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Abstract

This Ph.D. thesis is devoted to the study of the theory of quantization of Lie bialgebras and related
universal constructions.

We give a new treatment of the Drinfeld associator arising from the Knizhnik–Zamolodchikov con-
nection, showing its main identities and properties through concrete evaluation of parallel transports
with respect to flat connections along well–chosen paths. We used undergraduate Mathematics in
all the reasonings, simplifying the previous treatments existing in literature.

We provide a more detailed version of P. Ševera’s quantization of Lie bialgebras, giving explicit
and diagrammatic proofs of all the categorical statements. We then show that such a construction
is compatible with Drinfeld–Yetter modules and twists.

We give a new proof of the Enriquez–Etingof Hensel’s lemma, which is a statement playing a
key role in the proof of the invertibility of the Etingof–Kazhdan quantization functor. Our proof
involves techniques of basic linear algebra and ring theory.

Finally, we present a combinatorial description of the Appel–Toledano Laredo universal Drinfeld–
Yetter algebra U1

DY, which is involved in the theory of universal quantization functors. We define
the set of Drinfeld–Yetter mosaics and the set of Drinfeld–Yetter looms, and we use them to give a
combinatorial description of U1

DY.

Keywords: Lie bialgebras, Quantization, Monoidal categories, Hopf algebras, Associators.
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Chapter 1

Introduction

1.1 Introduction

Overview

Symmetry plays a fundamental role in various areas of science, such as physics, chemistry, and
mathematics. A unifying way to describe and understand symmetries is through the language of
group theory. For example, in quantum mechanics, the states of a system are often represented by
vectors in a Hilbert space, and transformations on these states due to symmetries are represented
by unitary (sometimes anti–unitary) operators, forming certain groups. Group theory is used to
analyze the properties of these structures and to understand the consequences of symmetries for
quantum systems, such as the properties of the periodic table of chemical elements or the spectral
lines resulting from the excitation of certain atoms or molecules.
Deformation theory concerns the understanding and description of small variations or modifications
of mathematical structures. In this context, one would like to modify certain objects while main-
taining certain given algebraic properties. The simplest case is the deformation of structures as a
one-parameter family in a formal sense. An important application is the interpretation of the non-
commutative associative algebra of all observables in quantum mechanics as a formal deformation
(with the parameter viewed as the Planck constant ~) of the commutative algebra of observables
in classical mechanics, i.e., smooth functions on a phase space (for example, a symplectic manifold)
equipped with a Poisson structure, see [BFF+78].
For example, the transition from a Lie algebra to its enveloping algebra (see [CE99]) can be seen as
a deformation of the symmetric algebra generated by the underlying vector space of the Lie algebra.
In the case of finite dimension, there is also an interpretation within the framework of quantization
by deformation of this example using the well–known linear Poisson structure on the dual space of
the Lie algebra (see [Gut83]). For this reason, in a broad sense, enveloping algebras are referred to
as a ’quantization’ of Lie algebras.
A natural mathematical structure that generalizes group theory is the theory of Hopf algebras, some
of which have been called quantum groups by Vladimir G. Drinfeld (see [Dri86]). In this theory, one
finds formal associative deformations of enveloping algebras.

The theory of quantization of Lie bialgebras has its origins in the 1980s with the work of P.P.Kulish
and N.Y.Reshetikhin [KR83], in which the first quantum group, i.e. the deformation of the universal
enveloping algebra of sl(2) was discovered. A few years later, the Kulish–Reshetikhin’s example was
independently generalized to the case of any symmetrizable Kac–Moody algebra by V.G.Drinfeld
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and M.Jimbo, with the discovery of the objects that today are called Drinfeld–Jimbo quantum
groups, see [Dri86] and [Jim85]. More in detail, given a Lie bialgebra (b, [·, ·], δ) (see §4.1), we say
that a topological Hopf algebra H is a quantization of b (or, equivalently, a deformation of the
universal enveloping algebra U(b)) if there exists an isomorphism

H/~ ·H ∼= U(b) such that δ(x) =
∆(x̃)−∆op(x̃)

~
mod ~

where δ is the Lie cobracket of b, ∆ is the comultiplication of H, x̃ is any lift of x in H, and U(b)
is considered with its standard Hopf algebra structure.

In the proceedings of the Workshops held in the Euler International Mathematical Institute, Saint
Petersburg (at that time Leningrad) in Fall 1990 [Dri92] Drinfeld announced some unsolved prob-
lems in the theory of quantum groups. In particular, the following questions were raised among the
others: Q. 1.1: Can every Lie bialgebra be quantized? ; Q.1.2: Does there exist a universal quanti-
zation for Lie bialgebras?. Most of the solutions to Drinfeld’s problems were provided by P.Etingof
and D.Kazhdan in their series of articles [EK96][EK98][EK00a][EK00b][EK08]. In particular, a di-
rect application of the quantization of Lie bialgebras is the deformation quantization of Poisson Lie
groups (see [Šev16, §6]). We also mention for completeness the Tamarkin’s approach [Tam02] by
topological operads to the quantization of Lie bialgebras.

Further extensions of the Etingof–Kazhdan quantization were done more recently by B.Enriquez
and G.Halbout (quantization of coboundary Lie bialgebras and quantization of quasi–Lie bialge-
bras) [EH10a] [EH10b], by Š.Sakáloš and P.Ševera, with the works [SŠ15][Šev16], and by A.Appel
and V.Toledano Laredo [ATL18]. All the quantization constructions provided so far depend on
a choice of a very complicated mathematical object called Drinfeld associator (see [Dri90b] and
[Dri90a]), which, more precisely, is a formal power series Φ(A,B) in two non–commuting variables
satisfying some algebraic properties, namely the pentagon and the hexagon equations (see Chapter
5).

Moreover, all the constructions cited above involve PROPs (product and permutation categories),
that is a notion which appeared in the 1960s with the works of F.W.Lawvere and S.MacLane [Law63],
[ML65]. Namely, a PROP is a K–linear, strict symmetric monoidal category having as objects the
set Nr, where r is the set of colors. The generating morphisms of a PROP encode the datas of
some specific algebraic–type object, such as Lie algebras or associative algebras. Universal functors,
such as the universal enveloping algebra of a Lie algebra, are described with PROPs through the
notion of universal construction. In particular, the Etingof–Kazhdan quantization of Lie bialgebras
provides a universal construction Q : QUE → LBAkar[[~]] from the PROP of quantized universal
enveloping algebras to the (completed topological) PROP of Lie bialgebras, see §8.7. Furthermore,
in the article [EK98] it is proved that such a functor is invertible, hence proving a dequantization
result. A more accessible approach to this result was given afterward by B.Enriquez and P.Etingof
[EE05], through a result the authors call Hensel lemma. A cohomological interpretation of universal
quantization functors was then provided by B.Enriquez in the articles [Enr01b], [Enr01a], [Enr05]
through some universal algebras, the latter being reformulated by A.Appel and V.Toledano Laredo
in [ATL19] (see 10).
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Main results

The main results of this thesis – which to our best knowledge are new – are the following

1. A gentle introduction to Drinfeld associators : in Chapter 5 we provide a self–contained proof
of the main identities of the Drinfeld associator (see [Dri90b] and [Dri90a]) arising from the
Knizhnik–Zamolodchikov connection [KZ84] on the complex configuration space Y n ⊂ Cn (see
Equation (5.6.2))

(n)ΓKnZa(z1, . . . , zn) :=
∑

16i<j6n

Aij
zi − zj

(dzi − dzj)

where Aij are elements satisfying the so–called infinitesimal braid relations, see §5.6. We used
a elementary approach, that is given by concrete evaluation of parallel transports with respect
to flat connections along certain paths. The originality of this part, which is an extract of
[BRW23], is in the fact that we used undergraduate mathematics to prove all the results, which,
although are fundamental in the theory of the quantization of Lie bialgebras, never seemed
to have a sufficiently comprehensible treatment in the existing literature. In particular, given
three elements A,B,C such that the sum Λ := A + B + C is a central element, the hexagon
equation

e~Λ/2 = e~A/2 Φ(C,A) e~C/2 Φ(B,C) e~B/2 Φ(A,B)

is obtained by computing the parallel transport along the six paths (5.8.7) with respect to
the pulled–back one–dimensional (hence flat) connection (5.8.3). Similarly, for any elements
{Aij}16i 6=j64 satisfying the infinitesimal braid relations, the pentagon equation

Φ(A12, A23 + A24)Φ(A13 + A23, A34) = Φ(A23, A34)Φ(A12 + A13, A24 + A34)Φ(A12, A23)

follows by computing the parallel transport along the five affine paths (5.9.5) with respect to
the flat connection (5.9.2).

2. A more detailed version of P. Ševera’s quantization of Lie bialgebras : In Chapter 7 we provide a
more detailed version of the Ševera’s quantization of Lie bialgebras [Šev16]. Although Etingof–
Kazhdan quantization has pioneered a very fertile field of research, its infinite–dimensional
setting appears to be particularly intricate (contrarily to the finite–dimensional one). Ševera’s
construction does not have such a problem, and in addition it is easily shown to be compat-
ible with the quantization of Drinfeld–Yetter modules and with twists (the Etingof–Kazhdan
quantization is also compatible with twists, as proven with much more efforts by Enriquez
and Halbout in [EH10a]). In particular, we provide explicit and diagramatic proofs of all the
categorical statements, and we simplify Ševera’s simplicial approach by more direct proofs
using the notion of multiplication along a comonoid object.

3. A more detailed proof of Enriquez–Etingof “Hensel” lemma: In Chapter 9 we provide a more
detailed proof of Enriquez–Etingof Hensel Lemma, see [EE05, Lemma 3.1]. Such a result was
used by the authors in order to give a simpler proof of the dequantization theorem, whose
proof was sketched by Etingof and Kazhdan with arguments related to the Grothendieck–
Teichmüller semigroup. Our proof relies on basic linear algebra and ring theoretic arguments.

4. Structure of the universal Drinfeld–Yetter algebra: In Chapter 10, which is based on a forth-
coming paper joint with A. Appel [AR], we provide a combinatorial description of the universal
Drinfeld–Yetter algebra (which was defined in [ATL19] by A.Appel and V.Toledano Laredo)

U1
DY := EndDY([V1])
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where DY is the colored PROP generated by a universal Lie bialgebra object [1] and a universal
Drinfeld–Yetter [1]–module [V1], and the associative multiplication of U1

DY is given by the
composition of endomorphisms, see §8.6.
It turns out that the vector space structure of U1

DY is isomorphic to the direct sum of all group
algebras of the symmetric groups Sn, hence U1

DY has a standard basis B = {rσn, σ ∈ Sn, n > 0}.
Moreover, by definition, the structure constants of U1

DY with respect to the basis B are integers.
We define certain combinatorial objects, (the sets of all n×m Drinfeld–Yetter mosaics Mn,m

and of n×m Drinfeld–Yetter looms Ln,m) defined as tilings of an empty n×m grid with some
specific tiles and according to some rules. The main result of this Chapter is the following
formula giving a combinatorial description of the multiplication of U1

DY in terms of the Drinfeld–
Yetter looms:

rσn ◦ rτm =
∑

L∈Ln,m

(−1)ξ(L)r
γ̃n,m(σ,L,τ)
n+m

where ξ(L) is a function counting the number of some specific tiles appearing in the Drinfeld–
Yetter loom L, and γ̃n,m(σ, L, τ) is a permutation in the symmetric group Sn+m built up the
permutations σ ∈ Sn, τ ∈ Sm and the Drinfeld–Yetter loom L ∈ Ln,m.

Structure of the thesis

This manuscript is structured in three parts, each of them made of three chapters.
The first part contains a quick treatment of prerequisites necessary for reading. In particular,
Chapter 2 contains an introduction of monoidal, braided monoidal, and infinitesimally braided
monoidal categories (also called Cartier categories, see [HV22, Def. 2.1] and [Car93]). We define
their relative functors, and exhibit the main identities following by the axioms. We then mention
the well–known Mac Lane’s coherence Theorem [ML63] and his refinement due to P. Schauenburg
[Sch01], allowing – in certain situations – to pass to strict monoidal categories in order to prove
categorical identities (see §2.4). Finally, in 2.7 we prove the main result of this Chapter, that is the
construction of the deformed braided monoidal category C Φ

~ due to Drinfeld [Dri90b, p. 1455].
Chapters 3–4 provide a concise overview of Hopf algebras, treated in full generality as objects of a
braided monoidal category, and Lie bialgebras. In particular, we introduce finite–dimensional Manin
triples, the Drinfeld double of a Lie bialgebra (see §4.2), and the universal enveloping algebra of a
Lie algebra (see §4.3). Then in §4.4 we focus on Drinfeld–Yetter modules, which are the linearized
version (i.e. the Lie bialgebras counterpart) of the usual Yetter–Drinfeld modules for Hopf algebras,
and in §4.5 we present, given a Lie bialgebra b, the non–trivial infinitesimally braided monoidal
structure of the category DY(b) of Drinfeld–Yetter b–modules. Finally, we prove that the universal
enveloping algebra U(b) belongs to DY(b), and in §4.7 we give a short introduction on quantization
of Lie bialgebras.
In the second part of the thesis, the problem of quantization of Lie bialgebras is treated. Chapter
5, which is an extract of [BRW23], contains a new treatment of the well–known Drinfeld associator
arising from the Knizhnik–Zamolodchikov connection and its main identities, the pentagon and the
hexagon equations (see Equations (5.9.1) and (5.8.2)). We choose to give a pedagogical and more
accessible-to-reading presentation to such an important object, which is essential for the quantization
theory of Lie bialgebras. In particular, the main technique involved for the pentagon and hexagon
equations is the computation of explicit parallel transports with respect to flat connections along
well–chosen paths, leading to the desired algebraic identities.
Chapters 6–7 are devolved to the Etingof–Kazhdan and Ševera quantization’s techniques of Lie
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bialgebras. We choose to consider the Etingof–Kazhdan quantization only in the finite–dimensional
case, since we think that Ševera’s approach is much simpler in the infinite–dimensional setting. The
two techniques contain however several reasoning in common, as we can think, in some unspecified
sense, that they are the dual of the each other. Ševera’s original paper [Šev16] is quite short and
lacks of details and computations, although all the key ideas are clearly presented. We provide more
details and insights through a diagrammatic approach, which allows to understand better how the
categorical axioms imply all the reasonings.
Finally, the third and last part of this thesis is dedicated to universal constructions. In Chapter
8 we introduce PROPs (product and permutation categories), which are categories enclosing the
information of some algebraic structures. The main PROPs we are interested in are the one of Hopf
algebras (and of quantized universal enveloping algebras) and the one of Lie bialgebras. We finally
mention the fact that the Etingof–Kazhdan quantization provides a universal construction, solving
a problem stated by Drinfeld.
In Chapter 9 we deal with the proof by B.Enriquez and P.Etingof [EE05] of the fact that the
Etingof–Kazhdan’s and Ševera’s universal constructions are invertible functors. In particular, the
whole reasoning is based on what they call Hensel’s Lemma. In §9.2 we give a new and more detailed
proof of this statement.
The last Chapter 10, which is based on a forthcoming paper, contains a combinatorial description of
the universal Drinfeld–Yetter algebra U1

DY, defined by A. Appel and V.Toledano Laredo in [ATL19].
Such an algebra is involved in the context of universal functors, and is a PROPic refinement of
an algebra defined by B.Enriquez. We define some original combinatorial objects, namely the sets
of Drinfeld–Yetter mosaics and of Drinfeld–Yetter looms (see respectively §10.4 and §10.5), with
whom we describe the multiplication of U1

DY (see Theorem 10.6.9). We finally present some explicit
computations and links with other combinatorial structures, such as permutation patterns and
bumpless pipedreams, see §10.9 and §10.10.
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1.2 Introduzione

Panoramica

La simmetria svolge un ruolo fondamentale in varie aree della scienza, come la fisica, la chimica e
la matematica. Un modo unificante per descrivere e comprendere le simmetrie è attraverso il lin-
guaggio della teoria dei gruppi. Ad esempio, in meccanica quantistica, gli stati di un sistema sono
spesso rappresentati da vettori in uno spazio di Hilbert, e le trasformazioni su questi stati dovute
alle simmetrie sono rappresentate da operatori unitari (a volte anti-unitari), formando certi gruppi.
La teoria dei gruppi è utilizzata per analizzare le proprietà di queste strutture e per comprendere le
conseguenze delle simmetrie per i sistemi quantistici, come le proprietà della tavola periodica degli
elementi chimici o le linee spettrali risultanti dall’eccitazione di certi atomi o molecole.
La teoria delle deformazioni riguarda la comprensione e la descrizione di variazioni o modifiche
piccole delle strutture matematiche. In questo contesto, si desidera modificare certi oggetti man-
tenendo determinate proprietà algebriche date. Il caso più semplice è la deformazione di strutture
come una famiglia a un parametro in senso formale. Un’applicazione importante è l’interpretazione
dell’algebra associativa non commutativa di tutte le osservabili in meccanica quantistica come una
deformazione formale (con il parametro visto come la costante di Planck ~) dell’algebra commuta-
tiva delle osservabili in meccanica classica, ovvero funzioni lisce su uno spazio delle fasi (ad esempio,
una varietà simplattica) dotato di una struttura di Poisson, si veda [BFF+78].
Per esempio, il passaggio da un’algebra di Lie alla sua algebra inviluppante (si veda [CE99]) può
essere visto come una deformazione dell’algebra simmetrica generata dallo spazio vettoriale sot-
tostante dell’algebra di Lie. Nel caso di dimensione finita, c’è anche un’interpretazione nell’ambito
della quantizzazione per deformazione di questo esempio utilizzando la ben nota struttura di Poisson
lineare sullo spazio duale dell’algebra di Lie (si veda [Gut83]). Per questa ragione, in senso lato, le
algebre avvolgenti sono considerate una quantizzazione delle algebre di Lie.
Una struttura matematica naturale che generalizza la teoria dei gruppi è la teoria delle algebre
di Hopf, alcune delle quali sono state chiamate gruppi quantici da Vladimir G. Drinfeld (si veda
[Dri86]). In questa teoria si trovano deformazioni associative formali delle algebre inviluppanti.

La teoria della quantizzazione delle bialgebre di Lie ha origine negli anni ’80 con il lavoro di
P.P.Kulish e N.Y.Reshetikhin [KR83], in cui fu scoperto il primo gruppo quantico, ovvero la de-
formazione dell’algebra inviluppante universale di sl(2). Pochi anni dopo, l’esempio di Kulish–
Reshetikhin fu generalizzato da V.G.Drinfeld e M.Jimbo al caso di una qualsiasi algebra di Kac–
Moody simmetrizzabile, con la scoperta degli oggetti che oggi vengono chiamati gruppi quantici di
Drinfeld–Jimbo, si veda [Dri86] e [Jim85]. Più in dettaglio, data una bialgebra di Lie (b, [·, ·], δ) (si
veda §4.1), diciamo che un’algebra di Hopf topologica H è una quantizzazione di b (o, equivalente-
mente, una deformazione dell’algebra inviluppante universale U(b)) se esiste un isomorfismo

H/~ ·H ∼= U(b) tale che δ(x) =
∆(x̃)−∆op(x̃)

~

dove δ è il cobracket di Lie di b, ∆ è il coprodotto di H, x̃ è un qualsiasi sollevamento di x in H e
U(b) è equipaggiata con la struttura standard di algebra di Hopf.

Nei proceeding del seminario tenutosi all’Istituto Matematico Internazionale Eulero di San Pietroburgo
(allora Leningrado) nell’autunno del 1990 [Dri92] Drinfeld annunciò alcuni problemi irrisolti nella
teoria dei gruppi quantici. In particolare, furono sollevate, tra le altre, le seguenti domande: Q.
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1.1: È possibile quantizzare ogni bialgebra di Lie? ; Q.1.2: Esiste una quantizzazione universale per
le bialgebre di Lie?. La maggior parte delle soluzioni ai problemi di Drinfeld é stata fornita da
P.Etingof e D.Kazhdan nella loro serie di articoli [EK96][EK98][EK00a][EK00b][EK08].

Ulteriori estensioni della quantizzazione di Etingof–Kazhdan sono state fornite più recentemente da
B.Enriquez e G.Halbout (quantizzazione di bialgebre di Lie di cobordo e quantizzazione di quasi–
bialgebre di Lie) [EH10a] [EH10b], da Š.Sakáloš e P.Ševera, con i lavori [SŠ15][Šev16], e da A.Appel
e V.Toledano Laredo [ATL18]. Tutte le costruzioni di quantizzazione fornite finora dipendono dalla
scelta di un oggetto matematico piuttosto complicato chiamato associatore di Drinfeld (si veda
[Dri90b] e [Dri90a]) che, più precisamente, è una serie di potenze formali Φ(A,B) in due vari-
abili non commutative che soddisfano alcune proprietà algebriche, quali l’equazione del pentagono
e l’equazione dell’esagono (si veda il capitolo 5).

Inoltre, tutte le costruzioni citate coinvolgono le PROP (product and permutations categories),
una nozione apparsa negli anni ’60 nei lavori di F.W.Lawvere e S.MacLane [Law63], [ML65]. In
particolare, una PROP è una categoria K-lineare, strettamente simmetrica monoidale, avente come
oggetti l’insieme Nr, dove r rappresenta l’insieme di colori. I morfismi generanti di una PROP
codificano i dati di un oggetto di tipo algebrico specifico, come ad esempio algebre di Lie o algebre
associative. I funtori universali, come l’algebra inviluppante universale di un’algebra di Lie, sono de-
scritti con le PROP attraverso la nozione di costruzione universale. In particolare, la quantizzazione
di Etingof–Kazhdan delle bialgebre di Lie fornisce una costruzione universale Q : QUE→ LBAkar[[~]]
dalla PROP delle algebre inviluppanti universali quantizzate alla PROP (topologica e completata)
delle bialgebre di Lie, si veda §8.7. Inoltre, nell’articolo [EK98] si dimostra che tale funtore è invert-
ibile, dimostrando dunque un risultato di dequantizzazione. Un approccio più accessibile a questo
risultato è stato fornito in seguito da B.Enriquez e P.Etingof [EE05], attraverso un risultato che gli
autori chiamano lemma di Hensel. Una interpretazione coomologica dei funtori universali di quan-
tizzazione è stata poi fornita da B.Enriquez negli articoli [Enr01b], [Enr01a], [Enr05], attraverso
alcune algebre universali, le quali sono state riformulate da A.Appel e V.Toledano Laredo (si veda
il capitolo 10).

Risultati principali

I principali risultati di questa tesi sono i seguenti

1. Una gentile introduzione agli associatori di Drinfeld : nel capitolo 5 forniamo una prova au-
tocontenuta delle principali identità dell’associatore di Drinfeld (si veda [Dri90b] e [Dri90a])
derivante dalla connessione di Knizhnik–Zamolodchikov [KZ84] sullo spazio di configurazione
complesso Y n ⊂ Cn (si veda l’equazione (5.6.2))

(n)ΓKnZa(z1, . . . , zn) :=
∑

16i<j6n

Aij
zi − zj

(dzi − dzj)

dove Aij sono elementi che soddisfano le cosiddette relazioni di treccia infinitesimale (si veda
§5.6). Abbiamo utilizzato un approccio elementare, dato dalla valutazione concreta di trasporti
paralleli rispetto a connessioni piatte lungo determinati cammini. L’originalità di questa parte,
che è un estratto di [BRW23], sta nel fatto che abbiamo usato matematica di base per di-
mostrare tutti i risultati che, pur essendo fondamentali nella teoria della quantizzazione delle
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bialgebre di Lie, non sono mai sembrati avere una trattazione sufficientemente comprensi-
bile nella letteratura esistente. In particolare, dati tre elementi A,B,C tali che la somma
Λ := A+B + C sia un elemento centrale, l’equazione dell’esagono

e~Λ/2 = e~A/2 Φ(C,A) e~C/2 Φ(B,C) e~B/2 Φ(A,B)

si ottiene calcolando il trasporto parallelo lungo i sei cammini (5.8.7) rispetto al pull–back
della connessione monodimensionale (dunque piatta) (5.8.3). Analogamente, per elementi
{Aij}16i 6=j64 che soddisfano le relazioni di treccia infinitesimale, l’equazione del pentagono

Φ(A12, A23 + A24)Φ(A13 + A23, A34) = Φ(A23, A34)Φ(A12 + A13, A24 + A34)Φ(A12, A23)

segue calcolando il trasporto parallelo lungo i cinque cammini affini (5.9.5) rispetto alla con-
nessione piatta (5.9.2).

2. Una versione più dettagliata della quantizzazione delle bialgebre di Lie di P. Ševera: Nel capi-
tolo 7 forniamo una versione più dettagliata della quantizzazione delle bialgebre di Lie dovuta
a P. Ševera [Šev16]. Sebbene la quantizzazione di Etingof–Kazhdan abbia dato origine ad
un ambito di ricerca molto fertile, la sua impostazione infinito–dimensionale appare partico-
larmente intricata (al contrario di quella finito–dimensionale). La costruzione di Ševera non
presenta questo problema, e inoltre si dimostra facilmente essere compatibile con la quantiz-
zazione dei moduli di Drinfeld–Yetter e con i twist (la quantizzazione di Etingof–Kazhdan è
anch’essa compatibile con i twist, come dimostrato, con molti più sforzi, da Enriquez e Hal-
bout in [EH10a]). In particolare, forniamo dimostrazioni esplicite e diagrammatiche di tutti
gli enunciati categoriali e semplifichiamo l’approccio simpliciale di Ševera con dimostrazioni
più dirette, utilizzando la nozione di moltiplicazione lungo un oggetto comonoide.

3. Una prova più dettagliata del lemma di ”Hensel” di Enriquez–Etingof : Nel capitolo 9 forniamo
una prova più dettagliata del lemma di Hensel di B.Enriquez e P.Etingof, si veda [EE05, Lemma
3.1]. Tale risultato è stato utilizzato dagli autori per fornire una prova più semplice del teorema
di dequantizzazione, la cui dimostrazione è stata abbozzata da P.Etingof e D.Kazhdan con
argomenti legati al semigruppo di Grothendieck–Teichmüller. La nostra dimostrazione si basa
su argomenti di algebra lineare e di teoria degli anelli.

4. Struttura dell’algebra universale di Drinfeld–Yetter : Nel capitolo 10, che si basa su un lavoro
di prossima pubblicazione congiunto con A. Appel [AR], forniamo una descrizione combina-
torica dell’algebra universale di Drinfeld–Yetter (che è stata definita in [ATL19] da A.Appel e
V.Toledano Laredo)

U1
DY := EndDY([V1])

dove DY è la PROP colorata generata da un oggetto bialgebra di Lie universale [1] e da un
modulo universale di Drinfeld–Yetter [V1] e in cui la moltiplicazione associativa di U1

DY è data
dalla composizione di endomorfismi (si veda §8.6). Si ha che la struttura di spazio vettoriale
di U1

DY è isomorfa alla somma diretta di tutte le algebre gruppo di tutti i gruppi simmetrici
Sn, e dunque U1

DY ha una base standard B = {rσn, σ ∈ Sn, n > 0}. Inoltre, per definizione,
le costanti di struttura di U1

DY rispetto alla base B sono numeri interi. Abbiamo definito
alcuni oggetti combinatorici (l’insieme Mn,m dei mosaici di Drinfeld–Yetter e l’insieme Ln,m
dei telai di Drinfeld–Yetter) definiti come riempimenti di una griglia vuota con alcune caselle
specifiche e secondo alcune regole. Il risultato principale di questo capitolo è la seguente
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formula, che fornisce una descrizione combinatorica della moltiplicazione di U1
DY in termini di

telai di Drinfeld–Yetter:

rσn ◦ rτm =
∑

L∈Ln,m

(−1)ξ(L)r
γ̃n,m(σ,L,τ)
n+m

dove ξ(L) è una funzione che conta il numero di alcune caselle specifiche che compaiono
nel telaio Drinfeld–Yetter L e γ̃n,m(σ, L, τ) è una permutazione del gruppo simmetrico Sn+m

dipendente dalle permutazioni σ ∈ Sn, τ ∈ Sm e dal telaio di Drinfeld–Yetter L ∈ Ln,m.

Struttura della tesi

Questo manoscritto è diviso in tre parti, ciascuna composta da tre capitoli.
La prima parte contiene una rapida trattazione dei prerequisiti necessari alla lettura. In particolare,
il capitolo 2 contiene un’introduzione alle categorie monoidali, monoidali intrecciate e monoidali in-
finitesimamente intrecciate (dette anche categorie di Cartier, si vedano [HV22, Def. 2.1] e [Car93]).
Definiamo dunque i loro funtori relativi ed esponiamo le principali identità derivanti dagli assiomi.
Citiamo poi il noto Teorema di coerenza di Mac Lane [ML63] e il suo perfezionamento dovuto a P.
Schauenburg [Sch01], che permette – in certe situazioni – di passare a categorie monoidali strette
per dimostrare identità categoriali. Infine, dimostriamo il risultato principale di questo capitolo,
cioè la costruzione della categoria monoidale intrecciata C Φ

~ dovuta a Drinfeld [Dri90b, p. 1455].
I capitoli 3–4 forniscono una panoramica concisa delle algebre di Hopf, trattate in piena genera–
lità come oggetti di una categoria monoidale intrecciata, e delle bialgebre di Lie. In particolare,
introduciamo le triple di Manin finito–dimensionali, il doppio di Drinfeld di una bialgebra di Lie
e l’algebra inviluppante universale di un’algebra di Lie. Ci concentriamo dunque sui moduli di
Drinfeld–Yetter, che sono la versione linearizzata (cioè la controparte delle bialgebre di Lie) degli
usuali moduli di Yetter–Drinfeld per le algebre di Hopf, e presentiamo, data una bialgebra di Lie
b, la struttura monoidale infinitesimamente intrecciata non banale della categoria DY(b) di tutti
i moduli di Drinfeld–Yetter su b. Infine, dimostriamo che l’algebra inviluppante universale U(b)
appartiene a DY(b) e forniamo una breve introduzione sulla quantizzazione delle bialgebre di Lie.
Nella seconda parte della tesi viene trattato il problema della quantizzazione delle bialgebre di Lie.
Il capitolo 5, che è un estratto di [BRW23], contiene una nuova trattazione del noto associatore
di Drinfeld derivante dalla connessione Knizhnik–Zamolodchikov e delle sue principali identità, le
equazioni del pentagono e dell’esagono. Abbiamo scelto di dare una presentazione pedagogica e più
accessibile alla lettura di un oggetto cos̀ı importante ed essenziale per la teoria della quantizzazione
delle bialgebre di Lie. In particolare, la tecnica principale coinvolta per le equazioni del pentagono
e dell’esagono è il calcolo di trasporti paralleli espliciti rispetto a connessioni piatte lungo cammini
opportunamente scelti, che portano alle identità algebriche desiderate.
I capitoli 6–7 sono dedicati alle tecniche di quantizzazione delle bialgebre di Lie di Etingof–Kazhdan
e Ševera. Abbiamo scelto di considerare la quantizzazione di Etingof–Kazhdan solo nel caso finito–
dimensionale, poichè nel caso infinito–dimensionale riteniamo che l’approccio di Ševera sia molto
più semplice. Le due tecniche hanno comunque diversi ragionamenti in comune, in quanto possiamo
pensare, in un senso non ben precisato, che siano l’una la duale dell’altra. L’articolo originale di
Ševera [Šev16] è piuttosto breve e manca di dettagli e calcoli, sebbene tutte le idee chiave siano
chiaramente presentate. Abbiamo fornito maggiori dettagli e approfondimenti attraverso un ap-
proccio diagrammatico, che permette di capire meglio come gli assiomi categoriali implichino tutti
i ragionamenti.
Infine, la terza e ultima parte di questa tesi è dedicata alle costruzioni universali. Nel capitolo 8
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introduciamo le PROP (categorie di prodotti e permutazioni), che sono categorie che racchiudono le
informazioni di alcune strutture algebriche. Le principali PROP a cui siamo interessati sono quella
delle algebre di Hopf (e delle algebre inviluppanti universali quantizzate) e quella delle bialgebre di
Lie. Infine, citiamo che la quantizzazione di Etingof–Kazhdan fornisce una costruzione universale,
risolvendo un problema enunciato da Drinfeld.
Nel capitolo 9 trattiamo la dimostrazione di Enriquez e Etingof [EE05] del fatto che le costruzioni
universali di Etingof–Kazhdan e Ševera sono funtori invertibili. In particolare, l’intero ragionamento
si basa su quello che viene chiamato Lemma di Hensel. In §9.2 forniamo una nuova e più dettagliata
dimostrazione di questo risultato.
L’ultimo capitolo 10, che si basa su un articolo di prossima pubblicazione, contiene una descrizione
combinatorica dell’algebra universale di Drinfeld–Yetter U1

DY. Tale algebra appare nel contesto dei
funtori universali ed è un raffinamento di natura PROPpica di un’algebra definita da Enriquez.
Definiamo alcuni oggetti combinatorici originali, ovvero gli insiemi dei mosaici di Drinfeld–Yetter
e dei telai di Drinfeld–Yetter, con i quali descriviamo la moltiplicazione di U1

DY. Presentiamo infine
alcuni calcoli espliciti e collegamenti con altre strutture combinatorie, come i permutation patterns
e i bumpless pipedreams.
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1.3 Introduction

Aperçu

Symétrie joue un rôle fondamental dans plusieurs domaines de science, notamment en physique, en
chimie, et en mathématiques. Une façon unifiée pour décrire et comprendre des symétries est le
langage de la théorie des groupes. Par exemple, en mécanique quantique, les états d’un système
sont représentés par des vecteurs non nuls dans un espace hilbertien, et les transformations de ces
états par rapport à certaines symétries sont données par des sous-groupes du groupe de toutes les
transformations unitaires (parfois anti-unitiaires). La théorie des groupes est utilisée pour analyser
les propriétés de ces structures et pour comprendre les conséquences des symétries pour des systèmes
quantiques, comme par exemple les propriétés du système périodique des éléments chimiques ou les
lignes spectrales provenant de l’excitation de certains atomes ou molécules.
La théorie des déformations concerne la compréhension et description des ‘petites’ variations ou mod-
ifications des structures mathématiques, alors on aimerait bien modifier certains objets et maintenir
certaines propriétés algébriques données. Le cas le plus simple est la déformation des structures
en tant que famille à un paramétre formel. Une application importante est l’interprétation de
l’algèbre associative non commutative de toutes les observables de la mécanique quantique comme
une déformation formelle (dont le paramètre est vu comme la constante de Planck ~) de l’algèbre
commutative des observables de la mécanique classique, c.-à-d. des fonctions de classe C∞ sur
un espace de phase (par exemple une variété symplectique) muni d’une structure de Poisson, voir
[BFF+78].
Par exemple, le passage d’une algèbre de Lie à son algèbre enveloppante [CE99] peut être vu comme
une déformation de l’algèbre symétrique engendrée par l’espace vectoriel sous-jacent de l’algèbre de
Lie. Dans le cas de dimension finie, il y également une interprétation dans le cadre de la quantifi-
cation par déformation de cet exemple en utilisant la structure de Poisson linéaire bien connue sur
l’espace dual de l’algèbre de Lie, voir [Gut83]. Pour cette raison, au sens large, on parle des algèbres
enveloppantes comme une ‘quantification’ des algèbres de Lie.
Une structure mathématique naturelle qui généralise la théorie des groupes est la théorie des algèbres
de Hopf dont certaines ont été appelées ‘groupes quantiques’ par Vladimir G. Drinfeld [Dri86]. Dans
cette théorie on trouve des déformation associatives formelles des algèbres enveloppantes.

La théorie de la quantification des bigèbres de Lie a ses origines dans les années 80 avec le travail
de P.P.Kulish et N.Y.Reshetikhin [KR83] dans lequel le premier exemple d’un groupe quantique,
i.e. de la déformation de l’algèbre enveloppante de l’algèbre de Lie sl(2), a été construit. Quelques
années plus tard, l’exemple de Kulish et Reshetikhin fut généralisé– indépendamment par Drinfeld
et Jimbo– au cas de toute algèbre de Kac-Moody symétrisable, que l’on connâıt aujourd’hui sous
le nom de groupes quantiques de Drinfeld-Jimbo, [Dri86] et [Jim85]. Plus précisément, étant donné
une bigèbre de Lie

(
b, [·, ·], δ

)
(voir paragraphe §4.1) on dit qu’une algèbre de Hopf topologique H

sur l’anneau K[[~]] est une quantification de b (ou de manière équivalente une déformation formelle
de l’algèbre enveloppante de l’algèbre de Lie

(
b, [·, ·]

)
) s’il y a un isomorphisme

H/(~H) ∼= U(b) tel que δ(x) =
∆(x)−∆op(x)

~
mod ~

où δ est le cocrochet de Lie de b, ∆ est la comultiplication de H et U(b) est considérée avec sa
structure d’algèbre de Hopf cocommutative standard.
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Dans les comptes rendus des ateliers organisés à l’Institut de Mathématiques Euler, Saint Peterbourg
(à l’époque encore Leningrad) de l’autumn 1990 V.G.Drinfeld [Dri92] annonça quelques problèmes
ouverts de la théorie des groupes quantiques. En particulier, les deux questions suivantes ont été
posées: Q.1.1: Toute bigèbre de Lie peut-elle être quantifiée? ; Q.1.2: Existe-t-il une quantification
universelle des bigèbres de Lie?. La plupart des solutions a été trouvé par P.Etingof et D.Kazhdan
dans leur série d’articles [EK96] [EK98] [EK00a] [EK00b] [EK08].

Les résultats d’Etingof-Kazhdan ont été généralisés plus récemment par B.Enriquez et G.Halbout
(la quantification des bigèbres de Lie cobord et des quasi-bigèbres de Lie, voir [EH10a] [EH10b]), par
Š.Sakáloš and P.Ševera, voir [SŠ15][Šev16], et par A.Appel et V. Toledano Laredo [ATL18]. Toutes
ces constructions obtenues jusqu’à présent dépendent du choix d’un objet mathématique assez diffi-
cile à accéder, à savoir l’associateur de Drinfeld, voir [Dri90b] et [Dri90a]), qui, plus précisément est
une série formelle Φ(A,B) en deux variables noncommutates satisfaisant des propriétés algébriques,
à savoir les équations du pentagone et de l’hexagone (voir le chapitre 5).

De plus, toutes ces constructions ci-dessus sont exprimable par le langage des PROPs (product and
permutation categories), une notion qui apparut dans les années 60 dans les travaux de W.Lawvere
et S.MacLane [Law63], [ML65]. Plus précisément, une PROP est une catégorie monöıdale stricte
symétrique dont l’ensemble des objets est Nr (r le nombre de ‘couleurs’). Les morphismes générateur
d’une PROP encodent les données d’un objet algébrique avec les identités, comme par exemples
des algèbres ou cogèbres (co)associatives ou des algèbres ou cogèbres de Lie. Les foncteurs uni-
versels, comme par exemple l’algèbre enveloppante d’une algèbre de Lie se décrivent par des PROPs
par la notion d’une construction universelle. Par exemple, la quantification des bigèbres de Lie
selon Etingof-Kazhdan donne une construction universelle Q : QUE→ LBAkar[[~]] de la PROP des
algèbres enveloppantes quantifiées à celle des bigèbres de Lie (topologiques complètes), voir §8.7.
De plus, dans l’article [EK98] il y a une esquisse de preuve du fait qu’un tel foncteur est inversible
(au niveau des PROPs) de sorte qu’il existe un foncteur de déquantification. Une approche plus
accessible à ce résultat a été faite quelques années plus tard par B.Enriquez et P.Etingof [EE05] basé
sur un Lemme de la théorie des modules sur l’anneau des séries formelles qu’ils ont appelé ‘Hensel’s
Lemma’. Une interprétation cohomologique des foncteurs universels de quantifications a été donnée
par B.Enriquez dans les articles [Enr01b], [Enr01a], [Enr05] par certaines algèbres universelles qui
ont été reformulées par A.Appel et V.Toledano Laredo dans [ATL19] (voir 10).

Résultats pricipaux

Nous avons obtenu les résultats principaux suivants qui sont nouveaux au meilleur de notre con-
naissance:

1. A gentle introduction to Drinfeld associators : dans le chapitre 5 nous donnons une démonstration
détaillée de l’associateur de Drinfeld et de ses deux identités ([Dri90b] et [Dri90a]) qui provient
de la construction de V.G.Drinfeld utilisant la connection de Knizhnik–Zamolodchikov [KZ84]
sur l’espace des configurations complexe Y n ⊂ Cn (voir l’équation (5.6.2))

(n)ΓKnZa(z1, . . . , zn) :=
∑

16i<j6n

Aij
zi − zj

(dzi − dzj)

où Aij sont des éléments d’une algèbre associative complexe unitaire qui satisfont les soi-
disantes relations de tresse infinitésimales, voir §5.6. Nous utilisons une approche élémentaire
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donnée par l’évaluation concrète des transports parallèles d’une connection plate le long de
certains chemins bien-choisis dans des parties ouvertes de R ou de R2. L’avantage de notre
approche –comme nous le voyons– est le fait que tous les énoncés s’expriment à l’aide des
techniques mathématiques qui ne dépassent jamais le niveau de Licence. Par contre, dans
la littérature que nous avons étudiée il ne semble pas y avoir un traitement suffisamment
compréhensible malgré l’importance fondamentale des associateurs dans la théorie de la quan-
tification des bigèbres de Lie. Les deux identités importantes de l’associateur de Drinfeld so
présentent comme suit: étant donné trois éléments A,B,C de l’algèbre tels que la somme
Λ := A+B + C est un élément central, l’équation de l’hexagone,

e~Λ/2 = e~A/2 Φ(C,A) e~C/2 Φ(B,C) e~B/2 Φ(A,B)

s’obtient à l’aide du calcul du transport parallèle le long des six chemins (5.8.7) par rapport
à la connexion pull–back (5.8.3) qui est complexe de dimension 1 donc plate. De manière
similaire, quels que soient les éléments {Aij}16i 6=j64 de l’algèbre satisfaisant les relations de
tresse infinitésimales, l’équation du pentagone,

Φ(A12, A23 + A24)Φ(A13 + A23, A34) = Φ(A23, A34)Φ(A12 + A13, A24 + A34)Φ(A12, A23)

eest déduit par le calcul du transport parallèle le long des cinq chemins (5.9.5) par rapport à
la connexion plate (5.9.2). Cette partie de la thèse a été mise sur la toile, voir [BRW23], et
sous-mise à publication.

2. Une version plus détaillée de la quantification des bigèbres de Lie selon P. Ševera: dans le
chapitrer 7 nous donnons une version beaucoup plus détaillée de la quantification des bigèbres
de Lie par P.Ševera [Šev16]. Bien que la quantification d’Etingof–Kazhdan ait incité –par
ses méthodes catégorielles– un domaine assez fécond, leur traitement des bigèbres de Lie
de dimension infinie semble assez intrigant contrairement au cas de dimension finie. Dans
la construction de P.Ševera un tel problème n’existe pas, et en plus il n’est pas difficile à
montrer qu’elle est compatible d’une part avec la quantification des modules des bigèbres de
Lie (appelés modules de Drinfeld–Yetter) aux modules usuels de Yetter–Drinfeld de l’algèbre
de Hopf, et d’autre part avec les twists (certaines modification par des cobord des cocrochets):
la quantificationand d’Etingof–Kazhdan quantization est également compatible avec les twists,
comme B.Enriquez et G.Halbout on montré avant avec des efforts énormes, voir [EH10a]). En
particulier, nous allons donner des démonstrations détaillées et explicites par diagrammes, et
nous simplifions la preuve de Ševera en enlevant les arguments simpliciaux et en juste utilisant
la notion d’une multiplication le long d’un objet comonöıdal.

3. Une démonstration plus détaillée du ‘lemme de Hensel’ selon B.Enriquez–P.Etingof : en
chapitre 9 nous donnons une démonstration plus détaillé d’un lemme important de la théorie
des K[[λ]]-modules qui permet de déduire l’inversibilité d’une application K[[λ]] si le permier
ordre est inversible: c’est trivial si tous les modules sont topologiquement libres, mais dans
la situation importante les hypothèses sont plus géneérales. Ce lemme est appelé ‘Lemme de
Hensel’ par les auteurs, voir [EE05, Lemma 3.1], mais une relation avec le résultat bien connu
en algèbre commutative qui porte le même nom n’a pas du tout été claire pour nous. Enriquez
et Etingof utilisent ce lemme pour donner une démonstration plus simple d’un théorême de
déquantification déjà esquissé par Etingof et Kazhdan pour pouvoir invertir un foncteur dans
un contexte de PROPs. Notre démonstration du ‘lemme de Hensel-Enriquez-Etingof’ se fait
par l’algèbre linéaire topologique élémentaire des K[[λ]]-modules.
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4. Structure de l’algèbre de Drinfeld–Yetter universelle: dans le chapitre 10 basé sur un preprint
en préparation avec A. Appel, [AR], nous donnons une description combinatoire de l’algèbre
de Drinfeld–Yetter universelle définie dans [ATL19] par A.Appel and V.Toledano Laredo. On
pose

U1
DY := EndDY([V1])

où DY est la PROP colorée engendrée par un objet universel de bigèbre de Lie [1] et un
deuxième objet universel de module de Drinfeld–Yetter [V1] par rapport à [1], et la multipli-
cation associative de U1

DY est donnée par la composition des endomorphismes, see §8.6.
Il s’ensuit que la structure d’espace vectoriel de U1

DY est isomorphe à la somme directe de
toutes les algèbres de groupe des groupes symétriques Sn, alors U1

DY a une base standard
B = {rσn, σ ∈ Sn, n > 0}. Ed plus, par définition, les constantes de structure de U1

DY par
rapport à la base B sont des entiers. On définit certains objets combinatoires (les ensembles
de tous les n×m mosäıques de Drinfeld–Yetter Mn,m et de tous les métiers à tisser (‘looms’
en anglais) n ×m de Drinfeld–Yetter Ln,m) définis comme des pavages d’un maillage n ×m
avec certains carreaux spécifiques qui satisfont quelques règles de composition. Le résultat
principal de ce chapitre est la formule suivante donnant une description combinatoire de la
multiplication de U1

DY en termes des métiers à tisser de Drinfeld–Yetter:

rσn ◦ rτm =
∑

L∈Ln,m

(−1)ξ(L)r
γ̃n,m(σ,L,τ)
n+m

où ξ(L) est une fonction qui numérote le nombre de tous les carreaux d’un certain type
apparaissant dans le métier à tisser de Drinfeld–Yetter L, et γ̃n,m(σ, L, τ) est une permutation
dans le group symmétrique Sn+m définie par les permutations σ ∈ Sn, τ ∈ Sm et par le
métier à tisser de Drinfeld–Yetter L ∈ Ln,m.

Structure de la thèse

Le manuscrit est structuré en trois grandes parties dont chacune a trois chapitres.
La première partie donne une vue panoramique des prérequis nécessaires pour la lecture. En parti-
culier, le chapitre 2 contient une introduction aux catégories monöıdales, aux catégories monöıdales
tressées et aux catégories monöıdales infinitésmalement tressées (dont les dernières sont également
appelées catégories de Cartier, voir [HV22, Def. 2.1] and [Car93])). On définit leurs foncteurs re-
latifs et leurs identités principales selon les axiomes. Nous mentionnons le théorème bien-connu de
cohérence de S.Mac Lane [ML63] et un raffinement de ce résultat par P. Schauenburg [Sch01]: ceci
permet –dans quelques situtations– de passer des catégories monöıdales aux catégories monöıdales
strictes où tous les associateurs et uniteurs sont triviaux afin de démontrer des identités catégorielles.
Finalement, on donne des détails de preuve du résultat bien connu de ce chaptire, à savoir la con-
struction de la catégorie monöıdale tressée deformée C Φ

~ par V.G.Drinfeld [Dri90b, p. 1455] à l’aide
d’un associateur de Drinfeld.
Les chapitres 3–4 donnent un résumé concise des algèbres de Hopf, traitées en toute généralité en
tant qu’objets d’une catégorie monöıdale tressée, et des bigèbres de Lie. En particulier, on rappelle
des objets bien-counnus, à savoir les triplets de Manin de dimension finie, le double de Drinfeld
d’une bigèbre de Lie, and l’algèbre enveloppante d’une algèbre de Lie. Ensuite on focalise sur les
modules de Drinfeld–Yetter d’une bigèbre de Lie donnée, qui présentent une ‘version linearisée’ ou
une contrepartie bigèbre de Lie des modules de Yetter–Drinfeld usuels pour les algèbres de Hopf,
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and nous présentons, étant donné une bigèbre de Lie b, la structure de catégorie monöıdale in-
finitésmalement tressée non–triviale de la catégorie DY(b) de tous les modules de Drinfeld–Yetter
par rapport à b selon Ševera [Šev16]. Finalement, on donne les détails de la preuve du fait que
l’algèbre enveloppante U(b) est toujours un module de Drinfeld-Yetter de manière canonique alors
appartient à la catégorie DY(b). Ensuite, nos donnons une introduction au cadre de la quantification
des bigèbres de Lie.
La deuxième partie de la thèse concedrne la quantification des bigèbres de Lie. D’abord le chapitre
5 qui est extrait de la prépublication [BRW23] contient une nouvelle exposition de l’associateur de
Drinfeld provenant de la connexion de Knizhnik-Zamolodchikov et ses identités principales, celle du
pentagone et celle de l’hexagone. Nous avons choisi de donnner une présentation pédagogique et ac-
cessible pour un tel objet important qui est essentiel pour la théorie de la quantification des bigèbres
de Lie. En particulier, la technique principale est le calcul des transports parallèles explicites d’une
connexion plate le long des chemin bien-choisis, et le passage à la limite de ces chemins vers les
singularités de la connexion. Ceci nous amène aux preuves des identités désirées.
Les chapitres 6–7 sont consacrés aux techniques de quantification d’Etingof-Kazhdan et de Ševera
pour les bigèbres de Lie. Pour la première approche, celle d’Etingof-Kazhdan, nous ne la présentons
que dans le cas des bigèbres de dimension finie pour éviter la discussion topologique assez hard.
L’approche de P.Ševera marche sans distinction pour toute bigèbre de Lie uniformément et est
plus simple. Mais les deux techniques ont les idées en commun qui proviennent de la théorie des
représentations des algèbres de Lie, et l’apporoche de Ševera peut être vue comme un (pré)dual
–astucieusement choisi– de celle d’Etingof-Kazhdan. La publication de P.Ševera de 2016, [Šev16]
est extrêmement courte (14 pages) et ne donne que des esquisses de démonstrations ou caluls bien
que toutes les idées soient clairement présentées. Nous avons rajouté beaucoup de détails moyen-
nant une approche diagrammatique qui est adaptée aux techniques catégoriques afin de faciliter la
compréhension comme nous espérons.
Finalement, la troisième et dernière partie de cette thèse est consacrée aux constructions universelles.
Dans le chapitre 8 nous introduisons PROPs (‘product and permutation categories’), qui sont –au
sens large– des catégories qui encodent l’information sur certaines structures algébriques dans leurs
ensembles de morphismes. Les PROPs qui nous intéressent sont celle des algèbres de Hopf (surtout
celle des algèbres enveloppantes universelles quantifiées) et celle des bigèbres de Lie. On mentionne
que la quantification d’Etingof–Kazhdan et celle de Ševera admet une formulation en termes de
PROPs, donc une construction universelle, ainsi résolvant un problème posé par Drinfeld.
Dans le chapitre 9 nous rajoutons une preuve détaillé du ‘lemme de Hensel’ utilisé dans la construc-
tion de déquantification d’Enriquez-Etingof [EE05]. Dans §9.2 nous donnons les détails.
Le dernier chapitre 10 basé sur notre preprint pas encore publié contient la description combinatoire
de l’algèbre de Drinfeld–Yetter universelle U1

DY. Une telle algèbre est liée au contexte des fonc-
teurs universels et présente un raffinement PROPique d’uen algèbre définie par B.Enriquez. Nous
définissons des objets combinatoires comme des mosäıques et des métiers à tisser déjà mentionnés
ci-dessus à l’aide desquels la multiplication de U1

DY peut être décrite. Finalement, on présente des
calculs explicites et des liens avec d’autres structures combinatoires comme ‘permutations patterns’
et ‘bumpless pipedreams’.
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Chapter 2

Monoidal–type categories

The aim of this Chapter is to introduce the well–known concepts and main properties of monoidal,
braided monoidal and infinitesimally braided monoidal categories. The reader can find further
details in the book of S. Mac Lane [ML13, VII], the book of P.Etingof, S. Gelaki, D. Nikshych and
V. Ostrik [EGNO15, Ch. 2,8], the book of M. Aguiar and S. Mahajan [AM10, Part I], the article
of A. Joyal and R. Street [JS93], and L. Trujillo B.Sc. Thesis [Tru20]. See also the article of A.
Ardizzoni, L. Bottegoni, A. Sciandra and T. Weber [ABSW23] for a recent generalization of the
concept of infinitesimally braided monoidal category.

2.1 Monoidal categories

Definition 2.1.1. A monoidal category is a sextuple (C ,⊗, I, a, `, r), where:

• C is a category;

• ⊗ is a functor ⊗ : C × C → C , called the tensor product of C ;

• I is an object of C , called the unit of C ;

• a is a natural isomorphism a : ⊗(⊗× id)→ ⊗(id×⊗), called an associativity constraint;

• ` is a natural isomorphism ` : ⊗(I × id)→ id, called a left unit constraint;

• r is a natural isomorphism r : ⊗(id× I)→ id, called a right unit constraint;

such that the pentagonal diagram

(
X ⊗ (Y ⊗ Z)

)
⊗W

(
(X ⊗ Y )⊗ Z

)
⊗W

(X ⊗ Y )⊗ (Z ⊗W )

X ⊗
(
(Y ⊗ Z)⊗W

)
X ⊗

(
Y ⊗ (Z ⊗W )

)
aX,Y⊗Z,W

aX⊗Y,Z,W

aX,Y,Z⊗idW

aX,Y,Z⊗W

idX⊗aY,Z,W

(2.1.1)
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commutes for any X, Y, Z,W in Obj(C ) and the triangular diagram

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y
rX⊗idY

aX,I,Y

idX⊗`Y
(2.1.2)

commutes for any X, Y in Obj(C ).

Definition 2.1.2. Let (C ,⊗, I, a, `, r) and (C ′,⊗′, I ′, a′, `′, r′) be two monoidal categories.

