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Chapter 1  

General Introduction 

 

1.1 Aging and the Immune System 

 

Humankind is living longer than ever. Even though this marks an 

important accomplishment for the medical and scientific 

communities worldwide, the increased aging population is to 

shortly become a historical challenge. What comes to test the 

scientific community now, is how to manage the predicted 2.1 

billion people that will live into their sixties and beyond by 2050 

(Figure 1.1.1) (WHO, 2022). The coronavirus disease of 2019 

(COVID-19) that caused the recent global pandemic has 

demonstrated that managing the elderly is already an international 

challenge (Lambert et al., 2020).  Thus, the World Health 

Organisation (WHO) and the United Nations (UN) have declared 

the current decade as the ‘The Decade of Healthy Aging’(United 

Nations, 2022a; WHO, 2022). Healthy aging symbolises the 

process of understanding functional changes with age, and 

consequently establish functional ability that will enable the 

wellbeing of the elderly.  

 

Aging, according to the WHO, is when at a biological level, there 

is molecular and cellular deterioration that happens over a long 

period of time (WHO, 2022). Ageing is a complicated process that 

embodies many molecular and cellular mechanisms in different 
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systems of the human body, including the immune system, the 

prime focus of this study.  

 

Figure 1.1.1: The graph shows the estimated projections of the world 

population over the age of 60. The probabilistic projections were 

calculated by conducting the Bayesian Hierarchical Model by using total 

fertility and life expectancy at birth and used areas where the population 

is 90,000 or more during the year of 2019. Displayed on the graph is the 

probable median, the 80% and 95% of the prediction intervals and the 

deterministic high and low variant (+/- 0.5 child). (United Nations, 

2022b) 

 

 

Gradual age-related deterioration of cellular mechanisms of the 

immune system has shown to correlate with the increased risk of 

developing malignant and non-malignant disorders (Goronzy and 

Weyand, 2013; Barbé-Tuana et al., 2020). Critical components of 

aging are functional and structural changes of the immune system 

that involve the decreased ability to fight infections and respond to 

vaccinations (Barbé-Tuana et al., 2020). Thus, if immunological 

changes with age can be identified, then we can find solutions to 



 20 

prevent diseases due to increased longevity and accordingly help 

predict aging.  

 

Age-related alterations of the immune system are referred to as 

“immunosenescence” and both the innate and adaptive arms of the 

immune system are affected, resulting to a decrease of 

immunocompetences. The main factors involving 

immunosenescence include persistent inflammation, decreased 

ability to fight infections or cancer, as well as the impaired ability 

to respond to newly invading antigens (Goronzy and Weyand, 

2013; Furman et al., 2019).  

 

The innate and adaptive immune systems aging process is a 

consequence of the malfunction of haematopoietic stem cells 

(HSCs), which are responsible for the production of both the 

myeloid and lymphoid lineages (Geiger, de Haan and Florian, 

2013). Undeniably, there is mounting evidence that immune 

systems age-related modifications begin at the very top of the 

haematopoietic hierarchy. HSC ageing, for example, has a direct 

impact on B cell lymphopoiesis, eliciting a decline in the 

formation of B cell precursors with age (Rossi, Jamieson and 

Weissman, 2008; Geiger, de Haan and Florian, 2013). Amongst 

the human haematopoietic system, aging is also linked with a loss 

of cellularity in the bone marrow (Pang et al., 2011; Mercier, Ragu 

and Scadden, 2012).  
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Other than the malfunction of HSC’s, a key trigger of 

immunosenescence in the T cell compartment of the adaptive 

immune response is the shrinkage of the thymus (Pawelec, 2018; 

Thomas, Wang and Su, 2020). Thymic involution begins at birth 

and continues at rapid rates until adolescence. The organ is mostly 

replenished with fatty tissue by adulthood, where the contribution 

to T cell generation decreases from 16% to 1% (Palmer, 2013). 

Age-related thymic involution is associated with a decrease in 

naive T cell production (Thomas, Wang and Su, 2020). This is 

likely to contribute to the decrease in T cell variety found in older 

people, as well as greater vulnerability to illnesses.  

 

1.1.1 Adaptive Immunity and Age  

 

The main adaptive immune cells are the T and B lymphocytes and 

they both operate in the presence of two commanding weapons:  

1. Antigen-recognizing lymphocyte populations (naïve 

lymphocytes) and, 

2. A Long-lived antigen-experienced population (memory 

lymphocytes).  

 

The first weapon enables a particular response to any prospective 

foreign antigen.  Naïve cells multiply and develop into effector 

cells in response to cognate antigen (Ag) encounters, the vast 

majority of which move to peripheral tissues and inflamed regions 

to aid in the elimination of infected targets. Following Ag 

clearance, around 95% of the effector cells die, whereas a tiny pool 
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of cells matures into long-lived memory cells (Kaech, Wherry and 

Ahmed, 2002). Memory lymphocytes ensure a more quick and 

robust response to previously encountered antigens.  

 

Despite the constant decline of naive lymphocytes and 

preservation or even increase of memory cells, the adaptive 

immune system ‘adapts’ to age-related changes and successfully 

defends the body against most infections for the whole adult life 

(Weng, 2006). 

 

T cells 

 

T cells are one of two primary types of lymphocytes belonging to 

the adaptive compartment of the immune system. T cells fully 

mature in the thymus and are distinctively recognised via their 

unique multi-chain T cell receptor/CD3 complex (TCR/CD3), 

which is crucial in antigen recognition, T cell activation and 

antigen specific immune response (Hwang et al., 2020; Shah et al., 

2021). T cell activation involves the binding of the TCR/CD3 

complex to the surface of antigen-presenting cells (APCs) by 

recognising major histocompatibility complexes (MHC) (Clark 

and Ledbetter, 1994).  

 

There are two types of T cells that acquire either a “killer” 

response or a “helper” response when encountering APCs (Hwang 

et al., 2020). T cells that express the CD8 receptor perform 

cytotoxic functions and can directly kill infected cells by inducing 

apoptotic effects, while CD4 expressing T cells release cytokines 
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which further activate or ‘help’ other cells of the immune system 

like memory B cells to eliminate infected cells (Clark and 

Ledbetter, 1994; Attanavanich and Kearney, 2004; Hwang et al., 

2020; Shah et al., 2021).  

 

However, the assessment and study of T lymphocyte biology has 

evolved beyond the idea that T cells can be divided into CD4+ and 

CD8+ subsets alone. The advancement of tools like flow 

cytometry allowed the discovery of novel markers that have since 

then reshaped T cell biology, highlighting T cell heterogeneity. 

Additionally, the implementation of new techniques monitoring 

cytokine production, enabled comprehensive linkages between T 

cell functional characteristics (Picker et al., 1995; Hamann et al., 

1997).  For example, C-C chemokine receptor 7 (CCR7) and has 

been used in combination with CD45RO to phenotypically define 

subsets of memory T cells established by their effector functions 

(Figure1.1.2) (Hamann et al., 1997; Sallusto et al., 1999; Mahnke 

et al., 2013a). In fact, it was identified that CD45RO+ CD8+ 

memory T cells expressing CD27, a member of the tumour 

necrosis factor (TNF) receptor superfamily, secreted both IL-2 and 

IFN-γ but did not acquire direct cytotoxic activity (Sallusto et al., 

1999). Therefore, due to the non-direct effects, cells expressing 

CD45RO were considered memory subsets. CD4+ and CD8+ 

memory T cells positive for CCR7 were found to produce IL-2, yet 

small levels of effector cytokines like IL-4, IL-5, and IFN-γ, while 

CCR7 negative T cells produce high levels of IL-4 and IL-5 

(CD4+ T cells only), and/or IFN-γ (both CD4+ and CD8+ T cells), 
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and contain perforin granules for employing cytotoxic effects. 

Therefore CCR7-, CD45RO+ cells are defined as an effector 

memory (EM) subsets (Sallusto et al., 1999; Mahnke et al., 

2013a). Additionally, CCR7 negative cells were named as effector 

memory cells due to their effector function ex vivo and their 

potential to circulate through the peripheral lymphoid tissues. On 

the contrary, CCR7+ memory cells were classified as central 

memory (CM) cells because of their potential to base themselves 

at secondary lymphoid tissues (Sallusto et al., 1999).  

 

Studies then showed that there was a true relationship amongst 

CM and EM cells, as CM were able to generate EM cells in vitro, 

yet EM were unable to convert into CM. This suggested that CM 

was a precursor of EM and thus another smaller subset was 

responsible for the regeneration of these subsets (Figure 1.1.2) 

(Lanzavecchia and Sallusto, 2002). Scientific investigations went 

on to identify a new subset of T cells that acquired stem cell-like 

features and thus named T stem cell memory (SCM) cells 

(Gattinoni et al., 2011; Lugli et al., 2013). TSCM were identified 

as mainly acquiring a T naïve cell phenotype, yet overexpressing 

CD95, a marker highly expressed in all memory cells. Genetic and 

phenotypic characterisation of this subset identified that CM cells 

differentiated after TSCM, while TSCM cells acquire genes that 

are associated to self-renewal (Gattinoni et al., 2011). When 

stimulated in vivo with anti-CD3/CD28, TSCM were able to 

initiate differentiation and create all memory subsets (CM and 
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EM) while they could also preserve their own phenotype 

(Gattinoni et al., 2011; Lugli et al., 2013).  

 

Since then, TSCM have marked an important target for treatment, 

especially for protocols targeting the enrichment of TSCM in 

chimeric antigen receptor (CAR) T-cell therapy against disease-

specific T Cell defects in cancer patients (Kasakovski, Xu and Li, 

2018; Arcangeli et al., 2020).TSCM mark as an important subset 

also in age-related studies of the adaptive immune response, as 

TSCM have heightened proliferation and differentiation 

capabilities that are associated with the increased ability of being 

able to preserve T cell homeostasis (Lugli et al., 2013).  

 

Recently, investigations were centred on TSCM subset in order to 

understand why T cell homeostasis and differentiation is corrupted 

under conditions of persistent antigenic stimulation, chronic viral 

infections, age related diseases and progressive malignancies. By 

conducting single-cell RNA sequencing, flow cytometry and 

epigenetic examinations, researchers found a progenitor, amongst 

CD8+ TSCM cells, that was mostly functional when programmed 

cell death protein 1 (PD1) and T cell immunoreceptor with Ig and 

ITIM domains (TIGIT) were not expressed on the cell surface. On 

the contrary, when PD1 and TIGIT were expressed, an exhausted 

like-lineage is mostly observed and thus a newly defined subset 

known as precursor exhausted T (TPEX) cells were discovered 

(Galletti et al., 2020).  
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PD1 and TIGIT are immune inhibitory receptors, both expressed 

on T cells. When PD1 binds to PD-L1 (its receptor found on basal 

tissue) signalling pathways are activated to prevent a T cell 

immune response. Some cancer cells have large amounts of PD-

L1, which allows them to conceal from an immune attack. 

Monoclonal antibodies that target either PD1 or PD-L1 can block 

this binding and boost the immune response against cancer cells. 

TIGIT works in a similar way, however it binds to two other 

ligands, CD155 and CD112, that are also expressed by 

tumorigenic tissue (Raphael et al., 2021; Shive et al., 2021; Banta 

et al., 2022).  

 

Thus far, age-related research on T cells has identified that there is 

a transfer from a naive to a memory or activated effector T cells 

phenotype with age, based on a heightened antigen exposure over 

one’s lifetime (Hu et al., 2020). Memory T cells are notorious for 

experiencing cellular expansion and activation, while they are also 

very active upon re-exposure to antigens. Due to these complex 

features, memory T cells are also hindered throughout the aging 

process due to persistent infections, like cytomegalovirus (CMV) 

or the Epsein Bar Virus (EBV) (Pita-Lopez et al., 2009; Martin-

Ruiz et al., 2020). This persistence of infections tends to promote 

T cell exhaustion, that is characterised by the lack of effector 

functions, diminished proliferative capacity, and an increased 

expression of inhibitory markers like PD1 and TIGIT.  
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Overall, the phenotypic profile of the T cell differentiation pattern 

with age and sex has still yet to be fully understood since emerging 

subpopulations have been defined. The definition of the cellular 

changes that occur in the immune system is an important goal for 

aging research, as this information has provided the rationale for 

many clinical trials to rejuvenate the aging immune system.  

 
Figure 1.1.2: The expression of CD45RO, CCR7, CD28, and CD95 

determines six major subsets of quiescent T cells. Plus or minus signs 

in red indicate the markers that change when T cells differentiate from 

one subset to another. Memory T cells loss or gain specific functions as 

they differentiate from SCM to CM, TM, EM, and finally TTE cells 

(Mahnke et al., 2013b). 
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B cells 

 

B cells are the only cells of the immune system able to produce 

and express immunoglobulins (Ig). These proteins acquire high 

levels of specificity and have two separate functions: one is to bind 

specifically to molecules from the pathogen and the other is to 

recruit other cells and molecules to destroy the pathogen once it is 

bound to it. These functions are structurally separated in the 

antibody molecule, one part of which specifically recognizes and 

binds to the antigen whereas the other engages different effector 

mechanisms. The antigen-binding region varies extensively among 

Ig and thus is known as the variable region (V region). The region 

of the antibody that engages the effector function of the immune 

system does not vary in the same way and is thus defined constant 

region (C region). It’s important to highlight that antibodies are 

structurally the secreted form of the B cell receptor (BCR), and 

they have identical structure to the BCR, except for a small portion 

of the C-terminus of the heavy-chain constant region. This 

exception is a hydrophobic membrane-anchoring sequence and in 

the antibody it is a hydrophilic sequence that allows secretion 

(Saper, 2009).  

 

Immunoglobulins are divided into five classifications (IgG, IgM, 

IgA, IgD, and IgE) (Owen A. Judith et al., 2013). According to 

their biological characteristics, distribution, target specificity, 

chemical composition, and functions, each Ig separately differs. 

Specifically, IgM and IgD are membrane bound immunoglobulins 

mainly found on naïve B cells, however, IgM is also identified on 
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immature B cells. IgM is known to fight the initial response to an 

antigen while the main function of IgD is still yet to be fully 

understood, however, it is primarily found on most B cell subsets. 

IgG is known as the most abundant immunoglobulin as it is found 

in the serum as non-membrane bound protein, however, IgG is 

also found on the membrane of memory B cells (Owen A. Judith et 

al., 2013). The second most abundant Ig is IgA, which is mostly 

associated with bacterial colonisation and is found in secondary 

lymphoid organs. The production of IgE from B cells is mainly 

associated to pathogenesis of allergic diseases (Schroeder and 

Cavacini, 2010; Owen A. Judith et al., 2013; Chi, Li and Qiu, 

2020).  

 

During B cell development, rearrangement of the Ig heavy chain 

occurs first, commencing with pre-pro B cells, the earliest B cell 

progenitors after the multipotent hematopoietic stem cells (HSCs).  

Subsequently, at the pro-B cell stage, CD20 (cluster of 

differentiate 20) starts to be expressed and then progressively 

increases in concentration until maturity in the bone marrow. 

Together with the activator co-receptor CD79a (Igα), CD20 

represents the most specific markers for B-lineage derivation. 

 

The Igα/β dimer and the recombined heavy chain associated to a 

surrogate light chain then form the pre-B cell receptor (pre-BCR), 

which is expressed on the cell surface. At this stage, the now 

called pre-B cells start to express CD19, under the control of the B 

cell master regulator known as the transcription factor paired box 
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gene 5 (PAX5) (Cobaleda et al., 2007; Medvedovic et al., 2011). 

The expression of PAX5 commences at the pre-pro-B cell stage 

and is preserved at a stable level throughout B-cell differentiation, 

being then downregulated during plasma cell terminal 

differentiation (Figure 1.1.3)(Holmes, Pridans and Nutt, 2008). 

PAX5 has also been associated to human B cell diseases, as 

chromosomal translocations of the gene trigger acute 

lymphoblastic leukaemia and non-Hodgkin lymphomas, 

interfering with the proper development of B cells (Gu et al., 

2019).  

 

Signalling through the pre-BCR drives intense proliferation and 

differentiation into the small pre-B cell stage. Quiescent small pre-

B cells then undergo rearrangements of the Ig light chain, allowing 

the production of a complete functional BCR with a unique 

specificity that is expressed as IgM on the surface of immature B 

cells. In a bid to prevent autoreactivity, immature B cells which 

encounter Ag capable of cross-linking their newly expressed BCRs 

are eliminated by a variety of mechanisms.  After production in the 

BM, immature surface IgM+ B cells migrate to the spleen, where 

they differentiate through distinct transitional B cell stages, before 

differentiating into long-lived mature follicular (FO) or marginal 

zone (MZ) B cells.  Thus, B cells experience both antigen-

dependent and independent phases of selection, which are tightly 

regulated through signalling events.  
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Figure: 1.1.3: The development of B-cells and its mast regulator 

paired box gene 5 (PAX5). A schematic diagram of the stages of B-cell 

development. The expression of PAX5 starts at the pre and pro B cell 

phases and remains constant throughout B cells expansion, before being 

silenced during plasma cell development. The upper part of the figure 

shows the main functions of PAX 5 thought B cell development. It is 

shown that the protein products of two PAX5-repressed genes, Flt3 and 

Notch1 (in blue), and one activated gene, CD19 (in red), are expressed 

on the cell surface. The manifestation of Flt3 and Notch is made possible 

by the post-translational inhibition of PAX5 in antigen exposed 

(activated) B cells. In plasma cells, PAX5 is transcriptionally silenced  

(Holmes, Pridans and Nutt, 2008). 

 

In normal circumstances mature B cells, also known as naïve B 

cells (CD19+, CD21+, CD27-), migrate to the peritoneal cavity or 

lymphoid follicles of secondary lymphoid organs where they 

confront foreign antigens (Hua and Hou, 2020; de Mol et al., 

2021). Once an antigen binds to the BCR, in combination with 

innate and costimulatory signals (among which CD19 and reactive 

oxygen species plays an important role, as explained also in 

paragraph 1.1.3), it contributes to triggering the MAPK, NF-κB, 

PI3K signalling pathways.  
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As a consequence, B cells present the antigenic protein on the 

surface as APCs using MHCs, and further differentiate into 

antibody-secreting plasma cells in the periphery, while long lived 

memory B cells also generate in response (CD19+, CD21+, 

CD27+) (Adler et al., 2017; Wieczorek et al., 2017; Hong et al., 

2018a).  

 

Plasma cells can thus develop either from naive marginal-zone B 

cells and follicular B cells, from activated germinal-centre B cells 

or from memory B cells. Which B-cell subsets  becomes 

terminally differentiated depends on the nature of the antigen, its 

dose and form, and the location of the encounter. 

 

Whatever their origin, all plasma cells undergo a dramatic 

transformation during differentiation: a prominent endoplasmic 

reticulum (ER) expansion, accompanied by an enlargement of the 

Golgi complex (Lewis et al, 1985; Rush et al, 1991; Shohat et al, 

1973; Wiest et al, 1990), which are necessary to accommodate the 

increase in Ig synthesis. This transformation is accomplished by 

the interplay between B lineage-specific transcriptional programs 

that control plasma cell differentiation and the unfolded protein 

response (UPR) (Todd, Lee and Glimcher, 2008; Todd et al., 

2009). Specifically, UPR is an adaptive reaction that reduces 

unfolded protein load within the endoplasmic reticulum to 

maintain cell viability and function (Grootjans et al., 2016). 

Transcription factor X box binding protein 1 (XBP1) mediates one 

branch of the unfolded protein response (UPR) whereby it controls 
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the transcription of UPR target genes involved in protein folding, 

like ER-associated degradation (ERAD), protein quality control 

and phospholipid synthesis (Hetz, 2012; Janssens, Pulendran and 

Lambrecht, 2014; Grootjans et al., 2016). An age-related decline 

in retinal function and neurodegeneration  has been identified in 

the absence of XBP1, yet little is known about XBP1 function in B 

cell subsets with age (McLaughlin et al., 2018) . Therefore, we 

included this transcription factor in our B cell assessment of age-

related changes.  

 

Age-related studies on B cell immunity has demonstrated that the 

peripheral B cell pool fills up with memory cells resulting in 

restricted variety in the B cell repertoire, causing lower 

vaccination efficacy, and rise in circulating autoreactive antibodies 

(de Mol et al., 2021). Studies have shown that with aging, pro–B 

cells remain intact while pre-B cells decrease in number with age 

(Bulati et al., 2011; Rodriguez-Zhurbenko et al., 2019). On the 

contrary, how the frequency of Immature B cells (CD10+) changes 

with age still remains to be fully understood. Gerontological 

studies have determined that mature B cells within the circulating 

blood of healthy donors can vary in abundance significantly, yet 

why this is the case still remains unanswered(Seita and Weissman, 

2010).  However studies have demonstrated an overall loss of 

naïve B cells (CD21+,CD27-) while there is a significant 

expansion of memory B cells (CD21+,CD27+)  and exhausted B 

cells, also known as age associated B cells (ABCs) or atypical B 

cells  (CD21-,CD27-)(Fogli et al., 2012; Rubtsova et al., 2015; 
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Corrente et al., 2022).  These ABCs have determent to alter the B 

cell immune response with age(Rubtsova et al., 2013, 2015).  

 

In relation to sex, ATAC-seq and RNA-seq data on healthy donors 

spanning all ages, found that the B cell specific genes (PAX5, 

CD79A) were modestly activated with age in females yet 

significantly inactivated in men (Márquez et al., 2020) . These 

findings indicate the presence of sex-differences within the 

immune response with age. However, further investigations are 

required to define these findings, as similar studies on age 

immunomodulation tend to overlook the influence of gender. 

Overall, B cell assortment and plasticity marks as one of the most 

important attributes of the immune system, thus it is important to 

keep working on how aging alters their functional potential 

(Molnarfi et al., 2013; Hong et al., 2018b).  

 

The complexity of the adaptive immune system, its heterogeneity 

and constant growth of knowledge in science highlights the 

importance of follow up in age associated studies. It’s vital to go 

deep into immune heterogeneity (both adaptive and innate) and 

thus further unravel how the immune system is being affected with 

age to target healthy aging.  
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1.1.2 Innate Immunity and Age  

 

Innate immunity is the first defensive mechanism of the immune 

system in fighting against invading pathogens and foreign 

substances. In fact, innate immunosenescence plays an important 

role upon the health and well-being of the elderly population as 

well as the adaptive immune response. In the following study, 

other than the most abundant adaptive immune cell subsets (T and 

B lymphocytes) we also focus our attention on the most abundant 

innate immune cells, Natural Killer (NK) cells.  

