
Locality-aware Deployment of Application Microservices
for Multi-Domain Fog Computing⋆

Francescomaria Faticantia,b, Marco Savic, Francesco De Pellegrinid, Domenico Siracusaa

aFondazione Bruno Kessler, Via Sommarive, 18, Povo, Trento, 38123, Italy
bINRIA, 2004 route des Lucioles, BP 93, Sophia Antipolis, 06902, France

cUniversity of Milano-Bicocca, Department of Informatics, Systems and Communication, Viale Sarca, 336, Milano, 20125, Italy
dUniversity of Avignon, Laboratoire d’Informatique d’Avignon, Université d’Avignon, Avignon, 84140, France

Abstract

In fog computing customers’ microservices may demand access to connected objects, data sources and computing resources outside
the domain of their fog provider In practice, the locality of connected objects renders mandatory a multi-domain approach in order
to broaden the scope of resources available to a single-domain fog provider. We consider a scenario where assets from other
domains can be leased across a federation of cloud-fog infrastructures. In this context, a fog provider aims to minimize the quantity
of external resources to be rented to satisfy the applications’ demands while meeting their requirements. We first introduce a general
framework for the deployment of applications across multiple domains owned by multiple cloud-fog providers. Hence, the resource
allocation problem is formulated in the form of an integer linear program. We provide a novel heuristic method that explores the
resource assignment space in a breadth-first fashion to ensure that locality constraints are met. Extensive numerical results evaluate
deployment costs and feasibility of the proposed solution demonstrating that it outperforms the standard approaches adopted in the
literature.

Keywords: Fog Computing, Microservices, Federation, Resources Allocation, Virtual Network Embedding, Locality Constraints

1. Introduction

Fog computing is an innovative paradigm conceived to
bridge the gap between cloud and IoT domains, ensuring the
elaboration of data, when needed, at the network’s edge, i.e.,
close to where it is produced [2]. This paradigm brings many
benefits such as service latency reduction [3], privacy enhance-
ment [4] and bandwidth savings [5]. However, it relies on the
adoption of well-designed application architectures to leverage
concepts and functionalities of cloud computing for the best
users’ experience.

In fact, in the last decade the design and development
of cloud-native applications has evolved towards new archi-
tectural paradigms, including the adoption of microservice-
oriented architectures [6, 7]. A microservice-oriented applica-
tion is designed as a set of inter-related loosely-coupled mod-
ules/components, namely, the microservices. Here we use the
terms “microservice" and “module" interchangeably. Each ap-
plication microservice performs specific computations on input
data and forwards obtained results to other modules for addi-
tional processing. One of the great advantages of such an ap-
proach is that each module can be containerized independently

⋆This work has received funding from the EU H2020 R&I Programme un-
der Grant Agreement no. 815141 (DECENTER) and EU Horizon Europe R&I
Programme under Grant Agreement no. 101070473 (FLUIDOS). The work
of F. De Pellegrini has been partially supported by the French National Re-
search Agency (ANR) within the framework of the PARFAIT project (ANR-21-
CE25-0013). A preliminary version of this paper has been presented at COINS
2020 [1].

from each other. Finally, this architecture can implement the
same intended functionalities of a traditional monolithic appli-
cation, but attains a much higher degree of scalability, reali-
bility, flexibility and even higher privacy guarantees [8]. As fog
computing relies on computational resources that are geograph-
ically dispersed, the microservice-oriented architecture appears
indeed the most natural choice for the design and development
of fog-native applications. In this way, any fog application can
be split into basic components to be executed each at the edge or
in the cloud, depending on the requirements of the application
and of its constituting components.

The evolution of fog computing has gained momentum in the
last few years, when some fog-like solutions have been com-
mercialized [9][10]. However, all existing fog computing plat-
forms have been designed to work within a single administra-
tive domain. Hence, they require exclusive ownership of re-
sources spanning from cloud to things. This, unfortunately, is
hardly suitable for the deployment of complex fog-native ap-
plications, mainly due to the wide geographical diffusion and
heterogeneity of fog computing resources, including their own-
ership. In fact, fog-native applications come – by their own na-
ture – with some hard-constraining locality requirements. It is
worth noting that loose locality requirements do exist in cloud
computing, both for delay/performance reasons and for national
legislative aspects related to citizens’ data ownership. How-
ever, while in cloud computing locality promotes the coverage
of large regional sites, in fog computing locality is dictated by
the specific geographical location where some processing task

Preprint submitted to Computer Communications February 14, 2023

must be executed. This in turn imposes a fine-grained set of
spatial constraints. As a matter of example, an application may
need to keep a specific module in charge of processing sensitive
data in a given location at the edge, e.g., a video stream moni-
toring people moving within a private area, administrated by a
specific fog provider (i.e., owner of fog resources). This indeed
enhances the privacy level of the application since data are not
to be moved. In addition, the same application may require to
integrate additional data which can only be captured by a spe-
cific peculiar resource at the edge (e.g., a camera covering a
critical angle of vision), and whose access is offered by another
specific fog provider.

This paper contributes to the research discussion on how to
define a multi-domain federated fog ecosystem: fog providers
can stipulate contracts among them to rent additional resources
– which would not be accessible otherwise – and ensure smooth
execution of their customers’ applications. Previous works
[11][12] have already advocated the technical feasibility of such
approach by means of an interface to a resource and/or a plat-
form. In this work we provide a different angle by considering
the perspective of a fog provider and ask the question: which re-
sources should I rent to ensure that the requirements posed by
a given set of applications with locality needs – that I have to
deploy – are met in the federated fog while minimising external
resource usage?

In this context, fog providers are assumed to rely on a re-
source brokerage platform by which they can reserve the po-
tential rentable resources owned by other providers. Such
resources are identified using matchmaking mechanism [13]
based on application modules’ locality needs and, possibly, on
other requirements of non-functional type. Given such a set
of resources and self-owned resources, the objective is to de-
termine an application deployment that minimises the resource
rental cost.

Formally the federated fog application deployment problem
is formulated by means of integer linear programming (ILP).
The goal is to allocate the needed federated fog resources while
satisfying any application’s requirement and using self-owned
resources as much as possible. The deployment of applications
is defined as a map that associates applications’ microservices
and their exchanged network traffic flows to the available fog
resources. The general problem of finding an optimal such map
corresponds to an instance of the virtual network embedding
(VNE) problem, which is known NP-hard [14][15].

To the best of the authors’ knowledge, the literature on fog
computing has not studied so far the problem of specializing
VNE-like solutions to federated fog systems. In this context,
the microservice structure of fog computing applications re-
quires at the same time to comply with locality constraints on
the placement of micro service modules and possibly lease re-
sources not yet covered in house. To this aim, we propose
a scalable heuristic algorithm to solve the application deploy-
ment problem by prioritizing modules with locality needs. It
adopts a region-based, topological sorting of applications to be
deployed and applies a Breadth-First Search approach. The ra-
tionale is that, since fog resources consumed by modules with
locality constraints are precious, they should not be consumed

in advance by modules not locality-constrained, a shortcoming
which occurs with standard VNE heuristics based on iterative
application placement [14].

We validate our solution with respect to the optimal deploy-
ment and two state-of-the-art approaches, one based on Depth-
First Search and the other on Breadth-First Search (BFS) ac-
cording to applications’ topological sort [1]. This permits to
consider the role of locality constraints – in terms of deploy-
ment cost and feasibility percentage – while retaining flexibility
in the allocation of non locally-constrained microservices. Ex-
perimental results show that our proposal outperforms existing
approaches especially under multiple locality constraints, lead-
ing to deployment costs and feasibility rates much closer to the
optimum.

The rest of this paper is organized as follows. The next sec-
tion describes the reference scenario and the system model. The
reference resources allocation problem is reported in Sec. 4.
Sec. 5 introduces the algorithmic solution, whereas its perfor-
mance evaluation is detailed in Sec. 6. Related works are re-
ported in Sec. 2 and a closing section ends the paper.

