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Abstract

Fluid flow in pipes with discontinuous cross section or with kinks is described through
balance laws with a non conservative product in the source. At jump discontinuities in
the pipes’ geometry, the physics of the problem suggests how to single out a solution. On
this basis, we present a definition of solution for a general BV geometry and prove an
existence result, consistent with a limiting procedure from piecewise constant geometries.
In the case of a smoothly curved pipe we thus justify the appearance of the curvature in
the source term of the linear momentum equation.

These results are obtained as consequences of a general existence result devoted to
abstract balance laws with non conservative source terms.

Keywords: Fluid flows in pipes; Non conservative products in balance laws.

AMS subject Classification: 35L65; 76N10.

1 Introduction

Conservation laws in one space dimension, i.e., systems of partial differential equations in
conservative form of the type

∂tu+ ∂xf(u) = 0 t ≥ 0, x ∈ R , (1.1)

allow to describe, for instance, the movement of a fluid along a rectilinear pipe with constant
section. Assume that at a point x̄ the pipe’s direction or its section changes. Then, equa-
tion (1.1) can be used, separately, where x < x̄ and where x > x̄. At the point x̄, on the basis
of physical considerations, a further condition is necessary to prescribe the possible defect in
the conservation of the various variables. Typically, such a condition is written as

Ψ
(

z+, u(t, x̄+), z−, u(t, x̄−)
)

= 0 for a.e. t > 0, (1.2)
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where z+ and z−, identify the physical parameters that change across x̄. Alternatively, (1.2)
can be rewritten making the defect in the conservation of the u variable explicit, that is

f
(

u(t, x̄+)
)

− f
(

u(t, x̄−)
)

= Ξ
(

z+, z−, u(t, x̄−)
)

for a.e. t > 0 . (1.3)

It is then natural to tackle the resulting Riemann Problem, that is, the Cauchy Problem
consisting of (1.1)–(1.3) with an initial datum attaining two values, one for x < 0 and another
one for x > 0, as was accomplished, for instance, in [1, § 2] or [7, § 2]. The finite propagation
speed, intrinsic to (1.1), allows then to extend the whole construction to any finite number
of points x̄0, x̄1, . . . , x̄k, essentially solving the Cauchy Problem for the balance law















∂tu+ ∂xf(u) =
k−1
∑

i=1
Ξ
(

ζk(x̄i+), ζk(x̄i−), u(t, x̄i−)
)

δx̄i

u(0, x) = uo(x),

(1.4)

where δx̄i
denotes the Dirac measure at x̄i and ζk is the piecewise constant function attaining

the k + 1 constant values z0, z1, . . . , zk on the intervals ]−∞, x̄1[, ]x̄1, x̄2[, . . ., ]x̄k,+∞[.
This paper provides a detailed description of the rigorous limit k → +∞ of (1.4), covering

the extension of (1.4) to the case of a general BV function ζ.
In the general setting established below, not limited to fluid dynamics, solutions to (1.4)

with initial datum uo are shown to converge as k → +∞ to solutions to














∂tu+ ∂xf(u) =
∑

x∈I
Ξ
(

ζ(x+), ζ(x−), u(t, x−)
)

δx +D+
v(x)Ξ

(

ζ(x), ζ(x), u(t, x)
)

‖µ‖

u(0, x) = uo(x) .

(1.5)

The terms in the non conservative source above are defined as follows. Since ζ ∈ BV(R;Rp),
the right and left limits ζ(x+) and ζ(x−) are well defined and the distributional derivative
Dζ can be split in a discrete part and a continuous one, which may contain a Cantor part:

Dζ =
∑

x∈I

(

ζ(x+)− ζ(x−)
)

δx + v ‖µ‖ , (1.6)

where the function v is Borel measurable with norm 1, µ is the non atomic part of Dζ and I
is the set of jump points in ζ. In (1.5) we also used the (one sided) directional derivative

D+
v Ξ(z, z, u) = lim

t→0+

Ξ(z + t v, z, u) − Ξ(z, z, u)

t
. (1.7)

Indeed, one of our motivating examples, namely the case of a curved pipe, leads to a function
Ξ that admits directional derivatives but is not differentiable.

On the other hand, note that as soon as Ξ is differentiable with respect to its first argu-
ment, the right hand side in (1.5) can be slightly simplified, since

D+
v(x)Ξ(a, a, u) ‖µ‖ = D1Ξ(a, a, u) v(x) ‖µ‖ = D1Ξ(a, a, u)µ . (1.8)

Moreover, in the case Ξ(z+, z−, u) = G(z+)−G(z−) for a suitable G ∈ C2(Rp;Rn), the right
hand side above takes a simpler form. Indeed, by [2, Theorem 3.96], (1.5) reduces to the
conservative problem

∂tu+ ∂xf(u) = ∂x(G ◦ ζ) . (1.9)
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Below, our first task is to provide a definition of solution to (1.5) in its general setting.
Indeed, the latter term in the right hand side of (1.5) contains a non conservative product be-
tween a possibly discontinuous function and a measure. As is well known since the pioneering
work [13], such a product intrinsically contains a lack of determinacy. Here, this freedom of
choice is used to ensure the convergence of (1.4) to (1.5).

Once the issue of the very meaning of solution is settled, we proceed towards proving the
existence of solutions to (1.5). This is achieved sequentially combining wave front tracking [5,
§ 7.1], a nowadays classical technique that approximates solutions to conservation laws, with
the approximation of the equation, in particular of the map ζ. A key role is played by a very
careful choice of these approximations. As a byproduct, we characterize the solutions to (1.5)
as limits of (suitable subsequences of) solutions to (1.4).

Remark that the above general procedure, when applied to the case of a curved pipe
with constant section, amounts to justify the role of the pipe’s curvature on the fluid flow
inside the pipe. Indeed, if x is the abscissa along the pipe and Γ = Γ(x) describes the pipe’s
shape, then the pipe’s local direction that enters the equation for fluid flow is ζ(x) = Γ′(x).
Problem (1.4) then corresponds to a piecewise linear pipe and (the second component of) (1.3)
describes the change in the fluid linear momentum at a kink sited at x̄. Assuming that the
lack in the conservation of linear momentum depends on the angle in the pipe at x̄, i.e.,
Ξ(z+, z−, u) = K(

∥

∥z+ − z−
∥

∥, u) as in [9, 16], automatically implies in the smooth pipe limit,
by Theorem 2.2, that the variation in the fluid momentum depends on the pipe’s curvature
Γ′′, see § 3.1 for more details.

The current literature offers a variety of different conditions quantifying the lack in the
conservation of linear momentum at a junction where the pipe’s section changes, see for
instance [3, 4, 6, 7, 8, 10, 11, 15]. As a consequence of Theorem 2.2, we can select those
conditions that are consistent with the equations for a pipe with smoothly varying section,
both in the isentropic and in the full 3× 3 cases, see § 3.2 and § 3.3 below.

While motivated by the above fluid dynamics problems, the present construction also sug-
gests a criterion to select solutions to general balance laws with a non conservative product as
a source term, see Definition 3.3. These solutions, whose existence follows from Theorem 2.2,
are characterized as limits of solutions to the piecewise constant case (1.4).

The next section is devoted to the main results: the definition of solution and to the exis-
tence theorem. Section 3 presents applications to fluid dynamics and to general balance laws
with non conservative product in the source. All technical proofs are deferred to Section 4.1.

2 Assumptions and Main Result

Throughout, |x| is the absolute value of the real number x while, as usual, ‖v‖ is the Euclidean
norm of the vector v and ‖µ‖ is the total variation of a measure µ. The open ball in R

n

centered at u with radius δ is denoted by B(u; δ), its closure is B(u; δ). We also use the
following standard notation for right/left limits and for differences at a point:

F (x−) = lim
ξ→x−

F (ξ) , F (x+) = lim
ξ→x+

F (ξ) and ∆F (x) = F (x+)− F (x−) .

The problem we tackle is defined by the flow f and by the functions Ξ and ζ. Here we
detail the key assumptions.

(f.1) f ∈ C2(Ω;Rn), Ω being an open subset of Rn;

3



(f.2) the system (1.1) is strictly hyperbolic;

(f.3) each characteristic field is either genuinely nonlinear or linearly degenerate.

In the latter assumption we refer to the usual definitions by Lax [17], see also [12, § 7.5].
By (f.1) and (f.2) we know that, possibly restricting Ω, the eigenvalues λ1(u), . . . , λn(u)

of Df(u) can be numbered so that, for all u ∈ Ω,

λ1(u) < λ2(u) < · · · < λn(u) .

We choose io ∈ {1, . . . , n− 1} and define the io-th non-characteristic set

Aio = {u ∈ Ω | λio(u) < 0 < λio+1(u)} , (2.1)

both the cases of characteristic speeds being either all positive or all negative being simpler.
On the function Ξ in (1.3), used to rewrite the coupling condition induced by Ψ, we

require:

(Ξ.1) Ξ : Z × Z → C1 (Ω;Rn), is a Lipschitz continuous map;

(Ξ.2) supz+,z−∈Z

∥

∥Ξ(z+, z−, ·)
∥

∥

C2(Ω;R)
< +∞;

(Ξ.3) Ξ(z, z, u) = 0 for every z ∈ Z and u ∈ Ω;

(Ξ.4) There exists a non decreasing σ : [0, t̄[ → R such that for all (z, v, u) ∈ Z ×B(0; 1) × Ω
∥

∥

∥
Ξ(z + t v, z, u) −D+

v Ξ(z, z, u) t
∥

∥

∥
≤ σ(t) t

and moreover the map (z, v, u) → D+
v Ξ(z, z, u) is Lipschitz continuous.

In the latter condition, recall the definition (1.7) of the Dini derivative. Our requiring this
low regularity, i.e. the mere existence of the Dini derivative rather than differentiability, is
motivated by the example of a pipe with angles, where Ξ depends on

∥

∥z+ − z−
∥

∥, see § 3.1.
Problem (1.5) requires the introduction of a further function, say ζ : R → R

p describing,
for instance, geometrical aspects of the pipeline. We require that ζ ∈ BV(R;Z). Throughout,
the map ζ is assumed to be left continuous and the set of jump discontinuities in ζ is denoted
by I, with I ⊂ R.

We now precisely state what we mean by solution to (1.5).