 

NK cells 

 

NK cells encompass 10-15% of the human peripheral blood and 

are large granular cells capable of distinguishing and eradicating 

target cells (viral infected cells, cancers cells etc) (Hazeldine and 

Lord, 2013). Moreover, NK cells, mainly defined as CD3-, 

CD56+, secrete cytokines that attract other immune cell subsets to 

the site of infection or inflammation, such as interferon gamma 

(IFNγ) or tumour necrosis factor alpha (TNF-α). Specifically, 

IFNγ activates macrophages for phagocytosis and lysis, and TNFα 

acts to promote direct NK death receptor‐mediated cytotoxicity 

cytotoxocity. (Hazeldine and Lord, 2013; Michel et al., 2016) 

 

Two main subsets can be identified: CD56DIM and CD56BRIGHT 

(Cooper et al., 2001; Cooper, Fehniger and Caligiuri, 2001; 

Hazeldine and Lord, 2013).  CD56DIM NK cells are known as the 

cytotoxic subset, while CD56BRIGHT NK cells are mainly 

responsible for the secretion of cytokines.. NK-mediated 
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cytotoxicity acts through surface expression of Tumor Necrosis 

Factor-Related Apoptosis Inducing Ligand (TRAIL/TNFSF10) 

and Fas Ligand (FasL/TNFSF6), which engage and activate their 

respective receptors. This results in caspase activation, 

mitochondrial dysfunction, and consequently apoptosis of target 

cells (Prager and Watzl, 2019)  (Figure 1.1.4). CD16 is also a 

renown marker used to describe NK cells, and is mostly expressed 

on CD56DIM NK cells, as it is involved in antibody dependent cell 

cytotoxicity (ADCC) (Hazeldine and Lord, 2013) .  

 

There are a variety of different ligands expressed on both major 

NK cell subsets, that interact with the target cell to either induce 

inhibitory or activator functions (Le Garff-Tavernier et al., 2010). 

For example, NKG2D and natural cytotoxicity receptors (NCRs) 

like NKp46 and NKp30 are numbered among the primary 

activating ligands of NK cells (Bauer et al., 1999; Hazeldine and 

Lord, 2013). Specifically, NKG2D receptor on NK cells interacts 

with its ligand on target cells and induces the phosphorylation of 

tyrosine-based activation motif (ITAMs) via tyrosine kinases. This 

function encourages a signalling pathway that allows the release of 

perforins and granzymes through granule exocytosis or 

degranulation, guided by CD107A, a process that will then  

activate apoptosis within the target cell (Bauer et al., 1999). In fact 

perforin forms holes like pores within the cell membrane of the 

target cell, allowing granzyme and other perforin molecules to 

enter (Figure 1.1.4). Once inside the cytosol of the target cell, 

perforin induces endosomal lysis and encourages the release of 
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granzyme into the cytosol (Thiery et al., 2010). NK cell express 

five different granzyme types (A, B, H, K and M), but granzyme B 

has predominantly been the one to uphold scientific interest 

(Hazeldine and Lord, 2013).  Granzyme B has the potential to 

induce the activation of many caspases (3 and 7) which directly 

drive mitochondrial permeabilization and help the release of the 

pro-apoptotic protein cytochrome c into the target cells cytoplasm 

(Goping et al., 2003).  

 

 

Figure 1.1.4: NK cell related induction of apoptosis. (A) A simplified 

diagram demonstrating cytotoxicity via the targeted release of lytic 

granules like granzymes and perforin towards target cell. Granzymes 

enter the target cell by pores generated by perforin in the plasma 

membrane or by endocytosis and endosomes. Once granzymes enter the 

target cell they induce caspase activation, mitochondrial dysfunction 

and/or caspase‐independent apoptosis. (B) Death receptor‐mediated 

cytotoxicity is induced by surface expression of FasL or TRAIL, which 

activate their respective receptor on the target cell and consequently 

inducing apoptosis (Prager and Watzl, 2019).  
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In contrast, NKG2A and killer cell immunoglobulin-like receptors 

(KIRs) are NK inhibitory receptors (Lee et al., 1998). 

Respectively, these ligands also bind to tyrosine-based inhibitory 

motifs (ITIMs), which consequently encourage the deactivation of 

NK cells (Pegram et al., 2011).  Consequently, it has been 

determined that inhibitory NK receptors act as immune 

checkpoints controlling anti-tumour NK cell function by the 

recognition of specific ligands on tumour cells, thus aiding tumour 

escape from NK cell cytotoxicity. Subsequently, inhibitory NK 

cell receptors have now been a target for immunotherapeutic 

studies (Sivori et al., 2020).  

 

CD56DIM NK cells themselves are heterogeneous cells which 

mature from an early stage with high CD94/NKG2A expression to 

later stages with less CD94/NKG2A expression and more CD57 

(Pegram et al., 2011; Hazeldine, Hampson and Lord, 2012). High 

expression of CD94/NKG2A is primarily for recognising self-

major histocompatibility complex (MHC) class I molecules and 

initiate inhibitory signals through  ITIMs (Bauer et al., 1999).  

 

CD57 has been associated with a fully differentiated subset of NK 

cells, that marks as senescent cells. The CD57+ NK cell subset 

actually upsurges with age, and recent documentations suggest that 

its increase is also coupled with human cytomegalovirus (HCMV) 

chronic infections (Bigley et al., 2012; Hazeldine, Hampson and 

Lord, 2012; Brauning et al., 2022a). 
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An ample variety of age related studies assessing NK cells have 

identified an absolute increase in the number of NK cells in the 

peripheral blood, while the distribution of NK cell subsets remains 

arbitrary (Brauning et al., 2022b) . In some studies, however, age 

appears to have no significant effect on NK cell progenitors, thus 

no significant alterations are reported in the peripheral blood. 

While there is a strong debate within the field, many research 

studies conclude that NK cells significantly increase with age, 

where specifically there is a change amongst the 

CD56DIM/CD56BRIGHT circulating ratio (Hazeldine, Hampson and 

Lord, 2012). Numerous experimental research studies imply that 

the NK cell number and subpopulations vary with age, with an 

increase of the CD56DIM population and a reduction of the 

CD56BRIGHT NK cells (Hazeldine, Hampson and Lord, 2012; 

Brauning et al., 2022a, 2022b).  

 

Other than the distribution of the cell subsets, functional 

components of NK cell biology are also hindered with aging. 

Specifically several studies have reported that perforins protein 

expression declines with age, while others contradict this study, 

outlining no impaired perforin expression with age  (Mariani, 

1996; Almeida-Oliveira et al., 2011; Hazeldine, Hampson and 

Lord, 2012). These opposing studies stimulate our curiosity as to 

what truly are the age related functional changes that occur which 

instigate the altered functions of NK cell cytotoxicity. 
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1.1.3 Oxidative stress and Immunity 

 

It is now clear that immune related pathways are regulated by 

oxidative alterations (Forman and Torres, 2002; Franchina, Dostert 

and Brenner, 2018). Specifically, immune cell activation involves 

metabolic changes that go from high energy demand to a 

glycolytic one by using their mitochondrial respiratory mechanism 

and thus releasing adenosine triphosphate (ATP) and superoxide 

anions (reactive oxygen species – ROS) (Finkel and Holbrook, 

2000).   

 

One of the most important roles of ROS in the immune system is 

their response to pathogens during an acute inflammatory response 

via innate immunity, where they accumulate to perform what is 

known as the “respiratory burst”, that kills invading pathogens 

(Forman and Torres, 2002; Franchina, Dostert and Brenner, 2018; 

Nolfi-Donegan, Braganza and Shiva, 2020). When this occurs, the 

rapid loss of the respiratory mechanism and hyperpolarisation 

alters mitochondrial membrane potential and leads to the 

accumulation of mitochondrial superoxide’s. Therefore, redox 

homeostasis is crucial as the accumulation of oxygen metabolites 

can damage essential cellular components (Kuilman et al., 2010; 

Davalli et al., 2016a). Antioxidants are hence responsible for 

balancing correct redox levels to avoid host cell related damage. In 

particular, oxidoreductase enzymes have been demonstrated to be 

essential for normalizing immune cell signalling (Zuo et al., 2019; 

Nolfi-Donegan, Braganza and Shiva, 2020). 
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The over production of ROS via this process is referred to as 

oxidative stress, as this process is also characterised by the 

incapability of the cell to mount an effective antioxidant response. 

A dysregulation of this fine balance can stimulate and retain 

cellular senescence and the accumulation of high levels of ROS 

have been found to correlated with disease progression, 

inflammatory diseases and aging (Finkel and Holbrook, 2000; 

Davalli et al., 2016b; Zuo et al., 2019).  

 

ROS 

 

ROS  (commonly called free radicals) have unstable atoms that 

can damage cells. They are produced in response to mitochondrial 

oxidative metabolism and can also be generated in response to 

xenobiotics, cytokines, and bacterial invasion (Liu, Fiskum and 

Schubert, 2002; Zhao et al., 2019). Specifically, ROS are produced 

within the electron transport chain (ETC) in the mitochondria, 

where electrons are transferred to complex I by nicotinamide 

adenine dinucleotide (NADH) and then too complex II. Both 

complexes are found in the membrane of mitochondria. Following 

these steps electrons are transferred to complex III and IV by 

ubiquinone and cytochrome C and by the end of this process H2O2 

is produced by electrons transferred onto O2. This complicated 

transfer of electrons can result to the leakage of electrons, which 

result to the formation of partial reduced O2, which is also 

characterised as superoxide anion (O2
−) (Bertolotti et al., 2010, 

2013; Sies and Jones, 2020).  
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All cells have a mechanism that counterbalances excess ROS (like 

O2
−), called antioxidant response, which involves a variety of 

compounds that can neutralise ROS (Finkel and Holbrook, 2000). 

Antioxidants come in small molecular forms or in enzymatic form. 

For example, small molecules involve vitamins C, A, and E, uric 

acid or minerals like copper, zinc and magnesium. In the small 

molecule category L-γ-glutamyl-L-cysteinyl glycine (GSH) is also 

included. As a tripeptide of glutamic acid, cysteine, and glycine, 

GSH represents one of the most prevalent and important thiol 

buffers in the cell. The ratio of GSH (reduced) and its disulphide, 

GSSG (oxidized) contributes to the redox potential of the cell and 

thereby contributes to redox homeostasis (Nolfi-Donegan, 

Braganza and Shiva, 2020; Sies and Jones, 2020). On the contrary 

enzymatic antioxidants include superoxide dismutase (SOD), 

glutathione reductase (GR), and thioredoxin reductase. Once 

leaked O2
−  through the electron transport chain are present, O2

−  is 

converted into hydrogen peroxide (H2O2) via the enzymatic 

functions of SOD1. An electron and two protons are added to O2
−. 

At this point, reduce glutathione comes along and donates 

electrons that will allow glutathione peroxidase to produce H2O 

(Zhao et al., 2019; Sies and Jones, 2020).  

 

 The majority of the antioxidant enzymes are expressed and 

controlled by the transcription factor nuclear factor-E2-related 

factor (Nrf2) (Sies and Jones, 2020; Tavassolifar et al., 2020).  

Nrf2 is a redox-sensitive transcription factor that induces the 

transcription of some antioxidant enzymes, like glutathione-S-



 43 

transferase, glutamyl-cysteine ligase, heme oxygenase and phase II 

detoxifying enzymes (Owuor & Kong, 2002). Under non stressed 

conditions, the majority of Nrf2 resides in the cytoplasm and 

associates with a dimeric inhibitory protein, Kelch-like ECH-

associated protein-1 (Keap1) (Itoh et al, 1999); Keap1 interacts 

with the cullin-3 E3 ubiquitin ligase (Cul3) and serves as a 

platform for the ubiquitination and resultant proteasomal 

degradation of Nrf2. 

 

Redox homeostasis perturbations in the intracellular environment 

induce conformational changes in oxidized Keap1, so that Nrf2 is 

not sequestered to the cytoplasm anymore; anyway, for Nrf2 to be 

activated and migrate into the nucleus, a specific phosphorylation 

on a N-terminal Ser is needed. Once in the nucleus, Nrf2 dimerizes 

with members of another b-zip family and binds Antioxidant 

Responsive Elements (ARE) enhancers, activating ARE-dependent 

transcription of target genes, which serve mainly as antioxidants. 

ROS mark as targets in measuring cellular functionality in the 

immune system and mitochondria are one of the most important 

contributors to cellular ROS pools. In the current study, 

measurements of ROS related metabolites are assessed using a 

novel flow cytometry assay, that has been particularly designed for 

this study. 
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1.2 Flow Cytometry 
 

 

The etymology of flow cytometry describes its exact purpose. The 

word cytometry derives from the Greek words ‘Κύτος - kútos’, 

which means ‘receptacle’ or a hollow object thus defining a cell. 

On the other hand, ‘metry’ comes from the word ‘Mετρία - metria’ 

which means measure. Therefore, flow cytometry is the 

measurement of physical and/or chemical characteristics of single 

cells or particles that flow through a fluidic stream and are excited 

by a beam of light (Howard M. Shapiro, 2003).  

 

The technology of flow cytometry (FCM) emerged during the 

1960’s and 1970’s at Stanford University were Bonner, Sweet, 

Hulett and Herzenberg pioneered the first Fluorescence Activated 

Cell Sorter (FACS) instrument, while German researcher 

Wolfgang Göhde discovered the fluorescent based flow cytometer 

that would then go on to be commercialised (Bonner et al., 1972; 

Herzenberg et al., 2002) . Shortly came the commercialisation of 

monoclonal antibodies labelled with fluorescent dyes specialised 

for FCM that could tag proteins of interest, and since then flow 

cytometry has revolutionised research and diagnosis.  FCM offers 

many advantages over other laboratory techniques (Doerr, 2011). 

For example, FCM can measure many parameters at once and 

simultaneously for each individual cell that passes through the 

instrument. Therefore, this quality allows the differentiation of cell 

types or populations present within a heterogeneous sample and 

can offer instant quantitative measurements. Additionally, a high 
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number of cells can be analysed in seconds  where measuring rates 

can range from 103 to 107 events per second (depending on the 

model of the instrument) (Nigel P. Carter and Michael G. 

Ormerod, 2000; Givan Alice Longobardi, 2001; Howard M. 

Shapiro, 2003). Fast acquisition facilitates the generation of 

statistically significant data, while the ability to acquire high 

number of cells aids in the detection of rare cell subsets.   

  

The machine that conducts traditional flow cytometry is known as 

a flow cytometer and is made up of a 1) fluidic, 2) optics, and 3) 

electronic system (Howard M. Shapiro, 2003).  

 

 

1.2.1 The principles of Conventional Flow Cytometry  

 

The Fluidic System 

 

The fluidic system uses pressure that passes ready prepared 

suspended cells that are in a buffered salt-based solution through 

the flow cytometers nozzle. The pressurized fluidic system of a 

flow cytometer consists of liquid called sheath fluid, a buffer that 

is suitable for preserving the physiological state of the cells that 

pass through the machine to reach the lasers interrogation point 

(Nigel P. Carter and Michael G. Ormerod, 2000; Givan Alice 

Longobardi, 2001; McKinnon, 2018).  

 

The suspended cells that are in FACS tubes seal onto the O-ring 

and air is introduced to force the sample through the injection tube. 

Therefore the fluidic system is composed of two fluidic inlets that 
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feed the flow cell funnel: the sheath fluid inlet and the sample inlet 

(Figure 1.2.1). The funnel is comprised of a wider inlet that is 

designated for the sheath fluid and within it there is a smaller 

funnel for the sample. This allows the sample to be injected slowly 

(10-60 µl/min) into the central wilder sheath fluid stream ( 20 

km/h) (Veal et al., 2000; Cho et al., 2010). The combined sheath 

fluid and sample together with the pressure generated by the 

fluidic system move towards a narrow channel. Here the pressure, 

together with the narrowing shape of the machine’s nozzle allows 

the passage of the cells to be constricted enough to flow one by 

one and precisely be aligned. This process of hydrodynamic 

focusing allows the uniform alignment of the cells and allows 

them to be illuminated in single file when reaching the 

interrogation point and the light beams from the lasers. The fluid 

stream then is hit by a laser beam which construct the optical 

system of the flow cytometer (Nigel P. Carter and Michael G. 

Ormerod, 2000; Givan Alice Longobardi, 2001; Howard M. 

Shapiro, 2003). The fluidic system described above resembles the 

fluidic mechanisms of most flow cytometers with no sorting 

capabilities. Sorters on the other hand have a different shaped flow 

cell (quartz cuvette shape) that is perpendicular to the lasers.  

 

The fluidic system marks as an important one for flow cytometers 

as any malfunctions of the fluidics can affect the positioning of the 

cells with the laser beams resulting in inconsistent optical signals. 

For example, the presence of bubbles, or clogs within the fluid 

stream can change the pressure and thus yield falsified signals. The 



 47 

increased flow rate of the fluidics can also disturb the positioning 

of the cells with the laser beams (Givan Alice Longobardi, 2001). 

Specifically, when the flow rate is too high the stream widens, and 

this leads to more cells passing through the interrogation point. 

Consequently, this may lead to cells flowing too close to one 

another and thus passing in doublets through the laser 

beam(Howard M. Shapiro, 2003). These issues, however, can be 

identified and excluded when analysing the data (to be explained 

in Chapter 2).  

 

The Optical System 

 

Within the instrument, the optical system handles the illumination 

of lighting via lasers and the collection of the light refracted. The 

lasers which are part of the optical system are responsible for the 

production of powerful yet coherent light. In modern flow 

cytometers one can find diode or diode-pumped solid-state lasers 

(DPSS) which have many advantages, as they offer a compact 

setup, are efficient, and offer noble beam quality (Howard M. 

Shapiro, 2003; Telford, 2018). The laser diodes are driven by the 

voltage of the electric current that is pumped into a solid medium 

to generate light. The blue laser generating light at the wavelength 

of  488 nm is the most commonly used light source in flow 

cytometry. Yet, the red lasers (640 nm, Yellow/Green (561 nm), 

Violet laser (405 nm) and UV laser (355 nm) are also very 

prominent light sources (Nigel P. Carter and Michael G. Ormerod, 

2000; Givan Alice Longobardi, 2001; Howard M. Shapiro, 2003; 

Cho et al., 2010; Telford, 2018; Telford et al., 2019). Common 
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laser lines and their wavelengths used in flow cytometry are 

defined in Table 2.1 below.  

 

The laser beams that hit the cells one by one scattering light into 

two different directions: Forward and Side. The forward scattering 

of light (FSC) defines the size of the cell, while the side scattered 

light (SSC) that is refracted at a 90° angle defines the complexity 

and granularity of a cell(Shapiro and Perlmutter, 2001; Telford, 

2018). Yet the scatter of light is independent of the fluorescence. 

Fluorescence can be naturally emitted by a cell or particle, while 

there may also be one or many attached fluorescent probes or 

compounds excited simultaneously by the lasers.  

 

The optical filters then come into play, where their role is to 

separate the SSC from the fluorescent light and thus direct specific 

wavelengths to their designated photodetectors. The optical filters 

are defined by their transmissivity, for example (i) short-pass 

filters are responsible for transmitting light below a defined 

wavelength (ii) long-pass filters pass wavelengths that are longer 

(Nigel P. Carter and Michael G. Ormerod, 2000). These two types 

are known as dichroic filters which navigate the fluorescent signal 

to specific detectors. To do this the dichroic filters allow light 

through that has a short or long wavelength and reflect the 

remaining light with mirrors through a specific angle (right angle), 

splitting the lights wavelengths to reach the designated detector. 

Finally, the  (iii) bandpass filters, will only detect a small window 

of specific wavelengths of light. Specifically, a 450/50 bandpass 
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filter only allows fluorescent signals that have a wavelength of 450 

nm (+/- 25 nm) to pass through and measured by the detector. 

Therefore, bandpass filters are placed in front of the 

photodetectors to further limit the lights wavelength it registers to 

a distinct colour (Nigel P. Carter and Michael G. Ormerod, 2000). 

The number of detectors per instrument varies thus complex 

optical layouts are available  in flow cytometers. Figure 1.2.1 

demonstrates a scheme of the principles of flow cytometry as 

described above.  

 

The Electronic System 

 

The emitted scattered light is measured by the collection optics 

composed of the photomultiplier tubes (PMTs) and photodiodes. 

As the electron exits the detector, it moves in the form of an 

electric current entering the electronic system of the flow 

cytometer, which goes to the amplifier (amp)(Nigel P. Carter and 

Michael G. Ormerod, 2000). The amp is responsible for 

amplifying the signal to form a voltage pulse that then goes on to 

be further transformed by the analogue-to-digital converter (ACD) 

into a digit. This digit is now in the form of a .fcs file and can be 

transferred to the computer, where it can be analysed by distinct 

flow cytometry software (Nigel P. Carter and Michael G. 

Ormerod, 2000; Snow, 2004).  
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Figure 1.2.1: A schematic diagram of the main principles of flow 

cytometry. Zooming into a BD LSR Fortessa X20 the Fluidic system is 

composed of two fluidic inlets that feed the flow cell funnel. One inlet is 

called the sheath fluid inlet and the other is the sample inlet. The funnel 

is made up of a wider funnel and within it is a smaller funnel for the 

sample. The combined sheath fluid and sample together with the fluidic 

pressure allow the cells to move towards a narrow channel in single file 

towards the excitation laser. Now optical system handles the illumination 

of lighting emitted via the lasers and the collection of the light refracted. 

The scatter light moves into two different directions: Forward and Side 

(FSC & SSC respectively). Now the optical filters separate the SSC from 

the fluorescent light and direct specific wavelengths to their designated 

detectors (FL1, FL2, FL3, FL4). The emitted scattered light is measured 

by the detectors composed of PMTs and photodiodes. The electron exits 

the detector and moves in electronic form to the amplifier (amp) that 
then goes on to be further transformed by the ACD and into a digit. This 

digit acquires now the form of a .fcs file is transferred to the computer 

where it can be analysed. 
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1.2.2 Immunophenotyping with Flow Cytometry 

 

Flow Cytometry has revolutionised the medical and scientific 

field. Since the discovery of flow cytometry, clinicians, especially 

haemato-oncologists and immunologists, routinely use the 

technology to define and classify haematological malignancies as 

well as assess treatment outcomes (Doerr, 2011; Cossarizza et al., 

2021; Robinson, 2022). The capability to characterise, quantify 

and recognize immune cells and their subsets has helped in the 

continues availability of new scientific information. Deep 

characterisation of cell subsets has also aided the identification of 

diverse disease variations via immunophenotyping (McKinnon, 

2018).  