2. Related work

In this section we recall the related work with respect to ser-
vice (or application) deployment in federated cloud and to vir-
tual network embedding.

2.1. Service deployment in federated cloud
Service deployment mechanisms have been widely studied

in the literature related to cloud federation [16][17]. Various
dynamic and adaptive algorithms for resource allocation have
been proposed. For instance, a distributed and adaptive ap-
proach for service placement on a heterogeneous cloud federa-
tion is presented in [18]. In [19] a multi-objective optimisation
problem is formulated for resource allocation while addressing
variations in applications’ behaviour. Although these works de-
scribe crucial problems for an appropriate applications’ deploy-
ment in a cloud federation environment, in that context locality
constraints coming from inherent needs of IoT applications are
not taken into account as applications’ requirements. However,
these constraints are the ones that mostly distinguish a feder-
ated fog from a federated cloud ecosystem, besides a higher
resources heterogeneity. Conversely, our approach accounts ex-
plicitly for locality constraints when selecting resources for the
deployment of fog applications. Furthermore, all the aforemen-
tioned works consider a monolithic structure for applications,
whereas a microservice-oriented architecture represents a more
promising paradigm for the design of future-proof fog-native
applications [20].

This new architecture introduces new dimensions when re-
source allocation is performed for applications designed using
the microservice paradigm [21]. Indeed, once all the microser-
vices of a given application have been mapped to specific nodes
of the infrastructure, a communication path between all these
nodes must be ensured for the application to work properly.
As said, most of the existing works considering resource al-
location problems for the deployment of applications do not

consider such a structure for the applications, and do not con-
sider placement and communication issues jointly. In our work
we consider microservice-oriented applications that should be
deployed on a distributed and heterogeneous (in terms of re-
sources) fog computing infrastructure with locality constraints.
This represents a key difference with respect to the federated
cloud since the generated data comes from a specific geograph-
ical locations. Traditional use cases of this sort are: i) video-
analytics applications typically consisting of a pipeline of com-
putational modules that process video streams coming from
mobile or fixed video-cameras [22]; ii) Federated Learning ap-
plications where some training modules should be executed lo-
cally to guarantee data-privacy requirements [23]; iii) industrial
applications owned by companies that do not want to share their
data presenting some application modules that should not be ex-
ecuted outside of the companies’ domains [24]. The placement
problem of computational modules of such applications mostly
results to be NP-hard given the heterogeneity of both the com-
putational requirements and the available resources.

In [25], one of the few works dealing with a placement strat-
egy for microservice-oriented IoT applications is presented.
The work considers a graph-based structure for applications
that have to be deployed on a hierarchical fog infrastructure.
The main differences with respect to our work are (i) the set
of applications to be deployed and (ii) the type of infrastruc-
ture. For the former, a single application type is considered,
whilst, in our case, a batch of applications is always deployed.
Regarding the latter, we consider a federation of fog domains,
while [25] considers a simple hierarchical infrastructure. To the
best of the authors’ knowledge, our work is the first consider-
ing the problem of application’s deployment in a federated fog
environment, where a cost for resource rental is applied for re-
sources located outside of the owned domain. We believe that
this scenario is the most plausible for future developments of
fog environments, given the heterogeneity and exiguity of com-
putational and networking resources ad the edge.

2.2. Virtual Network Embedding
Several works in the literature considered a microservice-

oriented and modelled applications as Directed Acyclic Graphs
(DAGs) [26][27]. With this kind of structure, the application
deployment can be assimilated to a Virtual Network Embed-
ding problem, which is NP-hard. Furthermore, it has been
proven that VNE-like problems result hard to be approximated
even with locality constraints [28]. Hence, several heuris-
tic [29][30][31], and metaheuristic [32][33] methods have been
proposed in the literature, especially with respect to the relevant
problem of Virtual Network Function (VNF) placement [14]
and for the deployment of requests of a single application (or
VNF) at a time. Indeed, the most common procedure to solve
these problems is to greedily deploy one VNF at a time. How-
ever, when dealing with locality constraints, the deployment
should be performed considering the whole batch of applica-
tions at once. In this context, we proved that a Breadth-First
Search (BFS) visit driven by the applications’ region-based par-
titioning significantly reduces the deployment costs and ensures
better feasibility percentages with respect to existing solutions.

𝐵,𝐷

𝐶𝑝𝑟𝑜𝑐,𝑚𝑒𝑚,𝑠𝑡𝑜𝑟

3
4

1

2

2

1

3 4

𝑐𝑝𝑟𝑜𝑐,𝑚𝑒𝑚,𝑠𝑡𝑜𝑟

𝑐𝑝𝑟𝑜𝑐

𝐶𝑝𝑟𝑜𝑐

𝐶𝑝𝑟𝑜𝑐,𝑚𝑒𝑚,𝑠𝑡𝑜𝑟
𝐶𝑝𝑟𝑜𝑐,𝑚𝑒𝑚,𝑠𝑡𝑜𝑟Cloud region

Fog
region

Swarm of
things

Thing
(camera)

Main fog provider

Microservice

Data flow

Main domain
Domain

Domain

D
o

m
a

in
D

o
m

a
in

Fog provider

Fog provider

Fog provider

Fog provider

Application

Application deployment

Application provider

Figure 1: Multi-domain federated fog computing: an application deployment

When the locality constraint for each fog application is to have
their first microservice deployed on a well-defined fog region,
a BFS visit for resources allocation proves indeed more per-
forming than standard VNE approaches [1]. In this work we
consider the general case when the applications’ deployment
includes the possibility of multiple locality constraints per ap-
plication in any of the possible fog regions. In such a general
scenario, this placement algorithm outperforms standard VNE
approaches and the previously-defined BFS approach.

3. System Model

3.1. Scenario and involved stakeholders
The high-level scenario considered in this work is depicted

in Figure 1. We envision two main stakeholders:
• Application provider: it develops microservice-oriented
application, used by its customer(s) to execute some specific
tasks. A reference example to this respect may be an applica-
tion monitoring the vehicular access to a restricted traffic area.
The customer, e.g., a municipality, needs an application to per-
form the following chain of tasks: access a camera covering
the said area (task 1), capture plates’ number images for the
vehicles entering the area (task 2), convert the plate number
image into a plate number text (task 3), store the plate num-
ber into a database (task 4) and match it with authorized plate
numbers (task 5). An application of this kind suits well the
microservice-oriented architecture since each of the above tasks
can run on a different microservice module. Furthermore, plac-
ing the video stream computation (task 2) close to the camera
improves privacy and drastically reduces the application band-
width consumption.
• Fog provider: it runs the fog infrastructure able to host

microservice-oriented applications. The fog infrastructure may
be geographically distributed when it spans both cloud and edge

infrastructures. Or, it may be limited to a specific geographical
area when it comprises only an edge infrastructure. The fog
infrastructure (i) provides computational, memory and storage
capacity and (ii) permits to access things present on a target
area and owned by the fog provider, if any (e.g., IoT sensors or
video cameras). In the rest of the discussion we call fog domain
or, shortly, domain, any infrastructure that is owned by a fog
provider.

As introduced before, in the scenario we study we take the
viewpoint of a fog provider – from now on called main fog
provider. Her objective is to deploy different applications on
its fog infrastructure, called main domain. However, depend-
ing on the application demands, the fog provider in some cases
may not be able to meet the applications’ requirements based
on its own fog infrastructure alone. This can be due to resource
scarcity within the main domain (e.g., not enough processing
capacity is available to deploy all the applications) or – a very
specific feature of fog computing paradigm – because of local-
ity constraints, which may be of two types:
• Geographical: an application requires some storage or pro-
cessing in a specific geographical location, e.g. for privacy rea-
sons. This is typically related to the elaboration of data gathered
by specific sensors. A customary example is video streaming
capture and elaboration from a camera covering a specific area
but owned by another fog provider.
• Functional: the main fog provider cannot secure a spe-
cific set of resources required by an application either because
they are placed in a different domain or because the available
resources are not sufficient for the application execution. For
instance, an application may require a set of GPUs for fast pro-
cessing, but the set of GPUs available to the main fog provider
may satisfy such demand only partially.