• A monoidal functor from C to C ′ is a triple (F, ϕF0 , ϕ
F
2 ), where F : C → C ′ is a functor,

ϕF0 : I ′ → F (I) is a morphism, and ϕF2 is a natural transformation

ϕF2 (X, Y ) : F (X)⊗′ F (Y )→ F (X ⊗ Y )

such that the hexagon

(
F (X)⊗′ F (Y )

)
⊗′ F (Z) F (X)⊗′

(
F (Y )⊗′ F (Z)

)
F (X ⊗ Y )⊗′ F (Z) F (X)⊗′ F (Y ⊗ Z)

F
(
(X ⊗ Y )⊗ Z

)
F
(
X ⊗ (Y ⊗ Z)

)

a′F (X),F (Y ),F (Z)

ϕF2 (X,Y )⊗′idF (Z) idF (X)⊗′ϕF2 (Y,Z)

ϕF2 (X⊗Y,Z) ϕF2 (X,Y⊗Z)

F (aX,Y,Z)

(2.1.3)

and the squares

I ′ ⊗′ F (X) F (X) F (X)⊗′ I ′ F (X)

F (I)⊗′ F (X) F (I ⊗X) F (X)⊗′ F (I) F (X ⊗ I)

`′F (X)

ϕF0 ⊗′idF (X)

r′
F (X)

idF (X)⊗′ϕF0
ϕF2 (I,X)

F (`X)

ϕF2 (X,I)

F (rX) (2.1.4)

commute for any X, Y, Z in Obj(C ). If all the morphisms ϕF0 and ϕF2 (X, Y ) are invertible we
say that (F, ϕF0 , ϕ

F
2 ) is a strongly monoidal functor.

• A natural monoidal transformation η : (F, ϕF0 , ϕ
F
2 ) → (G,ϕG0 , ϕ

G
2 ) between monoidal

functors from C to C ′ is a natural transformation η : F → G such that the diagrams

F (X)⊗′ F (Y ) F (X ⊗ Y ) I ′

G(X)⊗′ G(Y ) G(X ⊗ Y ) F (I) G(I)

η(X)⊗′η(Y )

ϕF2 (X,Y )

η(X⊗Y )
ϕF0 ϕG0

ϕG2 (X,Y )

η(I)

commute for any X, Y in Obj(C ).
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• A comonoidal functor from C to C ′ is a triple (F, ψ0
F , ψ

2
F ), where F : C → C ′ is a functor,

ψ0
F : F (I)→ I ′ is a morphism, and ψ2

F is a natural transformation

ψ2
F (X, Y ) : F (X ⊗ Y )→ F (X)⊗′ F (Y )

such that the hexagon

F
(
(X ⊗ Y )⊗ Z

)
F
(
X ⊗ (Y ⊗ Z)

)
F (X ⊗ Y )⊗′ F (Z) F (X)⊗′ F (Y ⊗ Z)

(
F (X)⊗′ F (Y )

)
⊗′ F (Z) F (X)⊗′

(
F (Y )⊗′ F (Z)

)

ψ2
F (X⊗Y,Z)

F (aU,V,W )

ψ2
F (X,Y⊗Z)

ψ2
F (X,Y )⊗′idF (Z) idF (X)⊗′ψ2

F (Y,Z)

a′
F (X),F (Y ),F (Z)

(2.1.5)

and the squares

F (X) I ′ ⊗′ F (X) F (X) F (X)⊗′ I ′

F (I ⊗X) F (I)⊗′ F (X) F (X ⊗ I) F (X)⊗′ F (I)

(`′
F (X)

)−1

F (`−1
X )

(r′
F (X)

)−1

F (r−1
X )

ψ2
F (I,X)

ψ0
F⊗
′idF (U)

ψ2
F (X,I)

idF (X)⊗′ψ0
F

(2.1.6)

commute for any X, Y, Z in Obj(C ). If all the morphisms ψ0
F and ψ2

F (X, Y ) are invertible, we
say that (F, ψ0

F , ψ
2
F ) is a strongly comonoidal functor, and the triple (F, (ψ0

F )−1, (ψ2
F )−1)

is a strongly monoidal functor.

• A natural comonoidal transformation θ : (F, ψ0
F , ψ

2
F ) → (G,ψ0

G, ψ
2
G) between monoidal

functors from C to C ′ is a natural transformation θ : F → G such that the diagrams

F (X ⊗ Y ) F (X)⊗′ F (Y ) I ′

G(X ⊗ Y ) G(X)⊗′ G(Y ) F (I) G(I)

θ(X⊗Y )

ψ2
F (X,Y )

θ(X)⊗′θ(Y )

ψ2
G(X,Y )

θ(I)

ψ0
F ψ0

G

commute for any X, Y in Obj(C ).

• A natural (co)monoidal isomorphism is a natural (co)monoidal transformation that is
also a natural isomorphism.

• A (co)monoidal equivalence between two monoidal categories C and C ′ is a (co)monoidal
functor F : C → C ′ such that there exist a (co)monoidal functor F ′ : C ′ → C and two natural
(co)monoidal isomorphisms η : idC ′ → FF ′ and ε : F ′F → idC .

Proposition 2.1.3. Let C ,C ′,C ′′ be three monoidal categories.

(i) If (F, ψ0
F , ψ

2
F ) : C → C ′ and (G,ψ0

G, ψ
0
G) : C ′ → C ′′ are two comonoidal functors, then the

triple (
GF,ψG0 ◦G(ψ0

F , ), ψ
2
G ◦G(ψ2

F )
)

(2.1.7)

is a comonoidal functor from C to C ′′.
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(ii) If (F, ϕF0 , ϕ
F
2 ) : C → C ′ and (G,ϕG0 , ϕ

G
2 ) : C ′ → C ′′ are two monoidal functors, then the triple(

GF,G(ϕF0 ) ◦ ϕG0 , G(ϕF2 ) ◦ ϕG2
)

(2.1.8)

is a monoidal functor from C to C ′′.

Proof. Let X, Y, Z be objects of C . We have that the following diagrams commute

(1)

GF
(
(X ⊗ Y )⊗ Z

)
G
(
F (X ⊗ Y )⊗′ F (Z)

)
GF
(
X ⊗ (Y ⊗ Z)

)
G
(
(F (X)⊗′ F (Y ))⊗′ F (Z)

)
G
(
F (X)⊗′ F (Y ⊗ Z)

)
G
(
F (X)⊗′ (F (Y )⊗′ F (Z))

)

GF (aX,Y,Z)

G(ψ2
F (X⊗Y,Z))

G(ψ2
F (X,Y )⊗′idF (Z))

G(ψ2
F (X,Y⊗Z)) G(a′

F (X),F (Y ),F (Z)
)

G(idF (X)⊗′ψ2
F (F (Y ),F (Z)))

(2)

G
(
F (X ⊗ Y )⊗′ F (Z)

)
GF (X ⊗ Y )⊗′′ GF (Z)

G
(
(F (X)⊗′ F (Y ))⊗′ F (Z)

)
G
(
F (X)⊗′ F (Y )

)
⊗′′ GF (Z)

G(ψ2
F (X,Y )⊗′idF (Z))

ψ2
G(F (X⊗Y ),F (Z))

G(ψ2
F (X,Y ))⊗′′idGF (Z)

ψ2
G(F (X)⊗′F (Y ),F (Z))

(3)

G
(
F (X)⊗′ F (Y ⊗ Z)

)
G
(
F (X)⊗′ (F (Y )⊗′ F (Z))

)
GF (X)⊗′′ GF (Y ⊗ Z) GF (X)⊗′′ G

(
F (Y )⊗′ F (Z)

)ψ2
G(F (X),F (Y⊗Z))

G(idF (X)⊗′ψF2 (F (Y ),F (Z)))

ψ2
G(F (X),F (Y )⊗′F (Z))

idGF (X)⊗′′G(ψ2
F (Y,Z))

(4)

G
(
(F (X)⊗′ F (Y ))⊗′ F (Z)

)
G
(
F (X)⊗′ F (Y )

)
⊗′′ GF (Z)

G
(
F (X)⊗′ (F (Y )⊗′ F (Z))

) (
GF (X)⊗′′ GF (Y )

)
⊗′′ GF (Z)

GF (X)⊗′′ G
(
F (Y )⊗′ F (Z)

)
GF (X)⊗′′

(
GF (Y )⊗′′ GF (Z)

)

G(a′
F (X),F (Y ),F (Z)

)

ψ2
G(F (X)⊗′F (Y ),F (Z))

ψFG(F (X),F (Y ))⊗′′idGF (Z)

ψ2
G(F (X),F (Y )⊗′F (Z)) a′′

GF (X),GF (Y ),GF (Z)

idGF (X)⊗′′ψ2
G(F (Y ),F (Z))

where the first follows from the fact that (F, ψ0
F , ψ

2
F ) is a comonoidal functor, the second and the

third follow from the naturality of ψ2
G, and the last follows from the fact that is a comonoidal functor.
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The joint diagram

(2)

(1)

(4)

(3)

gives that the triple (2.1.7) satisfies (2.1.5). Finally, the fact that the triple (2.1.7) satisfies the
squares (2.1.6) follows by the diagrams

GF (X) I ′′ ⊗′′ GF (X)

G
(
I ′ ⊗′ F (X)

)
G(I ′)⊗′′ GF (X)

GF (I ⊗X) G
(
F (I)⊗′ F (X)

)
GF (I)⊗′′ GF (X)

(`′′
GF (X)

)−1

G((`′
F (X)

)−1)

GF (`−1
X )

ψ2
G(I′,F (X))

ψ0
G⊗idGF (X)

G(ψ2
F (I,X)) ψ2

G(F (I),F (X))

G(ψ0
F⊗
′idF (X)) G(ψ0

F )⊗′′idGF (X)

and

GF (X) GF (X)⊗′′ I ′′

G
(
F (X)⊗′ I ′

)
GF (X)⊗′′ G(I ′)

GF (X ⊗ I) G
(
F (X)⊗′ F (I)

)
GF (X)⊗′′ GF (I)

(r′′
GF (X)

)−1

G((r′
F (X)

)−1)

GF (r−1
X )

ψ2
G(F (X),I′)

idGF (X)⊗′′ψ0
G

G(ψ2
F (X,I)) ψ2

G(F (X),F (I))

G(idF (X)⊗′ψ0
F ) idGF (X)⊗G(ψ0

F )

where we used again the fact that (F, ψ0
F , ψ

2
F ) and (G,ψ0

G, ψ
0
G) are comonoidal and the naturality of

ψ2
G. The proof of the second part of the statement is analogous.

2.2 Braided monoidal categories

Definition 2.2.1. A braided monoidal category is a seventuple (C ,⊗, I, a, `, r, c), where (C ,⊗, I, a, `, r)
is a monoidal category and c is a commutativity constraint, or braiding, i.e. a natural iso-
morphism c : ⊗ → ⊗op such that the two hexagonal diagrams
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X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

cX,Y⊗Z

aY,Z,XaX,Y,Z

cX,Y ⊗idZ

aY,X,Z

idY ⊗cX,Z

(2.2.1)

and

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

cX⊗Y,Z

a−1
Z,X,Ya−1

X,Y,Z

idX⊗cY,Z

a−1
X,Z,Y

cX,Z⊗idY

(2.2.2)

commute for any X, Y, Z in Obj(C ). If moreover the equality cY,X ◦cX,Y = idX⊗Y holds for any X, Y
in Obj(C ) we say that C is a symmetric monoidal category.

Definition 2.2.2. Let (C ,⊗, I, a, `, r, c) and (C ′,⊗′, I ′, a′, `′, r′, c′) be two braided monoidal cate-
gories.

• A monoidal functor (F, ϕF0 , ϕ
F
2 ) from C to C ′ is said to be a braided monoidal functor if

for any pair (X, Y ) of objects in C the square

F (X)⊗′ F (Y )
ϕF2 (X,Y )
−−−−−→ F (X ⊗ Y )

c′
F (X),F (Y )

y yF (cX,Y )

F (Y )⊗′ F (X)
ϕF2 (Y,X)
−−−−−→ F (Y ⊗X)

(2.2.3)

commutes.

• A comonoidal functor (F, ψ0
F , ψ

2
F ) from C to C ′ is said to be a braided comonoidal functor

if for any pair (X, Y ) of objects in C the square

F (X ⊗ Y ) F (X)⊗′ F (Y )

F (Y ⊗X) F (Y )⊗′ F (X)

ψ2
F (X,Y )

F (cX,Y ) c′
F (X),F (Y )

ψ2
F (Y,X)

(2.2.4)

commutes.

Proposition 2.2.3. Let C ,C ′,C ′′ be three braided monoidal categories.
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(i) If (F, ψ0
F , ψ

2
F ) : C → C ′ and (G,ψ0

G, ψ
0
G) : C ′ → C ′′ are two braided comonoidal functors, then

the triple (
GF,ψG0 ◦G(ψ0

F , ), ψ
2
G ◦G(ψ2

F )
)

(2.2.5)

is a braided comonoidal functor from C to C ′′.

(ii) If (F, ϕF0 , ϕ
F
2 ) : C → C ′ and (G,ϕG0 , ϕ

G
2 ) : C ′ → C ′′ are two braided monoidal functors, then

the triple (
GF,G(ϕF0 ) ◦ ϕG0 , G(ϕF2 ) ◦ ϕG2

)
(2.2.6)

is a braided monoidal functor from C to C ′′.

Proof. Let X, Y be objects of C . The proof of (i) follows from Proposition 2.1.3 and from the
commutativity of following diagram

GF (X ⊗ Y ) G(F (X)⊗′ F (Y )) GF (X)⊗′′ GF (Y )

GF (Y ⊗X) G(F (Y )⊗′ F (X)) GF (Y )⊗′′ GF (X)

GF (cX,Y )

G(ψ2
F (X,Y )) ψG2 (F (X),F (Y ))

G(c′
F (X),F (Y )

) c′′
GF (X),GF (Y )

G(ψ2
F (Y,X)) ψG2 (F (Y ),F (X))

where the left (resp. right) square commutes since (F, ψF0 , ψ
F
2 ) (resp. (G,ψG0 , ψ

G
2 )) is braided

comonoidal. The proof of (ii) is analogous.

2.3 Infinitesimally braided monoidal categories

We shall sometimes use the following

Notation 2.3.1. If f (resp. g) is a morphism (resp. an invertible morphism) in a category C and
f and g are composable, we denote by f g the composition g−1 ◦ f ◦ g.

Definition 2.3.2. An infinitesimally braided monoidal category is an eightuple (C ,⊗, I, a, `, r, c, t),
where (C ,⊗, I, a, `, r, c) is a pre–additive1 symmetric monoidal category and t is an infinitesimal
braiding, i.e. a natural morphism t : ⊗ → ⊗ such that the following relations hold for any X, Y, Z
in Obj(C ):

tX,Y⊗Z = (tX,Y ⊗ idZ)a
−1
X,Y,Z + (idY ⊗ tX,Z)aY,X,Z◦(cX,Y ⊗idZ)◦a−1

X,Y,Z (2.3.1a)

cX,Y ◦ tX,Y = tY,X ◦ cX,Y . (2.3.1b)

Definition 2.3.3. Let (C ,⊗, I, a, `, r, c, t) and (C ′,⊗′, I ′, a′, `′, r′, c′, t′) be two infinitesimally braided
categories.

• A braided monoidal functor (F, ϕF0 , ϕ
F
2 ) from C to C ′ is said to be an infinitesimally braided

monoidal functor if for any X, Y in Obj(C ) the square

F (X)⊗′ F (Y )
ϕF2 (X,Y )
−−−−−→ F (X ⊗ Y )

t′
F (X),F (Y )

y yF (tX,Y )

F (X)⊗′ F (Y )
ϕF2 (Y,X)
−−−−−→ F (X ⊗ Y )

(2.3.2)

commutes.
1see [KS06, Ch. 8] for more details on pre–additive categories
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• A braided comonoidal functor (F, ψ0
F , ψ

2
F ) from C to C ′ is said to be an infinitesimally

braided comonoidal functor if for any X, Y in Obj(C ) the square

F (X ⊗ Y ) F (X)⊗′ F (Y )

F (X ⊗ Y ) F (X)⊗′ F (Y )

ψ2
F (X,Y )

F (tX,Y ) t′
F (X),F (Y )

ψ2
F (Y,X)

(2.3.3)

commutes.

Proposition 2.3.4. Let C ,C ′,C ′′ be three infinitesimally braided monoidal categories.

(i) If (F, ψ0
F , ψ

2
F ) : C → C ′ and (G,ψ0

G, ψ
0
G) : C ′ → C ′′ are two infinitesimally braided comonoidal

functors, then the triple (
GF,ψG0 ◦G(ψ0

F , ), ψ
2
G ◦G(ψ2

F )
)

(2.3.4)

is an infinitesimally braided comonoidal functor from C to C ′′.

(ii) If (F, ϕF0 , ϕ
F
2 ) : C → C ′ and (G,ϕG0 , ϕ

G
2 ) : C ′ → C ′′ are two infinitesimally braided monoidal

functors, then the triple (
GF,G(ϕF0 ) ◦ ϕG0 , G(ϕF2 ) ◦ ϕG2

)
(2.3.5)

is an infinitesimally braided monoidal functor from C to C ′′.

Proof. Let X, Y be objects of C . The proof of (i) follows from Proposition 2.2.3 and from the
commutativity of following diagram

GF (X ⊗ Y ) G(F (X)⊗′ F (Y )) GF (X)⊗′′ GF (Y )

GF (X ⊗ Y ) G(F (X)⊗′ F (Y )) GF (X)⊗′′ GF (Y )

GF (tX,Y )

G(ψ2
F (X,Y )) ψG2 (F (X),F (Y ))

G(t′
F (X),F (Y )

) t′′
GF (X),GF (Y )

G(ψ2
F (X,Y )) ψG2 (F (X),F (Y ))

where the left (resp. right) square commutes since (F, ψF0 , ψ
F
2 ) (resp. (G,ψG0 , ψ

G
2 )) is braided

comonoidal. The proof of (ii) is analogous.

2.4 Turning monoidal categories into strict ones

Definition 2.4.1. A monoidal category (C ,⊗, I, a, `, r) is said to be strict if the associativity and
the unit constraints are all identities. A monoidal (resp. comonoidal) functor (F, ϕF0 , ϕ

F
2 ) (resp.

(F, ψ0
F , ψ

2
F )) is said to be strict if the morphisms ϕF0 , ϕ

F
2 (resp ψ0

F , ψ
2
F ) are identities of the target

category.

The following result is well known as the Mac Lane coherence’s Theorem:

Theorem 2.4.2 ([ML63]). Let C be a monoidal category. Then there exists a strict category C str

which is monoidally equivalent to C .

MacLane’s result is very powerful, but it requires to replace the category C with a strict one C str

with different objects. The following result, due to P. Schauenburg [Sch01], allows to consider a
strict category which preserves the objects of C .
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Theorem 2.4.3 ([Sch01]). Let C be a monoidal category of structured sets. Then there exists a
strict category C str with the same objects of C which is monoidally equivalent to C .

It turns out that all categories of algebraic objects are categories of structured sets and therefore
for our purpose it is convenient to rely on Schauenburg’s result. MacLane’s coherence Theorem can
be extended to the case of braided monoidal categories, see [JS93, §4] for more details.
Mac Lane’s and Schauenburg’s coherence’s theorems allow to ‘forget the bracketing and ignore
associators’, and then simplifying a large number of proofs and of reasonings in a considerable way.
A possible way to make this more precise is the following:
The strongly monoidal functor F : C → C str in the above monoidal equivalence is in general not
strictly monoidal, i.e. its monoidal structure ϕF2 is not the identity morphism, hence it does in general
not map morphisms made up out of compositions of associators and unitors tensored with identity
morphims to the identity morphism in view of diagram (2.1.3) for α′ = 1, but to combinations of
ϕF2 and its inverses.
However, in order to justify the passage to strict categories to simplify diagrams –which is very
often used in the literature– this can at least be done partially, for instance in the following way,
see [BH23] for more details: pick a subset L of the class C , for instance a finite set of objects
nonassociatively generating all the objects in a given commutative diagram. Then form the free
nonassociative semigroup (magma) ML generated by L and the unit element I of C , and the free
(associative unital) monoid FL generated by L with multiplication ∗. There is an obvious map
FL :ML→ C sending the free nonassociative words in L to concrete objects in C concatenated by
the tensor product ⊗ of C , and there is the obvious morphism of magmas ΞL : ML → FL which
is the identity on generators in L and maps I to the unit element of FL. We can make ML into
a –in general nonstrict– monoidal category by attaching to each pair of nonassociative words the
Hom-set of the category C attached to the pair of objects in C via FL: here the monoidal structure
is the free nonassociative multiplication on objects and the usual tensor product of morphisms in
C . Associators and unitors are borrowed by the ones in C . Then FL becomes a strictly monoidal
full and faithful functor. Next, on the free monoid FL we can attach to each pair of associative
words in L the Hom-set of C attached to the corresponding pair of well-bracketed words in C : for
instance for the associative word l1 ∗ l2 ∗ l3 ∗ l4 we take l1 ⊗ (l2 ⊗ (l3 ⊗ l4)), etc. Then FL becomes
a strict monoidal category where the tensor product is just ∗ on objects, and on morphisms it is
the usual tensor product of C but composed with the unique –thanks to the coherence theorem–
rebracketing morphisms to ‘restore’ the well-bracketing. It can be shown that ΞL can also be made
into a strictly monoidal full and faithful functor by consequently using the canonical rebracketing
morphisms.
In order to use this ‘partial strictification’ for the proof of a diagram, more precisely of the equality
of two morphisms in C involving associators and unitors we can first lift the morphisms to ML
(made up of all the involved objects in C and where composed objects in C should be composed
objects in ML) and map the situation to the strict category FL by means of the functor ΞL

where all the associators and unitors now really become identities since the functor ΞL is strictly
monoidal, see again diagram (2.1.3). Since the functors FL and ΞL are full and faithful, the equality
of the two mapped morphisms implies the equality of the two morphisms in C , which reflects the
above-mentioned strategy of ‘passing to strict monoidal categories’ in the literature.
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2.5 Some identities in monoidal–type categories

In this Section we collect some well–known identities holding in monoidal–type categories. All the
proofs can be find in [Kas12].

Proposition 2.5.1. ([Kas12, Lem. XI.2.2–XI.2.3]) Let (C ,⊗, I, a, `, r) be a monoidal category.
Then for any X, Y, Z,W in Obj(C ) and f, g in Hom(C ) we have

f ⊗ g = (f ⊗ idt(g)) ◦ (ids(f) ⊗ g) = (idt(f) ⊗ g) ◦ (f ⊗ ids(g)) (2.5.1a)

`X ⊗ idY = `X⊗Y ◦ aI,X,Y (2.5.1b)

rX⊗Y = (idX ⊗ rY ) ◦ aX,Y,I (2.5.1c)

`I⊗X = idI ⊗ `X (2.5.1d)

rX⊗I = rX ⊗ idI (2.5.1e)

`I = rI . (2.5.1f)

Proposition 2.5.2. [Kas12, Prop. XIII.1.2 and Th. XIII.1.3] Let (C ,⊗, I, a, `, r, c) be a braided
monoidal category. Then for any X, Y, Z in Obj(C ) we have

rX = `X ◦ cX,I (2.5.2a)

`X = rX ◦ cI,X (2.5.2b)

cI,X = c−1
X,I (2.5.2c)

and the following dodecagon identity, which is the categorical interpretation of the Yang–Baxter
Equation, holds

aZ,Y,X ◦ (cY,Z ⊗ idX) ◦ a−1
Y,Z,X ◦ (idY ⊗ cX,Z) ◦ aY,X,Z ◦ (cX,Y ⊗ idZ)

= (idZ ⊗ cX,Y ) ◦ aZ,X,Y ◦ (cX,Z ⊗ idY ) ◦ a−1
X,Z,Y ◦ (idX ⊗ cY,Z) ◦ aX,Y,Z .

(2.5.3)

Proposition 2.5.3. [Kas12, pp.495-496] Let (C ,⊗, I, a, `, r, c, t) be an infinitesimally braided monoidal
category. Then for any X, Y, Z in Obj(C ) we have

tX⊗Y,Z = (idX ⊗ tY,Z)aX,Y,Z + (tX,Z ⊗ idY )◦a
−1
X,Y,Z◦(idX⊗cY,Z)◦aX,Y,Z (2.5.4a)

tX,I = 0 (2.5.4b)

tI,X = 0 (2.5.4c)

and

[tX,Y ⊗ idZ , tX⊗Y,Z ] = 0 (2.5.5a)

[idX ⊗ tY,Z , tX,Y⊗Z ] = 0. (2.5.5b)

Proposition 2.5.3 gives us the crucial property of an infinitesimally braided monoidal category,
that is, its infinitesimally braiding t give rise to a collection of natural morphisms satisfying the
infinitesimally braid relations (2.5.8a), (2.5.8b), (2.5.8c). This will be the crucial feature needed
in order to construct, given a Drinfeld associator (see Chapter 5), deformed braided monoidal
categories, see §2.7. Namely, we have the following
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Proposition 2.5.4. Let (C ,⊗, I, a, `, r, c, t) be an infinitesimally braided monoidal category. For
any X, Y, Z,W in Obj(C ), consider the following endomorphims of (X ⊗ Y )⊗ Z

t12
X,Y,Z := tX,Y ⊗ idZ (2.5.6a)

t23
X,Y,Z := (idX ⊗ tY,Z)aX,Y,Z (2.5.6b)

t13
X,Y,Z := (tX,Z ⊗ idY )a

−1
X,Z,Y ◦(idX⊗cY,Z)◦aX,Y,Z (2.5.6c)

t21
X,Y,Z := (c−1

X,Y ◦ tY,X ◦ cX,Y )⊗ idZ (2.5.6d)

t32
X,Y,Z :=

(
idX ⊗ (c−1

Y,Z ◦ tZ,Y ◦ cY,Z)
)aX,Y,Z (2.5.6e)

t31
X,Y,Z := (c−1

X,Z ◦ tZ,X ◦ cX,Z)⊗ idY )a
−1
X,Z,Y ◦(idX⊗cY,Z)◦aX,Y,Z (2.5.6f)

and the following endomorphisms of ((X ⊗ Y )⊗ Z)⊗W

t12
X,Y,Z,W := t12

X,Y,Z ⊗ idW (2.5.7a)

t23
X,Y,Z,W := t23

X,Y,Z ⊗ idW (2.5.7b)

t13
X,Y,Z,W := t13

X,Y,Z ⊗ idW (2.5.7c)

t14
X,Y,Z,W := (t12

X,W,Y,Z)(a−1
X,W,Y ⊗idW )◦a−1

X,W⊗Y,Z◦(idX⊗a
−1
W,Y,Z)◦(idX⊗cY⊗Z,W )◦aX,Y⊗Z,W ◦(aX,Y,Z⊗idW ) (2.5.7d)

t24
X,Y,Z,W := (idX ⊗ t13

Y,Z,W )aX,Y⊗Z,W ◦(aX,Y,Z⊗idW ) (2.5.7e)

t34
X,Y,Z,W :=

(
(idX ⊗ t23

Y,Z,W )aX,Y⊗Z,W
)aX,Y,Z⊗idW (2.5.7f)

t21
X,Y,Z,W := t21

X,Y,Z ⊗ idW (2.5.7g)

t32
X,Y,Z,W := t32

X,Y,Z ⊗ idW (2.5.7h)

t31
X,Y,Z,W := t31

X,Y,Z ⊗ idW (2.5.7i)

t41
X,Y,Z,W := (t21

X,W,Y,Z)(a−1
X,W,Y ⊗idW )◦a−1

X,W⊗Y,Z◦(idX⊗a
−1
W,Y,Z)◦(idX⊗cY⊗Z,W )◦aX,Y⊗Z,W ◦(aX,Y,Z⊗idW ) (2.5.7j)

t42
X,Y,Z,W := (idX ⊗ t31

Y,Z,W )aX,Y⊗Z,W ◦(aX,Y,Z⊗idW ) (2.5.7k)

t43
X,Y,Z,W :=

(
(idX ⊗ t32

Y,Z,W )aX,Y⊗Z,W
)aX,Y,Z⊗idW (2.5.7l)

Then the morphisms tijX,Y,Z and tijX,Y,Z,W satisfy the infinitesimal braid relations, namely

tij − tji = 0 for all i, j with #{i, j} = 2 (2.5.8a)

[tij, tik + tjk] = 0 for all i, j, k with #{i, j, k} = 3 (2.5.8b)

[tij, tkh] = 0 for all i, j, k, h with #{i, j, k, h} = 4. (2.5.8c)

Proof. It suffices to concatenate appropriately relations (2.3.1b), (2.3.1a), (2.5.4a), (2.5.5a), (2.5.5b).

Notation 2.5.5. We denote by α and β the following two isomorphisms in a braided monoidal
category:

αX,Y,Z,W := aX⊗Y,Z,W ◦ (aX,Y,Z ⊗ idW )−1 : (X ⊗ (Y ⊗ Z))⊗ T → (X ⊗ Y )⊗ (Z ⊗ T )

βX,Y,Z,W := αX,Z,Y,W ◦
(
(idX ⊗ cY,Z)⊗ idW

)
◦ (αX,Y,Z,T )−1 : (X ⊗ Y )⊗ (Z ⊗ T )→ (X ⊗ Z)⊗ (Y ⊗ T ).
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2.6 The Drinfeld center

We shall need the notion of Drinfeld center in order to show, using Theorem 3.6.3, the compatibility
of Ševera’s left module and right comodule structure in §7.9. For more details we remand the reader
to [Maj91], [JS91], [Kas12, XIII.4], [Müg03] and [Thu18].

Definition 2.6.1. Let C be a monoidal category. The Drinfeld center of C is the category Z (C )
where:

• Objects are pairs (X, c–,X), where X is in Obj(C ) and c–,X is a family of natural isomorphisms
indexed by all objects of C , cY,X : Y ⊗X → X ⊗ Y such that

cY⊗Z,X = aX,Y,Z ◦ (cY,Z ⊗ idX) ◦ a−1
Y,X,Z ◦ (idY ⊗ cZ,X) ◦ aY,Z,X .

• Morphisms f : (X, c–,X) → (Y, c–,Y ) are morphisms f : X → Y such that for any Z ∈ C the
following identity holds

(f ⊗ idZ) ◦ cZ,X = cZ,Y ◦ (idZ ⊗ f),

i.e. the diagram

Z ⊗X Z ⊗ Y

X ⊗ Z Y ⊗ Z

idZ⊗f

cZ,X cZ,Y

f⊗idZ

commutes.

We collect the main properties of Z (C ) in the following Theorem, see [Kas12, XIII.4.2 and XIII.4.3]
for the proofs:

Theorem 2.6.2. Let C be a monoidal category. Then

(i) Z (C) is a braided monoidal category, where:

• The unit object is (I, idI).

• The tensor product is (X, c–,X)⊗ (Y, c–,Y ) := (X ⊗ Y, c–,X⊗Y ), where

cZ,X⊗Y = a−1
X,Y,Z ◦ (idX ⊗ cZ,Y ) ◦ aX,Z,Y ◦ (cZ,X ⊗ idY ) ◦ a−1

Z,X,Y .

• The braiding is

cV,W : (X, c–,X)⊗ (Y, c–,Y )→ (Y, c–,Y )⊗ (X, c–,X).

(ii) The functor

Π : Z (C )→ C

(X, c–,X) 7→ X

f 7→ f

is a monoidal functor.

(iii) (Universal property of Z (C )): If C ′ is another braided monoidal category and F : C ′ → C is
a monoidal functor which is bijective on objects and surjective on morphisms, then there exists
a unique braided monoidal functor Z (F ) : C ′ → Z (C ) such that F = Π ◦Z (F ).
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2.7 Deforming infinitesimally braided monoidal categories

Let (C ,⊗,K, a, `, r, c, t) be an (algebraic) infinitesimally braided monoidal category and ~ be a formal
variable. Then we can consider a new infinitesimally braided monoidal category (C~, ⊗̄,K, a, `, r, c, t),
where Obj(C~) = Obj(C ), HomC~(X, Y ) = HomC (X, Y )[[~]] (i.e. f ∈ HomC~(X, Y ) is a morphism of
topologically free K[[~]]–modules f : X[[~]] → Y [[~]]), ⊗̄ is the functor which coincides with ⊗ on
objects and is the ~–adic completion of ⊗ on the morphisms, and f denotes the ~–adic completion
of f . For more details on topologically free modules and on the ~–adic completion see [Kas12, XVI]
and references therein. We shall keep the notation idX for the ~–adic completion of the identity
map idX of X in Obj(C ).

Definition 2.7.1. Let K be a field of characteristics zero and ~ be a formal parameter. A Drinfeld
associator is a formal power series Φ(A,B) ∈ K〈〈A,B〉〉 in two non–commuting variables A,B
such that

(i) For any elements {Aij}16i,j64 satisfying the infinitesimal braid relations (2.5.8a) (2.5.8b)
(2.5.8c), the pentagon equation

Φ(A12, A23 +A24)Φ(A13 +A23, A34) = Φ(A23, A34)Φ(A12 +A13, A24 +A34)Φ(A12, A23) (2.7.1)

holds.

(ii) For any elements A,B,C and Λ := A + B + C satisfying [Λ, A] = [Λ, B] = [Λ, C] = 0, the
hexagon equation

e~Λ/2 = e~A/2Φ(C,A)e~C/2Φ(B,C)e~B/2Φ(A,B) (2.7.2)

holds.

(iii) Φ satisfies

Φ = 1 +O(~2). (2.7.3)

(iv) For any A,B one has

Φ(A,B)−1 = Φ(B,A). (2.7.4)

We shall present the construction of the Drinfeld associator arising from the Knizhnik–Zamolodchikov
connection in Chapter 5.

Theorem 2.7.2. Let (C ,⊗,K, a, `, r, c, t) be an (algebraic) infinitesimally braided monoidal cate-
gory, ~ be a formal variable, and Φ be a Drinfeld associator. Then C Φ

~ := (C~, ⊗̄,K, aΦ, `, r, cΦ) is a
braided monoidal category, where

aΦ
X,Y,Z = aX,Y,Z ◦ Φ(t

12
X,Y,Z , t

23
X,Y,Z) (2.7.5a)

cΦ
X,Y = cX,Y ◦ etX,Y /2 (2.7.5b)

where t
12
X,Y,Z , t

23
X,Y,Z are the ~–adic completions of the morphisms defined in Proposition 2.5.4.
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Proof. In order to give the proof we may suppose that the category C is strict. First, the triangle
axiom (2.1.2) holds since

(idX⊗̄`Y ) ◦ aΦ
X,I,Y = Φ(tX,I⊗̄idY , idX⊗̄tI,Y )

(2.7.3),(2.5.4b),(2.5.4c)
= idX⊗I⊗Y .

Next, we show that the pentagon axiom (2.1.1), i.e. that

(idX⊗̄aΦ
Y,Z,W ) ◦ aΦ

X,Y⊗Z,W ◦ (aΦ
X,Y,Z⊗̄idW ) = aΦ

X,Y,Z⊗W ◦ aΦ
X⊗Y,Z,W (2.7.6)

holds for any X, Y, Z,W in Obj(C ). We have

idX⊗̄aΦ
Y,Z,W

(2.7.5a)
= idX⊗̄Φ(tY,Z⊗̄idW , idY ⊗̄tZ,W )

(2.5.6a),(2.5.6b)
= idX⊗̄Φ(t

12
Y,Z,W , t

23
Y,Z,W )

(2.5.7b),(2.5.7f)
= Φ(t

23
X,Y,Z,W , t

34
X,Y,Z,W )

and using Equations (2.3.1a) and (2.5.4a) we get

aΦ
X,Y⊗Z,W

(2.7.5a)
= Φ(tX,Y⊗Z⊗̄idW , idX⊗̄tY⊗Z,W )

(2.5.7a),(2.5.7c),(2.5.7e),(2.5.7f)
= Φ(t

12
X,Y,Z,W + t

13
X,Y,Z,W , t

24
X,Y,Z,W + t

34
X,Y,Z,W ).

Finally, we have

aΦ
X,Y,Z⊗̄idW

(2.7.5a)
= Φ(tX,Y ⊗̄idZ , idX⊗̄tY,Z)⊗̄idW

(2.5.6a),(2.5.6b)
= Φ(t

12
X,Y,Z , t

23
X,Y,Z)⊗̄idW

(2.5.7a),(2.5.7b)
= Φ(t

12
X,Y,Z,W , t

23
X,Y,Z,W ).

Therefore the left hand side of (2.7.6) is equal to

Φ(t
23
X,Y,Z,W , t

34
X,Y,Z,W )Φ(t

12
X,Y,Z,W + t

13
X,Y,Z,W , t

24
X,Y,Z,W + t

34
X,Y,Z,W )Φ(t

12
X,Y,Z,W , t

23
X,Y,Z,W ).

On the other side, using Equations (2.3.1a) and (2.5.4a) we get

aΦ
X,Y,Z⊗W

(2.7.5a)
= Φ(tX,Y ⊗̄idZ⊗W , idX⊗̄tY,Z⊗W )

(2.5.7a),(2.5.7b),(2.5.7e)
= Φ(t

12
X,Y,Z,W , t

23
X,Y,Z,W + t

24
X,Y,Z,W )

and

aΦ
X⊗Y,Z,W

(2.7.5a)
= Φ(tX⊗Y,Z⊗̄idW , idX⊗Y ⊗̄tZ,W )

(2.5.7c),(2.5.7b),(2.5.7a)
= Φ(t

13
X,Y,Z,W + t

23
X,Y,Z,W , t

12
X,Y,Z,W ),

showing that the left hand side of (2.7.6) is

Φ(t
13
X,Y,Z,W + t

23
X,Y,Z,W , t

12
X,Y,Z,W )Φ(t

13
X,Y,Z,W + t

23
X,Y,Z,W , t

12
X,Y,Z,W ).
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Therefore, the pentagon axiom (2.7.6) holds due to the pentagon equation (2.7.1). Finally, in order
to prove the hexagon axiom (2.2.1) we need to show that the following identity

Φ(t
12
Y,Z,X , t

23
Y,Z,X)cX,Y⊗Ze

tX,Y⊗Z/2Φ(t
12
X,Y,Z , t

23
X,Y,Z) = (idY⊗cX,ZetX,Z/2)Φ(t

12
Y,X,Z , t

13
Y,X,Z)(cX,Y e

tX,Y /2⊗idZ)
(2.7.7)

holds for any X, Y, Z in Obj(C ). Using Equation (2.3.1a) and the commutativity of the following
two diagrams (which follows from the naturality of the braiding)

X ⊗ Y ⊗ Z Y ⊗ Z ⊗X X ⊗ Y ⊗ Z Y ⊗ Z ⊗X

X ⊗ Y ⊗ Z Y ⊗ Z ⊗X X ⊗ Y ⊗ Z Y ⊗ Z ⊗X

cX,Y⊗Z

t23
X,Y,Z t12

Y,Z,X t13
X,Y,Z

cX,Y⊗Z

t23
Y,Z,X

cX,Y⊗Z cX,Y⊗Z

we can rewrite the left hand side of (2.7.7) as

cX,Y⊗Z ◦ Φ(t
23
X,Y,Z , t

13
X,Y,Z) ◦ e(t

12
X,Y,Z+t

13
X,Y,Z)/2 ◦ Φ(t

12
X,Y,Z , t

23
X,Y,Z)

which, by defining ΛX,Y,Z/2 := (t
12
X,Y,Z + t

23
X,Y,Z + t

13
X,Y,Z)/2 (that commutes with t

12
X,Y,Z , t

23
X,Y,Z , t

13
X,Y,Z)

we rewrite as

cX,Y⊗Z ◦ eΛX,Y,Z/2 ◦ Φ(t
13
X,Y,Z , t

23
X,Y,Z) ◦ e−t

23
X,Y,Z/2 ◦ Φ(t

12
X,Y,Z , t

23
X,Y,Z).

On the other side, using the commutativity of the following diagrams (again using the naturality of
the braiding)

X ⊗ Y ⊗ Z Y ⊗X ⊗ Z X ⊗ Y ⊗ Z Y ⊗X ⊗ Z

X ⊗ Y ⊗ Z Y ⊗X ⊗ Z X ⊗ Y ⊗ Z Y ⊗X ⊗ Z

cX,Y ⊗idZ

t12
X,Y,Z t12

Y,X,Z t13
X,Y,Z

cX,Y ⊗idZ

t23
Y,X,Z

cX,Y ⊗idZ cX,Y ⊗idZ

together with Equation (2.2.1) we rewrite the right hand side of (2.7.7) as

cX,Y⊗Z ◦ et
13
X,Y,Z/2 ◦ Φ(t

12
X,Y,Z , t

13
X,Y,Z) ◦ et

12
X,Y Z/2.

Therefore, using the inverse formula (2.7.4) for the associator Φ we have that the identity (2.7.7)
holds if and only if

eΛX,Y,Z/2 = et
13
X,Y,Z/2Φ(t

12
X,Y,Z , t

13
X,Y,Z)et

12
X,Y,Z/2et

23
X,Y,Z/2Φ(t

13
X,Y,Z , t

23
X,Y,Z)

which is exactly the hexagon equation (2.7.2) with A = t
13
X,Y,Z , B = t

23
X,Y,Z and C = t

12
X,Y,Z . The

proof of the second hexagon axiom (2.2.2) follows by a similar argument.

2.8 The category of vector spaces

We end this Chapter by presenting the standard infinitesimally braided monoidal structure of the
category VectK of vector spaces over a field K.

Proposition 2.8.1. Let K be a field of characteristics zero. Then the category VectK of all vector
spaces over K is infinitesimally symmetric monoidal, where:

39



• ⊗ is the usual tensor product of vector spaces.

• The unit is the ground field K.

• The associativity constraint is the canonical linear map

aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

(x⊗ y)⊗ z 7→ x⊗ (y ⊗ z)

• The left unit constraint is

`X : K⊗X → X

λ⊗ x 7→ λx

• The right unit constraint is

rX : X ⊗K→ X

x⊗ λ 7→ λx

• The commutativity constraint is

cX,Y : X ⊗ Y → Y ⊗X
x⊗ y 7→ y ⊗ x

• The infinitesimal braiding is

tX,Y : X ⊗ Y → Y ⊗X
x⊗ y 7→ 0

Notation 2.8.2. From now on we shall sometimes denote the braiding of VectK by τ .
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Chapter 3

Hopf monoids

In this Chapter we fix a monoidal category C .

3.1 Monoids

Definition 3.1.1. A monoid is a triple (A, µ, η), where A is an object of C and µ : A⊗A→ A ,
η : I → A are morphisms (called the multiplication and the unit) such that

(i) (associativity axiom): the pentagon

(A⊗ A)⊗ A A⊗ A

A⊗ (A⊗ A)

A A

aA,A,A

µ⊗id

µ

id⊗µ

µ

(3.1.1)

commutes;

(ii) (unit axiom): the diagram

I ⊗ A A⊗ A A⊗ I

A

η⊗idA

`A

µ

idA⊗η

rA

(3.1.2)

commutes.

If moreover C is braided monoidal and the triangle

A⊗ A A⊗ A

A

µ

cA,A

µ
(3.1.3)
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commutes we say that (A, µ, η) is a commutative monoid. If moreover C is infinitesimally braided
monoidal and the triangle

A⊗ A A⊗ A

A

µ

tA,A

µ
(3.1.4)

commutes we say that (A, µ, η) is an inifnitesimally braided commutative monoid.

Definition 3.1.2. Let (A, µ, η) and (A′, µ′, η′) be two monoids. A morphism f : A→ A′ is said to
be a morphism of monoids if the diagrams

A⊗ A A′ ⊗ A′ I A

A A′ A′

f⊗f

µ µ′

η

η′ f
f

(3.1.5)

commute.

We denote the category of all monoids of C by Mon(C ).

Proposition 3.1.3. Suppose that C is braided. Then

(i) If (A1, µ1, η1) and (A2, µ2, η2) are two monoids, so is
(
A1⊗A2, (µ1⊗µ2)◦βA1,A1,A2,A2 , η1⊗η2

)
.

(ii) If (A1, µ1, η1), (A2, µ2, η2), (A3, µ3, η3) and (A4, µ4, η4) are four monoids, and f : A1 → A2,
g : A3 → A4 are morphisms of monoids, then so is (f ⊗ g) : A1 ⊗ A3 → A2 ⊗ A4.

(iii) If (A, µ, η) is a commutative monoid, then µ is a morphism of monoids.

Note that the first two statements gives that Mon(C ) is a monoidal category.

The proof follows by reversing all the arrows of Proposition 3.3.3.

Proposition 3.1.4. Let (C ,⊗, I, a, `, r) and (C ′,⊗′, I ′, a, `, r) be two monoidal categories, (F, ϕF0 , ϕ
F
2 )

be a monoidal functor and (A, µ, η), (A1, µ1, η1),(A2, µ2, η2) be monoids in C . Then

(i) The triple
(
F (A), F (µ) ◦ ϕF2 (A,A), F (η) ◦ ϕF0

)
is a monoid in C ′.

(ii) If f : A1 → A2 is a morphism of monoids, then so is F (f) : F (A1)→ F (A2).

(iii) If C and C ′ are braided and (F, ϕF0 , ϕ
F
2 ) is a braided monoidal functor, then

ϕF2 (A1, A2) : F (A1)⊗′ F (A2)→ F (A1 ⊗ A2)

is a morphism of monoids.

The proof follows by reversing all the arrows of Proposition 3.3.4.

Remark 3.1.5. If C = VectK, then Mon(C ) is the usual braided monoidal category of unital asso-
ciative algebras.
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3.2 Modules

Definition 3.2.1. Let (A, µ, η) be a monoid. A left A–module is a pair (M,µM), where M is an
object and µM : A⊗M →M is a morphism, called the action of A on M , such that the pentagon

(A⊗ A)⊗M A⊗M

A⊗ (A⊗M)

A⊗M M

µ⊗idM

aA,A,M

µM

idA⊗µM

µM

(3.2.1)

and the triangle

I ⊗M A⊗M

M
`M

η⊗idM

µM
(3.2.2)

commute.

Definition 3.2.2. Let (A, µ, η) be a monoid and let M,M ′ be two left A–modules. A morphism
f : M →M ′ is said to be a morphism of left A–modules if if the following diagram commutes

A⊗M M

A⊗M ′ M ′

µM

idA⊗f f

µM′

We denote the category of left A–modules by Mod(A).

Remark 3.2.3. If C = VectK and A is an algebra object of C then Mod(A) is the usual category
of left A–modules.

With the same reasoning of Proposition 3.1.4 one can show the following

Proposition 3.2.4. Let C ,C ′ be two monoidal categories, (F, ϕF0 , ϕ
F
2 ) be a monoidal functor from

C to C ′, (A, µ, η) be a monoid in C and (M,µM) be in Mod(A). Then
(
F (M), F (µM) ◦ϕF2 (A,M)

)
is in Mod(F (A)).

We have also the following

Definition 3.2.5. Let (A, µ, η) be in Mon(C ).

• We say that a pair (R, µR) is a right A–module if R is in Obj(C ), µR : R ⊗ A → R is a
morphism such that the pentagon

R⊗ (A⊗ A) R⊗ A

(R⊗ A)⊗ A

R⊗ A R

idR⊗µ

a−1
R,A,A

µR

µR⊗idA
µR
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and the triangle

R⊗ I R⊗ A

R

idR⊗η

rR µR

commute.

• Let A′ be another monoid, and M be in Obj(C ) having both a left A–module structure (M,µL)
and a right A′–module structure (M,µR). Then we say that (M,µR, µL) is a A–A′–bimodule
if the diagram

(A⊗M)⊗ A′ A⊗ (M ⊗ A′)

A⊗M

M ⊗ A′ M

aA,M,A′

µL⊗idA′

idA⊗µR

µL

µR

commutes.

3.3 Comonoids

Definition 3.3.1. A comonoid is a triple (C,∆, ε), where C is an object of C and ∆ : C → C⊗C,
ε : C → K are morphisms (called the comultiplication and the counit) such that

(i) (coassociativity axiom): the square

C C ⊗ C

(C ⊗ C)⊗ C

C ⊗ C C ⊗ (C ⊗ C)

∆

∆

∆⊗id

aC,C,C

id⊗∆

(3.3.1)

commutes;

(ii) (counit axiom): the diagram

I ⊗ C C ⊗ C C ⊗ I

C

ε⊗id id⊗ε

`−1
C

∆
r−1
C

(3.3.2)

commutes.
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If moreover C is braided monoidal and the triangle

C ⊗ C C ⊗ C

C

cC,C

∆ ∆

(3.3.3)

commutes, we say that (C,∆, ε) is a cocommutative comonoid. If moreover C is infinitesimally
braided monoidal and the triangle

C ⊗ C C ⊗ C

C

tC,C

∆ ∆

(3.3.4)

commutes we say that (C,∆, ε) is an infinitesimally braided cocommutative comonoid.

Definition 3.3.2. Let (C,∆, ε) and (C ′,∆′, ε′) be two comonoids. A morphism f : C → C ′ is said
to be a morphism of comonoids if the diagrams

C C ⊗ C C I

C ′ C ′ ⊗ C ′ C ′

∆

f f⊗f

ε

f
∆′

ε′
(3.3.5)

commute.

We denote the category of all comonoids of C by Comon(C ).

Proposition 3.3.3. Suppose that C is braided. Then

(i) If (C1,∆1, ε1) and (C2,∆2, ε2) are two comonoids, so is
(
C1⊗C2, βC1,C1,C2,C2◦∆1⊗∆2, ε1⊗ε2

)
.

(ii) If (C1,∆1, ε1), (C2,∆2, ε2), (C3,∆3, ε3) and (C4,∆4, ε4) are four comonoids, and f : C1 → C2,
g : C3 → C4 are morphisms of comonoids, then so is (f ⊗ g) : C1 ⊗ C3 → C2 ⊗ C4.

(iii) If (C,∆, ε) is a cocommutative comonoid, then ∆ is a morphism of comonoids.

Note that the first two statements gives that Comon(C ) is a monoidal category.

Proof. In order to give the proof we may suppose that C is strict.
(i): The fact that the morphism (βC1,C1,C2,C2) ◦∆1 ⊗∆2 is coassociative follows from the following
commutative diagram

C1 ⊗ C2 C⊗2
1 ⊗ C⊗2

2 C1 ⊗ C2 ⊗ C1 ⊗ C2

C⊗2
1 ⊗ C⊗2

2 C⊗3
1 ⊗ C⊗3

2 C⊗2
1 ⊗ C⊗2

2 ⊗ C1 ⊗ C2

C1 ⊗ C2 ⊗ C1 ⊗ C2 C1 ⊗ C2 ⊗ C⊗2
1 ⊗ C⊗2

2 (C1 ⊗ C2)⊗3

∆1⊗∆2

∆1⊗∆2

∆1⊗idC1
⊗∆2⊗idC2

βC1,C1,C2,C2

∆1⊗∆2⊗idC1⊗C2

βC1,C1,C2,C2

idC1
⊗∆1⊗idC2

⊗∆2

βC1,C1⊗C1,C2,C2⊗C2

idC1
⊗βC1,C1,C2⊗C2,C2

βC1,C1,C2,C2
⊗idC1⊗C2

idC1⊗C2
⊗∆1⊗∆2 idC1⊗C2

⊗βC1,C1,C2,C2
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where the top left square follows from the coassociativity of ∆1 and ∆2, the top right follows from
Equation (2.5.1a), the bottom left follows from the naturality of the braiding c and the bottom right
follows from Equation (2.5.3). Finally, the counity of ε1 ⊗ ε2 is given by the commutativity of the
diagram

C1 ⊗ C2 (C1 ⊗ C2)⊗2 C1 ⊗ C2

C1 ⊗ C2 C⊗2
1 ⊗ C⊗2

2 C1 ⊗ C2

C1 ⊗ C2

idC1⊗C2
⊗ε1⊗ε2ε1⊗ε2⊗idC1⊗C2

βC1,C1,C2,C2

idC1
⊗ε1⊗idC2

⊗ε2ε1⊗idC1
⊗ε2⊗idC2

∆1⊗∆2
idid

which follows from the naturality of the braiding c and from the counity of ε1 and ε2.
(ii) Following statement (i), we have that C1⊗C3 and C2⊗C4 have the following comonoid structure:(

C1 ⊗ C3, βC1,C1,C3,C3 ◦∆1 ⊗∆3, ε1 ⊗ ε3

)(
C2 ⊗ C4, βC2,C2,C4,C4 ◦∆2 ⊗∆4, ε2 ⊗ ε4

)
.

The fact that f ⊗ g is compatible with the comultiplications is given by the following diagram

C1 ⊗ C3 C1 ⊗ C1 ⊗ C3 ⊗ C3 C1 ⊗ C3 ⊗ C1 ⊗ C3

C2 ⊗ C4 C2 ⊗ C2 ⊗ C4 ⊗ C4 C2 ⊗ C4 ⊗ C2 ⊗ C4

∆1⊗∆3

f⊗g

βC1,C1,C3,C3

(f⊗f)⊗(g⊗g) (f⊗g)⊗(f⊗g)

∆2⊗∆4
βC2,C2,C4,C4

which follows from the fact that f and g are morphism of comonoids and from the naturality of the
braiding. Finally, the fact that f ⊗ g is compatible with the counits follows by – again using that
f and g are morphism of comonoids – the diagram

C1 ⊗ C3 I ⊗ I

C2 ⊗ C4 I ⊗ I

ε1⊗ε3

f⊗g

ε2⊗ε4

(iii) Using the coassociativity and cocommutativity of C we have

(βC,C,C,C) ◦ (∆⊗∆) ◦∆ = (βC,C,C,C) ◦ (idC⊗C ⊗∆) ◦ (∆⊗ idC) ◦∆

= (βC,C,C,C) ◦ (idC⊗C ⊗∆) ◦ (idC ⊗∆) ◦∆

= (βC,C,C,C) ◦ (idC ⊗∆⊗ idC) ◦ (idC ⊗∆) ◦∆

= (idC ⊗∆⊗ idC) ◦ (idC ⊗∆) ◦∆

= (idC⊗C ⊗∆) ◦ (idC ⊗∆) ◦∆

= (idC⊗C ⊗∆) ◦ (∆⊗ idC) ◦∆

= (∆⊗∆) ◦∆.

The next Proposition collects all the properties relating comonoids and comonoidal functors.
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Proposition 3.3.4. Let (C ,⊗, I, a, `, r) and (C ′,⊗′, I ′, a′, `′, r′) be two monoidal categories, (F, ψ0
F , ψ

2
F )

be a comonoidal functor and (C,∆, ε), (C1,∆1, ε1), (C2,∆2, ε2) be comonoids in C . Then

(i) The triple
(
F (C), ψ2

F (C,C) ◦ F (∆), ψ0
F ◦ F (ε)

)
is a comonoid in C ′.

(ii) If f : C1 → C2 is a morphism of comonoids, then so is F (f) : F (C1)→ F (C2).

