C + ϵtσH(p̄, x̄)B, ∀t ∈ (0, δϵ).

Thus, when passing to the excess, by virtue of what observed in Remark 2.4(i), (ii)
and (iii), one finds

νF,C((p̄, x̄) + t(p, v)) ≤ exc(F (p̄, x̄) + C + ϵtσH(p̄, x̄)B, C)

≤ νF,C(p̄, x̄) + ϵtσH(p̄, x̄),(4.5)

= ϵtσH(p̄, x̄), ∀t ∈ (0, δϵ).
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Now, it is proper to observe that

dist ((p̄, x̄) + t(p, v), graphS) = inf
(q,w)∈graphS

‖(p̄, x̄) + t(p, v)− (q, w)‖

≤ inf
w∈S(p̄+tp)

‖(p̄, x̄) + t(p, v)− (p̄+ tp, w)‖

= inf
w∈S(p̄+tp)

‖x̄+ tv − w‖

= dist (x̄+ tv,S(p̄+ tp)) .

Therefore, by combining the last inequality chain with inequalities (4.4) and (4.5),
one obtains

dist ((p̄, x̄) + t(p, v), graphS) ≤
νF,C(p̄+ tp, x̄+ tv)

σH(p̄, x̄)
≤ ϵt, ∀t ∈ (0, δϵ).

As it is δϵ < τ , from the last inequality one can deduce the existence of t ∈ (0, τ),
for which inequality (4.3) is fulfilled, thereby completing the proof. □

Remark 4.10. (i) The reader should notice that hypotheses (iv) and (v) of Theorem
4.9 speak about different mathematical objects. Indeed, the outer prederivatives
mentioned in hypothesis (iv) provide partial first-order approximations, each for
the mapping F (p, ·) (depending only on x) near x̄, with p ∈ B(p̄, δ2). In contrast,
HF ((p̄, x̄); ·) provides a first-order joint approximation of F as a multifunction of
both the variables p and x.

(ii) It is readily seen that each set H+1
F ((p̄, x̄); (p, ·))(C) is a cone in X, being the

upper inverse image of a cone through a p.h. set-valued mapping. In particular,
whenever HF ((p̄, x̄); ·) is C-concave, it can be shown to be a convex cone. By virtue
of these features, such a set is expected to be more easily computable than the set
DS(p̄, x̄)(p), in the spirit of implicit function theorems.

Theorem 4.11 (Outer approximation of DS(p̄, x̄)). Given a parameterized set-
valued inclusion (SVI p), let (p̄, x̄) ∈ P × X, with x̄ ∈ S(p̄). Suppose that F admits
an inner prederivative HF ((p̄, x̄); ·) : P× X⇒ Y at (p̄, x̄), which is l.s.c. on P× X.
Then, the following approximation holds

(4.6) DS(p̄, x̄)(p) ⊆
⋂

y∈F (p̄,x̄)

H+1
F ((p̄, x̄); (p, ·))(T(C; y)), ∀p ∈ P.

Proof. Fix p ∈ P and take an arbitrary v ∈ DS(p̄, x̄)(p). According to the definition
of graphical (contingent) derivative, there exist sequences (pn)n in P, with pn −→ p,
(vn)n in X, with vn −→ v, and (tn)n in (0,+∞), with tn ↓ 0, such that x̄+ tnvn ∈
S(p̄+ tnpn) for every n ∈ N, which means

(4.7) F ((p̄, x̄) + tn(pn, vn)) ⊆ C, ∀n ∈ N.

Fix ϵ > 0. Since HF ((p̄, x̄); ·) is an inner prederivative of F at (p̄, x̄), there exists
δϵ > 0 such that

F (p̄, x̄) + tHF ((p̄, x̄); (q, w)) ⊆ F (p, x) + ϵtB,(4.8)

∀(q, w) ∈ B× B, ∀t ∈ (0, δϵ).
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Since, without loss of generality, it is possible to assume that (pn, vn) ∈ B× B and
tn ∈ (0, δϵ), by combining inclusions (4.8) and (4.7), one obtains

F (p̄, x̄) + tnHF ((p̄, x̄); (pn, vn)) ⊆ C + ϵtnB, ∀n ∈ N.
Let y be an arbitrary element of F (p̄, x̄). As it is F (p̄, x̄) ⊆ C by hypothesis, the
last inclusion implies

HF ((p̄, x̄); (pn, vn)) ⊆
C − y

tn
+ ϵB ⊆ cl [cone (C − y)] + ϵB, ∀n ∈ N.