Definition 2.1. Let uo ∈ L1
loc

(R;Rn). A map u ∈ C0([0,+∞[;L1
loc

(R;Rn)) with u(t) ∈
BV(R;Rn) and left continuous for all t ∈ R+, is a solution to (1.5) if for all test functions
ϕ ∈ C1

c(]0,+∞[× R;R),

−

∫ +∞

0

∫

R

(

u(t, x) ∂tϕ(t, x) + f
(

u(t, x)
)

∂xϕ(t, x)
)

dxdt

=
∑

x∈I

∫ +∞

0
Ξ
(

ζ(x+), ζ(x), u(t, x)
)

ϕ(t, x) dt (2.2)

+

∫ +∞

0

∫

R

D+
v(x)Ξ

(

ζ(x), ζ(x), u(t, x)
)

ϕ(t, x) d‖µ‖ (x) dt

where I is the set of jump points of ζ and v, µ are as in (1.6), and moreover u(0) = uo.
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The main result of this paper is the following.

Theorem 2.2. Let Ω ⊆ R
n be open, f satisfy (f.1)–(f.3), Ξ satisfy (Ξ.1)–(Ξ.4) and ζ ∈

BV(R;Z). Fix ū ∈ Aio , z̄ ∈ Z and an initial datum uo in L1
loc

(R;Aio), with Aio as defined
in (2.1). Then, there exists a positive δ such that if

uo(R) ⊆ B(ū; δ) , TV (uo) < δ and ζ(R) ⊆ B(z̄; δ) , TV (ζ) < δ (2.3)

the Cauchy Problem for (1.5) with initial datum uo admits a solution u∗ in the sense of
Definition 2.1. Moreover, there exists a sequence of piecewise constant approximations ζh of
ζ, with TV (ζh) < δ, such that the corresponding solutions uh converge to u∗ pointwise in
time and in L1

loc
in space. In particular, at each discontinuity point y of ζh, uh satisfies the

junction condition

f(uh(t, y+))− f(uh(t, y−)) = Ξ(ζh(y+), ζh(y−), uh(t, y−)) .

3 Applications

3.1 Isentropic Gas in a Curved Pipe

The well known system of one dimensional isentropic gas dynamics within a pipe with constant
section in Eulerian coordinates [12, Formula (7.1.12)] is











∂tρ+ ∂xq = 0

∂tq + ∂xP (ρ, q) = 0
where P (ρ, q) =

q2

ρ
+ p(ρ) , for a.e. t ≥ 0, x ∈ R . (3.1)

Here, x is the abscissa along the pipe, ρ ∈ ]0,+∞[ denotes the gas density, q ∈ R the
momentum density, p = p(ρ) the pressure and P = P (ρ, q) the momentum flux. The pressure
law p satisfies

(p) p ∈ C2(]0,+∞[ , ]0,+∞[), p′(ρ) ≥ 0 and p′′(ρ) ≥ 0 for all ρ > 0.

Under this assumption, system (3.1) is strictly hyperbolic, except at the vacuum ρ = 0.
We aim to estabilish the existence of solutions to (3.1) in a curved pipeline with constant

section lying in a horizontal plane. Parametrize the pipe’s support by means of the arc length
Γ: R → R

2, so that
∥

∥Γ′(x)
∥

∥ = 1 for a.e. x ∈ R. We assume that ζ = Γ′ is in BV(R;R2).
As a first step, consider the case of (3.1) at a kink sited at x̄, so that Γ is the glueing of

two half lines. Therefore, to solve (3.1), we adopt the usual weak entropy solutions to (3.1)
along the straight parts of Γ and match at the kink x̄ a coupling condition of the type











q(t, x̄+)− q(t, x̄−) = 0

P (ρ, q)(t, x̄+)− P (ρ, q)(t, x̄−) = Ξ2(Γ
′(x̄+),Γ′(x̄−), (ρ, q)(t, x̄−))

(3.2)

We set Ξ1 ≡ 0 as it is necessary to comply with mass conservation. Physical considerations
suggest that the defect in the conservation of linear momentum is a function, say K, of the
norm of the difference in the orientations of the pipes on the sides of the kink:

Ξ
(

z+, z−, (ρ, q)
)

=







0

K
(

∥

∥z+ − z−
∥

∥, (ρ, q)
)






. (3.3)
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This holds true in various instances of K considered in the literature. For instance, [16] first
introduced the condition

K

(

∥

∥

∥z+ − z−
∥

∥

∥, (ρ, q)

)

= −α
∥

∥

∥z+ − z−
∥

∥

∥ q (3.4)

for a suitable α > 0, motivated by

∥

∥

∥z+ − z−
∥

∥

∥ =
√

2(1 − cos ϑ̄) = 2
∣

∣sin(ϑ̄/2)
∣

∣ ,

ϑ̄ being the angle between the two sides of the kink. It is immediate to see that (Ξ.1)–(Ξ.3)
all hold. Concerning (Ξ.4), we have

D+
v Ξ
(

z, z, (ρ, q)
)

=







0

−α ‖v‖ q






with σ ≡ 0 .

We stress that Ξ2 is not of class C1.

Theorem 3.1. Let p satisfy (p) and (ρ̄, q̄) be a subsonic state. Let Γ be piecewise C2(R;R2),
such that Γ′ ∈ BV(R;R2) and

∥

∥Γ′(x)
∥

∥ = 1 for all x ∈ R. Let K ∈ C2([0, r] × Ω;R) for a
positive r, with K

(

0, (ρ, q)
)

≡ 0. Call I the set of kink points of Γ. Then, there exists a
positive δ such that for all initial data (ρo, qo) with

∥

∥(ρo, qo)− (ρ̄, q̄)
∥

∥

L∞(R;R2)
< δ , TV (ρo, qo) < δ , TV (Γ′) < δ

the problem







































∂tρ+ ∂xq = 0

∂tq + ∂xP (ρ, q) = −
∑

y∈I

K
(

∥

∥Γ′(y+)− Γ′(y−)
∥

∥, (ρ, q)(t, y−)
)

δy

−
∥

∥Γ′′(x)
∥

∥ ∂1K(0, q)

(ρ, q)(0, x) = (ρo, qo)(x)

(3.5)

admits a solution (ρ∗, q∗) in the sense of Definition 2.1. Moreover, there exists a sequence
of piecewise linear approximations Γh of Γ, with TV ((Γh)′) < δ, such that the corresponding
solutions (ρh, qh) converge to (ρ∗, q∗) pointwise in time and in L1

loc
in space. In particular,

at each discontinuity point x̄ of (Γh)′, (ρh, qh) satisfies condition (3.2).

The proof is deferred to § 4.4.
Remark that the second derivative Γ′′ appearing in the right hand side above confirms

the relevance of the pipe’s curvature. Nevertheless, Theorem 2.2 applies also to less regular
functions Γ, but the above simpler formulation then needs to be replaced by the formulation
used in Definition 2.1.
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3.2 Isentropic Gas in a Pipe with Varying Section

The isentropic flow of a fluid in a pipe with smoothly varying section a = a(x) is described
by


















∂tρ+ ∂xq = −
a′

a
q

∂tq + ∂xP (ρ, q) = −
a′

a

q2

ρ

where P (ρ, q) =
q2

ρ
+ p(ρ) , for a.e. t ≥ 0, x ∈ R , (3.6)

see [11, 15, 18]. The case of a piecewise constant, i.e., the section of the pipe changes from a−

to a+ at a junction sited at x̄, is covered in the literature supplementing the p–system (3.1)
with a junction condition of the form











a+q(t, x̄+) = a− q(t, x̄−)

P (ρ, q)(t, x̄+)− P (ρ, q)(t, x̄−) = Ξ2

(

a+, a−, (ρ, q)(t, x̄−)
)

.
(3.7)

The former relation in (3.7) ensures the conservation of mass and fits in the framework of
Section 2 setting in the first component of (1.3)

Ξ1

(

a+, a−, (ρ−, q−)
)

=

(

a−

a+
− 1

)

q− . (3.8)

The literature offers a wide range of justifications, often phenomenological, for specific choices
of the function Ξ2 in (3.7), see for instance [8, 11, 15]. Note that, as soon as Ξ2 is of class
C2 in all variables, with Ξ2

(

a, a, (ρ, q)
)

= 0, and a is in BV(R;R), then Theorem 2.2 applies
ensuring the existence of solutions to



































∂tρ+ ∂xq =
∑

x∈I

(

a(x−)

a(x+)
− 1

)

q(t, x−) δx −
1

a(x)
q(t, x)µ

∂tq + ∂xP (ρ, q) =
∑

x∈I

Ξ2

(

a(x+), a(x−), (ρ, q)(t, x−)
)

δx

+∂1Ξ2

(

a(x), a(x), (ρ, q)(t, x)
)

µ

(3.9)

where I is the set of points of discontinuity of a and, as soon as a is smooth, µ has density
∂xa(x) with respect to the Lebesgue measure. In (3.9) we also used (1.8).

As an application of Theorem 2.2, we characterize the class of conditions Ξ that yield in
the limit the case of the smooth pipe, i.e., equation (3.6).

Theorem 3.2. Let p satisfy (p), (ρ̄, q̄) be a subsonic state and ā be positive. For any Ξ2 of
class C2 with Ξ2

(

a, a, (ρ, q)
)

= 0 and

∂1Ξ2

(

a, a, (ρ, q)
)

= −
1

a

q2

ρ
(3.10)

there exists a positive δ such that for all initial data (ρo, qo) and for all a ∈ BV(R;R) with
a′ ∈ L1(R;R) and
∥

∥(ρo, qo)− (ρ̄, q̄)
∥

∥

L∞(R;R2)
< δ , TV (ρo, qo) < δ , ‖a− ā‖

L∞(R,R) < δ ,
∥

∥a′
∥

∥

L1(R;R)
< δ

7



Ψ2(a
−, (ρ−, q−), a+, (ρ+, q+)) Ξ2(a

+, a−, (ρ−, q−)) D1Ξ2(a, a, (ρ, q))

[L] a+P (ρ+, q+)− a−P (ρ−, q−)

(

a−

a+
− 1

)(

(q−)2

ρ−
+ p(ρ−)

)

−
1

a

(

q2

ρ
+ p(ρ)

)

[p] p(ρ+)− p(ρ−)





(

a−

a+

)2

− 1





(q−)2

ρ−
−
2

a

q2

ρ

[P] P (ρ+, q+)− P (ρ−, q−) 0 0

[S]
a+P (ρ+, q+)− a−P (ρ−, q−)

−

∫

a
+

a
−

p
(

R(α; a−, ρ−, q−)
)

dα

(

a−

a+
− 1

)(

(q−)2

ρ−
+ p(ρ−)

)

+
1

a+

∫

a
+

a
−

p
(

R(α; a−, ρ−, q−)
)

dα

−
1

a

q2

ρ

Table 1: Various definitions of junction conditions, with the corresponding functions Ψ2

from (1.2), Ξ2 from (1.3) and its partial derivative ∂1Ξ2.

problem (3.6) admits a solution (ρ∗, q∗). Moreover, there exists a sequence of piecewise con-
stant approximations ah of a, with TV (ah) < δ, such that the corresponding solution (ρh, qh)
converges to (ρ∗, q∗) pointwise in time and in L1

loc
in space. In particular, at each disconti-

nuity point y of ah, (ρh, qh) satisfies the junction condition (3.7).

