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Abstract

Insulin-like growth factor I (IGF-I) and its type I receptor (IGF-IR) play significant roles in tumorigenesis and in immune
response. Here, we wanted to know whether an RNA interference approach targeted to IGF-IR could be used for specific
antitumor immunostimulation in a breast cancer model. For that, we evaluated short interfering RNA (siRNAs) for inhibition
of in vivo tumor growth and immunological stimulation in immunocompetent mice. We designed 29-O-methyl-modified
siRNAs to inhibit expression of IGF-IR in two murine breast cancer cell lines (EMT6, C4HD). Cell transfection of IGF-IR siRNAs
decreased proliferation, diminished phosphorylation of downstream signaling pathway proteins, AKT and ERK, and caused a
G0/G1 cell cycle block. The IGF-IR silencing also induced secretion of two proinflammatory cytokines, TNF- a and IFN-c.
When we transfected C4HD cells with siRNAs targeting IGF-IR, mammary tumor growth was strongly delayed in syngenic
mice. Histology of developing tumors in mice grafted with IGF-IR siRNA treated C4HD cells revealed a low mitotic index, and
infiltration of lymphocytes and polymorphonuclear neutrophils, suggesting activation of an antitumor immune response.
When we used C4HD cells treated with siRNA as an immunogen, we observed an increase in delayed-type hypersensitivity
and the presence of cytotoxic splenocytes against wild-type C4HD cells, indicative of evolving immune response. Our
findings show that silencing IGF-IR using synthetic siRNA bearing 29-O-methyl nucleotides may offer a new clinical approach
for treatment of mammary tumors expressing IGF-IR. Interestingly, our work also suggests that crosstalk between IGF-I axis
and antitumor immune response can mobilize proinflammatory cytokines.
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Introduction

Insulin-like growth factor type I receptor (IGF-IR) signaling has

a significant impact on development of many normal tissues, and

also on growth of malignant tumors [1]. Epidemiological studies

showed that increased serum concentration of insulin-like growth

factor I (IGF-I) is associated with increased risk of developing

tumors including those of the breast [2]. Moreover, IGF-IR is a

potent control point for transformation and is therefore considered

as a relevant therapeutic target [3]. Indeed, drugs targeting the

IGF axis are under development by major companies and include

receptor-specific blocking antibodies and tyrosine kinase inhibitors

(TKIs) [4]. Other approaches using nucleic-acid based strategies

have been used to investigate the IGF-IR/IGF-I pathway,

including antisense oligonucleotides, antisense RNA expression

plasmids, ribozymes, triplex-forming oligonucleotides and short

interfering RNAs (siRNAs) [5,6,7,8,9,10]. Although nucleic-acid

based approaches are theoretically specific and selective, they may

have the undesirable effect of silencing non-targeted mRNAs,

more particularly in the case of siRNAs and phosphorothioate

antisense oligonucleotides [11].

It was previously found that down-regulation of IGF-IR using

antisense expression vectors may block tumor growth in vivo

[12,13,14,15] For example, murine EMT6 breast cancer cells

carrying an antisense IGF-IR vector exhibited a significant

decrease in cell proliferation in vitro, lost their ability to form

colonies in soft agar, and also lost their tumorigenic property when

grafted to syngenic mice [16]. Interestingly, antisense down-

regulation of IGF-IR can unexpectedly induce an antitumor host

response with several of the characteristics of an immune response.

Injection of glioblastoma cells stably expressing antisense IGF-IR

transcripts in syngenic rats elicited a protective host response that
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inhibited tumor formation by subsequent injection of wild-type

cells associated to the proliferation of cytotoxic CD8+ lymphocytes

[17]. This host immune response was also observed in experiments

with other syngenic models such as mouse neuroblastoma or

melanoma [13,18]. Although few attempts were done to unravel

the mechanisms leading to this host response after IGF-IR down-

regulation, it has been hypothesized that this could be due to

induction of in vivo apoptosis or to secretion of immuno-peptides

that interact with Major Histocompatibility Complex (MHC) class

I antigen, further recognized by CD8+ cells [18,19,20].

We have shown that in vivo administration of phosphorothioate

antisense oligonucleotides targeting IGF-IR decreased receptor

protein levels and concomitantly inactivated AKT and MAPK

signaling pathways leading to C4HD breast tumor growth

inhibition [21]. We successfully protected syngenic mice from

tumor development induced by wild-type C4HD by inoculating

mice with C4HD cells treated with antisense oligonucleotides

targeting IGF-IR [22]. Similarly tumor-specific immunity led to

inhibition of tumor growth through the generation of a cellular

response and of tumor-specific cytotoxic cells. Down-regulation of

IGF-IR up-regulated the co-stimulatory molecule CD86 as well as

the peptide-chaperone Hsp70 [22]. A significant body of evidence

indicates that the IGF-I/IGF-IR axis interferes with immune

recognition of tumor cells [13,17,23]. Indeed, triple helix-forming

or antisense expression vectors targeting IGF-I induced a host

immune response with up-regulation of immunogenic molecules

and increased production of apoptotic cells [23,24,25].