Since C is convex, by virtue of the representation (2.12) valid for its contingent
cone, the last inclusion gives

(4.9) HF ((p̄, x̄); (pn, vn)) ⊆ T(C; y) + ϵB ⊆ B(T(C; y), ϵ), ∀n ∈ N.
As the set-valued mapping HF ((p̄, x̄); ·) is l.s.c. at (p, v) and B(T(C; y), ϵ) is a closed
set, from the last inclusion it follows

(4.10) HF ((p̄, x̄); (p, v)) ⊆ B(T(C; y), ϵ).

Indeed, if one assumes that

HF ((p̄, x̄); (p, v)) ∩ [Y\B(T(C; y), ϵ)] 6= ∅,

there must exists δC such that

HF ((p̄, x̄); (q, w)) ∩ [Y\B(T(C; y), ϵ)] 6= ∅, ∀(q, w) ∈ B(p, δC)× B(v, δC),

which contradicts inclusion (4.9), because (pn, vn) −→ (p, v) as n → ∞, so that
(pn, vn) ∈ B(p, δC) × B(v, δC). By arbitrariness of ϵ, as T(C; y) is a closed set,
inclusion (4.10) entails

HF ((p̄, x̄); (p, v)) ⊆ T(C; y),

what amounts to say

v ∈ H+1
F ((p̄, x̄); (p, ·))(T(C; y)).

Since this reasoning is valid for every y ∈ F (p̄, x̄), one achieves the inclusion (4.6)
in the thesis. □

For the set
⋂

y∈F (p̄,x̄)H
+1
F ((p̄, x̄); (p, ·))(T(C; y)) what has been said in Remark

4.10(ii) can be repeated.

Remark 4.12. Since it holds T(C; y) = Y whenever y ∈ intC and one has
H+1

F ((p̄, x̄); (p, ·))(Y) = X, it should be clear that formula (4.6) yields an useful
outer approximation of DS(p̄, x̄), provided that F (p̄, x̄) 6⊆ intC. On the other
hand, in the case F (p̄, x̄) ⊆ intC, if F is u.s.c. at (p̄, x̄), there exists δ0 > 0 such
that

F (p, x) ⊆ C, ∀(p, x) ∈ B(p̄, δ0)× B(x̄, δ0).

This means that

B(x̄, δ0) ⊆ S(p), ∀p ∈ B(p̄, δ0)

and hence B(p̄, δ0) × B(x̄, δ0) ⊆ graphS. In other terms, (p̄, x̄) ∈ int graphS.
Consequently, it results in T(graph S; (p̄, x̄)) = P × X. According to the definition
of graphical (contingent) derivative, this fact yields

DS(p̄, x̄)(p) = X, ∀p ∈ P.
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So, the circumstance F (p̄, x̄) ⊆ intC, under an upper semicontinuity assumption,
turns out to be of less interest.

Following a similar technique as in [5, Theorem 5.5.1], the following estimate of
the coderivative of S can be established.

Proposition 4.13 (Coderivative of S via merit function). Let (SVI p) be a param-
eterized set-valued inclusion and let (p̄, x̄) ∈ P× X. Suppose that:

(i) x̄ ∈ S(p̄);
(ii) the set-valued mapping p⇝ F (p, x̄) is Hausdorff C-u.s.c. at p̄;
(iii) there exists δ1 > 0 such that for every p ∈ B(p̄, δ1) each set-valued mapping

x⇝ F (p, x) is l.s.c. on X;
(iv) there exists δ2 > 0 such that, for every p ∈ B(p̄, δ2), each set-valued mapping

x⇝ F (p, x) admits an outer prederivative HF (p,·)(x; ·) : X⇒ Y at each point
x ∈ B(p̄, δ2), such that σH(p̄, x̄) > 0.

Then, there exist positive ζ and η such that the following representation holds

D̂∗S(p, x)(x∗) = {p∗ ∈ P∗ | (p∗,−x∗) ∈ cone ∂̂νF,C(p, x))},(4.11)

∀(p, x) ∈ [intB(p̄, ζ)× intB(x̄, η)] ∩ graphS.

Proof. The above hypotheses ensure the validity of the first assertion in Proposition
4.1. Thus, there exists positive ζ and η such that

(4.12) dist (x,S(p)) ≤
νF,C(p, x)

σH(p̄, x̄)
, ∀(p, x) ∈ B(p̄, ζ)× B(x̄, η).

Now, take an arbitrary pair (p, x) ∈ [intB(p̄, ζ) × intB(x̄, η)] ∩ graphS, x∗ ∈ X∗

and p∗ ∈ D̂∗S(p, x)(x∗). According to the representation of a Fréchet normal cone
in terms of Fréchet subdifferential in (2.15), one has

(p∗,−x∗) ∈ N̂(graphS; (p, x)) =
⋃
κ>0

κ ∂̂dist (·, graphS) (p, x).