 

Flow cytometry's ability to detect the presence or lack of cell-

surface markers is the foundation of immunophenotyping 

(Bleesing and Fleisher, 2001). Immunophenotyping is a type of 

flow cytometry testing where the technique involves the 

measurement of specific protein expression within a cell 

population in combination with specific antibodies with 

fluorescent compounds. Immunophenotyping with flow cytometry 

involves scattered light signals that pick up the fluorescent 

compounds of interest and report the presence or absence of a 

target cell protein (Cossarizza et al., 2021).  

 

With the advancement of flow cytometry and the ability to 

measure 20 to 30 colours and more simultaneously, it is possible to 

detect specific cell lineages of the immune system which permits 
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direct diagnosis for a variety of immunodeficiency disorders 

(Craig and Foon, 2008; Chen and Cherian, 2017; Dworzak et al., 

2018). Immunophenotyping by flow cytometry helped the 

elucidation of the impact of the SARS-CoV-2 during the recent 

COVID-19 pandemic, marking an important classification of the 

disease, while helping in the understanding of how the whole 

immune system is affected by the virus (Cossarizza et al., 2020; de 

Biasi et al., 2020; Lee et al., 2020). Creating an 

immunophenotyping profile of a disease is required to determine 

which therapies, if any, will benefit the patient. (Wojas-Krawczyk 

et al., 2019). Thus, immunophenotyping by flow cytometry marks 

as a useful technology to profile age related changes of the 

immune system, the principal aim of the following study.  
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1.3 Scope of Thesis  
 

The aim of the following thesis is to describe how to design and 

optimise state-of-the-art polychromatic flow cytometry panels and 

subsequently utilise them to reveal age-related changes and sexual 

dimorphism in the healthy human adaptive and innate immune 

responses. The objective of the designed panels are to dive deep 

into the heterogeneity of the most abundant immune cell 

compartments  (T, B and NK cells), and thus address the changes 

of these subsets with age and sex, potentially answering certain 

questions that still remain unresolved. To fulfil this aim, we 

perform a classical immune cell characterization, through a 

polychromatic flow cytometry-based investigation of cell surface 

molecules known as Clusters of differentiation (CD). However, 

analysing the expression levels of cell surface molecules alone 

offers only a partial picture of immune cell functionality. For this 

reason, we include markers that help us define also functional 

changes for each cell that could impact age related 

immunosenescence.  

 

It is now evident that oxidative alterations regulate many immune 

related pathways. Therefore, immunologists have been widely 

engaged in the metabolism of immune cells and how it may 

influence the immune response. In fact, immune cells activate due 

to the recognition of antigens or tissue damage where their 

metabolism changes from high energy demand using the 

mitochondrial respiratory mechanism to glycolytic releasing ATP. 
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Consequently, the rapid loss of the respiratory mechanism and 

hyperpolarisation alters mitochondrial membrane potential and 

leads to the accumulation of mitochondrial superoxide’s. In 

general mitochondria from senescent cells show a decreased 

mitochondrial membrane potential, increased proton leak and 

increased generation of ROS. Moreover, during aging, damaged 

mitochondria, that produce less ATP and more ROS accumulate. 

We thus aim at studying the link between these redox homeostasis 

alterations and immune cells functionality. Therefore we develop a 

novel polychromatic flow cytometry panel that can allow the 

measurement of redox related regulators throughout ageing 

immune cell subsets, combining ROS-specific dyes, antioxidant 

markers and lineage-specific surface molecules.  

 

Below we discuss the scope of the thesis following the introducing 

chapter:  

 

• In Chapter 2 we describe the intricate process of 

developing and standardise polychromatic flow cytometry 

panels. We explain the importance of each step from 

titration to standardisation.  

• In Chapter 3 we describe the importance of ROS in the 

immune system and how a novel staining protocol allows 

us to define greater the immune cell oxidative alterations. 

Redox related measurements have been traditionally 

investigated using conventional immunoblot assays and 

microscopy. Never before has a protocol been designed to 
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measure age related redox alterations using polychromatic 

flow cytometry within the heterogenous immune system.  

• In Chapter 4 we define age and sex related changes of the 

adaptive immune response using our newly designed 

polychromatic flow cytometry panels on T and B 

lymphocytes, while we also assess ROS related markers by 

utilising our novel panel. We discuss the main changes that 

we see amongst a cohort of 54 healthy participants and 

show the frequencies and MFI targets of different immune 

cell subsets and their functional markers and how they 

change with age and sex. 

• Chapter 5 includes high dimensional single cell analysis of 

flow cytometry data to address age related changes on the 

major cell type of the innate immune response - NK cells. 

After the development of a multiparametric polychromatic 

flow cytometry panel capable of simultaneously 

investigating 17 parameters on thousands of single cells, 

we assess the peripheral blood  of 45 healthy donors. 

UMAP analysis is performed followed by PhenoGraph 

analysis to assess such high dimensional single cell data.   

• Chapter 6 denotes concluding remarks for the whole thesis.  
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Chapter 2  

Polychromatic Flow Cytometry Panel 

Optimisation 

 

2.1 Introduction 

 

Assays for immunophenotyping established by flow cytometry 

have evolved to be more multiparametric and thus are able to 

simultaneously evaluate a variety of cellular parameters. This 

advancement of flow cytometry, however, comes with a thorough 

optimisation process before advancing to the main experimental 

assays. The optimisation of polychromatic flow cytometry (PFC) 

takes time, but is worth it as the process yields reliable antibody 

conjugate panels (Mahnke and Roederer, 2007; Mura et al., 2020).  

 

In order to successfully design and develop PFC panels, there are a 

number of crucial considerations and steps that must be taken into 

account, which will be explained in this chapter. These practices 

described have been applied for designing the PFC panels of this 

study, that are utilised to define age and sex related changes in the 

immune system.  
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2.2  Designing PFC panels  

2.2.1 Before Starting 

 

Before starting to design a PFC panel, it is fundamental to know 

the configuration of the flow cytometer accessible. The laser 

availability, filters present and detectors determine the flow 

cytometers configuration, and these components define how many 

colours can be detected simultaneously (Holmberg-Thyden et al., 

2021, Cossarizza et al., 2021). Additionally, it is important that the 

voltages’ detector has been optimized to define the minimally 

acceptable voltage that can give the optimal resolution for each 

detector (Cossarizza et al., 2021). In this study we use a fully 

equipped BD LSR Fortessa 20X, where its configuration is shown 

in table 2.1 below. 
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Table 2.1: Configuration of LSR Fortessa 20X 

 

 

2.2.2 Selection of Markers and Fluorochrome-conjugated 

antibodies 

 

The initial step in designing a PFC panel, is to consider the aims of 

the study, which define the markers needed to isolate the main 

populations of interests. This study aims to analyse T, B, NK and 

redox related markers thus there are antigens unique for 

identifying these subsets of interest.  Each marker was ranked by 

prominence as suggested by Mahnke and Roederer (2007), and 

segregated into three categories: 

 

Laser  

Name 

Laser 

Wavelength 

Bandpass 

Filter 

Parameter 

name 

Example of 

fluorochrome 

detected 

Blue 488nm N/A FSC Forward Scatter 

Blue 488nm 488/10 SSC Side Scatter 

Blue 488nm 530/30 B530 
FITC, Alexa 

Fluor488 

Blue 488nm 710/50 B710 PerCP-Cy5.5 

Red 640nm 670/30 R670 APC 

Red 640nm 730/45 R730 Alexa Fluor 700 

Red 640nm 780/60 R780 APC-H7, APC-Cy7 

Violet 405nm 450/50 V450 Brilliant Violet 421 

Violet 405nm 525/50 V525 Brilliant Violet 510 

Violet 405nm 610/20 V610 Brilliant Violet 605 

Violet 405nm 670/30 V670 Brilliant Violet 650 

Violet 405nm 710/50 V710 Brilliant Violet 711 

Violet 405nm 780/60 V780 Brilliant Violet 786 

UV 355nm 379/28 U379 Brilliant UV 395 

UV 355nm 450/50 U450 Live/Dead Blue 

UV 355nm 730/45 U730 Brilliant UV 737 

UV 355nm 800/40 U800 Brilliant UV 805 

Yellow/Green 561nm 586/15 G586 PE 

Yellow/Green 561nm 610/20 G610 PE-CF594 

Yellow/Green 561nm 780/60 G780 PE-Cy7 
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I. Lineage antigens that identify the populations of interest. 

Examples: CD3, CD4, CD8 (T cells) CD19 or CD20 (B cells) 

and CD56 (NK cells).  

II. Markers that define differentiation and provide a profounder 

characterization of major populations. Examples: CD45RO, 

CCR7, CD95 (T cell differentiation) CD21, CD27, IgD, IgG 

(B cells maturation), CD16, perforin (NK cells).  

III. Any antigens of interest whose expression level is unknown 

and needs to be assessed by PFC in specific subsets or 

conditions Examples: activation markers (HLA-DR), markers 

of functionality (Granzyme B) and transcription factors 

(XBP1, PAX5).  

 

Once the list of the markers is outlined and their level of priority is 

well-defined, markers are assigned to fluorochrome-conjugated 

antibodies on the basis of both the markers’ expression level and 

the fluorophores brightness. Precisely, antibodies specific for 

highly expressed antigens, which generally belong to the primary 

group, were matched with dim fluorophores, leaving bright 

fluorophores for antigens with low or unknown expression, which 

generally belong to the third group (like XBP1, PAX5 etc.).  

 

2.2.3 Titrations 

 

The reagent concentration suggested by the supplier it is not 

always appropriate, thus antibody titrations are an essential step in 

the optimisation of PFC panel. The positive population must be 

well defined from the negative one(Mahnke and Roederer, 2007; 
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Kalina, Lundsten and Engel, 2020; Cossarizza et al., 2021). 

Additionally, titrations can be a useful tool if fluorochrome-

conjugated antibodies show “spreading error”. Spreading error is 

the consequence of imprecise measurement and compensation, that 

generates artifacts, which impact the analysis and data 

interpretation (M Roederer, 2001). Since the impact of “spreading 

error” is more with high fluorescence levels, it useful to know the 

lower titre that can be used without losing separation between the 

positive and the negative signal. Therefore, to identify the correct 

concentration of fluorophore-conjugated antibodies in this current 

study all antibodies have been titrated. Spreading errors were 

monitored in all the detectors, and where possible, antibody 

combination were changed to prevent spreading error effects.  In 

the other circumstances, a lower titre was selected with caution of 

not losing in separation capacity.Below we describe the process of 

titrations and how the optimal concentration was defined.  

 

Method  

 

The recommended vendor concentration was used as the highest 

titre for each fluorophore-conjugated antibody and serial dilutions 

were performed to define the optimal titre.  For example, if the 

suggested quantity is 5 µl per test in 100 µl, then 10 µl of antibody 

was added and topped up with 90 µl BD BSA Staining Buffer 

(Cat: 554657) giving a total of 100 µl in the first tube. Then, 50 µl 

was extracted and diluted in another 50 µl of buffer six times 

formulating a serial dilution. It’s important to note that for 

intracellular markers, permeabilization buffers were used instead 
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of BSA Staining Buffer. Overall, it’s important to use usual assay 

conditions for each antibody when titrations are conducted. An 

equal volume of cells was added to each tube to generate a 1:1 

concentration of antibody mix to cells. Staining was done for 20 

minutes protected from light. The temperature used for the staining 

was decided based on the vendor’s recommendation. Washing 

steps were conducted after staining cells and re-suspended in 

appropriate volume for acquisition.  

 

Analysis   

 

When analysing this data, a minimal gating strategy is applied 

(Figure 2.1, A) where doublets are eliminated by plotting cells 

against FSC-H vs. FSC-A parameters. Following doublet 

discrimination, dead cells are eliminated by excluding cells that 

are positive for the viability dye (Live/Dead dye - LD), while 

lymphocytes are then selected on the basis of physical parameters 

(FSC-A vs. SSC-A). For antigens known to be expressed on just 

small cell subsets, samples are also stained for markers that 

facilitate subsequent analysis. After selecting the population of 

interest, dot plots are created to compare the performance of the 

reagent for each titre. The median fluorescent intensities (MFIs) of 

the positive and negative populations are graphed for each titration 

as a ratio against the antibody concentration to conclude the peak 

signal-to-background ratio (Figure 2.1 B). The highest ratio 

indicates the optimal concentration as it defines the highest 

difference amongst the positive and the negative populations and 

indicates the antibodies saturation point. Additionally, titrations 
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can be plotted as concatenate graphs for a visual observations of 

each titre (Figure 2.1 C).  

Figure 2.1: Example of process of fluorochrome-conjugated 

antibody titration analysis. A) Minimal gating strategy defining the 

population of interest for CD3 APC-H7 antibody titration: Doublets are 

eliminated in the FSC-H vs. FSC-A plot, dead cells are eliminated 

excluding cells that are positive for the viability dye (LD), lymphocytes 

are selected on physical parameters, and then , the expression of the 

marker of interest (CD3 APC-H7) is valuated gating on positive and 

negative cells. B) Following ratio calculations of MFI+/MFI-, results are 

plotted to determine the peak signal-to-background ratio. The highest 

ratio is 70.9 of MFI for CD3 APC-H7, which is the fifth serial dilution 

with a concentration of 0.06 μg/mL. C) Concatenate graph of all the 

dilutions. 
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2.2.4 Compensation and Spreading Error  

 

When referring to flow cytometry , the term "compensation" 

denotes the practise of eliminating the fluorescent signal of a 

fluorochrome from all detectors, aside from the one used to 

measure that dye (Mario Roederer, 2001) . This is done by a 

complex and automated mathematical method to correct for 

fluorescence spillover (Figure 2.2 A, B). On the contrary, 

spreading error refers to an error that is visible after compensation 

has been applied (Mario Roederer, 2001; Herzenberg et al., 2006). 

The reason spreading error occurs after compensation is because 

inevitably counting photons is challenging and can be unavoidably 

detected by different wavelengths (Figure 2.2) (Roederer, 2002). 

Therefore, when designing a PFC panel it is important to first 

perfect compensation related difficulties and then work to 

eliminate or minimise spreading error. 

 

Applying Compensation 

 

In this study we utilised compensation beads to eliminate spill over 

in our PFC panels. Compensation beads are a helpful experimental 

tool in flow cytometry as they offer a higher fluorescent intensity 

alone and therefore have a clear positive and negative control that 

increases the accuracy of the automated calculation (Perfetto et al., 

2012; Brummelman et al., 2019; Cossarizza et al., 2021). 

Additionally, their choice is useful especially if there is limited 

sample availability and there is a need to avoid wasting valuable 

cells when configuring an experiment procedure.  
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Method 

 

For each fluorochrome conjugated antibody for each PFC panel 

one compensation control is prepared. Specifically, in this study 

UltraComp eBeads™ (Cat#01-3333-42) were used, and stained for 

15 minutes protected from light. Usually the same amount of 

antibody used to stain the cells is used for compensation. In case of 

volume lower the 1 µL, 1 µL was used for convenience. 

 

Assessing Spreading Error  

 

Background fluorescence and spreading error are major 

contributors of variability in PFC. As already explained, spreading 

error is visible only after compensation has been applied and is 

known as the “trumpet effect” since the positive population forms 

a funnel shaped structure which can make it difficult to determine 

the double positive population (Figure 2.2 C) (Nguyen et al., 2013; 

Cossarizza et al., 2021).  

 

In PFC spreading error is inevitable, however, in this study we 

used a variety of strategies to avoid or minimise this effect:  

 

I. Allocated highly expressed markers like CD3, or 

CD19 to dim fluorophores and low or unknown 

expression of markers to bright fluorochrome 

conjugated antibodies. 
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II. When assessing many markers on a single cell type 

choose fluorochromes with minimal spreading on 

co-expressed markers.  

III. When applicable, decrease titres of fluorochrome 

conjugated antibodies that cause spreading to 

minimise their fluorescent intensity and 

consequently the spreading error. It could be also 

useful to increase the titre of the fluorochrome 

conjugated antibody in the channel in which 

spreading error is occurring, to maximize the 

positive signal, but keeping attention to not increase 

the negative signal too much). 

For example, as seen in Figure 2.2C if PE-Cy7 has 

a low titre, then the double positive populations of 

PE-Cy7 and APC-H7 will be undetectable. In this 

case, the solution is to decrease the titre of APC-H7 

and, if possible, increase the titre of PE-Cy7.  

IV. To assess the spreading error of each panel, each 

fluorophore conjugated antibody with its selected 

titre was assessed by performing a spreading error 

assay (Method below).  

 

Method  

 

 

Once titres per fluorophore conjugated antibodies are initially 

selected a spreading error assay was executed. To do this, healthy 

donor PBMC’s were used, and cells were single stained with the 
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selected titre alone. All compensation controls for all the 

antibodies were conducted and complete compensation matrix for 

all fluorophore conjugated antibodies was applied to each single 

stained simple. This allowed the visualisation of spreading error in 

channel after compensation is corrected. 

 

Figure 2.2: The difference of spillover and spreading error. A) 

Uncompensated dot plot where the fluorochrome APC-H7 fluorescence 

spills into the PE-Cy 7 channel. B) After applying compensation a 

straight line should be generated amongst the positive and the negative 

populations. C) In some cases, after compensation the positive 

population has a funnel shape also known as the “trumpet effect” which 

is the indications that there is spreading of APC-H7 channel in the PE-

Cy 7 channel.  
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2.2.5 Machine Standardisation 

 

Amongst the field of flow cytometry, there is an overall agreement 

that to encourage reproducibility and accuracy instrument 

standardisation is essential (Perfetto et al., 2012). There are a 

variety of methods that can be applied to encourage 

standardization, which can give a foundation for better cytometry 

result reproducibility over extended time periods, between various 

sites, and amongst various instruments. Additionally, 

standardisation is essential for decreasing instrument user set-up 

variation among replicates when studies focus on evaluation 

protein expression levels by utilising the mean fluorescence 

intensity (MFI) (Le Lann et al., 2020).  

 

Rainbow Beads 

 

There are several non-biological factors that influence fluorescent 

intensity on flow cytometers such as laser power, laser alignment 

and optical efficiency (Perfetto et al., 2006, 2012). When a flow 

cytometer is being set up for an experiment, detector sensitivity is 

adjusted to optimise instrument performance per run, however 

these voltages being altered may not be optimal for the following 

experiments (Mahnke and Roederer, 2007; Perfetto et al., 2012; Le 

Lann et al., 2020; Holmberg-Thyden et al., 2021). Therefore to 

eliminate this bias, in this study uses hard-dyed fluorescent beads 

known as rainbow beads (Spherotech, Cat. RCP-30-20A Rainbow 

Calibration Particles, 8 peaks) which are capable of emitting light 

through a series of eight peaks in each channel. Acquisition of 
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rainbow beads allows one to fix target values that reflect the 

instruments sensitivity as done for each panel designed in the 

following study (Perfetto et al., 2012). Each experimental run then 

involves the initial acquisition of rainbow beads and voltages are 

adjusted until the designated bead peak reaches the initial target 

value. In this study a threshold of ±10% has been established. This 

particular method of experimental harmonization is highly reliable 

and can allow users to adapt to any changes in performance after 

cytometer maintenance or laser alignment (Le Lann et al., 2020).  

 

The set-up of the target values is done either during a test 

experiment for the panel. The stained sample with chosen titres is 

acquired first to set the voltages first and then the rainbow beads 

are acquired (Mahnke and Roederer, 2007; Perfetto et al., 2012). 

In figure 2.2A we show as representative example the gating 

strategy to define the rainbow beads, and then gate on the 8th peak 

(or peak of choice) of detector B710-A to indicate the target value 

that will always be measured for each experiment. In Figure 2.2B 

we demonstrate an example of a series of eight experiments to 

show how each designated peak for each detector attains a 

comparable MFI per experiment, not exceeding the ±10% 

threshold. Rainbow bead results as shown in figure 2.2B confirm 

that the experimental procedures done for the study reduce 

instrumental related biases.  
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Figure 2.2: Rainbow calibration bead set up and examples. A) Gating 

strategy of rainbow calibration beads detected by plotting against SSC-A 

and FSC-A physical parameters. Histogram representation of Rainbow 

gate against the B710-A parameter to determine peaks of interest. Gate 

on the 8th peak is set to determine the target MFI of B710-A. B) Example 

of a series of 8 experiments after setting the target MFI values for each 

parameter in all the lasers available for the flow cytometer used in this 

study (BD LSR Fortessa 20X). For all experiments the designated target 

peak per detector achieves comparable MFI per experiment not 

exceeding the ±10% threshold.  
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2.3 Conclusion 
 

 

In this study, we establish and optimise the PFC panels used to 

address age and sex related changes in T, B and NK cells (Chapter 

4 and 5). Using the configuration of the flow cytometer BD LSR 

Fortessa 20X, thoughtful matching of fluorochromes to antigens of 

interest was applied to achieve the studies aims and objectives. 

Following this, optimisation experiments were conducted to 

identify the finest concentrations for each fluorochrome-

conjugated antibody used and to determine spreading error, while 

compensation controls were established to correct any 

fluorescence spillover. Machine standardisation was also 

established to encourages experimental reproducibility. The 

overall procedure of implementing and optimising a PFC panel for 

conventional flow cytometry can be challenging, however, crucial 

in eliminating experimental biases, and yielding accurate results. 
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Chapter 3  

  A redox based characterization of immune 

cell subsets by polychromatic flow cytometry 

 

 

3.1 Introduction 
 

Redox metabolites fulfil key functions in immunity and it is now 

evident that redox-related enzymes are essential for normalizing 

immune cell signalling. The majority of the main cellular redox 

state determinants have been traditionally studied using fluorescent 

microscopy and immunoblot analysis, yet thus far, no complete 

polychromatic flow cytometry (PFC) panel and assay has been 

developed allowing their simultaneous measurement in various 

immune cell subsets. Here we present a flow cytometry assay that 

can measure simultaneously key antioxidant defence systems and 

reactive oxygen species (ROS) in the different subsets of T, B and 

NK lymphocytes, thus allowing a deep investigation of the Redox 

status of the immune system. 
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3.2 Graphical Abstract 
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3.3 Before you begin 
 

The polychromatic flow cytometry (PFC) assay described here 

allows the simultaneous measurement of cell-surface markers of 

immune cell subsets (T, B and NK cells) and their key redox 

homeostasis players (ROS and antioxidant systems).  This protocol 

is unique as it uses fluorescent conjugated monoclonal Antibodies 

(mAbs), in combination with redox-related dyes and markers. We 

demonstrate a quick way of evaluating key parameters of redox 

homeostasis in immune cells, useful for research associated with 

immune-related diseases.  