Here, we analyzed the effect of transiently silencing of IGF-IR

into mouse breast cancer cells through transfection of well-defined

small molecules, such as siRNAs modified with 29-O-methyl

nucleotides for in vivo use. These short molecules are supposed to

be more specific than antisense RNA and devoid of undesired

effects [11]. Using the most efficient siRNAs, we inhibited IGF-IR

downstream signaling proteins, and confirmed its essential role for

in vitro cell growth and cell cycle regulation. Remarkably, blocking

IGF-IR signaling in breast cancer cells not only decreased tumor

growth in syngenic mice and triggered features of an immune

response, but also induced secretion of pro-inflammatory cyto-

kines. These results are strong evidence for significant links

between IGF-IR and immune response pathways.

Materials and Methods

Ethics Statements
Animal studies were conducted as in accordance with the

highest standards of animal care as outlined by the NIH Guide for

the Care and Use of Laboratory Animals [26], and were approved

by the IBYME Animal Research Committee. The IBYME is

approved by OLAW, NIH (assurance #A5072-01).

Reagents
All chemical reagents were from Sigma-Aldrich, (St. Louis,

MO), unless otherwise indicated. Rabbit polyclonal anti human

IGF-IR ß (C-20) antibody, mouse monoclonal anti human INS-R

ß (9H4) antibody and mouse monoclonal anti rabbit GAPDH

(6C5) antibody were from Santa Cruz Biotechnology, Santa

Cruz, CA. Rabbit monoclonal anti human phospho-p44/42

MAPK (Thr202/Tyr204) antibody, rabbit polyclonal anti rat

p44/42 MAPK (Erk1/2) antibody, rabbit polyclonal anti mouse

phospho AKT (Ser473) antibody, rabbit polyclonal anti mouse

AKT antibody were from Cell Signaling Technology, Beverly,

MA. Mouse monoclonal anti ß-actin (A5316) was from Sigma-

Aldrich. Sheep anti-mouse IgG peroxidase-linked whole antibody

(NXA931) and donkey anti-rabbit IgG peroxidase-linked whole

antibody (NA934) were from GE Healthcare, Little Chalfont,

UK.

Animals and tumors
Experiments were carried out in virgin female BALB/c mice

raised at the IBYME. The hormone-dependent ductal tumor line

C4HD was originated in mice treated with 40 mg medroxypro-

gesterone acetate (MPA, medrosterona, Laboratorios Gador,

Buenos Aires, Argentina) every 3 months for 1 year, and has

been maintained by serial transplantation in animals treated with

40 mg subcutaneously (s.c.) MPA depot in the opposite flank to

tumor inoculum [21,27]. The C4HD tumor line is of ductal origin,

expresses progesterone and estrogen receptors, IGF-I/IGF-IR,

lacks glucocorticoid receptor expression and requires MPA

administration to proliferate both in vivo and in vitro [21].

Cell lines and culture
The EMT6 murine mammary carcinoma cells were purchased

from American Type Culture Collection (CRL-2755) and were

maintained in Waymouth’s MB 752/1 medium (Invitrogen,

Cergy-Pontoise, France) supplemented with 10% heat-inactivated

fetal calf serum (FBS; Hyclone, Thermofisher, Strasbourg, France)

and 2 mM L-glutamine (Invitrogen). EMT6 cells express large

amount of IGF-IR [16]. All cell lines were regularly checked for

mycoplasma infection using PCR (VenorHGeM, Biovalley,

Marne-la-Vallée, France). Primary cultures of epithelial cells from

C4HD tumors, growing in MPA-treated mice, were performed as

described [28,29]. Epithelial cells were plated in flasks with

DMEM/F12+5% steroid-stripped FCS (ChFCS, Gen S.A.,

Buenos Aires), and allowed to attach for 24 h. Purity of epithelial

cultures was evaluated by cytokeratin staining. Cells were

incubated in DMEM/F12, (100 U/ml penicillin, 100 mg/ml

streptomycin, without phenol red), with 2.5% ChFCS and

10 nM MPA.

SiRNA and cell transfection
The synthesized siRNAs (nomenclature and design in Methods

S1) were transfected into EMT6 cells using a reverse transfection

procedure with LipofectamineTM RNAiMAX (Invitrogen, Cergy-

Pontoise, France). DharmaFECT-I cationic lipid (Thermo Fisher

Scientific, USA) was used for siRNA transfection into C4HD cells

using a direct transfection protocol. After transfection, cells were

incubated at 37uC for 24 h, to 72 h before further analysis. RNA

preparation, quantitative RT-PCR, gel electrophoresis and

immunobloting procedures are described in Methods S1.