In this work we assume that the main fog provider is part of
a multi-domain federated fog computing ecosystem. She can
hence rely on a federated infrastructure in order to fulfill the
applications’ requirements, including locality and otherwise ex-
ceeding own capacity (see Fig. 1).

3.2. Management and orchestration architecture
We now provide some hints on how a complex multi-domain

federated fog computing ecosystem as the one shown in Fig. 1
could be managed. Our vision adheres to the vision described
in [12], whose simplified management and orchestration archi-
tecture is shown in Fig. 2.

Any fog provider implements some local and distributed Or-
chestration & Resource Exchange logic to automatically (i)
orchestrate services/resources for applications to be deployed
and (ii) rent/lend some resources from/to other providers, so
that they can be directly managed by the buyer. Resources
available for rental are published on a distributed ledger (e.g.
blockchain), called Resource Exchange Broker (REB).

In addition, fog providers implement some Resource Selec-
tion functionalities, which are in charge of (i) selecting poten-
tial resources to be acquired (e.g. those that roughly match ge-
ographical and/or functional locality constraints) and (ii) finally
choosing what resources to acquire while minimizing acquisi-
tion costs. Sub-functionality (i) can be guaranteed by a match-

Orchestration &
Resource Exchange

Resource Selection

Orchestration &
Resource ExchangeResource acquisition

Main Fog Provider
(Buyer of resources)

Fog Providers
(Sellers of resources)

Infrastructure Infrastructure

Resource
Exchange

Broker
Resource Selection

Application

Application Provider

Application
Deployment

1
2 3

4

Figure 2: Management and orchestration architecture [12]

making algorithm operating on all the resources published on
the REB, which is not subject of further study in this paper. In-
stead, our proposed resource allocation algorithms (see Sec. 5)
are designed to implement sub-functionality (ii).

Figure 2 also reports the expected workflow: (1) fog
providers publish resources on the REB, (2) an application de-
ployment is requested by the application provider to the main
fog provider, (3) the main fog provider reads the REB to record
all the potential resources that can be acquired, (4) upon selec-
tion of adequate resources, the main fog provider stipulates the
required smart contracts and acquires them. More details on
the workflow and on how it can be technically guaranteed can
be found in [12], while implications from a business perspective
deserve further studies.

In the following, we introduce the model for (i) the multi-
domain federated fog computing infrastructure and (ii) the fog
applications.

3.3. Multi-domain federated fog infrastructure

An overall example of the reference fog infrastructure is re-
ported in Figure 1. It is formed by multiple geographically
spread fog or cloud regions which belong to different fog do-
mains, including the main one. We identify with the term “do-
main" a set of fog or cloud regions belonging to the same owner.
The core difference between cloud and fog regions lies in their
processing, memory and storage capacities. Internally, each re-
gion encompasses several hosts. An host represents the atomic
unit to deploy a microservice. Within each region, our assump-
tion is that hosts are interconnected via high-performance links
so that latency effects can be neglected and communication ca-
pacity is never a bottleneck. Conversely, different regions (ei-
ther within the same domain or belonging to different domains
of the federation) are interconnected by means of best-effort
network connections.

Overall, the multi-domain infrastructure is modelled by a
weighted graph GI = (VI , EI). In particular, VI is the set of
regions and the set of links EI ⊆ VI × VI . The nodes weights
defined by weight function w : VI → R+ represent the cost
to deploy a microservice in a specific region of the infrastruc-
ture. The set of domains is defined as I = {I1, . . . , ID}, where
Id ⊆ VI ,∀d ∈ [1,D],

⋃D
d=1 Id = VI and Id ∩ Id′ = ∅,∀d, d′ ∈

[1,D] with d , d′. When we refer to nodes and edges/links
composing the infrastructure we call them physical nodes and

physical edges/links. Each physical link (u, v) ∈ EI is charac-
terized by the pair (∆u,v, Bu,v), that is its latency and bandwidth,
respectively.

3.4. Microservice-oriented fog applications

We defineA as the set of applications to be deployed onto the
infrastructure: it is the input to the virtual network embedding
problem formulated in Sec. 4. Each application A ∈ A is rep-
resented by a weighted DAG GA = (VA, EA). Set VA is the set
of microservices (or components, or modules) composing the
application, i.e., virtual nodes. Also, EA represents the set of
microservices dependencies, i.e., the virtual edges/links. Each
directed edge (uA, vA) of an application A is characterised by
(i) the maximum throughput on that link, λA(uA, vA) and (ii) the
maximum tolerated delay on the same link, δA(uA, vA). Each
node vA of an application A has some computational require-
ments in terms of processing, memory and storage, cr

vA
, where

r ∈ {proc,mem, stor}.
In addition, each application comes with a set of locality

constraints that represent the regions where some microser-
vices must be deployed, e.g. because data from specific de-
vices/sensors belonging to that regions must be acquired or be-
cause some peculiar local resources need to be consumed. This
is modelled by introducing a set LA ⊆ VA for each application
A ∈ A. Such a set contains all the microservices that need to
acquire data from a given device (geographical locality) or to
use peculiar resources (functional locality) from a given region:
hence, they must be placed in the specified region. Function
rA : LA → VI specifies for each node in LA the region candidate
for its deployment.

4. Problem Formulation

This sections reports and describes the ILP formulation of
the resource allocation problem under locality constraints.

Decision variables. We employ two decision variables:
1) Binary variable xA,vA

v,i , which assumes value 1 if module vA ∈

VA of application A ∈ A is assigned to host i ∈ S v of node
v ∈ VI and is zero otherwise.
2) Binary variable y(uA,vA)

p , which assumes value 1 if virtual link
(uA, vA) is mapped to path p and is zero otherwise.

Objective Function. We assume that the main fog provider
owns a tagged subset of the infrastructure nodes. Hence, we
tackle the minimization of the total deployment cost in order
to satisfy the application requests issued to the main provider.
The cost of deploying a virtual node onto a physical node v of
the fog infrastructure is represented by weight w. The cost of
such deployment is assumed larger when it is performed onto
a node owned by other fog providers, because their resources
have to be rented. A weight function is thus defined per physical
node, namely w : VI → R+. Finally, we can write the objective
function as: ∑

A∈A

∑
vA∈VA

∑
v∈VI

∑
i∈S v

w(v) xA,vA
v,i , (1)

Recall that xA,vA
v,i is one if microservice vA of application A has

been placed on server i of the region v, and it is zero otherwise.

Table 1: Main notation.
Symbol Meaning
GI = (VI , EI) Infrastructure network graph: VI physical

nodes (regions), EI physical edges (net-
work connections)

A Set of applications to be deployed on GI

GA = (VA, EA) Graph for application A ∈ A: VA virtual
nodes (modules) and EA are virtual edges
(data flows)

LA ⊆ VA Subset of virtual nodes to be deployed on a
specific physical node of the infrastructure

rA : LA → VI Maps virtual node vA to a given physical
node (locality constraint)

cr
vA

Resource requirements of virtual node
vA ∈ VA, with r ∈ {proc,mem, stor}

λA(uA, vA) Max. throughput on edge (uA, vA) ∈ EA

δA(uA, vA) Max. tolerated delay on edge (uA, vA) ∈
EA

S v Set of available hosts in physical node v ∈
VI

Cr
v,i Resource capacity of the i-th host in physi-

cal node v ∈ VI , with r ∈ {proc,mem, stor}
∆u,v Latency on physical link (u, v) ∈ EI

Bu,v Capacity of physical link (u, v) ∈ EI

w(v) Cost of physical node v ∈ VI

P Set of computed paths p between any cou-
ple of physical nodes

Pu,v ⊆ P Set of computed paths between v ∈ VI and
u ∈ VI

sp, tp First and last node of path p ∈ P

Constraints. The first set of constraints are integrality con-
straints in the form:∑

v∈VI

∑
i∈S v

xA,vA
v,i = 1, ∀A ∈ A,∀vA ∈ VA. (2)

They describe the fact that all application modules must be de-
ployed exactly once.