 

The objective of the designed panel is to dive deep into the 

heterogeneity of the most abundant immune cell compartments  

and measure their redox status. For example, the T cell immune 

compartment is comprised of T cells subpopulation and subsets 

that differs in terms of phenotypic composition, functional activity 

and capacity to respond to homeostatic or antigenic stimulation 

(Appay et al., 2008). Therefore we used mAbs specific for CD4 

and CD8, to detect helper and cytotoxic T cells, respectively. To 

identify the different T cell subsets, we used a combination of 

mAbs specific for detection T naïve (Tn CD45RO- CCR7+), T 

central memory (TcmCD45RO+ CCR7+), T effector memory  Tem 

CD45RO+ CCR7-), T terminal effector (Ttem CD45RO- CCR7-

)(Roberto et al., 2015). Following the identification of T cells we 

centre our attention on CD3- cells to analyse B and NK cells. B 

cells also acquire a heterogenic phenotype following the 

identification of the main B cell subset as (CD3−CD14−CD19+) 
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(A Roberto et al., 2015). For example Naïve B cells are further 

defined as  CD21+, CD27- while memory B cells can be defined 

as CD21+, CD27+.  We also include CD56 in our panel to define 

NK cells predominantly as CD3- CD56+. NK cells are another 

heterogeneous population of lymphocytes which are characterised 

into two main subsets: CD56DIM and CD56BRIGHT (Roberto et al., 

2018).  

 

To detect superoxide anion molecules within the mitochondria of 

the heterogenous populations of lymphocytes mentioned above, 

we take advantage of the highly selective red-fluorogenic dye 

MitoSOX (MSR). As an internal control, we identify the 

mitochondria using a green-fluorogenic dye (MitoView Green – 

MVG) that stains mitochondria in live cells and provides 

normalization with respect to the mitochondrial mass. To get a 

more comprehensive view of the intracellular redox homeostasis, 

we also analyse some representative defence systems, harboured in 

cells against excessive ROS exposure. Therefore, superoxide 

dismutase 1 (SOD1) can be detected in each immune subset 

mentioned above. It is a highly conserved and abundant 

antioxidant enzymes, known for its scavenging activity, 

maintaining redox balance and regulation of transcription (Zelko, 

Mariani and Folz, 2002). The nuclear factor erythroid 2-related 

factor 2 (Nrf2), which is a key regulator of antioxidant responses, 

is also ubiquitously expressed by immune cells (Kaspar, Niture 

and Jaiswal, 2009; Milani et al., 2013)and it plays a key role in the 

differentiation and functionality of B cells in particular (Bertolotti 
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et al., 2010). Sequestered by cytoplasmic Keap1 and targeted to 

proteasomal degradation in basal conditions, in case of oxidative 

stress Nrf2 detaches from Keap1 and translocates to the nucleus, 

where it activates the transcription of some crucial defense 

mechanisms to counteract oxidative stress (Keum and Choi, 2014). 

Additionally, we also use a thiol reactive dye to measure the 

cellular levels of reduced glutathione (GSH), which plays a role in 

preventing damage to cellular components by ROS (Townsend, 

Tew and Tapiero, 2003; Brasil et al., 2013). Likewise, GSH is 

fundamental to protect SOD1 residues under mild oxidative stress 

enabling SOD1 activation (Brasil et al., 2013). To confirm that the 

panel can detect redox-related changes, appropriate redox-

homeostasis modulators should be used as controls (Bertolotti et 

al., 2013, 2016). In this assay we used Hydrogen Peroxide (H2O2), 

as it is the easiest to source and use. However, H2O2 generators 

(like t-BHP) or O2- inducers (like PB) can also be used as 

alternative. 

 

The protocol has been optimized and described using Peripheral 

Blood Mononuclear cells (PBMC’s) from healthy human whole 

blood. Any human PBMC’s either fresh or stored in liquid 

nitrogen can be used for this protocol. However, in case of 

different biological sources (peripheral blood, lymph nodes, tissues 

etc), the panel can be easily adjusted with the addition of an anti-

CD45 antibody to specifically select lymphocytes. 
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For the development of the assay, mAbs and Dyes have to be 

titrated for identifying the best concentration that allows to 

distinguish the populations of interest (Cossarizza et al., 2021b).  

It is highly advised that all antibodies and dyes used are titrated 

before conducting the assay, as the optimal titre can change. 

 

The panel presented here has been optimised on a BD LSR 

Fortessa X-20 fully equipped with five lasers -blue (488 nm), Red 

(635 nm), Violet (405 nm), Ultraviolet (355 nm), Yellow/Green 

(561 nm). However, the protocol can be used with any flow 

cytometer that can detect all the fluorochromes listed (Refer to key 

resources table for a complete list of reagents and tools). We 

recommend to set up the Flow cytometer by completing instrument 

quality control before beginning and report the performance of the 

machine. For BD LSR Fortessa X-20, we used CS&T beads. 

Finally, before beginning, use any Rainbow calibration beads to 

standardise the acquisitions (Kalina et al., 2012) . Rainbow 

calibration beads allow the setting of a peak MFI target and that 

this target is close to identical every time a new experiment is 

acquired. Adjusting the voltages for each channel to reach the MFI 

target set is important for standardizing acquisitions. For more 

information and details on how to setup the ideal MFI targets, refer 

to previously published protocols (Perfetto et al., 2006, 2012) 
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Institutional permissions  

 

Sample collection from healthy donors was approved by the ethics 

committee: REC 17WS0172 at the Experimental Medicine and 

Rheumatology department, Queen Mary University of London. 

Healthy volunteers signed informed consent. 

 

3.4 Preparation of Dye Stock solutions and buffers 
 

Timing: 30 min  

 

Refer to materials and equipment for all the recipes that need to be 

prepared prior to starting. 

 

Key resources table 

 

REAGENT or RESOURCE SOURCE IDENTI

FIER Antibodies 

Anti-Nrf2 Antibody A-10 Santa Cruz  Cat#sc-

365949 

APC-H7 Mouse Anti-Human CD3 BD 

Pharmingen™ 

Cat# 

560275 

BV711 Mouse Anti-Human CD4 BD 

Horizon™ 

Cat#5639

13 

BUV805 Mouse Anti-Human CD8 BD 

Horizon™ 

Cat#6128

90 

PE-CF594 Mouse Anti-Human CCR7 

(CD197) 

BD 

Horizon™ 

Cat#5667

69 

PE-Cy™7 Mouse Anti-Human 

CD45RO 

BD 

Pharmingen™ 

Cat#5606

08 

Alexa Fluor® 700 Mouse Anti-Human 

CD27 

BD 

Pharmingen™ 

Cat#5606

11 

BV786 Mouse Anti-Human CD19 BD 

Horizon™ 

Cat#5633

25 
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BV650 Mouse Anti-Human CD21 BD 

OptiBuild™ 

Cat#7405

69 

BUV395 Mouse Anti-Human CD56 BD 

Horizon™ 

Cat#5635

54 

SOD1/Cu-Zn SOD Antibody  Novus 

Biologicals 

Cat#JF10

05 

Goat anti-Rabbit IgG (H+L) 

Secondary Antibody, DyLight™ 405 

Thermo 

Fisher 

Scientific 

Cat#3555

1 

 

Human samples 

Cryopreserved human Peripheral 

Blood Mononuclear Cells (PBMC’s) 

n/a n/a 

Chemicals, peptides, and recombinant proteins 

Dulbecco's Phosphate Buffer Saline 

(DPBS) Solution without calcium and 

magnesium 

Gibco Cat#1419

0-144 

RPMI 1640 Medium (RPMI) Thermo 

Fisher 

Cat#1187

5093 

Penicillin-Streptomycin (10,000 

U/mL)  

Thermo 

Fisher 

Cat#1514

0122 

Fetal bovine serum (FBS) EueoClone EUS00A

Y 

Distilled Cell Culture Water Gibco Cat#A128

73-01 

Viability Dye - LIVE/DEAD™ 

Fixable Blue 

Thermo 

Fisher 

Scientific 

Cat#L349

62 

ThiolTracker™ Violet (TTV) Thermo 

Fisher 

Scientific 

Cat#T100

96 

MitoSOX™ RED Thermo 

Fisher 

Scientific 

Cat#M36

008 

MitoView™ Green (MVG) Biotium  Cat#7005

4 

Brilliant Stain Buffer BD 

Horizon™ 

Cat#56634

9 

Stain Buffer (BSA) BD Cat#5546

57 
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Foxp3 / Transcription Factor 

Fixation/Permeabilization Concentrate 

and Diluent kit   

eBioscience™ Cat#00-

5521-00 

Permeabilization Buffer (10X) eBioscience™ Cat#00-

8333-56 

UltraComp eBeads™ Plus Thermo 

Fisher 

Cat#01-

3333-42 

ArC Reactive Beads Thermo 

Fisher 

Cat#A103

46 

DIVA CS&T RUO BEAD 150 BD Cat#6550

51 

Trypan Blue  BioWhittaker Cat#17-

942E 

H2O2 DR MARCUS  02083626

000200 

Software and algorithms 

FACSDiva™ 8.0.3   

FlowJoTM v10 Software   

 

 

3.5 Materials and equipment  
 

 

Supplemented RPMI 1640 media (R10) 

 

Reagent Final concentration  Amount 

RPMI N/A 445 mL 

FBS 10% 50 mL 

Penicillin-Streptomycin (10,000 

U/mL) 

100U/mL 5 mL 

Total  500 mL 

Media is filtered (0.22µm) and stored at 4°C up to 1 month. 

 

 

Live/Dead Fixable Blue Stock Solution 

 

Reagent Final concentration  Amount 
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LIVE/Dead Fixable Blue n/a 1 vial  

DMSO n/a 50 µL 

Total 50 µL 

Vortex well after preparation. Store the reconstituted stock solution 

for up to 2 weeks at -20°C, protected from light and humidity. Prepare 

small aliquots to avoid freeze-thaw cycles. 

 

 

ThiolTracker™ Stock Solution  

 

Reagent Final 

concentration  

Amount 

ThiolTracker™ Violet  10 mM 1 vial  

DMSO n/a 30 µL 

Total 30 µL 

Vortex well. Prepare small aliquots of stock to avoid multiple freeze-

thaw cycles. Store at -20oC. 

 

MitoSOX™ RED Stock solution 

 

Reagent Final 

concentration  

Amount 

MitoSOX™ RED  5 mM 1 vial  

DMSO n/a 13 µL 

Total 13 µL 

Vortex well. Prepare small aliquots of stock to avoid multiple freeze-

thaw cycles. Store at -20oC. 

 

MitoView™ Green Stock solution 

 

Reagent Final 

concentration  

Amount 

MitoView™ Green 5M 200 µM 1 vial  

DMSO n/a 400 µL 

Total 400 µL 
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Vortex well. Prepare small aliquots of stock to avoid multiple freeze-

thaw cycles. Store at -20oC. 

 

Foxp3 / Transcription Factor Fixation/Permeabilization 

Concentrate and Diluent kit  (1:4) Dilution  

 

Reagent Final 

concentration  

Amount 

Transcription Factor 

Fixation/Permeabilization 

Concentrate  

n/a 1 µL 

Transcription Factor 

Fixation/Permeabilization 

Diluent 

n/a 3 µL 

Total 4 µL 

CRITICAL: Prepare fresh and in a chemical hood each time. The 

Transcription Factor Fixation/Permeabilization Concentrate contains 

formaldehyde and should be used with caution. Acute exposure to 

formaldehyde is highly irritating to the eyes, nose, and throat while 

long-term exposure to low levels in the air or on the skin can cause 

asthma-like respiratory problems, skin irritation and even cancer.  

 

Permeabilization Buffer (1X) 

 

Reagent Final 

concentration  

Amount 

Permeabilization Buffer (10X) 1X 5 mL 

Cell culture water n/a 45 mL 

Total  50 mL 

Prepare fresh each time. 

 

Blocking solution  

 

Reagent Final concentration  Amount 

DPBS  n/a 9.8 mL 

FBS n/a 200 µL 

Total  10 mL 

Store at  4°C.  
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Flow cytometer (BD LSR Fortessa X-20) 

 

Reagent Laser 

(excitation 

nm) 

Emission filter 

(nm) 

Viability Dye - LIVE/DEAD™ 

Fixable Blue 

 UV (355) 450/50 

MitoSOX™ RED (MSR)  Blue (488) 710/50 

 MitoView™ Green (MVG) Blue (488) 530/30 

ThiolTracker™ Violet (TTV)  Violet (405)  

SOD1/Cu-Zn SOD Antibody / 

Goat anti-Rabbit IgG (H+L) 

Secondary Antibody, DyLight™ 

405 

Violet (405) 450/50 

Brilliant Violet 605™ anti-human 

CD16 Antibody 

Violet (405) 610/20 

BUV395 Mouse Anti-Human 

CD56 

UV (355) 379/28 

BV650 Mouse Anti-Human CD21 Violet (405) 670/30 

BV786 Mouse Anti-Human CD19 Violet (405) 780/60 

Alexa Fluor® 700 Mouse Anti-

Human CD27 

Red (640) 730/45 

PE-Cy™7 Mouse Anti-Human 

CD45RO 

Yellow/Green 

(561) 

780/60 

PE-CF594 Mouse Anti-Human 

CCR7 (CD197) 

Yellow/Green 

(561) 

610/20 

BUV805 Mouse Anti-Human CD8 UV (355) 800/40 

BV711 Mouse Anti-Human CD4 Violet (405) 710/50 

APC-H7 Mouse Anti-Human CD3 Red (640) 780/60 

Anti-Nrf2 Antibody A-10 Red (640) 670/30 

 

Alternatives: BD LSR Fortessa X-20 fully equipped with five 

lasers -blue (488 nm), Red (635 nm), Violet (405 nm), Ultraviolet 

(355 nm), Yellow/Green (561 nm) - was used in this assay. Any 

other flow cytometers equipped with the same lasers and similar 

emission filters can also be used. 
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Alternatives: In the key resources table, the mAbs used for the 

detection of the different markers were validated ad titrated for this 

protocol. However, depending on the configuration of the 

instrument, the fluorochromes of the mAbs can be exchanged, and, 

if required, any other markers can be incorporated.  

 

3.6 Step-by-step method details 
 

PBMC’s thawing 

 

Timing: 1h  

This section describes how PBMC’s are thawed before starting the 

staining procedure. This step must be fast to allow good sample 

recovery.  

 

1.  Thawing PBMCs  

 

a. Prepare and warm R10 in a water bath at 37°C. 

b. In a biological hood add 5 mL of warm R10 in a 15 

mL tube. 

c. Take PBMC vials from the Liquid Nitrogen tanks 

and transfer them to the water bath on dry ice. Do 

this quickly. If the liquid nitrogen is not close to the 

water bath, cells can be temporarily kept in dry ice 

before the thawing. 

d.  Swivel the vials in the water bath until no ice 

crystals are seen. 
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e. Transfer the vials into the biological hood and 

dropwise add warm RPMI to each vial, 

resuspending the cell-medium solution very well 

using a pipette.  

f. Transfer the single cell suspension with leukocytes 

cells in the previously prepared 15 mL tube with the 

warm medium. 

 

CRITICAL: Add warm RPMI to minimize the risk of osmotic 

shock dropwise. However, don’t take too long to complete this 

process. PBMC’s that are stored in liquid nitrogen have 

cryopreservatives (like 10% DMSO) that can be toxic to the cells 

once thawed so be relatively fast to avoid cell death.  

 

g. Top up the tube with R10 and wash the cells at 

400g for 10 mins at Room Temperature (RT). 

h. Discard the supernatant carefully without losing the 

pellet.  

i. Resuspend the cells in appropriate volume and 

count the number of cells.  

 

Note: Any cell counter or traditional trypan blue cell counting 

methods can be conducted.  

CRITICAL: Each washing step may lead to losing cells. In this 

assay we started with about 5 x 106 live cells per donor in order to 

have 1 x 106 cells acquired per donor. This number of cells was 
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enough to detect the populations of interest. The starting number 

of cells can be scaled down to 1 x 106 live cells, if necessary. 

 

3.7 In vitro H2O2 - treatment of human PBMC’s to 

generate redox-positive controls 

 

Timing: 1 h  

 

This section describes how generate positive controls to confirm 

that the assay can detect redox-related changes. Additionally, 

resting cells after a thawing is also important as thawing can be a 

stressful process. 

 

2. Treating PBMC’s  

 

a. Once counted, resuspend the cells at a 

concentration of 1 x 106 cells/mL and split the 

suspension in 2 flasks, tubes or plates.  

b. Label one flask as the oxidative control and add 

H2O2  to reach a 50 µM final concentration. 

c. Keep the other flask untreated and place both flasks 

in an incubator for 1h at 37oC 

 

Note: To find the optimal H2O2 concentration and time of 

treatment for your experiment and type of cells, conduct 

appropriate test experiments. Here we tested a variety of 

concentrations and times and found that a 1h treatment and a 50 



 104 

µM concentration of H2O2 was enough to demonstrate a redox 

related shift after staining with redox related markers. 

 

3.8 Sample and staining control preparation 
 

Timing: 10 min 

 

This section of the protocol lists the samples and the controls 

necessary for the assay. 

Together with the full stained samples, additional staining controls 

have to be prepared. A Fluorescence Minus One (FMO) or FMX 

control is a tube of cells labelled with all but one of more 

fluorophores respectively. In multi-colour immunofluorescent 

investigations, FMO or FMX controls are employed to define the 

cut-off point between background fluorescence and positive 

populations during analysis. In this assay, we used an FMX control 

labelled for all the marker with the exception of MVG, MSG, 

NRF2, TTV, SOD1. 

 

Preparing Controls  

 

a. Collect treated and untreated cells in 15 mL  tubes 

b. From the untreated sample take about 0.5 x 106 cells, 

place them into a separate 15 mL tube and label it as 

a FMX tube. The other cells (about 2 x 106 cells in 

our case) will be used for the full staining, to detect 

the redox status in the population of interest. 
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c. From the treated sample, keep aside about 0.5 x 106 

cells to use for compensation controls * (see step 12) 

d. The other treated cells (about 2 x 106 cells in our 

case) will be used for the full staining in treated 

sample, as positive controls of the redox markers in 

the population of interest. 

 

Live/Dead staining 

 

Timing: 30 min  

 

This section of the protocol describes the staining procedure for 

excluding dead cells from the analysis. 

 

3. Live/dead staining 

a. top up all the samples with R10 to wash the cells 

b. Spin at 500 g for 10 minutes at RT. 

c. Prepare 1:1000 dilution of LIVE/Dead Fixable Blue 

mix (1 µl LIVE/Dead Fixable Blue stock solution 

and 999 µl of DPBS).  

d. Discard supernatant carefully not disrupting the 

pellet (use a pipette to remove ALL the residual 

supernatant).  

e. Stain pelleted cells with 100 µl of viability mix 

(diluted Live/Dead Fixable Staining Solution) 

directly in the 15 mL tubes 
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f. Vortex cell pellet with viability mix and stain for 15 

mins at RT protected from light. 

g. Wash cells with 2ml of BSA and centrifuge at 500g 

for 5 minutes 

 

CRITICAL: Live/Dead staining is essential as to most flow 

cytometry-based investigations. Use it to exclude debris and dead 

cells from analysis especially after optimal H2O2 treatment. 

Viability dyes are sensitive to light and can lose their fluorescence, 

so make sure to keep the dyes very well protected from light.  

 

Cell Staining Assay 

 

Timing: 4 h  

 

This section of the protocol describes the staining procedure of 

immune cells subsets and redox markers using Dyes and 

Monoclonal antibodies.  

 

4. CCR7 staining  

a. Discard supernatant and transfer the cells into 

FACS tubes 

b.  Prepare CCR7 panel as indicated in Table 1 

c. Stain both treated, untreated and FMX control cells 

with 100 µL cell suspension of CCR7 mixture for 

20 minutes at 37oC, protected from light. 
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Table 1: CCR7 mix 

 

 

CRITICAL: CCR7 is a molecule better detected at 37oC due to 

plasma membrane recovery, hence why it vital to stain CCR7 

separately at 37oC (Berhanu et al., 2003). 

 

NOTE: An incubator can be used to keep cells at 37°C, during the 

CCR7 staining. 

 

 

 

 

Marker and Clone  Fluorophore Volume (for 100 µL cell 

suspension)  

CCR7 (2-L1-A) PE-CF594 0.6 µL 

BV stain buffer n/a 99.4 µL 

Total 100 µL 

Note: The preparation provided here is for 1 tube. The volume has 

to be multiplied by the number of tubes: for one sample you would 

have to make the surface mix times 3 (untreated sample full 

staining, untreated sample FMX, treated sample full staining). In 

case of a higher amount of samples, it is suggested to prepare a 

master mix with at least 10% extra volume (e.g. if 10 tubes are 

required, calculate on the basis of 11), so that even the last tube is 

filled properly avoiding the effect of sample loss when dosing. 

The mAbs have to be titrated for identifying the best concentration 

that allows to distinguish the populations of interest. 

 



 108 

5. Surface staining 

 

a. After staining cells with CCR7, wash the cells with 

2 mL of PBS and centrifuge at 500g for 5 minutes 

b. Discard supernatant carefully without disrupting the 

pellet and prepare a mix for all the other Surface 

Abs using Table 2 

 

Table 2: Surface mix 

 

Marker and Clone  Fluorophore Volume (for 100 µL cell 

suspension per sample)  

CD3 (SK7) APC-H7 0.6 µL 

CD4 (L200) BV711 0.3 µL 

CD8 (SK1) BUV805 0.6 µL 

CD45RO (UCHL1) PE-CyTM7 2.5 µL 

CD19 (SJ25C1) BV786 0.6 µL 

CD56 (NCAM16.2) BUV395 0.6 µL 

CD27 (M-T271) Alexa Fluor® 

700 

5 µL 

CD21 (B-ly4) BV650 1.25 µL 

BV stain buffer n/a 88.55 µL 

TOTAL 100 µL 

The preparations provided here is for 1 tube. The volume has to be 

multiplied by the number of tubes: for one sample you would have to 

make the surface mix times 3 (untreated sample full staining, untreated 

sample FMX, treated sample full staining). In case of a higher amount of 

samples, it is suggested to prepare a master mix with at least 10% extra 

volume (e.g. if 10 tubes are required, calculate on the basis of 11), so that 

even the last tube is filled properly avoiding the effect of sample loss 

when dosing. 

 

The mAbs have to be titrated for identifying the best concentration that 

allows to distinguish the populations of interest. 
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c. Stain each dry pellet with 100 µL of surface marker 

staining mixture to create a 100 µL cell suspension 

per sample. 

d. Stain surface markers for 20 mins at RT protected 

from light. 