Proliferation and cell cycle assays
Cell proliferation was evaluated 48 h post-transfection with

siRNAs targeting IGF-IR using CellTiter 96 AQueous Non-

Radioactive Cell Proliferation Assay (Promega, Charbonnières,

France). Cell proliferation assays performed in triplicate using

three independent transfections were reproduced in two indepen-

dent experiments. Cell-cycle analysis was done using propidium

iodide (2.5 mg/mL) staining of methanol-fixed samples treated

with RNase (100 mg/mL). All data were analyzed with Dean-Jett-

Fox model cell cycle analysis using FlowJo 8.8.6 software (Tree

Star, Inc., Olten, Switzerland) including doublet discrimination.

In vivo tumor growth experiments
C4HD cells growing in MPA (10 nM) were transiently

transfected with 29-O-methyl- modified siRNA (100 nM) using

Dharmafect-I (Thermo Fisher Scientific, USA). After 48 h, 26106

cells were inoculated s.c. in BALB/c females treated with 40 mg

Immunostimulation Induced by IGF-IR Silencing
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MPA depot in the flank opposite to the cell inoculums (n = 5 per

group). Tumor volume and growth rate were determined as

described [22]. At day 26, animals were euthanized and tumors

removed. Tissues were fixed in 10% buffered formalin and

embedded in paraffin; 5 mm sections were stained with hematox-

ylin and eosin (H&E) for microscopy. Immunization of mice with

transfected cells was described in Methods S1.

Mouse cytokine antibody array
Conditioned media were harvested from untreated C4HD cells

or siRNA-transfected C4HD cells grown in DMEM/F12 with

2.5% ChFCS and 10 nM MPA for 48 h. Mouse cytokine antibody

arrays (Panomics, Redwood City, CA) were used to profile

cytokines produced by 2 ml of conditioned media. This experi-

ment was performed twice. Graphs correspond to densitometric

analysis of the chemiluminescent signal as described in Methods

S1.

Statistical analysis
Cell data were derived from at least two independent

experiments, each with three independent transfection assays.

Statistical analyses were conducted using Prism 5.0a GraphPad

software. Comparisons among groups were performed with one-

way analysis of variance test. If statistically significant, the

Dunnett’s multiple comparison post hoc test was used. Values of

P,0.05 were considered significant and indicated asterisks refer to

comparison to samples transfected with control siRNA. Data are

presented as the mean 6 SEM [30]. Where indicated, Student’s t-

test was also used for comparison. For in vivo studies, comparison of

tumor volumes between the different groups was done by ANOVA

followed by Tukey post hoc test. Linear regression analysis was

performed on tumor growth curves, and the slopes were compared

using ANOVA followed by parallelism test to evaluate the

statistical significance of the differences. Values of P,0.05 were

considered significant.

Results

Identification of mouse IGF-IR siRNAs
As shown by qRT-PCR, all eight siRNA targeted to mouse

IGF-IR (mIGF-IR) (siRNA sequences in Table S1) efficiently

inhibited production of IGF-IR mRNA in mouse breast cancer

EMT6 cells [16]. KSG, DYQ, NNE, ADT and CMV siRNAs

inhibited IGF-IR mRNA expression by approximately 70%

compared to untreated cells and to cells transfected with control

siRNAs (Figure 1A). After careful examination of all siRNAs for

their GC content, their potential secondary structures and the

presence of potential immunostimulatory motifs, ADT siRNA was

selected for further evaluation [31]. Dose-response experiments

performed with ADT siRNA in EMT6 cells showed that 50 nM of

ADT decreased IGF-IR mRNA by 83% compared to levels in

untreated cells (Figure 1B). Furthermore, kinetic experiments

demonstrated that increasing incubation time after transfection

improved silencing efficiency of anti IGF-IR siRNA (Figure 1C).

The observed IGF-IR silencing remains specific even though

prolonged exposure of cells with high concentration of siRNAs

and cationic lipids led to a decrease in IGF-IR mRNA levels, as

shown in Figure 1C with 50 nM CONT1 72 h post-transfection.

Western blot analysis revealed an efficient down-regulation of

endogenous IGF-IR expression in ADT-transfected EMT6 cells

(94% at 25 nM; Figure 1D).

Although unmodified siRNAs worked well in mouse breast

cancer cells, a higher stability is required for in vivo applications. A

range of oligonucleotide modifications confers nuclease resistance

to siRNAs such as 29-O-methyl modification [31,32]. Moreover,

while unmodified siRNAs were known to produce non-specific

immunostimulatory effects due to sequence motifs [31], we

decided to substitute few uridine residues in siRNA sense strand

by 29-O-methyl uridines to get efficient silencing without

immunostimulation non-related to IGF-IR silencing (Table S1).

The introduction of these two modifications partially attenuated

silencing of IGF-IR in EMT6 cells (Figure 2A). A detectable

reduction in efficacy of the modified siRNA was observed when

25 nM of ADT and 25 nM of 29-O-methyl ADT siRNAs were

compared (Figure 1D and 2A). To characterize the specificity of

the 29-O-methyl ADT siRNA at high concentration (100 nM), we

measured the levels of insulin receptor (INS-R) that is highly

homologous to IGF-IR (70% amino acid identity), especially in the

tyrosine kinase domain, in which they share 84% amino acid

identity (Figure S1). Western blot analysis revealed that transfec-

tion of 29-O-methyl ADT siRNA did not induce significant down-

regulation of INS-R when compared to 29-O-methyl CONT2

treatment (Figure 2B).