Second, we account the for limited host capacity with the
following constraints:∑

A∈A

∑
vA∈VA

cres
vA

xA,vA
v,i ≤ Cr

v,i (3)

where in (3) it holds v ∈ VI , i ∈ S v, and resource r ∈
{proc, mem, stor}.

Third, we consider the constraints for the capacity of virtual
and physical links. A first set of constraints tie together alloca-
tion variables for nodes and virtual links:∑

p∈Pu,v

y(uA,vA)
p ≤

∑
i∈S u

xA,uA
u,i , (4)

∑
p∈Pu,v

y(uA,vA)
p ≤

∑
j∈S v

xA,vA
v, j , (5)∑

p∈Pu,v

y(uA,vA)
p ≥

∑
i∈S u

xA,uA
u,i +

∑
j∈S v

xA,vA
v, j − 1, (6)

where (u, v) ∈ V2
I , A ∈ A, and virtual link (uA, vA) ∈ EA.

Constraints (4), (5) and (6) grant that there is a unique physi-
cal path implementing a virtual link, i.e., connecting two virtual
nodes.

The following are constraints on the bandwidth capacity for
all physical links (u, v) ∈ EI :∑

A∈A

∑
(uA,vA)∈EA

∑
p∈P:(u,v)∈p

λA(uA, vA) y(uA,vA)
p ≤ Bu,v, (7)

and the applications’ delay constraints, namely:

y(uA,vA)
p

∑
(u,v)∈p

∆u,v ≤ δA(uA, vA), (8)

where A ∈ A, (uA, vA) ∈ EA, and p ∈ P.
Last, but not least we impose locality constraints forcing a

target subset of application modules on specific regions to com-
ply either to geographical or functional constraints:∑

i∈S rA (vA)

xA,vA
rA(vA),i = 1, ∀A ∈ A,∀vA ∈ LA. (9)

5. Heuristic Algorithms

The Virtual Network Embedding (VNE) problem formulated
in Section 4 is a well-known NP-hard problem. For this reason,
it is important to look for efficient algorithms specialized for the
considered scenario, whose application deployment solutions
ensure a low deployment cost while guaranteeing acceptable
computational time.

The general VNE problem has been deeply studied in the
literature related to Software-Defined Networking and, given
its NP-hardness, several heuristic solutions have been pro-
posed [29]. Here we present the general idea adopted by most
of the state-of-the-art heuristic solutions, which is based on a
Depth-First-Search (DFS) exploration of the search space for
applications deployment. Starting from this general approach
we then propose a solution that is specifically tailored to the
requirements of our problem, where locality constraints play
a fundamental role, which is based instead on a Breadth-First
Search (BFS) method. The BFS-based proposal described in
this section, which we call iBFS (improved BFS), is an en-
hanced version of the BFS algorithm described in [1] (sim-
ply called BFS) and solves its main shortcomings. The reader
should refer to [1] for details on how our previous BFS algo-
rithm works.

5.1. Existing Approach: Depth-First Search

Several heuristic methods for VNE take a sorted lists of the
deployment requests as input and return a map between each
request and a subset of hosts and edges of the infrastructure.
We consider an adaptation of the general approach presented
in [34] as our main reference algorithm related to the DFS-
based method.

For any application belonging to the input batch the follow-
ing three steps are executed:

1. Topological sorting of the application graph: since the ap-
plication graph is a DAG, there exists at least one topolog-
ical order of its nodes, which can be obtained by perform-
ing a visit of the graph.

2. Virtual node mapping: for each application node a physi-
cal host is selected from a set of possible placements.

3. Virtual link mapping: for each application edge a physical
path between the hosts where the vertices of the virtual
edge have been mapped in the previous step is found.

Given a DAG, a topological sort of its nodes ensures that
for each couple of vertices uA, vA ∈ VA, if (uA, vA) ∈ EA then
uA precedes vA in the topological sorting. In this way, the node
mapping procedure is performed following the order defined by
the topological sorting. Given an application graph, the node
mapping establishes, for each module of the application, an
admissible set of regions where to deploy the module. If the
admissible set is not empty, a single region is selected for the
deployment according to a given priority function. In this case,
the procedure selects the region v ∈ VI that maximises the fol-
lowing formula:

resCPU (v)

 ∑u|(u,v)∈EI

resBW (u, v) +
∑

u|(v,u)∈EI

resBW (v, u)

 , (10)

where resBW (u, v) and resCPU(v) represent the residual band-
width of the physical link (u, v) and the overall residual CPU
capacity in region v, respectively [34]. If it happens that the set
of admissible regions is empty for at least one module of the ap-
plication, it means that such an application cannot be deployed.
Conversely, if any module of the application is mapped to an in-
frastructure’s region, then the procedure continues and the link
mapping procedure is performed. According to this step, each
application edge is mapped to the least congested path connect-
ing the two regions where the vertices of the edge have been
mapped in the previous step. The selected path must satisfy
both bandwidth and latency requirements of the application’s
virtual edge. If all the virtual edges of the applications have
been mapped to physical paths, then the map of the application
onto the infrastructure is completed. This procedure is executed
for all the applications in the batch.

5.2. Our Proposal: Improved Breadth-First Search Approach

The procedure described above deploys one application at a
time. The main idea of our novel proposed approach is instead
to deploy the batch of applications in a breadth-first fashion.
Indeed, at each deployment iteration we consider all the appli-
cations: a subset of modules of each application is selected, as
determined by a region-based sorting (and partitioning) of the
application’s graph, which considers the regions towards which
locality constraints are set. Every time any subset of the appli-
cation’s modules is mapped to a set of hosts in the considered
region, it is popped up from the stack of the region-based sorted
modules. In this manner, applications’ locality constraints can
be better matched. In fact, a depth-first greedy procedure tends
to quickly saturate all the resources of a regions with low de-
ployment cost for the deployment of some applications, with-
out considering that other applications, still waiting for their

a)

b)

Figure 3: a) DFS vs. BFS [1] approaches after the topological sorting step; b)
iBFS approach after region-based sorting.

deployment, may have a hard locality constraint on that region.
This typically makes the deployment of the whole batch unfea-
sible, as we will better show in Sec. 6.

Unlike the solution proposed in [1], here we propose to ini-
tially partition each application on the basis of its locality con-
straints. As seen in the experimental section, this is key to re-
duce the number of infeasible application instances, i.e., those
which cannot satisfy locality constraints. The BFS approach
proposed in [1], in fact, explores each application following
only its topological sorting. As for a depth-first search ap-
proach, this may lead to situations where the resources of a re-
gion are saturated preventing the deployment of other modules
whose locality constraints reside on that region. Prioritizing
those constraints in the partitioning phase ensures that they are
satisfied if there are enough resources left on the target regions.

Our proposed algorithm consists of three main steps:

1. Sorting of the batch of applications: all the application are
sorted based on their total bandwidth consumption.

2. Partitioning of each application graph: each application
is partitioned based on the locality constraints defined on
each microservice of that application. This step defines the
region-based sorting of applications.

3. Virtual node and link mapping: by iterating over all the
applications in a breadth-first manner, this step explores
all of them jointly and level by level. At each iteration, all
nodes’ subsets on top of the applications’ stacks (as spec-
ified by the region-based sorting of step 2) are popped up
and a node mapping is performed, for each node in the sub-
set, following the order established in step 2. Each module
is mapped to a host of the infrastructure, and link mapping
is performed together with node mapping.