 

6. Redox markers staining  

 

a. Prepare the ThiolTracker™ & MitoSOX™ RED 

Dye Mix as indicated in Table 3 

 

Table 3: ThiolTracker™ & MitoSOX™ RED Dye Mix 

 

Reagent - Stock solution 

concentration 

Final 

concentration  

Volume (for 

1 mL mix) 

ThiolTracker™ Violet (TTV) - 

10 mM 

10 µM 1 µL 

MitoSOX™ RED (MSR)- 5 mM 5 µM 1 µL 

RPMI with 2% FBS  n/a 998 µL 

Total 1 mL 

Note: The required volume of the mix is 100µL per tube. For one 

p sample you would have to make the redox markers staining 

times 2 (untreated sample full staining, treated sample full 

staining§). Here we prepared 1 mL of Mix, enough for 9 tubes 

with 10% of extra volume. 

Vortex well and prepare fresh before using. 

 

 

b. Once surface markers are stained wash with 1 mL 

of PBS and centrifuge at 500g for 5 minutes 

c. Discard supernatant being careful not to disrupt the 

pellet. 
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d. Stain dry pellets, except the FMX tube, with 100 

µL of ThiolTracker™ & MitoSOX™ RED Dye 

Mix immediately. Resuspend the FMX dry pellet in 

100uL RPMI with 2% FBS. 

e. Incubate cells for 15min at 37oC protected from 

light 

f. Wash with 1 mL of PBS and centrifuge at 500g for 

5 minutes 

 

7. Fixation  

 

a. Discard supernatant being careful not to disrupt the 

pellet  

b. Add 1mL of diluted (1:4) Foxp3 / Transcription 

Factor Fixation/Permeabilization Concentrate (refer 

to Materials and Equipment for further instructions 

on how to prepare the fixative) 

c. Fix for 30 minutes at 4OC protected from light 

 

Note: Remember to add the fixative in a chemical hood due to the 

presence of formaldehyde.  

 

8. Intracellular staining 

 

a. Prepare MVG staining concentration as indicated in 

Table 4. 
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Table 4: MitoView™ Green Mixture 

 

Reagent - Stock 

solution concentration 

Final 

concentration  

Volume 

MitoView™ Green - 200 

µM 

50 nM 1 µL 

1X Perm Buffer n/a 3999 µL 

Total 4 mL 

Note: The required volume of the mix is 100µL per tube. For one 

p sample you would have to make the redox markers staining 

times 2 (untreated sample full staining, treated sample full 

staining). Here we prepared 4 mL of Mix because of the high 

dilution factor of the stock solution. 

 

 

b. After 30 mins of fixation, wash cells with 2mL of 

1X Perm Buffer (refer to Materials and Equipment)  

c. Spin at 500g for 5 minutes 

d. wash cells again with 2mL of 1X Perm Buffer  

e. Spin at 500g for 5 minutes 

g. Decant supernatant and stain all tubes except the 

FMX one with 100 µL of MVG per sample. 

Resuspend the FMX dry pellet in 100uL 1X Perm 

Buffer. 

f. Stain cells for 15 minutes at RT protected from 

light.  

g. Prepare NRF2 intracellular mix as indicated in 

Table 5. 
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Table 5: NRF2 Intracellular staining mix 

 

Marker and 

Clone  

Fluorophore Final 

Dilution 

Volume (for 100 

µL cell 

suspension)  

NRF2 (A-10) APC 1:40 2.5 µL 

1X Perm 

Buffer 

n/a n/a  97.5 µL 

Total 100 µL 

Note: The required volume of the mix is 100µL per tube. The final 

volume has to be multiplied by the number of tubes. For one 

sample you would have to make the redox markers staining times 

2 (untreated sample full staining, treated sample full staining). In 

case of a higher amount of samples, it is suggested to prepare a 

master mix with at least 10% extra volume (e.g. if 10 tubes are 

required, calculate on the basis of 11), so that even the last tube is 

filled properly avoiding the effect of sample loss when dosing. 

 

e. After MVG incubation, wash cells with 2mL of 1x 

Perm Buffer and spin at 500 g for 5 minutes. 

f. Repeat washing step 

g. Decant supernatant and resuspend all samples 

except the FMX tube with 100 µL of Intracellular 

NRF2 mix per sample 

h. Resuspend the FMX dry pellet in 100uL 1X Perm 

Buffer. 

i.  Stain for 30 minutes in RT protected from light 

j. Wash cells with 2 mL of 1x Perm Buffer and spin at 

1500 rpm for 5 minutes 

k. Repeat washing step 

l. Use 1 mL of BSA to perform a blocking step 
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Alternatives: use PBS with 2% FBS instead of BSA 

 

m. Perform blocking for 30 minutes at RT protected 

from light 

 

Note: The blocking step here is to avoid any unspecific binding of 

the SOD1 staining that follows. 

 

n. Prepare SOD1 primary  intracellular mix as 

indicated in Table 6. 

 

Table 6: Primary SOD1 Antibody Mixture 

 

Marker and 

Clone  

Fluorophore Final 

Dilution 

Volume (for 100 

µL cell 

suspension)  

SOD1/Cu-Zn 

SOD Antibody 

n/a 1:25 4 µL 

1X Perm 

Buffer 

n/a n/a 96 µL 

Total 

n/a 

100 µL 

Note: The required volume of the mix is 100µL per tube. The final 

volume has to be multiplied by the number of tubes. For one 

sample you would have to make the redox markers staining times 

2 (untreated sample full staining, treated sample full staining). In 

case of a higher amount of samples, it is suggested to prepare a 

master mix with at least 10% extra volume (e.g. if 10 tubes are 

required, calculate on the basis of 11), so that even the last tube is 

filled properly avoiding the effect of sample loss when dosing. 

 

 

 



 114 

o. Wash cells with 2 mL of 1x Perm Buffer and spin at 

1500 rpm for 5 minutes 

p. Stain all tubes, except the FMX one, with 100 µL 

primary antibody mix. 

q. Resuspend the FMX dry pellet in 100uL 1X Perm 

Buffer. 

r. Incubate al samples 30 minute at RT. 

s. Prepare the secondary Antibody Mixture Targeting 

SOD1 as indicated in Table 7. 

 

Table 7: Secondary Antibody Mixture Targeting SOD1 

 

Marker and 

Clone  

Fluorophore Final 

Dilution 

Volume (for 100 

µL cell 

suspension)  

Goat anti-

Rabbit IgG 

(H+L) 

Secondary 

Antibody,  

DyLight™ 

405 

1:1000 1 µL 

1X Perm 

Buffer 

n/a n/a 999 µL 

Total 1 mL 

Note: The required volume of the mix is 100µL per tube. For one 

sample you would have to make the redox markers staining times 

2 (untreated sample full staining, treated sample full staining). 

Here we prepared 1 mL of Mix, enough for 9 tubes with 10% of 

extra volume. 

 

t. Wash cells with 2 mL of 1x Perm Buffer and spin at 

500 g for 5 minutes 

u. Decant supernatant and repeat washing step 



 115 

v. Stain all samples with 100 µL Goat anti-Rabbit IgG 

(H+L) Secondary Antibody each sample for 30 

minutes at RT 

 

Note: The FMX control sample has to be stained with secondary 

Antibody Mixture Targeting SOD1 to prove the specificity of the 

primary staining. 

 

w. Wash cells with 2 mL of 1x Perm Buffer and spin at 

500 g for 5 minutes 

x. Decant supernatant and repeat washing step 

y. Re-suspend cells with 200 µL of BD Stabilising 

Fixative  

z. Samples are ready for acquisition  

 

Note: Store at 4oC until ready to acquire. Acquire within 4 h after 

staining completion. 

 

Preparation of Compensation Controls  

 

Timing: 40 mins 

 

Compensation controls for flow cytometry are very important. 

Compensation is a mathematical calculation that removes 

unwanted fluorescence signal that is coming into a primary 

channel and overlapping in a secondary channel. Here we use both 
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compensation beads and single stained cells to calculate 

compensation. 

Note: the compensation controls can be prepared the same day of 

the staining, in any moment prior of the acquisition (before, during 

or after the samples staining). 

 

9. Compensation controls for fluorophore conjugated 

antibodies. 

 

a. Prepare 1 FACS tube for each fluorophore 

conjugated antibody and prepare also an unstained 

tube.  

b. Vortex well UltraComp eBeads™ (Cat#01-3333-

42) for 2 minutes very well and allow them to reach 

RT. 

c. Add one drop of UltraComp eBeads™in each tube 

for each fluorophore conjugated antibody. Add one 

drop of UltraComp eBeads™ also in the unstained 

tube. 

d. Use at least 1 µL of fluorophore conjugated 

antibody to stain the beads. If the volume of 

fluorophore conjugated antibody used per 100 µL 

cell suspension is higher than 1 µL use the same 

amount used per cell suspension. Refer to Table 1, 

2 and 7 for verifying the amount of antibody 

e. Vortex the FACS tubes and incubate at RT for 15 

minutes protected from light 
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f. Wash beads in 2 mL of BSA and spin at 500g for 5 

minutes  

g. Resuspend in 300 uL of BSA  

h. Store at +4-8°C until samples are ready to be 

acquired. 

 

10. Compensation controls for Viability Dye - LIVE/DEAD™ 

Fixable Blue  

 

a. Prepare and label one FACS tube for the Viability 

Dye and one FACS tube for the respective 

unstained compensation control.  

b. Gently vortex ArC™ Amine Reactive 

Compensation Bead Kit components for 30 seconds 

to completely resuspend before use. 

c. Add 1 drop of ArC™ Amine Reactive (+) to the 

FACS tube for the Viability Dye. 

d. Add 1 drop of ArC™ Amine Reactive (-) to the 

FACS tube for the unstained compensation control. 

e. Allow ArC™ reactive beads to sit in the tube for 5 

minutes to warm to room temperature. 

f. Allow ArC™ Amine Reactive (+) and ArC™ 

Amine Reactive (-) beads to reach RT 

g. Vortex both ArC™ Amine Reactive (+) and ArC™ 

Amine Reactive (-) beads. for 2 minutes very well. 
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h. Add one drop of ArC™ Amine Reactive beads in 

the for each dye and one drop of negative beads (-) 

to the unstained compensation control. 

i. Add 1 µL of undiluted dye to the FACS tube for the 

Viability Dye. 

j. Vortex the FACS tubes and incubate at RT for 15 

minutes protected from light 

k. Wash beads in 2 mL of BSA and spin at 500g for 5 

minutes  

l. Resuspend in 300 µL of BSA  

m. Store at +4-8°C protected from light until samples 

are ready to be acquired  

 

11. Compensation controls for TTV, MVG, and MSR * 

 

a. Divide the 0.5 x 106 cells into three separate FACS 

tubes. Designate one tube for each dye (TTV, 

MVG, and MSR) 

b. Wash cells in each tube by adding 1 mL and spin at 

500g  

c. First stain cells for TTV for  a final concentration of 

10 µM and the tube for MSR with 5 µM (dilute in 

RPMI with 2% FBS (as done for Table 3 for the full 

stain) 

d. Incubate cells for 15 minutes at 37oC protected 

from light 
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e. Wash with 1 mL of PBS and centrifuge at 500g for 

5 minutes 

f. Discard supernatant being careful not to disrupt the 

pellet Add 1mL of diluted (1:4) Foxp3 / 

Transcription Factor Fixation/Permeabilization 

Concentrate (refer to Materials and Equipment for 

further instructions on how to prepare the fixative) 

g. Fix for 30 minutes at 4OC protected from light – do 

this also for the cells in the tube for MVG 

h. Wash cells with 2 mL of 1x Perm Buffer and spin at 

500 g for 5 minutes 

i. Decant supernatant and repeat washing step 

j. Resuspend the TTV and MSR tubes with 200 µL of 

BD Stabilising Fixative. These compensation 

controls are ready for acquisition. 

k. Stain the cells designated for MVG with a 50 nM 

concentration as prepared for the full stain in Table 

4. (use perm buffer as a dilutant) 

l. Stain cells for 15 minutes at RT protected from 

light. 

m. Wash cells with 2 mL of 1x Perm Buffer and spin at 

500 g for 5 minutes 

n. Decant supernatant and repeat washing step 

o. Resuspend MVG tube with 200 µL of BD 

Stabilising Fixative. All compensation controls are 

now ready for acquisition. 
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Note: Remember to add and prepare the fixative in a chemical 

hood due to the presence of formaldehyde.  

 

CRITICAL: It is important to check the quality of the 

compensation controls: make sure the positive peaks are well 

resolved and have higher signal compared to that one observed in 

the fully stained samples. 

 

3.9 Expected outcomes 
 

This protocol allows to clearly identify the main populations of 

lymphocytes: CD4+ CD3+ T helper, CD8+ CD3+ cytotoxic T 

cells, CD19+ B cells, CD56+ NK cells. By gating on the total 

CD3+ cells, both CD4+ T helper and CD8+ cytotoxic T cells we 

can look deep in the T cell differentiation subsets (TN, TCM, TEM, 

TTEM). Likewise, within the CD19+ B cells we can identify Naïve 

B cells (CD21+, CD27-) and memory B cells (CD21+, CD27+). 

Other than CD19+ cells, amongst the CD3- cells we can also dive 

into defining NK cells (CD56+) (Figure 2.1A).  All redox related 

marker of interest can be clearly identified amongst the total 

lymphocytes (Figure 2.1B). The FMX control allows to distinguish 

the positive signals from the background. The H2O2 controls 

demonstrate a change in redox related shift proving that we are 

truly identifying redox related markers and not a specific signals 

(Figure 2.1 C, B).  
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3.10 Quantification and statistical analysis  
 

The Median Fluorescence Intensity (MFI) of TTV, NRF2 and 

SOD1 can be used to study the redox status on the population of 

interest. For the analysis of MSR, it is important to normalize the 

MFI of MSR with the MFI of MVG. MVG is strategically 

included as an internal control as it detects mitochondrial mass 

overall, independently of the status of the organelles themselves or 

of the cells, and the dye localizes mitochondria regardless of 

mitochondrial membrane potential. Therefore, MVG can be used 

to normalize the MSR median fluorescence intensity that instead 

detects mainly mitochondrial ROS, specifically anion superoxide. 

Therefore, by calculating the ratio between MSR and MVG MFI, 

the mitochondrial ROS would be normalized for the mitochondrial 

mass, meaning that the residual relative differences among 

samples (comparing the ratios) would be only ROS-dependent 

(and not due to a random shift of the mitochondrial mass or to a 

differential dye- uptake/metabolism by the cells) (Figure 2.1D).  

 

3.11 Limitations 
 

Many notes and crucial consideration points throughout this 

protocol illustrate the procedure's varied shortcomings. While this 

approach allows for the standardized measurement and 

simultaneous comparison of many redox-related markers, it cannot 

detect the absolute oxidative stress level of any given cell or 

sample. To do this, use this panel in parallel to other appropriate 

controls (like knock outs for antioxidant enzymes). Also, 
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comparisons using this approach can only be done between redox-

related markers from one single cell population or from one 

sample to another. To this aim, ratios of redox-related markers can 

be calculated. This approach does not allow an absolute 

quantification of cellular levels of ROS molecules or redox-related 

markers, as this would imply usage of standard reference samples 

and controlled experimental conditions (e.g. nitrogen/oxygen 

monitoring and continuous pH evaluation).   

 

3.12 Troubleshooting 
 

Problem 1: 

Issues with compensation. 

 

Potential solution:  

If you notice that there are issues with compensation controls, re-

prepare the compensation tubes and re-run them using the same 

machine settings used to acquire the samples. For cell-based 

compensation tubes, it is suggested to use a different donor 

(biological source). 

 

Problem 2: 

Clumps in sample. 

 

Potential solution:  

PBMC’S are sensitive to thawing, thus it’s possible that some 

samples are not of the best quality. If clumps are found in the 
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sample while resuspending, pass the cell suspension through 

filtered FACS tubes before acquisition (For example: Corning™ 

Falcon™ Round-Bottom Polystyrene Tubes with Cell Strainer 

Snap Cap, 5mL - Catalog No.08-771-23). It’s important that no 

clumps are passed through the flow cytometer as this may block it.  

 

Problem 3: 

No shift with H2O2 control  

 

Potential solution:  

It is possible that you may see no H2O2 shift or one that is no 

expected for each sample. This can be expected as the chemical 

reaction is fragile and may not yield the expected result. To 

combat this, it is important to test for the appropriate H2O2 

concentration needed for the cell type of interest and use better 

oxidative controls as mentioned in limitations. You should also 

check the effectiveness of your H2O2, as redox reagents tend to be 

air sensitive and repeated opening/closing cycles should be 

minimized. In case of doubts, replace all the reagents with fresh 

ones. 

 

3.13 Resource availability 
 

Lead contact 

Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Alessandra 

Roberto (aroberto@flowmetric.com) 

mailto:aroberto@flowmetric.com
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Materials availability 

This study did not generate new unique materials or reagents.  

 

Data and code availability 

This study does not have data or codes available.  
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3.15 Figure Legends  
  

 
Figure 2.1: Flow cytometry analysis of redox makers on human 

immune cell subsets. A) Gating strategy to detect T, B and NK cell 
subsets. Singlets are defined by gating FSC-A against FSC-H. Live cells 

are identified by gating on viability dye (LD) negative cells . 

Morphological parameters FSC-A and SSC-A then define the 

Lymphocyte gate. T cells are identified as CD3+ cells. On the CD3+ 

cells, CD4 and CD8 markers allow to identify the major T cell 

populations (CD4+ helper T cells and CD8+ Cytotoxic T cells). In both 
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CD4+ and CD8+ compartment, T naïve-like (NL, CCR7+CD45RO-), T 

central memory (CM, CCR7+CD45RO+), T effector Memory (EM, 

CCR7- CD45RO+), T terminal effector memory (TE, CCR7-CD45RO-) 

are defined. On CD3- cells, B cell are defined as  CD19+. On CD19+ 

cells, B Naïve are defined as CD21+,CD27- (Q1), and  B cell Memory  

are defined as CD21+,CD27+ (Q2). On CD3- cells, total NK cells are 

defined as CD56+ cells. From the CD56+ population we can move 

further into defining CD56BRIGHTand CD56DIM. B) Redox markers 

represented by histograms. Compensated redox related markers on the 

total gate of lymphocytes with the red peaks defining the fully stained 

(MVG - MitoView™ Green, MSR - MitoSOX™ Red, NRF2 - nuclear 
factor erythroid 2–related factor 2, SOD1 - superoxide dismutase 1, TTV 

-ThiolTracker™ Violet) and the grey peak defines the FMX controls. C) 

Histograms representing the superoxide anion detection in FMX(grey 

peak), untreated (red peak) and H2O2 treated (orange peak) control of a 

single subject. D) Normalised MSR values of 20 healthy PBMC’s 

showing a significant increase in H2O2 treated against untreated samples 

(p = 0.0233). 
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Chapter 4  

 Multiparametric Flow Cytometry-Based 

Immunophenotyping defines age and sex 

related changes 

 

4.1 Introduction 

 
The immune system of aged individuals is severely impaired when 

compared to the young (Goronzy and Weyand, 2013). Differences 

in immune function also contribute to health and life-span 

discrepancies between sexes, where the role of sex in the immune 

system is still not very well understood (Márquez et al., 2020). 

Therefore, a detailed investigation of the immune response on 

healthy human donors spanning different ages and sexes is 

required to unravel knowledge on the aged immune system. 

 

In order to monitor the changes of the immune response with age, 

we utilise our own standardized multiparametric flow cytometry 

panels to assess T and B cells in order to address the adaptive 

immune response. In the following chapter we have employed a 

flow cytometry approach to analyse T and B lymphocytes from 54 

healthy participants of different ages. We were able to combine the 

measurement of cell-surface markers with the assessment of 

mitochondrial fitness and of some key redox homeostasis players 

in the different immune subsets.   
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We show that, with age, healthy subjects have an overall 

weakened T cell compartment in both sexes and display several 

alterations, mostly involving CD8+ T cell subsets. We also define 

changes in markers of exhaustion (PD1 and TIGIT) and 

senescence (CD57). Meanwhile, we assess a rare subsets of 

memory T cell (CCR7+, CD45RO-, CD95+, TIGIT+, PD1+), that 

has been recently discovered amongst CD8+ TSCM memory cells 

and it  is committed to a reduced functionality and a decreased 

proliferative capacity in response to activation. This subset is a 

progenitor exhausted-like T cell subset (Tpex). It has been 

hypothesised that persistent antigenic stimulation is preferentially 

associated with the development of Tpex cells, while it is thought 

that the Tpex subsets’ exhausted phenotype obstructs T cell 

differentiation. (Galletti et al., 2020). Nevertheless, this subsets has 

still to be assessed in age related studies and we are the first to our 

knowledge to do so.   

 

In B cell subsets, we evaluate transcription factors PAX5 and 

XBP1 and we report a decrease in the frequencies of XBP1 with 

age. XBP1 is a major component of the unfolded protein response 

(UPR) and is essential for maintaining protein homeostasis and 

reducing cellular stresses (McLaughlin et al., 2018). Our analysis 

of age-associated redox markers revealed indeed a significant 

increase in mitochondrial superoxide  which specify an impaired 

redox balance and mitochondrial fitness with age.  
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Overall, our standardized polychromatic flow cytometry assays 

can provide information about the changes of the main adaptive 

immune cells with age. By utilising the panels, a better 

understanding of age-related diseases and immunosenescence can 

be distinguished, thus offering a powerful target for interventions 

to improve the health of the elderly.  

 

4.2 Materials and Methods 
 

4.2.1 Sample information and cell preparation 

 

Peripheral blood mononuclear cells (PBMC’s) were obtained from 

Queen Mary University London, FlowMetric Inc USA or isolated 

from whole blood purchased from European vendors by density 

gradient centrifugation. Then, PBMC’s were frozen and stored in 

liquid nitrogen. A total of fifty-four healthy participants were 

enrolled in the study where all were free from infectious diseases, 

malignant conditions and immunodeficiencies. We categorised our 

cohort in three different age groups with a span of an average of 

20-23 years. The characteristics and composition of each group are 

displayed in Table 4.1. To minimize technical variability, samples 

were analysed in nine batches (6 subjects per batch). An internal 

control was used in each experiment to test the experimental 

variability and avoiding experiment related bias. Frozen cells were 

thawed in RPMI1640 (containing a stable form of L-glutamine), 

supplemented with 10% foetal bovine serum (FBS) and 1% 

penicillin streptomycin -(all from Life Technologies). Cells were 

divided in 3 subsamples: one used for T cell characterization (T 
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cell panel), one for B cell characterization (B cell panel), one for 

Redox investigation (Redox panel) and one for CMV positivity 

testing.  