(iii) If C and C ′ are braided monoidal categories and (F, ψ0
F , ψ

2
F ) is a braided comonoidal functor,

then
ψ2
F (C1, C2) : F (C1 ⊗ C2)→ F (C1)⊗′ F (C2)

is a morphism of comonoids.

Proof. (i): Using the coassociativity of ∆, the naturality of ψ2
F and the fact that F is comonoidal

we obtain the following commutative diagram

F (C) F (C ⊗ C) F (C)⊗′ F (C)

F (C ⊗ C) F (C ⊗ (C ⊗ C)) F ((C ⊗ C)⊗ C) F (C ⊗ C)⊗′ F (C)

(F (C)⊗ F (C))⊗′ F (C)

F (C)⊗′ F (C) F (C)⊗′ F (C ⊗ C) F (C)⊗′ (F (C)⊗′ F (C))

F (∆)

F (∆) F (∆⊗id)

ψ2
F (C,C)

F (∆)⊗′idF (C)

F (id⊗∆)

ψ2
F (C,C) ψ2

F (C,C⊗C)

ψ2
F (C⊗C,C)F (aC,C,C)

ψ2
F (C,C)⊗′idF (C)

a′F (C),F (C),F (C)

id⊗′F (∆) idF (C)⊗′ψ2
F (C,C)

giving the coassociativity of ψ2
F (C,C) ◦ F (∆). Similarly, using the counity of ε, the naturality of

ψ2
F and the fact that F is comonoidal we obtain the following commutative diagram

I ′ ⊗ F (C) F (I)⊗ F (C) F (C)⊗ F (C) F (C)⊗ F (I) F (C)⊗ I ′

F (I ⊗ C) F (C ⊗ C) F (C ⊗ I)

F (C)

ψ0
F⊗id id⊗F (ε)F (ε)⊗id id⊗ψ0

F

ψ2
F (I,C) ψ2

F (C,C)

F (idC⊗ε)F (ε⊗idC)

ψ2
F (C,I)

F (∆)
F (r−1

C )F (`−1
C )

r−1
F (C)

`−1
F (C)

giving the counity of ψF0 ◦ F (ε).
(ii): In order to give the proof we may suppose that C and C ′ are strict. The fact that F (f) is
compatible with the comultiplications is given by the following diagram

F (C1) F (C1 ⊗ C1) F (C1)⊗′ F (C1)

F (C2) F (C2 ⊗ C2) F (C2)⊗′ F (C2)

F (∆1)

F (f)

ψ2
F (C1,C1)

F (f⊗f) F (f)⊗′F (f)

F (∆2) ψ2
F (C2,C2)

which follows from the fact that f is a morphism of comonoids and from the naturality of ψ2
F . Next,

the fact that F (f) is compatible with counits is given by the following diagram

F (C1) F (I) I ′

F (C2) F (I) I ′

F (ε1)

F (f)

ψ0
F

F (ε2) ψ0
F
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(iii): In order to give the proof we may suppose that C and C ′ are strict. Recall that, from statement
(i) of this Proposition and from statement (i) of Proposition 3.3.3 we have that F (C1 ⊗ C2) is a
comonoid with comultiplication given by

ψ2
F (C1 ⊗ C2, C1 ⊗ C2) ◦ F (βC1,C1,C2,C2) ◦ F (∆1 ⊗∆2),

while F (C1)⊗′ F (C2) is a comonoid with comultiplication given by

β′F (C1),F (C1),F (C2),F (C2) ◦
(
ψ2
F (C1, C1)⊗′ ψ2

F (C2, C2)
)
◦
(
F (∆1)⊗′ F (∆2)

)
.

In order to obtain the commutativity of the square (3.3.5), consider the following eight diagrams

(1)

F (C1 ⊗ C2) F (C⊗2
1 ⊗ C⊗2

2 )

F (C1)⊗′ F (C2) F (C⊗2
1 )⊗′ F (C⊗2

2 )

F (∆1⊗∆2)

ψ2
F (C1,C2) ψ2

F (C⊗2
1 ,C⊗2

2 )

F (∆1)⊗′F (∆2)

(2)

F (C⊗2
1 ⊗ C⊗2

2 ) F (C1)⊗′ F (C1 ⊗ C⊗2
2 )

F (C⊗2
1 )⊗′ F (C⊗2

2 ) F (C1)⊗
′2 ⊗′ F (C⊗2

2 )

ψ2
F (C⊗2

1 ,C⊗2
2 )

ψ2
F (C1,C1⊗C⊗2

2 )

idF (C1)⊗′ψ2
F (C1,C

⊗2
2 )

ψ2
F (C1,C1)⊗′F

C⊗2
2

(3)

F (C1)⊗′ F (C1 ⊗ C⊗2
2 ) F (C1)⊗′ F (C1 ⊗ C1)⊗′ F (C2)

F (C1)⊗
′2 ⊗′ F (C⊗2

2 ) F (C1)⊗
′2 ⊗′ F (C2)⊗

′2

idF (C1)⊗′ψ2
F (C1,C

⊗2
2 )

idF (C1)⊗′ψ2
F (C1⊗C2,C2)

idF (C1)⊗′ψ2
F (C1,C2)⊗′idF (C2)

id
F (C1)⊗′2⊗

′ψ2
F (C2,C2)

(4)

F (C⊗2
1 ⊗ C⊗2

2 ) F ((C1 ⊗ C2)⊗2)

F (C1)⊗′ F (C1 ⊗ C⊗2
2 ) F (C1)⊗′ F (C2 ⊗ C1 ⊗ C2)

ψ2
F (C1,C1⊗C⊗2

2 )

F (idC1
⊗cC1,C2

⊗idC2
)

ψ2
F (C1,C2⊗C1⊗C2)

idF (C1)⊗′F (cC1,C2
⊗idC2

)

(5)

F (C1)⊗′ F (C1 ⊗ C⊗2
2 ) F (C1)⊗′ F (C2 ⊗ C1 ⊗ C1)

F (C1)⊗′ F (C1 ⊗ C2)⊗′ F (C2) F (C1)⊗′ F (C2 ⊗ C1)⊗′ F (C2)

idF (C1)⊗′F (cC1,C2
⊗idC2

)

idF (C1)⊗′ψ2
F (C1⊗C2,C2) idF (C1)⊗′ψ2

F (C2⊗C1,C2)

idF (C1)⊗′F (cC1,C2
)⊗′idF (C2)
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(6)

F (C1)⊗′ F (C1 ⊗ C2)⊗′ F (C2) F (C1)⊗′ F (C2 ⊗ C1)⊗′ F (C2)

F (C1)⊗
′2 ⊗′ F (C2)⊗

′2 F (C1)⊗′ F (C2)⊗′ F (C1)⊗′ F (C2)

idF (C1)⊗′F (cC1,C2
)⊗′idF (C2)

idF (C1)⊗′ψ2
F (C1,C2)⊗′idF (C2) idF (C1)⊗′ψ2

F (C2,C1)⊗′idF (C2)

idF (C1)⊗′cF (C1),F (C2)⊗′idF (C2)

(7)

F ((C1 ⊗ C2)⊗2) F (C1 ⊗ C2)⊗
′2

F (C1)⊗′ F (C2 ⊗ C1 ⊗ C2) F (C1)⊗′ F (C2)⊗′ F (C1 ⊗ C2)

ψ2
F (C1,C2⊗C1⊗C2)

ψ2
F (C1⊗C2,C1⊗C2)

ψ2
F (C1,C2)⊗′idF (C1⊗C2)

idF (C1)⊗′ψ2
F (C2,C1⊗C2)

(8)

F (C1)⊗′ F (C2 ⊗ C1 ⊗ C2) F (C1)⊗′ F (C2)⊗′ F (C1 ⊗ C2)

F (C1)⊗′ F (C2 ⊗ C1)⊗′ F (C2) F (C1)⊗′ F (C2)⊗′ F (C1)⊗′ F (C2)

idF (C1)⊗′ψ2
F (C2,C1⊗C2)

idF (C1)⊗′ψ2
F (C2⊗C1,C2) idF (C1)⊗′F (C2)⊗′ψ2

F (C1,C2)

idF (C1)⊗′ψ2
F (C2,C1)⊗′idF (C2)

all of them commuting because (F, ψ0
F , ψ

2
F ) is comonoidal. Joining them we obtain

(4) (7)

(1) (2) (5) (8)

(3) (6)

proving that ψ2
F (C1, C2) satisfies the square condition (3.3.5). Next, recall from part (i) and Propo-

sition 3.3.3 that the counit of F (C1)⊗′ F (C2) is (ψ0
F ⊗′ ψ0

F ) ◦ (F (ε1)⊗′ F (ε2)), while the counit of
F (C1 ⊗ C2) is ψ0

F ◦ F (ε1 ⊗ ε2). The fact that the triangle (3.3.5) commutes follows by the commu-
tativity of the following diagram

F (C1 ⊗ C2) F (I ⊗ I) = F (I) I ′

F (C1)⊗ F (C2) F (I)⊗′ F (I) I ′ ⊗ I ′ = I ′

F (ε1⊗ε2)

ψ2(C1,C2) ψ2(I,I)

ψ0

F (ε1)⊗′F (ε2) ψ0⊗ψ0
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where we used again that (F, ψ0
F , ψ

2
F ) is comonoidal.

Remark 3.3.5. If C = VectK, then Comon(C ) is the usual braided monoidal category of counital
coassociative coalgebras.

3.4 Comodules

Definition 3.4.1. Let (C,∆, ε) be a comonoid. A right C–comodule is a pair (N,∆N), where
N is an object and ∆N : C → N ⊗ C is a morphism, called the coaction of C on N , such that the
square

N N ⊗ C

(N ⊗ C)⊗ C

N ⊗ C N ⊗ (C ⊗ C)

∆N

∆N

∆N⊗idC

aN,C,C

idN⊗∆

(3.4.1)

and the triangle

N ⊗ C I ⊗N

N

idN⊗ε

∆N `−1
N

(3.4.2)

commute.

Definition 3.4.2. Let (C,∆, ε) be a comonoid and let N,N ′ be two right C–comodules. A morphism
f : N → N ′ is said to be a morphism of right C–comodules if if the following diagram commutes

N N ′

N ⊗ C N ′ ⊗ C

f

∆N ∆N′

f⊗idC

We denote the category of right C–comodules by Comod(C).

Remark 3.4.3. If C = VectK and C is a comonoid object of C then Comod(A) is the usual category
of right C–comodules.

With the same reasoning of Proposition 3.3.4 one can show the following

Proposition 3.4.4. Let C ,C ′ be two monoidal categories, (F, ψ0
F , ψ

2
F ) be a comonoidal functor

from C to C ′, (C,∆, ε) be a comonoid in C and (N,∆N) be in Comod(C). Then the triple(
F (N), ψ2

F (A,M) ◦ F (∆N)
)

is in Comod(F (C)).

3.5 Bimonoids and Hopf monoids

Let C be a braided monoidal category and H be in Obj(C ) having both a monoid structure (H,µ, η)
and a comonoid structure (H,∆, ε). The following result is standard (a proof for C = VectK can be
find in [Kas12, Th. III.2.2], and the generalization to any C is straightforward):
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Proposition 3.5.1. The following statements are equivalent

(i) µ and η are morphisms of comonoids.

(ii) ∆ and ε are morphisms of monoids.

Definition 3.5.2. A bimonoid is a quintuple (H,µ, η,∆, ε), where (H,µ, η) is a monoid, (H,∆, ε)
is a comonoid and µ, η are morphisms of comonoids (equivalently, ∆, ε are morphisms of monoids).
A morphism of bimonoids f : H → H ′ is a morphism which is both a morphism of monoids and of
comonoids.

Definition 3.5.3. A Hopf monoid is a sextuple (H,µ, η,∆, ε, S), where the quintuple (H,µ, η,∆, ε)
is a bimonoid and S : H → H is a morphism, called the antipode, such that the following diagram
commutes

H ⊗H H ⊗H

H I H

H ⊗H H ⊗H

S⊗idH

µ∆

∆

ε η

idH⊗S
µ

(3.5.1)

A morphism of Hopf monoids f : H → H ′ is a morphism of bimonoids such that f ◦ S = S ′ ◦ f .

If C is braided, then the subcategory of C of all bimonoids (resp. of all Hopf monoids) is a monoidal
category, that we denote by Bimon(C ) (resp. Hopf(C )). If H is in Hopf(C ), then it is well–known
that Mod(H) is a monoidal category. In particular, if (X,µX) and (Y, µY ) are in Mod(H), then
(X ⊗ Y, µX⊗Y ) is in Mod(H), where

µX⊗Y := (µX ⊗ µY ) ◦ βH,H,X,Y ◦ (∆⊗ idX⊗Y ) (3.5.2)

where β is the morphisms interchanging the second and the third factor, opportunely composed
with associators, see 2.5.5.

Remark 3.5.4. If C = VectK, then Bimon(C ) (resp. Hopf(C )) is the usual braided monoidal
category of bialgebras (resp. Hopf algebras).

3.6 Left–right Yetter–Drinfeld H–modules

The following Definition is given in [Kas12, IX.5]

Definition 3.6.1. Let C be a braided monoidal category, (H,µ, η,∆, ε, S) be a Hopf monoid in C
and X be a object of C having both a left H–module structure (X,µX) and a right H–comodule
structure (X,∆X). We say that the triple (X,µX ,∆X) is a left–right Yetter–Drinfeld H–
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module1 if the following diagram commutes

H ⊗X (H ⊗H)⊗X H ⊗ (H ⊗X)

(H ⊗H)⊗ (X ⊗H) H ⊗X

(H ⊗X)⊗ (H ⊗H) X ⊗H

X ⊗H X ⊗ (H ⊗H) (X ⊗H)⊗H

∆⊗∆X

∆⊗idX aH,H,X

idH⊗µX

βH,H,X,H cH,X

µX⊗µ ∆X⊗idH

idX⊗µ aX,H,H

(3.6.1)

where β is the natural isomorphism swapping the second and third tensors, composed opportunetely
with associators, see 2.5.5.
A morphism of left–right Yetter–Drinfeld H–modules is a morphism f : X → Y which is both a
morphism of left H–modules and of right H–comodules.

We shall denote the category of all left–right Yetter–Drinfeld H–modules by Y D(H).

Remark 3.6.2. If C = VectK and H is a Hopf algebra, then any object of Y D(H) is a left–right
Yetter–Drinfeld module in the usual sense, see [Rad93, Def.2].

LetH be a Hopf monoid and consider the monoidal category Mod(H) and its strictification Mod(H)str.
Then we can consider the strict braided monoidal category Z (Mod(H)), i.e. its Drinfeld center.
We have the following very important

Theorem 3.6.3. ([Kas12, XIII.5.2]) Let (X, c–,X) be in Z (Mod(H)) and consider the morphism

∆X : X → X ⊗H
x 7→ cH,V (1⊗ x).

Then the triple (∆X , µX ,∆X) is a left–right Yetter–Drinfeld H–module

1In [Kas12, Def. IX.5.1] (resp. [Rad93, Def. 2]) left–right Yetter–Drinfeld H–modules are called crossed H–
bimodules (resp. left quantum Yang–Baxter H–module)
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Chapter 4

Lie bialgebras and Drinfeld–Yetter
modules

4.1 Lie bialgebras

The following definitions are standard. For more details we remand the reader to [Hal15], [Hum12],
[ES02], [Mic80], [GG78].

Definition 4.1.1. A Lie algebra is a pair (g, [·, ·]), where g is a vector space and [·, ·] : g⊗ g→ g
is a bilinear map, called the Lie bracket, satisfying the following two conditions for all x, y, z ∈ g :

(i) (antisymmetry):
[x, y] = −[y, x]; (4.1.1)

(ii) (Jacobi identity):
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (4.1.2)

A morphism of Lie algebras is a linear map f : g→ g′ such that f([x, y]) = [f(x), f(y)].

Definition 4.1.2. Let g be a Lie algebra. A (left) Lie g–module is a pair (V, µ), where V is a
vector space and µ is a linear map

µ : g⊗ V → V

(x, v) 7→ x · v

such that for any x, y ∈ g and v ∈ V the following identity holds

[x, y] · v = x · (y · v)− y · (x · v). (4.1.3)

Definition 4.1.3. A Lie coalgebra is a pair (c, δ), where c is a vector space and δ : c → c ⊗ c is
a linear map, called the Lie cobracket, such that:

(i) (antisymmetry):
δ = −(τc,c ◦ δ); (4.1.4)

(ii) (coJacobi identity):
(idc⊗c⊗c + σ + σ2) ◦ (idc ⊗ δ) ◦ δ = 0 (4.1.5)
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where σ is the cyclic permutation of S3. A morphism of Lie coalgebras is a linear map f : c → c′

such that (f ⊗ f) ◦ δ = δ′ ◦ f .

Notation 4.1.4. We shall sometimes use the Sweedler’s notation

δ(x) =
∑
〈x〉

x′ ⊗ x′′.

Note that we can write Equation (4.1.5) in Sweedler’s notation as∑
〈x〉

∑
〈x′′〉

(
x′ ⊗ (x′′)′ ⊗ (x′′)′′ + (x′′)′ ⊗ (x′′)′′ ⊗ x′ + (x′′)′′ ⊗ x′ + (x′)′′

)
= 0. (4.1.6)

Definition 4.1.5. Let c be a Lie coalgebra. A (right) Lie c–comodule is a pair (V, π∗V ), where V
is a vector space and π∗V is a linear map

π∗V : V → c⊗ V

v 7→
∑
[v]

v[0] ⊗ v[1]

(where v[0] ∈ c and v[1] ∈ V ) such that, for any v ∈ V , the following identity holds in c⊗ c⊗ V

(δ ⊗ idV ) ◦ π∗V = (τc,c ⊗ idV ) ◦ (idc ⊗ π∗V ) ◦ π∗V − (idc ⊗ π∗V ) ◦ π∗V (4.1.7)

which we can express using the Sweedler’s notation as∑
[v]

∑
[v[1]]

((
v[1]
)[0] ⊗ v[0] − v[0] ⊗

(
v[1]
)[0]
)
⊗
(
v[1]
)[1] −

∑
[v]

∑
〈v[0]〉

(
v[0]′ ⊗ v[0]′′)⊗ v[1] = 0. (4.1.8)

A morphism of right Lie c–comodules is a linear map f : V → W such that the diagram

V W

c⊗ V c⊗W

f

π∗V π∗W

idc⊗f

commutes.

Remark 4.1.6. Note that Definition 4.1.5 coincides with the usual definition of left Lie cop–
comodule, where cop is the opposite Lie coalgebra cop = (c, τ ◦ δ = −δ). It is indeed well–known
that the usual notions of right c–comodule (see [Maj95, p. 382]) and of left cop–comodule are equiv-
alent, and then we shall use – as in [EK98, p. 6] and [ES02, p. 199] – right comodules with the
coaction going from V to c⊗ V , and not from V to V ⊗ c.
It is also important to underline that the linear map π∗V is not the dual map of a linear map πV .
We use the notation π∗V as in the articles of Etingof and Kazhdan [EK96], [EK98].

Definition 4.1.7. A Lie bialgebra is a triple (b, [·, ·], δ), where (b, [·, ·]) is a Lie algebra, (b, δ) is
a Lie coalgebra, and the following relation, called the cocycle condition, is satisfied

δ([x, y]) = x · δ(y)− y · δ(x)

=
∑
〈y〉

(
[x, y′]⊗ y′′ + y′ ⊗ [x, y′′]

)
−
∑
〈x〉

(
[y, x′]⊗ x′′ + x′ ⊗ [y, x′′]

)
=
∑
〈x〉

(
[x′, y]⊗ x′′ + x′ ⊗ [x′′, y]

)
+
∑
〈y〉

(
[x, y′]⊗ y′′ + y′ ⊗ [x, y′′]

) (4.1.9)
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for all x, y ∈ b.
A morphism of Lie bialgebras is a linear map f : b → b′ that is both a morphism of Lie algebras
and a morphism of Lie coalgebras.
The following result is well–known, see e.g. [Maj95, Prop. 8.1.2]:

Theorem 4.1.8. The dual vector space of a finite–dimensional Lie bialgebra (b, [·, ·]b, δb) has a
standard structure of Lie bialgebra (b∗, [·, ·]b∗ , δb∗) defined by

([f, g]b∗ , x) = (f ⊗ g, δb(x)) and (δb∗(f), x⊗ y) = (f, [x, y]b)

where (·, ·) denotes the natural pairing between b and b∗.

Let (b, [·, ·], δ) be a finite–dimensional Lie bialgebra and let {e1, . . . , en} be a basis of b. The struc-
ture’s constants of b with respect to the basis {e1, . . . , en} are {αki,j, β

i,j
k }, where

[ei, ej] =
n∑
k=1

αki,jek and δ(ek) =
∑
i,j

βi,jk (ei ⊗ ej)

for 1 6 i, j, k 6 n. Note that the antisymmetry of the Lie bracket (4.1.1) and the antisymmetry of
the Lie cobracket (4.1.4) are equivalent to the following conditions

αki,j = −αkj,i and βi,jk = −βj,ik . (4.1.10)

The Jacobi identity (4.1.2) is then equivalent to∑
s,t

(
αtj,kα

s
i,t + αtk,iα

s
j,t + αti,jα

s
k,t

)
= 0 (4.1.11)

and the coJacobi identity (4.1.5) is equivalent to∑
i,j,s,t

(
βi,jk β

s,t
j + βs,jk βt,ij + βt,jk β

i,s
j

)
= 0. (4.1.12)

In order to write the cocycle condition (4.1.9) in terms of the structure’s constants, we get

δ([ei, ej]) =
∑
k

αki,jδ(ek) =
∑
k,u,v

αki,jβ
u,v
k (eu ⊗ ev),

and

ei · δ(ej) =
∑
s,t

βs,tj ei · (es ⊗ et)

=
∑
s,t

βs,tj

(
es ⊗ [ei, et] + [ei, es]⊗ et

)
=
∑
s,t,u

βs,tj α
u
i,t(es ⊗ eu) +

∑
s,t,v

βs,tj α
v
i,s(ev ⊗ et),
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and

ej · δ(ei) =
∑
p,q

βp,qi ej · (ep ⊗ eq)

=
∑
p,q

βp,qi
(
ep ⊗ [ej, eq] + [ej, ep]⊗ eq

)
=
∑
p,q,l

βp,qi αlj,q(ep ⊗ el) +
∑
p,q,h

βp,qi αhj,p(eh ⊗ eq).

Therefore by specializing at ea⊗eb and by changing name of the variables, we obtain that the cocycle
condition is satisfied if and only if∑

k

αki,jβ
a,b
k =

∑
k

(
αbi,kβ

a,k
j + αai,kβ

k,b
j − αbj,kβ

a,k
i − αaj,kβ

k,b
i

)
(4.1.13)

for any i, j, a, b ∈ {1, . . . n}.

4.2 Manin triples and the Drinfeld double

Definition 4.2.1. A finite–dimensional Manin triple is a triple (g, g+, g−), where:

• g is a finite–dimensional Lie algebra equipped with a non degenerate and invariant bilinear
form < ·, · >, that means that

< [x, y], z >=< x, [y, z] > (4.2.1)

for all x, y, z ∈ g;

• g+ and g− are Lie subalgebras of g such that g ∼= g+ ⊕ g− as vector spaces;

• g+ and g− are isotropic subspaces of g with respect to < ·, · >, that means that < ·, · > |g+,g+ = 0
and < ·, · > |g−,g− = 0.

It is possible to define Manin triples for infinite–dimensional Lie bialgebras, see [ATL12, §4.3] for
more details.

Lemma 4.2.2. Let (g, g+, g−) be a finite–dimensional Manin triple. Then dim g+ = dim g−.

Proof. Consider the map

f+ : g+ → Hom(g−,K) = g∗−
x 7→< x, · > .

Since < ·, · > is non degenerate in g, it follows that ker f+ = {0} (if there exists a non–trivial element
v ∈ ker f+ then < x, v >= 0 for all x ∈ g, and then <,> would be degenerate). Therefore, we have
dim g+ 6 dim ker f+ + dim Imf+ 6 dim g∗− = dim g−. Similarly, applying the same argument to the
map

f− : g− → Hom(g+,K) = g∗+
y 7→< ·, y >

we obtain dim g− 6 dim g∗+ = dim g+.
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Proposition 4.2.3. Let (g, g+, g−) be a finite–dimensional Manin triple and let δ be the Lie coalgebra
structure on g+ induced by g−. Then (g+, [·, ·], δ) is a Lie bialgebra.

Proof. We have to show that the cocycle condition holds. Let {e1, . . . , en} be a basis of g+ and let
{e∗1, . . . , e∗n} be the dual basis, i.e. e∗i ∈ g∗+

∼= g− and (e∗j , ei) = δij, where (·, ·) denotes the natural
pairing between g+ and g∗+, and δij denotes the usual Kronecker’s delta. Then the cocycle condition
(4.1.9) is satisfied if and only if for any r, s, k, l(

e∗r ⊗ e∗s , δ([ek, el])− ek · δ(el) + el · δ(ek)
)

= 0 (4.2.2)

We have

(e∗r ⊗ e∗s, δ([ek, el])) =
∑
c

αck,l(e
∗
r ⊗ e∗s, δ(ec))

=
∑
c,d,f

αck,lβ
d,f
c (e∗r ⊗ e∗s, ed ⊗ ef )

=
∑
c,d,f

αck,lβ
d,f
c δr,dδs,f

=
∑
c

αck,lβ
r,s
c ,

while

(e∗r ⊗ e∗s, ek · δ(el)) =
∑
i,j

βi,jl (e∗r ⊗ e∗s, ei ⊗ [ek, ej] + [ek, ei]⊗ ej)

=
∑
i,j,t

βi,jl α
t
k,j(e

∗
r ⊗ e∗s, ei ⊗ et) +

∑
i,j,h

βi,jl α
h
k,i(e

∗
r ⊗ e∗s, eh ⊗ ej)

=
∑
i,j,t

βi,jl α
t
k,jδr,iδs,t +

∑
i,j,h

βi,jl α
h
k,iδr,hδs,j

=
∑
j

βr,jl αsk,j +
∑
i

βi,sl α
r
k,i,

and

(e∗r ⊗ e∗s, el · δ(ek)) =
∑
p,q

βp,qk (e∗r ⊗ e∗s, ep ⊗ [el, eq] + [el, ep]⊗ eq)

=
∑
p,q,a

βp,qk αal,q(e
∗
r ⊗ e∗s, ep ⊗ ea) +

∑
p,q,b

βp,qk αbl,p(e
∗
r ⊗ e∗s, eb ⊗ eq)

=
∑
p,q,a

βp,qk αal,qδr,pδs,a +
∑
p,q,b

βp,qk αbl,pδr,bδs,q

=
∑
q

βr,qk αsl,q +
∑
p

βp,sk αrl,p.

It is easy to see, by renaming variables, that condition (4.2.2) is equivalent to (4.1.13).

Proposition 4.2.4. Let (b, [·, ·], δ) be a finite–dimensional Lie bialgebra. Then (b ⊕ b∗, b, b∗) is a
finite–dimensional Manin triple.
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Proof. We have to construct a non degenerate and invariant bilinear form that satisfies the definition
of a finite–dimensional Manin triple and we have to define the mixed bracket [x, y] for x ∈ b and
y ∈ b∗. Consider the bilinear form given by

< x+ y, x′ + y′ >:= y(x′) + y′(x) (4.2.3)

where x, x′ ∈ b and y, y′ ∈ b∗. It is clear that < ·, · >�b,b= 0 and < ·, · >�b∗,b∗= 0. We define the
mixed bracket [x, y] for x ∈ b, y ∈ b∗ in such a way that < ·, · > is invariant: given {e1, . . . , en} be
a basis of b, we have that the bilinear form (4.2.3) is invariant if and only if

< [e∗i , ej], e
∗
k > = − < [ej, e

∗
i ], e

∗
k >

= − < ej, [e
∗
i , e
∗
k] >

= −
∑
t

βi,kt < ej, e
∗
t >

= −βi,kj

and

< [e∗i , ej], ek > =< e∗i , [ej, ek] >

=
∑
s

αsj,k < e∗i , es >

= αij,k.

Hence, we define the mixed bracket as

[e∗i , ej] :=
n∑
k=1

αij,ke
∗
k − β

i,k
j ek.

We now have to prove that such a bracket satisfies the Jacobi identity. It is clear that the identity
is satisfied for x, x′, x′′ ∈ b or for y, y′, y′′ ∈ b∗. Then we have to prove it in the two mixed cases.
Let ei ∈ b and e∗j , e

∗
k ∈ b∗. Then we have:

[ei, [e
∗
j , e
∗
k]] =

∑
t

βj,kt [ei, e
∗
t ]

= −
∑
t

βj,kt [e∗t , ei]

= −
∑
t,s

βj,kt αti,se
∗
s +

∑
t,s

βj,kt βt,si es,

and

[e∗k, [ei, e
∗
j ]] = −[e∗k, [e

∗
j , ei]]

=
∑
t

βj,ti [e∗k, et]−
∑
t

αji,t[e
∗
k, e
∗
t ]

=
∑
t,s

βj,ti α
k
t,se
∗
s −

∑
t,s

βj,ti β
k,s
t es −

∑
t,s

αji,tβ
k,t
s e∗s,
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and

[e∗j , [e
∗
k, ei]] =

∑
t

αki,t[e
∗
j , e
∗
t ]−

∑
t

βk,ti [e∗j , et]

=
∑
t,s

αki,tβ
j,t
s e
∗
s −

∑
t,s

βk,ti αjt,se
∗
s +

∑
t,s

βk,ti βj,st es.

Therefore, we have that

[ei, [e
∗
j , e
∗
k]] + [e∗k, [ei, e

∗
j ]] + [e∗j , [e

∗
k, ei]] = 0

if and only if 
∑

t,s

(
−βj,kt αti,s + βj,ti α

k
t,s − α

j
i,tβ

k,t
s + αki,tβ

j,t
s − β

k,t
i αjt,s

)
= 0∑

t,s

(
βj,kt βt,si es − β

j,t
i β

k,s
t + βk,ti βj,st

)
= 0

It is easy to see, using equation (4.1.10) and renaming opportunely variables, that the first equation
vanishes for the cocycle identity (4.1.13). Similarly, using equation (4.1.10) and renaming oppor-
tunely variables, it is easy to see that the second equation vanishes for the coJacobi identity (4.1.12).
We therefore proved the Jacobi identity in the first mixed case.
Let ej, ek ∈ b and e∗i ∈ b∗. We have

[e∗i , [ej, ek]] =
∑
t

αtj,k[e
∗
i , et]

=
∑
t,s

αtj,kα
i
t,se
∗
s −

∑
t,s

αtj,kβ
i,s
t es,

and

[ek, [e
∗
i , ej]] =

∑
t

αij,t[ek, e
∗
t ]−

∑
t

βi,tj [ek, et]

= −
∑
t

αij,t[e
∗
t , ek]−

∑
t

βi,tj [ek, et]

= −
∑
t,s

αij,tα
t
k,se
∗
s +

∑
t,s

αij,tβ
t,s
k es −

∑
t,s

βi,tj α
s
k,tes,

and

[ej, [ek, e
∗
i ]] = −[ej, [e

∗
i , ek]]

= −
∑
t

αik,t[ej, e
∗
t ] +

∑
t

βi,tk [ej, et]

=
∑
t

αik,t[e
∗
t , ej] +

∑
t,s

βi,tk α
s
j,tes

=
∑
t,s

αik,tα
t
j,se
∗
s −

∑
t,s

αik,tβ
t,s
j es +

∑
t,s

βi,tk α
s
j,tes.

Therefore we have that

[e∗i , [ej, ek]] + [ek, [e
∗
i , ej]] + [ej, [ek, e

∗
i ]] = 0
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if and only if 
∑

t,s

(
−αtj,kβ

t,s
i + αij,tβ

t,s
k − β

i,t
j α

s
k,t − αik,tβ

t,s
j + βi,tk α

s
j,t

)
= 0∑

t,s

(
αtj,kα

i
t,s − αij,tαtk,s + αik,tα

t
j,s

)
= 0

It is easy to see, using equation (4.1.10) and renaming variables, that the first equation vanishes for
the cocycle identity (4.1.13). Similarly, using equation (4.1.10) and renaming variables, it is easy
to see that the second equation vanishes for the Jacobi identity (4.1.11). We therefore proved the
Jacobi identity in the second mixed case, and this concludes the proof.

Remark 4.2.5. If (b, [·, ·], δ) is a finite–dimensional Lie bialgebra and b⊕b∗ is the associated Manin
triple, we may write the mixed bracket in a coordinate–free way by

[x, y] = −y ◦ adx + (y ⊗ id)(δ(x)) (4.2.4)

for any x ∈ b and y ∈ b∗.

According to [Max23, 1.1.2], there is no way to define morphisms of Manin triples. However, we
can define isomorphisms and it is possible to show that equivalent Manin triples lead to equivalent
Lie bialgebras.
Propositions 4.2.3 and 4.2.4 gives a one-to-one correspondence between finite–dimensional Lie bial-
gebras and Manin triples. Furthermore, Proposition 4.2.4 allows to consider the following

Definition 4.2.6. Let (b, [·, ·], δ) be a finite–dimensional Lie bialgebra and let (b⊕ b∗, b, b∗) be the
finite–dimensional Manin triple associated to b. The Drinfeld double of b is the finite–dimensional
Lie algebra b⊕ b∗, and we denote it by db.

Theorem 4.2.7. Let b be a finite–dimensional Lie bialgebra. Then db is a quasi–triangular Lie
bialgebra. In other words, there exists r =

∑
i si ⊗ ti ∈ db ⊗ db such that the following three

conditions are satisfied

(i) r is a solution of the classical Yang–Baxter equation, i.e.∑
i,j

(
[si, sj]⊗ ti ⊗ tj + si ⊗ [ti, sj]⊗ tj + si ⊗ sj ⊗ [ti, tj]

)
= 0.

(ii) r + τ ◦ r is b–invariant, i.e. the following identity holds for all x ∈ b:∑
i

(
si ⊗ [x, ti] + [x, si]⊗ ti + ti ⊗ [x, si] + [x, ti]⊗ si

)
= 0.

(iii) The triple (db, [·, ·]db , δdb) is a Lie bialgebra, where δdb(x) := x · r.

Proof. We have that db is a Lie algebra, where the mixed Lie bracket is given by (4.2.4). Set
δdb := δb ⊕−δb∗ . It is clear that (db, δdb) is a Lie coalgebra. Let {e1, . . . , en} be a basis of b and let

r =
n∑
j=1

ej ⊗ e∗j ∈ db ⊗ db. (4.2.5)
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For any 1 6 i 6 n we have

ei · r = ei ·
n∑
j

ej ⊗ e∗j

=
∑
j

(
[ei, ej]⊗ e∗j + ej ⊗ [ei, e

∗
j ]
)

=
∑
j

(
[ei, ej]⊗ e∗j − ej ⊗ [e∗j , ei]

)
=
∑
j

[ei, ej]⊗ e∗j +
∑
j,k

βj,ki (ej ⊗ ek)−
∑
j,k

αji,k(ej ⊗ e
∗
k)

=
∑
j

[ei, ej]⊗ e∗j +
∑
j,k

βj,ki (ej ⊗ ek)−
∑
k

[ei, ek]⊗ e∗k

=
∑
j,k

βj,ki (ej ⊗ ek)

= δb(ei)

and

e∗i · r = e∗i ·
∑
j

ej ⊗ e∗j

=
∑
j

(
[e∗i , ej]⊗ e∗j + ej ⊗ [e∗i , e

∗
j ]
)

=
∑
j,k

αij,k(e
∗
k ⊗ e∗j)−

∑
j,k

βi,kj (ek ⊗ e∗j) +
∑
j

ej ⊗ [e∗i , e
∗
j ]

= −
∑
j,k

αik,j(e
∗
k ⊗ e∗j)−

∑
k

ek ⊗ [e∗i , e
∗
k] +

∑
j

ej ⊗ [e∗i , e
∗
j ]

= −
∑
j,k

αik,j(e
∗
k ⊗ e∗j)

= −δb∗(e∗i ),

hence δdb(x) = x · r.
(i): We have ∑

i,j

(
[ei, ej]⊗ e∗i ⊗ e∗j + ei ⊗ [e∗i , ej]⊗ e∗j + ei ⊗ ej ⊗ [e∗i , e

∗
j ]
)

=
∑
i,j,k

αki,j(ek ⊗ e∗i ⊗ e∗j) +
∑
i,j,k

αij,k(ei ⊗ e∗k ⊗ e∗j)

−
∑
i,j,k

βi,kj (ei ⊗ ek ⊗ e∗j) +
∑
i,j,k

βi,jk (ei ⊗ ej ⊗ ek)

=
∑
i,j,k

αki,j(ek ⊗ e∗i ⊗ e∗j)−
∑
i,j,k

αik,j(ei ⊗ e∗k ⊗ e∗j)

−
∑
i,j,k

βi,kj (ei ⊗ ek ⊗ e∗j) +
∑
i,j,k

βi,jk (ei ⊗ ej ⊗ ek)

= 0.
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(ii): For any 1 6 j 6 n we have∑
i

(
ei ⊗ [ej, e

∗
i ] + [ej, ei]⊗ e∗i + e∗i ⊗ [ej, ei] + [ej, e

∗
i ]⊗ ei

)
=
∑
i

(
− ei ⊗ [e∗i , ej] + [ej, ei]⊗ e∗i + e∗i ⊗ [ej, ei]− [e∗i , ej]⊗ ei

)
= −

∑
i,k

αij,k(ei ⊗ e∗k) +
∑
i,k

βi,kj (ei ⊗ ek) +
∑
i,k

αkj,i(ek ⊗ e∗i )

+
∑
i,k

αkj,i(e
∗
i ⊗ ek)−

∑
i,k

αij,k(e
∗
k ⊗ ei) +

∑
i,k

βi,kj (ek ⊗ ei)

= 0

and ∑
i

(
ei ⊗ [e∗j , e

∗
i ] + [e∗j , ei]⊗ e∗i + e∗i ⊗ [e∗j , ei] + [e∗j , e

∗
i ]⊗ ei

)
=
∑
i,k

βj,ik (ei ⊗ e∗k) +
∑
i,k

αji,k(e
∗
k ⊗ e∗i )−

∑
i,k

βj,ki (ek ⊗ e∗i )

+
∑
i,k

αji,k(e
∗
i ⊗ e∗k)−

∑
i,k

βj,ki (e∗i ⊗ ek) +
∑
i,k

βj,ik (e∗k ⊗ ei)

= 0.

(iii): We have that

δ([x, y]) = [x, y] · r = x · (y · r)− y · (x · r) = x · δ(y)− y · δ(x).

Hence the cocycle condition (4.1.9) is satisfied, and this concludes the proof.

4.3 Universal enveloping algebras

In this Section we give a brief introduction to the universal enveloping of a Lie algebra. More details
can be find in [Dix96, Chapter 2], [Kas12, V.2], [Hum12, Chapter 3], and [CE99, XIII].

Let (g, [·, ·]) be a Lie bialgebra over a field K of characteristics zero. Consider the free (tensor)
algebra T(g) = ⊕∞r=0T

r(g) where T0(g) := K, T1(g) := g, and (for each nonnegative integer r)
Tr+1(g) := Tr(g)⊗ g. The associative multiplication in T(g) is the usual tensor product (decorated
with the associators in the monoidal category VectK).

Notation 4.3.1. We shall write a1 ⊗ · · · ⊗ ar for an element of Tr(g) made out of the multiplication
of a1, . . . , ar ∈ g with the small tensor symbol ⊗ for the multiplication.

Hence
(
T(g), ⊗, 1

)
is an associative algebra over K. It is free in the sense that every K–linear map

g→ A where A is an arbitrary associative algebra over K can uniquely be extended to an morphism
of algebras T(g)→ A.

Definition 4.3.2. Let g be a Lie algebra and let I(g) be the two–sided ideal of T(g) generated by
all elements of the form x ⊗ y − y ⊗ x− [x, y], x, y ∈ g. The universal enveloping algebra U(g)
of g is defined to be the quotient algebra

U(g) := T(g)/I(g).
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We denote the canonical projection by πg : T(a) → U(a). We have that U(g) carries a natural
exhaustive filtration

(
U(n)(g)

)
n∈Z, where U(0)(g) = K, U(n)(g) = {0} for all integers n 6 −1, and for

non–negative n U(n)(g) is defined by the image under πg of the filtration submodule ⊕nr=0T
r(g), see

[Dix96, §2.3] for more details.
Recall that the association U : g → U(g) is a functor from the category of all Lie algebras over
K to the category of all associative algebras over K, where morphisms of Lie algebras are mapped
(by freeness) to morphisms of free algebras. Moreover, the functor U can be seen as a left adjoint
functor of the functor L which associates to any associative algebra the Lie algebra consisting of the
same underlying vector spaces equipped with the commutator bracket.

Moreover, recall that U(g) is a Hopf algebra with a cocommutative coassociative comultiplication
∆ : U(g) → U(g) ⊗ U(g), a counit ε : U(g) → K, and an antipode S : U(g) → U(g). In order to
see this, recall first that the free algebra T(g) carries a Hopf algebra structure given by the shuffle
comultiplication ∆sh : T(g)→ T(g)⊗ T(g), the canonical projection εT(g) : T(g)→ K = T0(g), and
the K–linear map ST(g) : T(g) → T(g) given further down: for all n ∈ N \ {0}, x1, . . . , xn ∈ g the
shuffle comultiplication is given by ∆sh(1) = 1⊗ 1, ∆sh(x) = x⊗ 1 + 1⊗ x, and for n > 2:

∆sh(x1 ⊗ · · · ⊗ xn) = (x1 ⊗ · · · ⊗ xn)⊗ 1 + 1⊗ (x1 ⊗ · · · ⊗ xn)

+
n−1∑
r=1

∑
σ∈Shr,n−r

(
xσ(1) ⊗ · · · ⊗ xσ(r)

)
⊗
(
xσ(r+1) ⊗ · · · ⊗ xσ(n)

)
where a shuffle permutation in Shr,n−r ⊂ Sn is a permutation satisfying σ(1) < σ(2) < · · · < σ(r)
and σ(r + 1) < σ(r + 2) < · · · < σ(n). The antipode is given by

ST(g)(1) := 1, ST(g)(x1 ⊗ · · · ⊗ xn) := (−1)nxn ⊗ xn−1 ⊗ · · · ⊗ x2 ⊗ x1.

By the freeness of T(g) all the three maps ∆sh, εT(g) and ST(g) are morphisms of algebras uniquely
induced on generators x ∈ g by ∆sh(x) = x ⊗ 1 + 1 ⊗ x, by εT(g)(x) = 0, and by ST(g)(x) = −x.
It turns out that all these maps pass to the quotient πg : T(g) → U(g) to define the corresponding
maps ∆ : U(g)→ U(g)⊗U(g), ε : U(g)→ K, and S : U(g)→ U(g) since the ideal I(g) is annihilated
by εT(g), stable by ST(g) and sent to the canonical image of I(g) ⊗ 1 + 1 ⊗ I(g) in T(g) ⊗ T(g) by
∆sh. In other words, the surjective morphism of unital algebras πg is a morphism of Hopf algebras,
i.e. we have in addition

∆ ◦ πg = (πg ⊗ π) ◦∆sh, ε ◦ πg = εT(g), S ◦ πg = π ◦ ST(g).

4.4 Drinfeld–Yetter modules

Definition 4.4.1. Let (b, [·, ·], δ) be a Lie bialgebra. A Drinfeld–Yetter b–module1 is a triple
(V, π, π∗), where:

• the pair (V, π) is a left Lie b–module (see Definition 4.1.2);

• the pair (V, π∗) is a right Lie b–comodule (see Definition 4.1.5);

1In [EK98] and [Šev16] Drinfeld–Yetter modules are called dimodules
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• the following compatibility condition in b⊗V is satisfied (where we omit associators for brevity):

π∗ ◦π = (idb⊗π)◦(τb,b⊗ idV )◦(idb⊗π∗)+([·, ·]⊗ idV )◦(idb⊗π∗)−(idb⊗π)◦(δ⊗ idV ). (4.4.1)

A morphism of Drinfeld–Yetter modules is a map f : V → V ′ that is both a morphism of Lie
b–modules and of Lie b–comodules.

Note that if (V, π, π∗) is a Drinfeld–Yetter b–module, x ∈ b and v ∈ V , we can write Equation
(4.4.1) using Sweedler’s notation:

π∗(π(x⊗ v)) =
∑
[v]

v[0] ⊗ x · v[1] +
∑
[v]

[x, v[0]]⊗ v[1] −
∑
〈x〉

x′ ⊗ π(x′′ ⊗ v). (4.4.2)

We shall denote the category of Drinfeld–Yetter modules over b by DY(b).

Remark 4.4.2. We shall sometimes use the following alternative definition of Drinfeld–Yetter mod-
ule, which is used by P. Ševera in [Šev16]. Let (V, π, π∗) be a Drinfeld–Yetter module and set
ρ̃ := −π∗. Hence, a Drinfeld–Yetter b–module is equivalent to a triple (V, π, ρ̃), where the pair (V, π)
is a left Lie b–module, the pair (V, ρ̃) is a left Lie bop–comodule, i.e. it satisfies

(δ ⊗ idV ) ◦ ρ̃ = (idb ⊗ ρ̃) ◦ ρ̃− (τb,b ⊗ idV ) ◦ (idb ⊗ ρ̃) ◦ ρ̃ (4.4.3)

and the maps π and ρ̃ satisfy the following compatibility relation

ρ̃ ◦ π = (idb ⊗ π) ◦ (τb,b ⊗ idV ) ◦ (idb ⊗ ρ̃) + ([·, ·]⊗ idV ) ◦ (idb ⊗ ρ̃) + (idb ⊗ π) ◦ (δ ⊗ idV ) (4.4.4)

which we express in Sweedler’s notation as

ρ̃(π(x⊗ v)) =
∑
[v]

v[0] ⊗ x · v[1] +
∑
[v]

[x, v[0]]⊗ v[1] +
∑
〈x〉

x′ ⊗ π(x′′ ⊗ v). (4.4.5)

Proposition 4.4.3. DY(b) is an infinitesimally braided monoidal category, where the associativity,
commutativity and unit constraints are the same of VectK, and the infinitesimally braiding is (upon
a choice of sign depending on the convention used, see Remark 4.4.2)

tbV,W = (idV ⊗ πW )(aV,b,W )(τb,V ⊗ idW )(ρ̃V ⊗ idW ) + (πV ⊗ idW )(τV,b ⊗ idW )(a−1
V,b,W )(idV ⊗ ρ̃W ). (4.4.6a)

−tbV,W = (idV ⊗ πW )(aV,b,W )(τb,V ⊗ idW )(π∗V ⊗ idW ) + (πV ⊗ idW )(τV,b ⊗ idW )(a−1
V,b,W )(idV ⊗ π∗W ). (4.4.6b)

Proof. Let (V, πV , ρ̃V ) and (W,πW , ρ̃W ) be two Drinfeld–Yetter modules. Then it is easy to see that
the maps

πV⊗W := (πV ⊗ idW ) ◦ a−1
b,V,W + (idV ⊗ πW ) ◦ aV,b,W ◦ (τb,V ⊗ idW ) ◦ a−1

b,V,W

ρ̃V⊗W := ab,V,W ◦ (ρ̃V ⊗ idW ) + ab,V,W ◦ (τV,b ⊗ idW ) ◦ a−1
V,b,W ◦ (idV ⊗ ρ̃W )

define respectively a Drinfeld–Yetter b–module structure on V ⊗W . Next, we show that the map
given in (4.4.6a) is indeed an infinitesimal braiding. We first show that each tbV,W is a morphism
of Drinfeld–Yetter b–modules. Let v ∈ V , w ∈ W , x ∈ b. Using Sweedler’s notations we write
ρ̃V (v) =

∑
[v] v

[0] ⊗ v[1] and ρ̃W (w) =
∑

[w] w
[0] ⊗ w[1], and then

tbV,W (v ⊗ w) =
∑
[w]

(
w[0] · v

)
⊗ w[1] +

∑
[v]

v[1] ⊗
(
v[0] · w

)
. (4.4.7)

64



Therefore, using equation (4.4.2) we get

tbV,W (x · (v ⊗ w)) = tbV,W (x · v ⊗ w) + tbV,W (v ⊗ x · w)

=
∑
[w]

(
w[0] · (x · v)

)
⊗ w[1] +

∑
[x·v]

(x · v)[1])⊗
(
(x · v)[0] · w

)
+
∑
[x·w]

(
(x · w)[0] · v

)
⊗ (x · w)[1] +

∑
[v]

v[1] ⊗
(
v[0] · (x · w)

)
=
∑
[w]

(
w[0].(x.v)

)
⊗ w[1] +

∑
[v]

(
x · (v[1])

)
⊗
(
v[0] · w

)
+
∑
[v]

v[1] ⊗
(
[x, v[0]] · w

)
. . . . . . . . . . . . . . . . . . . . . .

+
∑
〈x〉

(x′′ · v)⊗ (x′ · w)

::::::::::::::::::::

+
∑
[v]

v[1] ⊗
(
v[0] · (x · w)

)
. . . . . . . . . . . . . . . . . . . . . . . .

+
∑
[w]

(
[x,w[0]] · v

)
⊗ w[1]

+
∑
[w]

(
w[0] · v

)
⊗ (x · w[1]) +

∑
〈x〉

(x′ · v)⊗ (x′′ · w)

::::::::::::::::::::

.

The wavy underlined terms cancel because of the antisymmetry of the cobracket δ. The dashed
underlined terms and the dotted underlined terms simplify, using Equation (4.1.3), to

∑
[w]

(
x · (w[0] · v)

)
⊗ w[1] and

∑
[v]

v[1] ⊗
(
x · (v[0] · w)

)
. . . . . . . . . . . . . . . . . . . . . . . .

.

Hence we obtain that

tbV,W (x · (v ⊗ w)) =
∑
[w]

(
x.(w[0].v)

)
⊗ w[1] +

∑
[w]

(
w[0] · v

)
⊗ (x · w[1])

+
∑
[v]

(
x · (v[1])

)
⊗
(
v[0] · w

)
+
∑
[v]

v[1] ⊗
(
x · (v[0]) · w

)
= x · tbV,W (v ⊗ w)

i.e. that each tbV,W is a morphism of Lie b-modules. Next, for v ∈ V and w ∈ W we compute

ρ̃V,W ◦ tbV,W (v ⊗ w) =
∑
[w]

∑
[w[0]·v]

(
w[0] · v

)[0] ⊗
(

(w[0] · v
)[1] ⊗ w[1]

)
+
∑
[w]

∑
[w[1]]

(
w[1]
)[0] ⊗

((
w[0] · v

)
⊗
(
w[1]
)[1]
)

+
∑
[v]

∑
[v[1]]

(
v[1]
)[0] ⊗

((
v[1]
)[1] ⊗

(
v[0] · w

))
+
∑
[v]

∑
[v[0]·w]

(
v[0] · w

)[0] ⊗
(
v[1] ⊗

(
v[0] · w

)[1]
)
.
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Upon using Equation (4.4.5) we compute the sum S of the two double underlined terms

S =
∑
[w]

∑
[v]

[
w[0], v[0]

]
⊗
(
v[1] ⊗ w[1]

)
:::::::::::::::::::::::::::::::::

+
∑
[w]

∑
[v]

v[0] ⊗
(

(w[0] · v[1])⊗ w[1]
)

+
∑
[w]

∑
〈w[0]〉

w[0]′ ⊗
(

(w[0]′′ · v)⊗ w[1]
)

+
∑
[v]

∑
[w]

[
v[0], w[0]

]
⊗
(
v[1] ⊗ w[1]

)
:::::::::::::::::::::::::::::::::

+
∑
[v]

∑
[w]

w[0] ⊗
(
v[1] ⊗ (v[0] · w[1])

)

+
∑
[v]

∑
〈v[0]〉

v[0]′ ⊗
(
v[1] ⊗ (v[0]′′ · w)

)

and the sum of the two wavy underlined terms cancels thanks to the antisymmetry of the Lie bracket.
We thus get

π∗V,W ◦ tbV,W (v ⊗ w) =
∑
[w]

∑
[v]

v[0] ⊗
(

(w[0] · v[1])⊗ w[1]
)

+
∑
[w]

∑
〈w[0]〉

w[0]′ ⊗
(

(w[0]′′ · v)⊗ w[1]
)

+
∑
[v]

∑
[w]

w[0] ⊗
(
v[1] ⊗ (v[0] · w[1])

)
+
∑
[v]

∑
〈v[0]〉

v[0]′ ⊗
(
v[1] ⊗ (v[0]′′ · w)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
∑
[w]

∑
[w[1]]

(
w[1]
)[0] ⊗

((
w[0] · v

)
⊗
(
w[1]
)[1]
)

+
∑
[v]

∑
[v[1]]

(
v[1]
)[0] ⊗

((
v[1]
)[1] ⊗

(
v[0] · w

))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

(4.4.8)

On the other hand we compute

idb ⊗ tbV,W (v ⊗ w) = (idb ⊗ tbV,W )

∑
[v]

v[0] ⊗
(
v[1] ⊗ w

)
+
∑
[w]

w[0] ⊗
(
v ⊗ w[1]

)
=
∑
[v]

∑
[w]

v[0] ⊗
(

(w[0] · v[1])⊗ w[1]
)

+
∑
[v]

∑
[v[1]]

v[0] ⊗
(

(v[1])[1] ⊗
(
(v[1])[0] · w

))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
∑
[w]

∑
[v]

w[0] ⊗
(
v[1] ⊗ (w[0] · w[1])

)
+
∑
[w]

∑
[w[1]]

w[0] ⊗
((
w[1])[0] · v

)
⊗
(
(w[1])[1]

))
(4.4.9)

Therefore, in the difference of the two preceding equations, (4.4.9) − (4.4.8), the normally underlined
terms cancel, and the dashed and dotted underlined terms also cancel, respectively, thanks to
Equation (4.4.3). It follows that each tbV,W is a morphism of Drinfeld–Yetter b–modules.
Next we show that tb is natural: let (V ′, πV ′ , ρ̃V ′) and (W ′, πW ′ , ρ̃W ′) two other Drinfeld–Yetter
b–modules, and let φ : V → V ′, ψ : W → W ′ two morphisms of Drinfeld–Yetter b–modules. We
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compute the naturality of the second summand of Equation (4.4.6a):

(πV ′ ⊗ idW ′) ◦ (τV ′,b ⊗ idW ′) ◦ a−1
V ′,b,W ′ ◦ (idV ′ ⊗ ρ̃W ′) ◦ (φ⊗ ψ)

= (πV ′ ⊗ idW ′) ◦ (τV ′,b ⊗ idW ′) ◦ ((φ⊗ idb)⊗ ψ) ◦ a−1
V,b,W ◦ (idV ⊗ ρ̃W )

= (πV ′ ⊗ idW ′) ◦ ((idb ⊗ φ)⊗ ψ) ◦ (τV,b ⊗ idW ) ◦ a−1
V,b,W ◦ (idV ⊗ ρ̃W )

= (φ⊗ ψ) ◦ (πV ⊗ idW ) ◦ (τV,b ⊗ idW ) ◦ a−1
V,b,W ◦ (idV ⊗ ρ̃W )

where we used the definition of morphism of Drinfeld–Yetter modules and the naturality of the
associativity and of the commutativity constraints. The first summand in Equation (4.4.6a) is
shown to be natural in an analogous manner. This shows naturality of tb.
Next, we show the symmetry property (2.3.1b) for tb: for all v ∈ V and w ∈ W we get

(tbW,V ◦ τV,W )(v ⊗ w) = tbW,V (w ⊗ v)

=
∑
[v]

(
v[0] · w

)
⊗ v[1] +

∑
[w]

w[1] ⊗
(
w[0] · v

)

= βV1,V2

∑
[w]

(
w[0] · v

)
⊗ w[1] +

∑
[v]

v[1] ⊗
(
v[0] · w

)
= (τV,W ◦ tbV,W )(v ⊗ w)

Finally, we show the property (2.3.1a) for tb. Given U, V,W in DY(b), u ∈ U , v ∈ V and w ∈ W we
get

tbU⊗V,W ((u⊗ v)⊗ w) =
∑
[w]

(
w[0] · (u⊗ v)

)
⊗ w[1] +

∑
[u⊗v]

(u⊗ v)[1] ⊗
(
(u⊗ v)[0] · w

)
=
∑
[w]

(
(w[0] · u)⊗ v

)
⊗ w[1] +

∑
[w]

(
u⊗ (w[0] · v)

)
⊗ w[1]

. . . . . . . . . . . . . . . . . . . . . . . . .