Figure 3a) shows a high-level view on how basic DFS and BFS
approaches work [1]. Both rely on a topological sorting of ap-
plications’ graphs, and they differ on how the node mapping is
performed through the different iterations. Figure 3b) shows in-
stead how iBFS works. The main differences with BFS rely on

both initial applications partitioning and on applications’ mod-
ules deployment. In iBFS each application is partitioned with
respect to locality constraints and all the sets of the partition are
sorted according to the indexes of the regions towards which
the locality constraints are defined. A last set of the partition
includes all the modules of the application that have not local-
ity constraints. For simplicity, Fig. 3b) shows a case where any
module of any application is subject to a locality constraint.
On the nodes mapping side, unlike the previous BFS version,
iBFS can deploy more than one module, for each application,
in each iteration. Indeed, the new algorithm deploys all the vir-
tual nodes belonging to the set on top of the application’s stack
obtained by the initial partitioning procedure, which all have a
locality constraint set towards the same region.

More in detail, the virtual node mapping (step 3) selects a set
of admissible regions accounting for the requirements and the
locality constraints of each application’s module. If a locality
constraint exists for a module, only one region is admissible.
Once the set is defined, the algorithm greedily selects the re-
gions leading to the lowest deployment cost. If many deploy-
ment options have the same cost, the algorithm selects the de-
ployment option that presents the smaller relative increment in
nodes’ resource occupation (in terms of CPU, memory, storage
and bandwidth). Finally, for link mapping, each time an appli-
cation node vA is mapped to a region R, the algorithm extrapo-
lates the list of all the regions assigned to the already-deployed
neighbours of vA and selects the least-congested paths between
them and R.

5.2.1. Algorithm description and pseudocode
The pseudocode of the algorithm is reported in Algorithm 1.

iBFS Deployment first sorts all the applications by their total
bandwidth requirement computed as the sum of the throughput
requirements on each applications’ virtual link (line 2).

Afterwards, for each application A in the defined order, the
algorithm performs a region-based sorting. First, it partitions
A according to the locality constraints defined on the modules.
Each set of the partition is associated to a specific region u ∈ VI .
In this manner, the set associated to region u contains all the
application’s modules that have a locality constraint specified
on region u. The cardinality of such a partition is |VI | + 1, i.e.,
the total number of regions plus the set of all modules without
locality constraints. Then, the partition of each application is
sorted according to increasing regions’ indexes, including the
subset of modules with no constraints as the last element of
the sorting. Each partition of application A is represented as a
stack, SA[A], where the first set of the sorting is on the top of
the stack (line 6).

The algorithm then puts all the nodes with a constraint on
the first region in the queue QA (lines 7-8). In this manner, all
the regions are explored level-by-level according to the regions’
indexes. The applications are visited in a breadth-first fashion
(line 9), i.e., at each level u, and for each application A, all the
nodes of A having a locality constraint in region u are deployed.
Once all the modules of all the applications for a given level are
deployed, the next level is considered. Then, until the queue is
not empty, the algorithm extracts the next set from the queue

Algorithm 1: iBFS Deployment
Input: GI = (VI , EI): graph of the infrastructure;A: set

of applications to be deployed on GI ; LA: set of
locality constraints for each A ∈ A

Output: Feasible deployment PA for each A ∈ A
1 BWA ← sort_by_BW(A);
2 QA ← ∅; // Empty queue
3 SA ← ∅; // List of stacks
4 PA ← ∅;
// Initialise QA

5 for A ∈ BWA do
6 SA[A]← region_based_sorting(A, LA);
7 CA ← SA[A].pop();
8 QA.enqueue(CA);

9 while QA , ∅ do
10 BA ← QA.dequeue();
11 for uA ∈ BA do
12 PA[A][uA]← node_mapping(GI , uA);
13 link_mapping(GI , PA, uA);

14 CA ← SA[A].pop();
15 QA.enqueue(CA);

16 return PA

(line 10) and it performs the node and link mapping procedures
for each node in the set (lines 12-13). Note that every time a set
is extracted from the queue, that set is at the top of one of the
stacks representing the region-based orders of the applications.
Once a deployment for an application set is performed, the next
set in the region-based sorting of the application is put in the
queue (lines 14-15).

Link mapping is performed, once an application node uA

is assigned to a region u, by selecting the admissible less-
congested path between the selected region u and all the regions
assigned to the already-deployed neighbours of uA.

5.2.2. Computational Complexity
The total computational complexity of Algorithm 1 is

O(
∑

A∈A |VA| (|VI |
2 log |VI |+ |EI ||VI |)) in the worst case, which is

polynomial in the input size. The complexity is dominated by
the node_mapping and link_mapping operations. Indeed, in
the former, for each module, the algorithm can explore each
region of the network in the worst case. For the latter, Di-
jkstra’s algorithm can be applied to obtain the shortest path
between the placement region of a module all its neighbour
modules in the application DAG. The resulting complexity is
O(|VI | log |VI |+ |EI ||VI |) for each iteration of the inner for loop
(lines 12-13).

6. Performance Evaluation

This section describes the set of numerical experiments per-
formed to validate the investigated algorithms on a multi-
domain federated infrastructure with locality constraints.

With our experiments we want to (i) prove the negative im-
pact of a Depth-First Search approach for the deployment of
applications on either the feasibility of the solution or on its
optimality; (ii) show the good trade-off between feasibility and
optimality as offered by the improved Breadth-First Search ap-
proach proposed in this paper. The feasibility is measured as the
percentage of the instances that admit a feasible solution, i.e.,
meet all the constraints of the optimisation problem described
in Section 4, over all the generated instances.

The iBFS approach is tested in three different cases. In the
first one we compare iBFS with the other strategies, including
the BFS approach proposed in [1]; for the sake of comparison,
we consider the scenario reported in the same paper, i.e., when
only one locality constraint is specified for the first module of
each application, which must be mandatorily placed in the main
domain. The scenario is called here Original Case.

In the second case each module of each application is subject
to a locality constraint with assigned probability p. We call this
Random Case. In this case, we highlight the shortcomings of
BFS that are solved by iBFS.

The last case specifies two locality constraints for each ap-
plication. The first constraint requires that the first module of
each application is deployed on a specific domain external to
the main one. The second constraint requires that the last mod-
ule of each application must be deployed on the main domain.
We call this Realistic Case, as the combination of these two lo-
cality constraints appears to be the expected configuration for
many application. For instance, a video analytics application
requires access to an external camera and the final processing
results are to be stored in the main domain.

6.1. Simulation settings

We describe how we have generated the test network topolo-
gies and the batch of applications to be deployed. We also re-
port information on the experimental adopted tools.

6.1.1. Network topology
The fog infrastructure is modelled as a directed network

graph with |VI | ∈ {3, 6, 10, 15, 20} regions and D = 3 domains.
Concerning the main fog domain, we include a main cloud re-
gion that is connected to fog regions by means of a star topology
where links between the cloud region and the fog regions are
generated with probability pr = 1. For each random topology
realisation, links among different fog regions are added accord-
ing to an Erdős-Rényi random graph model, where the probabil-
ity of having a link between two region is pr = 0.5. his models
the common scenario where a generic fog region can always
have access to the cloud meanwhile the direct connection to a
different fog regions may not be guaranteed. The randomness
on the generation of edges tries to simulate the uncertainty and
the instability of connection typical of a fog scenario. This re-
flects a wide range of scenarios going from the urban one where
the fog regions are easily reachable from any location to a more
geographical distributed scenario where fog region are miles
away far from each other. The resulting topology for the main
fog domain is similar to that shown in Fig. 1. Eventually, each

Table 2: Applications’ microservices requirements [15].
Requirement Mean Value Range
CPU (ccpu

vA) 1250 MIPS [500, 2000] MIPS
Memory (cmem

vA
) 1.2 Gbytes [0.5, 2] Gbytes

Storage (cstor
vA

) 3.5 Gbytes [1, 8] Gbytes
Throughput (λA) 3 Mbps [1, 5] Mbps
Delay (dA) 262.5 ms [25, 500] ms

link in the obtained topology is assigned to an average band-
width B = 60 Mbps and an average delay ∆ = 10 ms [15].

