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3 Università degli Studi di Milano, Milano, Italy

4 ASST Gaetano Pini - CTO, Milan, Italy

Abstract. This study explores the concept of similarity in machine
learning (ML) and its congruence with human judgment in medical con-
texts, focusing primarily on radiology. We conducted a user study in-
volving two radiologists and two orthopedic and spine surgeons. These
experts evaluated the similarity of 72 cases, selected from a larger dataset
by an ML model based on Cosine and Euclidean distances, in compar-
ison to 18 representative base cases of vertebral fractures. Our analy-
sis focused on correlating these ML-derived distances with the experts’
assessments. The findings reveal that: (1) both Cosine and Euclidean
distances had limited correlation with human judgments; (2) Cosine dis-
tances showed a marginally higher correlation than Euclidean distances;
despite the limitations due to the small samples of evaluations and eval-
uators, our findings emphasize the necessity for ongoing research to en-
hance AI similarity metrics, aiming for greater human-centricity and
relevance, particularly considering their critical role in ML training and
inference. Our study’s implications are far-reaching, advocating for a
comprehensive reevaluation of similarity assessments in AI to achieve a
closer alignment with human cognitive processes, extending well beyond
the realm of medical imaging.
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1 Introduction

The aim of this study is to explore the concept of similarity in machine learning
(ML) and its congruence with human judgment in decision-making scenarios.
Indeed, in the application of ML to human decision-making, the concept of sim-
ilarity is key: to give but two examples, several models rely on the definition of
an underlying similarity measure [1], which would then have to conform with the
human assessment of similarity to produce reliable and comprehensible support,
while retrieval of similar cases has long been one of the most relevant forms
of explainable AI [23]. Yet, the notion of similarity, and that its computational
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evaluation could be useful to support human decision-making, grounds on com-
mon assumptions that are seldom verified or empirically tested: that in a certain
domain, or for a specific task, all users (or models) have the same perception of
the difficulty of cases that are to decide upon, or that they consider the same
cases to be similar to each other in the same way. In other words, that similarity
is a stable, objective, specific extension concept characterizing the relationship
between two entities or phenomena.

In another study [2] we investigated the effectiveness (and perceived use-
fulness) of ML-based support systems that extracted similar cases with their
respective ground-truth labels as decision support (for the task of spinal frac-
ture diagnosis): one of our findings was that different users consider similar cases
differently. Thus, in this article, we designed and executed a user study, in which
we investigated the reliability of traditional computational methods to compute
the similarity and the usefulness of measuring this information to provide more
personalized support based on the decision maker’s profile.

Thus, in our study, we investigate whether AI systems developed using ma-
chine learning techniques can extract similar cases from training cases that are
indeed perceived as semantically similar by subject-matter experts, and, conse-
quently, whether one similarity evaluation technique is to produce better results
than another. In the following, we will therefore first frame the concept of sim-
ilarity, both in human judgment and in algorithmic classification; then we will
introduce the two similarity calculation techniques that we have compared; and
finally, we will present the findings of the empirical user study, in which we col-
lected the similarity ratings of four subject-matter experts, two board-certified
radiologists, and two board-certified spine surgeons, to understand how the two
above metrics correlate with the human ratings.

2 The importance of similarity in ML classification

Classification is an important part of human cognition in that by grouping similar
objects into more general classes (categories), we organize and make sense of the
world around us, identify patterns and relationships, and make predictions and
decisions [26]. On the other hand, by recognizing and assessing the similarity
between objects and concepts we perform important cognitive processes for our
survival and success, such as analogical and metaphorical reasoning [12].

Both categorization (that is creating a set of categories) and classification
(that is associating an instance to any of the predefined categories, taken as
a class) ground on the concept of similarity, as we assume that instances said
to belong to the same class, denoted with the same category, all share a set
of common characteristics, which all make up a sort of “class-ness”: such a
relationship has indeed also been recognized in computational frameworks and
theories aimed at formalizing the notion of categorization [18, 24].