+
∑
[u]

(
u[1] ⊗ v

)
⊗
(
u[0] · w

)
+
∑
[v]

(
u⊗ v[1]

)
⊗
(
v[0] · w

)
. . . . . . . . . . . . . . . . . . . . . . . . .

,

and it easily seen that the sum of the dashed underlined terms give the second summand in Equation
(4.4.6a), and the sum of the dotted underlined terms give the first summand in Equation (4.4.6a).

We end this Section with the following

Theorem 4.4.4. Let b be a finite–dimensional Lie bialgebra, V a vector space and π : b⊗ V → V
and π∗ : V → b⊗ V be two linear maps. Then the triple (V, π, π∗) is a Drinfeld–Yetter b–module if
and only if the maps π, π∗ induce a left Lie db–module structure on V .

Proof. Let ρ : b → HomK(V, V ) be the linear map defined by ρ(x) := π(x ⊗ ·) and consider the
following linear map

ϑ : db → HomK(V, V )

b 3 x 7→ ρ(x)

b∗ 3 y 7→ (y ⊗ idV ) ◦ π∗
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We claim that (V, ϑ) is a left Lie db–module if and only if (V, π, π∗) is a Drinfeld–Yetter b–module.
By definition, (V, ϑ) is a left Lie db–module if and only if the following identity holds for any x, y ∈ db
and v ∈ V :

ϑ(x)
(
ϑ(y)(v)

)
− ϑ(y)

(
ϑ(x)(v)

)
− ϑ([x, y])(v) = 0. (4.4.10)

We compute the left hand side of (4.4.10) in three cases:

• x, y ∈ b: it is clear that (4.4.10) holds if and only if (V, π) is a left Lie b–module.

• x ∈ b and y ∈ b∗: recalling the formula of the mixed bracket of db, we have

LHS of (4.4.10) = ϑ(x)
(
ϑ(y)(v)

)
− ϑ(y)

(
ϑ(x)(v)

)
− ϑ([x, y])(v)

= ρ(x)
(
(y ⊗ idV )(π∗(v))

)
−(y ⊗ idV )

(
π∗(ρ(x)(v))

)
+ ϑ(y ◦ adx)(v)− ϑ

(
(y ⊗ idb)(δ(x))

)
(v)

= (y ⊗ idV )
(
idb ⊗ ρ(x)

)
(π∗(v))− (y ⊗ idV )

(
π∗(ρ(x)(v))

)
+ (y ◦ adx ⊗ id)(π∗(v))− ρ

(
(y ⊗ idb)(δ(x))

)
(v)

= (y ⊗ idV )
(
(idb ⊗ π) ◦ (12) ◦ (idb ⊗ π∗)

)
(x⊗ v)− (y ⊗ idV )(π∗ ◦ π)(x⊗ v)

+ (y ⊗ idV )
(
([·, ·] ◦ idV ) ◦ (idb ⊗ π∗)

)
(x⊗ v)− (y ⊗ idV )

(
(idb ⊗ π) ◦ (δ ⊗ idV )

)
(x⊗ v).

Therefore (4.4.10) holds if and only if the compatibility relation (4.4.1) is satisfied.

• x, y ∈ b∗ : recalling the formula of the Lie bracket of the dual of a finite–dimensional Lie
coalgebra, we have

LHS of (4.4.10) = ϑ(x)
(
ϑ(y)(v)

)
− ϑ(y)

(
ϑ(x)(v)

)
− ϑ([x, y])(v)

= (x⊗ idV )
(
π∗((y ⊗ idV )(π∗(v)))

)
− (y ⊗ idV )

(
π∗((x⊗ idV )(π∗(v)))

)
− ([x, y]⊗ idV )(π∗(v))

= (y ⊗ x⊗ idV )(idb ⊗ π∗)(π∗(v))− (x⊗ y ⊗ idV )(idb ⊗ π∗)(π∗(v))

+ (x⊗ y ⊗ idV )(δ ⊗ idV )(π∗(v))

= (x⊗ y ⊗ idV )(τ ⊗ idV )(idb ⊗ π∗)(π∗(v))− (x⊗ y ⊗ idV )(idb ⊗ π∗)(π∗(v))

+ (x⊗ y ⊗ idV )(δ ⊗ idV )(π∗(v))

Therefore (4.4.10) holds if and only if (V, π∗) is a right Lie b–comodule, i.e. if Equation (4.1.7)
holds.

In particular, it can be shown that the Theorem above realizes an equivalence of monoidal categories
DY(b) ∼= Mod(db), inducing an infinitesimally braided monoidal structure on the latter category.

4.5 The Drinfeld–Yetter module structure of the universal

enveloping algebra

In this Section we present, given a Lie bialgebra b, the Drinfeld–Yetter b–module structure of U(b).
We shall need the following
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Lemma 4.5.1. Let (g, [·, ·]) be a Lie algebra, and let δ : g → g ⊗ g be a linear map satisfying
Equations (4.1.4) and (4.1.9). Let V,W be two left Lie g–modules together with two maps π∗V : V →
g ⊗ V and π∗W : g → g ⊗W both satisfying Equation (4.4.1). Then for any morphism of left Lie
g–modules φ : V → W the obstruction map

Ξφ
V,W := π∗W ◦ φ− (idg ⊗ φ) ◦ π∗V : V → g⊗W (4.5.1)

is a morphism of Lie g–modules.

Proof. For any x ∈ g and v ∈ V we have, using Equation (4.4.2)

Ξφ
V,W (x · v) = Ξφ

V,W (πV (x⊗ v)) = (π∗W ◦ φ)(πV (x⊗ v))−
(
(idg ⊗ φ) ◦ π∗V

)
(πV (x⊗ v))

= π∗W (πW (x⊗ φ(v)))−
(
(idg ⊗ φ) ◦ π∗V

)
(πV (x⊗ v))

=
∑
[v]

φ(v)[0] ⊗ x · φ(v)[1] +
∑
[v]

[x, φ(v)[0]]⊗ φ(v)[1] −
∑
〈x〉

x′ ⊗ x′′ · φ(v)

−
∑
[v]

v[0] ⊗ φ(x · v[1])−
∑
[v]

[x, v[0]]⊗ φ(v[1]) +
∑
〈x〉

x′′ ⊗ φ(x′′ · v)

= x ·
(
π∗W ◦ φ

)
(v)−

∑
〈x〉

x′ ⊗ x′′ · φ(v)

− x ·
(
(idg ⊗ φ) ◦ π∗v

)
(v) +

∑
〈x〉

x′′ ⊗ φ(x′′ · v)

= x · Ξφ
V,W (v).

We can now prove the main result of this Section:

Theorem 4.5.2. Let (b, [·, ·], δ) be a Lie bialgebra. Then

(i) There exists a unique Drinfeld–Yetter b–module structure on U(b) such that for all x ∈ b and
u ∈ U(b)

π(x⊗ u) = xu and π∗(1) = 0. (4.5.2)

In particular, its right Lie coaction satisfies π∗(x) = −δ(x) for all x ∈ b.

(ii) The comultiplication ∆ : U(g)→ U(g)⊗ U(g) is a morphism of Drinfeld–Yetter b–modules.

(iii) U(b) is an infinitesimally braided cocommutative comonoid in DY(b), i.e. tbU(b),U(b) ◦∆ = 0.

(iv) If (b′, [·, ·]′, δ′) is another Lie bialgebra and ϕ : b → b′ is a morphism of Lie bialgebras, the
induced morphism of Hopf algebras U(ϕ) : U(b)→ U(b′) satisfies

U(ϕ)(x · u) = ϕ(x) · U(ϕ)(u) and (π′)∗(U(ϕ)(x)) = (ϕ⊗ U(ϕ))(π∗(u)). (4.5.3)

Proof. (i): We first prove uniqueness. Let π∗1 and π∗2 be two linear maps U(b)→ b⊗U(b) satisfying
Equations (4.5.2), (4.1.7) and (4.4.1) and set φ := π∗1 − π∗2. Then we have φ(1) = π∗1(1) − π∗2(1) =
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0− 0 = 0. Next, for any x ∈ b we have

φ(x) = π∗1(x)− π∗2(x)

= π∗1(x · 1)− π∗2(x · 1)

= π∗1(π(x⊗ 1))− π∗2(π(x⊗ 1))

=
(
(idb ⊗ π) ◦ (τb,b ⊗ idV ) ◦ (idb ⊗ π∗1) + ([·, ·]⊗ idV ) ◦ (idb ⊗ π∗1)− (idb ⊗ π) ◦ (δ ⊗ idV )

)
(x⊗ 1)

−
(
(idb ⊗ π) ◦ (τb,b ⊗ idV ) ◦ (idb ⊗ π∗2) + ([·, ·]⊗ idV ) ◦ (idb ⊗ π∗2)− (idb ⊗ π) ◦ (δ ⊗ idV )

)
(x⊗ 1)

= 0.

Therefore, by induction on the lenght n(u) of u induced by the standard filtration of U(b) we have,
denoting x1 · x := x1 · x2 · · ·xn+1 for any x1, . . . , xn+1 ∈ b:

φ(x1 · x) = π∗1(x1 · x)− π∗2(x1 · x)

= π∗1(π(x1 ⊗ x))− π∗2(π(x1 ⊗ x))

=
(
(idb ⊗ π) ◦ (τb,b ⊗ idV ) ◦ (idb ⊗ π∗1) + ([·, ·]⊗ idV ) ◦ (idb ⊗ π∗1)− (idb ⊗ π) ◦ (δ ⊗ idV )

)
(x1 ⊗ x)

−
(
(idb ⊗ π) ◦ (τb,b ⊗ idV ) ◦ (idb ⊗ π∗2) + ([·, ·]⊗ idV ) ◦ (idb ⊗ π∗2)− (idb ⊗ π) ◦ (δ ⊗ idV )

)
(x1 ⊗ x)

= 0,

giving the uniqueness. In order to prove existence, we use the notation ρ̃ = −π∗, see 4.4.2. For
each integer n ∈ N we define a K–linear map ρ̌n : Tn(b) → b ⊗ U(b) in the following way for all
x, x1, . . . , xn, xn+1 ∈ b:

ρ̌0(1) := 0

ρ̌1(x) := δ(x)

ρ̌2(x1 ⊗ x2) :=
∑
〈x2〉

[x1, x
′
2]⊗ x′′2 +

∑
〈x2〉

x′2 ⊗ (x1x
′′
2) +

∑
〈x1〉

x′1 ⊗ (x′′1x2)

ρ̌n+1

(
x1 ⊗ · · · ⊗ xn+1

)
:= x1 ·

(
ρ̌n
(
x2 ⊗ · · · ⊗ xn+1

))
+
∑
〈x1〉

x′1 ⊗ (x′′1x2 · · ·xn+1) .

All these maps are well–defined by the universal property of the tensor product since (by induction
over n) the corresponding right hand sides are multilinear in the variables x1, . . . , xn+1. Since T(b)
is a direct sum of all the Tn(b)’s the above sequence of maps defines a well-defined K–linear map
ρ̌ : T(b) → b ⊗ U(b) whose restriction to each submodule Tn(b) equals ρ̌n. Clearly, the map ρ̌
satisfies the following equation for all x ∈ b and v ∈ T(b) (where πb : T(b) → U(b) denotes the
canonical projection):

ρ̌(x ⊗ v) = x · (ρ̌(v)) +
∑
〈x〉

x′ ⊗
(
x′′πb(v)

)
. (4.5.4)

In order to prove that ρ̌ vanishes of the ideal I(b) we shall first compute the following for all x, y ∈ b
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and v ∈ T(b)

ρ̌
((
x ⊗ y − y ⊗ x− [x, y]

)
⊗ v
)

(4.5.4)
= x · ρ̌(y ⊗ v) +

∑
〈x〉

x′ ⊗
(
x′′yπb(v)

)
− y · ρ̌(x ⊗ v)−

∑
〈y〉

y′ ⊗
(
y′′xπb(v)

)
−[x, y] · ρ̌(v)−

∑
〈[x,y]〉

[x, y]′ ⊗
(
[x, y]′′πb(v)

)
(4.5.4)

= x ·
(
y · ρ̌(v)

)
+
∑
〈y〉

[x, y′]⊗
(
y′′πb(v)

)
+
∑
〈y〉

y′ ⊗
(
xy′′πb(v)

)
+
∑
〈x〉

x′ ⊗
(
x′′yπb(v)

)
−y ·

(
x · ρ̌(v)

)
−
∑
〈x〉

[y, x′]⊗
(
x′′πb(v)

)
−
∑
〈x〉

x′ ⊗
(
yx′′πb(v)

)
−
∑
〈y〉

y′ ⊗
(
y′′xπb(v)

)
−[x, y] · ρ̌(v)−

∑
〈[x,y]〉

[x, y]′ ⊗
(
[x, y]′′πb(v)

)
=

∑
〈y〉

(
[x, y′]⊗

(
y′′πb(v)

)
+ y′ ⊗

(
[x, y′′]πb(v)

))
−
∑
〈x〉

(
[y, x′]⊗

(
x′′πb(v)

)
+ x′ ⊗

(
[y, x′′]πb(v)

))
−
∑
〈[x,y]〉

[x, y]′ ⊗
(
[x, y]′′πb(v)

)
(4.1.9)

= 0

where the underlined terms vanish thanks to Equation (4.1.3). A general element of I(b) is a linear
combination of elements of the form X = p ⊗

(
x ⊗ y− y ⊗x− [x, y]

)
⊗ v, with x, y ∈ b and p, v ∈ T(b).

In case p = 1 the preceding computation shows that ρ̌(X) = 0. In case p = z ⊗ q with z ∈ b and
q ∈ T(b) we get by eqn (4.5.4), writing w = q ⊗

(
x ⊗ y − y ⊗ x− [x, y]

)
⊗ v

ρ̌(X) = ρ̌(z ⊗ w) = z · ρ̌(w) +
∑
〈z〉

z′ ⊗
(
z′′πb(w)

)
= z · ρ̌(w)

since w ∈ I(b) = ker πb. The preceding equation allows to prove by induction over the word length
(or the tensor degree) of p that ρ̌ vanishes on I(b). It follows that the map passes to the quotient
to define a unique K–linear map ρ̃ : U(b)→ b⊗ U(b) such that

ρ̌ = ρ̃ ◦ πb. (4.5.5)

It follows for all x ∈ b and v ∈ T(b):

ρ̃
(
xπb(v)

)
= ρ̌(x ⊗ v)

(4.5.4)
= x ·

(
ρ̌(v)

)
+
∑
〈x〉

x′ ⊗
(
x′′πb(v)

)
= x ·

(
ρ̃
(
πb(v)

))
+
∑
〈x〉

x′ ⊗
(
x′′πb(v)

)
which proves Equation (4.4.4) since πb is surjective.
In order to prove Equation (4.4.3) for ρ̃ consider the following map

Ψ := (idb ⊗ ρ̃) ◦ ρ̃− (τb,b ⊗ idV ) ◦ (idb ⊗ ρ̃) ◦ ρ̃− (δ ⊗ idV ) ◦ ρ̃ : U(b)→ b⊗ b⊗ U(b).

It follows from a lengthy but elementary computation – using the fact that ρ̃ satisfies Equation
(4.4.4) and the coJacobi identity (4.1.5) – that Ψ is a morphism of left Lie b–modules. Since

71



Ψ(1) = 0 (which follows by ρ̃(1) = 0), and since every u ∈ U(b) is a finite sum of words 1, x1 · · ·xn
where n is a positive integer and x1, . . . , xn ∈ b we get

Ψ(x1 · · ·xn) = (x1 · · ·xn).Ψ(1) = 0.

Hence Ψ = 0 and
(
U(b), π, ρ̃

)
is a Drinfeld–Yetter b–module with respect to the convention 4.4.2.

(ii): It is well-known that the comultiplication ∆ of U(b) is a morphism of left b–modules: indeed,
for all x ∈ b and u ∈ U(b) we have

∆(x · u) = ∆(x)∆(u) = (x⊗ 1 + 1⊗ x)∆(u) = x ·∆(u).

In order to prove that ∆ is a morphism of right Lie b–comodules, consider the Drinfeld–Yetter
b–modules U(b) and U(b) ⊗ U(b). Then by Lemma 4.5.1 the obstruction map Ξ∆

U(b),U(b)⊗U(b) is a
morphism of left Lie b–modules. Moreover, we have

Ξ∆
U(b),U(b)⊗U(b)(u) = u · Ξ∆

U(b),U(b)⊗U(b)(1) = 0,

proving the claim.
(iii): We have that (tbU(b),U(b)◦∆)(1) = tbU(b),U(b)(1⊗1) = 0. Since both tbU(b),U(b) and ∆ are morphisms

of left Lie b–modules, we have that the composition tbU(b),U(b) ◦∆ is so. Therefore, for any u ∈ U(b)

we have (tbU(b),U(b) ◦∆)(u) = u · ((tbU(b),U(b) ◦∆)(1)) = 0.

(iv): It is well–known that the map U(ϕ) –by the observation that the ideal I(b) is mapped to
the corresponding ideal I(b′)– satisfies the first of the two equations (4.5.3). In order to prove the
second, consider the difference D :=

(
ϕ ⊗ U(ϕ)

)
◦ ρ̃ − ρ̃′ ◦ U(ϕ). As in the proof of Lemma 4.5.1

we have that this difference is morphism of Lie algebra modules in the sense that for all x ∈ b
and u ∈ U(b): since

(
ϕ ⊗ U(ϕ)

)
◦ δ = δ′ ◦ ϕ we have D(x · u) = ϕ(x) · D(u). It follows that

D(u) = U(ϕ)(u) ·D(1) = 0 since π∗(1) = 0, (π′)∗(1′) = 0, and U(ϕ)(1) = 1′.

4.6 Lie bialgebra twists

Notation 4.6.1. For a vector space V , we shall denote by Alt the following maps

Altn(x1 ⊗ · · · ⊗ xn) =
∑
σ∈Sn

sign(σ)(xσ(1) ⊗ · · · ⊗ xσ(n)).

In particular, Alt2(x1⊗ x2) = x1⊗ x2− x2⊗ x1. Note that if x1⊗ x2⊗ x3 is antsymmetric, we have

1

2
Alt3(x1 ⊗ x2 ⊗ x3) = x1 ⊗ x2 ⊗ x3 + x2 ⊗ x3 ⊗ x1 + x3 ⊗ x1 ⊗ x2.

For example, the coJacobi condition (4.1.5) can be written as 1
2
Alt3 ◦ (δ ⊗ id) ◦ δ = 0.

Notation 4.6.2. Let b be a Lie bialgebra and let j ∈ Λ2(b). We shall denote by CYB(j, j) the
following well-known classical Yang-Baxter term2 CYB(j, j) ∈ Λ3(b):

CYB(j, j) :=
1

2

∑
j

∑
j

Alt3

(
[j1, j′]⊗ j2 ⊗ j′′

)
= [j12, j13] + [j12, j23] + [j13, j23] (4.6.1)

where we used Sweedler’s notations

j =
∑
j

j′ ⊗ j′′ =
∑
j

j1 ⊗ j2.

2Many authors denote CYB(j, j) by [[j, j]]
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Notation 4.6.3. For an element x of a Lie algebra g, we denote by ad(n)
x the left Lie g–module

structure of g⊗n given by tensoring n times the adjoint action adx(·) = [x, ·]. Note that we can
rewrite the cocycle condition (4.1.9)

ad(2)
x (δ(y))− ad(2)

y (δ(x))− δ([x, y]) = 0. (4.6.2)

Recall the definition of a Lie bialgebra twist:

Definition 4.6.4. Let (b, [·, ·], δ) be a Lie bialgebra. We say that j ∈ Λ2(b) is a Lie bialgebra
twist if

1

2

∑
j

Alt3

((
δ(j′)

)
⊗ j′′

)
− CYB(j, j) = 0. (4.6.3)

Twisting Lie bialgebras produces new Lie bialgebras, as explained in the following

Proposition 4.6.5. Let (b, [·, ·], δ) be a Lie bialgebra and j ∈ Λ2(b) be a Lie bialgebra twist. Con-
sider the linear map

δj : b→ b⊗ b

x 7→ δ(x) + ad(2)
x (j).

Then the triple (b, [·, ·], δj) is a Lie bialgebra.

Proof. We compute for all x ∈ b:

1

2
Alt3

(
(δj ⊗ idb) ◦

(
δj(x)

))
=

1

2
Alt3

(
(δ ⊗ idb) ◦

(
δ(x)

))
+

1

2
Alt3

(
(δ ⊗ idb) ◦

(
ad(2)

x (j)
))

+
1

2
Alt3

∑
〈x〉

(
ad

(2)
x′ (j)

)
⊗ x′′


+

1

2
Alt3

((
ad(2)(j)⊗ idb

)
◦
(
ad(2)

x (j)
))

= 0 +
1

2

∑
j

Alt3

((
δ
(
[x, j′]

))
⊗ j′′

)
+

1

2

∑
j

Alt3

((
δ(j′)

)
⊗
(
[x, j′′]

))
+

1

2

∑
j

∑
〈x〉

Alt3

((
[x′, j′]

)
⊗ j′′ ⊗ x′′ + j′ ⊗

(
[x′, j′′]

)
⊗ x′′

)
+

1

2

∑
j

∑
j

Alt3

([
[x, j′], j1

]
⊗ j2 ⊗ j′′ + j1 ⊗

[
[x, j′], j2

]
⊗ j′′

+[j′, j1]⊗ j2 ⊗ [x, j′′] + j1 ⊗ [j′, j2]⊗ [x, j′′]
)
.

And using Equation (4.1.9) and the antisymmetry of δ and j we thus obtain

1

2
Alt3

(
(δj ⊗ idb) ◦

(
δj(x)

))
= ad(3)

x

(1

2

∑
j

Alt3(δ(j′)⊗ j′′)− CYB(j, j)
)

where the right hand side vanishes since j is a Lie bialgebra twist.
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Notation 4.6.6. From now on if b is a Lie bialgebra and j is a Lie bialgebra twist, we shall denote
the twisted Lie bialgebra by bj.

Lemma 4.6.7. Let b be a Lie bialgebra, j be a Lie bialgebra twist and (V, π, π∗) be a Drinfeld–Yetter
b–module. Then the triple (V, π, π∗j ) is a Drinfeld–Yetter bj–module, where

π∗j (v) = π∗(v) +
∑
j

j′ ⊗ π(j′′ ⊗ v).

Equivalently, if (V, π, ρ̃) is a Drinfeld–Yetter b–module (with the convention given in 4.4.2) then the
triple (V, π, ρ̃j) is a Drinfeld–Yetter bj–module, where

ρ̃j(v) = ρ̃(v)−
∑
j

j′ ⊗ π(j′′ ⊗ v).

Proof. We have to prove that (V, π, π∗j ) satisfies Equations (4.1.7) and (4.4.1). For any x ∈ b and
v ∈ V we have(
π∗j ◦ π − (idb ⊗ π) ◦ (τb,b ⊗ idV ) ◦ (idb ⊗ π∗j )− ([·, ·]⊗ idV ) ◦ (idb ⊗ π∗j ) + (idb ⊗ π) ◦ (δj ⊗ idV )

)
(x⊗ v)

=
(
π∗ ◦ π − (idb ⊗ π) ◦ (τb,b ⊗ idV ) ◦ (idb ⊗ π∗)− ([·, ·]⊗ idV ) ◦ (idb ⊗ π∗) + (idb ⊗ π) ◦ (δ ⊗ idV )

)
(x⊗ v)

+
∑
j

j′ ⊗ j′′ · (x · v)−
∑
j

j′ ⊗ x · (j′′ · v)−
∑
j

[x, j′]⊗ j′′ · v +
∑
j

([x, j′]⊗ j′′ · v + j′ ⊗ [x, j′′] · v)

=0−
∑
j

j′ ⊗ [x, j′′] · v −
∑
j

[x, j′]⊗ j′′ · v +
∑
j

[x, j′]⊗ j′′ · v +
∑
j

j′ ⊗ [x, j′′] · v

=0

proving that (V, π, π∗j ) satisfies the compatibility condition (4.4.1) for bj. Next, set

fj : V → b⊗ V

v 7→
∑
j

j′ ⊗ π(j′′ ⊗ v).

For any v ∈ V , the relation (4.1.7) give rise to eight terms:

(
(δj ⊗ idV ) ◦ π∗j − (τb,b ⊗ idV ) ◦ (idb ⊗ π∗j ) ◦ π∗j + (idb ⊗ π∗j ) ◦ π∗j

)
(v)

=
(
(δj ⊗ idV ) ◦ π∗j + (Alt2 ⊗ idV ) ◦ (idb ⊗ π∗j ) ◦ π∗j

)
(v)

=((δ ⊗ idV ) ◦ π∗)(v) + ((Alt2 ⊗ idV ) ◦ (idb ⊗ π∗) ◦ π∗)(v)

+((ad(2)(j)⊗ idV ) ◦ π∗)(v) + ((δ ⊗ idV ) ◦ fj)(v) + ((ad(2)(j)⊗ idV ) ◦ fj)(v)

+((Alt2 ⊗ idV ) ◦ (idb ⊗ fj) ◦ π∗)(v) + ((Alt2 ⊗ idV ) ◦ (idb ⊗ π∗) ◦ fj)(v)

+((Alt2 ⊗ idV ) ◦ (idb ⊗ fj) ◦ fj)(v).
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The first two terms vanish in view of Equation (4.1.7). The other give(
(ad(2)(j)⊗ idV ) ◦ π∗

)
(v) =

∑
[v]

∑
j

[v[0], j′]⊗ j′′ ⊗ v[1]

:::::::::::::::::::::::::

+
∑
[v]

∑
j

j′ ⊗ [v[0], j′′]⊗ v[1]

(
(δ ⊗ idV ) ◦ fj

)
(v) =

∑
j

∑
j′

(j′)〈1〉 ⊗ (j′)〈2〉 ⊗ j′′ · v

(
(ad(2)(j)⊗ idV ) ◦ fj

)
(v) =

∑
j

∑
j

[j′, j1]⊗ j2 ⊗ j′′ · v +
∑
j

∑
j

j1 ⊗ [j′, j2]⊗ j′′ · v

(
(Alt2 ⊗ idV ) ◦ (idb ⊗ fj) ◦ π∗

)
(v) =

∑
[v]

∑
j

v[0] ⊗ j′ ⊗ j′′ · v[1] −
∑
[v]

∑
j

j′ ⊗ v[0] ⊗ j′′ · v[1]

(
(Alt2 ⊗ idV ) ◦ (idb ⊗ π∗) ◦ fj

)
(v) =

∑
j

∑
[v]

j′ ⊗ v[0] ⊗ j′′ · v[1] +
∑
j

∑
[v]

j′ ⊗ [j′′, v[0]]⊗ v[1]

+
∑
j

∑
j′′

j′ ⊗ (j′′)〈1〉 ⊗ (j′′)〈2〉 · v −
∑
j

∑
[v]

v[0] ⊗ j′ ⊗ j′′ · v[1]

−
∑
j

∑
[v]

[j′′, v[0]]⊗ j′ ⊗ v[1]

:::::::::::::::::::::::::::

−
∑
j

∑
j′′

(j′′)〈1〉 ⊗ j′ ⊗ (j′′)〈2〉 · v

(
(Alt2 ⊗ idV ) ◦ (idb ⊗ fj) ◦ fj

)
(v) = (Alt2 ⊗ idV )

(∑
j

∑
j

j′ ⊗ j1 ⊗ j2 · (j′′ · v)

)
=
∑
j

∑
j

j′ ⊗ j1 ⊗ [j2, j′′] · v.

The terms underlined in the same way cancel each other out. The remaning ones gives

(idb⊗b ⊗ π(·, v))

(
1

2

∑
j

Alt3

((
δ(j′)

)
⊗ j′′

)
− CYB(j, j)

)
which vanishes due to (4.6.3).

Proposition 4.6.8. Let (b, [·, ·], δ) be a Lie bialgebra and j be a Lie bialgebra twist. Then

Jj : DY(b)→ DY(bj)

(V, π, π∗) 7→ (V, π, π∗j )

f 7→ f

is an invertible infinitesimally braided monoidal functor, whose inverse is J−j.

Proof. The only non–straightforward thing to check in order to prove that Jj is a functor is that,
for any f ∈ HomDY(b)(V,W ), then we have f ∈ HomDY(bj)(V,W ). This is the case since for any
v ∈ V we have

(idb ⊗ f) ◦ (π∗V j)(v) = (idb ⊗ f) ◦ (π∗V )(v) +
∑
j

j′ ⊗ f(j′′ · v)

= π∗W (f(v)) +
∑
j

j′ ⊗ j′′ · f(v)

= π∗Wj(f(v)).
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Next we define the monoidal structure of Jj. Recall that the ground field is a Drinfeld–Yetter
b–module with trivial π and π∗. We set ψ0

Jj
= idK and ψ2

Jj
(V,W ) = idV⊗W . Let V,W be in

Obj(DY(b)). Then we have two Drinfeld–Yetter bj–module structures on the tensor product V ⊗W :
the first given by (π∗V )j ⊗ (π∗W )j and the second given by (π∗V⊗W ))j. We show that (π∗V )j ⊗ (π∗W )j =

(π∗V⊗W )j: for any v ∈ V and w ∈ W we have(
(π∗V )j ⊗ (π∗W )j

)
(v ⊗ w) =

(
(π∗V )j ⊗ idW ) + (τV,bj ⊗ idW ) ◦ (idV ⊗ (π∗W )j

)
(v ⊗ w)

=
(
(π∗V )j ⊗ idW ) + (τV,bj ⊗ idW ) ◦ (idV ⊗ (π∗W )j

)
(v ⊗ w)

=
∑
v

v[0] ⊗ v[1] ⊗ w +
∑
j

j′ ⊗ (j′′ · v)⊗ w+

+
∑
[w]

w[0] ⊗ v ⊗ w[1] +
∑
j

j′ ⊗ v ⊗ (j′′ · w)

= (π∗V⊗W )j(v ⊗ w).

It clear that Jj is a symmetric monoidal functor. We finally show that is also infinitesimally braided
monoidal: using that j is antisymmetric we get(

− tbjJj(V ),Jj(W )

)
(v ⊗ w) =

∑
[v]

v[1] ⊗ (v[0] · w) +
∑
[w]

(w[0] · v)⊗ w[1]

−
∑
j

(j′′ · v)⊗ (j′ · v)−
∑
j

(j′ · v)⊗ (j′′ · w)

=
∑
[v]

v[1] ⊗ (v[0] · w) +
∑
[w]

(w[0] · v)⊗ w[1] + 0

= (−tbV,W ).

Corollary 4.6.9. J−j is an infinitesimally braided comonoidal functor.

Remark 4.6.10. Let b be a Lie bialgebra and j be a twist. Consider the Drinfeld–Yetter b–module
structure of U(b) given by Theorem 4.5.2. Then we can endow U(b) with another Drinfeld–Yetter
b–module structure, which is uniquely determined by imposing relations (4.1.7) and (4.4.1) and the
condition π∗(1) = j. We shall denote such a Drinfeld–Yetter b–module structure by U(b)j ∈ DY(b).

4.7 Quantization of Lie bialgebras: a short introduction

The following definitions and results are standard. For a complete discussion on topologically free
modules, we remand the reader to [Köt69], [War89], [Bou89], [Kas12], and for more details on
preliminary notions on the theory of quantization of Lie bialgebras we refer to [ES02], [Maj95],
[CP95] and [KS12].
Fix a formal parameter ~ and a field K of characteristics zero.

Definition 4.7.1. A topological Hopf algebra is a a sextuple (H,µ, η,∆, ε, S), where H is a
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topologically free K[[~]]–module (see §9.1), and

µ : H⊗̄H → H

η : K[[~]]→ H

∆ : H → H⊗̄H
ε : H → K[[~]]

S : H → H

are K[[~]]–linear morphisms satisfying the axioms of Hopf algebra in the category TopFreeK of all
topologically free K[[~]]–modules, where ⊗̄ is the ~–adic completion of the usual tensor product over
VectK..

Example 4.7.2. Let (H0, µ0, η0,∆0, ε0, S0) be a Hopf algebra over K. The trivial topological Hopf
algebra associated to (H0, µ0, η0,∆0, ε0, S0) is (H,µ, η,∆, ε, S), where H is the topologically free
module associated to the vector space H and mu0, η0,∆0, ε0, S0) is (H,µ, η,∆, ε, S) are the unique
K[[~]]–linear maps such that, for any a, a′ ∈ H0, and f ∈ K[[~]]:

µ(a⊗̄a′) = µ0(a⊗ a′)
η(f) = f · η0(1)

∆(a) = ∆0(a)

ε(a) = ε0(a)

S(a) = S0(a)

i.e. the unique ~–linear extensions of the maps µ0, η0,∆0, ε0, S0.

We are interested in deformations of universal enveloping algebras:

Definition 4.7.3. Let (H,µ, η,∆, ε, S) be a Hopf algebra over K and let (H~, µ~, η~,∆~, ε~, S~) be a
topological Hopf algebra.

• We say that Hh is a deformation of H if

(1) H~/(~ ·H~) ∼= H[[~]] as topologically free modules.

(2) µ~ = µ mod ~.

(3) ∆~ = ∆ mod ~.

• A deformation H~ of a universal enveloping algebra of a Lie algebra g is called a quantized
universal enveloping algebra.

• If H~ and H ′~ are two deformations of H, we say that they are equivalent deformations if
there exists an isomorphism of topologically free Hopf algebras over f : H~ → H ′~ which is the
identity modulo ~

We shall denote the category of all quantized universal enveloping algebras by QUAlg. It has to
be mentioned that any deformation is equivalent to one in which the unit and the counit are the
trivial ones. Furthermore, any deformation of a bialgebra uniquely extends to a deformation of a
Hopf algebra.
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Proposition 4.7.4. Let H be a quantized enveloping algebra with H/(~ ·H) ∼= U(g). Then the Lie
algebra g is equipped with a bialgebra structure defined by

δ(x) =
∆(x̃)−∆op(x̃)

~
mod ~ (4.7.1)

where x̃ is any lifting of x to H through the isomorphism H/(~ ·H) ∼= U(g).

A proof of this very important result can be find in [ES02, p. 78]. We can then introduce the
following

Definition 4.7.5. Let b be a Lie bialgebra. We say that a topological Hopf algebra H is a quanti-
zation of b if there is an isomorphism H/(~ ·H) ∼= U(b) such that (4.7.1) holds.

There is a functor, called the semiclassical functor SC : QUAlg → LieBialg from the category of
quantized universal enveloping algebras to the category of Lie bialgebras, assigning to any H the
Lie bialgebra b = Prim(H/~ ·H), where Prim denotes the set of primitive elements. The problem of
quantization of Lie bialgebras is to define its adjoint functor.
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Part II

Quantization of Lie bialgebras
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Chapter 5

The Drinfeld associator arising from the
Knizhnik–Zamolodchikov connection

This Chapter, which is an extract of [BRW23], contains a pedagogical approach to the work by
V.G.Drinfeld about the associator Φ (constructed by means of the Knizhnik–Zamolodchikov con-
nections) satisfying the hexagon and pentagon equations, see [Dri90b] and [Dri90a].
Since its introduction, Drinfeld’s associator has seen many important applications such as the solu-
tion of the problem of the quantization of Lie bialgebras by Etingof and Kazhdan [EK96] (1996) (see
also Ševera’s work [Šev16] (2016)), Tamarkin’s approach [Tam99] (1999) to Kontsevich’s formality
theorem in deformation quantization [Kon03] (1997), and the solution of the problem of the quanti-
zation of Lie quasibialgebras by Enriquez and Halbout [EH10a] and [EH10b] in 2010, see also [SŠ15].
Moreover, regarding the associator as a formal power series in the free algebra generated by two dis-
tinct elements, its coefficients are directly related to multiple zeta values, see e.g. [ES02, p.209-213],
thus establishing an important link to number theory.
We are going to give a detailed and self–contained account of the definition of the particular as-
sociator coming from the Knizhnik–Zamolodchikov connections and the proof of the hexagon and
pentagon identities. The problem of finding solutions to such identities is quite non-trivial: for
instance, the naive choice Φ(A,B) = 1 would solve the pentagon equation, but for non-commuting
A13, A23 it would clearly not solve the hexagon equation.
We shall only mention the following nonexhaustive list of important results: there exist rational
associators, see [Dri90b], [Dri90a], and the work by Bar-Natan, [BN98] (1998). Other associators
have been constructed linked to the Kashiwara-Vergne conjecture by Alekseev, Enriquez, Torossian
[AET10] (2010). Moreover, non–trivial solutions of the pentagon equations automatically satisfy a
certain hexagon equation, see Furusho’s work [Fur10].
Drinfeld’s original method consists in the comparison of different global solutions (in certain simply
connected regions of RN) of the linear system (a first order linear partial differential equation) de-
fined by the Knizhnik–Zamolodchikov connection (see [KZ84]) with respect to their pole structure at
certain complex or real hyperplanes, referred to as monodromy, see also Kohno’s work [Koh85]. This
approach is partially motivated by the theory of complex differential equations with singularities,
compare for instance [CL55] or [Del70]. From a point of view of differential geometry this amounts
to the computation of covariantly constant sections of a trivial vector bundle with respect to a flat
connection which are uniquely determined by their value at a given point.
We have chosen a slightly more elementary method: since the value of a covariantly constant section
(the solutions of the linear system) at some point x can be defined by the parallel transport along
a continuous piecewise smooth path joining a reference point to x, we find it reasonable to focus
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on formal parallel transports (in the algebra of all formal power series in a given associative unital
complex algebra, A[[λ]]), i.e. first order ordinary linear differential equations along concrete contin-
uous piecewise smooth paths in explicitly given contractible regions of R and R2 with respect to
some flat formal connection deriving from the Knizhnik–Zamolodchikov one. However, in Drinfeld’s
approach the ‘reference point’ is –in some sense– ‘at a singularity’, and in order to capture that
we use the well–known regularization procedure: first, we make paths within the domain depend
on a strictly positive ‘small’ parameter δ such that in the limit δ → 0 these δ–dependent paths cδ
would be pushed to the boundary of these regions where the connection becomes singular. Then
we compute the δ–dependent parallel transports within the domain where as usual a composition of
paths corresponds to multiplication of the corresponding parallel transports in A[[λ]]. It will turn
out that each such parallel transport W (cδ) factorizes in a multiplication of invertible formal power
series as

W (cδ) = S(cδ)G(cδ)H(cδ) (5.0.1)

where S(cδ) is ‘singular’, i.e. diverging –in powers of | ln(δ)|– for δ → 0, G(cδ) is ‘good’, i.e. converging
to a wanted term for δ → 0, and H(cδ) is ‘harmless’, i.e. converging to 1 for δ → 0 where the terms
proportional to λn, n > 0, tend to zero dominated by a ‘power law’ δβ, β > 0. Harmless terms
will turn out to be stable by conjugation with singular terms. Parallel transports along different
(composed) paths having the same initial and final points will be equal due to the flatness of the
used connection –for instance the famous Knizhnik-Zamolodchikov connection– thereby inducing
algebraic identities: in all the important identities the singular terms cancel out for all strictly
positive δ, and the remaining terms give the wanted identities in the limit δ → 0.

5.1 Elementary analysis of piecewise C∞ functions

Definition 5.1.1. Let a, b ∈ R, m be a non–negative integer and

D = {a = a0 < a1 < · · · < am < am+1 := b}.

The space of all piecewise C∞-functions on [a, b] with singular set D is

C∞D ([a, b],C) :=
{
f ∈ C∞([a, b] \D,C)

∣∣∣ ∀ r, i ∈ N with 1 6 i 6 m+ 1 :

lim
ε↓0

f (r)(ai − ε) exists and ∀ 0 6 i 6 m : lim
ε↓0

f (r)(ai + ε) exists
}

(5.1.1)

where ε ↓ 0 means that only strictly positive real numbers ε are considered in the limit. We shall
refer to D as the (potential) singular set and to its open dense complement [a, b] \D as the regular
set.

Remark 5.1.2. Note that

(i) C∞D ([a, b],C) is a commutative algebra.

(ii) If D′ ⊆ D, the canononical injection C∞D ([a, b],C) ↪→ C∞D′([a, b],C) is a morphism of algebras.

(iii) Since the usual derivative (defined only on the regular set [a, b] \ D) is compatible with left-
and right-sided limits, induces a derivation of algebras

C∞D ([a, b],C)→ C∞D ([a, b],C) : f 7→ df

ds
. (5.1.2)
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We shall need the following subalgebra of C∞D ([a, b],C):

C∞D ([a, b],C)0 :=
{
f ∈ C∞D ([a, b],C)

∣∣ f extends to a continuous function [a, b]→ C
}
. (5.1.3)

We shall also need to compose these piecewise C∞–functions: given another closed interval [a′, b′]
and a finite subset D′ = {a′ = a′0 < a′1 < · · · < a′m′ < a′m′+1 = b′}, we say that θ ∈ C∞D′([a′, b′],C) is
compatible with [a, b] and D if the following condition is satisfied:

θ
(
[a′, b′] \D

)
⊂ [a, b] ⊂ R and θ|−1(D) is finite subset of [a′, b′] (5.1.4)

where θ| denotes the C∞–function [a′, b′] \ D′ → [a, b] outside its singular set. It is immediate
that the composition f ◦ θ is a well–defined function on [a′, b′] \

(
D′ ∪ θ|−1(D)

)
, and the iterated

chain rule (also called Faa di Bruno Theorem, see e.g. [AF88, p.291, equation (3)]) shows that it
is a C∞–function. The left–side and right–side limits of the r–th derivative f ◦ θ at the singular
points in D′ ∪ θ|−1(D) exist which easily follows from the continuity of the continuous extensions

θ
(r)
j : [a′j, a

′
j+1] → [a, b] of the restriction of θ(r) to ]a′j, a

′
j+1[ for all integers r > 0 and 0 6 j 6 m′.

Hence, we can define the composition

f ◦ θ ∈ C∞D′∪θ|−1(D)

(
[a′, b′],C

)
. (5.1.5)

It is not hard to see that the chain rule works for this composition and differentiation (5.1.2).
Next, we need to use the well–known Riemann integral : note that for every element f ∈ C∞D ([a, b],C)
and α, β ∈ [a, b] we can define the Riemann integral

Iβα(f) :=

{ ∫ β
α
f̂(s)ds if α 6 β

−
∫ α
β
f̂(s)ds if α > β

(5.1.6)

where f̂ is any extension of f from [a, b] \D to [a, b] (for instance f̂(ai) = 0 for all 0 6 i 6 N + 1: it
is well–known that any such extension is Riemann integrable and that the integral does not depend
on the extension, that is which values of f̂ are chosen at the singular points contained in the domain
of integration, see e.g. [Lan96, p.273]. Recall Chasles’s rule for any f ∈ C∞D ([a, b],C):

∀ α, β, γ ∈ [a, b] : Iγα(f) = Iβα(f) + Iγβ (f).

Recall that the complex-valued function [a, b]→ C defined for every f ∈ C∞D ([a, b],C) by

Iα(f)(s) := Isα(f)

is the usual primitive of f . We resume the following properties of the primitive which are well–known
variants of the fundamental theorem of calculus and standard integration techniques:

Theorem 5.1.3. For any f, g ∈ C∞D
(
[a, b],C

)
and h ∈ C∞D

(
[a, b],C

)0
the following holds:

(i) For any α ∈ [a, b] the primitive Iα defines a C–linear map C∞D
(
[a, b],C

)
→ C∞D

(
[a, b],C

)0

whence Iα(f) is always continuous. Moreover,

Iα(f)(α) = 0. (5.1.7)
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(ii) Fundamental theorem of calculus: for the derivatives (in the sense of (5.1.2)) we get

dIα(f)

ds
= f and Iα

(
dh

ds

)
= h− h(α). (5.1.8)

Moreover, any element F ∈ C∞D
(
[a, b],C

)0
satisfying dF

ds
= f and F (α) = 0 is equal to Iα(f).

(iii) Let θ ∈ C∞D′
(
[a′, b′],R

)0
such that θ is compatible with [a, b] and D. Then the composition

f ◦ θ is in C∞D′∪θ|−1(D)

(
[a′, b′],C

)
. Moreover, for each α′ ∈ [a′, b′] there is the usual ‘change-of-

variables-rule’

Iθ(α′)(f) ◦ θ = Iα′

(
(f ◦ θ)dθ

ds

)
(5.1.9)

where both sides of the preceding equation are elements of C∞D′∪θ|−1(D)

(
[a′, b′],C

)0
.

See [Lan96, p.272-274] for the proof of all the statements.

Definition 5.1.4. We shall call a triple (θ, [a′, b′], D′) consisting of a continuous map θ : [a′, b′] →
[a, b] satisfying the hypotheses of statement (iii) of the preceding Theorem 5.1.3 a continuous
piecewise C∞ reparametrization of

(
[a, b], D

)
.

5.2 Formal linear ODEs

In this Section we review a particular case of the general theory described in Chen’s classical work
[Che61, p.110-115].
Let A be a complex algebra and λ be a formal parameter. Then we may consider the following
topological algebra (

C∞D
(
[a, b],C

)
⊗A

)
[[λ]]. (5.2.1)

Note that each element F in this algebra can canonically be considered as a function from [a, b] \D
to A[[λ]], and we shall sometimes use the notation s 7→ F (s) =

∑∞
r=0 Fr(s)λ

r. Tensoring the
usual derivative d

ds
with the identity map on A and extending on formal power series in the usual

componentwise way we get a derivative of the algebra (5.2.1) which is again a derivation of algebras.
We shall denote it by the same symbol d

ds
. In a completely analogous way we can extend the

Riemann integral Iβα and the primitive Iα where we shall continue to use the same symbols. It is
obvious that Iβα takes its values in A[[λ]] and that all the statements of Theorem 5.1.3 remain true
when f, g and h are replaced by elements in the corresponding algebras (5.2.1).

Fix Y ∈
(
C∞D
(
[a, b],C

)
⊗ A

)
[[λ]]. We consider the following formal linear ordinary differential

equation (formal linear ODE) {
dω

ds
= λY ω

ω(α) = ωα
(5.2.2)

where α ∈ [a, b], ωα is an element of A[[λ]], and we look for solutions

ω ∈
(
C∞D
(
[a, b],C

)0 ⊗A
)

[[λ]],

whence ω is required to be continuous and piecewise C∞. The theory of existence and uniqueness
of these formal linear ODEs is well–known to be much simpler than the one of the usual differential
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equations. Indeed, first there is the usual reformulation in terms of integral equations known from
usual ODE theory: suppose first that ω is a continuous piecewise C∞ solution of (5.2.2). Taking
primitives on both sides gives –using in Theorem 5.1.3 the second equation of (5.1.8)– the integral
equation

ω = ωα + λIα
(
Y ω
)

(5.2.3)

where ωα is considered as the constant function on [a, b] with value ωα. On the other hand, if
the continuous piecewise C∞ element ω is a solution of the formal integral equation (5.2.3), then
ω(α) = ωα by (5.1.7), and differentiation of the integral equation –using the first equation of (5.1.8)–
gives the formal linear ODE (5.2.2).
Solving the formal integral equation (5.2.3) is quite simple due to the presence of the factor λ in
front of Y : consider the following C[[λ]]-linear maps

LY :
(
C∞D
(
[a, b],C

)0 ⊗A
)

[[λ]]→
(
C∞D
(
[a, b],C

)
⊗A

)
[[λ]]

F 7→ LY (F ) := Y F

and
Iα :

(
C∞D
(
[a, b],C

)
⊗A

)
[[λ]]→

(
C∞D
(
[a, b],C

)0 ⊗A
)

[[λ]].

Then the composition Iα ◦ LY is a well–defined C[[λ]]–linear endomorphism of the C[[λ]]–module(
C∞D
(
[a, b],C

)0 ⊗A
)

[[λ]]. Hence, the formal integral equation (5.2.3) can be rewritten as

(
id− λIα ◦ LY

)
(ω) = ωα, hence ω =

(
id− λIα ◦ LY

)−1
(ωα) =

∞∑
r=0

λr
(
Iα ◦ LY

)◦r
(ωα) (5.2.4)

since it is obvious –thanks to the presence of the factor λ– that the formal series id − λIα ◦ LY is

always invertible in the algebra of all C[[λ]]–linear endomorphisms of
(
C∞D
(
[a, b],C

)0⊗A
)

[[λ]] seen

as a C[[λ]]–module by the usual geometric series formula. Note that the formula (5.2.4) is very often
written out in terms of iterated integrals:

ω(s) = ωα +
∞∑
r=1

λr

(∫ s

α

(
Ŷ (s1)

∫ s1

α

(
Ŷ (s2)

∫ s2

α

(
· ·
∫ sr−1

α

Ŷ (sr)dsr

)
· ·ds3

)
ds2

)
ds1

)
ωα (5.2.5)

where Ŷ denotes any extension of Y from [a, b] \D to [a, b]. We shall write W·α := (s 7→ Wsα) for
the particular solution ω of the formal ODE (5.2.2) with initial condition ωα = 1, the unit element

of the algebra
(
C∞D
(
[a, b],C

)0 ⊗A
)

[[λ]], hence{
dW·α
ds

= λYW·α

W·α(α) = Wαα = 1
(5.2.6)

and refer to it as the fundamental solution of the formal ODE (5.2.2) normalized at α, see
e.g. [CL55, p.69]. Moreover, we shall refer to the value of the fundamental solution W·α at β ∈ [a, b],

Wβα := W·α(β) ∈ A[[λ]] (5.2.7)

as the propagator (from α to β).
We collect some properties of the above formal linear ODEs in the following
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Proposition 5.2.1. We have the following:

(i) Every formal linear ODE (5.2.2) has a unique (continuous) solution ω given by the formulas
(5.2.4) or (5.2.5). It can be expressed by the fundamental solution W·α normalized at α in the
following way:

ω = W·αωα. (5.2.8)

(ii) Groupoid properties: Every fundamental solution W·α has only invertible values in A[[λ]], and
for all α, β, γ ∈ [a, b] we have the following identities for the propagators

Wαα = 1, WγβWβα = Wγα, Wαβ = W−1
βα . (5.2.9)

(iii) Reparametrization: Let a′, b′ ∈ R with a′ < b′, let D′ be a finite set with {a′, b′} ⊂ D′ ⊂ [a′, b′],

let θ ∈ C∞D′
(
[a′, b′],R

)0
be a continuous piecewise C∞ reparametrization of

(
[a, b], D

)
. Let

α′ ∈ [a′, b′], and let W·θ(α′) the fundamental solution of (5.2.6) normalized at θ(α′). Then
W ′
·α′ := W·θ(α′) ◦ θ is a fundamental solution normalized at α′ of the formal linear ODE

dW ′
·α′

ds′
=
(
Y ◦ θ

) dθ
ds′

W ′
·α′ , hence ∀ α, β ∈ [a, b] : W ′

β′α′ = Wθ(β′)θ(α′) ∈ A[[λ]]. (5.2.10)

Moreover, the propagator Wβα only depends on the values of Y between α and β.

(iv) Factorization: Let Y = Y0 + Z with Y0, Z ∈
(
C∞D
(
[a, b],C

)
⊗A

)
[[λ]], and let W·α and U·α be

the fundamental solutions normalized at α for the formal linear ODE’s

dW·α
ds

= λYW·α and
dU·α
ds

= λY0U·α.

Then W·α factorizes in the following way:

W·α = U·αΞ·α where
dΞ·α
ds

= λ
(
U−1
·α ZU·α

)
Ξ·α and Ξαα = 1. (5.2.11)

(v) Suppose that Y Iα(Y ) = Iα(Y )Y . Then the fundamental solution W·α of the formal linear ODE
(5.2.6) is explicitly given by

W·α = eλIα(Y ). (5.2.12)

Proof. (i): Existence and uniqueness follow from the considerations in (5.2.4), and (5.2.8) can be
read off (5.2.5).
(ii): Again by (5.2.4) and (5.2.5) it is immediate that W·α is a formal series in the associative

unital algebra
(
C∞D
(
[a, b],C

)0 ⊗A
)

[[λ]] whose constant term is 1, hence it is invertible by a similar

geometric series argument. The first equation of (5.2.9) is part of the definition (5.2.6). For the
second note that W·β and W·α satisfy the same formal linear ODE with initial condition (at β) 1
and Wβα, respectively. Hence, by (5.2.8) we get W·α = W·βWβα which gives the second equation
of (5.2.9) upon choosing s = γ. The third equation of (5.2.9) follows from the first and the second
upon setting α = γ.
(iii): Equation (5.2.10) is an easy consequence of the chain rule and equation (5.2.2). The last
statement follows either directly from the iterated integral form (5.2.5) or by choosing –assuming
that α 6 β without loss of generality– [a′, b′] = [α, β] and θ : [α, β]→ [a, b] the canonical injection.
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(iv): Using the well–known formula d(U−1
·α )
ds

= −U−1
·α

dU·α
ds
U−1
·α gives the result upon differentiating

Ξ·α = U−1
·α W·α.