We defined three main classes of available hosts, in each re-
gion, based on the resources they are equipped with. CPU re-
sources are measured in terms of Million Instructions Per Sec-
ond (MIPS). The classes are called low (CPU: 5000 MIPS,
memory: 2 GB, storage: 60 GB), medium (CPU: 15000 MIPS,
memory: 8 GB, storage: 80 GB) and high (CPU: 44000 MIPS,
memory: 16 GB, storage: 120 GB). The main cloud region has
instead infinite resources. In order to assign computational re-
sources to each region, the aggregated demand of the batch of
applications to be deployed (in terms of CPU, memory and stor-
age) is equally split among all the available regions, excluding
the cloud region of the main provider. Then, the set of hosts
of each given region is generated by iteratively and randomly
choosing hosts of different types up to the point where the ag-
gregated demand fraction assigned to that region is satisfied.
This procedure ensures that the infrastructure has enough CPU,
memory and storage resources to deploy all the applications
in the fog regions, and that any infeasibility is only caused by
bandwidth scarcity, placement constraints and placement deci-
sions.

6.1.2. Application batch
For each experiment a batch of applications A is gener-

ated with |A| = {10, 15, 20, 25, 30}. The requirements of each
applications’ module in terms of CPU, storage, memory and
throughput are uniform independent random variables with dis-
tribution values for each microservice as reported in Table 2.
Each application is generated as a DAG by ordering all the
nodes and adding an edge only between predecessors and suc-
cessors in the defined order.

6.1.3. Tools
The most common fog simulators in the literature [35] do

not offer support for scenarios with multiple domains and fog
regions yet. Hence, for the evaluation of the proposed algo-
rithms, we developed a Python-based simulator from scratch.
For the resolution of the optimal placement ILP problem (OPT)
we used the Gurobi solver [36]. Each data point in the reported
graphs is the obtained average value over 30 randomized in-
stances, where the network infrastructure does not change while
the batch of applications and host distribution are randomly
generated as described above. All the points are reported with
their corresponding 95% confidence interval.

The optimisation problem is solved from the main fog
provider’s perspective. Her domain consists of one cloud and

a) b)

Figure 4: Feasibility-optimality tradeoff for the Original Case with VI = 3. a)
Feasibility percentage; b) Total deployment cost for each application.

one fog region while the other regions are distributed among
the remaining external providers. The cost for all the deploy-
ment outside the main domain is w = 1 while the cost for the
deployments inside the main domain is set to zero, i.e., w = 0.

6.2. Numerical results

6.2.1. Original Case
Figure 4 evaluates the optimality-feasibility tradeoff of the

different solutions in a scenario with VI = 3. In this case we
imposed the constraint where the first module of each appli-
cation must be deployed on main domain’s fog region. Fig-
ures 4a) and 4b) report on feasibility and optimality of the pro-
posed solution, namely iBFS, against two variants of the state-
of-the-art DFS approach and the initial BFS approach presented
in [1], namely BFS. DFS_SoA_NoCost does not take into ac-
count the deployment cost optimization, hence, its objective is
just the maximisation of the number of deployed applications.
Conversely, the objective of DFS_SoA_Cost is the minimisa-
tion of the deployment cost, as defined in (1). From Figure 4a)
it can be noticed the high feasibility of OPT, iBFS, BFS and
DFS_SoA_NoCost for all the sizes of the application’s batch.
Indeed, these approaches can deploy the complete batch of ap-
plications in all the randomised instances, reaching a feasibility
of 100%. With the term feasibility we indicate the percentage
of feasible instances among all the generated ones.

Furthermore, from Figure 4b) we can notice the closeness of
BFS and iBFS to the optimal solution (OPT). On the other hand,
although a good feasibility percentage, DFS_SoA_NoCost
presents a high deployment cost. Conversely, DFS_SoA_Cost
presents a low deployment cost, but its feasibility percentage
drops dramatically with respect to DFS_SoA_NoCost. This is
reasonable as the DFS approach is greedy by its inherent na-
ture. Indeed, by combining DFS with cost minimization for
resources allocation, the regions in the main domain with low-
est cost are prioritized to host the applications’ modules. In this
way, lower cost resources are saturated soon, thus precluding
the possibility to satisfy the locality constraints for the appli-
cations that have not been deployed yet. The same rationale
explains the higher performance figures obtained with a BFS
microservice placement: instead of performing the full place-
ment of an application at each step – with all its microservices,
both BFS and iBFS consider the deployment of a few modules
of each application at each iteration. Thus feasibility percent-

a) b)

Figure 5: Bandwidth and CPU usage for the Original Case with VI = 3. a)
Percentage of bandwidth usage in the main and in external domains; b) CPU
usage in the main and in external domains.

ages improve, since this helps to meet locality constraints, and
yet it leads to a consistent reduction of the deployment cost.

To summarize, Figure 4 confirms that BFS-based solutions
can guarantee a better trade-off between optimality and feasi-
bility if compared to both DFS variants.

In Figure 5a) we evaluate the bandwidth consumed by the
proposed solutions inside and outside the main domain. Given
the greediness of DFS_SoA_Cost, which leads to a quick satu-
ration of low cost resources (i.e., the ones in the main domain),
its bandwidth consumption results almost constant and low in
both the main and external domains. On the other hand, OPT,
BFS and iBFS present a similar trend as the size of application
batch increases. The OPT tends to consume slightly more band-
width than iBFS and BFS on the link between the main cloud
and the main fog region since the optimal solution deploys more
applications in the main domain. The opposite happens with re-
spect to external domains, confirming that BFS-based solutions
tend to exploit the main domain slightly less than OPT. Finally,
DFS_SoA_NoCost presents a similar trend on both main and
external domains. This happens because eq. (10) is always
maximized, irrespective of main or external domains. The pre-
sented results confirm the same behaviour of our new improved
approach, iBFS, with respect to the original approach [1].

Figure 5b) reports on the CPU usage (in percentage) of all
the solutions inside (upper figure) and outside (lower figure)
the main domain as the batch size increases. As expected and
confirmed by Figure 4b), the CPU consumption of OPT is
slightly higher than the consumption of BFS and iBFS in the
main domain given the higher number of applications deployed
there. DFS_SoA_Cost, due to its greediness, presents higher
CPU consumption in the main domain (low cost resources)
and very low consumption in external domains. Conversely,
DFS_SoA_NoCost shows an opposite trend with an increasing
CPU usage in external domains as the applications’ batch size
increases. For the sake of conciseness, memory and storage
consumption are not reported in this section since they present
a similar behaviour as CPU usage.

Finally, in Table 3 we report on the average experienced ex-
ecution time for all the considered solutions. For the compu-
tation of optimal solutions, the solver has been stopped after 5
minutes if no final solution has been found in this time range.
Looking at the time of all the heuristic solutions, their scalabil-
ity is glaring with respect to OPT. Given the high infeasibility

Table 3: Execution time (sec) with increasing the number of applications
|A| OPT iBFS BFS DFS_SoA_NoCost DFS_SoA_Cost
10 3.58 0.03 0.03 0.02 0.02
15 26.90 0.06 0.05 0.05 0.03
20 40.30 0.08 0.07 0.07 0.03
25 60.72 0.10 0.09 0.09 0.03
30 79.10 0.13 0.13 0.12 0.04

a) b)

Figure 6: Comparison between iBFS and BFS in terms of feasibility with mul-
tiple locality constraints defined on applications’ modules (Random Case). a)
|VI | = 3 and p = 0.2; b) |VI | = 3 and p = 0.8.

rate of DFS_SoA_Cost, it presents a lower execution time as its
runs are stopped as soon as the algorithm finds the first applica-
tion that cannot be deployed, which is the condition that leads
to the infeasibility of the whole deployment. In our tests, all
heuristic methods possess linear time complexity for moderate
batch sizes.