Recently, much research has been devoted to computational methods to au-
tomate these two fundamental cognitive processes, and machine learning, as a
general computational approach, encompasses many of these methods. The con-
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cept of similarity is fundamental in machine learning research, where it is used
in different ways and for different purposes depending on the type of task being
performed. Indeed, similarity is one of the main criteria [24] by which ML sys-
tems determine the relationship between different data points or distributions
and by which machine learning models are trained and their performance is eval-
uated. A trivial example is spam detection [22]: if a system is to classify emails
as spam or non-spam, it needs to determine the degree of similarity between a
given email and the group of emails that have been labeled as spam. Then, as for
the less common tasks here we mention the assessment of the extent to which a
collection of data points is similar to a given training set: In this case, the goal
is determining the extent any new instance is representative of the same under-
lying distribution from which the training data points have been extracted, so
that we can assume that the performance exhibited by the classifier on will also
be guaranteed when applied to new data points [4]. Finally, we also mention the
essential role similarity plays in the assessment of the extent to which two data
distributions are similar [17].

There are various ways to measure similarity: the main ones include mea-
sures derived from distance metrics, such as (the dual of) Euclidean distance
and Cosine distance; kernels [24], such as the radial basis function kernel; and
measures drawn from fuzzy relations [16]. If one has to choose one metric over
the others, this is usually chosen on the basis of traditional performance met-
rics (such as accuracy, area under the curve (AUC), sensitivity, specificity, their
harmonic average (F1 score) and the like) applied to some downstream task.
Notwithstanding this variety of performance metrics, it is usually assumed that
the choice of the most suitable similarity measure will depend on the nature of
the data and the goals of the ML task; however, clear guidelines or heuristics for
this choice are still missing.

Moreover, researchers face several challenges when they are to evaluate whether
a given similarity metric captures how human raters consider two cases similar;
besides the fact that it is difficult to provide an appropriate definition of similar-
ity for a given task, the main challenge lies in the subjectivity of the task itself:
as illustrated in [5, 13], and widely known in some scientific field (like medicine),
human judgment is affected by some amount of intrinsic and unavoidable sub-
jectivity what Kahneman with a term calls noise [13]. For this reason, different
people may have different opinions either on what constitutes similarity or on
the extent two objects are similar to each other. Most relevantly, this issue is
further exacerbated when one compares human and computational assessments
of similarity: indeed, while an appropriate matching of these two evaluations is
of critical importance if one aims at using similarity to support human deci-
sion making, these assessments could ground on entirely different principles and
features and hence provide discording results.

Indeed, some previous work studied the match between human and computa-
tional definitions of similarity: Diaz et al. [10] studied similarity in the context of
artwork, showing how traditional similarity metrics on images (based either on
color histograms, or qualitative features, such as elicited emotions, knowledge
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about the artworks and their context, or tag-based content similarity) poorly
explained the human perception of similarity, which was furthermore shown to
significantly vary across subjects; Towne et al. [25] studied similarity in the
context of document-topic classification, by comparing similarity assessments
reported by humans to those obtained through topic models, and found only a
moderate agreement between humans’ and LDA reported similarity assessments;
similarly, Colla et al. [9] studied the relationship between computational and hu-
man assessments of similarity in the context of concept similarity, showing only
a moderate correlation which increased only when humans were provided with a
textual explanations for the computational similarity score, making them aware
of linguistical features that they did not consider but were instead central in the
algorithmic evaluation of similarity. Thus, these results highlight how it is diffi-
cult to determine whether a similarity metric is capturing the way that human
raters consider two cases similar, for different reasons: because we would always
refer to the average human rater; because there is not a clear right or wrong
answer when it comes to determining the similarity between two cases; because
similarity is strongly context-dependent, and hence results obtained in a given
setting cannot be straightforwardly generalized to other ones. Furthermore, we
note that previous work, such as the ones cited above, did not focus on similarity
in a decision making setting, which is the more typical one when considering the
application of AI and XAI systems in human practice.

The rest of the work presents the study we performed to address two main
research questions: 1) is there any difference between common similarity metrics
with respect to their capability to reflect how humans see different objects as
similar? 2) if any such a difference exists, which similarity metric is better for a
given task (in our case, selecting the most similar diagnostic images) and is this
adequate with respect to this task? And lastly, 3) are the images retrieved from
a case repository with common machine learning techniques perceived as useful
by experts in their case interpretation and decision making?

3 The similarity assessment user study

In this section we present the user study designed and performed to address the
research questions proposed in Section 2: we will outline the methods applied,
and report the collected results. A discussion and concluding sections will follow
after having presented the results.