The proof is deferred to § 4.4.
We now test the above condition against various junction condition found in the literature,

we refer in particular to [8] for the motivations and further information of the conditions
considered below. More precisely, with reference to the labelling in Table 1, we consider
definition [L] from [6], condition [p] from [3, 4], condition [P] from [6, 7] and condition [S]
from [11, 15]. All these conditions differ only in the second component Ξ2, the first one being
fixed as in (3.8) to comply with mass conservation.

Simple computations lead to the results in Table 1, where the map a → R(a; a−, ρ−, q−)
is the first component of the solution to the stationary version of (3.6), parametrized by the
section a, i.e.,















d

da
q = −

1

a
q ρ(a−) = ρ−

d

da

(

P (ρ, q)
)

= −
1

a

q2

ρ
q(a−) = q− .

On the basis of Theorem 3.2, we know that condition [S] is compatible with the smooth
limit (3.6). Moreover, Theorem 2.2 and Table 1, in particular the comparison of the rightmost
column with (3.10), ensure that all the other conditions do not converge to (3.6) in the smooth
pipe limit.

Remark that substituting in [S] any other smooth function R = R(a; a−, ρ−, q−) such that
R(a−; a−, ρ−, q−) = ρ− yields a new condition at the junction compatible with the smooth
limit.

8



3.3 Full Gas Dynamics in Pipes with Varying Section

The full Euler system in a pipeline with smoothly varying section a = a(x) is































∂tρ+ ∂x(ρ v) = −
a′

a
ρ v

∂t(ρ v) + ∂x
(

ρ v2 + p
)

= −
a′

a
ρ v2

∂t

(

1
2 ρ v

2 + ρ e
)

+ ∂x

(

v
(

1
2 ρ v

2 + ρ e+ p
)

)

= −
a′

a
v
(

1
2 ρ v

2 + ρ e+ p
)

(3.11)

see, for instance [10, 15, 18, 19]. Here, x is the abscissa along the pipe, ρ > 0 denotes gas
density, q ∈ R the momentum density, p = p(ρ, s) the pressure and e = e(ρ, s) the energy
density and s the entropy density. These two latter functions satisfy

(E) e ∈ C2(]0,+∞[× R, ]0,+∞[) and ∂se(ρ, s) > 0 for all ρ > 0 and s ∈ R.

(P) p ∈ C2(]0,+∞[×R, ]0,+∞[), p(ρ, s) = ρ2 ∂ρe(ρ, s), ∂ρp(ρ, s) > 0 and ∂2
ρρ

(

ρ p(ρ, s)
)

> 0
for all ρ > 0 and s ∈ R.

We restrict our attention to the subsonic region where v ∈ ]0,
√

∂ρp(ρ, s)[.
The conditions found in the literature, see [10], imposed at a point x̄ where the section

suffers a discontinuity fit into the form



























∆(a ρ v)(t, x̄) = 0

∆(ρ v2 + p)(t, x̄) = Ξ2

(

a(x+), a(x−), (ρ, v, s)(t, x−)
)

∆

(

a v
(

1
2 ρ v

2 + ρ e+ p
)

)

(t, x̄) = 0

(3.12)

The conservation of mass imposed by the first equality and the conservation of energy imposed
by the third equality in (3.12) amount to setting

Ξ1

(

a+, a−, (ρ−, v−, s−)
)

=

(

a−

a+
− 1

)

ρ− v−

Ξ3(a
+, a−, u−) =

(

a−

a+
− 1

)

(

v−
(

1
2 ρ

−(v−)2 + ρ− e− + p−
)

)

so that

∂1Ξ1

(

a, a, (ρ, v, s)
)

= −
1

a
ρ v

∂1Ξ3(a, a, u) = −
1

a

(

v
(

1
2 ρ v

2 + ρ e+ p
)

)

The second equality in (3.12) is treated in different ways in the literature, giving rise to con-
ditions analogous to those considered in § 3.2. Indeed, Table 1 directly extends to the present
full 3× 3 case, simply understanding the map R as the ρ component a → R(a; a−, ρ−, v−, s−)
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in the solution to the stationary Cauchy Problem



































d

da
(ρ v) = −

1

a
ρ v ρ(a−) = ρ−

d

da

(

ρ v2 + p
)

= −
1

a
ρ v2 v(a−) = v−

d

da

(

v
(

1
2 ρ v

2 + ρ e+ p
)

)

= −
1

a
v
(

1
2 ρ v

2 + ρ e+ p
)

s(a−) = s− .

(3.13)

3.4 Balance Laws with Measure Valued Source Term

The theory developed in Section 2 allows to give a meaning to the following balance law,
where the source term is non conservative:

∂tu+ ∂xf(u) = ∂ζG(ζ, u)Dζ (3.14)

where G is smooth and ζ has bounded variation. In the case G independent of u, we recover
the conservative case (1.9). In the general, non conservative case, (3.14) can be given different
meanings.

A choice consists in setting

Ξ(z+, z−, u−) = G(z+, u−)−G(z−, u−) , (3.15)

corresponding to the following condition at each point of jump:

f(u+)− f(u−) = G(z+, u−)−G(z−, u−) .

The framework developed in the preceding section in connection with the Cauchy Prob-
lem (1.5) comprises (3.14). Therefore, we can particularize Definition 2.1 to the general case
of non conservative products of the type (3.14).

Definition 3.3. Fix an initial datum uo ∈ L1
loc

(R;Rn). Let Ξ ∈ C2(Z ×Z ×Ω;Rn) be such
that

D1Ξ(z, z, u) = DzG(z, u) . (3.16)

Then, a map u ∈ C0([0, T ];L1
loc

(R;Rn)) with u(t) ∈ BV(R;Rn) and left continuous for all
t ∈ [0, T ], is a Ξ–solution to (1.5) if for all test function ϕ ∈ C1

c(]0, T [× R;R),

−

∫ +∞

0

∫

Ω

(

u(t, x) ∂tϕ(t, x) + f
(

u(t, x)
)

∂xϕ(t, x)
)

dxdt

=
∑

x∈I

∫ +∞

0
Ξ
(

ζ(x+), ζ(x), u(t, x)
)

ϕ(t, x) dt (3.17)

+

∫ +∞

0

∫

R

DzG
(

ζ(x), u(t, x)
)

ϕ(t, x)Dµ(x) dt

where I is the set of jump points of ζ and µ is as in (1.6), and moreover u(0) = uo.

This definition clearly separates those part of the solution that depend exclusively on (3.14)
from those part, in the middle term in (3.17), that depend on the arbitrary choice of Ξ.
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In particular, the choice (3.15) yields

Ξ
(

ζ(x+), ζ(x), u(t, x)
)

= G
(

ζ(x+), u(t, x)
)

−G
(

ζ(x), u(t, x)
)

(3.18)

where we keep using the left continuous representatives. For completeness, we remark that
the alternative choice Ξ(z+, z−, u−) = G(z+, u+)−G(z−, u+) also meets condition (3.16).

A straightforward application of Theorem 2.2 now ensures the existence of Ξ–solutions
to (3.14), as soon as G ∈ C2(Z × Ω;Rn×m), ζ ∈ BV(R;Z), Ξ ∈ C2(Z × Z × Ω;Rm)
and satisfies (3.16). Moreover, these solutions are limits of “discretized” approximations
where (1.3) is imposed to the points of jump in ζ.

4 Technical Details

Below, by O(1) we denote a constant depending exclusively on f and Ξ.

4.1 Preliminary Results

First, we prove a Lipschitz-type estimate on the map Ξ which we use throughout this paper.

Lemma 4.1. Assume that (Ξ.1), (Ξ.3) hold. Then,
∥

∥

∥
Ξ(z+, z−, u2)− Ξ(z+, z−, u1)

∥

∥

∥
= O(1)

∥

∥

∥
z+ − z−

∥

∥

∥
‖u2 − u1‖ . (4.1)

Proof. Since the map u 7→ Ξ(z+, z−, u) is smooth, we can compute
∥

∥

∥Ξ(z+, z−, u2)− Ξ(z+, z−, u1)
∥

∥

∥

≤ ‖u2 − u1‖

∫ 1

0

∥

∥

∥
DuΞ(z

+, z−, u1 + s (u2 − u1))−DuΞ(z
−, z−, u1 + s (u2 − u1))

∥

∥

∥
ds

≤ O(1)
∥

∥

∥
z+ − z−

∥

∥

∥
‖u2 − u1‖ ,

where we used the equality DuΞ(z
−, z−, u1 + s (u2 − u1)) = 0. �

Introduce a map T related to the generalized Riemann problem.

Lemma 4.2. Let f satisfy (f.1)–(f.3), Ξ satisfy (Ξ.1), (Ξ.3) and Aio be as in (2.1). Then,
for any z̄ ∈ Z and ū ∈ Aio , there exists δ̄ > 0 and a Lipschitz map

T : B(z̄; δ̄)2 ×B(ū; δ̄) → Aio

such that














f(u+)− f(u−) = Ξ(z+, z−, u−)

z+, z− ∈ B(z̄; δ̄)

u+, u− ∈ B(ū; δ̄)

⇐⇒ u+ = T (z+, z−, u−) .