(v): For each positive integer r, differentiating the rth power of Iα(Y )r we get rY Iα(Y )r−1 thanks
to the hypothesis Y Iα(Y ) = Iα(Y )Y which shows the result when differentiating the exponential
series eλIα(Y ) =

∑∞
r=0

λr

r!
Iα(Y )r.

5.3 Norms and limits

We shall have to discuss limits of solutions of formal linear ODEs given by elements Y of the algebra
(5.2.1) depending on a parameter δ in some subset J ⊂ R`, and we are interested in limits when
δ → δ0 where δ0 is an accumulation point of J . Since the complex associative unital algebra A
is completely arbitrary, we have to include a discussion to make sense of these limits. Recall that
every complex vector space has at least one norm: in fact, let B := (ei)i∈S be a basis for E labeled
by the set S: every vector ξ ∈ E is a linear combination ξ =

∑
i∈S xiei where all the xi ∈ C and

the subset of S for which xi 6= 0 is finite. Define

||ξ||B = ||ξ|| := max
{
|xi|

∣∣ i ∈ S
}
, (5.3.1)

and the norm properties are easy to check directly. Having a norm allows us to define limits : more
precisely, for a given positive integer ` let J ⊂ R` be a non-empty set, and let Fun(J,E) denote the
complex vector space of all maps J → E. Fix a norm || || on E, some norm | | on R`, and a function
f ∈ Fun(J,E). Let δ0 be an accumulation point of J . For any ζ ∈ E recall the following definition
of a limit:

lim
δ→δ0

f(δ) = ζ w.r.t. || || iff ∀ ε ∈ R, ε > 0 ∃ ε′ ∈ R, ε′ > 0 : ∀ δ ∈ J :

if |δ − δ0| < ε′ then ||f(δ)− ζ|| < ε. (5.3.2)

As usual, if the limit exists, it is unique. However, the existence of the limit a priori depends on the
norms | | and || || used. Recall that two norms || || and || ||′ on E are called equivalent if:

∃ C1, C2 ∈ R, C1, C2 > 0 ∀ ξ ∈ E : C1||ξ|| 6 ||ξ||′ 6 C2||ξ||.

Hence, if the norms || || and || ||′ on E are equivalent and if the norms | | and | |′ on R` are equivalent,
it is easy to see that in (5.3.2) the statement using || || and | | is equivalent to the one using || ||′
and | |′: in this case the limit does not depend on the norms used. In general, two given norms
on a complex vector space are not equivalent; however, in the case of a finite–dimensional vector
space it is well–known that any two norms are equivalent, see e.g. [Lan96, p.145, Thm.4.3.]. This
always applies to the norms | | and | |′ on R` in statement (5.3.2), but in general not to the norms
|| || and || ||′ on E. In the following, the relevant limits will always take place in finite–dimensional
subspaces, thereby insuring that the computation of limits will not depend on the norms chosen.
More precisely, consider the following algebra(

Fun
(
J,C

)
⊗A

)
[[λ]]. (5.3.3)

Each element F of this algebra is a formal power series F =
∑∞

r=0 λ
rFr where each component

Fr is an element of Fun
(
J,C

)
⊗ A, hence can be considered as a map J → A, and choosing a

norm || || on A and a norm | | on R` ⊃ J –among all the equivalent ones– we can consider limits
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Fr → ξr ∈ A for each non–negative integer r seperately in the sense of definition (5.3.2). For any
ξ =

∑∞
r=0 λ

rξr ∈ A[[λ]] we thus define limits componentwise for each F in the algebra (5.3.3):

lim
δ→δ0

F (δ) = ξ w.r.t. || || iff ∀ r ∈ N : lim
δ→δ0

Fr(δ) = ξr w.r.t. || ||. (5.3.4)

We enumerate some important properties of limits in the algebra (5.3.3) in the following

Proposition 5.3.1. Let J ⊂ R` as above, let δ0 ∈ R` be an accumulation point of J , and let

F =
∑∞

r=0 λ
rFr be an element of

(
Fun

(
J,C

)
⊗A

)
[[λ]]. Then

(i) For each r ∈ N there is a finite–dimensional subspace V
(F )
r = Vr of A such that for each r ∈ N

Fr ∈ Fun
(
J,C

)
⊗ Vr. (5.3.5)

(ii) Let || || and || ||′ be two norms on the complex vector space A, and let ξ =
∑∞

r=0 λ
rξr ∈ A[[λ]].

Then the statement

lim
δ→δ0

F (δ) = ξ w.r.t. || || is equivalent to lim
δ→δ0

F (δ) = ξ w.r.t. || ||′,

hence limits in the algebra (5.3.3) do not depend on the norms used.

(iii) Let F̃ =
∑∞

r=0 λ
rF̃r be another element of

(
Fun

(
J,C

)
⊗A

)
[[λ]], and let ξ̃ ∈ A[[λ]] such that

limδ→δ0 F̃ (δ) = ξ̃ with respect to any norm on A. Then for all α, β ∈ C:

lim
δ→δ0

(
αF (δ) + βF̃ (δ)

)
= α lim

δ→δ0
F (δ) + β lim

δ→δ0
F̃ (δ) = αξ + βξ̃ (5.3.6)

and

lim
δ→δ0

(
F (δ)F̃ (δ)

)
=

(
lim
δ→δ0

F (δ)

)(
lim
δ→δ0

F̃ (δ)

)
= ξξ̃. (5.3.7)

Proof. (i): By definition of the algebraic tensor product each Fr is a finite sum Fr1⊗Ar1+· · ·+FrNr⊗
ArNr where Nr is a non–negative integer, Fr1, . . . , FrNr are functions J → C, and Ar1, . . . , ArNr are
elements of A. Defining Vr as the complex linear hull of Ar1, . . . , ArNr proves the statement.
(ii): We shall prove a slightly more general statement: for each non–negative integer r let V ′r be
another finite–dimensional subspace of A such that (5.3.5) is satisfied. Then each Fr clearly is an
element of Fun

(
J,C

)
⊗
(
Vr ∩ V ′r ). We can enlarge each Vr, V

′
r by at most one dimension to include

ξr. From the definition of the limit (5.3.2), it is clear that it suffices to look at the restrictions of
the norms || || and || ||′ on A to the finite–dimensional subspaces Vr, V

′
r and Vr ∩ V ′r : the restriction

of the norm || || to Vr ∩ V ′r is equivalent to the restriction of the norm || ||′ thanks to the finite
dimension of Vr ∩ V ′r which shows that the limit statements with respect to the norms || || and || ||′
are equivalent.
(iii): The first equation (5.3.6) is the usual statement that in any normed vector space addition and
scalar multiplication are continuous. All the limits do not depend on the norms (take for instance
for each r ∈ N the finite-dimensional vector space Vr + Ṽr) thanks to the preceding statement (ii).
The second statement (5.3.7) is slightly more involved since the normed vector space

(
A, || ||

)
is

in general not a normed algebra in the sense that ||AA′|| 6 ||A|| ||A′|| for all A,A′ ∈ A. We shall
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first prove an intermediate estimate: for each r ∈ N pick a finite–dimensional subspace Ṽr such that
F̃r ∈ Fun(J,C)⊗ Ṽr (which is possible thanks to statement (i)). We have for each r ∈ N(

F (δ)F̃ (δ)
)
r

=
r∑

u=0

Fu(δ)F̃r−u(δ) ∈
r∑

u=0

VuṼr−u

⊂
(
V0 + · ·+Vr

)(
Ṽ0 + · ·+Ṽr

)
=: V(r)Ṽ(r). (5.3.8)

Clearly, the subspaces V(r) and Ṽ(r) of A are finite–dimensional. Consider the restriction of the

algebra multiplication µ : A⊗A → A to the finite–dimensional vector space V(r) ⊗ Ṽ(r): the image

µ
(
V(r) ⊗ Ṽ(r)

)
= V(r)Ṽ(r) is again a finite–dimensional subspace of A. Choosing a basis {e1, . . . , eM}

of the finite–dimensional subspace V(r) + Ṽ(r) +V(r)Ṽ(r) of A which is compatible with the subspaces,

V(r), Ṽ(r), and V(r)Ṽ(r), expanding the elements A ∈ V(r), Ã ∈ Ṽ(r) in that basis, and using the norm
|| || as in (5.3.1) by extending the chosen basis to all of A we get the intermediate estimate

∃ CV(r)Ṽ(r)
∈ R, CV(r)Ṽ(r)

> 0 ∀ A ∈ V(r) ∀ Ã ∈ Ṽ(r) : ||AÃ|| 6 CV(r)Ṽ(r)
||A|| ||Ã||.

This shows that the restriction of the multiplication to V(r)⊗ Ṽ(r) is a continuous map onto its image

V(r)Ṽ(r): this fact together with (5.3.8) proves the statement (5.3.7).

For the rest of this Section we choose the maximum norm | | on R`, see (5.3.1) w.r.t. the canonical
basis, and suppose that

∅ 6= J ⊂
{
δ ∈ R` \ {0}

∣∣ |δ| 6 1/4
}

and 0 is an accumulation point of J. (5.3.9)

We shall now distinguish three important subsets L, B, and H of the algebra (5.3.3): we shall refer
to them as the set of all at most logarithmically divergent, bounded and harmless elements,

respectively: for an element F =
∑∞

r=0 Frλ
r of

(
Fun (J,C)⊗A

)
[[λ]] we say

F ∈ L iff ∀r ∈ N ∃Cr, αr ∈ R, Cr > 0, αr > 0 ∀δ ∈ J : ||Fr(δ)|| 6 Cr| ln(|δ|)|αr ,
F ∈ B iff ∀r ∈ N ∃Cr ∈ R, Cr > 0, ∀δ ∈ J : ||Fr(δ)|| 6 Cr,
F ∈ H iff ∀r ∈ N ∃Cr, βr ∈ R, Cr > 0, βr > 0 ∀δ ∈ J : ||Fr(δ)|| 6 Cr|δ|βr .

(5.3.10)
In all the subsequent computations all the terms which we shall deal with are at most logarithmically

divergent in the above sense. Let G := 1 + λ
(

Fun (J,C)⊗A
)

[[λ]], and define the following subsets

GL := 1 + λL, GB := 1 + λB, GH := 1 + λH. (5.3.11)

and refer to them as the at most logarithmically divergent, bounded and harmless subgroups of the
group G, respectively. These terms become clear in the following

Proposition 5.3.2. With the above hypotheses we have the following statements for the algebra
(5.3.3):

(i) The definition (5.3.10) does not depend on the chosen norm.

(ii) L and B are unital subalgebras over C[[λ]] of
(

Fun (J,C)⊗A
)

[[λ]], and H is a two-sided ideal

of L. There are the following inclusions:

L ⊃ B ⊃ H. (5.3.12)
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(iii) For all H ∈ H: limδ→0H(δ) = 0.

(iv) G is a subgroup of the group of all invertible elements of
(

Fun (J,C)⊗A
)

[[λ]], and GL ⊃ GB ⊃
GH are subgroups of G, where GH is a normal subgroup of GL, i.e. it is stable by conjugations
with all elements in GL.

(v) For all Ψ ∈ GH: limδ→0 Ψ(δ) = 1.

Before giving the proof of this Proposition we shall recall some elementary inequalities in the fol-
lowing

Lemma 5.3.3. For all δ ∈ ]0, 1/4] and α, β ∈ R, α, β > 0, we have the following inequalities

δ 6
1

2
6 | ln(δ)|, (5.3.13)

| ln(δ)|αδβ 6
(

2α

β

)α
δβ/2. (5.3.14)

Proof. Recall the following elementary inequalities for every real number t such that 0 < t 6 1

1 6
1

t
hence 1− δ =

∫ 1

δ

dt 6
∫ 1

δ

1

t
dt = − ln(δ) = | ln(δ)|

which proves (5.3.13) upon noting that δ 6 1/4 < 1/2 < 1− δ. Moreover, since 1
t
6
(

1
t

)1+ β
2α we get

| ln(δ)| = − ln(δ) =

∫ 1

δ

1

t
dt 6

∫ 1

δ

(
1

t

)1+ β
2α

dt =
2α

β

(
δ−β/(2α) − 1

)
6

2α

β
δ−β/(2α),

from which –upon multiplying both sides of this inequality by δβ/α and then raising to the power
of α– we deduce the result (5.3.14).

Proof (of Proposition 5.3.2):
(i): Since each Fr takes its values in a finite dimensional vector space the restriction of any other
norm to this subspace is equivalent to the norm || ||: this would only change the ‘C-constants’ of
the definition, but not the criterion to be an element of L, B or H.
(ii): It is immediate that L, B and H are complex vector spaces: if F, F ′ are in one of the three
subsets then by means of the upper bounds of the norms of each Fr(j) and F ′r(j) we get an upper
bound of the norm of each zFr + z′F ′r (where z, z′ ∈ C) by passing to twice the maximum of the
two constants |z|Cr, |z′|Cr and to the maximum of the exponents αr, α

′
r of | ln(|δ|)| –the latter being

> 1– (resp. to the minimum of the exponents βr, β
′
r of |δ| –the latter being < 1). Next, for the

multiplication of FF ′ we have that each
(
F (δ)F ′(δ)

)
r

(r ∈ N) is equal to the sum
∑r

u=0 Fu(δ)F
′
r−u(δ).

Suppose first that F, F ′ ∈ L. Since by Proposition 5.3.1 for each δ ∈ J every Fu(δ) is an element
of some finite–dimensional subspace Vu (only depending on Fu) and every F ′r−u(δ) is an element of
some other finite–dimensional subspace V ′r−u (only depending on Fr−u) it follows as in the proof of
Proposition 5.3.1, equation (5.3.8) that –upon setting V(r) = V0 + · · ·+ Vr and V ′(r) = V0 + · · ·+ V ′r–
the following estimate holds for all δ ∈ J

||
(
F (δ)F ′(δ)

)
r
|| 6

r∑
u=0

CuC
′
r−uCV(r)V

′
(r)
| ln(|δ|)|αu+α′r−u 6 C| ln(|δ|)|α
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where C is r + 1 times the maximum of all the triple multiplications of the ‘C–constants’ and α is
the maximum of all the numbers αu + α′r−u. This is done in an analogous way for B and H proving
that L, B and H are closed under multiplication. Evidently, C[[λ]] belongs to L and B, hence L
and B in particular are C[[λ]]–submodules and unital associative algebras. The inclusion (5.3.12)
follows at once from inequality (5.3.13). Finally, for any F ∈ L and F ′ ∈ H it is shown in a similar
way as above that FF ′ and F ′F are in H upon using the second inequality (5.3.14). This shows
that H is a two–sided ideal of L and hence also a C[[λ]]–submodule.
(iii)− (v): immediately follow from the upper bounds defining H.
(iv): We only have to observe that every element 1 + λF (where F is in a C[[λ]]–subalgebra) al-
ways has an inverse, namely the well–known geometric series

∑∞
r=0(−λ)rF r, for which the terms of

positive order are all in the given subalgebra, which proves that GL, GB and GH are subgroups of G.
The normality of GH follows from the fact that H is a two-sided ideal of L. 2

We shall now apply these limit considerations to the term Y appearing in a formal linear ODE, see
(5.2.2). Y normally belongs to the algebra (5.2.1). In order to incorporate limits we shall make Y
dependent on the parameter δ in the set J ⊂ R`, see (5.3.9), i.e. we consider

Y ∈
(

Fun
(
J, C∞D

(
[a, b],C

))
⊗A

)
[[λ]]. (5.3.15)

Hence, each element Y is a formal power series
∑∞

r=0 Yrλ
r, where each Yr is a (non unique) finite

sum Yr = Yr1⊗Ar1 + · · ·+YrNr ⊗ArNr where Nr is an non–negative integer, Ar1, . . . , ArNr ∈ A and
Yr1, . . . , YrNr are functions on J with values in C∞D ([a, b],C) (see (5.1.1)). It makes sense to consider
the formal linear ODE (5.2.2) for these J-dependent Y :

Proposition 5.3.4. Let Y be an element of the algebra (5.3.15).
For each α ∈ [a, b] there exists a unique element

W·α ∈
(

Fun
(
J, C∞D

(
[a, b],C

)0
)
⊗A

)
[[λ]] (5.3.16)

satisfying the formal linear J–dependent ODE (5.2.6) with respect to the parameter s ∈ [a, b] for
each δ ∈ J such that Wαα = 1. We shall call W·α the fundamental solution of the formal linear J–
dependent ODE (5.2.6) normalized at α. Moreover, for each β ∈ [a, b] the J–dependent propagator
Wβα := W·α(s = β) satisfies

Wβα ∈
(

Fun (J,C)⊗A
)

[[λ]]. (5.3.17)

Proof. This is done in complete analogy to the treatment in §5.2 where we can literally follow (5.2.2),
the integral equation (5.2.3) –the primitive Iα being extended to the algebra occurring in (5.3.15) by
first composing it with the functions of J with values in C∞D

(
[a, b],C

)
on the left tensor factor, then

tensoring with the identity on A, and finally extending componentwise– and the iterated integrals
equation (5.2.5). This proves the existence of a unique fundamental solution W·α as in (5.3.16).
Evaluating s at β gives (5.3.17).

The following Lemma will be the key criterion later on to prove that certain factors in a propagator
are in the harmless group GH. First, as usual, having fixed a norm || || on A we shall denote by the
same symbol || || the map

Fun
(
J, C∞D

(
[a, b],C

))
⊗A → Fun

(
J, C0

D

(
[a, b],R

))
:(

(δ, s) 7→ G(δ, s)
)
7→

(
(δ, s) 7→ ||G(δ, s)||

)
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for all s ∈ [a, b] \ D. Writing G in Fun
(
J, C∞D

(
[a, b],C

))
⊗ A in a basis ((ei)i∈S) of A as G =

G0e0+· · ·+GNeN we get the well–known estimate –using the monotonicity of the Riemann integral–
for any α 6 s 6 β ∈ [a, b]:∣∣∣∣∣∣∣∣∫ s

α

Ĝ(δ, s1)ds1

∣∣∣∣∣∣∣∣ 6 (β − α) sup
{
||Ĝ(δ, s1)||

∣∣∣ s1 ∈ [0, 1]
}

(5.3.18)

where we have written Ĝ for any extension of the function G from J ×
(
[a, b] \D

)
to J × [a, b].

Lemma 5.3.5. Let Y =
∑

r=0 λ
rYr be an element of the algebra (5.3.15). Fix an arbitrary norm

|| || on A and two elements α, β ∈ [a, b]. Consider the following three conditions on Y referred to as
upper bounds for Y : there is an extension Ŷ of Y to [a, b] such that for each non–negative integer
r:

(L) : ∃Cr, αr ∈ R, Cr > 0, αr > 0 ∀δ ∈ J : sup
{
||Ŷr(δ, s)||

∣∣∣ s ∈ [a, b]
}
6 Cr| ln(|δ|)|αr ,

(B) : ∃Cr ∈ R, Cr > 0, ∀δ ∈ J : sup
{
||Ŷr(δ, s)||

∣∣∣ s ∈ [a, b]
}
6 Cr,

(H) : ∃Cr, βr ∈ R, Cr > 0, βr > 0 ∀δ ∈ J : sup
{
||Ŷr(δ, s)||

∣∣∣ s ∈ [a, b]
}
6 Cr|δ|βr .

(5.3.19)
Then the three conditions do not depend on the norms used. Moreover, if condition (L) (resp. (B)
resp. (H)) is satisfied then the propagator Wβα (see (5.3.17)) for Y belongs to the subgroup GL
(resp. GB resp. GH) of G.

Proof. The norm independence follows from the fact that the norms will always be restricted to
finite–dimensional subspaces of A. Concerning the second statement, we first do the case α 6 β:
writing out the propagator Wβα in terms of iterated integrals as in equation (5.2.5) (for s = β) it
can be seen by an easy induction using the estimate (5.3.18) that each iterated integral has as upper

bound a multiplication of integrals of the form δ 7→
∫ β
α

∣∣∣∣Ŷi(δ, s)∣∣∣∣ds where each such integral has an
upper bound by the last inequality of (5.3.18) and thus the desired upper bound according to the
conditions (L), (B) or (H). Passing to suitable maxima of multiplications of constants of ‘type C’,
to suitable maxima of sums of exponents of ‘type αi’, and to suitable minima of exponents of ‘type
β’ we get the desired upper bounds for (5.3.10). The case α > β is done in a completely analogous
manner by using the rule (5.1.6).

5.4 Formal connections and parallel transport

Definition 5.4.1. Let N > 1 be an integer, and let U ⊂ RN be a non-empty open subset. A formal
connection Γ on U consists of N elements Γ1, . . . ,ΓN ∈

(
C∞(U,C)⊗A

)
[[λ]].

We shall consider each Γi as a function Γi : U → A[[λ]] by evaluating at x ∈ U . Every element Γi in
the algebra

(
C∞(U,C)⊗A

)
[[λ]] is thus a formal power series Γi =

∑∞
r=0 Γirλ

r such that each non–
negative integer r the component Γir is a finite sum of terms of the form f ⊗A with f ∈ C∞

(
U,C

)
and A ∈ A. A very common notation borrowed from differential geometry is Γ =

∑N
i=1 Γidxi, which

relates to differential forms (connection 1–forms). We shall, however, use a sign convention for Γ
which is different from the one used in differential geometry to avoid additional signs.
Next, we consider continuous piecewise C∞–paths c : [a, b]→ U , hence

c ∈ C∞D
(
[a, b], U

)0
. (5.4.1)

92



This means that each real component c1, . . . , cN of c is an element of C∞D
(
[a, b],R

)0
and that for each

s ∈ [a, b] the value c(s) lies in U ⊂ RN . The most elementary paths are line segments, i.e. given
two points ξ, η ∈ RN we can consider the affine path joining the initial point ξ and the final point
η which is defined by

cη←ξ = c : [0, 1]→ RN : s 7→ (1− s)ξ + sη. (5.4.2)

In case ξ, η are elements of the open subset U it has of course to be checked whether all the values
of the affine path also lie in U . If this is the case then it is clear that there is ε ∈ R, ε > 0, such that
the right hand side of (5.4.2) makes sense as a C∞-function from the larger open interval ]− ε, 1 + ε[
to U .
Returning to general continuous piecewise smooth paths, we can associate to each such path c
defined in (5.4.1) the element Y := Γ(c) for a formal linear ODE by

Γ(c) :=
N∑
i=1

(
Γi ◦ c

)dci
ds

∈
(
C∞D
(
[a, b],C

)
⊗A

)
[[λ]].

Fix α, β ∈ [a, b], then we can consider the formal linear ODE (5.2.6) for the choice Y = Γ(c) and its

particular solution ΓW
(c)
·α normalized at α. In differential geometry the propagator ΓW

(c)
βα = Wβα ∈

A[[λ]], see (5.2.7), is called the parallel transport from c(α) to c(β) along the path c (with respect
to the connection Γ). Since parallel transports are propagators all the statements of Proposition
5.2.1 are true for parallel transports. Note that for a constant path cξ(s) = ξ ∈ U for all s ∈ [a, b],
the element Γ(cξ) = 0, and the parallel transport is reduced to the unit element of A.
Next, we shall need the composition of two continuous piecewise smooth paths c1 : [0, 1]→ U with
singular set D1 and c2 : [0, 1] → U with singular set D2 which are compatible in the groupoid
sense c2(0) = c1(1). Recall the classical definition from algebraic topology of the composed path
c2 ∗ c1 : [0, 1]→ U with singular set D12 :=

(
1
2
D1

)
∪
(

1
2
D2 + 1

2

)
:

if c1(1) = c2(0) : (c2 ∗ c1)(s) :=

{
c1(2s) if 0 6 s 6 1

2
,

c2(2s− 1) if 1
2
6 s 6 1.

(5.4.3)

It is evident from the definition that c2 ∗ c1 is continuous and piecewise smooth with singular set
D12. The crucial fact is that composition may create new singularities at the point s = 1

2
for the

higher k–fold derivatives of the path for k > 1.

Definition 5.4.2. Let N ′ be a positive integer, let U ′ be a non–empty open subset of RN ′, and let
Θ : U ′ → U be a C∞–map. For any formal connection Γ on U define the pulled–back connection
Γ′ := Θ∗Γ on U ′ defined by

∀ j ∈ N, 1 6 j 6 N ′ : (Θ∗Γ)j :=
N∑
i=1

(
Γi ◦Θ

) ∂Θi

∂x′j
. (5.4.4)

We now state how the above operations on formal connections and paths translate to parallel
transports:

Theorem 5.4.3. Let U ⊂ RN be a non–empty open subset and let Γ be a formal connection defined
on U . Let c : [a, b]→ U and c1, c2 : [0, 1]→ U be continuous piecewise smooth paths. Then we have
the following:

93



(i) Let θ be a continuous piecewise C∞–reparametrization of
(
[a, b], D

)
. Then

Γ(c◦θ) =
(
Γ(c) ◦ θ

) dθ

ds′
, and ΓW

(c)
θ(β′)θ(α′) = ΓW

(c◦θ)
β′α′ ∈ A[[λ]]. (5.4.5)

This shows that reparametrizations (in the sense of (5.1.4)) do not change parallel transport
as long as the initial and final points remain the same.

(ii) In the previous statement suppose that a′ = a, b′ = b, D′ = D, θ(α) = β and θ(β) = α. Then
we get the well–known inversion formula

ΓW
(c◦θ)
βα =

(
ΓW

(c)
βα

)−1

. (5.4.6)

(iii) The parallel transport along the composed path c2 ∗ c1 : [0, 1] → U , see (5.4.3) is given as
follows

ΓW
(c2∗c1)
10 = ΓW

(c2)
10

ΓW
(c1)
10 . (5.4.7)

(iv) Let U ′ ⊂ RN ′ be a non–empty open subset, let Θ : U ′ → U be a C∞–map, let Γ′ = Θ∗Γ be the
pulled-back formal connection, and let c′ : [a, b] → U ′ be a continuous piecewise smooth path.
Then for all α, β ∈ [a, b]

(Θ∗Γ)(c′) = Γ(Θ◦c′) and Θ∗ΓW
(c′)
βα = ΓW

(Θ◦c′)
βα . (5.4.8)

Proof. (i): The formula for Γ(c◦θ) is straightforward and the equation for the parallel transport is
deduced from (5.2.10).
(ii): This is an immediate consequence of (5.4.5) and the last equation of (5.2.9).
(iii): Define the two smooth reparametrizations θ1, θ2 : [0, 1] → [0, 1] given by θ1(s) = 1

2
s and

θ2(s) = 1
2
s+ 1

2
. We have (suppressing the symbol Γ)

W
(c2∗c1)
10

(5.2.9)
= W

(c2∗c1)

1 1
2

W
(c2∗c1)
1
2

0

(5.4.5)
= W

((c2∗c1)◦θ2)
10 W

((c2∗c1)◦θ1)
10 = W

(c2)
10 W

(c1)
10 .

(iv): This is straightforward from the definitions and the chain rule for partial derivatives.

Example 5.4.4. The affine inversion j of the interval [a, b] given by ι(s) = a+b−s for all s ∈ [a, b]
serves as such a reparametrization for the choice α = a and β = b for an inversion in (ii).

Remark 5.4.5. It is well–known that composition of paths is in general not associative, i.e. if
c3 : [0, 1]→ U is a third path with c2(1) = c3(0) then in general c3 ∗ (c2 ∗ c1) 6= (c3 ∗ c2) ∗ c1, but the
corresponding multiplication of parallel transports does not depend on the bracketing, i.e.

W
(c3∗(c2∗c1))
10

(5.4.7)
= W

(c3)
10 W

(c2)
10 W

(c1)
10

(5.4.7)
= W

((c3∗c2)∗c1)
10 .

It turns out that certain connections are formulated by complex coordinates which allow for much
more compact computations: we do not have to go into the detail of general holomorphic connections,
since for our purpose it suffices to study complex rational ones. More precisely, let U ⊂ CN be a
non-empty open set. Recall that a complex rational function in N complex variables z = (z1, . . . , zN)

defined on U is a quotient f(z) = g(z)
h(z)

where f, g ∈ C[z1, . . . , zN ], hence are complex polynomials
in N variables such that g is different from the zero polynomial, and the zeros of g all belong to
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CN \ U . Hence, the function z 7→ g(z)
h(z)

is a well-defined function on U . Decomposing each complex
variable in real and imaginary part as usual,

z1 = x1 + iy1, . . . , zN = xN + iyN or z = x+ iy,

it is clear that each complex rational function f is a particular complex-valued rational function in
2N real variables x1, . . . , xN , y1, . . . , yN =: (x, y) which we can write in the following way

f(z) = f(x+ iy) =: f̌(x, y) =: f (1)(x, y) + if (2)(x, y) (5.4.9)

with unique real rational functions f (1), f (2). Hence, each complex rational function is a C∞-function
in the real variables. Let CU(z) denote the set of all complex rational functions which are well-
defined on U . It is easy to check that they form a complex unital subalgebra of C∞(U,C). Recall
the following well–known rules for the complex derivatives for all integers 1 6 j 6 N :(

∂f

∂zj

)∨
=

1

2

(
∂f̌

∂xj
− i ∂f̌

∂yj

)
and

∂f̌

∂xj
+ i

∂f̌

∂yj
= 0, hence

∂f̌

∂xj
=

(
∂f

∂zj

)∨
= −i ∂f̌

∂yj
(5.4.10)

for all complex rational functions f where the first two equations are easy to check on polynomials
and the second is nothing but the well–known ‘holomorphicity condition’ ∂f/∂z̄j = 0 for the complex
conjugate variables. Next, let Γ be a formal connection on U which is complex rational in the
following way:

Γ(z) =
N∑
j=1

Γj(z)dzj and ∀ 1 6 j 6 N : Γj ∈
(
CU(z)⊗A

)
[[λ]]. (5.4.11)

We can rewrite this expression in the 2N real x and y coordinates:

Γ(z) =
N∑
j=1

Γj(z)dzj =
N∑
j=1

Γj(x+ iy)(dxj + idyj) =
N∑
j=1

Γ̌j(x, y)dxj +
N∑
j=1

iΓ̌j(x, y)dyj

=:
N∑
j=1

Γ̌
[1]
j (x, y)dxj +

N∑
j=1

Γ̌
[2]
j (x, y)dyj =: Γ̌(x, y). (5.4.12)

and get an ordinary formal connection with components Γ̌
[1]
j = Γ̌j in the xj–directions, and Γ̌

[2]
j = iΓ̌j

in the yj–directions.
Let N ′ be a positive integer, let U ′ ⊂ CN ′ be a non-empty open set, let z′ = x′ + iy′ = (z′1, . . . , z

′
N ′)

be complex coordinates, and let Θ1, . . .ΘN : U ′ → C be complex rational functions such that the
map Θ = (Θ1, . . . ,ΘN) : U ′ → CN takes its values in U . We shall write

Θ(z′) = Θ(x′ + iy′) = Θ̌(x′, y′) = Θ(1)(x′, y′) + iΘ(2)(x′, y′) (5.4.13)

where Θ(1),Θ(2) : U ′ → RN are real rational functions.

Proposition 5.4.6. Let Γ be a complex rational connection on U ⊂ CN , and define the complex
pullback Θ∗Γ by formula (5.4.4) with x′j replaced by z′j. Then

(Θ∗Γ)∨ = Θ̌∗Γ̌. (5.4.14)
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Proof. We compute using (5.4.12):(
Θ̌∗Γ̌

)
(x′, y′) =

N ′∑
j=1

N∑
i=1

(
Γ̌

[1]
i

(
Θ(1)(x′, y′),Θ(2)(x′, y′)

) ∂Θ
(1)
i

∂x′j
(x′, y′)dx′j

+Γ̌
[1]
i

(
Θ(1)(x′, y′),Θ(2)(x′, y′)

) ∂Θ
(1)
i

∂y′j
(x′, y′)dy′j

+Γ̌
[2]
i

(
Θ(1)(x′, y′),Θ(2)(x′, y′)

) ∂Θ
(2)
i

∂x′j
(x′, y′)dx′j

+Γ̌
[2]
i

(
Θ(1)(x′, y′),Θ(2)(x′, y′)

) ∂Θ
(2)
i

∂y′j
(x′, y′)dy′j

)
,

hence with (5.4.12) and (5.4.13) we get

(
Θ̌∗Γ̌

)
(x′, y′)

(5.4.9)
=

N ′∑
j=1

N∑
i=1

Γi
(
Θ(z′)

)(∂Θ̌i

∂x′j
(x′, y′)dx′j +

∂Θ̌i

∂y′j
(x′, y′)dy′j

)
(5.4.10)

=
N ′∑
j=1

N∑
i=1

(
Γi ◦Θ

)∨
(x′, y′)

(
∂Θi

∂z′j

)∨
(x′, y′)dz′j =

(
N ′∑
j=1

(Θ∗Γ)j dz
′
j

)∨
(x′, y′),

which proves the Proposition.

5.5 Flat formal connections

Definition 5.5.1. Let N be a positive integer, U ⊂ RN a non-empty open subset, and Γ a formal
connection on U . Γ is called flat if the following conditions hold:

∀ i, j ∈ N, 1 6 i, j 6 N : 0 =
∂Γi
∂xj
− ∂Γj
∂xi

+ λ
(

ΓiΓj − ΓjΓi

)
. (5.5.1)

Remark 5.5.2. Any formal connection on an open set of R1 is flat.

Moreover, complex rational flatness is equivalent to flatness in the following sense:

Proposition 5.5.3. Let U ⊂ CN be an open set and let Γ be a formal connection which is complex
rational in the sense of (5.4.11). Let Γ̌ be the formal connection in the sense of (5.4.12). Then Γ is
flat in the complex sense, i.e.

∀ i, j ∈ N, 1 6 i, j 6 N : 0 =
∂Γi
∂zj
− ∂Γj
∂zi

+ λ
(

ΓiΓj − ΓjΓi

)
(5.5.2)

if and only if Γ̌ is flat in the usual ‘real sense’, see (5.5.1) for 2N real variables (x, y).

Proof. We denote the right–hand side of (5.5.2) by Rij. Equation (5.4.10) allows to replace complex
derivatives ∂/∂zi by the real ones, and thanks to (5.4.12) Řij equals

∂Γ̌
[1]
i

∂xj
−
∂Γ̌

[1]
j

∂xi
+ λ
[
Γ̌

[1]
i , Γ̌

[1]
j

]
= −

(
∂Γ̌

[2]
i

∂yj
−
∂Γ̌

[2]
j

∂yi
+ λ
[
Γ̌

[2]
i , Γ̌

[2]
j

])

= −i

(
∂Γ̌

[2]
i

∂xj
−
∂Γ̌

[1]
j

∂yi
+ λ
[
Γ̌

[2]
i , Γ̌

[1]
j

])
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which exactly gives the components of the right hand side of (5.5.1) for Γ̌ whence the result.

Remark 5.5.4. Any complex rational formal connection on an open subset of C1 is flat.

Moreover, we mention the following well–known result:

Proposition 5.5.5. Let N,N ′ be positive integers, let U ⊂ RN and U ′ ⊂ RN ′ be non–empty open
subsets, let Θ : U ′ → U be a C∞–map, and let Γ be a flat formal connection on U . Then the
pulled–back formal connection Γ′ := Θ∗Γ, see (5.4.4), is also flat.

Proof. We get

∂Γ′u
∂x′v
− ∂Γ′v
∂x′u

+ λ
(
Γ′uΓ

′
v − Γ′vΓ

′
u

)
=

N∑
i=1

∂

(
(Γi ◦Θ)

∂Θi

∂x′u

)
∂x′v

−
N∑
j=1

∂

(
(Γj ◦Θ)

∂Θj

∂x′v

)
∂x′u

+λ
N∑

i,j=1

(
(Γi ◦Θ)(Γj ◦Θ)− (Γj ◦Θ)(Γi ◦Θ)

)∂Θi

∂x′u

∂Θj

∂x′v

=
N∑
i=1

(
∂2Θi

∂x′v∂x
′
u

− ∂2Θi

∂x′u∂x
′
v

)
(Γi ◦Θ)

+
N∑

i,j=1

((
∂Γi
∂xj
− ∂Γj
∂xi

+ λ
(

ΓiΓj − ΓjΓi

))
◦ Φ

)
∂Θi

∂x′u

∂Θj

∂x′v

= 0 + 0 = 0,

thanks to the chain rule, Schwartz’s rule and to the flatness of Γ whence Γ′ is flat.

The significance of flat connections is the following well–known result about the path–independence
of parallel transports:

Theorem 5.5.6. Let N > 1, U ⊂ RN be a non–empty open subset and Γ be a flat formal connection.
Let p, q ∈ U , ε ∈ R, ε > 0, and c0, c1 :]a− ε, b+ ε[ → U be two smooth paths such that

(i) c0(a) = p = c1(a), c0(b) = q = c1(b);

(ii) there exists a smooth homotopy F between c0 and c1: more precisely, there is an open subset
O ⊂ R2 with ]a− ε, b+ ε[ × ]− ε, 1 + ε[ ⊂ O, and F : O → U is a C∞-map satisfying

∀ s ∈ ]a− ε, b+ ε[ : F (s, 0) = c0(s) and F (s, 1) = c1(s),
∀ t ∈ ]− ε, 1 + ε[ : F (a, t) = p and F (b, t) = q.

(5.5.3)

Then the parallel transport with respect to Γ from p to q along c0 is equal to the parallel transport
along c1 with respect to Γ from p to q: ΓW

(c0)
ba = ΓW

(c1)
ba .

Proof. Consider the smooth map Γ(F ) ∈
(
C∞(O,C)⊗A

)
[[λ]] given by

Γ(F )(s, t) :=
N∑
i=1

Γi
(
F (s, t)

)∂Fi
∂s

(s, t). (5.5.4)
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For each (s, t) ∈ O let W
(F )
·a (s, t) denote the parallel transport from p to F (s, t) along the smooth

path s → F (s, t), i.e. W
(F )
·a (we suppress the symbol Γ attached to W in this proof) satisfies the

differential equation

∂W
(F )
·a

∂s
= λΓ(F )W (F )

·a . (5.5.5)

Since Γ and F are smooth, it follows that (s, t) 7→ W
(F )
·a is smooth, and so it is an element of(

C∞(O,C) ⊗ A
)
[[λ]]: indeed since W

(F )
·a is made out of iterated integrals (in the s–direction) the

claim follows from the usual rule of differentiation of integrals depending on a parameter:

∂

∂t

∫ s

a

f(t, s′)ds′ =

∫ s

a

∂f

∂t
(t, s′)ds′.

Differentiating equation (5.5.5) with respect to t, and using equation (5.5.4), we get –upon using
the Schwartz rule that all partial derivatives commute–

∂2W
(F )
·a

∂t∂s
= λ

∂

∂t

( N∑
i=1

(
Γi ◦ F

)∂Fi
∂s

W
(F )
·a

)

= λ

N∑
i=1

N∑
j=1

(
∂Γi
∂xj
◦ F
)
∂Fj
∂t

∂Fi
∂s

W
(F )
·a + λ

N∑
i=1

(Γi ◦ F )
∂2Fi
∂t∂s

W
(F )
·a + λ

N∑
i=1

(Γi ◦ F )
∂Fi
∂s

∂W
(F )
·a

∂t

(5.5.1)
= λ

N∑
i=1

N∑
j=1

(
∂Γj
∂xi
◦ F
)
∂Fj
∂t

∂Fi
∂s

W
(F )
·a

− λ2
N∑
i=1

N∑
j=1

(Γi ◦ F ) (Γj ◦ F )
∂Fj
∂t

∂Fi
∂s

W
(F )
·a + λ2

N∑
i=1

N∑
j=1

(Γj ◦ F ) (Γi ◦ F )
∂Fj
∂t

∂Fi
∂s

W
(F )
·a

+ λ

N∑
i=1

(Γi ◦ F )
∂2Fi
∂t∂s

W
(F )
·a + λ

N∑
i=1

(Γi ◦ F )
∂Fi
∂s

∂W
(F )
·a

∂t

(5.5.5)
= λ

∂

∂s

(
N∑
i=1

(Γi ◦ F )
∂Fi
∂t

W
(F )
·a

)
+ λΓ(F )

∂W (F )
·a

∂t
− λ

N∑
j=1

(Γj ◦ F )
∂Fj
∂t

W
(F )
·a

 .

Hence, setting

H :=
∂W

(F )
·a

∂t
− λ

N∑
j=1

(Γj ◦ F )
∂Fj
∂t

W (F )
·a ∈

(
C∞(O,C)⊗A

)
[[λ]],

the preceding equation gives us the formal linear ODE

∂H

∂s
= λΓ(F )H (5.5.6)

with initial condition at s = a for each t ∈ O′′ with O′′ = {t ∈ R | (a, t) ∈ O}, note that [0, 1] ⊂ O′′:

H(a, t) =
∂W

(F )
aa (t)

∂t
− λ

N∑
j=1

Γj
(
F (a, t)

)∂Fj
∂t

(a, t)W (F )
aa (t)

(5.5.3)
=

∂1

∂t
(t)− λ

N∑
j=1

Γj(p)
∂p

∂t
(t) = 0.

Hence the formal linear ODE (5.5.6) has the unique solution H(s, t) = 0 ∀(s, t) ∈ O ⊃ [a, b]× [0, 1].
It follows by the definition of H that there is the following formal linear ODE with respect to t:

W
(F )
·a

∂t
(s, t) = λ

N∑
j=1

Γj
(
F (s, t)

)∂Fj
∂t

(s, t)W (F )
·a (s, t),
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and since there is no derivative with respect to s in this equation, we can set s = b and get

W
(F )
ba

∂t
(t) = λ

N∑
j=1

Γj
(
F (b, t)

)∂Fj
∂t

(b, t)W
(F )
ba (t)

(5.5.3)
= λ

N∑
j=1

Γj
(
q
)∂q
∂t

(t)W
(F )
ba (t) = 0.

It follows that the parallel transport W
(F )
ba does not depend on t, hence in particular

W
(c0)
ba = W

(F )
ba (t = 0) = W

(F )
ba (t = 1) = W

(c1)
ba .

We shall give a Corollary to the preceding Theorem which will cover all the cases we shall discuss
later: we need to establish first a relation between continuous piecewise smooth paths (which will
turn up while doing composition of paths), and overall smooth paths: specializing to [a, b] = [0, 1]
(which will be only parameter interval in the sequel) we can prove the following

Corollary 5.5.7. Let N ∈ N \ {0}, U ⊂ RN be a non–empty open set, Γ a flat formal connection
on U , and c1, c2 : [0, 1] → U two continuous piecewise smooth paths having the same initial point
p and final point q. Suppose that there is an open set U ′ ⊂ RN and a point $ ∈ U ′ such that c1

and c2 take all their values in U ′ ⊂ U and which is star–shaped around $ ∈ U ′. Then the parallel
transports p → q along c1 and along c2 are equal. In particular, the parallel transport along any
continuous piecewise smooth loop c3 : [0, 1]→ U ′ ⊂ U is trivial, i.e. equal to 1 ∈ A.

We first need the following well–known Smoothing Lemma which is a technical tool allowing for
smoothing reparametrizations: it will only be needed in the proof of Corollary 5.5.7:

Lemma 5.5.8 (Smoothing Lemma). Let c : [a, b] → U ⊂ RN be a continuous piecewise smooth
path with potential singular set D. Then there exists a smooth map θ : R → [a, b] such that its
restriction to [a, b] is strictly monotonous and surjective (hence has a continuous inverse on [a, b]), it
induces the identity map on D, and whose higher derivatives all vanish at the points of D. Moreover,
the composition c ◦ θ : R→ [a, b] (in the sense of (5.1.5)) is an everywhere well–defined smooth map
all of whose higher derivatives (for r > 1) vanish at all points of D. For all s 6 a the map c ◦ θ
takes the constant value c(a), and for all s > b it takes the constant value c(b). In particular, for
every positive ε the restriction of c ◦ θ to [a− ε, b+ ε] yields a reparametrized path which is smooth.

Proof. Let ρ : R→ R be the following function

ρ(s) :=

{
e−1/s if s > 0,

0 if s 6 0.

It is well–known and not hard to see that ρ is C∞, has all of its higher derivatives equal to zero at
0 and only strictly positive values for s > 0. Define the function ϑ : R→ R by

ϑ(s) :=

m∑
i=0

(
ai+1 − ai

) ρ(s− ai)ρ(ai+1 − s)∫ ai+1

ai
ρ(s′ − ai)ρ(ai+1 − s′)ds′

and θ : R→ R by the primitive of ϑ:

θ(s) := a+

∫ s

a

ϑ(s′)ds′.
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Then all the properties of θ follow from the fact that ai+1 − ai > 0 and that the smooth function
s 7→ ρ(s − ai)ρ(ai+1 − s) is strictly positive on ]ai, ai+1[ and zero outside ]ai, ai+1[. Moreover, it is
clear that the composition c ◦ θ is smooth on [a, b] \ D as a composition of smooth maps. By the
iterated chain rule it follows that all the higher derivatives of c ◦ θ tend to zero at the points of D
since all the higher derivatives of θ go to zero at these points whereas all the higher left–side and
right–side derivatives of c remain bounded.

Proof. (of Corollary 5.5.7):
Let c : [0, 1]→ U ′ ⊂ U be the continuous piecewise smooth loop with c(0) = c(1) = p defined by the
composition (c2 ◦ ι) ∗ c1 where ι : [0, 1] → [0, 1] is the interval inversion ι(s) = 1− s. Furthermore,
let d : [0, 1]→ U ′ be the affine path joining $ with p, i.e. d(s) = (1− s)$ + sp. Let č : [0, 1]→ U ′

be the piecewise smooth path č :=
(
d ◦ ι

)
∗ (c ∗ d). Clearly, č is a continuous piecewise smooth

loop based at $. Choose a smooth reparametrization θ of the path č in the sense of the preceding
Lemma 5.5.8. Recall that θ is a smooth map R→ [0, 1] with θ(s) = 0 for all s 6 0 and θ(s) = 1 for
all s > b. Thanks to (5.4.5) and to the fact that θ(0) = 0, θ(1) = 1 we have the following equality
of parallel transports

ΓW
(č◦θ)
10 = ΓW

(č)
10 = ΓW

((d◦ι)∗(c∗d))
10

(5.4.7)
= ΓW

(d)
10

−1
ΓW

(c)
10

ΓW
(d)
10 . (5.5.7)

Next, the map F̃ : R2 → RN defined by

F̃ (s, t) = (1− t)č
(
θ(s)

)
+ tq

is clearly smooth, hence in particular continuous, whence the inverse image O := F̃−1(U ′) is an
open subset of R2 which contains the rectangle [0, 1] × [0, 1] thanks to the hypothesis that U ′ is
star-shaped around $ and that all the points of the loop c and hence of č are in U ′. By compactness
of [0, 1] there is ε > 0 such that the open rectangle ] − ε, 1 + ε[ × ] − ε, 1 + ε[ is still contained in
O thanks to the Heine–Borel Theorem. Let F : O → U ′ ⊂ U ⊂ RN denote the restriction of F̃ to
O. Then F clearly satisfies all the hypotheses of Theorem 5.5.6: for all s ∈ ] − ε, 1 + ε[ we have
F (s, 0) = č

(
θ(s)

)
=: c(0)(s) and F (s, 1) = $ =: c(1)(s) (the constant loop at $), and of course for

all t ∈ ]− ε, 1 + ε[ we get F (0, t) = $ = F (1, t). By Theorem 5.5.6 we get

ΓW
(č◦θ)
10 = ΓW

(c(1))

10 = 1

since c(1) is the constant loop whence Γ(c(1)) = 0. Thanks to equation (5.5.7) we get

1 = ΓW
(c)
10 =

(
ΓW

(c2)
10

)−1
ΓW

(c1)
10

which proves the statement. The case of a continuous piecewise smooth loop c3 based at p is a
particular case of the preceding statement upon choosing the constant loop c4 at p as a second
path.
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5.6 The Knizhnik-Zamolodchikov connection and the Drinfeld-

Kohno (Lie) algebras

Definition 5.6.1. Let n > 2 be an integer and let Aij, 1 6 i 6= j 6 n be elements of A. We say
that the elements Aij satisfy the infinitesimal braid relations if

Aij − Aji = 0 ∀ 1 6 i 6= j 6 n, (5.6.1a)

[Aij + Aik, Ajk] = 0 ∀i, j, k ∈ {1, . . . , n} such that #{i, j, k} = 3, (5.6.1b)

[Aij, Akl] = 0 ∀i, j, k, l ∈ {1, . . . , n} such that #{i, j, k, l} = 4. (5.6.1c)

The following definition appears in [Koh87, p.142, eqn (1.1.4)] and [Koh87, p.146, eqn (1.3.2)]:

Definition 5.6.2. Let n > 2 be an integer and let K be a field of characteristic zero. The n–th
Drinfeld–Kohno algebra is the K–algebra Tn generated by n2 − n elements tij, 1 6 i 6= j 6 n,
subject to the infinitesimal braid relations. Similarly, the n–th Drinfeld–Kohno Lie algebra is
the K–Lie algebra tn generated by n2 − n generators tij, 1 6 i 6= j 6 n, subject to the relations
(5.6.1a), (5.6.1b), and (5.6.1c), seen as Lie brackets in the free Lie algebra generated by the tij.

Definition 5.6.3. For each integer n > 2 we define the n–th ordered configuration space as

Yn :=
{
z ∈ Cn

∣∣ ∀ i, j ∈ N, 1 6 i, j 6 n : if i 6= j then zi 6= zj
}
. (5.6.2)

Recall that the usual permutation of coordinates defines a right action of the permutation group
Sn on Cn given by z = (z1, . . . , zn) 7→ (zσ(1), . . . , zσ(n)) =: zσ for each permutation σ ∈ Sn. This
right action preserves Yn on which it acts freely, and the quotient Xn := Yn/Sn is a complex n–
dimensional manifold called the n–th (unordered) configuration space. The fundamental groups of
Xn and of Yn are well–known to be isomorphic to the braid group of n strands, Bn, and to the pure
braid group of n strands, Pn ⊂ Bn, respectively.
The following well–known (formal) connection is very important, see [KZ84]:

Definition 5.6.4. Let n > 2 and A be a complex algebra containing n(n− 1)/2 elements Aij = Aji
(indexed by 1 6 i 6= j 6 n) satisfying the infinitesimal braid relations (5.6.1b) and (5.6.1c). The
formal Knizhnik–Zamolodchikov (KnZa)-connection (n)ΓKnZa on Yn (with respect to A) is

(n)ΓKnZa(z1, . . . , zn) :=
∑

16i<j6n

Aij
zi − zj

(dzi − dzj). (5.6.3)

Clearly, the KnZa-connection is complex rational in the sense of (5.4.11). We have the following

Theorem 5.6.5. For all integers n > 2 the Knizhnik–Zamolodchikov connection is (formally) flat.

A very detailed proof of this statement can be found in [Kas12, p.452-454].

Remark 5.6.6. Note that:

(i) For all integers n > 2 the KnZa–connection (n)ΓKnZa is invariant by all pull–backs with respect
to translations Tv : Yn → Yn : z 7→ z + (v, v, . . . , v) (for all v ∈ C) and with respect to all
complex homotheties Hp : Yn → Yn given by z 7→ pz for all p ∈ C× = C \ {0}, in the sense
that T ∗v

(
(n)ΓKnZa

)
=(n) ΓKnZa and H∗p

(
(n)ΓKnZa

)
=(n) ΓKnZa.
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(ii) For any integers 1 6 i 6= j 6 n, if ‘particle i is near to particle j’, (i.e. the distance |zi − zj|
becomes ‘very small’) then the term containing Aij in the KnZa-connection will be ‘very large’
compared to the others: this intuition will motivate the choice of paths in the following sections.

(iii) For n = 2 and n = 3 there are the following isomorphisms of open sets of C2 and of C3 which
are given by explicit bijective complex rational maps:

Y2
∼= C× × C and Y3

∼= C×× × C× × C

where C× := C \ {0} and C×× := C \ {0, 1}. In fact, the invertible linear map (z1, z2) 7→
(z1−z2, z1+z2) gives the first isomorphism. For n = 3 the invertible rational map Y3 → C×××
C× × C given by

(z1, z2, z3) 7→
(
z2 − z1

z3 − z1

, z3 − z1, z1

)
with inverse ϑ : (z, v, w) 7→ (w, zv+w, v+w) (5.6.4)

defines an isomorphism concerning Y3, see also [Dri90b, p.1453] or [Kas12, p.469, eqn (7.3)].
An elementary computation shows that for n = 3 the pullback of (3)ΓKnZa with respect to the
rational map ϑ : C×× × C× × C→ Y3, see (5.6.4), is equal to

(
ϑ∗
(

(3)ΓKnZa
))

(z, v, w) =

(
A12

z
+

A23

z − 1

)
dz +

A12 + A13 + A23

v
dv (5.6.5)

where we have used Proposition 5.4.6 and equations (5.4.4) and (5.4.14). Note further that
the right action of the permutation group S3 on Y3 can be transferred to C×× × C× × C and
projected to C×× by means of the maps (5.6.4). This gives the following maps on C××:

τ12(z) = z
z−1

, τ23(z) = 1
z
, τ13(z) = 1− z, ζ(z) = 1

1−z , ζ−1(z) = ζ
(
ζ(z)

)
= z−1

z (5.6.6)

where τij denotes the transposition exchanging i and j, and ζ = (132) ∈ S3.

5.7 The Drinfeld associator: definition and properties

In this Section the Drinfeld associator is treated: we are not following the usual definition, but
use the statement of [Kas12, p.465, Lemma XIX.6.3] as a definition. The parallel transport we are
interested in is denoted there by Ga(1− a) with a = δ. From now on we set λ = ~

2πi
.