 

 

Table 4.1: Characteristics of healthy participants 

 

 Variable  Sex 

Age Male  Female Total 

Young 18-35 6 15 21 

Middle Aged 36-59 7 15 22 

Old 60+ 7 4 11 

Total 20 34 54 

 

  

4.2.2 Polychromatic flow cytometry 

 

Cells were first stained for 15 min at room temperature (RT) with 

live/dead fixable dead cell stain kit (Invitrogen™) to eliminate 

dead cells, which may influence the analysis. LIVE/DEAD™ 

Fixable Aqua Dead Cell Stain Kit, a viability dye for 405 nm 

excitation was used in T and B cells panel. The ROS panel 

includes the Invitrogen™ LIVE/DEAD™ Fixable Blue Dead Cell 

Stain Kit, for UV excitation instead. After live/dead staining, cells 

were washed with PBS and then stained for the panel of interest.  

Monoclonal antibodies were purchased from different providers 

(BD Biosciences, BioLegend, ThermoFisher Scientific and 

Abcam) and titrated on human PBMCs to identify the 

concentration proper for the assay (see Chapter 2 for details). 
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Table 4.2 lists all the antibodies used in each panel with their 

staining condition. 

 

 

Table 4.2: List and staining information of all antibodies used for 

the T, B and ROS panel  

 

 

Panel Marker Fluorochrome Clone Type of marker Incubation time (mins) Temperature Dilution buffer

T cell Live Dead Aqua - Dye 15 RT PBS

CD3 APC-H7 SK7 Surface 20 RT PBS

CD4 BV711 L200 Surface 20 RT PBS

CD8 BV786 RPA-T8  Surface 20 RT PBS

CCR7 PE-CF594 2-L1-A Surface 20 37°C PBS

CD45RO PE-Cy7 UCHL1 Surface 20 RT PBS

CD27 Alexa Fluor® 700 M-T271 Surface 20 RT PBS

CD95 BV605 DX2 Surface 20 RT PBS

PD1 BV421 EH12.1 Surface 20 RT PBS

Granzyme B FITC GB11 Intracellular 30 RT Perm buffer

CD57 APC  NK-1 Surface 20 RT PBS

TIGIT BV650 741182 Surface 20 RT PBS

B cell Live Dead Aqua - Dye 15 RT PBS

CD19 BV786 SJ25C1 Surface 20 RT PBS

CD20 APC-H7 2H7 Surface 20 RT PBS

CD27 BV711 L128 Surface 20 RT PBS

CD10 BUV737 HI10a Surface 20 RT PBS

CD21 BV650 B-ly4 Surface 20 RT PBS

CD38 Pe-Cy7 Clone  HIT2 Surface 20 RT PBS

CD43 PerCPcy5.5 1G10 Surface 20 RT PBS

IgM PE-CF594  G20-127 Surface 20 RT PBS

IgD FITC  IA6-2 Surface 20 RT PBS

IgG BV605 RUO Surface 20 RT PBS

CD79A APC HM47 Intracellular 30 RT Perm buffer

PAX5 PE 1H9 Intracellular 30 RT Perm buffer

XBP-1 BV421 Q3-695 Intracellular 30 RT Perm buffer

ROS Panel Live Dead Blue - Dye 15 RT PBS

Nrf2 Alexa Fluor® 647 A-10 Intracellular 30 RT Perm buffer

ThiolTracker™ BV510 - Dye 15 37°C PBS + 2%  RPMI

SOD1 DyLight405 JF1005 Intracellular 30 RT Perm buffer

MitoV iew™ FITC - Dye 15 RT Perm buffer

MitoSOX™ RED - Dye 15 37°C PBS + 2% RPMI

CD3 APC-H7 SK7 Surface 20 RT PBS

CD4 BV711 L200 Surface 20 RT PBS

CD8 BUV800 SK1 Surface 20 RT PBS

CCR7 PE-CF594 2-L1-A Surface 20 37°C PBS

CD45RO PE-Cy7 UCHL1 Surface 20 RT PBS

CD27 Alexa Fluor® 700 M-T271 Surface 20 RT PBS

CD19 BV786 SJ25C1 Surface 20 RT PBS

CD21 BV650 B-ly4 Surface 20 RT PBS

CD56 BUV395 NCAM16.2 Surface 20 RT PBS

CD16 BV605 3G8 Surface 20 RT PBS
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When required, cells were first stained for chemokine receptor 

expression (e.g CCR7 in the T and ROS cell panel) by incubating 

cells at 37°C for 20 minutes (Berhanu et al., 2003). Staining for all 

the other surface protein was then performed at RT for 20 minutes. 

Intracellular markers (e.g GrB) were investigated after the surface 

staining upon fixation/permeabilization process performed with 

Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit (BD 

Biosciences Cat no.: 554714). Transcription factor (e.g. NRF2, 

XBP1, PAX5) were assessed after fixation/permeabilization 

process with eBioscience™ Foxp3/Transcription Factor 

Fixation/Permeabilization Concentrate and Diluent kit (Cat no.: 

00-5523-00.  

Redox panel was performed as reported in chapter 3. Fluorogenic 

MitoSOXTM Red, ThiolTrackerTMViolet and MitoViewTMGreen 

(MVG) dyes were used to detect redox related systems.  

After staining cells were acquired with a BD LSR Fortessa X-20 

flow cytometer (BD, Biosciences, USA), fully equipped with blue, 

red, yellow/green, violet and ltraviolet (UV) lasers. Samples were 

acquired using BD FACSDiva™ Software (V 8.0.3). 
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4.2.3 Cell treatments 

 

H2O2  

To confirm that the Redox panel can detect redox-related changes 

a positive control was prepared treating  2 x 106 cells from each 

subject with a 50 µM final concentration of H2O2 (BioWhittaker 

Cat#17-942E) (Bertolotti et al., 2013, 2016) . Cells were seeded at 

at 37oC  for 1 hour before staining. 

Antigen-specific stimulation 

To detect if subjects were positive for cytomegalovirus (CMV), 

PBMCs were stimulated in 96-well plate for 16 hours with 

PepTivator® CMV pp65 (Cat:130-093-435; 1 mg/mL per peptide). 

Staphylococcal enterotoxin B from Staphylococcus aureus (SEB; 

Cat: S488; 200 μg/mL) was used as a positive control. CMV pp65-

specificity was determined measuring the frequency of cells 

positive for inflammatory cytokines IFN-γ, IL-2, and TNF-α. 

4.2.4 Statistical analyses 

 

Data analysis was performed using FlowJo software (V10.8.2): 

cells of interest were identified using gating strategy based on two-

dimensional identification of cell types, and then frequencies and 

mean fluorescence intensity (MFI) of specific markers were 

calculated in each population of interest.  
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Data processing was performed by GraphPad Prism software 

(V.9.5.1). Simple linear regression models were applied to define 

age and sex related trends for T and B cell subsets where P values 

were considered significant when ≤0.05. Ordinary one way 

ANOVA multiple comparisons test were completed to compare 

different age groups. 
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4.3 Results  
 

4.3.1 T Cells 

 
We studied CD4+ and CD8+ T cells in fifty-four healthy 

participants using multiparametric flow cytometry. The analysis of 

the data involved a classic approach based on two-dimensional 

identification of a cell type, followed by an initial gate that was 

essential to define major populations of interest. Within the major 

populations of interest for T cells we continue gating by 

identifying markers of differentiation, senescence, exhaustion and 

cytotoxicity (Shive et al., 2021). Frequencies from these gates 

were then used to plot linear regression models and scatter plots to 

define age and sex related changes amongst each subset and each 

functional marker of interest. Figure 4.1 shows the gating strategy 

that we used to identify the T cells subsets to compare young and 

old healthy subjects. A first gate was set on the singlets followed 

by the identification of viable cells by using a viability dye (LD). 

Then, we identify the lymphocytes based on the morphological 

parameters (FSC-A, SSC-A). CD3 positivity defines the T 

lymphocytes, among which we classify CD8+ and CD4+ T 

lymphocytes. Within CD4+ and CD8+ T lymphocytes we 

categorise T cell differentiation by gating against CCR7, CD45RO 

and CD95. Specifically, we can isolate Naive T cells (TN: 

CCR7+CD45-), stem cell memory T cells (TSCM: 

CCR7+,CD45RO-,CD95+)  central memory T cells (TCM: 

CCR7+CD45+),  effector memory T cells (TEM: CCR7-CD45+) 

and terminal effector memory T cells (TTEM: CCR7-CD45-),   
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(Roberto et al., 2015). We then go on to analyse markers 

commonly related to T cell exhaustion (PD1, TIGIT) and 

senescence (CD57) (de Biasi et al., 2020; Shive et al., 2021) in 

specific populations of interest. 

 

4.3.1.1 Age and sex impact the T cell reservoir 

 

Figure 4.2 shows linear regression models of CD3+, CD8+ and 

CD4+ T cells frequencies. We identify a significant decline in the 

total frequency of CD3+ T cells with age in all subjects in our 

cohort (Figure 4.2A). These results are accompanied by a 

significant decline of CD8+ T cells with age (Figure 4.2B). On the 

contrary, CD4+ frequency increases significantly with age in all 

subjects, including males and females separately (Figure 4.2C). It 

is observed that males show no particular age-associated 

differences in the frequencies of either CD3+ or CD8+ cells, even 

though the age-dependent decrease of CD8+ T cells in males 

approaches the 0.05 coefficient P value (P = 0.0536, Figure 4.2D).  

 

We then looked at each CD4+ and CD8+ subset separately and 

identified subsets as far as naïve (TN), central memory (TCM), 

effector memory (TEM) and terminal effector (TTEM). A sharp 

loss of naïve CD8+ cells was seen (Figure 4.3A), yet no significant 

age-associated alterations were identified for naïve CD4+ T cells 

(Figure 4.4A). CD8+ naïve T cells have a significant decline in 

females than in males (Figure 4.3A). This could suggest that males 

maintain the CD8+ TN reservoir better than females, however, it 

must be noted that the P value is close to the 0.05 coefficient value 
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(P = 0.078) and a negative slope value is also observed (-0.4228). 

Perhaps if our sample number increased for males we would reach 

the significance expected regarding the decreases CD8+ TN 

reservoir with age. In fact, recent transcriptomic and epigenomic 

studies have shown that T cell function deterioration is prominent 

in both sexes amongst the CD8+ TN cells (Moskowitz et al., 2017; 

Ucar et al., 2017; Márquez et al., 2020).  

 

The EM subsets increase significantly with age in the CD8 

compartment (Figure 4.3C) , but not in the CD4 compartment 

(Figure 4.4C). Amongst the CD4+ subset only CM cells 

significantly increase with age (P = 0.0267 in CD4+ cells) (Figure 

4.4B). These observations may suggest that there is a drastic and 

significant loss of CD8+ cells, thus resulting in the accumulation 

of TEM and end stage differentiated TTEM cells in the elderly for 

the CD8+ T cell compartment. The fact that CD4+ T cells show 

less significant changes than CD8+ T cells could suggest that the 

preservation of CD4+ T cell immune compartment acts as a 

survival mechanism for the elderly. To support our hypothesis, 

there are epigenetic studies that have determined that CD4+ T cells 

have a higher resilience of CD4+ T cells in comparison to CD8+ T 

cells with age (Hu et al., 2020). Moreover, it has been 

demonstrated that homeostatic control mechanisms are very 

effective at maintaining a large and diverse subset of naïve CD4+ 

T-cells throughout lifetime, however these mechanisms eventually 

fail at a more advanced age compared to CD8+ T cells (Moro-

García, 2013; Zhang, Weyand and Goronzy, 2021).  
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4.3.1.2 Senescence and exhaustion increase in T cells with age 

 

The frequency of each T cell subset defines only a partial picture 

how the T cell immune compartment changes with age. Therefore, 

we categorised our cohort in three age groups (Young, 18-35, 

Middle 36-59, Old 60+) and analysed markers of senescence and 

exhaustion. Programmed cell death protein 1 (PD-1) is one of the 

most well-characterized exhaustion markers. We saw that PD1 

significantly and progressively increases from young to old only 

among the CD8+ subsets and not amongst CD4+ T cells (Figure 

4.5 A,B). Additionally, TIGIT, whose high expression on T cells is 

also associated with functional exhaustion, also profoundly 

increases from young to old, yet significantly only amongst the 

total CD8+ immune compartment. CD57 positive CD8+, but not 

CD4+, T cells from middle and old subjects increase significantly 

as well in comparison to young samples (Figure 4.5 A-B).  This 

suggests that CD8+ T cells not only change in frequency but are 

also affected functionally during ageing. However, it can be 

argued that the age-dependent increase of PD1, TIGIT and CD57 

is due to the fact that CD8+ TEM and TTEM subsets increase, as 

these are known as the subsets in which the expression of the 

above-mentioned markers is at its maximum (Dolfi et al., 2013; 

Hutten et al., 2018) . On the contrary, even though the frequency 

of CD4+ TCM increases with age, markers like PD1, TIGIT and 

CD57 do not increase amongst the CD4+ T cells.  

 

To acquire a clearer picture, we dive deep into identifying how 

these markers change in each memory subset. Linear regression 
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models shown in figures 4.6 demonstrate that the increase of PD1 

in the total CD8+ T cells (shown in figure 4.5A) is mainly driven 

by a significant increase in PD1 amongst CD8+ TCM and TTEM 

cell subsets (Figure 4.6A, 4.6D). On the other hand, CD8+ TEM 

remain somewhat functionally intact in the elderly, as their age-

dependent increase is not associated to any significant change in 

the expression of the exhaustion marker PD1 (Figure 4.6A, 4.6D). 

Similarly, even though TIGIT increases significantly from young 

to old (shown in figure 4.6B), the significance is mainly driven by 

CD8+ TTEM cell subsets, although  CD8+ TCM and TEM show 

an upward trend as well, with P values close to 0.05  ( P = 0.071 

and P = 0.078 respectively). CD57 also significantly increases 

mostly in CD8+ TTEM highlighting that these cells, which exert 

potent effector function after activation, are less functional in the 

elderly than the young (Figure 4.6C). Interestingly, even though 

we see no significant changes in the frequency of exhaustion and 

senescent markers amongst the total CD4+ T cell subsets, when 

looking closely to the CD4+ memory subsets we identify a 

significant increase of PD1 and TIGIT in TEM subsets, while PD1 

also increases in TTEM subsets (Figure 4.7). These observations 

suggest that CD4+ T cells still lose some functional abilities with 

age yet not as significantly as CD8+ T cells. We therefore see that 

both compartments of the T cell immune response undergo 

senescence or exhaustion and many suggest that these observations 

are due to lifetime exposures to persistent pathogens and to 

constant homeostatic proliferation (Derhovanessian, Larbi and 

Pawelec, 2009; Saeidi et al., 2018; Breznik et al., 2022). Overall, 
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CD4+ T cells seem to remain more resistant to age-related 

phenotypic and functional changes than CD8+ T-cells, again 

enhancing our hypothesis that the CD4+ T cell immune 

compartment may be the elderlies’ survival mechanism to fight 

infectious diseases, and that the CD8+ T cell compartment should 

be the focus for future research aiming at age related immune 

recovery (Moro-García, 2013; Moskowitz et al., 2017; Ucar et al., 

2017; Hu et al., 2020).  

 

4.3.1.3 Age-related increase of rare CD8+ T cell subset  
 

A newly defined T cell stem-like CD8+ memory T cell progenitor 

was recently discovered. This subset originally comes from 

antigen-specific progenitors with stem-like properties which are 

mainly responsible for the production of T cell memory subsets. 

The production of the memory subsets organised through 

developmental hierarchy is controlled by stem-cell memory T 

(TSCM), which undergo self-renewal to generate TCM and TEM 

subsets. TSCM are characterised as CCR7+, CD45RO- and 

CD95+ (Figure 4.1) (Roberto et al., 2015). Within the CD8+ 

TSCM memory subset investigations were centred in order to help 

researchers understand why T cell differentiation is corrupted 

under conditions of persistent antigenic stimulation, chronic viral 

infections and progressive malignancies. Through these 

investigations, two stem-like CD8+ memory T cell subsets were 

discovered. One subset lacked PD1 and TIGIT, thus was 

committed to a functional lineage. The other one, expressing PD-1 
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and TIGIT, was instead committed to a dysfunctional, exhausted-

like lineage (Tpex) (Galletti et al., 2020). Our data shows that the 

frequency of Tpex cells increases with age in both males and 

females (Figure 4.8B), yet we see no significant changes in the 

CD8+ TSCM subset with age (Figure 4.8A) demonstrating that 

CD8+ T cell differentiation and self-renewal is an effect of Tpex 

accumulation and not due to a decrease of TSCM frequency as 

previously assumed.  

 

4.3.1.4 Ageing T cells experience an increased mitochondrial 

oxidative phenotype 

 

ROS mark as targets in measuring cellular functionality in the 

immune system and their accumulation has been found to 

correlated with disease progression, inflammatory diseases and 

ageing. For this reason, we applied here our novel polychromatic 

flow cytometry panel that measures redox-related markers 

(Chapter 3) on our cohort, to detect fine changes that could be 

occurring with age in different subpopulations of CD4+ and CD8+ 

T cell subsets. Figure 4.9 shows the gating strategy used to detect 

CD4+, CD8+ T cell and the subpopulations (upper panel). Within 

CD4+ and CD8+ T lymphocytes we follow T cell differentiation 

by gating against CCR7, CD45RO to define as previously TN, 

CM, EM and TEM. Within these subsets we were able to analyse 

markers related to the cellular redox status like MVG, MSR, TTV, 

NRF2 and SOD1 (Figure 4.9 – lower panel). To identify the true 

mitochondrial superoxide production of each cell we create a ratio 
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between the MFI of MSR, which measures mitochondrial 

superoxides, and MFI of MVG, which detects mitochondrial mass 

overall, independently of the status of the organelles themselves or 

of the cells. This is because MitoViewGreen appears to localize to 

mitochondria regardless of mitochondrial membrane potential and 

it can be used to normalize the MitoSOX median fluorescence 

intensity (that instead detects mainly mitochondrial ROS, 

specifically anion superoxide). In this way, whatever shift appears 

in the MitoSOX peak would be normalized for the mitochondrial 

mass, meaning that the residual relative differences among 

samples (comparing the ratios) would be really only ROS-

dependent (and not due to a shift of the mitochondrial mass). In 

addition, to confirm that we are detecting true levels of superoxide 

we treated each subject with an optimal concentration of H2O2 to 

generate a redox-positive control for each subject (Chapter 3). 

 

Our results show that the total CD8+ compartment, and all the T 

cell subsets (T naïve, TCM, TEM, TTEM) analysed individually 

demonstrate a significant increase in the normalised mitochondrial 

superoxide (Figure 4.10 A). Due to the previous result on 

senescence and exhaustion, such results were hypothesised to be 

highly prevalent for CD8+ T cells and not so prevalent for CD4+ T 

cells. However, we see similar results in CD4+ naïve and memory 

subsets (Figure 4.10 B). This indicates that even though the CD4+ 

T cell compartment appears to be less impaired with the aging 

compared to the CD8 compartment, the increased mitochondrial 

ROS production could still mark as a typical senescence feature. In 
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fact mitochondria of senescent cells demonstrate a decreased 

mitochondrial membrane potential, increased proton leak and 

increased generation of ROS (Callender et al., 2020; Miwa et al., 

2022).  These results are also confirmed when we compare 

normalised MSR with the three age groups of our cohort (Figure 

4.11).  

 

More precisely, it turned out that young and middle aged 

individuals in our cohort are more similar, from a mitochondrial 

fitness perspective, in comparison to old subjects. Ageing immune 

cells are able to keep mitochondrial ROS levels under control until 

late time in life. However, this is not true for CD4+ TCM cells, 

which show a faster mitochondrial deterioration, which appears in 

the middle ages of life and does not progress much further during 

old age. In fact, amongst the CD4+ TCM subset there are no 

significant changes in the expression of normalised MSR from 

middle to old aged subjects.  

 

To counteract the accumulation of oxygen metabolites, which can 

damage essential cellular components, several antioxidant systems 

are used by the cells. Among the others, we selected SOD1, Nrf2 

and glutathione. SOD1 is a mitochondrial superoxide dismutase 

responsible for destroying free superoxide radicals in the cell. In 

figure 4.12 we show that, in both CD4+ and CD8+ subsets, SOD1 

expression has no significant changes with age. However, we see a 

negative slope, showing that there is a trend for SOD1 to decrease 

with age. The fact that a crucial antioxidant like SOD1 doesn’t 
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change in parallel to the accumulation of mitochondrial superoxide 

marks as an important functional problem for the T cells, 

suggesting a loss of oxidative balance with age. It is interesting to 

note that CD4+ TEM has the closest P value to 0.05 (P = 0.064) 

demonstrating a possible loss of SOD1, where CD4+ TEM was the 

only subset that acquired a significant increase in both PD1 and 

TIGIT with age (Figure 4.7). SOD1 is tightly connected with NF-

E2-related factor-2 (Nrf2), a prototype transcription factor whose 

nuclear transport is redox regulated and master regulator of the 

expression of many antioxidants.  

 

Nrf2 is normally bound to Keap1 in the cytosol. Following H2O2-

dependent oxidation, Keap1 releases Nrf2 that can reach the 

nucleus and bind to antioxidant response elements in the promoter 

of target genes, inducing their expression.   

 

In figure 4.13 we display similar regression models where no 

significant changes in the expression of NRF2 are detected with 

age in T cells. Interestingly, despite the lack of significance, the 

slope is negative for all the CD4+ T cells subsets, but not for 

CD8+ (Figure 4.13). Thus, as expected, Nrf2 shows parallel trends 

to SOD1, supporting an age-dependent functional impairment in 

counteracting oxidative stress in T cells. This results from the 

increase in mitochondrial superoxide, not sustained by a 

corresponding increase of some of the main antioxidant defence 

systems. Further investigation would be important to assess Nrf2 
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cytoplasmic-nuclear translocation, which provides a better 

understanding of this transcription factor functionality. 