Furthermore,
∥

∥

∥
T (z+, z−, u−)− u−

∥

∥

∥
= O(1)

∥

∥

∥
z+ − z−

∥

∥

∥
, (4.2)

∥

∥

∥T (z+, z−, u2)− T (z+, z−, u1)− (u2 − u1)
∥

∥

∥ = O(1)
∥

∥

∥z+ − z−
∥

∥

∥ ‖u2 − u1‖ . (4.3)
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Proof. Since ū ∈ Aio , (f.1) and (f.2) ensure that the function f is locally invertible at ū.
We define

T (z+, z−, u−) = f−1
(

f(u−) + Ξ(z+, z−, u−)
)

. (4.4)

By (Ξ.1), (Ξ.3) we compute

∥

∥

∥T (z+, z−, u−)− u−
∥

∥

∥ =

∥

∥

∥

∥

T (z+, z−, u−)− f−1
(

f(u−)
)

∥

∥

∥

∥

= O(1)
∥

∥

∥Ξ(z+, z−, u−)− Ξ(z−, z−, u−)
∥

∥

∥

= O(1)
∥

∥

∥z+ − z−
∥

∥

∥ ,

proving (4.2). Introduce the smooth map

b (ξ,∆, v) = f−1
(

f(u1 + v) + ξ +∆
)

− f−1
(

f(u1) + ξ
)

− v .

Since b (ξ, 0, 0) = b (0, 0, v) = 0, the estimate

b (ξ,∆, v) = O(1)
[

‖ξ‖ · ‖v‖+ ‖∆‖
]

holds, see [5, § 2.9]. The left hand side of (4.3) can be written as

∥

∥

∥T (z+, z−, u2)− T (z+, z−, u1)− (u2 − u1)
∥

∥

∥

=

∥

∥

∥

∥

b
[

Ξ(z+, z−, u1),Ξ(z
+, z−, u2)− Ξ(z+, z−, u1), u2 − u1

]

∥

∥

∥

∥

≤ O(1)

[

∥

∥

∥
Ξ(z+, z−, u1)

∥

∥

∥
· ‖u2 − u1‖+

∥

∥

∥
Ξ(z+, z−, u2)− Ξ(z+, z−, u1)

∥

∥

∥

]

≤ O(1)
∥

∥

∥
z+ − z−

∥

∥

∥
‖u2 − u1‖ .

�

4.2 The Case ζ Piecewise Constant

In this section, we consider the case of I being finite, with ζ being piecewise constant. We
index the points x ∈ I so that xi < xj if and only if i < j. In this case, the general
Definition 2.1 reduces to the following one, often found in the literature, see for instance [9,
10, 11, 16].

Definition 4.3. A weak solution to the Cauchy Problem (1.5) with a piecewise constant ζ is
a map u ∈ C0([0,+∞[ ;L1

loc
(R; Ω)) with u(t) ∈ BV(R; Ω), left continuous, for all t ≥ 0, such

that for all ϕ ∈ C1
c(]0,+∞[× R;R) whose support does not intersect [0,+∞[× I

∫ +∞

0

∫

R

(

u∂tϕ+ f(u) ∂xϕ
)

dxdt = 0 , (4.5)

u(0) = uo and for all x ∈ I

f
(

u(t, x+)
)

− f
(

u(t, x)
)

= Ξ
(

ζ(x+), ζ(x), u(t, x)
)

for a.e. t ∈ [0,+∞[ .
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4.2.1 The Generalized Riemann Problem

By Generalized Riemann Problem we consider the Cauchy Problem (1.5) with ζ and the initial
datum uo being as follows:

ζ(x) = z− χ
]−∞,0[

(x) + z+ χ
]0,+∞[

(x) and uo(x) = uℓ χ
]−∞,0[

(x) + ur χ
]0,+∞[

(x) . (4.6)

For u ∈ Aio , call σi → Hi(σi)(u) the Lax curve of the i-th family exiting u, see [5, § 5.2]
or [12, § 9.3]. Introduce recursively the states w0, . . . , wn+1 with w0 = uℓ, wn+1 = ur and























wi+1 =Hi+1(σi+1)(wi) if i=0, . . . , io − 1,

wio+1 =T (z+, z−, wio)

wi+1 =Hi(σi)(wi) if i= io + 1, . . . , n .

If z+ − z− is sufficiently small, [1, Lemma 3] ensures that the waves’ sizes (σ1, . . . , σn) and
the states (w1, . . . , wn) exist, are uniquely defined and are Lipschitz continuous functions
of z−, z+, uℓ, ur, which ensures also the well posedness of the Generalized Riemann Prob-
lem (1.5), (4.6). The following notation is of use below:

(σ1, . . . , σn) = E(z+, z−, ur, uℓ) . (4.7)

We thus write the solution u to the Generalized Riemann Problem (1.5) (4.6), in the sense
of Definition 4.3, as the glueing along x = 0 of the Lax solutions to the (standard) Riemann
Problems










∂tu+ ∂xf(u) = 0

u(0, x) = uℓχ
]−∞,0[

(x) + wioχ
]0,+∞[

(x),











∂tu+ ∂xf(u) = 0

u(0, x) = wio+1χ
]−∞,0[

(x) + urχ
]0,+∞[

(x).

4.2.2 Interaction Estimates

Let uℓ, ur ∈ Ω be initial states for the Generalized Riemann Problem (1.5) (4.6). We separate
the waves with negative or positive propagation speed as follows:

σσσ′ = (σ1, . . . , σio , 0, . . . , 0), σσσ′′ = (0, . . . , 0, σio+1, . . . , σn),

σσσ = σσσ′ + σσσ′′ ∈ R
n.

(4.8)

Given two n-tuples of waves ααα and βββ, the waves i with size αi and j with size βj are approaching
whenever i > j or min

{

αi, βj
}

< 0. Call Aααα,βββ the set of these pairs.
In the following we recall several lemmas which are straightforward generalizations of

results in [1].

Lemma 4.4. Let f satisfy (f.1)–(f.3), Ξ satisfy (Ξ.1), (Ξ.3) and Aio be as in (2.1). Fix
z+, z− ∈ Z and uℓ, ur ∈ Aio . Then, there exists a δ > 0 such that if z+, z− ∈ B(z̄; δ),
uℓ, ur ∈ B(ū; δ), we have

∥

∥

∥
ur − uℓ

∥

∥

∥
= O(1)

(

‖σσσ‖+
∥

∥

∥
z+ − z−

∥

∥

∥

)

,

‖σσσ‖ = O(1)

(

∥

∥

∥ur − uℓ
∥

∥

∥+
∥

∥

∥z+ − z−
∥

∥

∥

)

.
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Proof. By Lemma 4.2, we get

∥

∥

∥
ur − uℓ

∥

∥

∥
≤

n+1
∑

i=1

‖wi − wi−1‖ = O(1)‖σσσ‖+
∥

∥

∥
T (z+, z−, wio)− wio

∥

∥

∥
= O(1)

(

‖σσσ‖+
∥

∥

∥
z+ − z−

∥

∥

∥

)

.

By the Lipschitz continuity of E as defined in (4.7), we get

‖σσσ‖ =
∥

∥

∥
E(z+, z−, ur, uℓ)− E(z+, z−, T (z+, z−, uℓ), uℓ)

∥

∥

∥

= O(1)
∥

∥

∥
ur − T (z+, z−, uℓ)

∥

∥

∥

= O(1)

(

∥

∥

∥
ur − uℓ

∥

∥

∥
+
∥

∥

∥
uℓ − T (z+, z−, uℓ)

∥

∥

∥

)

= O(1)

(

∥

∥

∥ur − uℓ
∥

∥

∥+
∥

∥

∥z+ − z−
∥

∥

∥

)

completing the proof. �

Lemma 4.5 ([1, Lemma 5]). Let f satisfy (f.1)–(f.3) and Aio be as in (2.1). For u ∈ Ω
sufficiently close to ū ∈ Aio and y1, y2,ααα ∈ R

n sufficiently small, we have

∥

∥y2 +H(ααα)(u)−H(ααα)(u+ y1)
∥

∥ = O(1)
(

‖ααα‖ ‖y1‖+ ‖y1 − y2‖
)

.

Lemma 4.6. Let f satisfy (f.1)–(f.3), Ξ satisfy (Ξ.1), (Ξ.3) and Aio be as in (2.1). For
u ∈ Ω sufficiently close to ū ∈ Aio , z+, z− ∈ Z sufficiently close to z̄ ∈ Z and ααα ∈ R

n

sufficiently small, we have

∥

∥

∥T (z+, z−,H(ααα)(u)) −H(ααα)(T (z+, z−, u))
∥

∥

∥ = O(1) ‖ααα‖
∥

∥

∥z+ − z−
∥

∥

∥ .

Proof. Applying Lemma 4.5 with y1 = T (z+, z−, u) − u and y2 = T (z+, z−,H(ααα)(u)) −
H(ααα)(u) gives

∥

∥

∥
T (z+, z−,H(ααα)(u))−H(ααα)(T (z+, z−, u))

∥

∥

∥

≤ O(1)

(

‖ααα‖
∥

∥

∥T (z+, z−, u)− u
∥

∥

∥+
∥

∥

∥T (z+, z−,H(ααα)(u))−H(ααα)(u)− T (z+, z−, u) + u
∥

∥

∥

)

.

The result follows from Lemma 4.2. �

Lemma 4.7. Let f satisfy (f.1)–(f.3), Ξ satisfy (Ξ.1), (Ξ.3) and Aio be as in (2.1). Fix
z+, z− ∈ Z and uℓ, ur ∈ Aio . Then, there exists a δ > 0 such that if ur, uℓ ∈ B(ū; δ) and
z+, z− ∈ B(z̄; δ). Let

u− = H(ααα)(uℓ),

ur = H(βββ′′)

(

T
(

z+, z−,H(βββ′)(u−)
)

)

,

ur = H(σσσ′′)

(

T
(

z+, z−,H(σσσ′)(uℓ)
)

)

,
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with ααα,βββ,σσσ ∈ R
n and u− ∈ B(ū; δ). Then,

n
∑

i=1

|σi − αi − βi| = O(1)







∑

(i,j)∈Aααα,βββ

∣

∣αi βj
∣

∣+
∥

∥

∥
z+ − z−

∥

∥

∥

∑

i>io

|αi|






, (4.9)

where Aααα,βββ, as above, denotes the set of approaching waves. Analogously, if

u+ = H(α′′α′′α′′)

(

T
(

z+, z−,H(α′α′α′)(uℓ)
)

)

,

ur = H(βββ)(u+),

ur = H(σσσ′′)

(

T
(

z+, z−,H(σσσ′)(uℓ)
)

)

,

then,

n
∑

i=1

|σi − αi − βi| = O(1)







∑

(i,j)∈Aααα,βββ

∣

∣αiβj
∣

∣+
∥

∥

∥
z+ − z−

∥

∥

∥

∑

i<io

|βi|






. (4.10)

Proof. It is sufficient to prove (4.9), since (4.10) is proved analogously. We set

ũ = H(α′′α′′α′′ + β′′β′′β′′)

(

T
(

z+, z−,H(α′α′α′ + β′β′β′)(uℓ)
)

)

,

u1 = H(βββ′′) ◦H(ααα′′)

(

T
(

z+, z−,H(ααα′)(uℓ)
)

)

,

u2 = H(βββ′′)

(

T
(

z+, z−,H(ααα)(uℓ)
)

)

.