Set U := ]0, 1[ and J :=]0, 1/4]. For any A,B ∈ A define the formal connection

Γ(B,A)(x) :=

(
1

x
A+

1

x− 1
B

)
dx (5.7.1)

on U which is a flat formal connection, see §5.5, because U is one–dimensional. Note that the
interval inversion ι : ]0, 1[ → ]0, 1[ defined by

ι(x) = 1− x (5.7.2)

is well–defined and smooth, and it is easy to compute the pulled–back connection

ι∗Γ(B,A) = Γ(A,B). (5.7.3)

102



For all δ, ε ∈ J we define the affine path c(δε) : [0, 1]→ U from δ to 1− ε, namely

c(δε)(s) := (1− s)δ + s(1− ε) = δ + s(1− δ − ε). (5.7.4)

Then

Γ(B,A)(c(δε))(s) =
1− δ − ε

δ + s(1− δ − ε)
A+

1− δ − ε
δ − 1 + s(1− δ − ε)

B. (5.7.5)

We are interested in the parallel transport Γ(B,A)W
(c(δε))

10 along the path c(δε) from δ to 1− ε. Setting

J ′ := J × J it follows from the general theory described in §5.3 that the map (δ, ε) 7→ Γ(B,A)W
(c(δε))

10

is an element of the algebra
(

Fun
(
J ′,C

)
⊗ A

)
[[λ]], see (5.3.17). It can be expressed in terms of

iterated integrals in the following way: we make a change of variables u := δ + s(1− δ − ε), and we
set A0 := A, A1 := B. Hence,

Γ(B,A)W
(c(δε))

10 = 1 +
∞∑
r=1

λr
1∑

i1,...,ir=0(∫ 1−ε

δ

1

u1 − i1

(∫ u1

δ

1

u2 − i2

(
· · ·
(∫ ur−1

δ

1

ur − ir
dur

)
· · ·
)
du2

)
du1

)
Ai1 · · ·Air (5.7.6)

It is to be expected that the preceding expression becomes singular whenever δ → 0 or ε → 0: in
order to see this assume for a moment that A and B commute. Clearly, Γ(B,A)(c(δε)) commutes
with its primitive, and a straightforward computation following formula (5.2.12) of Proposition 5.2.1
gives

if AB = BA then Γ(B,A)W
(c(δε))

10 = eλ ln(ε)Beλ
(

ln(1−ε)A−ln(1−δ)B
)
e−λ ln(δ)A (5.7.7)

showing that the divergences of the parallel transport are the left and the right factors and are
logarithmic for δ → 0 or ε→ 0 in that particular case whereas the middle factor converges to 1.
Returning to the general case, in order to capture the singular terms we shall break the computa-
tion in two parts separated by the mid–point 1/2: consider the following ‘exponential half–paths’
c̃(1,δ), c̃(2,ε) : [0, 1]→ U defined by

c̃(1,δ)(s) := 1
2
eln(2δ)(1−s) joining δ → 1

2
,

c̃(2,ε)(s) := 1− 1
2
eln(2ε)s joining 1

2
→ 1− ε. (5.7.8)

Hence, the composed path c̃(2,ε) ∗ c̃(1,δ) is continuous and piecewise smooth with singular set D =
{0, 1/2, 1} and joins δ → 1 − ε. The following continuous piecewise smooth reparametrization
γ : [0, 1]→ [0, 1] (with singular set {0, 1/2, 1}) obviously links the affine path c(δε) with c̃(2,ε) ∗ c̃(1,δ):

γ(s) :=

{ 1
2
eln(2δ)(1−2s)−δ

1−δ−ε if 0 6 s 6 1
2
,

1− 1
2
eln(2δ)(2s−1)−δ

1−δ−ε if 1
2
6 s 6 1

hence c(δε) ◦ γ = c̃(2,ε) ∗ c̃(1,δ). (5.7.9)

Using the interval inversion ι as a continuous piecewise smooth reparametrization [0, 1] → [0, 1]
given by (5.7.2) we can write

c̃(1,δ) = ι ◦ c̃(2,δ) ◦ ι.
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Since parallel transport is independent on reparametrizations, see (5.4.5), we get

Γ(B,A)W
(c(δε))

10 = Γ(B,A)W
(c(δε)◦γ)

10

(5.7.9)
= Γ(B,A)W

(c̃(2,ε)∗c̃(1,δ))
10

(5.4.7)
= Γ(B,A)W

(c̃(2,ε))

10
Γ(B,A)W

(ι◦c̃(2,δ)◦ι)
10

(5.4.8),(5.7.3)(5.4.6)
= Γ(B,A)W

(c̃(2,ε))

10

(
Γ(A,B)W

(c̃(2,δ))

10

)−1

. (5.7.10)

It follows that it suffices to compute the parallel transport along the exponential half-path c̃(2,ε), the
parallel transport along the other half c̃(1,δ) follows from the symmetry and an exchange of A and
B. The choice of the exponential function in the path c̃(2,ε) becomes clear when computing

Γ(B,A)(c̃(2,ε))(s) = ln(2ε)B +
− ln(2ε)

2e− ln(2ε)s − 1
A, (5.7.11)

and we see that the term in front of B does not depend on s.

Lemma 5.7.1. We have the following factorization of the parallel transport s 7→ Γ(B,A)W
(c̃(2,ε))

s0 in

the algebra
(

Fun
(
]0, 1/4], C∞{0,1}

(
[0, 1],C

))
⊗A

)
[[λ]]

Γ(B,A)W
(c̃(2,ε))

s0 = eλ ln(ε)sBψε(B,A)(s) (5.7.12)

where (s, ε) 7→ ψε(B,A)(s) is in the group GB of bounded terms (with respect to (s, ε), see (5.3.10)
and (5.3.11)). We set ψε(B,A) := ψε(B,A)(1). Moreover, there is a well–defined element ψ(B,A) ∈
A[[λ]] such that the following limit exists

lim
ε→0

ψε(B,A)(s) =

{
1 if s = 0,

ψ(B,A) ∈ A[[λ]] if 0 < s 6 1,
(5.7.13)

in the sense of limits discussed in §5.3, see (5.3.2), (5.3.4) and Proposition 5.3.1.

Proof. In (5.7.11) we set

Yε(s) := ln(2ε)B and Zε(s) :=
− ln(2ε)

2e− ln(2ε)s − 1
A

and use the factorization statement (5.2.11):

Γ(B,A)W
(c̃(2,ε))

s0 = U
(ε)
s0 Ξ

(ε)
s0 . (5.7.14)

Clearly, the formal linear ODE dU
(ε)
·0 /ds = λYεU

(ε)
·0 with initial condition 1 is trivially given by

the exponential function U
(ε)
s0 = eλ ln(2ε)sB, and we have to solve the formal linear ODE with initial

condition 1,

dΞ
(ε)
s0

ds
(s) = e−λ ln(2ε)sBZε(s)e

λ ln(2ε)sBΞ
(ε)
s0 = e−λ ln(2ε)sadB

(
Zε(s)

)
Ξ

(ε)
s0

where adB : A → A denotes the usual adjoint map ξ 7→ Bξ− ξB, and we have used the well–known
identity that conjugation with exponentials is the exponential of ad which is standard in Lie group
theory, see e.g. [KMS93, p.38, Cor.4.25]. We can compute the solution Ξ

(ε)
s0 in terms of iterated

integrals, see (5.2.5), where the following abbreviations make computations easier: set ν := − ln(2ε)
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and τ := νs, τi := νsi ∀ i ∈ N. Since 0 < 2ε 6 1/2 < 1 it follows that ν > 0 and that the limit
limε→0 corresponds to limν→+∞. Then Ξε is given by the following expression:

Ξ
(ε)
s0 = 1 +

∞∑
r=1

λr
∞∑

`1,...,`r=0

λ`1+···+`r

`1! · · · `r!
ad`1B (A) · · · ad`rB (A)(∫ νs

0

g1

(∫ τ1

0

g2

(
· · ·
(∫ τr−1

δ

grdτr

)
· · ·
)
dτ2

)
dτ1

)
︸ ︷︷ ︸

:=Ir,`1,...,`r (s,ν)

(5.7.15)

where gi :=
τ
`i
i

2eτi−1
. We shall prove that for all non–negative integers r, `1, . . . , `r with r > 1 and all

s ∈ [0, 1] the iterated real integral Ir,`1,...,`r(s, ν) at the end of (5.7.15) converges to a non–negative
real number for ν → +∞: this will prove that the limit limε→0 Ξε(s) exists. In case s = 0 this is
of course obvious since all these integrals vanish. For s > 0, the crucial observation is that all the

real numbers τ1, . . . , τr are non–negative whence all the functions τi 7→ τ
`i
i

2eτi−1
, i ∈ N \ {0}, take

non–negative values on the interval [0, νs]. Thanks to the monotonicity of the Riemann integral
it follows that enlarging ν makes the interval [0, νs] bigger which in turn makes the value of the
iterated integral larger: hence the function [ln(2),+∞[ 7→ [0,+∞[ given by ν 7→ Ir,`1,...,`r(s, ν) is
strictly increasing. By the well–known principle stating that every increasing bounded sequence of
real numbers converges it suffices to show that all the integrals Ir,`1,...,`r(s, ν) admit an upper bound
independent on all s ∈ [0, 1] and ν ∈ [ln(2),+∞[: indeed, the elementary inequality eτi − 1 > 0 for
all positive integer i (since τi > 0) implies

∀ i ∈ N \ {0} : 2eτi − 1 = eτi + eτi − 1 > eτi , hence
τ `ii

2eτi − 1
6 τ `ii e

−τi ,

and the integral Ir,`1,...,`r(s, ν) can be bounded by

Ir,`1,...,`r(s, ν) 6

(∫ νs

0

τ `11 e
−τ1dτ1

)
· · ·
(∫ νs

0

τ `rr e
−τrdτr

)
6 `1! · · · `r!

thanks to the well–known integral (for all non–negative integers n)∫ ∞
0

τne−τdτ = n!.

This shows that the limit limε→0 Ξε(s) exists and does not depend on 0 < s 6 1. Using the
factorization equation (5.7.14), the trivial fact that ln(2ε) = ln(2) + ln(ε) and defining

ψε(B,A)(s) := eλ ln(2)sBΞε(s)

shows the factorization equation (5.7.12) and the limit (5.7.13). In particular, it implies that ε 7→
ψε(B,A) is bounded, i.e. it is an element of GB.

This Lemma –together with the factorization equation (5.7.10)– has the following consequence

Theorem 5.7.2. The parallel transport Γ(B,A)W
(c(δε))

10 along the path c(δε), see (5.7.4), factorizes in
the following way

Γ(B,A)W
(c(δε))

10 = eλ ln(ε)BΦδ,ε(A,B)e−λ ln(δ)A, (5.7.16)
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with

Φδ,ε(A,B) := ψε(B,A) (ψδ(A,B))−1 . (5.7.17)

The following limit exists,

lim
(δ,ε)→(0,0)

Φδ,ε(A,B) := Φ(A,B) ∈ A[[λ]], (5.7.18)

and is called the Drinfeld associator with respect to A,B ∈ A.

Proposition 5.7.3. We have the following properties of the Drinfeld associator:

(i) Φδ,ε(A,B)−1 = Φε,δ(B,A), hence

Φ(A,B)−1 = Φ(B,A). (5.7.19)

(ii) Φ(A,B)− 1 ∈ λ2A[[λ]].

(iii) Let Λ,Λ′ ∈ A be central for A,B in the sense that

[Λ, A] = 0 = [Λ′, A] and [Λ, B] = 0 = [Λ′, B] and [Λ,Λ′] = 0.

Then

Φ(A+ Λ, B + Λ′) = Φ(A,B). (5.7.20)

Proof. (i): immediately follows from the definitions (5.7.17) and (5.7.18).
(ii): computing the coefficient of λ1 of (5.7.16) we get from the right hand side

ln(ε)B + (Φδ,ε(A,B))1 − ln(δ)A

and from the left hand side the integral (compare (5.7.6))∫ 1−ε

δ

du

u
A−

∫ 1−ε

δ

du

1− u
B = ln(1− ε)A− ln(δ)A+ ln(ε)B − ln(1− δ)B

showing (Φδ,ε(A,B))1 = ln(1 − ε)A − ln(1 − δ)B. Therefore, the claim easily follows from the fact
that ln(1− x)→ 0 if x→ 0 whence lim(δ,ε)→(0,0) (Φε,δ(B,A))1 = 0.
(iii): Since the connection Γ(B + Λ′, A+ Λ) evaluated on the path c(δε), Γ(B + Λ′, A+ Λ)(c(δε)), see
(5.7.5) is equal to Γ(Λ′,Λ)(c(δε)) + Γ(B,A)(c(δε)) we can use the factorization statement (5.2.11) with
Y = Γ(Λ′,Λ)(c(δε)), Z = Γ(B,A)(c(δε)), and the fact that Λ and Λ′ commute with all words in A
whose letters are A,B,Λ or Λ′ (hence U−1

·0 ZU·0 = Z in (5.2.11)) we can use (5.2.12) and (5.7.7) to
conclude that

Φδ,ε(A+ Λ, B + Λ′) = eλ
(

ln(1−ε)Λ−ln(1−δ)Λ′
)
Φδ,ε(A,B)

hence, passing to the limit we conclude.

Remark 5.7.4. Note that if A carries the structure of a bialgebra and A,B ∈ A are primitive
elements then Φ(A,B) is a (formally) grouplike element. In particular, when A = C〈A,B〉 the
Drinfeld associator is a formal exponential series whose exponent is an element of the formal power
series with coefficients in the free Lie algebra generated by two elements.
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5.8 The Hexagon Equation

Let A,B,C ∈ A such that the sum Λ := A+B + C commutes with all the three, i.e.

AΛ = ΛA, BΛ = ΛB, CΛ = ΛC. (5.8.1)

We shall prove the Hexagon Equation for the Drinfeld associator, i.e.

eλπiΛ = eλπiA Φ(C,A) eλπiC Φ(B,C) eλπiB Φ(A,B). (5.8.2)

Let U := C×× := C \ {0, 1} and consider the complex version of the connection Γ(B,A), see (5.7.1),
i.e.

Γ(B,A) :=

(
1

z
A+

1

z − 1
B

)
dz (5.8.3)

which is flat, see Proposition 5.5.3. Recall the rational maps ζ, ζ ◦ ζ = ζ−1 : C×× → C×× defined
by ζ(z) = 1

1−z and ζ−1(z) = z−1
z

coming from the cyclic permutations in Y3, see (5.6.6). We
compute the pull-backs of the connection (5.8.3): using Proposition 5.4.6 we get, upon setting
C̃ := −A−B = C − Λ,

(ζ∗Γ(B,A)) (z) = Γ(B,A)

(
1

1− z

)
1

(1− z)2
=

1

1− z
A+

1

z(1− z)
B

=
1

z
B +

−A−B
z − 1

= Γ(C̃, B)(z). (5.8.4)

Iterating this formula (recall that ζ ◦ ζ = ζ−1) gives((
ζ−1
)∗

Γ(B,A)
)

(z) = Γ(A, C̃)(z). (5.8.5)

We shall now consider the parallel transport with respect to the connection Γ(B,A) along a contin-
uous piecewise smooth loop cδ depending on a parameter δ ∈ J based at the point δ ∈ C××, which
is the composition of six paths,

cδ := c(VI,δ) ∗
(
c(V,δ) ∗

(
c(IV,δ) ∗

(
c(III,δ) ∗

(
c(II,δ) ∗ c(I,δ)

))))
(5.8.6)

given by

c(I,δ)(s) := (1− s)δ + s(1− δ) = δ + s(1− 2δ) joining δ → 1− δ,
c(II,δ)(s) :=

1− δ
2
− δ

2
eiπs

1− δ
2

+ δ
2
eiπs

= 1− δ

(1− δ
2)e−iπs+ δ

2

joining 1− δ → 1
1−δ ,

c(III,δ)(s) := ζ
(
c(I,δ)(s)

)
= 1

1−δ−s(1−2δ)
joining 1

1−δ → 1
δ
,

c(IV,δ)(s) := ζ
(
c(II,δ)(s)

)
= 1

2
+
(

1
δ
− 1

2

)
e−iπs joining 1

δ
→ −1

δ
+ 1,

c(V,δ)(s) := ζ
(
ζ
(
c(I,δ)(s)

))
= δ−1+s(1−2δ)

δ+s(1−2δ)
joining −1

δ
+ 1 → − δ

1−δ ,

c(VI,δ)(s) := ζ
(
ζ
(
c(II,δ)(s)

))
= δ

−(1− δ
2)e−iπs+ δ

2

joining − δ
1−δ → δ.

(5.8.7)

It is easy to check that all the six paths take all their values in the lower half plane (including the
x–axis and excluding 0 and 1).

The singular set D for the loop cδ is thus equal to
{

0, 1
32
, 1

16
, 1

8
, 1

4
, 1

2
, 1
}

. The following geometric
description of the paths, see Figure 5.1, may perhaps clarify the whole procedure: the three ‘odd’
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•
−3

•
− 1

3

◦
0

•
1
4

•
3
4

◦
1

•
4
3

•
4

c(IV,δ)

c(II,δ)c(VI,δ)

c(V,δ)
c(I,δ) c(III,δ)

Figure 5.1: The paths (5.8.7) at δ = 1/4

paths c(I,δ), c(III,δ), and c(V,δ) parametrize the closed intervals [δ, 1−δ], ζ
(
[δ, 1−δ]

)
= [1/(1−δ), 1/δ],

and ζ2
(
[δ, 1 − δ]

)
= [−(1/δ) + 1,−δ/(1 − δ)], respectively, all along the x–axis. Note that c(III,δ)

and c(V,δ) are not affine paths in the sense of (5.4.2). The three ‘even’ paths c(II,δ), c(IV,δ), and c(VI,δ)

parametrize lower half circles with centres 1 + δ2

2−2δ
, 1

2
, and − δ2

2−2δ
, respectively, having radii 2δ−δ2

2−2δ
,

1
δ
− 1

2
, and 2δ−δ2

2−2δ
, respectively, as can be checked by a lengthy, but elementary computation. c(II,δ)

and c(VI,δ) are traced counterclockwise (where the parametrization is not uniform), and c(IV,δ) is
traced clockwise with uniform parametrization.

Remark 5.8.1. Note that the whole picture of the six paths in the doubly punctured plane has a
reflection symmetry (the map s : z 7→ 1− z̄) with respect to the straight line x = 1

2
. Hence, with the

usual interval inversion ι of the interval [0, 1], ι(s) = 1− s, it is easy to see that the following holds
by using the concrete formulas (5.8.7): s ◦ c(I,δ) ◦ ι = c(I,δ), s ◦ c(II,δ) ◦ ι = c(VI,δ), s ◦ c(III,δ) ◦ ι = c(V,δ),
and s ◦ c(IV,δ) ◦ ι = c(IV,δ).

We shall now compute the parallel transports along the six paths. First, it is immediate that the

parallel transport Γ(B,A)W
(c(I,δ))

10 coincides with the parallel transport Γ(B,A)W
(cδδ)
10 of the preceding

Section, see (5.7.6): this can be seen by using the smooth injection ]0, 1[→ C×× to pull back
the connection (5.8.3) to the interval. Using the formulas (5.8.4) and (5.8.5) and the fact that
c(III,δ) = ζ ◦ c(I,δ) and c(V,δ) = ζ ◦ ζ ◦ c(I,δ), see ((5.8.7)) we get –upon using (5.4.8)– the following
formulas

Γ(B,A)W
(c(I,δ))

10 = Γ(B,A)W
(cδδ)
10

(5.7.16)
= eλ ln(δ)BΦδ,δ(A,B)e−λ ln(δ)A,

Γ(B,A)W
(c(III,δ))

10

(5.8.4)
= Γ(C̃,B)W

(cδδ)
10

(5.7.16)
= eλ ln(δ)C̃Φδ,δ(B, C̃)e−λ ln(δ)B,

Γ(B,A)W
(c(V,δ))

10

(5.8.5)
= Γ(A,C̃)W

(cδδ)
10

(5.7.16)
= eλ ln(δ)AΦδ,δ(C̃, A)e−λ ln(δ)C̃ .

(5.8.8)

For the even paths we can proceed in exactly the same way: using the fact that c(IV,δ) = ζ ◦ c(II,δ)

and c(VI,δ) = ζ ◦ ζ ◦ c(I,δ), see (5.8.7) we get –upon using (5.4.8)– the following formulas:

Γ(B,A)W
(c(IV,δ))

10 = Γ(C̃,B)W
c(II,δ)
10 and Γ(B,A)W

(c(VI,δ))

10 = Γ(A,C̃)W
c(II,δ)
10 , (5.8.9)

hence it suffices to compute Γ(B,A)W
(c(II,δ))

10 .
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Lemma 5.8.2. The parallel transport Γ(B,A)W
(c(II,δ))

10 along the path c(II,δ) factorizes in the following
way

Γ(B,A)W
(c(II,δ))

10 = eλiπBH(δ)(B,A) (5.8.10)

where the element δ 7→ H(δ)(B,A) of
(

Fun (]0, 1/4],C) ⊗ A
)

[[λ]] is a harmless group term, see

(5.3.10), (5.3.11), and Proposition 5.3.2.

Proof. We compute

Γ(B,A)(c(II,δ))(s) =− iπ
δ
(
1− δ

2

)
eiπs(

1− δ
2

)2 − δ2

4
ei2πs

A+ iπ
1− δ

2

1− δ
2

+ δ
2
eiπs

B

= iπB︸︷︷︸
=:Y0(s)

−iπδ

(
1
2
eiπs

1− δ
2

+ δ
2
eiπs

B +

(
1− δ

2

)
eiπs(

1− δ
2

)2 − δ2

4
ei2πs

A

)
︸ ︷︷ ︸

=:Z(δ)(s)

. (5.8.11)

We can now apply the factorization statement (iv) of Proposition 5.2.1, see (5.2.11): clearly, the
fundamental solution U·0(s) of the formal linear ODE dU·0/ds = λY0U·0 is simply given by the

formal exponential U·0(s) = eλiπsB, and the parallel transport Γ(B,A)W
(c(II,δ))

·0 thus factorizes thanks
to (5.2.11) as follows for all s ∈ [0, 1]

Γ(B,A)W
(c(II,δ))

s0 = eλiπsB H(δ)(B,A)(s)

where H(δ)(B,A)(s) is a fundamental solution for the formal linear ODE

dH(δ)(B,A)

ds
(s) = λe−λiπsBZ(δ)(s)eλiπsBH(δ)(B,A)(s)

= λ
(
e−λiπsadB

(
Z(δ)(s)

))︸ ︷︷ ︸
=:Z̃(δ)(s)

H(δ)(B,A)(s)

with initial condition H(δ)(B,A)(0) = 1. We shall make the upper bound test (5.3.19) for Z̃(δ)(s),

see Lemma 5.3.5: writing Z̃(δ)(s) =
∑∞

r=0 λ
rZ̃

(δ)
r (s) we get –upon using an arbitrary norm || || on

the complex vector space A– for each r ∈ N upon setting dr0 := 1 if r = 0 and dr0 := 0 otherwise:∣∣∣∣∣∣Z̃(δ)
r (s)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣irπrsrr!
ad◦rB

(
Z(δ)(s)

)∣∣∣∣∣∣∣∣
(5.8.11)

=
πr+1sr

r!
δ

∣∣∣∣∣
∣∣∣∣∣ dr0

1
2
eiπs

1− δ
2

+ δ
2
eiπs

B +

(
1− δ

2

)
eiπs(

1− δ
2

)2 − δ2

4
ei2πs

ad◦rB (A)

∣∣∣∣∣
∣∣∣∣∣

6
πr+1

r!
(||B||+ 2 ||ad◦rB (A)||)︸ ︷︷ ︸

=:Čr

δ

where we have used |eiτ | = 1 for each real number τ , and the elementary lower bounds∣∣∣∣1− δ

2
+
δ

2
eiπs
∣∣∣∣ > 1− δ

2
−
∣∣∣∣δ2eiπs

∣∣∣∣ = 1− δ > 1

2
,∣∣∣∣∣

(
1− δ

2

)2

− δ2

4
ei2πs

∣∣∣∣∣ >
(

1− δ

2

)2

−
∣∣∣∣δ2

4
ei2πs

∣∣∣∣ = 1− δ > 1

2
.

for the denominators. It follows that δ 7→ H(δ)(B,A) is a harmless group term.
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We now need to put the loop cδ in a star-shaped open set U ′ of C×× because C×× is not star-shaped
(it is not even simply connected). Define

U ′ := C \
{

1− i
2

+ t(γ + i) ∈ C
∣∣∣∣ t ∈ R, t >

1

2
, γ ∈ {−1, 1}

}
. (5.8.12)

Theorem 5.8.3 (Hexagon Equation). Let A,B,C ∈ A be three elements satisfying (5.8.1). Then
the Hexagon equation (5.8.2) for the Drinfeld associator holds.

Proof. Since the composed loop cδ, see (5.8.6), is contained in the star–shaped open subset U ′, see
(5.8.12), we can apply Corollary 5.5.7 to conclude that the parallel transport around the loop cδ
along the flat connection Γ(B,A), see (5.8.3), is equal to 1. Abbreviating Γ(B,A)W

(c)
10 by W

(c)
10 for any

piecewise smooth path c : [0, 1]→ U ′ we get

1 = W
(cδ)
10

(5.4.7)
= W

(c(VI,δ))

10 W
(c(V,δ))

10 W
(c(IV,δ))

10 W
(c(III,δ))

10 W
(c(II,δ))

10 W
(c(I,δ))

10

(5.8.9),(5.8.10),(5.8.8)
= eλiπA H(δ)(A, C̃) eλ ln(δ)A Φδ,δ(C̃, A) e−λ ln(δ)C̃

eλiπC̃ H(δ)(C̃, B) eλ ln(δ)C̃ Φδ,δ(B, C̃) e−λ ln(δ)B

eλiπB H(δ)(B,A) eλ ln(δ)B Φδ,δ(A,B) e−λ ln(δ)A. (5.8.13)

Clearly, the three singular terms δ 7→ eλ ln(δ)A, δ 7→ eλ ln(δ)B, and δ 7→ eλ ln(δ)C̃ belong to the at most
logarithmically diverging group terms, GL, see (5.3.11) for J =]0, 1/4]. Hence, the following three
conjugations again define harmless group terms according to statement (iv) of Proposition 5.3.2:

H̃(δ)(A, C̃) := e−λ ln(δ)A H(δ)(A, C̃) eλ ln(δ)A,

H̃(δ)(C̃, B) := e−λ ln(δ)C̃ H(δ)(C̃, B) eλ ln(δ)C̃ ,

H̃(δ)(B,A) := e−λ ln(δ)B H(δ)(B,A) eλ ln(δ)B.

Rewriting (5.8.13) by means of these harmless group terms we see that the three singular terms

mentioned above, eλ ln(δ)A, eλ ln(δ)B, and eλ ln(δ)C̃ , cancel out, and we are left with the following
identity:

1 = eλiπA H̃(δ)(A, C̃) Φδ,δ(C̃, A) eλiπC̃ H̃(δ)(C̃, B) Φδ,δ(B, C̃) eλiπB H̃(δ)(B,A) Φδ,δ(A,B).

Passing to the limit δ → 0 we get –thanks to the limit rules (5.3.7), the definition of the Drinfeld
associator (5.7.18), and the fact that harmless group terms tend to 1 for δ → 0 (see statement (v)
of Proposition 5.3.2)– the following equation (recall that C̃ = C − Λ)

1 = eλπiAΦ(C − Λ, A)eλπi(C−Λ)Φ(B,C − Λ)eλπiBΦ(A,B).

This equation immediately results in the Hexagon equation (5.8.2) thanks to the fact that Λ com-
mutes with A,B and C whence Φ(C − Λ, A) = Φ(C,A), Φ(B,C − Λ) = Φ(B,C) by (5.7.20).

5.9 The Pentagon Equation

Let A12 = A21, A13 = A31, A14 = A41, A23 = A32, A24 = A42, A34 = A43 ∈ A be six elements
satisfying the infinitesimal braid relations (5.6.1b ) and (5.6.1c). We shall prove the Pentagon
Equation for the Drinfeld associator, i.e.

Φ(A12, A23 + A24)Φ(A13 + A23, A34) = Φ(A23, A34)Φ(A12 + A13, A24 + A34)Φ(A12, A23) (5.9.1)
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We shall represent each side of the Pentagon Equation by the parallel transport along the composi-
tion of three paths, c(III,δ) ∗ (c(II,δ) ∗ c(I,δ)), for the right hand side, and along the composition of two
paths c(V,δ) ∗ c(IV,δ) for the left hand side, both having the same initial and final points.
Consider the open set U :=

{
x ∈ R4

∣∣ x1 < x2 < x3 < x4

}
⊂ Y4. Following Drinfeld, we shall use

the pull–back of the KnZa-connection (4)ΓKnZa from Y4 to U (with respect to the canonical injection
U → Y4) which is still flat, see Theorem 5.6.5 and Proposition 5.5.5. Since the KnZa–connections
are invariant under simultaneous translations, we assume that the first coordinate x1 of all the paths
is fixed to be 0. Next, the fact that A14 does not occur in the Pentagon equation may lead us to
the ansatz that the difference x4 − x1 should remain constant; on the other hand the fact that
there are terms in the Pentagon Equation not containing 1 and not containing 4 suggests that x4

should be ‘far away from x1 = 0’, hence we set x1 = 0 and x4 = 1. Define the open full triangle
U ′ :=

{
(x2, x3) ∈ R2

∣∣ 0 < x2 < x3 < 1
}

. Note that U ′ is invariant under the involutive diffeomor-
phism Θ : U ′ → U ′ : (x2, x3) 7→ (1− x3, 1− x2). Moreover, it is easy to see that U ′ is convex and
star–shaped around

(
1
2
, 2

3

)
. Using the injection i : U ′ → U → Y4 : (x2, x3) 7→ (0, x2, x3, 1) we can

pull back the KnZa–connection (4)ΓKnZa to U ′. An easy computation gives

Γ(x2, x3) := Γ
(
(Aij)

)
(x2, x3)

:=
(
i∗
(

(4)ΓKnZa
))

(x2, x3)

=

(
1

x2

A12 +
1

x2 − x3

A23 +
1

x2 − 1
A24

)
dx2

+

(
1

x3

A13 −
1

x2 − x3

A23 +
1

x3 − 1
A34

)
dx3. (5.9.2)

Clearly, Γ is (formally) flat according to Theorem 5.6.5 and Proposition 5.5.5, but its (formal)
flatness can easily be computed directly from formula (5.9.2). Moreover, it is easy to compute that

Θ∗
(
Γ
(
(Aij)

))
= Γ

(
(Aσ(i)σ(j))

)
with σ = (14)(23) ∈ S4. (5.9.3)

Next, we would like to substantiate in terms of paths the five ‘zones’ which Drinfeld mentiones in
his articles, see cf. [Dri90b, p.1454] or [Dri90a, p.834, line 3,4] (where the fifth zone in [?Dri90] has
been forgotten in the English translation, see the original article in Russian language for a complete
description): here certain pairs of coordinates are ‘very close’ to each others, others are ‘medium
close’ and still others are ‘far’ which is expressed in terms of inequalities using the symbol�: using
the real number δ ∈ J –which is meant to be sent to zero– we interpret –as a rule of thumb– ‘very
close’ as ≈ δ2, ‘medium close’ as around ≈ δ, and ‘far’ as ≈ 1. Inspired by the picture [Kas12, p.478,
Fig.8.2.] we first use the following subdivision of the interval ]0, 1[, in which we imagine that both
x2 and x3 ‘move’ between the selected positions,

0 < δ2 < δ − δ2 < δ < 1− δ < 1− δ + δ2 < 1− δ2 < 1,

and associate the following five points in U ′ (as part of the (x2, x3) plane) as an interpretation of
the five zones (recall that x1 = 0 and x4 = 1):

zone 1 : ”x2 − x1 � x3 − x1 � x4 − x1” interpreted as (δ2, δ) =: p1,
zone 2 : ”x3 − x2 � x3 − x1 � x4 − x1” interpreted as (δ − δ2, δ) =: p2,
zone 3 : ”x3 − x2 � x4 − x2 � x4 − x1” interpreted as (1− δ, 1− δ + δ2) =: p3,
zone 4 : ”x4 − x3 � x4 − x2 � x4 − x1” interpreted as (1− δ, 1− δ2) =: p4,
zone 5 : ”x2 − x1 � � x4 − x1 and

x4 − x3 � � x4 − x1” interpreted as (δ2, 1− δ2) =: p5.
(5.9.4)
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There is thus the following ansatz for the following five affine paths subsequently joining the above
five points by the unique line segments between them, see (5.4.2), where ι : [0, 1] → [0, 1] denotes
the usual interval inversion s 7→ 1− s:

c(I,δ) := cp2←p1 , c(II,δ) := cp3←p2 = Θ ◦ c(II,δ) ◦ ι, c(III,δ) := cp4←p3 = Θ ◦ c(I,δ) ◦ ι,
c(IV,δ) := cp5←p1 , c(V,δ) := cp4←p5 = Θ ◦ c(IV,δ) ◦ ι.

(5.9.5)

which can be depicted in Figure 5.2 describing a non–regular pentagon whose vertices are the five
‘zone’ points (5.9.4) and whose edges are the images of the five affine paths (5.9.5).

x2

x3

δ2 1− δδ − δ2 1

1

1− δ2

1− δ + δ2

δ

c(IV,δ)

c(V,δ)

c(I,δ)

c(III,δ)

c(II,δ)

Figure 5.2: The paths (5.9.5) in the x2-x3-plane

Note that the symmetry Θ –which is a symmetry of the pentagon– is the reflection with respect
to the straight line whose equation is x3 = 1 − x2. Note furthermore that the second path is the
only path where both coordinates x2, x3 are moving, but their distance is kept constant (inspired
by the observation of the absence of A23 in the middle factor on the right hand side of the Pentagon
Equation.

We are now going to compute the parallel transports along the five paths of (5.9.5) with respect to
the connection Γ, see (5.9.2). Thanks to (5.9.3), (5.4.6), and (5.4.8) it suffices to compute the parallel

transports W
(c(I,δ))

10 , W
(c(II,δ))

10 , and W
(c(IV,δ))

10 –we henceforth suppress the symbol Γ attached to W–,
the other two will be immediate from the above identities for symmetries and reparametrizations of
parallel transports. We get the following Lemma:

Lemma 5.9.1. With the above notations, we get the following results for the five parallel transports
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for all δ ∈ J :

W
(c(I,δ))

10 = eλ ln(δ)A23 ψδ(A23, A12) H(I,δ) ψδ(A12, A23)−1 e−λ ln(δ)A12 ,

W
(c(II,δ))

10 = eλ ln(δ)(A24+A34) ψδ(A24 + A34, A12 + A23) H(II,δ) ψδ(A12 + A13, A24 + A34)−1

e−λ ln(δ)(A12+A13),

W
(c(III,δ))

10 = eλ ln(δ)A34 ψδ(A34, A23) H(III,δ) ψδ(A23, A34)−1 e−λ ln(δ)A23 ,

W
(c(IV,δ))

10 = eλ ln(δ2)A34 ψδ2(A34, A13 + A23) H(IV,δ) ψδ(A13 + A23, A34)−1

e−λ ln(δ)(A13+A23),

W
(c(V,δ))

10 = eλ ln(δ)(A23+A24) ψδ(A23 + A24, A12) H(V,δ) ψδ2(A12, A23 + A24)−1

e−λ ln(δ2)A12 .
(5.9.6)

where the ψ–terms are defined in (5.7.12), see also (5.7.13) and (5.7.17), and the terms δ 7→ H(i,δ)

for i = I, II, III, IV,V are harmless group terms, see (5.3.10), (5.3.11), and Proposition 5.3.2. Note

that the appearance of δ2 in the terms W
(c(IV,δ))

10 and W
(c(V,δ))

10 is crucial for Theorem 5.9.2.

Proof. In order to compute the parallel transports we shall again use the half exponential paths
already used in §5.7, of the type (5.7.8). More precisely, for each of the three paths c(I,δ), c(II,δ), c(IV,δ)

–recall that the parallel transport along c(III,δ) and c(V,δ) can be computed using the symmetry
indicated in (5.9.5)– we choose a mid-point on the corresponding line segment in U ′, and we replace
each affine path c(i,δ) by a composition of two exponential half paths tracing the same line segment,
c̃(i,2,δ) ∗

(
č(i,1,δ) ◦ ι

)
where i = I, II, III, IV,V, ι : [0, 1] → [0, 1] : s 7→ 1 − s is the usual interval

inversion, č(i,1,δ) joins the midpoint to the initial point, and c̃(i,2,δ) joins the midpoint to the final
point. Since c(i,δ) and c̃(i,2,δ) ∗

(
č(i,1,δ) ◦ ι

)
just differ by a reparametrization they induce the same

parallel transport, see (5.4.5), which implies

W
(c(i,δ))

10 = W
(c̃(i,2,δ))

10

(
W

(č(i,1,δ))

10

)−1

(5.9.7)

where the inversion fomula (5.4.6) has been used. Hence, we choose the following paths (where
δ̂ := δ(1− δ/2))

č(I,1,δ)(s) :=
(
δ
2
eln(2δ)s, δ

)
joining

(
δ
2
, δ
)

→ (δ2, δ) ,
c̃(I,2,δ)(s) :=

(
δ − δ

2
eln(2δ)s, δ

)
joining

(
δ
2
, δ
)

→ (δ − δ2, δ) ,

č(II,1,δ)(s) := Θ
(
c̃(II,2,δ)(s)

)
joining

(
1−δ2

2
, 1+δ2

2

)
→ (δ − δ2, δ),

c̃(II,2,δ)(s) :=
(

1− 1
2
eln(2δ̂)s

)
(1, 1) + (− δ2

2
, δ

2

2
) joining

(
1−δ2

2
, 1+δ2

2

)
→ (1− δ, 1− δ + δ2) ,

č(IV,1,δ)(s) :=
(
δ2, 1

2
eln(2δ)s

)
joining

(
δ2, 1

2

)
→ (δ2, δ),

c̃(IV,2,δ)(s) :=
(
δ2, 1− 1

2
eln(2δ2)s

)
joining

(
δ2, 1

2

)
→ (δ2, 1− δ2) .

(5.9.8)
When we compute Γ(c(i,u,δ))(s) (for i = I, II, III, IV,V and u = 1, 2) we shall see further down that
we always get the following form –writing d for the paths č(i,1,δ) or c̃(i,2,δ):

Γ(d)(s) = ln(2ε(δ))B +
− ln(2ε(δ))

2e− ln(2ε(δ))s − 1
A︸ ︷︷ ︸

=:Y0(B,A)(s,ε)

+
∑

16i<j64

fij(s, δ)Aij︸ ︷︷ ︸
=:Z(s,δ)

, (5.9.9)

–which is well–known from §5.7, (5.7.11)– where ε : J → J is a monomial of δ of the form ε(δ) = δ`

where ` is a positive integer, A,B are certain linear combinations of the algebra elements Aij, and fij
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are real–valued functions of s ∈ [0, 1] and δ ∈ J . From the general factorization statement (5.2.11)
and the solution (5.7.12) of Lemma 5.7.1 we have the factorization

W
(c(i,u,δ))

s0 = eλ ln(ε)sB ψε(B,A)(s)︸ ︷︷ ︸
=:U

(ε)
s0

H
(i,u,δ)
s0 , (5.9.10)

where s 7→ H
(i,u,δ)
s0 is a fundamental solution to the formal linear ODE

dH
(i,u,δ)
s0

ds
= λU

(ε)
s0

−1
Z(s, δ) U

(ε)
s0 H

(i,u,δ)
s0 =: λZ̃(s, δ) H

(i,u,δ)
s0 .

We shall show later that all these factors δ 7→ H
(i,u,δ)
10 are harmless group terms: first, we shall prove

that it suffices to show that for each 1 6 i < j 6 4 there are non–negative real numbers Cij and
βij > 0 such that

∀ s ∈ [0, 1], ∀ δ ∈ J : |fij(s, δ)| 6 Cijδ
βij . (5.9.11)

Indeed, we check that the preceding condition (5.9.11) implies the estimate of type (H), (5.3.19):
write ψε(B,A)(s) =

∑∞
r=0 ψr(s, ε)λ

r and its inverse ψε(B,A)(s)−1 as
∑∞

r=0 ψ̂r(s, ε)λ
r where of course

ψ0(s, ε) = 1 = ψ̂0(s, ε). Fix a norm || || on the complex vector space A. Since s = |s| 6 1 and for
each non–negative integer r there are positive real constants Cr and Ĉr with ||ψr(s, ε)|| 6 Cr and
||ψ̂r(s, ε)|| 6 Ĉr independent on s, ε thanks to Lemma 5.7.1 we get for each non–negative integer r

∣∣∣∣∣∣Z̃(s, δ)r

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
(
eλ ln(ε)sadB

(
∞∑

u,v=0

ψu(s, ε)Z(s, δ)ψ̂v(s, ε)λ
u+v

))
r

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣

r∑
v,w=0

∑
16i<j64

fij(s, δ)
(ln(ε))wsw

w!
fij(s, δ) (adB)◦w

(
ψr−v−w(s, ε)Aijψ̂v(s, ε)

)∣∣∣∣∣
∣∣∣∣∣

6
r∑

w=0

∑
16i<j64

|fij(s, δ)|
`w| ln(δ)|w

w!

∣∣∣∣∣
∣∣∣∣∣
r∑

v=0

(adB)◦w
(
ψr−v−w(s, ε)Aijψ̂v(s, ε)

)∣∣∣∣∣
∣∣∣∣∣

(5.9.11)

6
r∑

w=0

∑
16i<j64

Cijδ
βij | ln(δ)|wC ′w

(5.3.14)

6 C ′′r δ
βr

where the non–negative real constant C ′w (0 6 w 6 r) is an upper bound for the finite sum over v of
bounded algebra elements, 0 < βr is the minimum of all βij/2, 1 6 i < j 6 4, coming from inequal-
ity (5.3.14), and the non–negative real number C ′′r is the maximum of all appearing non–negative
multiplicative upper bounds. This proves the last inequality in (5.3.19) and, according to Lemma

5.3.5, the fact that each δ 7→ H
(i,u,δ)
10 is a harmless group term.

In the following we prove the criterion (5.9.11) for each path where the following elementary in-
equality will occur quite often:

∀ s ∈ [0, 1] ∀ γ ∈ ]0, 1[: 1 6 e− ln(γ)s 6
1

γ
. (5.9.12)

Recall that the logarithms ln(2δ), ln(2δ̂), and ln
(
1− δ

2

)
are non-positive numbers.
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I. An elementary computation gives the following formulas for Γ(č(I,1,δ)) and Γ(c̃(I,2,δ)) showing that
they are of the form (5.9.9) with ε = δ, with B = A12, A = A23 for the first path, and with B = A23,
A = A12 for the second path:

Γ(č(I,1,δ))(s) = ln(2δ)A12 +
− ln(2δ)

2e− ln(2δ)s − 1
A23 + δ

(− ln(2δ))

2e− ln(2δ)s − δ︸ ︷︷ ︸
=:f

(I,1,δ)
24 (s)

A24,

Γ(c̃(I,2,δ))(s) = ln(2δ)A23 +
− ln(2δ)

2e− ln(2δ)s − 1
A12 + δ

ln(2δ)

2(1− δ)e− ln(2δ)s + δ︸ ︷︷ ︸
=:f

(I,2,δ)
24 (s)

A24.

For both denominators in the expressions for f (I,1,δ)(s) and f (I,2,δ)(s) the inequality (5.9.12) gives us
the obvious lower bound 2− δ > 1 (for s = 0), hence∣∣∣f (I,1,δ)

24 (s)
∣∣∣ 6 δ

(
ln(2) + | ln(δ)|

) (5.3.14)

6 3δ1/2,∣∣∣f (I,2,δ)
24 (s)

∣∣∣ 6 δ
(

ln(2) + | ln(δ)|
) (5.3.14)

6 3δ1/2,

thanks to ln(2) 6 1 and δ 6 δ1/2 for all δ ∈]0, 1]. By the criterion (5.9.11) the terms δ 7→ H(I,1,δ))

and δ 7→ H(I,2,δ)) in the factorization equation (5.9.10) are thus harmless group terms. The fac-
torization equation (5.9.10) and (5.9.7) prove the first equation in (5.9.6) upon setting H(I,δ)) :=

H(I,2,δ))
(
H(I,1,δ))

)−1
.

II: An elementary, but lengthy computation gives the following formula for Γ(c̃(II,2,δ)) showing that
it is of the form (5.9.9) with ε = δ, B = A24 + A34, and A = A12 + A13:

Γ(c̃(II,2,δ)) = ln(2δ) (A24 + A34) +
− ln(2δ)

2e− ln(2δ)s − 1
(A12 + A13)

+
ln
(
1− δ

2

)
− δ2 ln(2δ)e− ln(2δ̂)s

1 + δ2e− ln(2δ̂)s︸ ︷︷ ︸
=:f

(II,2,δ)
24 (s)

A24 +
ln
(
1− δ

2

)
+ δ2 ln(2δ)e− ln(2δ̂)s

1− δ2e− ln(2δ̂)s︸ ︷︷ ︸
=:f

(II,2,δ)
34 (s)

A34

+
ln
(
1− δ

2

)
− ln(2δ̂)2e− ln(2δ)s + ln(2δ)(2− δ2)e− ln(2δ̂)s(

(2− δ2)e− ln(2δ̂)s − 1
)

(2e− ln(2δ)s − 1)︸ ︷︷ ︸
=:f

(II,2,δ)
12 (s)

A12

+
ln
(
1− δ

2

)
− ln(2δ̂)2e− ln(2δ)s + ln(2δ)(2 + δ2)e− ln(2δ̂)s(

(2 + δ2)e− ln(2δ̂)s − 1
)

(2e− ln(2δ)s − 1)︸ ︷︷ ︸
=:f

(II,2,δ)
13 (s)

A13

We shall now prove the upper bound (5.9.11) for the four functions f
(II,2,δ)
24 , f

(II,2,δ)
34 , f

(II,2,δ)
12 , and

f
(II,2,δ)
13 . Note first the following elementary inequality for all δ ∈ J∣∣∣∣ln(1− δ

2

)∣∣∣∣ = − ln

(
1− δ

2

)
6 δ. (5.9.13)

115



Indeed, for all 0 < x 6 1 we have 1
x
6 1

x2 , hence

− ln

(
1− δ

2

)
=

∫ 1

1− δ
2

1

x
dx 6

∫ 1

1− δ
2

1

x2
dx =

δ

2− δ
6 δ.

For f
(II,2,δ)
24 and f

(II,2,δ)
34 we can bound both denominators by 1/2 from below thanks to the lower

bound 1 in (5.9.12). In the numerators the exponential function e− ln(2δ̂)s has an upper bound
1

2δ̂
= 1

2δ(1− δ
2)
6 1

δ
by (5.9.12). Hence, both functions have the following upper bounds (where we

also use the inequality (5.9.13)): for all s ∈ [0, 1] and δ ∈ J
∣∣∣f (II,2,δ)

24 (s)
∣∣∣∣∣∣f (II,2,δ)

34 (s)
∣∣∣ 6 2δ + 2 ln(2δ)δ2 1

δ

(5.3.14)

6 8δ
1
2 ,

where the inequalities δ 6 δ
1
2 and ln(2) 6 1 have been used. It follows that the criterion (5.9.11)

holds for f
(II,2,δ)
24 and f

(II,2,δ)
34 .

For f
(II,2,δ)
12 and f

(II,2,δ)
13 note first that their numerators can be expressed in the following form where

we have extracted a factor 1
2
e− ln(2δ)s:

1

2
e− ln(2δ)s

(
−2 ln

(
1− δ

2

)(
2− eln(2δ)s

)
+ 4 ln(2δ)

(
e− ln(1− δ

2)s − 1
)
− 2g ln(2δ)δ2e− ln(1− δ

2)s
)
.

with g ∈ {−1, 1}. On the other hand, in the denominators of f
(II,2,δ)
12 and f

(II,2,δ)
13 we can bound both

left factors from below by 1
2

thanks to the lower bound 1 in (5.9.12), and both right factors from
below by e− ln(2δ)s. It follows that for all s ∈ [0, 1] and δ ∈ J

∣∣∣f (II,2,δ)
12 (s)

∣∣∣∣∣∣f (II,2,δ)
13 (s)

∣∣∣ 6 2

∣∣∣∣ln(1− δ

2

)∣∣∣∣ (2− eln(2δ)s
)

+ 4| ln(2δ)|
(
e− ln(1− δ

2)s − 1
)

+2| ln(2δ)|δ2e− ln(1− δ
2)s

6 4δ + 4
(

ln(2) + | ln(δ)|
) (
e− ln(1− δ

2)s − 1
)

+ 4
(

ln(2) + | ln(δ)|
)
δ2.

Here we have used the inequality (5.9.13), the fact that eln(2δ)s > 2δ and e− ln(1− δ
2)s 6 1/(1−δ/2) 6 2

thanks to the upper bound in (5.9.12). Finally, we get, again by (5.9.12) for γ =
(
1− δ

2

)
,

e− ln(1− δ
2)s − 1 6

1

1− δ
2

− 1 =
δ

2− δ
6 δ,

and again by the inequality (5.3.14) we get the final upper bound∣∣∣f (II,2,δ)
12 (s)

∣∣∣ 6 24δ
1
2 and

∣∣∣f (II,2,δ)
13 (s)

∣∣∣ 6 24δ
1
2

since ln(2) 6 1 and δ 6 δ
1
2 . It follows that the criterion (5.9.11) holds for f

(II,2,δ)
12 and f

(II,2,δ)
13 .

These upper bounds show that the parallel transport along the path c̃(II,2,δ) factorizes according to
(5.9.10):

W
(c(II,2,δ))

10 = eλ ln(δ)(A24+A34) ψδ(A24 + A34, A12 + A13) H(II,2,δ), (5.9.14)
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where δ 7→ H(II,2,δ) is a harmless term. Using (5.9.3) and the second equation of (5.9.5) we can con-

clude that the parallel transport W
(č(II,1,δ))

10 is given by formula (5.9.14) with the index change induced

by the inversion permutation σ, see (5.9.3). Passing to the inverse of W
(č(II,1,δ))

10 and using formula

(5.9.7) we get the proof of the second equation of (5.9.6) upon setting H(II,δ)) := H(II,2,δ))
(
H(II,1,δ))

)−1
.

III: Due to the symmetry c(III,δ) = Θ ◦ c(I,δ) ◦ ι we get the third formula of (5.9.6) by taking the first
one, applying the inversion permutation σ, see (5.9.3), and passing to the inverse.

IV: An elementary computation gives the following formulas for Γ(č(IV,1,δ)) and Γ(c̃(IV,2,δ)) showing
that they are of the form (5.9.9) with ε = δ, with B = A13 + A23, A = A34 for the first path, and
with ε = δ2, B = A34, A = A13 + A23 for the second path:

Γ(č(IV,1,δ))(s) = ln(2δ) (A13 + A23) +
− ln(2δ)

2e− ln(2δ)s − 1
A34 +

2 ln(2δ)δ2e− ln(2δ)s

1− 2δ2e− ln(2δ)s︸ ︷︷ ︸
=:f

(IV,1,δ)
23 (s)

A23,

Γ(c̃(IV,2,δ))(s) = ln(2δ2)A34 +
− ln(2δ2)

2e− ln(2δ2)s − 1
(A13 + A23)

− 2 ln(2δ2)δ2e− ln(2δ2)s

(2e− ln(2δ2)s − 1) (2(1− δ2)e− ln(2δ2)s − 1)︸ ︷︷ ︸
=:f

(IV,2,δ)
23 (s)

A23.

The denominator of
∣∣∣f (IV,1,δ)

23 (s)
∣∣∣ can be bounded from below by 1/2 upon using the upper bound

in inequality (5.9.12) for γ = 2δ. In the numerator we get the upper bound 1
2δ

for the exponential
function, again thanks to (5.9.12), hence∣∣∣f (IV,1,δ)

23 (s)
∣∣∣ 6 2(ln(2) + | ln(δ)|)δ

(5.3.14)

6 6δ
1
2 , (5.9.15)

hence the criterion (5.9.11) holds for f
(IV,1,δ)
23 (s).

Next, the right factor in the denominator of
∣∣∣f (IV,2,δ)

23 (s)
∣∣∣ can be bounded from below by 1/2 upon

using the lower bound in inequality (5.9.12) for γ = 2δ2. We can bound the left factor in that
denominator from below by e− ln(2δ2)s, hence∣∣∣f (IV,2,δ)

23 (s)
∣∣∣ 6 4

(
ln(2) + 2| ln(δ)|

)
δ2

(5.3.14)

6 12δ, (5.9.16)

hence the criterion (5.9.11) holds for f
(IV,2,δ)
23 (s). Both upper bounds (5.9.15) and (5.9.16) prove

that both parallel transports W
(č(IV,1,δ))

10 and W
(c̃(IV,2,δ))

10 factorize in the way described in (5.9.10)
with harmless group terms δ 7→ H(IV,1,δ) and δ 7→ H(IV,2,δ), respectively. This proves the fourth

parallel transport equation in (5.9.6) upon setting H(IV,δ)) := H(IV,2,δ))
(
H(IV,1,δ))

)−1
.

V: Due to the symmetry c(IV,δ) = Θ ◦ c(I,δ) ◦ ι we get the fifth formula of (5.9.6) by taking the fourth
one, applying the inversion permutation σ, see (5.9.3), and passing to the inverse.

By means of these informations we can prove the Pentagon Equation:
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Theorem 5.9.2. The Pentagon Equation (5.9.1) for the Drinfeld associator holds.