IGF-IR inhibition blocks downstream signaling, induces
cell-cycle arrest and decreases cell proliferation

In EMT6 cells, there was a clear inhibition of IGF-IR protein

levels 48 h after transfection with 29-O-methyl ADT siRNA at

concentrations of 50 nM and above. Transfected cells were grown

under standard growth conditions (10% FCS) before AKT/PKB

and ERK1/2 activities were assessed by immunoblotting with

phospho-specific antibodies. IGF-IR knockdown induced inhibi-

tion of AKT phosphorylation, as previously described using either

unmodified siRNA or antisense phosphorothioate oligonucleotides

in other cell lines (Figure 3A) [21,33]. ERK phosphorylation was

also inhibited in breast cancer cells when they were treated with

29-O-methyl ADT siRNA (Figure 3B). Total AKT/PKB and

ERK1/2 protein levels remain constant whatever siRNA was

transfected. In our assay conditions, downregulation of p-ERK1/2

and p-AKT/PKB started to reach maximal efficiency at low

concentration of siRNA. For in vivo analysis, the highest

concentration of siRNA was chosen to maximize effect of IGF-

IR silencing on signaling. To assess the effect of IGF-IR down-

regulation on their growth, EMT6 were transfected with siRNAs

and growth rate was analyzed using a colorimetric MTS-based

assay (Figure 3C). Unmodified and 29-O-methyl ADT transfection

resulted in a 40–50% decreased cell growth rate at 50–100 nM as

compared to cells transfected with control siRNA. To further

elucidate how IGF-IR suppression affects cell proliferation, the

cell-cycle status of siRNA-transfected cells was determined. Flow

cytometric cell cycle analysis indicated that treatment with

100 nM 29-O-methyl ADT arrested EMT6 in the G0/G1 phase

of the cell cycle. The proportion of cells in the S- and G2-phases

were decreased relative to those in cells treated with control siRNA

(Figure 3D). Moreover, no sub G1 peak was detected with 100 nM

29-O-methyl ADT, suggesting that no apoptosis was triggered after

48 h of IGF-IR down-regulation, similarly to treatment with IGF-

IR antisense oligonucleotides [22].

Silencing of IGF-IR decreases in vivo tumor development
To explore the in vivo effect of IGF-IR silencing on breast cancer

cell growth, we took advantage of the C4HD breast tumor model.

We previously showed that IGF-IR plays a key role in in vitro and in

vivo proliferation of the progestin-dependent C4HD tumor cells

[21]. A functional autocrine loop involving IGF-I and IGF-IR

participated in MPA-induced proliferation of C4HD cells. In this

model, antisense phosphorothioates targeted to IGF-IR abolished

the two main IGF-IR signaling pathways, AKT and MAPK [21].

Immunostimulation Induced by IGF-IR Silencing
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Here, we transfected C4HD growing in 10 nM MPA with control

or specific siRNAs targeting mIGF-IR. The silencing efficiency of

mIGF-IR siRNAs in C4HD on IGF-IR ranged from 60 to 80% at

100 nM (Figure 4A). After 48 h, 26106 C4HD cells from each

experimental group (n = 5) were inoculated s.c. into female BALB/

c mice. Tumors in mice that had been given C4HD cells treated

with IGF-IR siRNA (29-O-methyl ADT) had significantly smaller

mean tumor volumes and lower tumor growth rates compared

with tumors from control groups (Figure 4B and Table S2). At day

26, a delay of 7 days in tumor growth was observed in groups

injected with 29-O-methyl ADT siRNA-transfected C4HD with

respect to tumors that developed in mice injected with C4HD, and

of 10 days with respect to tumors growing in mice injected with 29-

O-methyl CONT2 siRNA-transfected cells. Histopathological

analysis was performed by H&E staining of histological sections

obtained from tumors excised at day 26. C4HD tumors grown in

mice treated with MPA were ductal mammary carcinomas

composed of solid pseudolobules of highly cohesive glandular

cells that seldom showed tubular differentiation, separated by

scanty fibroblastic stroma (Figure 4C). In this experiment, about

30% of tumor mass from tumors that developed from 29-O-methyl

ADT siRNA-transfected C4HD cells showed fibrosis as well

as lymphocytes and polymorphonuclear neutrophils (PMN)