By the Lipschitz continuity of E, we obtain

∥

∥σσσ − (ααα+ βββ)
∥

∥ =
∥

∥

∥E(z+, z−, ur, uℓ)− E(z+, z−, ũ, uℓ)
∥

∥

∥

= O(1) ‖ur − ũ‖

= O(1)
(

‖ur − ũ+ u1 − u2‖+ ‖u1 − u2‖
)

.

To estimate the first term we consider the function ur − ũ+ u1 − u2 which is C2 w.r.t. ααα,βββ.
Moreover, we assume that there are no approaching waves and obtain

ααα = (α1, . . . , αi, 0, . . . , 0) , βββ = (0, . . . , 0, βj , . . . , βn) , i ≤ j.

The case i = j is given in the case of two rarefaction waves and αi, βi ≥ 0. If i ≤ io, then
ααα′′ = 0, H(α′α′α′ + β′β′β′)(u) = H(β′β′β′) ◦H(α′α′α′)(u), whence ur = ũ and u1 = u2.

If i > io, then βββ′ = 0 and H(α′′α′′α′′+β′′β′′β′′)(u) = H(β′′β′′β′′)◦H(α′′α′′α′′)(u), whence ur = u2 and ũ = u1.
In all cases we get u+0 − ũ++u1 −u2 = 0. Standard considerations (see e.g. [5, § 7.3], [12,

§ 13.3] or [21]) and Lemma 4.2 lead to

‖ur − ũ+ u1 − u2‖ = O(1)
∑

(i,j)∈Aααα.βββ

∣

∣αi βj
∣

∣
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in the general case.
Concerning ‖u1 − u2‖, we get

‖u1 − u2‖ ≤ O(1)

∥

∥

∥

∥

H(α′′α′′α′′)
(

T (z+, z−,H(ααα′)(uℓ))
)

− T (z+, z−,H(ααα)(uℓ))

∥

∥

∥

∥

.

The equality H(ααα)(u) = H(ααα′′) ◦H(ααα′)(u) and Lemma 4.6 with u = H(α′α′α′)(uℓ) lead to

‖u1 − u2‖ = O(1)
∥

∥

∥z+ − z−
∥

∥

∥

∑

i>io

|αi| .

The result follows. �

Lemma 4.7 suggests that the quantity
∥

∥z+ − z−
∥

∥ is a convenient way to measure the
strength of the zero–waves associated to the coupling condition. More precisely, we define the
strength of the zero–wave at a junction with parameters z+, z− ∈ Z as σ =

∥

∥z+ − z−
∥

∥.

Wave-front tracking approximate solutions

We adapt the wave-front tracking techniques from [1, 5, 11, 15] to construct a sequence of
approximate solutions to the Cauchy problem (1.5) and prove uniformBV-estimates in space.
The approximate solutions converge towards a solution to the Cauchy problem with finitely
many junctions. First, we define the approximations.

Definition 4.8. Let ζ ∈ BV(R;Z) be piecewise constant. For ε > 0, a continuous map

uε : [0,+∞[ → L1
loc

(R;Rn)

is an ε-approximate solution to (1.5) if the following conditions hold:

• uε as a function of (t, x) is piecewise constant with discontinuities along finitely many
straight lines in the (t, x)-plane. There are only finitely many wave-front interactions
and at most two waves interact with each other. There are four types of discontinuities:
shocks (or contact discontinuities), rarefaction waves, non–physical waves and zero–
waves. We distinguish these waves’ indexes in the sets J = S ∪ R ∪ NP ∪ ZW, the
generic index in J being α.

• At a shock (or contact discontinuity) xα = xα(t), α ∈ S, the traces u+ = uε(t, xα+) and
u− = uε(t, xα−) are related by u+ = Hiα(σα)(u

−) for 1 ≤ iα ≤ n and wave-strength σα.
If the iα-th family is genuinely nonlinear, the Lax entropy condition σα < 0 holds and

∣

∣

∣
ẋα − λiα(u

+, u−)
∣

∣

∣
≤ ε,

where λiα(u
+, u−) is the wave speed described by the Rankine-Hugoniot conditions.

• For a rarefaction wave xα = xα(t), α ∈ R the traces are related by u+ = Hiα(σα)(u
−)

for a genuinely nonlinear family 1 ≤ iα ≤ n and wave-strength 0 < σα ≤ ε. Moreover,

∣

∣

∣
ẋα − λiα(u

+)
∣

∣

∣
≤ ε.
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• All non–physical fronts x = xα(t), α ∈ NP travel at the same speed ẋα = λ̂ with
λ̂ > supu,i

∣

∣λi(u)
∣

∣. The total strength of all non–physical fronts is uniformly bounded by

∑

α∈NP

∥

∥uε(t, xα+)− uε(t, xα−)
∥

∥ ≤ ε for all t > 0 .

• Zero–waves are located at the junctions xα ∈ I. At a zero–wave xα, α ∈ ZW, the traces
are related by the coupling condition u+ = T

(

ζ(xα+), ζ(xα−), u−
)

for all t > 0 except
at the interaction times.

• The initial data satisfies
∥

∥uε(0, ·) − uo
∥

∥

L1(R;Rn)
≤ ε.

Next, we prove the existence of ε–approximate solutions.

Theorem 4.9. Let Ω ⊆ R
n be open, f satisfy (f.1)–(f.3) and Ξ satisfy (Ξ.1)–(Ξ.3). Fix

ū ∈ Aio and z̄ ∈ Z. Then, there exist δ > 0 such that for all piecewise constant ζ ∈ BV(R;Z)
with

ζ(R) ⊆ B(z̄; δ) and TV (ζ) < δ

and for all initial data uo with

uo(R) ⊆ B(ū; δ) , TV (uo) < δ,

for every ε sufficiently small there exists an ε–approximate solution to (1.5) in the sense of
Definition 4.8. Moreover, the total variation in space TV (uε(t, ·)) and the total variation in
time TV (uε(·, x)) , x 6= xα, α ∈ ZW are bounded uniformly for ε sufficiently small and for
every piecewise constant ζ with TV (ζ) < δ.

Proof. Description of the wave front tracking algorithm. For notational convenience, we drop
the ε. Let ε and TV (ζ) be sufficiently small, then we construct the approximate solution in
the following way:

• To obtain piecewise constant approximate solutions, we discretize the rarefactions as
in [5]. For a fixed small parameter δR, each rarefaction of size σ is divided into m =
[[σ/δR]] + 1 wave-fronts, each one with size σ/m ≤ δR.

• Given initial data uo, we can define a piecewise constant approximation u(0, ·) satisfying
the requirements of Definition 4.8 and

TV
(

u(0, ·)
)

≤ TV (uo) .

For small t, u(t, x) is constructed by solving the generalized Riemann problem at every
point xα with α ∈ ZW and by solving the homogeneous Riemann Problem at every
remaining discontinuity in u(0, ·).

• At every interaction point, a new Riemann Problem arises. Notice that because of their
fixed speed, two non–physical fronts cannot interact with each other, neither can the
zero–waves. Moreover, by a slight modification of the speed of some waves (only among
shocks, contact discontinuities and rarefactions), it is possible to achieve the property
that not more than two wave-fronts interact at a point.
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After each interaction time, the number of wave-fronts may increase. In order to prevent this
number to become infinite in finite time, a specific treatment has been proposed for waves
whose strength is below a threshold value ρ by means of a simplified Riemann solver [5, § 7.2].

Suppose that two wave–fronts of strengths σ, σ′ interact at a given point (t, x). If x 6= xα,
α ∈ ZW, we use the classical accurate or simplified homogeneous Riemann solver as in [5,
§ 7.2]. Assume now that x = xα, α ∈ ZW . We briefly recall the different situations that can
occur, see [1] for more details.

• If the wave approaching the zero wave is physical and |σ σ′| ≥ ρ we use the (accurate)
generalized Riemann solver.

• If the wave approaching the zero wave is physical and
∣

∣σ σ′
∣

∣ < ρ, we use a simplified
Riemann solver. Assume that the wave-front on the right is the zero–wave. Let ul,
um = Hi(σ)(ul), ur = T (ζ(xα+), ζ(xα−), um) be the states before the interaction. We
define the auxiliary states

ũm = T (ζ(xα+), ζ(xα−), ul) , ũr = Hi(σ)(ũm) .

Then, three fronts propagate after the interaction: the zero–wave (ul, ũm), the physical
front (ũm, ũr) and the non–physical one (ũr, ur). Due to the commutation defect, we
use Lemma 4.6 to ensure that the introduced error, i.e. the size of the generated non–
physical wave, is of second order.

• Suppose now that the wave on the left belongs to NP. Again we use a simplified
solver: let ul, um, ur = T (ζ(xα+), ζ(xα−), um) be the states before the interaction and
define the new state ũl = T (ζ(xα+), ζ(xα−), ul). After the interaction time, only two
fronts propagate: the zero–wave (ul, ũl) and the non–physical wave (ũl, ur). Lemma 4.2
ensures that the error we made is quadratic.

Stability of the algorithm. We recall how junctions are taken care in [1], within the Glimm
functionals [14]:

V (t) =
∑

α∈S∪R∪NP∪ZW

|σα| , Q(t) =
∑

α,β∈Ã

|σασβ|, (4.11)

measuring respectively the total wave strengths and the interaction potential in u(t, ·). Re-
member that if α ∈ ZW then the strength of the wave located in xα is given by σα =
∥

∥ζ(xα+)− ζ(xa−)
∥

∥. Notice that there exists a constant C > 1 (see Lemma 4.4) such that

1

C

(

TV (u(t, ·)) + TV (ζ)
)

≤ V (t) ≤ C
(

TV (u(t, ·)) + TV (ζ)
)

.