3.1 Methods

Choice of the similarity metrics A wide range of metrics for assessing sim-
ilarity between datasets, encompassing both tabular and image datasets, has
been explored, debated, and implemented within the domain of specialized ma-
chine learning literature. Among the most recognized are the Euclidean Distance,
Cosine Similarity, Pearson Correlation Coefficient, and specifically for images,
the Structural Similarity Index (SSIM). Focusing on a subset, we hypothesized



Dissimilar Similarities 5

that Euclidean Distance and Cosine Similarity are the most prevalent metrics.
To validate this claim we performed two queries on Google Scholar: the query
(“radiology” AND (“machine learning” OR “deep learning”) AND “similarity”)
reported 18,200 results5; the more specific query (“radiology” AND (“machine
learning” OR “deep learning”) AND “similarity” AND (“Euclidean” OR “Co-
sine”)), which is equivalent but focused on works explicitly mentioning either
the term Euclidean or Cosine yielded 12,500 results. Thus, we concluded that
at least one of this similarity measures was used in more than two thirds of the
retrieved articles. This motivated us to focus on Cosine and Euclidean similarity
to apply in our user study. In what follows, we briefly recall the definition of
these metrics.

Embedding Extraction for Similarity Computation Consider Rn as the
n-dimensional vector space over the real numbers. The vectors used for com-
puting similarity and dissimilarity metrics are derived from a fine-tuned deep-
learning model. Specifically, we employed a transfer-learning approach with a
pre-trained ResNeXt-50 model, which we adapted for binary classification by
modifying the last dense layer to have two neurons. This model was trained using
the softmax function and cross-entropy loss. After training, we extracted embed-
dings from the last dense layer before the output layer, representing high-level
features of the X-ray images in Rn . We computed the similarity between these
embeddings using Cosine and Euclidean distances to retrieve the most similar
cases. This methodology allowed us to evaluate and compare the model-derived
similarity metrics with human judgments.

The chosen metrics Let us denote with Rn the n-dimensional vector space
over the real numbers. The Euclidean distance is the natural distance metric
between two vectors x, y ∈ Rn. It is calculated as:

de(x,y) =

√√√√ n∑
i=1

(xi − yi)2 (1)

The Cosine similarity, by contrast, is a measure of similarity between two
vectors that measures the Cosine of the angle between them. It is calculated as:

scos(x,y) =
x · y

||x|| ||y||
=

n∑
i=1

xiyi√
n∑

i=1

x2
i

√
n∑

i=1

y2i

, (2)

where ||x|| denotes the Euclidean (or l2) norm of x.
Notice that, theoretically speaking, Cosine similarity and Euclidean distance

have semantics that are dual to each other: indeed, whereas the first quantifies

5 This query and the next one were performed on the 23rd of February 2024
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the similarity between two objects, the second one quantifies their dissimilarity or
difference. Nonetheless, and importantly for what follows, both can be expressed
as metric distances: indeed, from the Cosine similarity one can easily define a
Cosine distance as:

dc(x,y) = 1− scos(x,y) (3)

Thus, in the following, we will refer to the two distance metrics defined above.

Comparison methods To compare how humans perceive similarity to the
scores generated by the two metrics described in Section 3.1, we calculated
the Spearman’s rank correlation coefficients and the Krippendorff’s alpha. The
Spearman’s coefficients were used to assess the degree of correlation of the ab-
solute values of similarity ratings and scores, while Krippendorff’s alpha was
applied to evaluate the level of agreement across the corresponding distribution
quartiles. The fundamental concept here is that the method exhibiting the high-
est correlation and agreement, in absolute terms, would most closely align with
how humans interpret clinical similarity of cases.

Fig. 1. Screenshot of the online questionnaire used to collect the users’ ratings and
perceptions.

The user study design To perform our similarity assessment study, we in-
volved four experts in x-ray reading: two board-certified orthopedists and two
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orthopedic radiologists were asked to independently consider 18 x-ray cases sus-
pected of presenting some vertebral lesion. These cases had been previously se-
lected for another study by one of the orthopedists involved to be representative
of medium-to-high complexity and diagnostic difficulty (see [3]).

For each case (base case), the clinicians had to assess to which extent four
other cases, retrieved from the training set and presented to them, were to be
considered clinically similar to the base case, on a four-value ordinal scale rang-
ing from ‘completely different’ (1) to ‘very similar’ (4)6. In order to detect clinical
similarity between the diagnostic images shown to the clinicians, we agreed with
them that they had to consider the anatomical site, the main anatomical ele-
ments involved, the features of the fracture (if any), and just any other analogy
or similarity that could make a case “similar” and educationally instructive to
inform the most accurate and most efficient interpretation of the base case.