Proof. According to Corollary 5.5.7 we have the following equation of parallel transports along the
paths (5.9.5) because U ′ is star-shaped around

(
1
2
, 2

3

)
, and the two composed paths c(V,δ) ∗ c(IV,δ)

and c(III,δ) ∗
(
c(II,δ) ∗ c(I,δ)

)
are both continuous and piecewise smooth and have the same initial point

(δ2, δ) and final point (1− δ, 1− δ2):

W (c(V,δ)) W (c(IV,δ)) = W (c(III,δ)) W (c(II,δ)) W (c(I,δ)). (5.9.17)

In view of the length of the formulas (5.9.6) of the preceding Lemma 5.9.1 we define the following
abbreviations where ε, ε′ are monomials in δ (in practice δ or δ2), A,B are certain linear combinations
of the elements Aij = Aji ∈ A for 1 6 i < j 6 4, and i is an element of {I, II, III, IV,V}:

Φε,ε′
(
A,B,H(i,δ)

)
:= ψε′(B,A) H(i,δ) ψε(A,B)−1. (5.9.18)

We recall the relevant commutation relations for the elementsAij coming from the conditions (5.6.1b)
and (5.6.1c):

[A12, A34] = 0, (5.9.19)

[A12, A13 + A23] = 0 = [A12, A12 + A13 + A23] , (5.9.20)

[A23, A12 + A13] = 0 = [A23, A12 + A13 + A23] , (5.9.21)

[A23, A24 + A34] = 0 = [A23, A23 + A24 + A34] , (5.9.22)

[A34, A23 + A24] = 0 = [A34, A23 + A24 + A34] . (5.9.23)

Moreover, recall that if A ∈ A commutes with B1, . . . , BN ∈ A then the formal exponential eλγA

(γ ∈ C) commutes with any formal series whose coefficients consist of noncommutative polynomials
in B1, . . . , BN ∈ A, hence in particular

[A,B] = 0 implies eλγAeλγ
′B = eλ(γA+γ′B) = eλγ

′BeλγA. (5.9.24)

As in the proof of the Hexagon Equation (5.8.2) we denote the conjugation LδH
(i,δ)L−1

δ of a
harmless term δ 7→ H(i,δ) by an at most logarithmically divergent term δ 7→ Lδ (as elements in(
Fun

(
]0, 1/4],C

)
⊗A

)
[[λ]]) by H̃(i,δ). Note also that

Lδ Φε,ε′
(
A,B,H(i,δ)

)
L−1
δ = Φε,ε′

(
LδAL

−1
δ , LδBL

−1
δ , H̃(i,δ)

)
. (5.9.25)

We compute the left hand side of (5.9.17) and try to ‘push’ the ‘singular terms’ of the form eλ ln(ε)A

(with ε = δ or ε = δ2) to the left and to the right: here (5.9.24) will be used:

W
(c(V,δ))

10 W
(c(IV,δ))

10 = eλ ln(δ)(A23+A24) Φδ2,δ

(
A12, A23 + A24, H

(V,δ)
)
e−λ ln(δ2)A12

eλ ln(δ2)A34 Φδ,δ2

(
A13 + A23, A34, H

(IV,δ)
)
e−λ ln(δ)(A13+A23)

= eλ ln(δ)(A23+A24) Φδ2,δ

(
A12, A23 + A24, H

(V,δ)
)
eλ ln(δ2)A34

eλ ln(δ2)A34 Φδ,δ2

(
A13 + A23, A34, H

(IV,δ)
)
e−λ ln(δ)(A13+A23)

= eλ ln(δ)(A23+A24+2A34) Φδ2,δ

(
A12, A23 + A24, H̃

(V,δ)
)

Φδ,δ2

(
A13 + A23, A34, H̃

(IV,δ)
)
e−λ ln(δ)(2A12+A13+A23),

(5.9.26)
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where the first equality follows by (5.9.6), the second by (5.9.19), and the third by (5.9.19),(5.9.23),(5.9.20),
(5.9.25),(5.9.24). Next, we compute the right hand side of (5.9.17) in a similar way:

W
(c(III,δ))

10 W
(c(II,δ))

10 W
(c(I,δ))

10

(5.9.6)
= eλ ln(δ)A34 Φδ,δ

(
A23, A34, H

(III,δ)
)
e−λ ln(δ)A23

eλ ln(δ)(A24+A34) Φδ,δ

(
A12 + A13, A24 + A34, H

(II,δ)
)
e−λ ln(δ)(A12+A13)

eλ ln(δ)A23 Φδ,δ

(
A12, A23, H

(I,δ)
)
e−λ ln(δ)A12

(5.9.22),(5.9.21)
= eλ ln(δ)A34 Φδ,δ

(
A23, A34, H

(III,δ)
)
eλ ln(δ)(A24+A23+A34)

e−λ ln(δ)2A23 Φδ,δ

(
A12 + A13, A24 + A34, H

(II,δ)
)
eλ ln(δ)2A23

e−λ ln(δ)(A12+A13+A23) Φδ,δ

(
A12, A23, H

(I,δ)
)
e−λ ln(δ)A12

(5.9.22),(5.9.23),(5.9.20),(5.9.21)(5.9.25)
= eλ ln(δ)(A23+A24+2A34) Φδ,δ

(
A23, A34, H̃

(III,δ)
)

Φδ,δ

(
A12 + A13, A24 + A34, H̃

(II,δ)
)

Φδ,δ

(
A12, A23, H̃

(I,δ)
)
e−λ ln(δ)(2A12+A13+A23). (5.9.27)

A comparison of the preceding equations (5.9.26) and (5.9.27) immediately shows that the singular
terms eλ ln(δ)(A23+A24+2A34) and e−λ ln(δ)(2A12+A13+A23) cancel out in (5.9.17), leaving only multiplica-
tions of terms of type (5.9.18) which tend to the desired multiplication of Drinfeld associators
yielding the Pentagon Equation (5.9.1) in the limit δ → 0 thanks to the limit rules (5.3.7), the
definition of the Drinfeld associator (5.7.18), and the fact that harmless group terms tend to 1 for
δ → 0 (see statement (v) of Proposition 5.3.2).
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Chapter 6

Etingof–Kazhdan quantization of
finite–dimensional Lie bialgebras

In this Chapter we give a brief description of the Etingof–Kazhdan quantization of finite–dimensional
Lie bialgebras [EK96]. The key idea of Etingof and Kazhdan is, given a Lie bialgebra b, to define
a monoidal structure J on the deformed forgetful functor (Odb)Φ

~ : (Mod(db))
Φ
~ → TopFreeK, giving

rise to an equivalence of monoidal categories. By Tannaka–Krein duality, the twist FJ associated to
J allows to construct a non–trivial topological Hopf algebra on U(db), which will be the quantization
of the Drinfeld double of b. They then find a Hopf subalgebra quantizing the Lie bialgebra b. Such a
construction turns out to be also compatible with R–matrices, giving a quantization of any classical
solution r of the classical Yang–Baxter equation, see [EK96, §5].
In this Chapter we shall focus particularly on the construction on the monoidal structure in the case
of finite–dimensional Lie bialgebras. For more details on the functoriality of the construction, on
the case of infinite–dimensional Lie bialgebras and on its PROPic description, we remand to [EK96],
[EK98], [ES02] and [ATL18].

6.1 The universal Verma modules

Let b be a Lie bialgebra, db be its Drinfeld double, ~ be formal parameter and Φ be a Drinfeld asso-
ciator. Recall that the categories DY(b) and Mod(db) are monoidally equivalent; hence, since DY(b)
is infinitesimally braided, we have that also Mod(db) is so. We can thus consider the corresponding
deformed category (Mod(db))

Φ
~ . Set b+ := b and b− := b∗.

We now introduce the key objects of the Etingof–Kazhdan quantization:

Definition 6.1.1. The universal Verma modules of db are the following objects of (Mod(db))
Φ
~

M± := U(db)⊗U(b±) c± =
U(db)⊗ c±

I±
, (6.1.1)

where c± is the trivial irreducible b±–module of dimension 1 and I± is the two–sided ideal of U(db)⊗c±
generated by all elements u⊗ u± · λ± − u · u± ⊗ λ±, where u ∈ U(db), u± ∈ U(b±), λ± ∈ c±.

The following Lemma gives the vector space structure of M±:
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Lemma 6.1.2. Let [u⊗ λ] denote the equivalence class of u⊗ λ in the quotient (6.1.1). Then the
maps

ψ− : U(b+)→M−

u+ 7→ [u+ ⊗ 1]

ψ+ : U(b−)→M+

u− 7→ [u− ⊗ 1]

are isomorphisms of vector spaces.

Proof. We prove the statement for ψ−; the one for ψ+ is analogous. The map ψ− is clearly injective.
In order to show that it is surjective, let {x1, . . . , xn} be a basis of b+ and {y1, . . . , yn} be a basis of
b−. Let [u ⊗ λ] ∈ M−. It follows by the Poincaré–Birkhoff–Witt theorem that u has the following
form

u =
∑
i∈I

x
`i,1
1 · · ·x`i,nn · yki,11 · · · yki,nn .

Note that, since the left action of U(b−) on U(db) commutes with the right action of U(b−) on c−,
if at least one of the ki,j is positive then [u ⊗ 1] = 0 in M−. Therefore, supposing that ki,j = 0 for
all j = 1, . . . , n, we have

[u⊗ λ] =
∑
i∈I

[x
`i,1
1 · · ·x`i,nn ⊗ λ] = ψ−

(∑
i∈I

x
`i,1
1 · · ·x`i,nn ⊗ λ

)
= ψ−

(
λ
∑
i∈I

x
`i,1
1 · · ·x`i,nn ⊗ 1

)
.

The previous Lemma allows to endow the vector spaces M± with a coalgebra structure, induced by
the one of U(b∓). We shall denote by ∆± and ε± the usual comultiplication and counit of U(b±),
and by ∆± and ε± the comultiplication and counit of M±, i.e. ∆± := (ψ± ⊗ ψ±) ◦ ∆± ◦ ψ−1

± and
ε± := ε± ◦ ψ−1

± . Setting 1± := ψ±(1) = [1 ⊗ 1] ∈ M±, we get ∆±(1±) = ((ψ± ⊗ ψ±) ◦ ∆±)(1) =
(ψ± ⊗ ψ±)(1⊗ 1) = 1± ⊗ 1±.

Remark 6.1.3. Note that the vectors 1± ⊗ 1± are b±–invariant: for x± ∈ b± we have that

[∆±(x±), 1± ⊗ 1±] = [x± ⊗ 1 + 1⊗ x±, 1± ⊗ 1±]

= x± · 1± ⊗ 1± + 1± ⊗ x± · 1±
= x± · [1⊗ 1]⊗ 1± + 1± ⊗ x± · [1⊗ 1]

= 0.

The following Proposition is a crucial step for the Etingof–Kazhdan quantization (see [EK96, 2.3]):

Proposition 6.1.4. (M±,∆±, ε±) are comonoids in (Mod(db))
Φ
~ .

Proof. We first show that ∆± is coassociative, i.e. that the diagram

M± M± M±

M±⊗̄(M±⊗̄M±) (M±⊗̄M±)⊗̄M±

id⊗̄∆±

∆± ∆±

∆±⊗̄id

aΦ
M±,M±,M±
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commutes. Since (U(b±),∆±, ε±) is a coalgebra in VectK, we have

(id⊗∆±) ◦∆± = aU(b±),U(b±),U(b±) ◦ (∆± ⊗ id) ◦∆±.

Therefore, we have
(id⊗∆±) ◦∆± = aM±,M±,M± ◦ (∆± ⊗ id) ◦∆±,

where a is the trivial associativity constraint. Hence it suffices to show that

aΦ
M±,M±,M± = aM±,M±,M±

on the image of (∆±⊗̄id) ◦∆±. This can be easily seen in the case of 1±: we have

(∆±⊗̄id) ◦∆±(1±) = (1±⊗̄1±)⊗̄1±

and

aΦ
M±,M±,M±((1±⊗̄1±)⊗̄1±)

= aM±,M±,M± ◦
(
Φ(tM±,M±⊗̄idM± , (aM±,M±,M±)−1 ◦ (idM±⊗̄tM±,M±) ◦ aM±,M±,M±((1±⊗̄1±)⊗̄1±)

)
= aM±,M±,M±

(
(1 +O(~2))((1±⊗̄1±)⊗̄1±)

)
= aM±,M±,M±

(
(1±⊗̄1±)⊗̄1±)

)
= 1±⊗̄(1±⊗̄1±)

where the third equality follows from the fact that 1± is b±–invariant. Next, let [u± ⊗ 1] be any
element of M±. By the definition of M± we have [u∓ ⊗ 1] = u∓ · 1± for any u∓ ∈ U(b∓) (in other
words, the module M± is freely generated over U(b∓) by the vector 1±). Since all the maps involved
are U(db)–linear, we have(

(∆±⊗̄id) ◦∆±
)
(u∓ · 1±) = u∓ ·

(
(∆±⊗̄id) ◦∆±

)
(1±) = u∓ ·

(
(1±⊗̄1±)⊗̄1±

)
and

aΦ
M±,M±,M±

(
u∓ · ((1±⊗̄1±)⊗̄1±)

)
= u∓ · aΦ

M±,M±,M±

(
(1±⊗̄1±)⊗̄1±

)
= u∓ ·

(
1±⊗̄(1±⊗̄1±)

)
.

Finally, the counit axiom
(ε±⊗̄idM±) ◦∆± = (idM±⊗̄ε±) ◦∆±

directly follows from the counity of U(b∓), since the identities do not involve associators.

6.2 The monoidal structure on the forgetful functor

Consider the forgetful functor

Odb : Mod(db)→ VectK

V 7→ V

f 7→ f.

The aim of this Section is to define a monoidal structure on the deformed functor

(Odb)Φ
~ : (Mod(db))

Φ
~ → TopFreeK.

First we need the following result (see [EK96, 2.1]):
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Lemma 6.2.1. The assignment 1→ 1+ ⊗ 1− extends to an isomorphism of left Lie db–modules

φ : U(db)→M+ ⊗M−.

Corollary 6.2.2. We have that (Odb)Φ
~ is represented by M+⊗̄M−, i.e.

(Odb)Φ
~ (V ) ∼= Hom(Mod(db))Φ

~
(M+⊗̄M−, V ).

From now on we shall denote by F the functor Hom(Mod(db))Φ
~
(M+⊗̄M−, –) and we will do all the

reasonings with F instead of (Odb)Φ
~ . We now construct a monoidal structure on F :

Proposition 6.2.3. For V and W in Obj((Mod(db))
Φ
~ ), consider the map

JV,W : F (V )⊗̄F (W )→ F (V ⊗̄W )

v⊗̄w 7→ JV,W (v⊗̄w)

defined by

JV,W (v⊗̄w) = (v⊗̄w) ◦ βΦ

M+,M+,M−,M− ◦ (∆+⊗̄∆−)

where βM+,M+,M−,M− : (M+⊗̄M+)⊗̄(M−⊗̄M−)→ (M+⊗̄M−)⊗ (M+⊗̄M−) is a natural isomorphism
given by the permutation of the second and the third components, composed opportunetely with
associators (see 2.5.5). Then the triple (F, id, J) is a monoidal functor.

Proof. Suppose for simplicity that all the involved categories are strict. We are going to give three
interpretations of the same proof: one algebraic, one diagramatic and one pictorial.
We have to check that J satisfies the axioms of Definition 2.1.2. We have that diagrams (2.1.4)
trivially hold and have the following form

K[[~]]⊗̄V V V ⊗̄K[[~]] V

K[[~]]⊗̄V K[[~]]⊗̄V V ⊗̄K[[~]] V ⊗̄K[[~]]

`V

id id

rV

JK[[~]],V =id

`V

JV,K[[~]]=id

rV

It remains to check the relation arising from diagram (2.1.3): for three left Lie db–modules U, V,W
and elements u ∈ F (U), v ∈ F (V ) and w ∈ F (W ) we have to prove that(

JU⊗̄V,W ◦ (JU,V ⊗̄idW )
)
(u⊗̄v⊗̄w) =

(
JU,V ⊗̄W ◦ (idU⊗̄JV,W )

)
(u⊗̄v⊗̄w). (6.2.1)

Set c+,− := cΦ
M+,M− , id+ := idM+ and generalize this notation for tensor product and for M− (e.g.

c+,−− denotes cΦ
M+,M−⊗̄M− and id− denotes idM−). We have that the left hand side of (6.2.1) is equal

to

(u⊗̄v⊗̄w) ◦ (id+⊗̄c+,−⊗̄id−⊗̄id+⊗̄id−) ◦ (∆+⊗̄∆−⊗̄id+⊗̄id−) ◦ (id+⊗̄c+,−⊗̄id−) ◦ (∆+⊗̄∆−) (6.2.2)

while the right hand side of (6.2.1) is equal to

(u⊗̄v⊗̄w) ◦ (id+⊗̄id−⊗̄id+⊗̄c+−⊗̄id−) ◦ (id+⊗̄id−⊗̄∆+⊗̄∆−) ◦ (id+⊗̄c+−⊗̄id−)(∆+⊗̄ ◦∆−). (6.2.3)

For the functoriality of the braiding, we have

(∆+⊗̄∆−⊗̄id+⊗̄id−) ◦ (id+⊗̄c+,−⊗̄id−) = (id++⊗̄c+,−−⊗̄id−) ◦ (∆+⊗̄id+⊗̄∆−⊗̄id−) (6.2.4a)

(id+⊗̄id−⊗̄∆+⊗̄∆−) ◦ (id+⊗̄c+,−⊗̄id−) = (id+⊗̄c++,−⊗̄id−−) ◦ (id+⊗̄∆+⊗̄id− ⊗∆−) (6.2.4b)
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and applying (6.2.4a) to (6.2.2) and (6.2.4b) to (6.2.3) we have that (6.2.2) and (6.2.3) are respec-
tively equal to

(u⊗̄v⊗̄w) ◦ (id+⊗̄c+,−⊗̄id−+−) ◦ (id++⊗̄c+,−−⊗̄id−) ◦ (∆+⊗̄id+⊗̄∆−⊗̄id−) ◦ (∆+⊗̄∆−) (6.2.5a)

(u⊗̄v⊗̄w) ◦ (id+−+⊗̄c+,−⊗̄id−) ◦ (id+⊗̄c++,−⊗̄id−−) ◦ (id+⊗̄∆+⊗̄id−⊗̄∆−) ◦ (∆+⊗̄∆−) (6.2.5b)

By the fact that M± are comonoids (see Proposition 6.1.4), we have that

(∆+⊗̄id+⊗̄∆−⊗̄id−) ◦ (∆+⊗̄∆−) = (id+⊗̄∆+⊗̄id−⊗̄∆−) ◦ (∆+⊗̄∆−).

Moreover, using the hexagon equations (2.2.1) and (2.2.2) we get

(c+,−⊗̄id−⊗̄id+) ◦ (id+⊗̄c+,−−) = (c+,−⊗̄id−⊗̄id+) ◦ (id+⊗̄id−⊗̄c+,−) ◦ (id+⊗̄c+,−⊗̄id−) (6.2.6a)

(id−⊗̄id+⊗̄c+,−) ◦ (id+⊗̄c+,−−) = (id−⊗̄id+⊗̄c+,−) ◦ (c+,−⊗̄id+⊗̄id−) ◦ (id+⊗̄c+,−⊗̄id−) (6.2.6b)

and by (2.5.1a) we have that

(c+,−⊗̄id−⊗̄id+) ◦ (id+⊗̄id−⊗̄c+,−) = (id−⊗̄id+⊗̄c+,−) ◦ (c+,−⊗̄id+⊗̄id−).

Therefore Equation (6.2.1) holds and this concludes the algebraic proof. From a diagramatic point
of view, Equation (6.2.1) is described by the commutativity of the diagram

F (U)⊗̄F (V )⊗̄F (W ) F (U⊗̄V )⊗̄F (W )

F (U)⊗̄F (U⊗̄W ) F (U⊗̄V ⊗̄W )

JU,V ⊗̄id

id⊗̄JV,W JU⊗̄V,W

JU,V ⊗̄W

which, using the definition of J , is equivalent to the commutativity of the following diagram

M+⊗̄M− M ⊗̄2
+ ⊗̄M ⊗̄2

− (M+⊗̄M−)⊗̄2

M ⊗̄2
+ ⊗̄M ⊗̄2

− M ⊗̄2
+ ⊗̄M ⊗̄2

− ⊗̄M+⊗̄M−

(M+⊗̄M−)⊗̄2 M+⊗̄M−⊗̄M ⊗̄2
+ ⊗̄M ⊗̄2

− (M+⊗̄M−)⊗̄3

∆+⊗̄∆−

∆+⊗̄∆− id+⊗̄c+,−⊗̄id−

∆+⊗̄∆−⊗̄id+−

id+⊗̄c+,−⊗̄id− id+⊗̄c+,−⊗̄id−+−

id+−⊗̄∆+⊗̄∆− id+−+⊗c+,−⊗̄id−

In order to show its commutativity, it suffices to translate in diagrams the algebraic expressions
above: we obtain

M+⊗̄M− M ⊗̄2
+ ⊗̄M ⊗̄2

− (M+⊗̄M−)⊗̄2

M ⊗̄2
+ ⊗̄M ⊗̄2

− M ⊗̄3
+ ⊗M ⊗̄3

− M ⊗̄2
+ ⊗̄M ⊗̄2

− ⊗̄M+⊗̄M−

(M+⊗̄M−)⊗̄2 M+⊗̄M−⊗̄M ⊗̄2
+ ⊗̄M ⊗̄2

− (M+⊗̄M−)⊗̄3

∆+⊗̄∆−

∆+⊗̄∆− id+⊗̄c+,−⊗̄id−

∆+⊗̄id+⊗̄∆−⊗̄id− ∆+⊗̄∆−⊗̄id+−

id+⊗̄c+,−⊗̄id−

id+⊗̄∆+⊗̄id−⊗̄∆− id++⊗̄c+,−−⊗̄id−

id+⊗̄c++,−⊗̄id− id+⊗̄c+,−⊗̄id−+−

id+−⊗̄∆+⊗̄∆− id+−+⊗̄c+,−⊗̄id−
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where the top left square commutes for the cocommutativity of ∆±, the top right and bottom left
squares commute for the naturality of the braiding, and finally the bottom right square commutes for
the properties of the braiding. Next, we sketch a pictorial proof, using a top–to–bottom convention.
We represent the morphisms ∆± by

±

± ±

The coassociativity of ∆± is represented by the equality

=

± ±

±±± ±±±

while JV,W (v⊗̄w) is represented by

+ −

•

v w

V W
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The terms JU,V ⊗̄W ◦ (idU⊗̄JV,W ) and JU⊗̄V,W ◦ (JU,V ⊗̄idW ) are represented respectively by

+ −

•

•

u v w

U V W

and

+

•

−

•

u v w

U V W

and, by the coassociativity of M± and the properties of the braiding, both are equivalent to the
picture

+ −

• •

•

u v w

U V W

concluding the pictorial proof.

6.3 Tannaka–Krein duality and quantization of Lie bialge-

bras

Recall the Tannaka–Krein duality for bialgebras (see [ES02, Ch. 18] for more details):

Proposition 6.3.1. Let A be a K–algebra and let F : Mod(A) → VectK be the forgetful functor.
Then any monoidal structure (Mod(A), ⊗̃,K, ã, ˜̀, r̃) on Mod(A) together with a monoidal structure
(F, ϕF0 , ϕ

F
2 ) on F equips A with a bialgebra structure such that (Mod(A), ⊗̃,K, ã, ˜̀, r̃) is monoidally

equivalent to (Mod(A),⊗,K, a, `, r).

Therefore, recalling that Mod(db) = Mod(U(dg)) and combining Propositions 6.2.3 and 6.3.1 gives a
non–trivial topological bialgebra structure on U(db), which we denote by U~(db)

EK. Moreover, there
exists a gauge transformation FJ such that JV,W (v⊗̄w) = F−1

J (v⊗̄w) , see [Kas12, XV.3] for more
details. Hence the topological Hopf algebra U~(db)

EK is obtained by twisting the trivial one with FJ .

Theorem 6.3.2. ([EK96, Prop. 3.6]) U~(db)
EK is a quantization of U(db)
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This shows how to quantize the Drinfeld double of any finite–dimensional Lie bialgebra. In partic-
ular, we have that U~(db)

EK ∼= Hom(DY(db))Φ
~
(M+⊗̄M−,M+⊗̄M−), see [EK96, Lem. 4.1].

Next, in order to define the quantization of b, consider the object F (M−). Then Etingof and
Kazhdan proved the following

Theorem 6.3.3. ([EK96, Th. 4.7]) F (M−) has the following topological bialgebra structure:

• The multiplication is x ◦ (id+⊗̄y) ◦ aΦ
M+,M+,M− ◦ F (∆+⊗̄id−).

• The unit is a 7→
(
1+⊗̄1− 7→ a · 1−

)
.

• The comultiplication is J−1
M−,M−

◦ F (∆−).

• The counit is F (ε−).

Moreover, F (M−) is a quantization of the Lie bialgebra b.
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Chapter 7

Ševera quantization of Lie bialgebras

In this Chapter we exhibit the quantization technique of Lie bialgebras provided by P. Ševera in
[Šev16].

7.1 M–adapted functors

Definition 7.1.1. [Šev16, Def.1] Let (C ,⊗, I, a, `, r, c) and (D ,⊗′, I ′, a′, `′, r′, c′) be two braided
monoidal categories, let (M,∆M , εM) be a comonoid in D and let (F, ψ0

F , ψ
2
F ) be a braided comonoidal

functor from D to C . We say that F is M–adapted if for any X, Y in Obj(D) the morphisms

χM := ψ0
F ◦ F (εM) (7.1.1a)

γMX,Y := ψ2
F (X ⊗′M,M ⊗′ Y ) ◦ F (α′X,M,M,Y ) ◦ F

(
(idX ⊗′ ∆M)⊗′ idY

)
(7.1.1b)

are invertible1.

Proposition 7.1.2. Let C ,D be braided monoidal categories, F : D → C be a braided comonoidal
functor and (M,∆M , εM) be a comonoid in D . Then

(i) The functor M ⊗′ – : D → D , X 7→M ⊗′ X together with

ψ2
⊗(X, Y ) = β′M,M,X,Y ◦ (∆M ⊗′ idX⊗′Y )

ψ0
⊗ = rI′ ◦ (εM ⊗′ idI′) = `I′ ◦ (εM ⊗′ idI′)

is a comonoidal functor.

(ii) F is M–adapted if and only if the functor

FM : D D C
M⊗′– F

is strongly comonoidal.

Proof. (i): Suppose that C and D are strict. Let X, Y, Z in Obj(D). Using the coassociativity of
∆M , the naturality of c′, Equation (2.5.1a) and the strict counterparts of (2.2.1) (2.2.2) we have
that the diagrams

1In Ševera’s paper [Šev16] γMX,Y is denoted by τ
(M)
X,Y .
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(1)

M ⊗′ X ⊗′ Y ⊗′ Z M⊗′2 ⊗′ X ⊗′ Y ⊗′ Z

M⊗′2 ⊗′ X ⊗′ Y ⊗′ Z M⊗′3 ⊗′ X ⊗′ Y ⊗′ Z

∆M⊗′idX⊗′Y⊗′Z

∆M⊗′idX⊗′Y⊗′Z

∆M⊗′idM⊗′X⊗′Y⊗′Z
idM⊗′∆M⊗′idX⊗′Y⊗′Z

(2)

M⊗′2 ⊗′ X ⊗′ Y ⊗′ Z M⊗′3 ⊗′ X ⊗′ Y ⊗′ Z

M ⊗′ X ⊗′M ⊗′ Y ⊗′ Z M ⊗′ X ⊗′M⊗′2 ⊗′ Y ⊗′ Z

idM⊗′∆M⊗′idX⊗′Y⊗′Z

idM⊗′c′M,X⊗
′idY⊗′Z

idM⊗′c′
M⊗′2,X

⊗′idY⊗′Z

idM⊗′X⊗′∆M⊗′idY⊗′Z

(3)

M⊗′2 ⊗′ X ⊗′ Y ⊗′ Z M ⊗′ X ⊗′ Y ⊗′M ⊗′ Z

M⊗′3 ⊗′ X ⊗′ Y ⊗′ Z M⊗′2 ⊗′ X ⊗′ Y ⊗′M ⊗′ Z

idM⊗′c′M,X⊗′Y ⊗
′idZ

∆M⊗′idM⊗′X⊗′Y⊗′Z ∆M⊗′idX⊗′Y⊗′M⊗′Z
idM⊗′M⊗′c′M,X⊗′Y ⊗

′idZ

(4)

M⊗′3 ⊗′ X ⊗′ Y ⊗′ Z M⊗′2 ⊗′ X ⊗′ Y ⊗′M ⊗′ Z

M ⊗′ X ⊗′M⊗′2 ⊗′ Y ⊗′ Z M ⊗′ X ⊗′M ⊗′ Y ⊗′M ⊗′ Z

idM⊗′c′
X,M⊗′2

⊗′idY⊗′Z

id⊗
′2

M ⊗′c′
M,X⊗′Y ⊗

′idZ

idM⊗′c′M,X⊗
′idM⊗′Y⊗′Z

idM⊗′X⊗′M⊗′c′M,Y ⊗
′idZ

commute. The joint diagram

(1) (3)

(2) (4)

shows that the triple (⊗′–, ψ0
⊗, ψ

2
⊗) satisfies the strict counterpart of (2.1.5). Finally, the strict

counterpart of the fact that (⊗′–, ψ0
⊗, ψ

2
⊗) satisfies the two squares (2.1.6) gives the equalities

(εM ⊗′ idM) ◦∆M = idM

(idM ⊗′ εM) ◦∆M = idM

which hold since (M,∆M , εM) is a comonoid in D .
(ii): Using the naturality of a′, c′, ψ2

F and the coherence Theorem 2.4.2 we have that for any X, Y
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in Obj(D) the diagram

F
(
M ⊗′ (X ⊗′ Y )

)
F
(
(M ⊗′ X)⊗′ Y

)
F
(
(X ⊗′M)⊗′ Y

)
F
(
(M ⊗′M)⊗′ (X ⊗′ Y )

)
F
(
((M ⊗′M)⊗′ X)⊗′ Y

)
F
(
(X ⊗′ (M ⊗′M)

)
⊗′ Y )

F
(
(M ⊗′ X)⊗′ (M ⊗′ Y )

)
F
(
(X ⊗′M)⊗′ (M ⊗′ Y )

)
F (M ⊗′ X)⊗ F (M ⊗′ Y ) F (X ⊗′M)⊗ F (M ⊗ Y )

F (∆M⊗′idX⊗′Y )

F (a′M,X,Y )

F ((∆M⊗′idX)⊗′idY )

F (c′X,M⊗
′idY )

F ((idX⊗′∆M )⊗′idWY )

F (β′M,M,X,Y )

F (a′
M⊗′M,X,Y ) F (c′

X,M⊗′M⊗idY )

F (α′X,M,M,Y )

ψ2
F (M⊗′X,M⊗′Y )

F (c′M,X⊗
′idM⊗Y )

ψF2 (X⊗′M,M⊗′Y )

F (c′M,X)⊗idF (M⊗′Y )

commutes, leading to the identity

ψ2
F ◦ F (ψ2

⊗) =
(
F (c′M,X)⊗ idF (M⊗′Y )

)
◦ γMX,Y ◦

(
F (a′M,X,Y ) ◦ F (c′X,M ⊗′ idY )

)−1
.

Similarly, using the naturality of r′ we have that the diagram

F (M ⊗′ I ′) F (M)

F (I ′ ⊗′ I ′) F (I ′)

F (I ′)

I I

F (r′M )

F (εM⊗′idI′ ) F (εM )

F (r′
I′ )

F (r′
I′ )

ψ0
F

ψ0
F

idI

commutes, leading to the identity

ψ0
F ◦ F (ψ0

⊗) = χM ◦ F (r′M).

Hence, the morphism γMX,Y (resp. χM) is invertible if and only if the morphism ψ2
F ◦ F (ψ2

⊗) (resp.
the morphism ψ0

F ◦ F (ψ0
⊗)) is invertible, i.e. when M⊗′– ◦F is strongly comonoidal.

7.2 The multiplication along a comonoid

Definition 7.2.1. Let (C ,⊗, I, a, `, r, c) and (D ,⊗′, I ′, a′, `′, r′, c′) be two braided monoidal cate-
gories, (M,∆M , εM) be a comonoid of D , (F, ψ0

F , ψ
0
F ) be a M–adapted functor from D to C . For

any objects X, Y of D we define the multiplication map of X and Y along M as the map

µMX,Y := F (rX ⊗′ idY ) ◦ F
(
(idX ⊗′ εM)⊗′ idY

)
◦ (γMX,Y )−1 : F (X ⊗′M)⊗ F (M ⊗′ Y )→ F (X ⊗′ Y )

Proposition 7.2.2. Let (C ,⊗, I, a, `, r, c) and (D ,⊗′, I ′, a′, `′, r′, c′) be two braided monoidal cat-
egories, (F, ψ0

F , ψ
2
F ) be a comonoidal functor from D to C , (M,∆M , εM) and (N,∆N , εN) be two
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comonoids in D such that F is both M–adapted and N–adapted. Then for any objects X, Y of D
the following diagram commutes(
F (X ⊗′M)⊗ F (M ⊗′ N)

)
⊗ F (N ⊗′ Y ) F (X ⊗′M)⊗

(
F (M ⊗′ N)⊗ F (N ⊗′ Y )

)
F (X ⊗′ N)⊗ F (N ⊗′ Y ) F (X ⊗′M)⊗ F (M ⊗′ Y )

F (X ⊗′ Y )

µM
X,N⊗idF (N⊗′Y )

aF (X⊗′M),F (M⊗′N),F (N⊗′Y )

idF (X⊗′M)⊗µ
N
M,Y

µN
X,Y µM

X,Y

Proof. Suppose for simplicity that both C and D are strict. Using the naturality of ψ2
F , the strict

counterpart of (2.1.5), and Equation (2.5.1a) gives that the following diagrams commute

(1)

F (X ⊗′M)⊗ F (M ⊗′ N)⊗ F (N ⊗′ Y ) F (X ⊗′M)⊗ F (M ⊗′ N⊗′2 ⊗′ Y )

F (X ⊗′M⊗′2 ⊗′ N)⊗ F (N ⊗′ Y ) F (X ⊗′M⊗′2 ⊗′ N⊗′2 ⊗′ Y )

idF (X⊗′M)⊗ψ2
F (M⊗′N,N⊗′Y )

ψ2
F (M⊗

′2,M⊗
′2)⊗idF (N⊗′Y ) ψ2

F (X⊗′M,M⊗′N⊗′2⊗′Y )

ψ2
F (X⊗′M⊗′2⊗′N,N⊗′Y )

(2)

F (X ⊗′M⊗′2 ⊗′ N)⊗ F (N ⊗′ Y ) F (X ⊗′M⊗′2 ⊗′ N⊗′2 ⊗′ Y )

F (X ⊗′M ⊗′ N)⊗ F (N ⊗′ Y ) F (X ⊗′M⊗′2 ⊗′ N⊗′2 ⊗ Y )

ψ2
F (X⊗′M⊗′2⊗′N,N⊗′Y )

F (idX⊗′∆M⊗′idF )⊗idF (N⊗′Y )
F (idX⊗′∆M⊗′idN⊗′2⊗′Y )

ψ2
F (X⊗′M⊗′N,N⊗′Y )

(3)

F (X ⊗′M ⊗′ N)⊗ F (N ⊗′ Y ) F (X ⊗′M⊗′2 ⊗′ N⊗′2 ⊗ Y )

F (X ⊗′ N)⊗ F (N ⊗′ Y ) F (X ⊗′ N⊗′2 ⊗′ Y )

F (idX⊗′εM⊗idN )⊗idF (n⊗′Y )

ψ2
F (X⊗′M⊗′N,N⊗′Y )

F (idX⊗′εM⊗idN⊗′2⊗′Y )

ψ2
F (X⊗N,N⊗′Y )

(4)

F (X ⊗′M)⊗ F (M ⊗′ N⊗′2 ⊗′ Y ) F (X ⊗′M)⊗ F (M ⊗′ N ⊗′ Y )

F (X ⊗′M⊗′2 ⊗′ N⊗′2 ⊗′ Y ) F (X ⊗′M⊗′2 ⊗′ N ⊗′ Y )

F (idX⊗′M )⊗F (idM⊗′∆N⊗′Y )

ψ2
F (X⊗′M,M⊗′N⊗′2⊗′Y )

F (id
X⊗′M⊗′2⊗

′∆N⊗′idY )

ψ2
F (X⊗′M,M⊗′N⊗′Y )

(5)

F (X ⊗′M⊗′2 ⊗′ N⊗′2 ⊗′ Y ) F (X ⊗′M⊗′2 ⊗′ N ⊗′ Y )

F (X ⊗′M⊗′2 ⊗′ N⊗′2 ⊗ Y ) F (X ⊗′M ⊗′ N ⊗′ Y )

F (id
X⊗′M⊗′2⊗

′∆N⊗′idY )

F (idX⊗′∆M⊗′idN⊗′2⊗′Y )

F (idX⊗′M⊗′∆N⊗′idY )

F (idX⊗′∆M⊗′idN⊗′Y )
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(6)

F (X ⊗′M⊗′2 ⊗′ N⊗′2 ⊗ Y ) F (X ⊗′M ⊗′ N ⊗′ Y )

F (X ⊗′ N⊗′2 ⊗′ Y ) F (X ⊗′ N ⊗′ Y )

F (idX⊗′εM⊗idN⊗′2⊗′Y )

F (idX⊗′M⊗′∆N⊗′idY )

F (idX⊗′εM⊗idN⊗′Y )

F (idX⊗′∆N⊗′idY )

(7)

F (X ⊗′M)⊗ F (M ⊗′ N ⊗′ Y ) F (X ⊗′M)⊗ F (M ⊗′ Y )

F (X ⊗′M⊗′2 ⊗′ N ⊗′ Y ) F (X ⊗′M⊗′2 ⊗ Y )

idF (X⊗′M)⊗F (idX⊗′εN⊗′idF )

ψ2
F (X⊗′M,M⊗′N⊗′Y )

F (id
X⊗′M⊗′2⊗

′εN⊗′idY )

ψ2
F (X⊗′M,M⊗′Y )

(8)

F (X ⊗′M⊗′2 ⊗′ N ⊗′ Y ) F (X ⊗′M⊗′2 ⊗ Y )

F (X ⊗′M ⊗′ N ⊗′ Y ) F (X ⊗′M ⊗′ Y )

F (id
X⊗′M⊗′2⊗

′εN⊗′idY )

F (idX⊗′∆M⊗′idN⊗′Y )

F (idX⊗′M⊗′εN⊗′idY )

F (idX⊗′∆M⊗′idY )

(9)

F (X ⊗′M ⊗′ N ⊗′ Y ) F (X ⊗′M ⊗′ Y )

F (X ⊗′ N ⊗′ Y ) F (X ⊗′ Y )

F (idX⊗′M⊗′εN⊗′idY )

F (idX⊗′εM⊗′idM⊗′Y ) F (idX⊗′εM⊗′idY )

F (idX⊗′εN⊗′idY )

The joint diagram

(1) (4) (7)

(2) (5) (8)

(3) (6) (9)

proves the statement.
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Remark 7.2.3. The Proposition above has the following important consequences:

• Setting M = X = N = Y gives that
(
F (M ⊗′M), µMM,M

)
is a monoid, see Theorem 7.3.1 for

the definition of the unit.

• Setting M = X = N gives that
(
F (M ⊗′ Y ), µMM,Y

)
is a left F (M ⊗′M)–module.

• Setting M = Y = N gives that
(
F (X ⊗′M), µMX,M

)
is a right F (M ⊗′M)–module.

• Setting X = M and N = Y gives that F (M ⊗′ N) is a F (M ⊗′M)–F (N ⊗′ N) bimodule.

7.3 The Hopf monoid F (M ⊗′M)

Theorem 7.3.1. [Šev16, Th.1] Let C ,D be two braided monoidal categories, (M,∆M , εM) a cocom-
mutative comonoid object in D and (F, ψ0

F , ψ
0
F ) : D → C be a M–adapted functor. Then F (M⊗′M)

is a Hopf monoid, where

(i) The multiplication is

µMM,M = F (r′M ⊗ idM) ◦ F
(
(idM ⊗′ εM)⊗′ idM

)
◦ (γMM,M)−1. (7.3.1)

(ii) The unit is
F (∆M) ◦ (χM)−1. (7.3.2)

(iii) The comultiplication is

ψ2
F (M ⊗′M,M ⊗′M) ◦ F (β′M,M,M,M) ◦ F (∆M ⊗′ ∆M). (7.3.3)

(iv) The counit is
ψ0
F ◦ F (r′I′) ◦ F (εM ⊗′ εM). (7.3.4)

(v) The antipode is
F (c′M,M). (7.3.5)

Proof. In order to give the proof we may suppose that C and D are strict.
(i): The fact that µMM,M is an associative multiplication for F (M⊗′M) follows directly by Proposition
7.2.2 setting X = Y = N = M .
(ii): Using the naturality of ψ2

F and the fact that (M,∆M , εM) is a comonoid in D , we obtain that
the following four diagrams commute

(1)

I ⊗ F (M⊗′2) F (I ′)⊗ F (M⊗′2) F (M)⊗ F (M⊗′2)

F (I ′ ⊗′M⊗′2) F (M⊗′3)

F (M⊗′2)

ψ0
F⊗idF (M⊗′2) F (εM )⊗id

F⊗′2

ψ2
F (I′,M⊗

′2)
id

F (εM⊗idM⊗′2 )

ψ2
F (M,M⊗

′2)

F (idM⊗′εM⊗′M )
id
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(2)

F (M)⊗ F (M⊗′2) F (M⊗′2)⊗ F (M⊗′2)

F (M⊗′3) F (M⊗′4)

F (M⊗′2) F (M⊗′3)

F (M⊗′2)

F (∆M )⊗id
F (M⊗′2)

ψ2
F (M,M⊗

′2)

F (∆M⊗idM⊗′2 )

ψ2
F (M⊗

′2,M⊗
′2)

F (idM⊗′εM⊗′M )

F (∆M⊗idM )

F (idM⊗′∆M⊗′idM )

F (idM⊗′εM⊗′idM )
id

(3)

F (M⊗′2)⊗ F (M⊗′2) F (M⊗′2)⊗ F (M)

F (M⊗′4) F (M⊗′3)

F (M⊗′3) F (M⊗′2)

F (M⊗′2)

id
F (M⊗′2)

⊗F (∆M )

ψ2
F (M⊗

′2,M⊗
′2) ψ2

F (F (M⊗
′2),F (M))

F (id
M⊗′2⊗

′∆M )

F (idM⊗′∆M⊗′idM )

F (idM⊗′εM⊗′idM )

F (idM⊗′∆M )

F (idM⊗′∆M )

id

(4)

F (M⊗′2)⊗ F (M) F (M⊗′2)⊗ F (I ′) F (M⊗′2)⊗ I

F (M⊗′3) F (M⊗′2 ⊗′ I ′)

F (M⊗′2)

id
F (M⊗′2)

⊗F (εM ) id
F (M⊗′2)

⊗ψ0
F

ψ2
F (M⊗

′2,M)

F (id
M⊗′2⊗

′εM )

ψ2(M⊗
′2,I′)

id

F (idM⊗′∆M )
id

The joint diagram

(1) (2) (3) (4)
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gives that F (∆M) ◦ (χM)−1 satisfies the unit axiom.
(iii)–(iv): The fact that the triple(
F (M ⊗′M), ψ2

F (M ⊗′M,M ⊗′M) ◦ F (β′M,M,M,M) ◦ F (∆M ⊗′ ∆M), ψ0
F ◦ F (r′I′) ◦ F (εM ⊗′ εM)

)
is a comonoid in C follows directly by Propositions 3.3.3 and 3.3.4.
Next, recal the following four facts:

• For any braided monoidal category C , we have that Comon(C ) is a monoidal category: hence
if (C1,∆1, ε1), (C2,∆2, ε2), (C3,∆3, ε3), (C4,∆4, ε4) are four comonoids and α : C1 → C2,
γ : C3 → C4 are morphisms of comonoids, then α ⊗ γ is a morphism of comonoids (see
statement (ii) of Proposition 3.3.3).

• If (F, ψ0
F , ψ

2
F ) is a comonoidal functor, (C1,∆1, ε1), (C2,∆2, ε2) are two comonoids and α :

C1 → C2 is a morphism of comonoids, then so is F (α) (see statement (ii) of Proposition
3.3.4).

• If (F, ψ0
F , ψ

2
F ) is a comonoidal functor and (C1,∆1, ε1), (C2,∆2, ε2) are two comonoids, then

ψ2
F (C1, C2) is a morphism of comonoids (see statement (iii) of Proposition 3.3.4).

• If (C,∆, ε) is a cocommutative comonoid then ∆ : C → C ⊗ C is a morphism of comonoids
(see statement (iii) of Proposition 3.3.3).

Therefore, since both the multiplication and the unit of F (M ⊗′ M) are built up on compositions
of comonoid morphisms, they are so, i.e. F (M ⊗′M) is a bimonoid in C .
(v): Note first that

ηF (M⊗′M) ◦ εF (M⊗′M) = F (∆M) ◦ (χM)−1 ◦ ψF0 ◦ F (εM ⊗′ εM)

= F (∆M) ◦
(
ψF0 ◦ F (εM)

)−1 ◦ ψF0 ◦ F (εM ⊗′ εM)

= F (∆M) ◦
(
ψF0 ◦ F (εM)

)−1 ◦ ψF0 ◦ F (εM) ◦ F (εM ⊗′ idM)

= F (∆M) ◦ F (εM ⊗′ idM)

= F (εM ⊗′ ∆M)

and

ηF (M⊗′M) ◦ εF (M⊗′M) = F (∆M) ◦ (χM)−1 ◦ ψF0 ◦ F (εM ⊗′ εM)

= F (∆M) ◦
(
ψF0 ◦ F (εM)

)−1 ◦ ψF0 ◦ F (εM ⊗′ εM)

= F (∆M) ◦
(
ψF0 ◦ F (εM)

)−1 ◦ ψF0 ◦ F (εM) ◦ F (idM ⊗′ εM)

= F (∆M) ◦ F (idM ⊗′ εM)

= F (∆M ⊗′ εM).

Moreover, using the naturality of ψ2
F , the naturality of the braiding c′ and Equations (2.5.1a), (2.2.1),
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(2.2.1), and (2.5.3) we have that the diagrams

F (M⊗′2) F (M⊗′2)

F (M⊗′3) F (M⊗′3)

F (M⊗′4)

F (M⊗′4) F (M⊗′4)

F (M⊗′2)⊗2 F (M⊗′2)⊗2

F (∆M⊗′idM )

F (∆M⊗′εM )

F (idM⊗′εM⊗′idM )

F (id
M⊗′2⊗

′∆M )

F (idM⊗′c′M,M )

F (idM⊗′∆M⊗′idM )

F (idM⊗′c′M,M⊗
′idM )

ψ2
F (M⊗

′2,M⊗
′2)

F (id
M⊗′2⊗

′c′M,M )

ψ2
F (M⊗

′2,M⊗
′2)

id
F (M⊗′2)

⊗F (c′M,M )

and

F (M⊗′2) F (M⊗′2)

F (M⊗′3) F (M⊗′3)

F (M⊗′4)

F (M⊗′4) F (M⊗′4)

F (M⊗′2)⊗2 F (M⊗′2)⊗2

F (idM⊗′∆M )

F (εM⊗′∆M )

F (idM⊗′εM⊗′idM )

F (∆M⊗′idM⊗′2 )

F (c′M,M⊗
′idM )

F (idM⊗′∆M⊗′idM )

F (idM⊗′c′M,M⊗
′idM )

ψ2
F (M⊗

′2,M⊗
′2)

F (c′M,M⊗
′id
M⊗′2 )

ψ2
F (M⊗

′2,M⊗
′2)

F (c′M,M )⊗id
F (M⊗′2)

commute. Hence we have that

µF (M⊗′M) ◦ (F (c′M,M)⊗ idF (M⊗′M)) ◦∆F (M⊗′M) = F (εM ⊗′ ∆M) = ηF (M⊗′M) ◦ εF (M⊗′M)

µF (M⊗′M) ◦ (idF (M⊗′M) ⊗ F (c′M,M)) ◦∆F (M⊗′M) = F (∆M ⊗′ εM) = ηF (M⊗′M) ◦ εF (M⊗′M)

proving the claim.

7.4 The functor of coinvariants

For any Lie bialgebra b consider the functor of coinvariants

F b : DY(b)→ VectK

V 7→ V

b · V
f : V → W 7→ F b(f) : F b(V )→ F b(W )
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where F b(f) is the morphism making commutative the following diagram

V W

V
b·V

W
b·W

f

pV pW

F b(f)

where pV and pW are the canonical projections to the quotients.
Consider also the forgetful functor

Ob : DY(b)→ VectK

V 7→ V

f 7→ f

which has a canonical strongly comonoidal structure given by the identity maps ψ0
Ob = idK and

ψ2
Ob(V,W ) = idV⊗W .

Proposition 7.4.1. F b is an infinitesimally braided comonoidal functor.

Proof. For any V,W in DY(b), v ∈ V and w ∈ W consider the map

ψ : V ⊗W → V

b · V
⊗ W

b ·W
v ⊗ w 7→ pV (v)⊗ pW (w).

Recall that for any x ∈ b we have x·(v⊗w) = x·v⊗w+v⊗x·w. This implies that x·(v⊗w) ∈ kerψ,
and therefore ψ induces a map

ψ2
F b(V,W ) :

V ⊗W
b · (V ⊗W )

→ V

b · V
⊗ W

b ·W
[v ⊗ w] 7→ pV (v)⊗ pW (w) = [v]⊗ [w].

where [v⊗w] (resp. [v] resp. [w]) denotes the equivalence class of v⊗w (resp. v resp. w) inside the
quotient V⊗W

b·(V⊗W )
(resp. V

b·V resp. W
b·W ). We have that ψ2

F b is natural: for any f ∈ HomDY(b)(V, V
′)

and g ∈ HomDY(b)(W,W
′) we have((

F b(f)⊗ F b(g)
)
◦
(
ψ2
F b(V,W )

))
([v ⊗ w]) =

(
F b(f)⊗ F b(g)

)
(pV (v)⊗ pW (w))

= F b(f)(pV (v))⊗ F b(g)(pW (w))

= pV ′(f(v))⊗ pW ′(g(w))

= (pV ′ ⊗ pW ′)(f ⊗ g)(v ⊗ w)

=
((
ψ2
F b(V

′,W ′)
)
◦
(
F b(f ⊗ g)

))
([v ⊗ w]).

Next, consider the following linear map

ψ0
F b :

K
b ·K

→ K

[λ] 7→ λ.
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We show that (F b, ψ0
F b , ψ

2
F b) is a braided comonoidal functor: for any U, V,W in Obj(DY(b)) and

for any u ∈ U , v ∈ V , w ∈ W we have(
(idF b(U) ⊗ ψ2

F b(V,W )) ◦ (ψ2
F b(U, V ⊗W )) ◦ F b(aU,V,W )

)
([(u⊗ v)⊗ w])

=
(
(idF b(U) ⊗ ψ2

F b(V,W )) ◦ (ψ2
F b(U, V ⊗W ))

)
([u⊗ (v ⊗ w)])

= (idF b(U) ⊗ ψ2
F b(V,W ))([u]⊗ [v ⊗ w])

= [u]⊗ ([v]⊗ [w])

and (
aF b(U),F b(V ),F b(W ) ◦ ψ2

F b(U, V )⊗ idF b(W ) ◦ ψF b(U ⊗ V,W )
)
([(u⊗ v)⊗ w])

=
(
aF b(U),F b(V ),F b(W ) ◦ ψ2

F b(U, V )⊗ idF b(W )

)
([u⊗ v]⊗ [w])

= aF b(U),F b(V ),F b(W )(([u]⊗ [v])⊗ [w])

= [u]⊗ ([v]⊗ [w]),

showing that (F b, ψ0
F b , ψ

2
F b) satisfies Equation (2.1.5). Furthermore, we have(

(ψ0
F b ⊗ idF b(U)) ◦ ψ2

F b(K, U) ◦ F b(`−1
U )
)
([u]) =

(
(ψ0

F b ⊗ idF b(U)) ◦ ψ2
F b(K, U)

)
([1⊗ u])

= (ψ0
F b ⊗ idF b(U))([1]⊗ [u])

= 1⊗ [u]

= `−1
F b(U)

([u])

and (
(idF b(U) ⊗ ψ0

F b) ◦ ψ2
F b(U,K) ◦ F b(r−1

U )
)
([u]) =

(
(idF b(U) ⊗ ψ0

F b) ◦ ψ2
F b(U,K)

)
([u⊗ 1])

= (idF b(U) ⊗ ψ0
F b)([u]⊗ [1])

= [u]⊗ 1

= r−1
F b(U)

([u])

showing that (F b, ψ0
F b , ψ

2
F b) satisfies Equation (2.1.6). The fact that (F b, ψ0

F b , ψ
2
F b) is braided

comonoidal follows from the following equality(
ψ2
F b(W,V ) ◦ F b(τV,W )

)
([v ⊗ w]) = ψ2

F b(W,V )([w ⊗ v])

= [w]⊗ [v]

= ψ2
F b([w ⊗ v])

=
(
ψ2
F b ◦ τF b(V ),F b(W )

)
([v ⊗ w])

which shows that (F b, ψ0
F b , ψ

2
F b) satisfies Equation (2.2.4). In order to show that (F b, ψ0

F b , ψ
2
F b) is

infinitesimally braided comonoidal, note that for any V in DY(b), x ∈ b, v ∈ V one has

pV ◦ πV (x⊗ v) = 0. (7.4.1)

Denoting by t0 the trivial infinitesimal braiding of VectK (see §2.8), we have

t0F b(V ),F b(W ) ◦ ψ
2
F b(V,W ) = 0
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and(
ψ2
F b(V,W ) ◦ F b(tbV,W )

)
([v ⊗ w]) = ψ2

F b(V,W )([tbV,W (v ⊗ w)])

= ψ2
F b(V,W )

([(
(idV ⊗ πW )(τb,V ⊗ idW )(ρ̃V ⊗ idW )

)
(v ⊗ w)

])
+ ψ2

F b(V,W )
([(

(πV ⊗ idW )(τV,b ⊗ idW )(idV ⊗ ρ̃W )
)
(v ⊗ w)

])
=
(
(pV ⊗ pW )(idV ⊗ πW )(τb,V ⊗ idW )(ρ̃V ⊗ idW )

)
(v ⊗ w)

+
(
(pV ⊗ pW )(πV ⊗ idW )(τV,b ⊗ idW )(idV ⊗ ρ̃W )

)
(v ⊗ w)

= 0

where the last equality follows from the fact that compositions pV ◦πV and pW ◦πW are the zero maps
(see Equation (7.4.1)). Hence both compositions t0F b(V ),F b(W ) ◦ψ

2
F b(V,W ) and ψ2

F b(V,W ) ◦F b(tbV,W )

are the zero map, showing that (F b, ψ0
F b , ψ

2
F b) satisfies Equation (2.3.3).

We shall need the following

Lemma 7.4.2. Let b be a Lie bialgebra, V in DY(b), u ∈ U(b) and v ∈ V . Then the following
identity holds in F b(U(b)⊗ V ):

[u⊗ v] = [1⊗ (S0(u) · v)]. (7.4.2)

Proof. The proof is by induction on the lenght n(u) of u induced by the standard filtration of U(b).
If n(u) = 0 we have u = 1 and there is nothing to prove. For n(u) = m+ 1 we have

[1⊗ S0(u1 · · ·um+1) · v] = [1⊗ S0(u2 · · ·um+1) · S0(u1) · v]

= [u2 · · ·um+1 ⊗ S0(u1) · v]

= −[u2 · · ·um+1 ⊗ u1 · v]

= −[u2 · · ·um+1 ⊗ u1 · v] + [u⊗ v]− [u⊗ v]

= [u⊗ v]− [u1 · (u2 · · ·um+1 ⊗ v)]

= [u⊗ v]

where the first identity follows from the fact that S0 is an anti–morphism of algebras, the second
follows by induction, and the third follows from the fact that for any x ∈ b we have S0(x) = −x.

Proposition 7.4.3. F b is U(b)–adapted.