 

In order to further characterize the age-related redox reshaping of 

the adaptive immune cells,we then assessed reduced glutathione 

(TTV – Figure 4.14), a potent antioxidant and a convenient 

cofactor for enzymatic reactions. We define no significant changes 

with age other than the exception of CD8+ TCM (P = 0.0307) and 

TEM, which is close to the significant  P value of 0.05 (P = 

0.0552), also subsets that demonstrated an increase in markers of 

senescence and exhaustion (Figure 4.6). Reduced glutathione 

(GSH) is important to buffer excessive damage from ROS and to 

fuel the metabolic demand required after activation ((Mak et al., 

2017). In fact, non-aged early differentiated human CD8+T cells 

were shown to display substantial antioxidant capacity compared 

with more differentiated central and effector memory T cells 

(Pilipow et al., 2018). However, as previously mentioned, ROS 

also regulate signaling pathways in multiple cell types. We could 

thus speculate that the increased GSH levels in CD8+ TCM and 

TEM in old individuals could imply lower activation capacity and 

partial or impaired effector functionality.  
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Figure 4.1: Gating strategy used to analyse markers associated to 

differentiation, exhaustion, senescence and cytotoxicity in CD3+T 

cells. A) First gate was set on the singlets followed by the identification 

of LD– cells. Then, lymphocytes are identified using morphological 

parameters (FSC-A, SSC-A). CD3 positivity defines the T lymphocytes, 

among which we classify CD8+ and CD4+ T lymphocytes. Within 

CD4+ and CD8+ T lymphocytes, Naïve T (Tn) cells are defined as 

CCR7+, CD45RO-; central memory (Tcm) cells are CCR7+, CD45RO+; 

effector memory (Tem) cells are CCR7-, CD45RO+ and terminal 

effector (Ttem) are CCR7-, CD45RO-. Stem cell memory cells (Tscm) 

are gated against CD95 within the Tn subsets. B) Representative 

example of PD1, TIGIT and CD57 expression gated on the total 

lymphocytes. 
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Figure 4.2: Major T cell subsets with age and sex. A) Scatter plot T 

cell (CD3+) frequency out of total lymphocytes of 54 participants in 

relation with participants’ age, CD8+ (B)  T cells frequency in relation 

with participants’ age and CD4+ (C)  T cells frequency in relation with 

participants’ age. In A, B and C each dot represents one subject: red dots 

for female and blue dots for male. Linear regression models of the total 

are represented on each graph. D) Summary of the statistical values (R2 , 

P Value and slope) of the linear regression analysis performed on data 

shown in A, B and C, for each population  in all participants (ALL), and 

in female and male participants separately. P value lower than 0.05 are 
highlighted in grey and lighter grey if close. Coefficient interval bands – 

dotted lines (CI 95%) are also present to show where the true regression 

line lies at a certain level of confidence. 
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Figure 4.3: The frequencies of the CD8+ T cell subsets with age and 

sex. A) Scatter plots of CD8+ Naïve T (CCR7+CD45RO-),  B) CD8 + 

TCM (CCR7+, CD45RO+), C) CD8+ TEM (CCR7- , CD45RO+) and 

D)  CD8+  TTEM (CCR7- , CD45RO-) are shown. In A, B, C and D 

each dot represents one subject: red dots for female and blue dots for 

male. Linear regression models of the total are represented on each 

graph. E) Summary of the statistical values (R2 , P Value and slope) of 

the linear regression analysis performed on data shown in A, B, C and D, 

for each population  in all participants (ALL), and in female and male 

participants separately. P value lower than 0.05 are highlighted in grey 

and lighter grey if close. Coefficient interval bands – dotted lines (CI 

95%) are also present.  
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Figure 4.4: The frequencies of the CD4+ T cell subsets with age and 

sex. A) Scatter plots of CD4+ Naïve T (CCR7+CD45RO-),  B) CD4 + 

TCM (CCR7+, CD45RO+), C) CD4+ TEM (CCR7- , CD45RO+) and 

D)  CD4+  TTEM (CCR7- , CD45RO-) are shown. In A, B, C and D 

each dot represents one subject: red dots for female and blue dots for 

male. Linear regression models of the total are represented on each 

graph. E) Summary of the statistical values (R2 , P Value and slope) of 

the linear regression analysis performed on data shown in A, B, C and D, 

for each population  in all participants (ALL), and in female and male 

participants separately. P value lower than 0.05 are highlighted in grey 

and lighter grey if close. Coefficient interval bands – dotted lines (CI 

95%) are also present.  
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Figure 4.5: The frequencies of exhaustion and senescence markers 

for young (18-35), middle (36-59) and old (60+) participants in CD8+ 

and CD4+ T cells. Aligned scatter graphs showing how PD1, TIGIT and 

CD57 frequencies change amongst three age groups in CD8+ T cells (A) 

and CD4+ T cells (B).  All data represents individual values and error 

bars represent the mean (central bar). Statistical analysis was done by 

Ordinary one-way ANOVA multiple comparisons, comparing young vs 

old, young vs middle aged, old vs middle aged. P values are shown.  
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Figure 4.6: Senescence and exhaustion in CD8+ T cell memory 

subsets. Scatter plot of participants’ age versus frequencies of PD1+(A), 

TIGIT+ (B) and CD57+ (C) CD8+  cells grouped per memory subsets 

(TCM in green, TEM in orange, TTEM in blue). D) R
2
 , P Value and 

slope statistical values of the linear regression analysis for each graph in 

figure A, B and C. P values lower than 0.05 (significant results) are 

highlighted in grey. 
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Figure 4.7: Senescence and exhaustion in CD4+ T cell memory 

subsets. Scatter plot of participants’ age versus frequencies of PD1+(A), 

TIGIT+ (B) and CD57+ (C) CD4+  cells grouped per memory subsets 

(TCM in green, TEM in orange, TTEM in blue) D) R
2
 , P Value and 

slope statistical values of the linear regression analysis for each graph in 

figure A, B and C. P values lower than 0.05 (significant results) are 

highlighted in grey. 
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Figure 4.8: The frequencies of the CD8+ TSCM and TPEX T cell 

subsets with age and sex. A) CD8+ TSCM (CCR7+,CD45RO-,CD95+) 

on the total of CD8+ T cells with age and sex amongst 54 healthy 

donors.  B) From the same donors, the frequency of TPEX subset 

(CCR7+,CD45RO-, CD95+, TIGIT+, PD1+). R
2
 , P Values and slope 

statistical values of the linear regression analysis model are presented in 
the table associated with the figure for each subset and for ALL, female 

and male participants. Coefficient interval bands – dotted lines (CI 95%) 

are also present to show where the true regression line lies at a certain 

level of confidence. 
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Figure 4.9: Redox markers defined in T cells. Gating strategy used to 

analyse markers related to reactive oxygen species (ROS) and to 

antioxidants. Identification of lymphocytes followed by the distinction of 

CD3+ and CD3- cells. On the CD3+ gate, plot against CD4 and CD8 

defining the major T cell populations. In both CD4+ and CD8+, T naïve 

(TN CCR7+, CD45RO-), T central memory (CM CCR7+, CD45RO+), T 

effector Memory (EM CCR7-, CD45RO+), T terminal effector memory 

(TE CCR7-, CD45RO-) are defined. On the total lymphocyte gate 

histograms are displayed to define the fully stained (MVG - MitoView™ 

Green, MSR - MitoSOX™ Red, NRF2 (nuclear factor erythroid 2–

related factor 2), SOD1 (superoxide dismutase 1), TTV (ThiolTracker™ 

Violet) - red peaks, and their Fluorescence Minus One (FMO) controls 

with the grey peaks.   
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Figure 4.10: Normalised MSR in CD8+ and CD4+ T cell subsets. 

Linear regression models of normalised MFI vales of MSR is displayed 

for CD8+ (A) and CD4+ (B) subsets (Total -red, TN -green, CM-blue, 

EM-black and TEM-purple) against age. For all subsets there is a 

significant increase of the expression of normalised MSR with age. R
2
 , 

P Values and slope statistical values of the linear regression models are 
presented in the table associated with the figure for each graph. P values 

lower than 0.05 (significant level) are highlighted in grey. 
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Figure 4.11: The changes of normalised MSR in CD8+ and CD4+ T 

cell subsets displayed in age groups from young (18-35), middle (36-

59) to old (60+) participants. Aligned scatter plots of MFI targets of 

normalised MSR of different CD8+ and CD4+ T cell subsets TN (A), 

CM (B), EM (C), TEM (D). All data represents individual values and 

error bars represent the mean (central bar). Statistical analysis was done 

by Ordinary one-way ANOVA multiple comparisons test. P values are 

comparisons of young vs middle aged, young vs old aged and old aged 

vs middle. P values lower than 0.05 define a significant result.  
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Figure 4.12: Antioxidant SOD1 in CD8+ and CD4+ T cell subsets. 

Linear regression models MFI values of SOD1 displayed for CD8+ (A) 

and CD4+ (B) subsets (Total, TN, CM, EM and TEM) against age. 

Tabular results of simple linear regression analysis for each graph are 

shown. Tabular results of simple linear regression analysis (R2 , P value 

and Slope) is shown for each graph. P values close to the 0.05 P value 

significant level are highlighted in light grey.  
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Figure 4.13: Transcription factor NRF2 in CD8+ and CD4+ T cell 

subsets. Linear regression models of MFI values of NRF2 displayed for 

CD8+ (A) and CD4+ (B) subsets (Total, TN, CM, EM and TEM) against 
age. Tabular results of simple linear regression analysis (R2 , P value and 

Slope) is shown for each graph.  
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Figure 4.14: Reduced glutathione in CD8+ and CD4+ T cell subsets. 

Linear regression models of MFI values of TTV (ThiolTracker™ Violet) 

which measures reduced glutathione displayed for CD8+ (A) and CD4+ 
(B) subsets (Total, TN, CM, EM and TEM) against age. Tabular results 

of simple linear regression analysis (R2 , P value and Slope) is shown for 

each graph. P values lower than 0.05 (significant level) are highlighted in 

grey.  
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4.3.2 B Cells 

 

In addition to T cells, B lymphocytes represent the other crucial 

compartment of the adaptive immune response. For this reason we 

analyzed also changes that occur amongst the B cell response with 

age and sex of 41 healthy donors amongst our total cohort. As 

displayed in Figure 4.15, we identify the B cell subsets by doublet 

discrimination, followed by the identification of viable cells by 

using an LD dye. Then, we identify the lymphocytes based on the 

morphological parameters (FSC-A, SSC-A) and gate against 

CD20+, CD19+ to identify the total B cells. Following this, we 

define B cell differentiation by gaiting against CD21 and 

CD27.Specifically, naïve B cells are defined as (CD21+, CD27-), 

memory B cells (CD21+, CD27+) and exhausted B cells (CD21-, 

CD27-). In Figure 4.15 we show the gating strategy for 

determining immunoglobulins IgD, IgM and IgG, as well as 

transcription factors which are associated with B cell functionality 

PAX5 and XBP1. Positive populations are identified through the 

usage of FMX controls (Figure 4.15-lower panel).  

 

4.3.2.1 B cell characterisation over lifetime  

 

In figure 4.16 we see frequencies of Total B, Naïve B, Memory B 

and Exhausted B cells subsets, yet no significant changes are 

observed across individuals of different age and sex. However we 

can identify a declining trend with age amongst total B cells 

(Figure 4.16A) and Naïve B cells (Figure 4.16B). On the contrary, 

we see an increasing trend regarding memory and exhausted B 

cells. Specifically, the female compartment of the cohort seems to 
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acquire the closest value to the 0.05 significant coefficient value (P 

= 0.0773) for the increase of the exhausted phenotype. Higher 

accumulation of exhausted B cells has been previously reported in 

patients with autoimmune diseases like systemic lupus 

erythematosus, a disease mostly influencing females. CD21- 

CD27- B cells could thus represent a biomarker of increased 

inflammatory phenotype in females with aging (Horisberger et al., 

2022). This sexual-dimorphism in the human immune system, and 

in B cells in particular, could originate from sex-specific 

epigenetic changes. In fact B-cell specific chromatin loci were 

found open in women, yet in men they remain closed with age 

(Márquez et al., 2020).   

 

The expression of immunoglobulins (IgD, IgM and IgG) in the 

main B cell subsets we analysed above outlined no significant 

changes with age (Figure 4.17A,B,C). However, as already 

reported in the literature (Dirks et al., 2023), IgD is more 

prominent in early B cell differentiation stages from all age groups 

(4.17A). Moreover, ageing memory B cells show a trend of 

slightly increased expression of IgM, whilst IgD and IgG stay 

quite constant (Figure 4.17). Memory responses are classically 

assigned to switched IgG memory B cells, whose unique 

cytoplasmic tail confers them enhanced reactivity. IgM memory B 

cells have been described almost 40 years ago, but their precise 

functional role remains as today ill-defined. 

It was proposed that, despite the pentameric structure of the IgM 

antibody which increases its avidity, the lower affinity of IgM 



 166 

memory B cells could in fact afford a wider cross-specific 

protection in front of mutating pathogens (Weill and Reynaud, 

2020). The IgM+ memory B cell pool thus keeps a breadth of 

reactivity similar to that of naïve B cells, but with the advantage of 

being able to rapidly respond to antigen. The slight increase in the 

frequency of IgM+ memory B cells (Figure 4.17 B) could thus 

represent a way to compensate the loss in naïve B cells observed 

with age (Figure 4.16).  

 

We were only able to assess the redox status in B cells subsets 

from 26 healthy subsets from our cohort. However, we were able 

to define a significant increase of normalised MSR with age in all 

B cell subsets analysed, as it occurs in T cells (Figure 4.18A and 

4.10). Additionally, we also measured the MFI of SOD1, NRF2 

and TTV, important antioxidant systems described before, and find 

that also in B cells there are no significant changes, thus, 

indicating a loss of oxidative balance also in B cell subsets with 

age.  

 

4.3.2.2 Transcription factors associated to B cell development 

with age 

 

Together with the frequency of the  major B cell subsets, we also 

assessed two important transcription factors associated to B cell 

development. PAX5, responsible for activating B cell lineage-

specific genes  and XBP1, crucial for the development of 

antibody-secreting plasma cells by controlling unfolded protein 

responses, that relieves endoplasmic reticulum stress and permits 
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antibody release during B cell terminal differentiation  (Todd et 

al., 2009; O’Brien et al., 2011).  

 

In figure 4.19A we characterise the mean fluorescent intensity 

(MFI) of PAX5, which shows no significant changes among the 

total B, naïve, memory and exhausted B cells. In recent epigenetic 

studies PAX5 has shown to be downregulated with age in males 

only, an observation that we were not able to confirm (Márquez et 

al., 2020). However further investigations are required to further 

understand the sex and age related PAX5 changes in B cells . On 

the contrary we define a significant decrease in the frequencies of 

XBP1 expression with age in all B cell subsets (Figure 4.19B). 

Specifically we see a significant drop in the expression of XBP1 

after the age of 60 within our cohort. However when we classify 

our cohort into three age groups (young, middle and old aged) we 

define significant changes from both young to middle aged 

subjects and young to old from all B cell subsets. From middle 

aged to old we see no significant changes (Figure 4.20A). This 

observation has not been previously reported on B cells with age 

thus marking an important point for further investigation. It has 

been recently determined that the loss of XBP1 accelerates age-

related decline in retinal function and neurodegeneration, thus 

indicating that lower XBP1 levels in ageing B cells could also be 

associated with a decreased functionality of B cells amongst old 

healthy subjects (McLaughlin et al., 2018). Interestingly, in some 

C. elegans studies where the activation of XBP1 is encouraged in 
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neuronal expression, lifespan was improved  (Henis-Korenblit et 

al., 2010; Taylor and Dillin, 2013).   

 

XBP1 has also been linked to Systemic Lupus Erythematosus 

(SLE) and its blockade could be a potential strategy to treat 

autoimmune diseases (Piróg et al., 2019). Autoimmune diseases 

are mostly prevalent in females as defined in the literature (Angum 

et al., 2020), thus we assessed the expression of XBP1 in males 

and females in our cohort and found that women do in fact have a 

trend to express higher percentages of the transcription factor than 

men in all B cell subsets (Figure 4.20B), yet these results require 

further investigations.  
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Figure 4.15: Mature B cell subsets, immunoglobulins and 

transcription factors. Gating strategy used to analyze markers 

associated to B cell differentiation, identification of immunoglobulins 

IgD, IgM and IgG and transcription factors associated to B cell 

maturation (PAX5, XBP1). Total B cells are defined by gating first on 

singlet (FSC-H vs FSC-A), live cells (LD- cells), total lymphocytes 

(FSC-A vs SSC-A), CD19+ and CD20+.cells. Naïve B cells are then 

defined as CD21+, CD27- while memory B cells are identified as 

CD21+, CD27+ and exhausted memory B cells are defined as CD21-, 

CD27-. We include an fluorescent minus-X (FMX) control to define the 

gating strategy for XBP1 (blue is FMX and red is the fully stained).  
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Figure 4.16:  Major B cell subsets with age and sex. A) Scatter plots 

of the frequencies (%) of 41 healthy donors  of their total B cell (CD20+. 

CD19+)  distribution is displayed as a linear regression model. B) Naïve 

B (CD21+CD27-, C) Memory B cells (CD21+CD27+ and D) exhausted 

B cells are also show The R2 , P Value and slope statistical values of the 

linear regression analysis model are presented in the table associated 
with the figure (E) for all subjects female and male participants 

separately. Coefficient interval bands – dotted lines (CI 95%) are also 

present to show where the true regression line lies at a certain level of 

confidence. 
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Figure 4.17: Immunoglobulin distribution with age. Linear regression 

models of IgD (A), IgM (B), IgG (C) frequencies in relation to age of 41 

healthy donors of Total B cells (red), Naïve B cells (blue), memory B 

cells (orange), exhausted B cells (purple). Tabular results of simple 

linear regression analysis for each graph are shown (R2, P value, Slope).  
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Figure 4.18: Redox related markers in B cell subsets. Scatter plots of 

normalised MSR (A), SOD1 (B), TTV(C) and NRF2 (D) of 26 healthy 
donors amongst their Total B cells (red), Naïve B cells (blue), memory B 

cells (orange), exhausted B cells (purple). Tabular results of simple 

linear regression analysis for each graph are shown (R2, P value, Slope), 

highlighted grey values indicate a P value lower than the 0.05 

significance level.   
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Figure 4.19: Transcription factors expressed in major B cell subsets 

with age.  A) Mean Fluorescence Intensity (MFI) values of transcription 

factor PAX5 shown via linear regression models to determine age related 

alternations in Total B (red line), Naïve B (blue line), Memory B (orange 

line ) and Exhausted B (purple line) cells. B) Transcription factor XBP1 

frequencies are  also present The R2 , P Value and slope statistical values 

of the linear regression analysis model are presented in the table 

associated with the figure for all subjects and highlighted grey values 

indicate a P value lower than the 0.05 significance level. 
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Figure 4.20: Distribution of XBP1 frequencies in different age 

groups and sexes. A) XBP1 frequencies are displayed in different age 

groups (Young 18-35, Middle 36-59, Old 60+) of all B cell subsets 

analysed (Total B, Naïve B, Memory B, and Exhausted B cells). 

Comparisons of each age group (Young vs Middle, Young vs Old, 

Middle vs Old) via ordinary one-way ANOVA multiple comparisons test 

(P values are displayed for each comparison). B) The distribution of 

XBP1 frequencies for each subject comparing females (red) and males 

(blue) in each B cell subset.  
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4.4 Conclusion 
 

 

In the current chapter we utilised our standardised multiparametric 

flow cytometry panels in order to assess age related changes 

amongst 54 healthy donors in the adaptive immune response. Our 

panels were able to distinguish an age-related decline amongst 

naïve lymphocytes as well as an increase in memory lymphocytes 

with impaired immune function, due to the increased expression of 

exhaustion markers like PD1 and TIGIT. Additionally, CD4+ T 

cells seem to remain more resistant to age-related phenotypic and 

functional changes than CD8+ T-cells.   

 

The CD8+ T cell compartment should be the focus for future 

research aiming at age related immune recuperation, as we defined 

it as the most hindered population. Studies further focusing on 

CD8+ T cell restoration with age should focus their attention on a 

newly defined CD8+ T cell subset, known as Tpex, since due to 

their exhausted phenotype they are known to obstructs T cell 

differentiation. For the first time we defined an increases 

frequency with age in Tpex cells, thus their restoration could 

remodulate the hindered age related differentiation in CD8+ T cell 

subsets.  

 

Even though we saw no significant changes amongst B cells 

subsets, we identified a significant drop in the expression of 

transcription factor XBP1 in B cells with age. XBP1 is an 

important marker for age related neuron studies but has not been 
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yet considered in B cell aging. Being XBP1 one of the major 

drivers of terminal plasma cell differentiation and modulators of 

the unfolded protein response, the observed age-dependent decline 

might result in a failure of B cells to up-regulate UPR-related 

XBP1 target genes during terminal B cell differentiation. 

However, this hypothesis would need to be verified by analyzing 

XBP1 activity in the expression of genes required for biogenesis of 

the protein secretory pathway, protein folding and secretion, as 

well as clearance of misfolded proteins from ER. 

 

Our novel redox panel is able to identify an increase of superoxide 

anions yet no significant changes amongst key antioxidants with 

age thus suggesting an impaired redox balance with age in T and B 

cells.  

These findings are consistent with the mitochondrial oxidative 

stress theory of aging. However, we have to consider that other 

theories exist, claiming that increased superoxide generation might 

act as a signal in young cells to trigger changes of gene expression 

that prevent or attenuate the effects of subsequent aging. This 

would imply superoxide being generated as a protective signal in 

response to molecular damage sustained during aging and further 

studies would be required to justify that. 

 

Although there has been significant progress in identifying age-

associated changes in major lymphocyte subsets, more research is 

required to pinpoint age-associated alterations in T and B cells at 

the levels of gene expression, protein, and cellular organelles. New 
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lymphocyte subsets are constantly emerging thus our knowledge 

on age-related studies is limitless. A deeper comprehension of the 

mechanisms underlying the age-related changes in adaptive 

immune response will open up new possibilities for increasing the 

production of naive cells and preserving the memory-lymphocyte 

pool and its functionality. These further studies with then allow us 

to create vaccines and treatments that are more effective in older 

people.  
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Chapter 5 

 High-dimensional single cell analysis of NK 

cells with age and sex  

 

5.1 Introduction 
 

 

Natural killer (NK) cells are essential effector cells of the innate 

immune system whose defensive tactics include direct cytotoxicity 

by utilising cytotoxic granules and the release of 

immunoregulatory cytokines. They serve as the first line of 

defence against malignant and virally-infected cells (Hamerman, 

Ogasawara and Lanier, 2005; Waldhauer and Steinle, 2008; 

Michel et al., 2016). Human NK cells are generally characterized 

by the expression of the CD56+ surface marker. Based on 

differential surface expression of CD56 it is possible to identify 

two major subsets: CD56 bright (CD56BRIGHT)and CD56 dim cells 

(CD56DIM). 