For both the base case as well as the similar cases that were retrieved, the
human experts evaluated the original images extracted from the hospital PACS
system. By contrast, the similarity scores used to retrieve the similar cases were
computed on images that had been previously normalized in terms of brightness
and contrast to ensure consistency across the training set. The model was trained
on an augmented dataset, which included typical procedures such as rotation,
flipping, and scaling of the normalized images.

Moreover, we also asked the raters to assess the utility of considering the cases
retrieved by similarity for the correct interpretation of the base case: also in this
case, the raters employed a four-value ordinal scale ranging from ‘substantially
useless (1) to ‘very useful’ (4). We agreed that the meaning of the lowest score
was associated with ‘a waste of time having had to see also this image with
respect to the base case’7. The clinicians’ ratings were collected by means of
an online multi-page questionnaire, developed on the Limesurvey platform (see
Figure 1).

3.2 The user study results

In Table 1 we present the degree of correspondence between human percep-
tions of similarity (72 cases, 288 ratings) and between those perceptions and
the computed similarities. We represent this degree both in terms of correlation
(Spearman rho) and agreement (Krippendorff’s alpha).

Regarding Figure 2, the Spearman correlation between the median perceived
similarity (that is the extent the base case and the cases retrieved by the AI
were found similar) and the Cosine similarity scores were found to be significant
but only of moderate strength (r(72) = .41, p = <.001); while the correlation
between median perceived similarity and the Euclidean distance scores was found

6 The other anchors of the scale were ‘very different with some similarity’ (2) and
‘quite similar but with some substantial difference’ (3). The four-value scale was
adopted to mitigate label noise (with few values) and central tendency bias (with
an odd number of values).

7 The other values of the scale were ‘poorly useful’ (2) and ‘fairly useful’ (3).
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Table 1. Comparative Analysis of Inter-rater Agreement and Correlation between hu-
man raters and the analyzed metrics. Correlations are reported in terms of Spearman’s
rank correlation coefficients, while agreement is reported in terms of Krippendorff’s
alpha. Correlation scores are all highly significant, with p-values lower than .01. Corre-
lation legend (based on [20]): very strong correlation; strong correlation; moderate
correlation; weak correlation.

Comparison of similarity perceptions Correlation ρ Agreement α

Btw Cosine & Euclidean -.83 -.77
Among humans .64 .54
Among radiologists .64 .42
Among orthopedists .76 .75
Btw Radiologists & Orthopedists .61 .50.
Btw Cosine & Humans .41 .43
Btw Euclidean & Human -.34 -.38

to be significant but weak (r(72) = -.34, p = .004). The difference between
these correlations is not significant: as the confidence interval ([-.31, .15]) of
the difference between the two correlations includes 0, we fail to reject the null
hypothesis of no difference [11].

Fig. 2. This scatterplot illustrates the correlation between Euclidean (left, blue) and
Cosine similarity metrics (right, green), both normalized to the [0,1] interval (min -
max), thereby emphasizing similarity over distance between pairs of instances (denoted
by blue and green circles, respectively), in comparison with the human-perceived sim-
ilarity for the same instance pairs. A more robust correlation, as reflected by a steeper
slope, signifies a higher concordance between the computational measures and human
judgment.
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In regard to perceived utility, the medical raters did not find considering
the retrieved cases particularly useful to make a better, i.e., more accurate,
interpretation of the base case (see Figure 3). The average utility score (i.e., 2)
was significantly lower than the middle level (2.5). Moreover, we could not find
any significant difference with respect to the class (positive vs negative) of the
base case (p-value= .56, Z= 0.58, U=1438.5, standardized effect size= .057).

Fig. 3. Violin plot (embedding a box plot) of the perceived usefulness of considering
the similar cases identified in the user study (N=288 ratings). The dotted line indicates
the midline of the scale, suggesting perceived utility was generally low.