6.2.2. Random Case
In the Original Case, iBFS and BFS lead to the same feasi-

bility and deployment cost. In order to highlight differences be-
tween these two approaches when multiple constraints are de-
fined on applications’ modules, we perform a comparison on an
infrastructure with |VI | = 3, while varying the probability p of
having a locality constraint for each module of each application.
If an application’s module presents a locality constraint, with
probability q = 0.5 the constraint will be the placement on the
fog region of the main domain. Figure 6 shows the difference in
terms of feasibility between the two approaches for two differ-
ent values of p: a) p = 0.2, b) p = 0.8. In both cases we can see
that for BFS the feasibility percentage similarly decreases as the
size of applications’ batch increases. This is due to the differ-
ent initial sorting of application modules with respect to iBFS.
Indeed, the BFS approach does not prioritize locality, i.e., it de-
ploys microservices based on the initial topological sorting of
applications. This can lead to an early saturation of a certain
region preventing that other locality constraints of other appli-
cations and on the same region are met. Conversely the iBFS
approach, with its initial region-based sorting and partitioning,
ensures that all the locality constraints are met.

After showing that iBFS outperform BFS, from now on we
only focus on iBFS and further evaluate the impact of local-
ity constraints on the applications’ deployment. We compare
iBFS with OPT and DFS_SoA while varying the probability
p ∈ {0.2, 0.5, 0.8} and q = 0.5. Figure 7 reports on the average
deployment cost, as the probability p increases, for two differ-

a) b)

Figure 7: Deployment cost while varying the probability of having a locality
constraint on each application’s module (Random Case). a) |VI | = 3 and |A| =
25; b) |VI | = 6 and |A| = 25.

a) b)

c) d)

Figure 8: Random Case with |VI | = 6 and p = 0.5. a) Feasibility percentage;
b) Average deployment cost for each application; c) Percentage of bandwidth
usage within the main domain and in external domains; d) CPU usage in the
main domain and in external domains.

ent infrastructure sizes: |VI | = 3 for Figure 7a), and |VI | = 6 for
Figure 7b). For |VI | = 3 there is a small difference between the
optimum, the DFS_SoA_Cost and the iBFS approaches. On the
other hand, for |VI | = 6 the difference between the approaches
becomes more relevant. In both figures iBFS is always close to
the optimal solution, especially when p is larger. Moreover, as
the size of the infrastructure increases, a greedy depth-first ap-
proach leads to higher costs, in case of DFS_SoA_NoCost, and
to higher infeasibility percentages, in case of DFS_SoA_Cost.
This confirms the iBFS effectiveness in exploring the best trade-
off between optimality and feasibility in the presence of locality
constraints.

Further, Figure 8 shows the comparison of the proposed solu-
tions with |VI | = 6 and p = 0.5. From Figure 8a) we can notice
the low feasibility of the DFS_SoA_Cost approach. Such a low
feasibility is due to the combination of the greediness of the al-
gorithm and the relevant number of locality constraints for each
application. Figure 8b) confirms the closeness of iBFS to the
optimal solution in terms of deployment cost. The apparently
good performance of DFS_SoA_Cost is due to its high infeasi-
bility. Reasonably, the DFS_SoA_NoCost presents a good level
of feasibility and higher deployment cost for its cost-agnostic

a) b)

c) d)

Figure 9: Realistic Case with |VI | = 6. a) Feasibility percentage; b) Average
deployment cost for each application; c) Percentage of bandwidth usage within
the main and in external domains; d) CPU usage in the main and in external
domains.

nature. Figure 8c) and Figure 8d) show the networking and
CPU resource consumption, respectively. Given their lower de-
ployment cost, the resource consumption for both the optimal
solution and iBFS is greater in the main domain than in ex-
ternal domains. Due to its greedy nature, also DFS_SoA_Cost
consumes more internal resources than external; conversely, for
DFS_SoA_NoCost we have not identified such a regular place-
ment pattern.

6.2.3. Realistic Case
To simulate a more realistic case, we evaluated our approach

imposing locality constraints only on the first and the last mod-
ule of each application. For the first module, the locality con-
straint is set on a randomly-selected fog region external to the
main domain. For the last module, the locality constraint is
imposed on the fog region of the main domain. Indeed, this
simulates the situation where an application needs for an ex-
ternal device, like a sensor or a specific camera, located in an
external domain, and the final results of the computing process
need to be stored locally in the main domain (e.g. to guarantee
privacy).

Figure 9 confirms, even in this case, the similar behaviour of
iBFS and the optimal solution in terms of feasibility, average
deployment cost, bandwidth and CPU utilisation. Such a Real-
istic Case highlights the greediness of a typical approach such
as DFS_SoA_Cost, which does not treat locality constraints
smartly. In particular, given the low bandwidth consumption,
it is apparent that DFS_SoA_Cost tends to saturate all the re-
sources of the fog region of the main domain by placing there
modules not subject to locality constraints. Thus, it attains low
feasibility figures because locality constraints set on the last
module of applications becomes soon bottleneck.

Finally, Figure 10 reports on the feasibility and the cost of
compared algorithms as the number of regions, i.e., |VI | in-
creases. In Figure 10 we do not report the optimal solution

a) b)

Figure 10: Realistic case with increasing number of regions. a) Feasibility
percentage; b) Average deployment cost for each application.

Table 4: Execution time (sec) with increasing number of regions with |A| = 25.

|VI | iBFS DFS_SoA_NoCost DFS_SoA_Cost
3 0.14 0.09 0.09
6 0.16 0.08 0.07
10 0.22 0.10 0.10
15 0.31 0.15 0.16
20 0.50 0.31 0.33

given the high execution time presented by the solver to com-
pute it. The comparison is performed in the real scenario where
all applications present one locality constraint on the first and
on the last module of their topological orders. iBFS achieves
100% of feasibility for all the sizes of the physical networks
and presents the lowest deployment cost as the number of re-
gions increases. Even when more resources are available with
a higher number of regions DFS_SoA_Cost has a low percent-
age of feasibility highlight the need to perform a breadth-first
search in the state space for the deployment of applications pre-
senting these particular locality constraints. The scalability of
the compared approaches is confirmed by Table 4.

7. Conclusions

This paper considered the problem of fog applications de-
ployment in a federated cloud-fog environment under locality
constraints. Solving the problem of initial resource selection
plays a fundamental role, and solutions should be tailored to the
reduction of deployment costs while satisfying all the applica-
tions’ requirement – including those related to locality – and ac-
commodating as many concurrent requests as possible. By con-
sidering a microservice paradigm for fog-native applications, a
Virtual Network Embedding problem has to be solved, which is
known to be NP-hard. Standard VNE heuristic solutions need
to explore the best trade-off between feasibility, cost-efficiency
and scalability. But, typically, they do not account for the spe-
cific locality requirements of fog computing applications. This
work presented a novel approach for the initial deployment of
a batch of fog-native applications based on a breadth-first visit
of all the applications’ constituting graphs. The proposed al-
gorithm was designed to prioritize the deployment of applica-
tions’ microservices with specific locality needs, to ensure that
they are guaranteed and precious resources are not saturated
by other unconstrained microservices. It was shown to pro-
vide a near-optimal performance and yet excellent feasibility

rate, outperforming both standard depth-first greedy heuristics
and a non-locality-aware breadth-first strategy. Future works
on the topic will be devoted to the design of service-exchanging
mechanisms between different domains, paving the way to new
deployment and orchestration strategies of applications in fog
computing.