 

Less mature NK cells called CD56BR exhibit poor cytotoxicity, but 

produce a wide range of chemokines and cytokines to either aid 

cells of adaptive immune response or signal innate cells like 

dendritic cells to respond to invading pathogens. When in response 

to cellular stimuli, the more developed CD56DIM cells are powerful 

cytotoxic and cytokine-secreting cells (Hamerman, Ogasawara and 

Lanier, 2005; Poli et al., 2009a; Michel et al., 2016; Roberto et al., 

2018; Laskowski, Biederstädt and Rezvani, 2022). 
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NK cell immunesenescence, is a phenomenon coupled with the 

normal aging process, and is characterized by changes in the 

composition, phenotype, and functionality of NK cells (Judge, 

Murphy and Canter, 2020). An increased incidence and severity of 

viral infections, pneumonia, and infectious disease deaths are 

associated with decreased NK cell activity in elderly individuals 

(Ogata et al., 2001; Waldhauer and Steinle, 2008; Hazeldine, 

Hampson and Lord, 2012; Hazeldine and Lord, 2013). In addition, 

a 2-fold increase in cancer was linked to low NK functionality 

(Imai et al., 2000).  

 

Here we developed a standardized polychromatic flow cytometry 

panel to  assess age related changes in NK cell subsets of healthy 

donors and identify patterns of NK cell immunesenescence that 

increase the risk for cancer and infectious diseases. 

 

5.2 Methods 
 

5.2.1 Sample information 

 

Peripheral blood mononuclear cells (PBMC’s) were isolated by 

density gradient centrifugation from whole blood of forty-five 

healthy subjects. All subsets were free from infectious diseases, 

malignant conditions and immunodeficiencies. We categorised our 

cohort in three different age groups; Young (from 18 to 35), 

Middle (from 36 to 59) and Old (over 60 years old) (Lin et al., 
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2020; Márquez et al., 2020). Table 5.1 displays the composition of 

each group of subjects  . 

 

Table 5.1: Characteristics of healthy participants 

Variable Sex    
Age Male Female Total 

Young  3 10 13 
Middle  7 16 23 

Old 5 4 9 
Total 15 30 45 

 

 

5.2.2 Flow Cytometry  

 

Single cell suspension of PBMC’s were labelled initially with a 

viability dye by Invitrogen™ (LIVE/DEAD™ Fixable Aqua Dead 

Cell Stain Kit), for 405 nm excitation. Commercial monoclonal 

antibodies were used to stain cells for identification of all the 

markers necessary to NK cells characterization. CD14-BV510 , 

CD19-BV510, CD3-APCH7 were used to erase monocytes, B 

cells and T cells from the analysis. The following monoclonal 

antibody were used for NK cell characterization: CD56-BUV395, 

CD16-BV605, CD94-BUV495, NKG2D-PECF594, NKG2A-

PEcy7, NKG2C-BUV805, NKp30-BV711, NKp46-BV786, 

DNAM1-PE, HLA-DR-PerCPcy5.5, CD107A-AF700, Granzyme 

B (GrB)-FITC, CD107A-AF700, PD1-BV42 and CD57-APC. The 

Cytofix/Cytoperm™ Fixation/Permeabilization was used for 

determining the intracellular markers GrB and CD107a. All the 

subjects were tested in 8 different experiments (around 6 donors 
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per experiment). An internal control was used in each experiment 

to test the experimental variability and avoiding experiment related 

bias. 

Cells were acquired with a BD LSR Fortessa X-20 flow cytometer 

(BD, Biosciences, USA), fully equipped with blue, red, 

yellow/green, violet and UV lasers. The acquisition was performed 

using BD FACSDiva™ Software (V 8.0.3). 

 

5.2.3 Analysis  

 

Flow cytometry data analysis was performed using FlowJo 

software (V10.8.2). Considering the amount of markers to assess a 

computational analysis approach was conducted.  

Total events were compensated while doublets and dead cells were 

eliminated. NK cells were defined as CD14–, CD19– and CD3– 

cells across all samples. Total NK cells from each subject were 

down-sampled using FlowJo Downsample v3.3.1 plugin to yield 

5,000 cells per sample. Samples were then concatenated in a 

unique fcs file. The compensated concatenated FCS file was used 

to perform the FlowJo Uniform Manifold Approximation and 

Projection  (UMAP) v3.1 plugin that offers a non-linear 

dimensionality reduction visual assessment of high dimensional 

data. (McInnes, Healy and Melville, 2018). For cluster 

identification, the FlowJo PhenoGraph v2.5.0 plugin was run with 

the default settings including the following parameters CD56, 

CD16, NKG2A, NKG2C,NKG2D, NKp30, NKp46, DNAM-1, 

Granzyme B (GrB), PD1, CD57, HLA-DR, CD94 and CD107A.  
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For evaluation of marker expression changes in the distinct 

clusters, integrated MFI (iMFI) scores were calculated by 

multiplying the positive frequency of each marker by the MFI of 

the positive population (Darrah et al., 2007). The iMFI values 

were rescaled to values from 0 to 100 (Brummelman et al., 2018).  

5.2.4 Statistics 

The statistical analysis was performed using GraphPad Prism 

software (V.9.5.1). Multiple comparisons t tests was completed to 

compare different age groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 189 

5.3 Results  
 

5.3.1 High-dimensional single cell analysis of NK cells in 

healthy immunophenotypes  

 

To characterize the diversity of CD56+ NK cells in healthy 

subjects spanning different ages, we developed a polychromatic 

flow cytometry panel capable of simultaneously investigating 17 

parameters on thousands of single cells from peripheral blood of 

forty-five healthy donors. Markers included in the panel, providing 

information on NK cell differentiation (CD56, CD16), NK cell 

receptor expression (CD94, NKG2C, NKG2D, NKp30, DNAM-1, 

NKp46, NKG2A), activation marker (HLA-DR), cytotoxicity 

(GrB, CD107A), exhaustion (PD1) and senescence (CD57). To 

reduce the dimensionality of the dataset and visualize high 

parameter datasets in a two dimensional space, UMAP algorithm 

was performed. Fig. 5.1A shows the UMAP plots of concatenated 

files on the total NK cells in all the 45 healthy subjects together 

with the expression level of the indicated functional and 

phenotypic NK markers. To gain a further insight on the 

immunophenotypes that preferentially characterize NK cells from 

the different group of subjects, PhenoGraph analysis was used 

(unsupervised clustering algorithm suitable for high-dimensional 

single cell data). PhenoGraph analysis identified 31 different NK 

subpopulations (“clusters;” visualized by using UMAP plots; Fig. 

5.1B).  
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Figure 5.2A displays the frequency of each cluster for all 45 

subjects. Clusters 8, 13, 14, 22, 23, 24, 29, 30 and 31 had 

frequencies less than or equal to < 1%, therefore they were 

eliminated from the analysis to exclude biases. 

 

To describe the phenotypic individuality of immunophenotypes 

resulting from PhenoGraph clustering, we calculated the iMFI 

values of each marker in each selected cluster and visualized these 

values in the form of a heat map (Figure 5.2B). 

 

The UMAP analysis revealed slight changes in cluster 

representation and frequency in each age group (Young 18-35, 

Middle 36-59, Old 60+) (Fig. 5.3A). Therefore, to assess age 

related differences in the distribution of each cluster we 

investigated the cluster frequencies in all 45 subjects in each age 

group (Fig. 5.3B). Our analysis revealed that there are three 

clusters whose frequency significantly change with the aging. 

 

5.3.2 NK cells loose adaptive communication with age 

 

Cluster 3 significant increases from young to middle aged 

individuals (p = 0.0434), yet, it decreases from middle aged to old 

(p = 0.0094) – Fig. 5.3B. By cross referencing the heat map in 

Figure 5.2B, cells in cluster 3 expresses CD56, but they lack 

CD16. Indeed, they mainly belong to a subsets of CD56BRIGHT 

CD16– NK cells but also overlap with subset of CD56DIMCD16– 
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NK cells (Fig. 5.4). Cluster 3 acquires a high expression level of 

NK cell receptors as CD94, NKG2A, and NKG2C, dim levels of 

NKp30, NKp46 , and NKG2D. Consequently, in our cohort cells 

from cluster 3 exhibit a decrease with age from middle aged to old 

subsets, which are a subset aligned with CD56BRIGHT NK cell 

characteristics. CD56BRIGHT NK cells are prime secretors of 

immunoregulatory cytokines like IL-10 and IL-13 after antigen 

recognition where minimal production of these molecules is 

identified in CD56DIM NK cells (Michel et al., 2016). The cytokine 

response by CD56BRIGHT NK cells is critical in the activation of the 

adaptive immune response by NK cells thus its diminished 

availability with age could contribute to the impaired immune 

regulation observed in elderly individuals (Chidrawar et al., 2006; 

Poli et al., 2009b; Almeida-Oliveira et al., 2011). Studies have 

previously denoted that CD56BRIGHT NK cells do in fact decrease 

but also their cytokine production is substantially diminished 

(Hazeldine and Lord, 2013).  

 

Cluster 3 also has a strong expression of CD94, which is an NK 

cell marker associated to NK cell development, and contributes to 

NK cell-mediated immunity to certain chronic infections including 

CMV (Gumá et al., 2006; Yu et al., 2010).  CD94 covalently 

associates with members of the NKG2 family (NKG2A, B, C, E, 

and H), but insignificantly with NKG2D. Indeed, in the heatmap in 

figure 5.2B, we can see that cluster 3 is highly enriched in NKG2 

family proteins, with NKG2D acquiring the least expression (Orr 

et al., 2010; Yu et al., 2010).  
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The ligand for CD94/NKG2 heterodimers is a MHC-I molecule, 

HLA-E in humans and categorised as an inhibitory receptor 

(Rosenberg and Huang, 2018). Under normal conditions, ligation 

of CD94/NKG2 to MHC-I HLA-E molecule, supress signalling 

activation, avoiding normal cell destruction. Downregulation of 

MHC I is common in tumour cells and has been denoted to 

associate with immune-evasion, that require MHC I signalling for 

activation (Rosenberg and Huang, 2018). Consequently NK cells 

have been targeted for immunotherapy in order to induce 

activation by inhibiting CD94/NKG2 heterodimers (André et al., 

2018). The decrease of cluster 3 implies a loss of adaptive and 

innate cell communication due to loss of cytokine production and 

in parallel the enriched expression of CD94/NKG2 heterodimers 

associates to immune evasion, increasing the risk for malignant 

disorders in the elderly.  Further studies assessing whether the 

increase of CD56BRIGHT NK cells can rejuvenate the adaptive and 

innate communication with age, and in parallel inhibit highly 

expressed CD94/NKG2 heterodimers from triggering immune 

inhibition are required.  

 

Another cluster whose frequency changes with age is cluster 11. 

The frequency of cluster 11 has a significant increase from middle 

aged to old aged subjects within the cohort as shown in Fig. 5.3B 

(p= 0.0033). Cells in cluster 11 also belong to CD56BRIGHT CD16– 
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NK cell subsets, as cluster 3, however cells in cluster 11 are also 

closely associated to CD56DIM CD16– NK cells (Fig 5.4).  

 

In comparison to cluster 3, cluster 11 mostly express NK cell 

receptors like NKp46 and has an enrichment of cells dim for 

NKG2C, NKG2A, NKp30 and low for CD94.  NKp46 is a major 

NK cell-activating receptor that is involved in the direct 

elimination of target cells. Specifically, NK cells positive for 

NKp46 form different types of synapses that result in distinct 

functional outcomes associated with cytotoxic, inhibition and 

regulation (Poli et al., 2009a; Hadad et al., 2015).  

 

An important observational difference amongst the two clusters is 

that cluster 3 acquires a stronger expression of CD107A than 

cluster 11 (Fig 5.2B). Throughout the process of degranulation, 

NK cells release cytolytic granules and membrane proteins like 

CD107A present to the surface and assess in the granule 

exocytosis mechanism. Due to these increased expression of 

CD107A in cluster 3 this may suggest that cells within this cluster 

acquire more functional characteristics than cluster 11. 

Additionally, studies have shown that NK cells that express more 

cytotoxic related ligands are a more differentiated NK cell subsets 

(Di Vito, Mikulak and Mavilio, 2019). This implies that cluster 3 

belongs to a more differentiated NK subset than cluster 11.   
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5.3.3 A cluster negative for CD56 is enriched with age and its 

driven by males 

 

Cluster 16 displays a significant increase in frequency from middle 

to old age subsets as shown in figure 5.3B (P = 0.0107). The cells 

present in cluster 16 show no expression of CD56, CD16, and 

other NK cell receptors (Fig 5.4, 5.2B). We confidently feel that 

these cells are neither dead cells, CD3+ T cells, monocyte (CD14+) 

nor B cell (CD19+) contaminates, since these cells have been 

excluded from the analysis. On the basis of the heatmap in figure 

5.2B, cluster 16 acquires an enrichment of PD1, yet no other 

marker.  

 

Recent studies have shown that CD56 negative NK cells are an 

anomalous NK cell subset found in small numbers in healthy 

individuals and at elevated levels amounts individuals chronically 

infected with HIV-1, HCV, CMV and other chronic infections 

(Müller-Durovic et al., 2019; Cocker et al., 2022). It has been 

identified that individuals with such altered NK profiles respond 

differently to infections, vaccines and NK associated 

immunotherapies (Barker et al., 2007). The first identification of 

CD56 negative NK cells was reported in a study associated with 

patients infected chronically with HIV-1, while further studies 

identified an enrichment in this cell subset amongst HIV-1 infected 

patients (Hu et al., 1995; Mavilio et al., 2005; Björkström, 

Ljunggren and Sandberg, 2010). 
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A recent studies on cancer patients positive for CMV has also 

demonstrated that leukemic patients acquire an enrichment of 

CD56 negative NK cells especially when treated with dasatinib (a 

drug that inhibits activated BCR-ABL) (Ishiyama et al., 2021). 

The same study assessed the functionality of CD56 negative NK 

cells and identified a downregulation of NK-activating receptors, 

upregulation of PD-1, and decreased cytotoxicity and cytokine 

production, while functional studies showed that these cells are 

anergic and less functional. These findings suggest that CD56 

negative NK cells are an exhausted population of NK cells 

(Ishiyama et al., 2021). Indeed, cluster 16 does not express 

functional markers like GrB and CD107A, however highly 

expresses levels of PD1, a known maker of exhaustion (Cho et al., 

2020; Ishiyama et al., 2021).  

 

When assessing sexual dysmorphism in our cohort amongst the 

NK cell subsets, we saw no significant changes amongst middle 

and young males and females (data not shown). On the contrary, 

we conducted a multiple unpaired t test comparing old male and 

female subjects in our cohort and determined that there is a 

significant enrichment of cluster 16 and cluster 11 in males when 

compared to females (fig. 5.5A, B). In figure 5.5B we plot the 

results of the statistical analysis by using a volcano plot and we 

can determine that C16 and C11 acquire a significant difference 

with a -log10(P value) of -log10(P = 1.58) and -log10(P= 1.615) 

respectively. In gender related studies on NK cells, elderly men 
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have demonstrated to have less robust NK lymphocytes, while 

mature NK cells in females have a more vigorous cytotoxic 

granule response and thus are much more functional than males 

(Imai et al., 2000; Al-Attar et al., 2016; Huang et al., 2021). The 

fact that cluster 16 is mostly enriched in males prompts that males 

in our cohort are more prone to lose vital NK receptors with age 

and uphold an exhausted NK phenotype. Additionally, males seem 

to also drive the enrichment of cluster 11 with age. As previously 

stated, cluster 11 acquires less functional markers and is prone to a 

more differentiated phenotype thus instigating that males obtain a 

less immunocompetent innate immune response than females 

amongst CD56BRIGHT NK cells. Nevertheless, a higher sample size 

is recommended in order to fully confirm these observations. 
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5.4 Conclusion 
 

We developed and adopted an optimised flow cytometry panel and 

protocol capable to investigate the expression of 15 NK cells 

markers in human NK lymphocytes and define age and sex related 

changes in healthy donors. We applied a high-dimensional single 

cell approach to analyse and define phenotypic subpopulations that 

are preferentially enriched or diminished in healthy aging. 

Dimensionality reduction UMAP analysis is utilised to visualise 

the 31 clusters defined by PhenoGraph analysis and found that the 

frequency of CD56BRIGHT NK cells declines with age. CD56BRIGHT 

NK are efficient cytokine producers that signal other innate cells 

and adaptive immune cells and their diminished availability with 

age consequences to age related immunocopentances. Our analysis 

determined an enrichment of a CD56 negative population driven 

by males in our cohort. CD56 negative cells have been previously 

described in patients with chronic infections and are hypothesised 

to be an exhausted NK cell type with a terminally differentiated 

phenotype. Further studies, with a higher sample size are essential 

to understand the maturation status of CD56 negative NK cells and 

what cells are their precursors.  
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Figure 5.1: UMAP representation of automated PhenoGraph 

clustering analysis on total NK cells of 45 donors. A) UMAP plots of 

live, CD3-, CD19-, CD14- cells from 45 healthy donors (5,000 cells 

each), representing where each marker assessed is mostly enriched 

where red demonstrates high expression and blue is low expression. B) 

Visualization on UMAP plots of the 31 clusters determined by 

PhenoGraph analysis of live, CD3-, CD19-, CD14- cells from 45 healthy 

donors (5,000 cells each). 
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Figure 5.2: Frequency and heatmaps of each clusters. A) Bar graph 

representing the frequency of each cluster obtained by the PhenoGraph 

analysis. Red line indicates 1% of frequency (the threshold used for 

excluding clusters from further analysis due to very low frequencies. B) 

Heatmap representing the expression level of each marker of interest in 

all the clusters with frequency higher than 1%. The expression level is 

shown as  an integrated MFI (iMFI) rescaled to values from 0 to 100.  
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Figure 5.3: Age related changes on NK cells after computational 

analysis. A) UMAP plot of automated analysis of all NK cells from 46 

healthy separated by age (Young 18-35, Middle 36-59, Old 60+). B) 

Frequencies (%) on selected cluster per young 18-35 (grey), middle 36-
59 (dark red) and old 60+ (red) age groups. Each dot represents a 

subject,  mean frequency is displayed as a bar chart and error bars 

indicate the standard deviation for each bar. The table displays the p 

values and statistical summary of the multiple t test analysis comparing 

each age group per cluster. 
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Figure 5.4: Six major NK cell subsets in cluster 3, 11 and 16. UMAP 

plots showing where six different NK subsets are displayed and how 

close in proximity they are with cluster 3, 11, and 16. The NK subsets 

are CD56++CD16- (CD56BRIGHT), CD56++CD16++, CD56+CD16-, 

CD56+CD16+ (CD56DIM), CD56-CD16- and CD56-CD16+. 
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Figure 5.5: Old males and female changes of NK cell subsets after 

computational analysis. A) UMAP plot of automated analysis of all NK 

cells from 45 healthy donors and the old subjects below (60+) where 

males are on the right and females on the left. B) Volcano Plot 

comparing old females vs old male frequencies of each cluster where the 

X axis plots the difference between means. A dotted grid line is shown at 

X=0 that means no difference. The Y axis demonstrates the -log 10 of 

the p (0.05). The threshold of significance (-log10(0.05) = 1.3) is 

indicated with a horizontal dotted red line. 
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Chapter 6  

Concluding Remarks of the Thesis 

 

6.1 Conclusion 
 

The challenges brought by the accelerated aging of the global 

population are felt in almost every nation, and have been certainly 

highlighted during the COVID-19 pandemic. A rise in age-related 

diseases, many of which have an immune component, is a result of 

the increased aged population. Understanding the pathophysiology 

of aging-related diseases amongst the immune system is therefore 

more crucial than ever.  

 

The aim of this project was to develop and optimise standardised 

PFC panels that have the capability to detect age and sex related 

changes amongst T, B and NK lymphocytes, their subsets, and 

assess their functionality by evaluating their redox status.  

 

As expected, this thesis has demonstrated that flow cytometry is a 

gold standard and robust technique for evaluating the phenotypic 

and functional characterisation of the immune system.  Flow 

cytometry can measure multiple markers simultaneously on more 

than a thousand cells per second, which makes it possible to 

collect high throughput and high dimensional data from both a 

small and large volume of samples. Overall, our panels allow a 

deep characterisation of intracellular and functional components of 
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a variety of lymphocyte populations. Besides, our novel redox 

panel is noteworthy, as for the first time, multiple redox markers 

can be measured at a single cell level simultaneously with other 

phenotypic markers, something that traditional techniques like 

immunoblotting and microscopy can’t do.  

 

Specifically, by using our newly designed panels, we were able to 

identify that CD4+ T cells remain more resistant to age-related 

phenotypic and functional changes than CD8+ T cells, which 

exhibits a profound decrease in frequency and present an 

exhausted and senescent phenotype. For the first time we 

demonstrated that TPEX cells, a newly defined exhausted subset 

of stem cell memory T cells, increases with age in males and 

females, thus suggesting that their increased presence restricts 

CD8+ T cell differentiation and functionality (Galletti et al., 

2020). Consequently, further studies are necessary to elucidate 

CD8+ T cell loss of function with age, and further investigate 

mechanisms that could delay T cell senescence and exhaustion.  

 

We are also able to clearly identify transcription factors that have 

been associated with age related changes in genomic studies. For 

example in B cells we identified a loss of XBP1 in all B cell 

subsets. XBP1 controls the transcription of UPR target genes 

involved in protein folding and consequently B cell plasma 

secretion (Grootjans et al., 2016). Loss of XBP1 has been found to 

accelerate age-related decline in retinal function and 

neurodegeneration, thus confirming that XBP1 could potentially 
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be a target for B cell aging (McLaughlin et al., 2018). By taking 

advantage of our Redox panel we demonstrated that among all T 

and B cell subsets, there is a loss of oxidative balance with age due 

to an increase of superoxide anions (ROS), while antioxidants like 

SOD1 and NRF2 don’t change. This result signifies a loss of 

oxidative balance with age.  

 

The comprehensive analysis of our NK cell panel revealed a 

decline of CD56BRIGHT NK cells with age. CD56BRIGHT NK cells 

are important correspondents towards the adaptive immune 

response by secreting cytokines thus their loss with age highlights 

the loss of communication amongst adaptive and innate cells with 

age (Michel et al., 2016). Furthermore, we observed a significant 

enrichment of lymphocytes that lack CD56 but express high level 

of PD-1. We believe that further studies should emphasise on 

CD56 negative NK cells that seem to become enriched in healthy 

aging and how their recovery could convalesce the NK immune 

response. 

 

In conclusion, our PFC panels demonstrated that the immune 

system is generally impaired with the aging, with a higher 

expression of exhaustion markers in T and NK cells, a loss of 

XBP-1 in B cells, and an overall loss of oxidative balance in T and 

B cells. Therefore the panels developed in this thesis can be used 

not only to asses major age and sex related changes but can be 

exploited by clinical trials to help the scientific community unravel 

information regarding T, B, NK cells and their redox status.  
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