4 Discussion

The main findings of our study, as reflected in Table 1 can be summarized as
follows: Cosine-based and Euclidean similarities do not differ too much, as also
reflected by the high level of agreement between their scores [14]. Conversely,
human perceptions of similarity are less correlated, and their agreement is like-
wise lower, on the threshold of sufficient reliability for ground truthing require-
ments [14], although the agreement between orthopedists was much higher (and
hence adequate also for ground truth annotation) than that observed between
radiologists. This suggests that the concept of similarity between cases is in-
herently vague, and that for similarity annotation ML practitioners should only
rely on the perceptions of renowned experts with a strong common background
rather than involving people who not only are not professionals but also do not
share the same specialty. Furthermore, no computational metric achieved a level
of alignment with human perception comparable to the level of intrinsic align-
ment between humans. In fact, cases extracted on the basis of either metrics
were not found to be informative or useful for the interpretation of a given case.
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That notwithstanding, Cosine-based similarity was found to be more similar to
the human similarity than the Euclidean one. This means that automating the
similarity assessment could lead to unreliable evaluations, and that, if this is
deemed necessary in some application tasks, it is better to adopt Cosine-based
similarity.

The primary limitation of this study is its relatively small sample size, a
common challenge encountered in exploratory research such as ours. Despite
this, our research is underpinned by 18 authentic cases, meticulously selected by
a subject matter expert to encapsulate the breadth of complexity observed in
real-world decision-making scenarios. Moreover, this study engaged four experts
to assess 72 similarity relationships, yielding nearly 300 independent evalua-
tions. Based on these figures, and notwithstanding these limitations, our research
provides meaningful insights into the field of radiological image interpretation,
highlighting several critical aspects. First, similarity metrics are not universally
effective in retrieving pertinent and relevant cases, with significant variations in
their alignment with human experts’ perceptions of similarity. This seems to be
due to the fact that commonly used similarity metrics in medical domains fail
to capture what physicians consider similar, indicating a discrepancy between
technical metrics and clinical relevance. Our analysis thus reveals a need for
further research to identify or develop the most suitable similarity metrics for
specific tasks, enhancing case retrieval and diagnostic support [19]. Conversely,
reliance on less effective techniques could lead to suboptimal outcomes, providing
clinically insignificant information. Despite its poor correlation with human per-
ceptions, Cosine distance scores were nevertheless found to be more aligned with
physicians’ perceptions than Euclidean similarity scores; therefore Cosine-based
similarity should be the metric of choice should one wish to treat similarity, at
least in contexts of orthopedic image interpretation.

In light of our findings, it is pertinent to acknowledge the contributions of
prior research in metric learning [15] and similarity learning [6, 8, 21], which have
explored the application of machine learning (ML) techniques to automatically
generate similarity measures. These methods, including those based on quali-
tative similarity assessments [7, 8], offer potential benefits for both broad and
specific applications. They can provide general similarity measures applicable
across various tasks, or tailor similarity assessments to the nuanced perceptions
of a small group or even an individual clinician, assuming an adequate dataset is
available [6]. Given the insights from our experiments, we advocate for increased
research focus on developing more sophisticated computational approaches for
assessing similarity [19]. This emphasis is crucial due to its significance in both
human cognitive processes and the advancement of machine learning technolo-
gies.

5 Conclusions

In conclusion, our study underscores a significant discrepancy between widely-
used similarity metrics, specifically Cosine and Euclidean distances, and the
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evaluative processes of humans. This divergence is particularly pronounced in the
alignment of AI-driven similarity measures with human perception, an essential
factor in critical decision-making areas like medical diagnosis.

The minimal correlation between these mathematical models and the assess-
ments of medical professionals accentuates the difficulty of aligning AI-generated
similarity metrics with human intuition. Although Cosine distance slightly out-
performs Euclidean distance, the difference is statistically insignificant, suggest-
ing a slight but not meaningful preference for Cosine distance in the retrieval of
clinically similar cases. However, this minor preference is overshadowed by the
larger issue: both metrics fall short in accurately reflecting the nuanced complex-
ities of human judgment on case similarity. This gap highlights the pressing need
for developing similarity metrics that are more aligned with human cognition,
possibly through the application of sophisticated ML techniques that incorporate
qualitative evaluations.

Despite the limitations of our study, such as its small sample size and lim-
ited scope, it stresses the importance of rethinking the current approaches to
similarity assessment in AI. We propose a collaborative effort that combines
the insights of medical professionals, cognitive scientists, and AI researchers to
bridge the gap between machine and human perceptions of similarity. Looking
ahead, the goal should not only be to improve the accuracy of AI but also to
ensure that AI-generated decisions and recommendations are intuitively mean-
ingful and valuable to human users, particularly in critical sectors like medical
diagnosis.
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