(Figure 4C and Table S3). Moreover, tumors that developed from

Figure 1. siRNAs targeted to mouse IGF-IR in breast cancer cells. (A) The effect of siRNAs (10 nM) designed against IGF-IR coding regions was
measured by qRT-PCR 24 h post-transfection in EMT6 cells. (B) Dose-dependent inhibition of IGF-IR mRNA levels by ADT siRNA into EMT6. (C) Kinetics
of silencing by ADT siRNA in EMT6 cells. Black bars represent mock transfected cells (NT). Means 6 SEM of two independent experiments with
independent transfected quadruplicates were shown; * P,0.05; ** P,0.01; *** P,0.001. Significant inhibition of IGF-IR mRNA by ADT persisted for
72 h at both concentrations, whereas 50 nM of CONT1 started to decrease significantly IGF-IR mRNA at 72 h when compared to untreated cells
(P,0.001). (D) Western blot analysis after 48 h transfection of EMT6 cells with unmodified siRNAs. Arrows indicate the 200 kDa IGF-IR proreceptor. NT
and black bars are non-transfected cells. Representative Western blot is presented and quantitative analysis of three independent experiments is
shown next to the gel with means 6 SEM. * P,0.05.
doi:10.1371/journal.pone.0029213.g001

Immunostimulation Induced by IGF-IR Silencing
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siRNA treated cells also showed a significantly lower number of

mitotic events than did tumors from animals receiving untreated

C4HD or 29-O-methyl control siRNA-transfected C4HD cells.

C4HD cells transfected with IGF-IR-siRNA trigger features
of an immune response

C4HD cells growing in 10 nM MPA were transfected with

100 nM 29-O-methyl ADT or 29-O-methyl CONT2. After 48 h,

cells were inactivated by irradiation and then used for immunization

of mice according to previous procedures (Methods S1) [22]. A

delayed-type hypersensitivity assay (DTH) was used to evaluate the

immune response [22]. As shown in Figure 5A, DTH reactivity

increased strongly in the group of mice immunized with 29-O-

methyl ADT-transfected C4HD compared with control groups,

suggesting that a cellular immune response was triggered by IGF-IR

down-regulation in C4HD. Animals were euthanized and the

capacity of isolated splenocytes to proliferate in vitro in presence to

C4HD cells was evaluated. Only splenocytes obtained from mice

immunized with IGF-IR siRNA transfected C4HD significantly

proliferated in response to mitomycin C-treated C4HD cells,

whereas splenocytes from control groups did not respond

(Figure 5B). To study the cytotoxic potential of the stimulated

splenocytes isolated from mice immunized with siRNA-treated

C4HD versus untreated C4HD cells, a 51Cr release assay was

performed. Splenocytes prepared from mice injected with C4HD

transfected with 29-O-methyl ADT effectively induced lysis of

C4HD cells, exhibiting the highest (,50%) cytotoxic activity at an

effector to target (E:T) ratio of 100:1 (Figure 5C). Lower cytotoxicity

(20–30%) was observed over the range of E:T ratios tested with the

control groups. Based on results from DTH assays, splenocyte

proliferation assays and cytotoxicity experiments, we conclude that

the immunization protocol with ADT siRNA treated C4HD cells

triggered some features of cellular immune response.

Down-regulation of IGF-IR in breast cancer cells induces
proinflammatory cytokines

The effect of down-regulation of IGF-IR expression on cytokine

production by C4HD breast cancer cells was profiled by using a

cytokine antibody array. While most tested cytokines were not

affected by IGF-IR downregulation, secretion of TNF-a and IFN-

Figure 2. 29-O-methyl siRNAs targeted to IGF-IR. (A), Western blot analysis of IGF-IR after 48 h transfection of EMT6 cells with 29-O-methyl
siRNAs. NT and black bars are non-transfected cells. Western blot example and quantitative analysis of five independent experiments are shown with
means 6 SEM. * P,0.05; ns, not significant. (B), Western blot analysis of INS-R proteins isolated from EMT6 cells 48 h after transfection with 29-O-
methyl uridine containing anti IGF-IR siRNAs at 25, 50 or 100 nM. Black bars represent mock transfected cells (NT). A representative experiment is
presented with quantitative analysis of four independent experiments (means 6 SEM; ns, not significant). Differences between NT and siRNA treated
samples were not statistically significant.
doi:10.1371/journal.pone.0029213.g002

Immunostimulation Induced by IGF-IR Silencing
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c were stimulated significantly as demonstrated by enhanced

signals in conditioned media of C4HD cells treated with IGF-IR

siRNA as compared to untreated cells and 29-O-methyl control

siRNA transfected cells (Figure 6). Other cytokines such as

RANTES, G-CSF and IL6 were not significantly affected by

specific silencing of IGF-IR.

Discussion

Small tyrosine kinase inhibitors and antibodies to IGF-IR aimed

to block tumor growth in vivo are already tested in clinical trials.