By applying a well-known variational description of Fréchet subgradients (see, for
instance, [19, Theorem 1.88(i)]), the above inclusion means that, for some κ > 0,

there must exist a function φ ∈ C1(P×X) with D̂φ(p, x) = (p∗,−x∗) and φ(p, x) =
κdist ((p, x), graphS) = 0, such that

φ(q, z) ≤ κdist ((q, z), graphS) , ∀(q, z) ∈ P× X.

By combining the last inequality with inequality (4.12) and taking r > 0 in such a
way that B(p, r)× B(x, r) ⊆ B(p̄, ζ)× B(x̄, η), one obtains

φ(q, z) ≤ φ(p, x) + κdist ((q, z), graphS)

≤ φ(p, x) + κdist (z,S(q)) ≤ φ(p, x) +
κ

σH(p̄, x̄)
νF,C(q, z),

∀(q, z) ∈ B(p, r)× B(x, r).

This inequality says that (p, x) is a local minimizer of the function (q, z) 7→ −φ(q, z)+
(κ/σH(p̄, x̄))νF,C(q, z). Consequently, by well-known calculus rules of the Fréchet
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subdifferential (see, for instance, [19, Proposition 1.107(i) and Proposition 1.114]),
it must be

(p∗,−x∗) = D̂φ(p, x) ∈ κ

σH(p̄, x̄)
∂̂νF,C(p, x).

Thus, the above argument proves the inclusion

D̂∗S(p, x)(x∗) ⊆ {p∗ ∈ P∗ | (p∗,−x∗) ∈ cone ∂̂νF,C(p, x))}.
For proving the reverse inclusion it suffices to observe that for every κ > 0 it holds

κνF,C(q, z) ≤ ι((q, z); graphS), ∀(q, z) ∈ P× X,
which, by known properties of the Fréchet subdifferential, implies

κ∂̂νF,C(p, x) ⊆ ∂̂ι(·; graphS)(p, x) = N̂(graphS; (p, x)),
thereby completing the proof. □
Remark 4.14. Whenever F is, in particular, C-concave in P × X, function νF,C
turns out to be convex in P × X. Indeed, for every (p1, x1), (p2, x2) ∈ P × X and
t ∈ [0, 1], by virtue of the relations recalled in Remark 2.4(i) and (ii), it holds

νF,C(t(p1, x1) + (1− t)(p2, x2)) = exc(F (t(p1, x1) + (1− t)(p2, x2)), C)

≤ exc(tF (t(p1, x1) + (1− t)F (p2, x2) + C,C)

= exc(tF (p1, x1) + (1− t)F (p2, x2), C)

≤ texc(F (p1, x1), C) + (1− t)exc(F (p2, x2), C)

= tνF,C(p1, x1) + (1− t)νF,C(p2, x2).

Thus, in such an event the Fréchet subdifferential in formula (4.11) can be replaced
with the subdifferential in the sense of convex analysis.

5. Conclusions

The findings exposed in Section 3 and 4 provide some elements for a first-order
analysis of multifunctions implicitly defined by parameterized set-valued inclusions.
These elements are formulated in the language of modern variational analysis,
speaking of Lipschitzian properties and generalized derivatives. The methodology
employed for the main achievements is based on an error bound estimate, which
describes the metric behaviour of the solution mapping near points of its graph,
under proper infinitesimal conditions. Such an approach leaves open some technical
questions that could be matter for a future deepening of the present research line.
Among them, the following ones are to be mentioned:

1. Several results presented in Section 4 invoke the condition σH(p̄, x̄) > 0. It
would be useful to work out this condition in relation to specific forms taken
by the outer prederivative (e.g. fans and, in particular, those fans generated
by bundles of linear operators).

2. A general assumption on the set-valued inclusions considered in Section 4 is
that intC 6= ∅ (remember the caveat in Remark 2.6). The author is aware
of the fact that this condition might be severe in the context of infinite-
dimensional spaces. It would be helpful therefore to devise surrogates of the
condition (2.16), which allow one to avoid involving the topological interior
of C.
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3. In order to complete the analysis of D̂∗S(p, x) with a representation in terms

of problem data, it would be proper to find how to express ∂̂νF,C(p, x) via
the coderivative of F .

As a final remark, it should be added that an impact evaluation of the main achieve-
ments on the treatment of robust optimization problems would deserve a specifically
devoted analysis analysis.
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