References

[1] F. Faticanti, M. Savi, F. De Pellegrini, P. Kochovski, V. Stankovski, D. Sir-
acusa, Deployment of Application Microservices in Multi-Domain Fed-
erated Fog Environments, in: International Conference on Omni-layer
Intelligent Systems (COINS), 2020.

[2] A. V. Dastjerdi, R. Buyya, Fog Computing: Helping the Internet of Things
Realize Its Potential, IEEE Computer 49 (8) (2016) 112–116.

[3] A. Yousefpour, G. Ishigaki, J. P. Jue, Fog Computing: Towards Minimiz-
ing Delay in the Internet of Things, in: IEEE International Conference on
Edge Computing (EDGE), 2017.

[4] Y. Guan, J. Shao, G. Wei, M. Xie, Data Security and Privacy in Fog Com-
puting, IEEE Network 32 (5) (2018) 106–111.

[5] C. C. Byers, Architectural Imperatives for Fog Computing: Use cases,
Requirements, and Architectural Techniques for Fog-Enabled IoT Net-
works, IEEE Communications Mag. 55 (8) (2017) 14–20.

[6] I. Nadareishvili, R. Mitra, M. McLarty, et al., Microservice architecture:
aligning principles, practices, and culture, in: O’Reilly Media Inc., 2016.

[7] S. Pallewatta, V. Kostakos, R. Buyya, Microservices-based iot applica-
tions scheduling in edge and fog computing: A taxonomy and future di-
rections, arXiv preprint arXiv:2207.05399 (2022).

[8] Y. Gan, C. Delimitrou, The Architectural Implications of Cloud Microser-
vices, IEEE Computer Architecture Letters 17 (2) (2018) 155–158.

[9] AWS IoT Greengrass, https://aws.amazon.com/greengrass/.
[10] Azure IoT Edge, https://shorturl.at/egpEJ.
[11] E. Carlini, M. Coppola, P. Dazzi, et al., BASMATI: Cloud Brokerage

Across Borders for Mobile Users and Applications, in: Springer Ad-
vances in Service-Oriented and Cloud Computing Workshop, 2018.

[12] M. Savi, D. Santoro, K. Di Meo, et al., A Blockchain-based Brokerage
Platform for Fog Computing Resource Federation, in: Conference on In-
novation in Clouds, Internet and Networks (ICIN), 2020.

[13] X. Li, H. Ma, F. Zhou, X. Gui, Service Operator-Aware Trust Scheme
for Resource Matchmaking across Multiple Clouds, IEEE Transactions
on Parallel and Distributed Systems 26 (5) (2015) 1419–1429.

[14] X. Cheng, S. Su, Z. Zhang, et al., Virtual Network Embedding through
Topology-aware Node Ranking, ACM SIGCOMM Computer Communi-
cation Review 41 (2) (2011) 38–47.

[15] A. Brogi, S. Forti, A. Ibrahim, How to Best Deploy Your Fog Appli-
cations, Probably, in: IEEE International Conference on Fog and Edge
Computing (ICFEC), 2017.

[16] B. Rochwerger, D. Breitgand, E. Levy, et al., The Reservoir Model and
Architecture for Open Federated Cloud Computing, IBM Journal of Re-
search and Development 53 (4) (2009) 1–4.

[17] A. J. Ferrer, F. Hernandez, J. Tordsson, et al., OPTIMIS: A Holistic Ap-
proach to Cloud Service Provisioning, Elsevier Future Generation Com-
puter Systems 28 (1) (2012) 66–77.

[18] E. Carlini, M. Coppola, P. Dazzi, M. Mordacchini, et al., Self-optimising
Decentralised Service Placement in Heterogeneous Cloud Federation, in:
IEEE International Conference on Self-adaptive and Self-organizing Sys-
tems (SASO), 2016.

[19] R. G. Aryal, J. Altmann, Dynamic Application Deployment in Federa-
tions of Clouds and Edge Resources using a Multiobjective Optimiza-
tion AI Algorithm, in: IEEE International Conference on Fog and Mobile
Edge Computing (FMEC), 2018.

[20] A. Samanta, Y. Li, F. Esposito, Battle of microservices: Towards latency-
optimal heuristic scheduling for edge computing, in: 2019 IEEE Confer-
ence on Network Softwarization (NetSoft), IEEE, 2019, pp. 223–227.

[21] Q. Li, B. Li, P. Mercati, R. Illikkal, C. Tai, M. Kishinevsky, C. Kozyrakis,
Rambo: resource allocation for microservices using bayesian optimiza-
tion, IEEE Computer Architecture Letters 20 (1) (2021) 46–49.

[22] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, M. Philipose, Videoedge: Processing camera streams using hi-

erarchical clusters, in: 2018 IEEE/ACM Symposium on Edge Computing
(SEC), IEEE, 2018, pp. 115–131.

[23] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al.,
Advances and open problems in federated learning, Foundations and
Trends® in Machine Learning 14 (1–2) (2021) 1–210.

[24] N. Bugshan, I. Khalil, N. Moustafa, M. S. Rahman, Privacy-preserving
microservices in industrial internet of things driven smart applications,
IEEE Internet of Things Journal (2021).

[25] S. Pallewatta, V. Kostakos, R. Buyya, Microservices-based iot application
placement within heterogeneous and resource constrained fog computing
environments, in: Proceedings of the 12th IEEE/ACM International Con-
ference on Utility and Cloud Computing, 2019, pp. 71–81.

[26] R. Yu, V. T. Kilari, G. Xue, D. Yang, Load balancing for interdependent
iot microservices, in: IEEE INFOCOM 2019-IEEE Conference on Com-
puter Communications, IEEE, 2019, pp. 298–306.

[27] N. K. Giang, M. Blackstock, R. Lea, V. C. Leung, Developing iot ap-
plications in the fog: A distributed dataflow approach, in: 2015 5th In-
ternational Conference on the Internet of Things (IOT), IEEE, 2015, pp.
155–162.

[28] E. Amaldi, S. Coniglio, A. M. Koster, M. Tieves, On the computational
complexity of the virtual network embedding problem, Electronic Notes
in Discrete Mathematics 52 (2016) 213–220.

[29] H. Cao, H. Hu, Z. Qu, et al., Heuristic Solutions of Virtual Network Em-
bedding: A Survey, China Communications 15 (3) (2018) 186–219.

[30] J. Lischka, H. Karl, A virtual network mapping algorithm based on sub-
graph isomorphism detection, in: Proceedings of the 1st ACM workshop
on Virtualized infrastructure systems and architectures, 2009, pp. 81–88.

[31] N. M. K. Chowdhury, M. R. Rahman, R. Boutaba, Virtual network em-
bedding with coordinated node and link mapping, in: IEEE INFOCOM
2009, IEEE, 2009, pp. 783–791.

[32] I. Fajjari, N. Aitsaadi, G. Pujolle, H. Zimmermann, Vne-ac: Virtual net-
work embedding algorithm based on ant colony metaheuristic, in: 2011
IEEE international conference on communications (ICC), IEEE, 2011,
pp. 1–6.

[33] Z. Zhang, X. Cheng, S. Su, Y. Wang, K. Shuang, Y. Luo, A unified en-
hanced particle swarm optimization-based virtual network embedding al-
gorithm, International Journal of Communication Systems 26 (8) (2013)
1054–1073.

[34] M. Yu, Y. Yi, J. Rexford, et al., Rethinking Virtual Network Embedding:
Substrate Support for Path Splitting and Migration, ACM SIGCOMM
Computer Communication Review 38 (2) (2008) 17–29.

[35] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, et al., iFogSim: A Toolkit
for Modeling and Simulation of Resource Management Techniques in the
Internet of Things, Edge and Fog Computing Environments, Wiley Soft-
ware: Practice and Experience 47 (9) (2017) 1275–1296.

[36] Gurobi Optimization, LLC, Gurobi optimizer reference manual (2021).
URL http://www.gurobi.com