Inhibition of IGF-IR/IGF-I expression by nucleic acid based

strategies could also be clinically useful as shown by a pilot study of

Figure 3. IGF-IR gene silencing inhibits signaling, cell cycle progression and proliferation. EMT6 cells were transfected with 25 to 100 nM
29-O-methyl ADT siRNA and harvested 48 h later after standard growth conditions (10% FCS) for analysis by immunoblotting with: (A) antibodies
against phospho-S473 AKT and total AKT, and (B) antibodies against phospho-T202/T204 ERKs and total ERK. Black bars represent mock transfected
cells (NT). Representative experiments are presented and quantitative analysis of three independent experiments are shown on the right of each gel
with means 6 SEM. * P,0.05; ns, not significant. (C) Proliferation rates of siRNA-transfected EMT6 cells 48 h post-transfection; *** P,0.001, Student’s
t-test. (D) For cell cycle analysis, EMT6 cells were transfected with 50 nM siRNA and analyzed 48 h later by cytometry and propidium iodide staining.
Experiments were performed in triplicate. Statistical analysis was referred to control siRNA treated cells. ** P,0.01.
doi:10.1371/journal.pone.0029213.g003

Immunostimulation Induced by IGF-IR Silencing
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ex-vivo treatment of malignant astrocytomas with antisense

oligonucleotides targeted to IGF-IR [34]. This is especially

stressed by the observation of IGF-I or IGF-IR inhibition with

antisense based approaches leading to an antitumor host response

[13,17,22,23]. Other clinical trials have shown that hepatocarci-

noma and glioblastoma cells treated with IGF-I antisense RNA

constructs can serve as antitumor vaccines, inducing an effective

immune response and a significant increase of median survival

[35]. The triggering of immune host response after down-

regulation of IGF-IR/IGF-I using nucleic acids was exemplified

in three mouse syngenic models. Injection of melanoma cells

pretreated with IGF-IR antisense oligonucleotide prevented the

growth of s.c. injected untreated cells [18]. The presence of an

immune response after down-regulation of IGF-IR using antisense

RNA construct was also confirmed in a mouse neuroblastoma

model [13]. Similar host response was described with antisense

oligonucleotide treatment in a mouse breast cancer model [22].

However the mechanism linking the immune response and specific

inhibition of IGF-I or IGF-IR expression has not yet be

determined. It may occur via specific silencing of IGF-IR or via

specific motifs present in nucleic acid sequences used to inhibit

IGF-I or IGF-IR. Indeed, plasmids or oligonucleotides carrying

non-methylated CpG sequences are known to trigger innate

immune responses and can develop strong toxicity in human cells

[36,37]. Here, we used siRNAs rather than antisense RNA vectors

or antisense oligonucleotides to analyze the effects of IGF-IR

inhibition on immune response triggering. Since specific motifs in

unmodified siRNA duplexes may activate cellular sensors of

foreign RNA, leading to interferon induction and cell death [31],

the siRNAs used in in vivo experiments were modified at uridine

positions of the sense strand with 29-O-methyl-uridine. This

modification reportedly blocks the immunostimulatory effect of the

RNA duplex without significantly attenuating RNAi [31].

However, we noticed a reduction of efficiency with modified

siRNA even though 29-O-methyl residues were not introduced at

positions 9 and 10 in the sense strand; modifications at these

positions are known to reduce RISC assembly [31]. Similarly, a

detectable reduction in silencing efficacy was found with modified

IGF-IR siRNAs, where 29-O-methyl nucleotides were placed in

alternating positions on both strands [38]. Moreover, we showed

that our modified siRNAs targeting IGF-IR did not inhibit insulin

receptor, which possess high homology with IGF-IR, unlike anti-

Figure 4. Transfection with siRNAs targeting IGF-IR alters in vivo growth of C4HD cells. (A) Western blot after 48 h transfection of C4HD
cells with 29-O-methyl siRNAs. Representative experiment is presented and quantitative analysis of three independent experiments is shown on the
right of the blot with means 6 SEM with black bars corresponding to mock transfected cells (NT). ** P,0.01. (B) After 48 h, treated cells were
inoculated s.c. into mice. C4HD cells were transfected either with 29-O-methyl ADT siRNA, which targets mIGF-IR (N), the control 29-O-methyl CONT2
siRNA (%) or remained untreated (&). Each data point represents the mean tumor volume 6 SEM, n = 5. * P,0.05; ** P,0.01, ANOVA referred to
untreated group. (C) Tissue sections of C4HD tumors obtained from mice in each group. Mice inoculated with untreated C4HD cells (NT), with C4HD
cells transfected with the control 29-O-methyl CONT2 siRNA (CONT2), or with the 29-O-methyl ADT siRNA (ADT). Tumor shows atypical features,
necrosis and several mitotic figures indicated with arrows (inset, H&E 6400). ADT sections show necrosis and inflammatory fibrosis (H&E 640).
Infiltration of lymphocytes and granulocytes is shown (inset, H&E 6400).
doi:10.1371/journal.pone.0029213.g004
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IGF-IR TKI and antibody therapies that often induce inhibition

of INS-R (Figure 2).

Inhibition of IGF-IR reduced AKT and ERK phosphorylation

and consequently reduced the rate of cellular proliferation.