Thus, according to the estimates in Lemma 4.2 and Lemma 4.7 and to the classical ones [5,
Lemma 7.2], at every time τ when two waves of strengths σ, σ′ interact, we get:

V (τ+)− V (τ−) ≤ C
∣

∣σ σ′
∣

∣, (4.12)

Q(τ+)−Q(τ−) ≤ (C V (τ−)− 1)
∣

∣σ σ′
∣

∣ . (4.13)

Therefore, if V is sufficiently small, (4.13) implies

Q(τ+)−Q(τ−) ≤ −
1

2

∣

∣σ σ′
∣

∣ . (4.14)
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By (4.12) and (4.14) we can choose a constant C large enough and δ∗ > 0 so that (4.14) holds
and the quantity

Υ(t) = V (t) + C Q(t) (4.15)

decreases at every interaction time τ provided that V (τ−) is sufficintly small. Thus, by
standard arguments [1], choosing initial data uo satisfying

TV (uo) + TV (ζ) ≤ δ , (4.16)

ensures that the ε–approximate solution satisfies for any t ≥ 0,

TV (u(t, ·)) + TV (ζ) ≤ δ∗ . (4.17)

The same arguments used in [1] allow to control the total number of wave fronts, that the
maximal strength of a rarefaction wavelet is bounded by O(1) ε, that the sum of the strengths
of all NP waves is also bounded by O(1) ε and that t → TV (u(t, x)), for x 6∈ I, is bounded
uniformly in ε and ζ. �

Passing to the Limit εεε → 0

Theorem 4.10. Let Ω ⊆ R
n be open, f satisfy (f.1)–(f.3) and Ξ satisfy (Ξ.1)–(Ξ.3). Fix

ū ∈ Aio and z̄ ∈ Z. Then, there exist δ > 0 such that for all piecewise constant ζ ∈ BV(R;Z)
with

ζ(R) ⊆ B(z̄; δ) and TV (ζ) < δ

and for all initial data uo with

uo(R) ⊆ B(ū; δ) , TV (uo) < δ,

the Cauchy Problem (1.5) admits a solution u in the sense of Definition 2.1 enjoying the
properties:

(1) The maps t → TV (u(t, ·)) and t →
∥

∥(u(t, ·)
∥

∥

L∞(R;Rn)
are uniformly bounded and the

map x → u(t, x) is left continuous, for all t ≥ 0.

(2) For all x ∈ R, the map t → u(t, x) admits a representative ũx such that TV (ũx) is
uniformly bounded.

(3) For all t ≥ 0, u(t, ·) ∈ L1
loc

(R;Rn) and the map t → u(t, ·) is L1(R;Rn)–Lipschitz
continuous.

(4) For all T > 0 and for all open interval J ⊆ R\I, the map x → u(·, x) is L1([0, T ];Rn)–
Lipschitz continuous, with a Lipschitz constant independent of J , I being the set of
points of jump of ζ.

Proof. For ε > 0 sufficiently small, fix an ε–approximate solution uε. By Theorem 4.9, uε

satisfies (1)–(2)–(3)–(4). By Helly Theorem as extended in [5, § 2.5], there exists a map
u : [0,+∞[×R → R

n such that, up to a subsequence, uε(t, ·) converges to u(t, ·) in L1
loc

(R;Rn)
for all t ∈ [0,+∞[ and u satisfys (1), (3).

We now prove that u satisfies (4). By possibly passing to subsequences, we may assume
that uε(·, x) → u(·, x) for a.e. x ∈ R in L1([0, T ];Rn). Since uε satisfies (4), we may pass
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the Lipschitz continuity of x → uε(·, x) to the limit ε → 0 for a.e. x ∈ R. The limit u is left
continuous in the space variable x by (1), hence u satisfies (4).

We now prove that for all x ∈ R, uε(·, x) → u(·, x) in L1([0, T ];Rn). To this aim, fix an
arbitrary x ∈ R and y < x such that ]y, x[ ⊂ R \ I and uε(·, y) → u(·, y) in L1([0, T ];Rn).
Both x → uε(·, x) and x → u(·, x) are Lipschitz continuous, hence

∫ T

0

∥

∥uε(t, x)− u(t, x)
∥

∥ dt ≤ O(1) |x− y|+

∫ T

0

∥

∥uε(t, y)− u(t, y)
∥

∥ dt ;

lim sup
ε→0

∫ T

0

∥

∥uε(t, x)− u(t, x)
∥

∥ dt ≤ O(1) |x− y| .

Letting now y → x we obtained the desired convergence.
Note that TV (uε(·, x)) is bounded uniformly, so that u(·, x) admits a BV representative,

proving (2).
Finally, we prove that u solves (1.5). Choose ϕ ∈ C1

c(]0, T [ × R;R) and K so that
sptϕ ⊆ ]0, T [× ]−K,K[. Then,

∫ T

0

∫ K

−K

(

uε ∂tϕ+ f(uε) ∂xϕ
)

dx dt =

∫ T

0

∑

α∈J

eε,α(t)ϕ(t, xα(t)) dt ,

where eε,α(t) measures the error in the Rankine–Hugoniot conditions along the discontinuity
supported on x = xα(t), α ∈ J , i.e.,

eε,α(t) = ẋα
(

uε(t, xα(t)+)− uε(t, xα(t))
)

−
(

f(uε(t, xα(t)+))− f(uε(t, xα(t)))
)

.

By Definition 4.8 and standard estimates,

∑

α∈J \ZW

|eε,α(t)| ≤ O(1) ε .

Since the coupling condition (1.3) holds along the zero–waves α ∈ ZW, we obtain

∥

∥

∥

∥

∥

∥

∫ T

0

∫ K

−K

(

uε∂tϕ+ f(uε)∂xϕ
)

dx dt+

∫ T

0

∑

α∈ZW

ϕ(t, xα) Ξ(ζ(xα+), ζ(xα), u
ε(t, xα)) dt

∥

∥

∥

∥

∥

∥

≤ C ε.

(4.18)
As ε → 0 the first integrand above converges to the integrand on the left hand side of (4.5).
Using (Ξ.1) and the convergence uε(·, xα) → u(·, xα) in L1([0, T ];Rn), we prove the conver-
gence of the second integrand in the left hand side of (4.18), obtaining

∫ +∞

0

∫

R

(

u∂tϕ+ f(u) ∂xϕ
)

dx dt+

∫ +∞

0

∑

α∈ZW

ϕ(t, xα) Ξ(ζ(xα+), ζ(xα), u(t, xα)) dt = 0 ,

completing the proof. �

4.3 Convergence Towards a General ζ

Proof of Theorem 2.2. The proof consists of different steps.
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Step 1: Approximation of ζ. Let ζ ∈ BV(R;Z). Call I the, possibly infinite, set of
points of jump in ζ. Recall that Dζ is a finite measure. By Lusin Theorem [20, Theorem 2.24],

for any h > 0, there exists a gh ∈ C0
c(R;R

p) such that
∥

∥

∥
gh(x)

∥

∥

∥
≤ 1 and

‖Dζ‖

(

{

x ∈ R : gh(x) 6= v(x)
}

)

< h . (4.19)

Introduce points {x1, . . . , xNh−1} ∈ R such that1:

(i) x0 = −∞, x1 < −1/h, xi−1 < xi for i = 2, . . . , Nh − 1, xNh−1 > 1/h and xNh
= +∞.

(ii)
∑

x∈I\Ih

∥

∥∆ζ(x)
∥

∥ < h for a suitable set of points Ih contained in {x1, x2, . . . , xNh−1}.

(iii) Whenever xi ∈ Ih, TV
(

ζ, [xi−1, xi[
)

< h/(1 + ♯Ih).

(iv) TV
(

ζ, ]xi−1, xi[
)

< h for all i = 1, . . . , Nh.

(v)
∥

∥

∥
gh
(

x′
)

− gh
(

x′′
)

∥

∥

∥
< h for x′, x′′ ∈]xi−1, xi[, i = 1, . . . , Nh.

(vi) xi − xi−1 ∈ ]0, h[ for all i = 2, . . . , Nh − 1.

Such points exist since all these properties are stable if further points are inserted. We
approximate ζ by means of the piecewise constant left continuous function

ζh(x) = ζ (−∞)χ
]−∞,x1]

(x) +

Nh−1
∑

i=2

ζ (xi−1+) χ
]xi−1,xi]

(x) + ζ
(

xNh−1+
)

χ
]xNh−1,+∞[

(x).

(4.20)
By Theorem 4.10, there exists a solution uh to the Cauchy Problem (1.5) with ζ substituted

by ζh as in (4.20). We prove that as h → 0 the solution uh converges in L1
loc

to a solution
to (1.5), possibly up to a subsequence.

Step 2: Select a Convergent Subsequence. We claim that there exists a map u and a
convergent subsequence, which we keep denoting uh, such that

uh(t, ·) → u(t, ·) in L1
loc(R;R

n) for all t; (4.21)

uh(·, x) → u(·, x) in L1
loc([0,+∞[;Rn) for all x; (4.22)

t → u(t, ·) is Lipschitz continuous in L1(R;Rn); (4.23)

TV
(

u(t, ·)
)

is bounded uniformly in t ; (4.24)

x → u(t, x) is left continuous for all t ≥ 0 . (4.25)

Indeed, by (1) and (3) in Theorem 4.10, we can apply Helly Theorem as presented in [5,
§ 2.5] obtaining the existence of a map u satisfying (4.21), (4.23), (4.24) and (4.25).

We are left with the convergence (4.22). Introduce a point y < x and all the points of
jump x̄0, . . . , x̄M+1 (for a suitable M ≥ 0) in ζh such that

−∞ ≤ x̄0 < y ≤ x̄1 < x̄2 < · · · < x̄M < x ≤ x̄M+1 ≤ +∞ .