Furthermore, down-regulation of IGF-IR arrested cells in the

G0/G1 phase of the cell cycle; the major effect probably occurred

at the G1-S interface and was presumably mediated through the

PI3K-AKT and/or ERK pathways [1]. Interestingly, phosphor-

ylation of AKT was inhibited at 25 nM ADT siRNA whereas no

reduction of IGF-IR levels was observed. We proposed that at this

concentration, IGF-IR was transiently inhibited leading to

sustained decrease of p-AKT. After recovery of IGF-IR expression

due to instability of siRNA and cell division, p-AKT was still

strongly inhibited as previously observed by others [33,39]. To

achieve extended silencing of IGF-IR with strong inhibition of

AKT phosphorylation, high concentration of siRNA was therefore

chosen for in vivo experiments.

The inhibition of IGF-IR expression in C4HD mammary

tumor cells significantly reduced tumor growth in vivo. This

suppression of tumor growth might arise from several intracellular

mechanisms and/or host antitumoral immune response as

previously described [18]. The blockade of IGF-IR signaling

may decrease either cell proliferation or increase apoptosis as

shown with prostate cancer xenografts treated with IGF-IR

antibody [40]. C4HD cell proliferation inhibition could occur in

vivo while IGF-IR silencing decreased in vitro cell proliferation [41].

The absence of in vitro apoptosis after silencing does not preclude

the possibility that prolonged IGF-IR silencing could induce a

massive apoptosis in vivo. Indeed, it has been shown that antisense

IGF-IR treatment can cause a partial growth arrest of glioblas-

toma without strong apoptosis and at the same time elicit almost

complete cell death in vivo [42]. The reduced tumor growth could

also result from activation of antitumoral immune host response,

possibly induced by apoptotic cells [18,43]. Histopathological

analysis of tumors in mice treated with IGF-IR siRNA-transfected

cells showed lower number of mitotic events concomitantly with

lymphocytes and PMN infiltration, these cells being indicators of

good prognosis in cancers. Moreover, we clearly demonstrated the

presence of inflammatory features after vaccination with cells

downregulated for IGF-IR according to our previous observations

[22]. Our results confirmed that inhibition of IGF-IR might lead

to immune response triggering through antisense RNA, antisense

oligonucleotides and siRNAs [17,22].

Tumors transfected with 29-O-methyl ADT siRNA developed

at later time points, suggesting loss of inhibitory siRNA during in

vivo growth or emergence of tumor cells resistant to host immune

response. Similarly, it was found that tumors may arise in vivo due

to loss of the expression plasmid expressing IGF-IR antisense RNA

[44]. We cannot exclude a recovery of IGF-IR after silencing

Figure 5. Immunization with C4HD cells treated with IGF-IR
siRNAs. (A) Delayed-type hypersensitivity (DTH) response. BALB/c mice
(n = 10) were immunized with three injections of irradiated C4HD cells
(black bar) or irradiated 29-O-methyl ADT siRNA (white bar) or 29-O-
methyl CONT2 siRNA (grey bar) transfected C4HD. NT, non-transfected
cells. Data are presented as mean 6 SEM; *** P,0.001. (B) Proliferation
of splenocytes isolated from immunized mice. Incorporation of 3H
thymidine was measured with isolated splenocytes co-cultured in the
presence (+) or the absence (2) of C4HD cells preincubated with
mitomycin C. Data are presented as mean 6 SEM; * P,0.05. (C) Analysis
of cytotoxic activity of splenocytes from immunized mice using a
standard 51Cr release assay. Splenocytes (E) from mice immunized with
29-O-methyl ADT (N) or 29-O-methyl CONT2 (&) transfected C4HD, or
with irradiated C4HD cells (m) were co-cultured with C4HD as target
cells (T) at indicated E/T ratios. Mean 6 SEM; * P,0.05; *** P,0.001.
doi:10.1371/journal.pone.0029213.g005
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depending on cell division rate. However, others showed that IGF-

IR silencing with unmodified siRNAs can last for six days before

re-expression [39]. To determine if arising tumors escape from

immune response, previous tumor growth studies used immune

deficient mice [13,45]. Interestingly, growth of glioblastoma or

neuroblastoma cells downregulated for IGF-IR in athymic nude

mice was delayed, but to a lesser extent than in syngenic rodents.

This delay in tumor growth of glioblastoma was found

proportional to the extent of cell apoptosis induced by IGF-IR

antisense treatment [45,46]. Nevertheless, it was shown that

antitumoral immune host response triggered by IGF-IR down-

regulation in syngenic animals was highly effective when most of

the injected cells underwent massive apoptosis [43]. It was

therefore proposed that expression of antisense IGF-IR induced

apoptosis concomitantly with the secretion of cytotoxic substances,

both potentially stimulating immune response [17,43]. Similar

mechanism may occur with C4HD cells in syngenic mice, despite

the absence of in vitro apoptosis induced by IGF-IR silencing.