1Everywhere, ♯A stands the (finite) cardinality of the set A.
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We now estimate

TV
(

ζh; [y, x[
)

=
M
∑

i=1

∥

∥

∥
∆ζh (x̄i)

∥

∥

∥
=

M
∑

i=1

∥

∥ζ(x̄i+)− ζ(x̄i−1+)
∥

∥

≤
∥

∥ζ(x̄1−)− ζ(x̄0+)
∥

∥+
∥

∥ζ(x̄1+)− ζ(x̄1−)
∥

∥+

M
∑

i=2

∥

∥ζ(x̄i+)− ζ(x̄i−1+)
∥

∥

≤ TV
(

ζ, ]x̄0, x̄1[
)

+TV
(

ζ, ]y, x[
)

≤ h+TV
(

ζ, ]y, x[
)

. (4.26)

where to get to the last line above we used (iv).
Fix a positive T . By the triangle inequality, (4) in Theorem 4.10, inequality (4.26) and

Lemma 4.2, since uh(t, x̄i+) = T
(

ζh(x̄i+), ζh(x̄i), u
h(t, xi)

)

,

∫ T

0

∥

∥

∥
uh(t, x)− uh(t, y)

∥

∥

∥
dt

≤

∫ T

0

∥

∥

∥uh(t, x)− uh(t, x̄M+)
∥

∥

∥ dt+

∫ T

0

∥

∥

∥uh(t, x̄M+)− uh(t, x̄M )
∥

∥

∥ dt

+

M−1
∑

i=1

(

∫ T

0

∥

∥

∥uh(t, x̄i+1)− uh(t, x̄i+)
∥

∥

∥ dt+

∫ T

0

∥

∥

∥uh(t, x̄i+)− uh(t, x̄i)
∥

∥

∥ dt

)

+

∫ T

0

∥

∥

∥uh(t, x̄1)− uh(t, y+)
∥

∥

∥ dt+

∫ T

0

∥

∥

∥uh(t, y+)− uh(t, y)
∥

∥

∥ dt

≤ O(1) |x− x̄M |+O(1)
∥

∥

∥
∆ζh(x̄M )

∥

∥

∥

+O(1)
M−1
∑

i=1

(

|x̄i+1 − x̄i|+
∥

∥

∥
∆ζh(x̄i)

∥

∥

∥

)

+O(1) |x̄1 − y|+O(1)
∥

∥

∥
∆ζh(y)

∥

∥

∥

≤ O(1)

(

|x− y|+TV
(

ζh, [y, x[
)

)

≤ O(1)
(

|x− y|+ h+TV
(

ζ, [y, x[
)

)

. (4.27)

Since uh converges to u in L1
loc

(

[0,+∞[×R,Rn
)

too, possibly passing to a subsequence, we
may assume that for a.e. x ∈ R we have uh(·, x) → u(·, x) in L1

loc
([0,+∞[;Rn). Pass to the

limit h → 0 in (4.27) and obtain that for a.e. x, y ∈ R with y < x,

∫ T

0

∥

∥u(t, x)− u(t, y)
∥

∥ dt ≤ O(1)
(

|x− y|+TV
(

ζ, [y, x[
)

)

. (4.28)

By the left continuity of x → u(t, x) and of the right hand side of (4.28) (with respect to both
x and y), the inequality (4.28) holds for all x, y ∈ R with y < x.

Fix now an arbitrary x ∈ R and choose y ∈ R with y < x and such that uh(·, y) → u(·, y).
By the triangle inequality, (4.27) and (4.28), we have

∫ T

0

∥

∥

∥uh(t, x)− u(t, x)
∥

∥

∥ dt ≤ O(1)
(

|x− y|+ h+TV
(

ζ, [y, x[
)

)

+

∫ T

0

∥

∥

∥uh(t, y)− u(t, y)
∥

∥

∥ dt .
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Hence, for almost every y < x,

lim sup
h→0

∫ T

0

∥

∥

∥uh(t, x)− u(t, x)
∥

∥

∥ dt ≤ O(1)
(

|x− y|+TV
(

ζ, [y, x[
)

)

which proves the convergence for every x ∈ R, since the latter right hand side vanishes as
y → x−.

Step 3: The Limit is a Solution. Fix ϕ ∈ C1
c(]0,+∞[×R;R) such that sptϕ ⊆ [0, T ]×

[−K,K] for suitable T,K > 0. Showing that the left hand side below vanishes in the limit
h → 0 completes the proof.

∥

∥

∥

∥

∥

∥

∥

−

∫ T

0

∫ K

−K

(

u∂tϕ+ f(u) ∂xϕ
)

dtdx−
∑

x∈I , |x|≤K

∫ T

0
Ξ
(

ζ(x+), ζ(x), u(t, x)
)

ϕ(t, x) dt

−

∫ T

0

∫ K

−K

D+
v(x)Ξ

(

ζ(x), ζ(x), u(t, x)
)

ϕ(t, x) d‖µ‖ (x) dt

∥

∥

∥

∥

∥

≤ Eh
1 + Eh

2 + Eh
3 + Eh

4 + Eh
5 + Eh

6 + Eh
7 + Eh

8 + Eh
9 + Eh

10 .

To this aim, consider the terms on the right hand side separately:

Term Eh
1 : By the L1

loc
convergence proved in Step 2.

Eh
1 =

∥

∥

∥

∥

∥

−

∫ T

0

∫ K

−K

(

u∂ϕ+ f(u) ∂xϕ
)

dxdt+

∫ T

0

∫ K

−K

(

uh ∂ϕ+ f(uh) ∂xϕ
)

dxdt

∥

∥

∥

∥

∥

→ 0 as h → 0 .

Term Eh
2 : Each uh is a solution, hence

−

∫ T

0

∫ K

−K

(

uh ∂tϕ+ f(uh) ∂xϕ
)

dtdx =
∑

i : |xi|≤K

∫ T

0
Ξ
(

ζh(xi+), ζh(xi), u
h(t, xi)

)

ϕ(t, xi) dt

so that

Eh
2 =

∥

∥

∥

∥

∥

−

∫ T

0

∫ K

−K

(

uh ∂tϕ+ f(uh) ∂xϕ
)

dtdx

−
∑

i : |xi|≤K

∫ T

0
Ξ
(

ζh(xi+), ζh(xi), u
h(t, xi)

)

ϕ(t, xi) dt

∥

∥

∥

∥

∥

∥

∥

= 0 .
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Term Eh
3 : Recall that by (4.20), ζh(xi) = ζ(xi−1+) and ζh(xi+) = ζ(xi+). By the

Lipschitz continuity of Ξ and (iii)

Eh
3 =

∥

∥

∥

∥

∥

∥

∥

∑

i : |xi|≤K , xi∈Ih

∫ T

0
Ξ
(

ζh(xi+), ζh(xi), u
h(t, xi)

)

ϕ(t, xi) dt

−
∑

i : |xi|≤K , xi∈Ih

∫ T

0
Ξ
(

ζ(xi+), ζ(xi), u
h(t, xi)

)

ϕ(t, xi) dt

∥

∥

∥

∥

∥

∥

∥

≤ O(1)
∑

i : |xi|≤K ,xi∈Ih

∥

∥ζ(xi−1+)− ζ(xi)
∥

∥

≤ O(1) ♯Ih h

1 + ♯Ih

≤ O(1) h

→ 0 as h → 0 .

Term Eh
4 : Recall that if xi 6∈ I, then ζ (xi+) = ζ (xi), which implies the equality

Ξ
(

ζ(xi+), ζ(xi), u
h(t, xi)

)

= 0. Hence, by (Ξ.1), (Ξ.3) and (ii) we compute

Eh
4 =

∥

∥

∥

∥

∥

∥

∥

∑

i : |xi|≤K ,xi∈Ih

∫ T

0
Ξ
(

ζ(xi+), ζ(xi), u
h(t, xi)

)

ϕ(t, xi) dt

−
∑

x∈I,|x|≤K

∫ T

0
Ξ
(

ζ(x+), ζ(x), uh(t, x)
)

ϕ(t, x) dt

∥

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

∥

∑

x∈I\Ih,|x|≤K

∫ T

0
Ξ
(

ζ(x+), ζ(x), uh(t, x)
)

ϕ(t, x) dt

∥

∥

∥

∥

∥

∥

∥

≤ O(1)
∑

x∈I\Ih,|x|≤K

∥

∥∆ζ (x)
∥

∥

≤ O(1) h

→ 0 as h → 0 .

Term Eh
5 : Using Lemma 4.1

Eh
5 =

∥

∥

∥

∥

∥

∥

∥

∑

x∈I,|x|≤K

∫ T

0
Ξ
(

ζ(x+), ζ(x), uh(t, x)
)

ϕ(t, x) dt

−
∑

x∈I,|x|≤K

∫ T

0
Ξ
(

ζ(x+), ζ(x), u(t, x)
)

ϕ(t, x) dt

∥

∥

∥

∥

∥

∥

∥
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≤ O(1)
∑

x∈I

(

∥

∥∆ζ(x)
∥

∥

∫ T

0

∥

∥

∥
uh(t, x)− u(t, x)

∥

∥

∥
dt

)

→ 0 as h → 0 .

The last limit is due to (4.22) and the convergence of the series
∑

x∈I

∥

∥∆ζ(x)
∥

∥. This concludes
the convergence to the discrete part of the measure.

Term Eh
6 . Recall that by (4.20) we have ζh(xi) = ζ(xi−1+) and ζh(xi+) = ζ(xi+). We

use below also (ii):

Eh
6 =

∥

∥

∥

∥

∥

∥

∥

∑

i : |xi|≤K ,xi 6∈Ih

∫ T

0
Ξ
(

ζh(xi+), ζh(xi), u
h(t, xi)

)

ϕ(t, xi) dt

−
∑

i : |xi|≤K ,xi 6∈Ih

∫ T

0
Ξ
(

ζ(xi−1+) + µ(]xi−1, xi[), ζ(xi−1+), uh(t, xi)
)

ϕ(t, xi) dt

∥

∥

∥

∥

∥

∥

∥

≤ O(1)
∑

i : |xi|≤K , xi 6∈Ih

∥

∥ζ(xi+)− ζ(xi−1+)− µ(]xi−1, xi[)
∥

∥

= O(1)
∑

i : |xi|≤K , xi 6∈Ih

∥

∥Dζ(]xi−1, xi])− µ(]xi−1, xi[)
∥

∥

≤ O(1)
∑

x∈I\Ih

∥

∥∆ζ(x)
∥

∥

= O(1)h

→ 0 as h → 0 .