Figure 6. Profile of cytokine expression in C4HD cells treated with siRNAs targeting IGF-IR. Cytokine secretion in untreated C4HD cells (C)
or C4HD cells transfected with 29-O-methyl CONT2 (A), or 29-O-methyl ADT (B) were analyzed 48 h post-transfection using a mouse cytokine
antibody array (D). PC, array positive controls; NC, array negative controls. Graphs corresponded to densitometric analysis of membranes for TNF-a
and IFN-c expression (E, F). * P,0.05; ** P,0.01. Two independent cytokine antibody arrays were performed and gave similar results.
doi:10.1371/journal.pone.0029213.g006
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Our study provides the first demonstration that inhibition of

IGF-IR using 29-O-methyl siRNA increased secretion of TNF-a
and IFN-c, two proinflammatory cytokines. These two cytokines

are multifunctional and are produced mainly by activated

macrophages and lymphocytes, although non-hematopoietic cells

such as malignant cells or tumor stroma cells also synthesize TNF-

a [47]. This latter is a key mediator of the inflammatory response,

and can play a dual role in tumor environment, inducing

paradoxical effects. Due to its proapoptotic activity, TNF-a can

inhibit in vitro growth of some tumor cells including breast tumor

cell lines [48]. Moreover, forced expression of LIGHT, a TNF

superfamily member, in tumor tissue induced priming of naive T

cells and led to rejection of established tumors in mice [49].

Besides TNF-a action to suppress proliferation and induce

apoptosis in a variety of cancer cells, it can also exert a growth-

promoting effect on normal epithelia [50]. Its production by

malignant or host cells in tumor microenvironment was associated

with increased malignancy of tumors and favored metastasis

[51,52,53]. We have also shown that exogenous supply of TNF-a
to C4HD cells promoted their in vitro growth through NF-kB

dependant pathways [29]. Consequently this cytokine is able to

exert pleiotropic effects on cells, with the paradox outcome of cell

death or growth, depending on the context [54]. TNF-a may also

act concomitantly with IFN-c to block tumor stroma formation

[55]. Both cytokines can sensitize metastatic colon carcinoma cells

to TRAIL-induced apoptosis in vitro [56]. They play a role as

immunoadjuvant through induction of MHC class I molecules,

activate immature dendritic cells or trigger an adaptative immune

response through induction of CD8+ T cells [57,58].

Our data support the existence of crosstalk between IGF-IR

axis, immune response and secretion of TNF-a and IFN-c
cytokines. Interactions between endocrine and immune systems

are well documented [59,60]. Indeed, IGF-I is known to play a

prominent role in the regulation of immunity and inflammation

[61]. Anti apoptotic IGF-I can reduce TNF-a cytotoxicity in the

inflammatory response to acute renal injury [62], whereas it may

also potentiate TNF-a induced apoptosis in specific cell types [63].

Proinflammatory cytokines often acted as negative regulatory

signals that temper the action of hormones and growth factors

[59]. TNF-a blocked growth of breast cancer cells by impairing

IGF-IR signaling [64]. TNF-a also promoted neurodegeneration

through inhibition of IGF-I survival signal [65]. Interestingly,

TNF-a and IFN-c were shown to affect IGF-IR promoter activity

and decrease IGF-IR protein levels in human sarcoma cell lines

[66]. Whereas high expression of TNF-a was therefore correlated

with diminished IGF-IR levels, our work showed that silencing

IGF-IR in the C4HD breast cancer model increased TNF-a and

IFN-c secretion. We may speculate that when IGF-IR is silenced,

TNF-a and IFN-c secretion contributed to decreased tumor

growth either priming T cell response, blocking tumor stroma or

triggering tumor apoptosis. Also, we cannot exclude that these

cytokines elicit an anti apoptotic effect to counteract the tumor

inhibition induced by IGF-IR silencing. Moreover, in addition to

these cytokines, triggering of host cell response would need

involvement of multiple factors, that warrant further investigations

such as genome-wide expression profiling or complementary

cytokine antibody array studies [67,68].

Presently, siRNA-based therapies are being evaluated clinically.

However, delivery of these large and highly charged molecules still

represents a major barrier to therapeutic application. Novel RNAi

delivery methods are therefore under intense investigation [69].

The association of efficient delivery vehicles and siRNA sequences

is essential for achieving specific and efficient antitumor immune

response. For example, modifications of siRNAs by introducing

micro-RNA motifs, aptamers or polymers could be envisaged to

obtain bifunctional molecules leading to specific silencing activities

associated with proinflammatory properties, cell targeting or cell

penetration increase [70,71,72]. Moreover, vehicles like poly-

ethyleneimine may also harbor intrinsic immunostimulatory

activities, which in association with siRNA may enhance

antigen-presenting capacity of mouse tumor-associated dendritic

cells and induce direct tumoricidal activity [73].

Here we showed that 29-O-methyl modified siRNA targeted to

mouse IGF-IR are able to block IGF-IR signaling and tumor

growth, by inducing features of antitumor immune response. In

further studies, siRNAs targeting IGF-IR will be modified and

complexed to specific carriers with adjuvant properties, to improve

the effect of IGF-IR downregulation and consequently modulate

antitumor immune responses with the goal of developing local and

systemic RNAi therapy. It remains to be assessed whether TNF-a
and IFN-c are effective biomarkers for the efficacy of anti-IGF-IR

therapy.
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