Term Eh
7 . Using (iii),

Eh
7 =

∥

∥

∥

∥

∥

∥

∥

∑

i : |xi|≤K ,xi 6∈Ih

∫ T

0
Ξ
(

ζ(xi−1+) + µ(]xi−1, xi[), ζ(xi−1+), uh(t, xi)
)

ϕ(t, xi) dt

−
∑

i : |xi|≤K

∫ T

0
Ξ
(

ζ(xi−1+) + µ(]xi−1, xi[), ζ(xi−1+), uh(t, xi)
)

ϕ(t, xi) dt

∥

∥

∥

∥

∥

∥

∥

≤ O(1)
∑

i : |xi|≤K ,xi∈Ih

TV
(

ζ; ]xi−1, xi[
)

≤ O(1) ♯Ih h

1 + ♯Ih

≤ O(1)h

→ 0 as h → 0 .

25



Term Eh
8 . Introduce now δi = ‖µ‖(]xi−1, xi[), J =

{

i ∈ {1, . . . , Nh} : δi 6= 0
}

and for
i ∈ J , let vi = µ(]xi−1, xi[)/δi. Below, we use (Ξ.4) with δi for t and vi for v, and (iv):

Eh
8 ≤

∥

∥

∥

∥

∥

∥

∥

∑

i : |xi|≤K

∫ T

0
Ξ
(

ζ(xi−1+) + µ(]xi−1, xi[), ζ(xi−1+), uh(t, xi)
)

ϕ(t, xi) dt

−
∑

i : |xi|≤K , i∈J

∫ T

0
δi D

+
vi
Ξ
(

ζ(xi−1+), ζ(xi−1+), uh(t, xi)
)

ϕ(t, xi) dt

∥

∥

∥

∥

∥

∥

∥

≤ O(1)
∑

i : |xi|≤K , i∈J

∫ T

0

∥

∥

∥

∥

Ξ
(

ζ(xi−1+) + µ(]xi−1, xi[), ζ(xi−1+), uh(t, xi)
)

−δiD
+
vi
Ξ
(

ζ(xi−1+), ζ(xi−1+), uh(t, xi)
)

∥

∥

∥

∥

dt

≤ O(1)
∑

i : |xi|≤K , i∈J

σ(δi) δi

≤ O(1)σ(h) TV (ζ)

→ 0 as h → 0 .

Term Eh
9 . Use (Ξ.4) and recall that by (1.6), vi = (1/δi)

∫

]xi−1,xi[
v(y) d‖µ‖(y), while

clearly v(x) = (1/δi)
∫

]xi−1,xi[
v(x) d‖µ‖(y). We also use gh, that is defined in Step 1 and

satisfies (4.19).

Eh
9 =

∥

∥

∥

∥

∥

∥

∥

∑

i : |xi|≤K , i∈J

∫ T

0
δi D

+
vi
Ξ
(

ζ(xi−1+), ζ(xi−1+), uh(t, xi)
)

ϕ(t, xi) dt

−
∑

i : |xi|≤K , i∈J

∫ T

0

∫

]xi−1,xi[
D+

v(x)Ξ
(

ζ(xi−1+), ζ(xi−1+), uh(t, xi)
)

ϕ(t, xi) d‖µ‖(x) dt

∥

∥

∥

∥

∥

∥

∥

≤ O(1)
∑

i : |xi|≤K , i∈J

∫

]xi−1,xi[

∥

∥v(x) − vi
∥

∥d‖µ‖(x)

≤ O(1)
∑

i : |xi|≤K , i∈J

1

δi

∫

]xi−1,xi[2

∥

∥v(x)− v(y)
∥

∥ d(‖µ‖ ⊗ ‖µ‖)(x, y)

≤ O(1)
∑

i : |xi|≤K , i∈J

1

δi

∫

]xi−1,xi[2

[

∥

∥

∥
v(x)− gh(x)

∥

∥

∥
+
∥

∥

∥
gh(y)− v(y)

∥

∥

∥

]

d(‖µ‖ ⊗ ‖µ‖)(x, y) (4.29)

+ O(1)
∑

i : |xi|≤K , i∈J

1

δi

∫

]xi−1,xi[2

∥

∥

∥gh(x)− gh(y)
∥

∥

∥ d(‖µ‖ ⊗ ‖µ‖)(x, y) . (4.30)

The two terms in the integral in (4.29) are estimated in the same way, using (4.19), as

∑

i : |xi|≤K , i∈J

∫

]xi−1,xi[2

1

δi

∥

∥

∥
v(x)− gh(x)

∥

∥

∥
d(‖µ‖ ⊗ ‖µ‖)(x, y)

26



≤
∑

i : |xi|≤K , i∈J

∫

]xi−1,xi[

∥

∥

∥v(x)− gh(x)
∥

∥

∥ d‖µ‖(x)

≤

∫

R

∥

∥

∥v(x)− gh(x)
∥

∥

∥ d‖µ‖(x)

≤

∫

{x∈R : v(x)6=gh(x)}

(

∥

∥v(x)
∥

∥ +
∥

∥

∥
gh(x)

∥

∥

∥

)

d‖µ‖(x)

≤ 2h

→ 0 as h → 0 .

We now estimate the term (4.30) by means of (v):

∑

i : |xi|≤K , i∈J

1

δi

∫

]xi−1,xi[2

∥

∥

∥gh(x)− gh(y)
∥

∥

∥ d(‖µ‖ ⊗ ‖µ‖)(x, y)

≤ h
∑

i : |xi|≤K , i∈J

1

δi

∫

]xi−1,xi[2
d(‖µ‖ ⊗ ‖µ‖)(x, y)

≤ h
∑

i : |xi|≤K , i∈J

δi

≤ h TV (ζ)

→ 0 as h → 0 .

Term Eh
10. Using (Ξ.4)

Eh
10 =

∥

∥

∥

∥

∥

∥

∥

∑

i : |xi|≤K , i∈J

∫ T

0

∫

]xi−1,xi[
D+

v(x)Ξ
(

ζ(xi−1+), ζ(xi−1+), uh(t, xi)
)

ϕ(t, xi) d‖µ‖(x) dt

−

∫ T

0

∫ K

−K

D+
v(x)Ξ

(

ζ(x), ζ(x), u(t, x)
)

ϕ(t, x) d‖µ‖ (x) dt

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∑

i : |xi|≤K , i∈J

∫ T

0

∫

]xi−1,xi[
D+

v(x)Ξ
(

ζ(xi−1+), ζ(xi−1+), uh(t, xi)
)

ϕ(t, xi) d‖µ‖(x) dt

−
∑

i : |xi|≤K , i∈J

∫ T

0

∫

]xi−1,xi[
D+

v(x)Ξ
(

ζ(x), ζ(x), u(t, x)
)

ϕ(t, x) d‖µ‖ (x) dt

∥

∥

∥

∥

∥

∥

∥

≤
∑

i : |xi|≤K , i∈J

∫ T

0

∫

]xi−1,xi[

∥

∥

∥

∥

D+
v(x)Ξ

(

ζ(xi−1+), ζ(xi−1+), uh(t, xi)
)

ϕ(t, xi)

−D+
v(x)Ξ

(

ζ(x), ζ(x), u(t, x)
)

ϕ(t, x)
∥

∥

∥ d‖µ‖ (x) dt

≤ O(1)
∑

i : |xi|≤K , i∈J

∫ T

0

∫

]xi−1,xi[

(

∥

∥ζ(xi−1+)− ζ(x)
∥

∥+
∥

∥

∥
uh(t, xi)− uh(t, x)

∥

∥

∥

+
∥

∥

∥uh(t, x)− u(t, x)
∥

∥

∥+ |xi − x|

)

d‖µ‖ (x) dt .
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Observe that
∥

∥ζ(xi−1+)− ζ(x)
∥

∥ ≤ h by (iv)
∫ T

0

∥

∥

∥uh(t, xi)− uh(t, x)
∥

∥

∥ dt ≤ O(1)h by (4.27)

|xi − x| ≤ h by (vi)

while by (4.22), Fubini Theorem and the Dominated Convergence Theorem,

∫

R

∫ T

0

∥

∥

∥uh(t, x)− u(t, x)
∥

∥

∥ dt d‖µ‖ (x) → 0 as h → 0 .

The proof is completed. �

4.4 Proof Relative to Section 3

Proof of Theorem 3.1. It is immediate to check that (f.1)–(f.3) hold, thanks to (p). Define
Ξ as in (3.3). Then, conditions (Ξ.1) and (Ξ.2) follow from the assumedC2 regularity ofK in
all its variables. Condition (Ξ.3) follows from (3.3) and K

(

0, (ρ, q)
)

≡ 0. Concerning (Ξ.4),
we have

D+
v Ξ(z, z, v) =







0

∂1K
(

0, (ρ, q)
)

‖v‖







indeed, for v such that ‖v‖ ≤ 1, we can estimate

∥

∥

∥K
(

t ‖v‖, (ρ, q)
)

− ‖v‖ ∂1K
(

0, (ρ, q)
)

t
∥

∥

∥

=

∥

∥

∥

∥

∥

∫ 1

0

(

∂1K
(

s t ‖v‖, (ρ, q)
)

− ∂1K
(

0, (ρ, q)
)

)

t ‖v‖ ds

∥

∥

∥

∥

∥

≤ ‖K‖
C2([0,r]×Ω;R) t

2

proving (Ξ.4) with σ(t) = ‖K‖
C2([0,r]×Ω;R) t.

Theorem 2.2 can then be applied, exhibiting the existence of a solution in the sense of
Definition 2.1.

To obtain the formulation (3.5) from (2.2), only the two terms in the right hand side of
the second equations need to be considered. The first one is immediate: it only requires the
substitution (3.3). Concerning the second one, recall that by (1.6), dµ (x) = Γ′′(x) dx, so that

d‖µ‖ (x) =
∥

∥Γ′′(x)
∥

∥ dx, and that v(x) = Γ′′(x)

‖Γ′′(x)‖
for a.e. x with respect to the measure ‖µ‖.

Hence, since
∥

∥v(x)
∥

∥ = 1 for a.e. x with respect to the measure ‖µ‖,

D+
v(x)Ξ

(

Γ′(x),Γ′(x), (ρ, q)
)

d‖µ‖ (x) = ∂1K
(

0, (ρ, q)(x)
) ∥

∥Γ′′(x)
∥

∥ dx

completing the proof. �

Proof of Theorem 3.2. Condition (p) ensures that (f.1)–(f.3) hold. The choice (3.8) and
the assumptions on Ξ2 imply that (Ξ.1)–(Ξ.4) hold. Since the distributional derivative of a
has neither Cantor part nor atomic part, due to (3.10) problem (3.9) reduces to (3.6). �
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