Proof. By part (ii) of Proposition 7.1.2 it suffices to show that the functor

Gb : DY(b) DY(b) VectK.
U(b)⊗ F b

is strongly comonoidal. By part (i) of Proposition 2.1.3 we have that the maps

ψ2
Gb(V,W ) = ψ2

F b

(
U(b)⊗ V,U(b)⊗W

)
◦ F b(βU(b),U(b),V,W ) ◦ F b(∆0 ⊗ idV⊗W )

ψ0
Gb = ψ0

F b ◦ F b(`K) ◦ F b(ε0 ⊗ idK)

gives to Gb a comonoidal structure. Consider the forgetful functor Ob : DY(b) → VectK, with its
strongly comonoidal structure given by ψ0

Ob = id and ψ2
Ob = id. If we show that the funtors Gb and
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Ob are naturally comonoidally isomorphic then the claim is proved. For any V in DY(b) consider
the map

ζ̃V : U(b)⊗ V → V

u⊗ v 7→ S0(u) · v.

For any x ∈ b, u ∈ U(b) and v ∈ V we have (pV ◦ ζ̃V )(x · u ⊗ v) = 0 = (pV ◦ ζ̃)(u ⊗ x · v). This
implies that x · (u⊗ v) ∈ ker ζ̃V , and therefore ζ̃V induces a map

ζV :
U(b)⊗ V

b · (U(b)⊗ V )
→ V

[u⊗ v] 7→ S0(u) · v
(7.4.3)

We have that the map

θV : V → U(b)⊗ V
b · (U(b)⊗ V )

v 7→ [1⊗ v]

(7.4.4)

is the inverse of ζV , since ζV (θV (V )) = ζV ([1⊗ v]) = S0(1) · v = v and

θV (ζV ([u⊗ v])) = θV (S0(u) · v) = [1⊗ S0(u) · v]
(7.4.2)

= [u⊗ v].

Therefore, ζ : Gb → Ob is a natural isomorphism. We have(
(ζV ⊗ ζW ) ◦ (ψ2

Gb
)
)

([u⊗ (v ⊗ w)])

=
(

(ζV ⊗ ζW ) ◦ ψ2
Fb(U(b)⊗ V,U(b)⊗W ) ◦ F b(βU(b),U(b),V,W ) ◦ F b(∆0 ⊗ idV⊗W )

)
([u⊗ (v ⊗ w)])

=
(

(ζV ⊗ ζW ) ◦ ψ2
Fb(U(b)⊗ V,U(b)⊗W ) ◦ F b(βU(b),U(b),V,W ) ◦ F b(∆0 ⊗ idV⊗W )

)
([1⊗ (S0(u) · (v ⊗ w))])

=

(
(ζV ⊗ ζW ) ◦ ψ2

Fb(U(b)⊗ V,U(b)⊗W ) ◦ F b(βU(b),U(b),V,W ) ◦ F b(∆0 ⊗ idV⊗W )

)( ∑
(S0(u))

[1⊗ (S0(u))′ · v ⊗ (S0(u))′′ · w]

)

=
∑
S0(u)

(
(ζV ⊗ ζW ) ◦ ψ2

Fb(U(b)⊗ V,U(b)⊗W ) ◦ F b(βU(b),U(b),V,W )

)(
[1⊗ 1⊗ (S0(u))′ · v ⊗ (S0(u))′′ · w]

)

=
∑

(S0(u))

(
(ζV ⊗ ζW ) ◦ ψ2

Fb(U(b)⊗ V,U(b)⊗W )

)(
[1⊗ (S0(u))′ · v ⊗ 1⊗ (S0(u))′′ · w]

)

=
∑

(S0(u))

(ζV ⊗ ζW )([1⊗ (S0(u))′ · v]⊗ [1⊗ (S0(u))′′ · w])

=
∑

(S0(u))

(
S0(1) · (S0(u))′ · v ⊗ S0(1) · (S0(u))′′ · w

)
=

∑
(S0(u))

(
(S0(u))′ · v ⊗ (S0(u))′′ · w

)
= S0(u) · (v ⊗ w)

= (ζV⊗W )(ψOb
2 )([u⊗ (v ⊗ w)])
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and

ζK([u⊗ λ]) = S0(u) · λ
= ψ0

F b([S0(u) · λ])

= ψ0
F b ◦ F b(`K)([1⊗ S0(u) · λ])

= ψ0
F b ◦ F b(`K) ◦ F b(ε0 ⊗ idK)([1⊗ S0(u) · λ])

= ψ0
F b ◦ F b(`K) ◦ F b(ε0 ⊗ idK)([u⊗ λ])

= ψ0
Gb([u⊗ λ]).

Therefore , ζ : Gb → Ob is a natural comonoidal isomorphism, concluding the proof.

7.5 Deforming M–adapted functors

Recall from §2.7 that if C is an infinitesimally braided monoidal category, ~ is a formal parameter
and Φ is a Drinfeld associator, we can construct a deformed braided monoidal category C Φ

~ . In this
Section we show that any infinitesimally braided comonoidal functor induces a braided comonoidal
functor between the deformed categories.

Proposition 7.5.1. [Šev16, Prop.2] Let C ,D be two infinitesimally braided monoidal categories, ~
be a formal parameter and Φ be a Drinfeld associator. Then

(i) If (M,∆M , εM) is an infinitesimally cocommutative comonoid in D , then (M,∆M , εM) is a
cocommutative comonoid in DΦ

~ .

(ii) If F : D → C is an infinitesimally braided comonoidal functor, then FΦ
~ : DΦ

~ → C Φ
~ is a

braided comonoidal functor.

(iii) If F : D → C is M–adapted, then FΦ
~ : DΦ

~ → C Φ
~ is M–adapted

Proof. (i): the fact that the triple (M,∆M , εM) is a comonoid is straightforward. We have

cΦ
M,M ◦∆M = cM,M ◦ etM,M/2 ◦∆M

= cM,M ◦∆M ◦ etM,M/2

= cM,M ◦ etM,M/2

= cΦ
M,M .

Where the second (resp. third) equality follows from the fact that M is infinitesimally cocommuta-
tive (resp. cocommutative) in D .

(ii): The fact that (FΦ
~ , ψ

0

F , ψ
2

F ) satisfies (2.1.6) follows directly by the fact that (F, ψ0
F , ψ

2
F ) is

comonoidal. Next, the fact that (FΦ
~ , ψ

0

F , ψ
2

F ) satisfies (2.1.5) follows from the commutativity of the
diagrams

F ((X⊗̄Y )⊗̄Z) F ((X⊗̄Y )⊗̄Z) F (X⊗̄(Y ⊗̄Z))

F (X⊗̄Y )⊗̄F (Z) F (X⊗̄Y )⊗̄F (Z) F (X)⊗̄F (Y ⊗̄Z)

F (X)⊗̄F (Y )⊗̄F (Z) (F (X)⊗̄F (Y ))⊗̄F (Z) F (X)⊗̄(F (Y )⊗̄F (Z))

ψ
2
F (X⊗̄Y,Z)

F (t
12
X,Y,Z)

ψ
2
F (X⊗̄Y,Z)

F (aX,Y,Z)

ψ
2
FX,Y ⊗̄Z)

ψ
2
F (X,Y )⊗̄idF (Z)

F (tX,Y )⊗̄idF (Z)

ψ
2
F (X,Y )⊗̄idF (Z) idF (X)⊗̄ψ

2
F (Y,Z)

t
12
F (X),F (Y ),F (Z) aF (X),F (Y ),F (Z)
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and

F ((X⊗̄Y )⊗̄Z) F (X⊗̄(Y ⊗̄Z)) F (X⊗̄(Y ⊗̄Z))

F (X⊗̄Y )⊗̄F (Z) F (X)⊗̄F (Y ⊗̄Z) F (X)⊗̄F (Y ⊗̄Z)

(F (X)⊗̄F (Y ))⊗̄F (Z) F (X)⊗̄(F (Y )⊗̄F (Z)) F (X)⊗̄(F (Y )⊗̄F (Z))

F (aX,Y,Z)

ψ
2
F (X⊗̄Y,Z)

F (t
23
X,Y,Z)

ψ
2
F (X,Y ⊗̄Z) ψ

2
F (X,Y ⊗̄Z)

ψ
2
F (X,Y )⊗̄idF (X)

idF (X)⊗̄F (tY,Z)

idF (X)⊗̄ψ
2
F (Y,Z) idF (X)⊗̄ψ

2
F (Y,Z)

aF (X),F (Y ),F (Z) t
23
F (X),F (Y ),F (Z)

both following from the naturality of ψ2
F and from the fact that (F, ψ0

F , ψ
2
F ) is comonoidal. Finally,

the fact that (FΦ
~ , ψ

0

F , ψ
2

F ) is braided comonoidal follows from the following diagram

F (X⊗̄Y ) F (X)⊗̄F (Y )

F (X⊗̄Y ) F (X)⊗̄F (Y )

F (Y ⊗̄X) F (Y )⊗̄F (X)

ψ
2
F (X,Y )

F (e
tX,Y /2) e

tF (X),F (Y )/2

ψ
2
F (Y,X)

F (cX,Y ) cF (X),F (Y )

ψ
2
F (Y,X)

where the first (resp. second) square commutes since (F, ψ0
F , ψ

2
F ) is infinitesimally braided (resp.

braided) comonoidal.
(iii) is straightforward.

Next, let b be a Lie bialgebra, F b be the functor of coinvariants, Gb := F b ◦ U(b)⊗–, ~ be a formal
parameter and Φ be a Drinfeld associator. Using Propositions 2.7.2 and 7.5.1 we get deformed
braided comonoidal functors (F b)Φ

~ and (Gb)Φ
~ . Recall also that Gb is naturally comonoidally iso-

morphic to the forgetful functor Ob through the natural isomorphism ζ of Equation (7.4.3), see
Proposition 7.4.3 for more details. The corresponding natural transformation ζ : (Gb)Φ

~ → (Ob)Φ
~

is also a natural isomorphism, since concides with ζ on objects and is the ~–adic completion on
morphisms (hence invertible, since their first order term is invertible).

Lemma 7.5.2. Let Ob the forgetful functor, and consider the following maps for any V,W in
Obj
(
(DY(b))Φ

~
)
:

ψ2
(Ob)Φ

~
(V,W ) := (ζV ⊗̄ζW ) ◦ ψ2

(Gb)Φ
~
(V,W ) ◦ (ζV ⊗̄W )−1

ψ0
(Ob)Φ

~
:= ψ0

(Gb)Φ
~
◦ (ζK[[~]])

−1

Then the triple
(
(Ob)Φ

~ , ψ
0
(Ob)Φ

~
, ψ2

(Ob)Φ
~

)
is a strongly comonoidal functor between the deformed cate-

gories
(
DY(b)

)Φ

~ and (VectK)Φ
~ .

Proof. It is clear that the morphisms ψ0
(Ob)Φ

~
and ψ2

(Ob)Φ
~
(V,W ) are invertible, since are composition

of invertible maps. The fact that the triple
(
(Ob)Φ

~ , ψ
0
(Ob)Φ

~
, ψ2

(Ob)Φ
~

)
satisfies the commutativity of the

diagram (2.1.5) follows by – using the naturality of ζ, the definition of ψ2
(Ob)Φ

~
(V,W ), the naturality
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of the associativity constraint and the fact that
(
(Gb)Φ

~ , ψ
0
(Gb)Φ

~
, ψ2

(Gb)Φ
~

)
is comonoidal – the following

diagram

(1)

(6) (2)

(7)

(5) (3)

(4)

whose seven subdiagrams are the following

(1)

(Ob)Φ
~
(
(U⊗̄V )⊗̄W

)
(Ob)Φ

~
(
U⊗̄(V ⊗̄W )

)
(Gb)Φ

~
(
(U⊗̄V )⊗̄W

)
(Gb)Φ

~
(
U⊗̄(V ⊗̄W )

)
(Ob)Φ

~ (aU,V,W )

ζ(U⊗̄V )⊗̄W

(Gb)Φ
~ (aU,V,W )

ζU⊗̄(V ⊗̄W )

(2)

(Gb)Φ
~
(
U⊗̄(V ⊗̄W )

)
(Ob)Φ

~
(
U⊗̄(V ⊗̄W )

)
(Gb)Φ

~ (U)⊗̄(Gb)Φ
~ (V ⊗̄W ) (Ob)Φ

~ (U)⊗̄(Ob)Φ
~ (V ⊗̄W )

ζU⊗̄(V ⊗̄W )

ψ2

(Gb)Φ~
(U,V ⊗̄W ) ψ2

(Ob)Φ~
(U,V ⊗̄W )

ζU ⊗̄ζV ⊗̄W

(3)

(Gb)Φ
~ (U)⊗̄(Gb)Φ

~ (V ⊗̄W ) (Ob)Φ
~ (U)⊗̄(Ob)Φ

~ (V ⊗̄W )

(Gb)Φ
~ (U)⊗̄

(
(Gb)Φ

~ (V )⊗̄(Gb)Φ
~ (W )

)
(Ob)Φ

~ (U)⊗̄
(
(Ob)Φ

~ (V )⊗̄(Ob)Φ
~ (W )

)
ζU ⊗̄ζV ⊗̄W

id⊗̄ψ2

(Gb)Φ~
(V,W ) id⊗̄ψ2

(Ob)Φ~
(V,W )

ζU ⊗̄(ζV ⊗̄ζW )

(4)

(
(Gb)Φ

~ (U)⊗̄(Gb)Φ
~ (V )

)
⊗̄(Gb)Φ

~ (W ) (Gb)Φ
~ (U)⊗̄

(
(Gb)Φ

~ (V )⊗̄(Gb)Φ
~ (W )

)
(
(Ob)Φ

~ (U)⊗̄(Ob)Φ
~ (V )

)
⊗̄(Ob)Φ

~ (W ) (Ob)Φ
~ (U)⊗̄

(
(Ob)Φ

~ (V )⊗̄(Ob)Φ
~ (W )

)
aΦ

(Gb)Φ~ (U),(Gb)Φ~ (V ),(Gb)Φ~ (W )

(ζU ⊗̄ζV )⊗̄ζW ζU ⊗̄(ζV ⊗̄ζW )
aΦ

(Ob)Φ~ (U),(Ob)Φ~ (V ),(Ob)Φ~ (W )
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(5)

(Ob)Φ
~ (U⊗̄V )⊗̄(Ob)Φ

~ (W ) (Gb)Φ
~ (U⊗̄V )⊗̄(Gb)Φ

~ (W )

(
(Ob)Φ

~ (U)⊗̄(Ob)Φ
~ (V )

)
⊗̄(Ob)Φ

~ (W )
(
(Gb)Φ

~ (U)⊗̄(Gb)Φ
~ (V )

)
⊗̄(Gb)Φ

~ (W )

ψ2

(Ob)Φ~
(U,V )⊗̄id ψ2

(Gb)Φ~
(U,V )⊗̄id

ζU⊗̄V ⊗̄ζW

(ζU ⊗̄ζV )⊗̄ζW

(6)

(Ob)Φ
~
(
(U⊗̄V )⊗W

)
(Gb)Φ

~
(
(U ⊗ V )⊗̄W

)
(Ob)Φ

~ (U⊗̄V )⊗̄(Ob)Φ
~ (W ) (Gb)Φ

~ (U⊗̄V )⊗̄(Gb)Φ
~ (W )

ψ2

(Ob)Φ~
(U⊗̄V,W ) ψ2

(Gb)Φ~
(U⊗̄V,W )

ζ(U⊗̄V )⊗̄W

ζU⊗̄V ⊗̄ζW

(7)

(Gb)Φ
~
(
(U⊗̄V

)
⊗̄W ) (Gb)Φ

~
(
U⊗̄(V ⊗̄W )

)
(Gb)Φ

~ (U⊗̄V )⊗̄(Gb)Φ
~ (W ) (Gb)Φ

~ (U)⊗̄(Gb)Φ
~ (V ⊗̄W )

(
(Gb)Φ

~ (U)⊗̄(Gb)Φ
~ (V )

)
⊗̄(Gb)Φ

~ (W ) (Gb)Φ
~ (U)⊗̄

(
(Gb)Φ

~ (V )⊗̄(Gb)Φ
~ (W )

)

ψ2

(Gb)Φ~
(U⊗̄V,W )

(Gb)Φ
~ (aU,V,W )

ψ2

(Gb)Φ~
(U,V ⊗̄W )

ψ2

(Gb)Φ~
(U,V )⊗̄id id⊗̄ψ2

(Gb)Φ~
(V,W )

aΦ

(Gb)Φ~ (U),(Gb)Φ~ (V ),(Gb)Φ~ (W )

Finally, the fact that the triple
(
(Ob)Φ

~ , idK[[~]], ψ
2
(Ob)Φ

~

)
satisfies the commutativity of the first of the

two diagrams (2.1.6) (the commutativity of the second can be shown in an analogous way) follows
by – using the naturality of ζ and of `, the definitions of ψ2

(Ob)Φ
~
(V,W ) and ψ0

(Ob)Φ
~
, and the fact that(

(Gb)Φ
~ , ψ

0
(Gb)Φ

~
, ψ2

(Gb)Φ
~

)
is comonoidal – the following diagram

(1)

(2) (5) (4)

(3)

whose five subdiagrams are the following
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(1)

(Ob)Φ
~ (V ) K[[~]]⊗̄(Ob)Φ

~ (V )

(Gb)Φ
~ (V ) K[[~]]⊗̄(Gb)Φ

~ (V )

(`
−1

(Ob)Φ~ (V )

ζV
`
−1

(Gb)Φ~ (V )

ζK[[~]]⊗̄V

(2)

(Ob)Φ
~ (V ) (Gb)Φ

~ (V )

(Ob)Φ
~ (K[[~]]⊗̄V ) (Gb)Φ

~ (K[[~]]⊗̄V )

(Ob)Φ
~ (`
−1
V )

ζV

(Gb)Φ
~ (`
−1
V )

ζK[[~]]⊗̄V

(3)

(Gb)Φ
~ (K[[~]]⊗̄V ) (Gb)Φ

~ (K[[~]])⊗̄Gb(V )

(Ob)Φ
~ (K[[~]]⊗̄V ) (Ob)Φ

~ (K[[~]])⊗̄(Ob)Φ
~ (V )

ζK[[~]]⊗̄V

ψ2

(Gb)Φ~
(K[[~]],V )

ζK[[~]]⊗̄ζV
ψ2

(Ob)Φ~
(K[[~]],V )

(4)

K[[~]]⊗̄(Gb)Φ
~ (V ) K[[~]]⊗̄(Ob)Φ

~ (V )

(Gb)Φ
~ (K[[~]])⊗̄(Gb)Φ

~ (V ) (Ob)Φ
~ (K[[~]])⊗̄(Ob)Φ

~ (V )

id⊗̄ζV

ψ0

(Gb)Φ~
⊗̄id

ζK[[~]]⊗̄ζV

ψ0

(Ob)Φ~
⊗̄id

(5)

(Gb)Φ
~ (V ) K[[~]]⊗̄(Gb)Φ

~ (V )

(Gb)Φ
~ (K[[~]]⊗̄V ) (Gb)Φ

~ (K[[~]])⊗̄(Gb)Φ
~ (V )

`
−1

(Gb)Φ~ (V )

(Gb)Φ
~ (`
−1
V ) ψ0

(Gb)Φ~
⊗̄id

ψ2

(Gb)Φ~
(K[[~]],V )

Remark 7.5.3. Recalling Proposition 2.1.3, for any λ ∈ K[[~]] we have

ψ0
(Ob)Φ

~
(λ) =

(
ψ0

(Gb)Φ
~
◦ (ζK[[~]])

−1
)
(λ)

=
(
ψ0

(F b)Φ
~
◦ (F b)Φ

~ (`K[[~]]) ◦ (F b)Φ
~ (εM⊗̄idK[[~]]) ◦ (ζK[[~]])

−1
)

(λ)

=
(
ψ0

(F b)Φ
~
◦ (F b)Φ

~ (`K[[~]]) ◦ (F b)Φ
~ (εM⊗̄idK[[~]])

)
([1⊗ λ])

=
(
ψ0

(F b)Φ
~
◦ (F b)Φ

~ (`K[[~]])
)

([εM(1)⊗ λ])

= ψ0
(F b)Φ

~
([λ])

= λ

i.e. ψ0
(Ob)Φ

~
= idK[[~]].
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We shall need the following result in order to compute semiclassical limits:

Proposition 7.5.4. For any V,W in Obj((DY(b))Φ
~ ), v ∈ V and w ∈ W we have

ψ2
(Ob)Φ

~
(V,W )(v⊗̄w) mod ~2 =

1

2

(
v ⊗ w − ~

∑
[v]

v[1] ⊗ v[0] · w
)
. (7.5.1)

Proof. We first compute the deformed middle four interchange map β
Φ

U,V,W,Z modulo ~2 (see 2.5.5).

Recalling that Φ = 1 +O(~2), we have, for any X, Y, Z,W in Obj
(
(DY(b))Φ

~
)
, x ∈ X, y ∈ Y , z ∈ Z

and w ∈ W and setting v := (x⊗̄y)⊗̄(w⊗̄z):

β
Φ

X,Y,Z,W (v) mod ~2 =
(
αX,Z,Y,W ◦

(
(idX⊗̄cΦ

Y,Z)⊗̄idW
)
◦ (αX,Y,Z,T )−1

)
(v) mod ~2

=
(
aΦ
X⊗̄Z,Y,W ◦ (aΦ

X,Z,Y ⊗̄idW )−1 ◦
(
(idX⊗̄cY,Z ◦ etY,Z/2)⊗̄idW

)
◦ (aΦ

X⊗̄Y,Z,W ◦
(
(aΦ
X,Y,Z)−1⊗̄idW )

))
(v) mod ~2

=
1

2

(
(x⊗ z)⊗ (y ⊗ w) + ~

∑
[z]

(x⊗ z[0] · y)⊗ (z[1]⊗̄w) + ~
∑
[y]

(x⊗ y[0])⊗ (y[1] · z ⊗ w)
)

where the last equality follows from the fact that the deformed constraints satisfy aΦ mod ~2 = a
and cΦ

X,Y mod ~2 = cX,Y ◦ 1
2
(idX⊗Y + ~tbX,Y ). Next, we compute

ψ2
(Ob)Φ

~
(V,W )(v⊗̄w) mod ~2

=
(
(ζV ⊗̄ζW ) ◦ ψ2

(Gb)Φ
~
(V,W ) ◦ (ζV ⊗̄W )−1

)
(v⊗̄w) mod ~2

=
(

(ζV ⊗̄ζW ) ◦ ψ2
(F b)Φ

~
(U(b)⊗̄V,U(b)⊗̄W ) ◦ (F b)Φ

~ (β
Φ

U(b),U(b),V,W mod ~2) ◦ (F b)Φ
~ (∆0⊗̄idV ⊗̄W )

◦ (ζV ⊗̄W )−1
)

(v⊗̄w)

=
(

(ζV ⊗̄ζW ) ◦ ψ2
(F b)Φ

~
(U(b)⊗̄V,U(b)⊗̄W ) ◦ (F b)Φ

~ (β
Φ

U(b),U(b),V,W mod ~2)
)

([(1⊗̄1)⊗̄(v⊗̄w)])

=
1

2

(
(ζV ⊗̄ζW ) ◦ ψ2

(F b)Φ
~
(U(b)⊗̄V,U(b)⊗̄W )

)
([(1⊗̄v)⊗̄(1⊗̄w)])

+
1

2
~
∑
[1]

(
(ζV ⊗̄ζW ) ◦ ψ2

(F b)Φ
~
(U(b)⊗̄V,U(b)⊗̄W )

)
([(1⊗̄1[0] · v)⊗̄(1[1]⊗̄w)])

+
1

2
~
∑
[v]

(
(ζV ⊗̄ζW ) ◦ ψ2

(F b)Φ
~
(U(b)⊗̄V,U(b)⊗̄W )

)
([(1⊗̄v[1])⊗̄(v[0] · 1⊗̄w)])

=
1

2

(
ζV (1⊗̄v)⊗̄ζW (1⊗̄w) + 0 + ~

∑
[v]

(
ζV (1⊗̄v[1])⊗̄ζW (v[0]⊗̄w)

))
=

1

2

(
v⊗̄w + ~

∑
[v]

(
v[1]⊗̄S0(v[0] · w)

))
=

1

2

(
v⊗̄w − ~

∑
[v]

(
v[1]⊗̄v[0] · w

))
where the fifth equality follows from the fact that π∗U(b)(1) = 0 and the last follows from the fact

that v[0] is primitive.
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7.6 Quantization of Lie bialgebras

We now present the Ševera’s quantization of Lie bialgebras. Given a Lie bialgebra b, consider the
infinitesimally braided monoidal categories VectK and DY(b), see §2.8 and §4.4 for more details.
The functor of coinvariants F b (see §7.4) is U(b)–adapted, and therefore by Theorem 7.3.1 there

exists a Hopf algebra structure on F b(U(b)⊗U(b)) = U(b)⊗U(b)
b·(U(b)⊗U(b))

. Next, let ~ be a formal parameter

and Φ be a Drinfeld associator. Deforming VectK and DY(b) as in §2.7 gives two braided monoidal
categories (VectK)Φ

~ = TopFreeK and (DY(b))Φ
~ . Moreover, by Theorem 7.5 we have that the induced

deformed comonoidal functor (F b)Φ
~ : (DY(b))Φ

~ → TopFreeK is U(b)–adapted, inducing a topological
Hopf algebra structure on (F b)Φ

~ (U(b) ⊗ U(b)) = (Gb)Φ
~ (U(b)). Recall also that the functors (Gb)Φ

~
and (Ob)Φ

~ are naturally comonoidally isomorphic. Therefore, we have a natural topological Hopf
algebra structure on (Ob)Φ

~ (U(b)) = U(b), which we shall denote by Ǔ(b).
We first introduce the following

Lemma 7.6.1. Let (b, [·, ·], δ) be a Lie bialgebra and set θ := [·, ·] ◦ δ : b→ b. Then

(i) θ is a Lie biderivation, i.e. it satisfies

θ([x, y]) = [θ(x), y] + [x, θ(y)] (7.6.1a)

δ ◦ θ = (θ ⊗ idb + idb ⊗ θ) ◦ δ. (7.6.1b)

(ii) There is a unique algebra derivation Dθ : U(b) → U(b) such that for any x ∈ b one has
Dθ(x) = θ(x).

Proof. (i) Using the Jacobi identity and the cocycle condition we get

θ([x, y]) = [·, ·] ◦ δ([x, y])

= [·, ·] ◦
(∑
〈x〉

[x′, y]⊗ x′′ + x′ ⊗ [x′′, y] +
∑
〈y〉

[x, y′]⊗ y′′ + y′ ⊗ [x, y′′]
)

=
∑
〈x〉

(
[[x′, y], x′′] + [x′, [x′′, y]]

)
+
∑
〈y〉

(
[[x, y′], y′′] + [y′, [x, y′′]]

)
=
∑
〈x〉

[[x′, x′′], y] +
∑
〈y〉

[x, [y′, y′′]]

= [θ(x), y] + [x, θ(y)].

Similarly, using the coJacobi identity and the cocycle condition we get

δ ◦ θ(x) = (δ ◦ [·, ·] ◦ δ)(x)

=
∑
〈x〉

δ([x′, x′′])

=
∑
〈x,x′′〉

x′ ·
(
(x′′)′ ⊗ (x′′)′′

)
−
∑
〈x,x′〉

x′′ ·
(
(x′)′ ⊗ (x′)′′

)
=
∑
〈x,x′〉

(
[x′, (x′′)′]⊗ (x′′)′′ + (x′′)′ ⊗ [x′, (x′′)′′]

)
−
∑
〈x,x′〉

(
[x′′, (x′)′]⊗ (x′)′′ + (x′)′ ⊗ [x′′, (x′)′′]

)
=
(
(θ ⊗ idb + idb ⊗ θ) ◦ δ

)
(x)
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(ii): Consider the following map

D̂θ : T(b)→ T(b)

defined for any n ∈ N and x, x1, . . . , xn ∈ b by

D̂θ(1) = 0

D̂θ(x) = θ(x)

D̂θ(x1 ⊗ · · · ⊗ xn) =
n∑
r=1

(x1 ⊗ · · · ⊗ xr−1)⊗ θ(xr)⊗ xr+1 ⊗ · · · ⊗ xn.

Clearly, D̂θ is a derivation of free algebras. Moreover, for any x, y ∈ b we have

D̂θ(x ⊗ y − y ⊗ x− [x, y])

= θ(x) ⊗ y + x ⊗ θ(y)− θ(y) ⊗ x− y ⊗ θ(x)− [θ(x), y]− [x, θ(y)]

=
(
θ(x) ⊗ y − y ⊗ θ(x)− [θ(x), y]

)
+
(
x ⊗ θ(y)− θ(y) ⊗ x− [x, θ(y)]

)
Hence D̂θ(I(b)) ⊂ I(b), i.e. D̂θ passes to the quotient giving rise to a well–defined derivation
Dθ : U(b)→ U(b).

We can now prove the main result of this Chapter:

Theorem 7.6.2. [Šev16, Th.2] The topological Hopf algebra Ǔ(b)is a quantization of b.

Proof. First recall that as a topologically free module we have Ǔ(b) = U(b). Next, we look at the
coalgebra structure of Ǔ(b). By definition,

Ǔ(b) = ζU(b)

(
(Gb)Φ

~ (U(b))
)

= ζU(b)

(
(F b)Φ

~ (U(b)⊗ U(b))
)

and therefore the coalgebra structure of Ǔ(b) is the one induced by (F b)Φ
~ (U(b)⊗ U(b)) through ζ,

i.e.

∆̌ := ζU(b)⊗̄ζU(b) ◦∆(F b)Φ
~ (U(b)⊗̄U(b)) ◦ ζ

−1

U(b)

ε̌ := ε(F b)Φ
~ (U(b)⊗̄U(b)) ◦ ζ

−1

U(b).

We are going to prove that for any u ∈ Ǔ(b) the following formula holds

∆̌(u) mod ~2 = ∆0(u) + ~/2∆1(u),

where ∆1(1) = 0 and for any n ∈ N, x1, . . . , xn ∈ b

∆1(x1 · · ·xn) =
n∑
r=1

∆0(x1 · · ·xr−1)δ(xr)∆0(xr+1 · · ·xn).

Denoting by ψ1 the term proportional to ~ in the formal series ψ(Ob)Φ
~
(U(b),U(b)), we get

∆1(u) = ψ1(∆0(u)) =
∑
(u)

ψ1(u(1)⊗̄u(2)) = −
∑
(u)

∑
[u(1)]

(u(1))[1]⊗̄
(
(u(1))[0]u(2)

)
.
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For u = 1 we obtain ∆1(1) = 0 in view of the fact that ρ̃(1) = 0. For u = x ∈ b we get

∆1(x) = −
∑
[x]

x[1] ⊗ x[0]1−
∑
[1]

1[1] ⊗ 1[0]x = −
∑
〈x〉

x′′⊗̄x′ − 0 =
∑
〈x〉

x′⊗̄x′′ = δ(x).

For any x ∈ b and u ∈ U(b) we have

∆1(xu) = −
∑
(xu)

∑
[(xu)(1)]

(
(xu)(1)

)[1]⊗̄
(
(xu)(1)

)[0]
(xu)(2)

= −
∑
(u)

∑
[(xu)(1)]

(
x(u)(1)

)[1]⊗̄
(
x(u)(1)

)[0]
(xu)(2) −

∑
(u)

∑
[u(1)]

(u(1))[1]⊗̄(u(1))[0]xu(2)

= −
∑
(u)

∑
[u(1)]

x(u(1))[1]⊗̄(u(1))[0]u(2) −
∑
(u)

∑
[u(1)]

x(u(1))[1]⊗̄[x, (u(1))[0]]u(2)

−
∑
(u)

∑
[u(1)]

(u(1))[1]⊗̄(u(1))[0]xu(2) −
∑
(u)

∑
〈x〉

(x′′u(1))⊗̄(x′u(2))

= −(x⊗̄1 + 1⊗̄x)
∑
(u)

∑
[u(1)]

(u(1))[1]⊗̄
(
(u(1))[0]u(2)

)
+
∑
(u)

∑
〈x〉

(x′u(1))⊗̄(x′′u(2))

= ∆0(x)∆1(u) + δ(x)∆0(u),

where we used Equation (4.4.4). Finally, by induction on the standard filtration of the universal
enveloping algebra we have

∆1(x1 · x2 · · ·xn+1) = ∆0(x1)∆1(x2 · · ·xn+1) + ∆1(x1)∆0(x2 · · ·xn+1)

= ∆0(x1)
n+1∑
r=2

∆0(x2 · · · xr−1)δ(xr)∆0(xr+1 · · ·xn+1) + ∆1(x1)∆0(x2 · · ·xn+1)

=
n+1∑
r=1

∆0(x1 · · · xr−1)δ(xr)xr+1 · · ·xn+1.

Next, we look at the antipode of Ǔ(b). We have

Š := ζU(b) ◦ (F b)Φ
~ (τΦ

U(b),U(b)) ◦ ζ
−1

U(b)

= ζU(b) ◦ (F b)Φ
~ (τU(b),U(b) ◦ et

b
U(b),U(b)/2) ◦ ζ−1

U(b)

= ζU(b) ◦ (F b)Φ
~ (τU(b),U(b)) ◦ ζ

−1

U(b) ◦
( ∞∑
r=0

~r

2(r!)

(
ζU(b) ◦ (F b)Φ

~ ((t
b
U(b),U(b))

r) ◦ ζ−1

U(b)

))
= ζU(b) ◦ (F b)Φ

~ (τU(b),U(b)) ◦ ζ
−1

U(b) ◦
( ∞∑
r=0

~r

2(r!)

(
ζU(b) ◦ (F b)Φ

~ (t
b
U(b),U(b))

r ◦ ζ−1

U(b)

))
= ζU(b) ◦ (F b)Φ

~ (τU(b),U(b)) ◦ ζ
−1

U(b) ◦
( ∞∑
r=0

~r

2(r!)

(
ζU(b) ◦ (F b)Φ

~ (t
b
U(b),U(b)) ◦ ζ

−1

U(b)

)r)
= ζU(b) ◦ (F b)Φ

~ (τU(b),U(b)) ◦ ζ
−1

U(b) ◦ e(ζU(b)◦(F b)Φ
~ (t

b
U(b),U(b))◦ζ

−1
U(b))/2.

For any u, v ∈ U(b) we have

tbU(b),U(b)(u⊗ v) =
∑
[u]

u[1] ⊗ u[0]v +
∑
[v]

v[0]u⊗ v[1],
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and therefore (
ζU(b) ◦ F b(tbU(b),U(b)) ◦ ζ−1

U(b)

)
(v) =

(
ζU(b) ◦ F b(tbU(b),U(b))

)
([1⊗ v])

= ζU(b)

(
0 +

∑
[v]

v[0] ⊗ v[1]
)

=
∑
[v]

S0(v[0])v[1].

Set v = x1 · · ·xn, where n ∈ N and xi ∈ b and recall that for any u ∈ U(b) and y ∈ b we have
u · y =

∑
(u) u

(1)yS(u(2)), see [Kas12, Prop.IX.3.1]. Then we get

∑
[v]

S0(v[0])v[1] =
n∑
r=1

∑
〈xr〉

∑
(x1,...,xr−1)

S0

(
(x1 · · ·xr−1)(1) · x′r

)
(x1 · · ·xr−1)(2)x′′rxr+1 · · · xn

=
n∑
r=1

∑
〈xr〉

∑
(x1,...,xr−1)

S0

(
(x1 · · ·xr−1)(1) · x′rS0(x1 · · ·xr−1)(2)

)
(x1 · · ·xr−1)(3)x′′rxr+1 · · ·xn

= −
n∑
r=1

∑
〈xr〉

∑
(x1,...,xr−1)

(x1 · · ·xr−1)(2) · x′rS0(x1 · · ·xr−1)(1)(x1 · · ·xr−1)(3)x′′rxr+1 · · ·xn

= −
n∑
r=1

∑
〈xr〉

∑
(x1,...,xr−1)

(x1 · · ·xr−1)(1) · x′rS0(x1 · · ·xr−1)(2)(x1 · · ·xr−1)(3)x′′rxr+1 · · ·xn

= −
n∑
r=1

∑
〈xr〉

∑
(x1,...,xr−1)

(x1 · · ·xr−1)(1) · x′r1ε0((x1 · · ·x[2]
r−1))(x1 · · · xr−1)(3)x′′rxr+1 · · ·xn

= −
n∑
r=1

∑
〈xr〉

x1 · · ·xr−1x
′
rx
′′
rxr+1 · · ·xn = −

n∑
r=1

∑
〈xr〉

x1 · · ·xr−1[x′r, x
′′
r ]xr+1 · · ·xn

= −1

2

n∑
r=1

∑
〈xr〉

x1 · · ·xr−1θ(xr)xr+1 · · · xn = −1

2
Dθ(x1 · · ·xn) = −1

2
Dθ(v).

Moreover, we have(
ζU(b) ◦ (F b)Φ

~ (τU(b),U(b)) ◦ ζ
−1

U(b)

)
(u) =

(
ζU(b) ◦ (F b)Φ

~ (τU(b),U(b))
)
([1⊗ u])

= ζU(b)([u⊗ u]) = S0(u).

And then we have
Š = S0 ◦ e−~/2Dθ .

Next, we look at the algebra structure of U~(b)Š, which is given by the following multiplication and
unit:

µ̌ := ζU(b) ◦ µ(F b)Φ
~ (U(b)⊗̄U(b)) ◦ (ζ

−1

U(b)⊗̄ζ
−1

U(b))

η̌ := ζU(b) ◦ η(F b)Φ
~ (U(b)⊗̄U(b))

We are going to show that

µ̌ = µ0 ◦ (S0⊗̄idU(b)) ◦
(
ψ2

(Ob)Φ
~
(U(b),U(b))

)−1 ◦
(
(Š)−1⊗̄idU(b)

)
. (7.6.2)
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In order to do so, we compute

(ζU(b)⊗̄ζU(b)) ◦ γ
U(b)
U(b),U(b)

= (ζU(b)⊗̄ζU(b)) ◦ (F b)Φ
~ (τΦ

U(b),U(b)⊗̄id(Gb)Φ
~ (U(b))) ◦ ψ2

(Gb)Φ
~
(U(b),U(b)) ◦ (F b)Φ

~ (aΦ
U(b),U(b),U(b))

◦ (F b)Φ
~ ((τΦ

U(b),U(b))
−1⊗̄idU(b))

=
(
(ζU(b) ◦ (F b)Φ

~ (τΦ
U(b),U(b)))⊗̄ζU(b)

)
◦ (ζ

−1

U(b)⊗̄ζ
−1

U(b)) ◦ ψ2
(Ob)Φ

~
(U(b),U(b))

◦ ζU(b)⊗̄U(b) ◦ (F b)Φ
~
(
aΦ
U(b),U(b),U(b) ◦ (τΦ

U(b),U(b))
−1⊗̄idU(b)

)
= (SŠ⊗̄idU(b)) ◦ ψ2

(Ob)Φ
~
(U(b),U(b)) ◦ ζU(b)⊗̄U(b) ◦ (F b)Φ

~
(
aΦ
U(b),U(b),U(b) ◦ (τΦ

U(b),U(b))
−1⊗̄idU(b)

)
.

Hence we have

µ̌ := ζU(b) ◦ µ(F b)Φ
~ (U(b)⊗̄U(b)) ◦ (ζ

−1

U(b)⊗̄ζ
−1

U(b))

= ζU(b) ◦ (F )Φ
~ (rU(b)⊗̄idU(b)) ◦ (F )Φ

~ ((idU(b)⊗̄ε0)⊗̄idU(b)) ◦ (γ
U(b)
U(b),U(b))

−1 ◦
(
(ζU(b))

−1⊗̄(ζU(b))
−1
)

= ζU(b) ◦ (F b)Φ
~
(
(rU(b)⊗̄idU(b)) ◦ ((idU(b)⊗̄ε0)⊗̄idU(b)) ◦ (τΦ

U(b),U(b)⊗̄idU(b)) ◦ aΦ
U(b),U(b),U(b)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

)
◦ ζ−1

U(b)⊗̄U(b) ◦ (ψ2
(Ob)

(
U(b),U(b))

)−1 ◦
(
(Š)−1⊗̄idU(b)

)
.

In order to compute the wavy underlined morphism we consider the following diagram:

(1) (2)

(3) (4)

whose four subdiagrams are

(1)

U(b)⊗̄
(
U(b)⊗̄U(b)

) (
U(b)⊗̄U(b)

)
⊗̄U(b)

K[[~]]⊗̄
(
U(b)⊗̄U(b)

) (
K[[~]]⊗̄U(b)

)
⊗̄U(b)

(aΦ
U(b),U(b),U(b)

)−1

ε0⊗̄(idU(b)⊗̄U(b)) (ε0⊗̄idU(b))⊗̄idU(b)

(aΦ
K[[~]],U(b),U(b)

)−1

(2) (
U(b)⊗̄U(b)

)
⊗̄U(b)

(
U(b)⊗̄U(b)

)
⊗̄U(b)

(
K[[~]]⊗̄U(b)

)
⊗̄U(b)

(
U(b)⊗̄K[[~]]

)
⊗̄U(b)

(ε0⊗̄idU(b))⊗̄idU(b)

τΦ
U(b),U(b)

⊗̄idU(b)

(idU(b)⊗̄ε0)⊗̄idU(b)

τΦ
K[[~]],U(b)

⊗̄idU(b)
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(3)

K[[~]]⊗̄
(
U(b)⊗̄U(b)

) (
K[[~]]⊗̄U(b)

)
⊗̄U(b)

U(b)⊗̄U(b) U(b)⊗̄U(b)

(aΦ
K[[~]],U(b),U(b)

)−1

`U(b)⊗̄U(b) `U(b)⊗̄idU(b)

(4) (
K[[~]]⊗̄U(b)

)
⊗̄U(b)

(
U(b)⊗̄K[[~]]

)
⊗̄U(b)

U(b)⊗̄U(b) U(b)⊗̄U(b)

`U(b)⊗̄idU(b)

τΦ
K[[~]],U(b)

⊗̄idU(b)

rU(b)⊗̄idU(b)

and commute respectively in view of the naturality of the associativity constraint, the naturality
of the braiding, the compatibility of the braiding with the unit constraints and the triangle axiom.
Hence

rU(b)⊗̄idU(b)) ◦
(
(idU(b)⊗̄ε0)⊗̄idU(b)

)
◦ (τΦ

U(b),U(b)⊗̄idU(b)) ◦ aΦ
U(b),U(b),U(b) = `U(b)⊗̄U(b) ◦ (ε0⊗̄idU(b)⊗̄U(b))

and

µ̌ = ζU(b) ◦ (F b)Φ
~
(
`U(b)⊗̄U(b) ◦ (ε0⊗̄idU(b)⊗̄U(b))

)
◦ ζ−1

U(b)⊗̄U(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
◦ (ψ2

(Ob)(U(b),U(b)))−1 ◦
(
(Š)−1⊗̄idU(b)

)
.

Finally, the dotted underlined term can be computed explicitely: for any u, v ∈ U(b) we have(
ζU(b) ◦ (F b)Φ

~
(
`U(b)⊗̄U(b) ◦ (ε̌⊗̄idU(b)⊗̄U(b))

)
◦ ζ−1

U(b)⊗̄U(b)

)
(u⊗ v)

=
(
ζU(b) ◦ (F b)Φ

~
(
`U(b)⊗̄U(b) ◦ (ε̌⊗̄idU(b)⊗̄U(b))

))
([1⊗̄(u⊗̄v)])

= ζU(b)([u⊗ v]) = S0(u)v

=
(
µ0 ◦ (S0⊗̄idU(b))

)
(u⊗̄v).

We finally get
µ̌ = µ0 ◦ (S0⊗̄idU(b)) ◦ ψ(Ob)Φ

~

(
U(b),U(b)

)
◦
(
(Š)−1⊗̄idU(b)

)
and then in particular

µ̌ mod ~ = µ0.

7.7 Functoriality

The aim of this Section is to prove the functoriality of the Ševera’s quantization.

Lemma 7.7.1. Let (b, [·, ·], δ) and (b′, [·, ·]′, δ′) be two Lie bialgebras and ϕ : b→ b′ be a morphism
of Lie bialgebras. Then the corresponding morphism of Hopf algebras U(ϕ) : U(b) → U(b′) has the
following properties:

(i) Ob′(tb
′

U(b′),U(b′)) ◦
(
U(ϕ)⊗ U(ϕ)

)
=
(
U(ϕ)⊗ U(ϕ)

)
◦ Ob(tbU(b),U(b)).
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(ii) ψ2
(Ob′ )Φ

~
(U(b′),U(b′)) ◦

(
U(ϕ)⊗̄U(ϕ)

)
=
(
U(ϕ)⊗̄U(ϕ)

)
◦ ψ2

(Ob)Φ
~

(
U(b),U(b)

)
.

(iii) If θ (resp. θ′) is the canonical Lie biderivation of b (resp. b′), we have θ′ ◦ ϕ = ϕ ◦ θ

(iv) U(ϕ) ◦Dθ = Dθ′ ◦ U(ϕ).

Proof. (i): For any u, v ∈ U(b) we have – using that U(ϕ) concides with φ on b and U(ϕ)(1) = 1′ –(
Ob′(tb

′

U(b′),U(b′)) ◦ U(ϕ)⊗ U(ϕ)
)
(u⊗ v) = Ob′(tb

′

U(b′),U(b′))
(
U(ϕ)(u)⊗ U(ϕ)(v)

)
=

∑
[U(ϕ)(u)]

(
U(ϕ)(u)

)[1] ⊗
(
U(ϕ)(u)

)[0]
U(ϕ)(v) +

∑
[U(ϕ)(v)]

(
U(ϕ)(v)

)[0]
U(ϕ)(u)⊗

(
U(ϕ)(v)

)[1]

=
∑
[u]

U(ϕ)(u[1])⊗
(
U(ϕ)(u[0])

)
U(ϕ)(v) +

∑
[v]

U(ϕ)(v[0])U(ϕ)(u)⊗ U(ϕ)(v[1])

=
∑
[u]

U(ϕ)(u[1])⊗ U(ϕ)(u[0]v) +
∑
[v]

U(ϕ)(v[0]u)⊗ U(ϕ)(v[1])

=
(
U(ϕ)⊗ U(ϕ)

)
◦ Ob(tbU(b),U(b))

(ii): Recall that

ψ2
(Ob)Φ

~

(
U(b),U(b)

)
=
(
ζU(b)⊗̄ζU(b)

)
◦ ψ2

(F b)Φ
~

(
U(b)⊗̄U(b),U(b)⊗̄U(b)

)
◦ (F b)Φ

~ (β
Φ

U(b),U(b),U(b),U(b))

◦ (F b)Φ
~ (∆0⊗̄idU(b)⊗̄U(b)) ◦ ζ

−1

U(b)⊗̄U(b)

hence for any u, v ∈ U(b)

ψ2
(Ob)Φ

~

(
U(b),U(b)

)
(u⊗ v) =

((
ζU(b)⊗̄ζU(b)

)
◦ ψ2

(F b)Φ
~

(
U(b)⊗̄U(b),U(b)⊗̄U(b)

)
◦ (F b)Φ

~ (β
Φ

U(b),U(b),U(b),U(b))
)(

[(1⊗̄1)⊗̄(u⊗̄v)]
)
.

Set M := U(b) and M ′ := U(b′). We first look at the deformed middle four interchange β
Φ

, see
2.5.5. Note first that we can write β –using the notation of 2.3.1 – as

βM,M,M,M =
(
(idM ⊗ (τM,M ⊗ idM))(idM⊗a−1

M,M,M )
)aM,M,M⊗M .

In order to consider its deformed version, consider the following maps (M ⊗M) ⊗ (M ⊗M) →
(M ⊗M)⊗ (M ⊗M):

τ12 := τM,M ⊗ idM⊗M

τ23 := βM,M,M,M

τ34 := idM⊗M ⊗ τM,M

t12 := tbM,M ⊗ idM⊗M

t13 := τ23 ◦ tb12 ◦ τ23

t14 := τ34t
b
13 ◦ τ34

t23 := τ12t
b
13 ◦ τ12

t24 := τ34 ◦ tb23 ◦ τ34

t34 := idM⊗M ◦ tbM,M .
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Hence we have

β
Φ

M,M,M,M = Φ(t23 + t24, t12) ◦ Φ(t23, t24) ◦ τ 23 ◦ et23/2 ◦ Φ(t24, t23) ◦ Φ(t12, t23 + t24). (7.7.1)

Next, recall the natural transformation p : Ob → F b defined by the canonical projection satisfies

ψ2
F b ◦ pV⊗W = pV ⊗ pW .

We shall denote by p′ the analogue natural transformation p′ : Ob′ → F b′ . In particular, we have(
U(ϕ) ◦ ζM ◦ pM⊗M

)
(u⊗ v) =

(
U(ϕ) ◦ ζM

)
([u⊗ v])

= U(ϕ)(S0(u)v) = U(ϕ)(S0(u))U(ϕ)(v)

= S ′0(U(ϕ)(u))U(ϕ)(v) = ζ ′M ′
(
[U(ϕ)(u)⊗ U(ϕ(v))]

)
=
(
ζ ′M ′ ◦ p′M ′⊗M ′ ◦ U(ϕ)⊗ U(ϕ)

)
(u⊗ v).

Also, we have that((
U(ϕ)⊗ U(ϕ)

)
⊗
(
U(ϕ)⊗ U(ϕ)

))
◦ τij = τ ′ij ◦

((
U(ϕ)⊗ U(ϕ)

)
⊗
(
U(ϕ)⊗ U(ϕ)

))((
U(ϕ)⊗ U(ϕ)

)
⊗
(
U(ϕ)⊗ U(ϕ)

))
◦ Ob(tij) = Ob′(t′ij) ◦

((
U(ϕ)⊗ U(ϕ)

)
⊗
(
U(ϕ)⊗ U(ϕ)

))
and hence ((

U(ϕ)⊗ U(ϕ)
)
⊗
(
U(ϕ)⊗ U(ϕ)

))
◦ Ob(ti1j1 ◦ · · · ◦ tiN jN )

=
((

U(ϕ)⊗ U(ϕ)
)
⊗
(
U(ϕ)⊗ U(ϕ)

))
◦ Ob(ti1j1) ◦ · · · ◦ Ob(tiN jN )

= Ob′(t′i1j1) ◦ · · · ◦ Ob′(t′iN jN ) ◦
((

U(ϕ)⊗ U(ϕ)
)
⊗
(
U(ϕ)⊗ U(ϕ)

))
.

Therefore, since for each power of the formal parameter ~ the right hand side of Equation (7.7.1) is
a finite composition of terms ti1j1 ◦ · · · ◦ tiN jN we get for any u, v ∈M :(
U(ϕ)⊗̄U(ϕ)

)
◦ ψ2

(Ob)Φ
~
(M,M)

=
((

U(ϕ)⊗̄U(ϕ)
)
◦ (ζM⊗̄ζM) ◦ ψ2

(F b)Φ
~
(M⊗̄M,M⊗̄M)

)([
β

Φ

M,M,M,M((1⊗̄1)⊗̄(u⊗̄v))
])

=
((

U(ϕ)⊗̄U(ϕ)
)
◦ (ζM⊗̄ζM) ◦ ψ2

(F b)Φ
~
(M⊗̄M,M⊗̄M) ◦ p(M⊗̄M)⊗̄(M⊗̄M)

)(
β

Φ

M,M,M,M

(
(1⊗̄1)⊗̄(u⊗̄v)

))
=
((

U(ϕ)⊗̄U(ϕ)
)
◦ (ζM⊗̄ζM) ◦ (pM⊗̄M⊗̄pM⊗̄M)

)(
β

Φ

M,M,M,M

(
(1⊗̄1)⊗̄(u⊗̄v)

))
=
(

(ζ
′
M ′⊗̄ζ

′
M ′) ◦ (p′M ′⊗̄M ′⊗̄p′M ′⊗̄M ′) ◦

(
U(ϕ)⊗̄U(ϕ)

))(
β

Φ

M,M,M,M((1⊗̄1)⊗̄(u⊗̄v))
)

=
(

(ζ
′
M ′⊗̄ζ

′
M ′) ◦ (p′M ′⊗̄M ′⊗̄p′M ′⊗̄M ′) ◦ β

′Φ

M ′,M ′,M ′,M ′

)(
(1′⊗̄1′)⊗̄(U(ϕ)(u)⊗̄U(ϕ)(v))

)
=
(

(ζ
′
M ′⊗̄ζ

′
M ′) ◦ ψ2

(F b)Φ
~
(M ′⊗̄M ′,M ′⊗̄M ′) ◦ p′(M ′⊗̄M ′)⊗̄(M ′⊗̄M ′) ◦ ψ2

(Ob′ )Φ
~
(β
′Φ

M ′,M ′,M ′,M ′)
)

(
(1′⊗̄1′)⊗̄(U(ϕ)(u)⊗̄U(ϕ)(v))

)
=
(

(ζ
′
M ′⊗̄ζ

′
M ′) ◦ ψ2

(F b)Φ
~
(M ′⊗̄M ′,M ′⊗̄M ′) ◦ (F b)Φ

~ (ζ
′
M ′⊗̄ζ

′
M ′) ◦ (F b)Φ

~ (∆
′
0⊗̄idM ′⊗̄M ′) ◦ (ζ

′
M ′⊗̄M ′)

−1
)

((
U(ϕ)⊗̄U(ϕ)

)
(u⊗ v)

)
= ψ2

(Ob′ )Φ
~
(M ′,M ′) ◦

(
U(ϕ)⊗̄U(ϕ)

)
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proving the claim.
(iii): Using the fact that ϕ is a morphism of Lie algebras and of Lie coalgebras we get

ϕ ◦ θ = ϕ ◦ [·, ·] ◦ δ = [·, ·]′(ϕ⊗ ϕ) ◦ δ = [·, ·]′ ◦ δ′ ◦ ϕ = θ′ ◦ ϕ.

(iv): The claim holds trivially for u = 1, since Dθ(1) = 0, U(ϕ)(1) = 1′ and Dθ′(1
′) = 0. For any

n ∈ N and x1, . . . , xn ∈ b we have – using that U(ϕ) is a morphism of algebras, the fact that U(ϕ)
concides with ϕ on b and statement (iii) –(

U(ϕ) ◦Dθ

)
(x1 · · ·xn) =

n∑
r=1

U(ϕ)
(
x1 · · ·xr−1θ(xi)xi+1 · · ·xn

)
=

n∑
r=1

ϕ(x1) · · ·ϕ(xr−1)ϕ(θ(xr))ϕ(xr+1)ϕ(xn)

=
n∑
r=1

ϕ(x1) · · ·ϕ(xr−1)θ′(ϕ(xr))ϕ(xr+1)ϕ(xn)

= Dθ′
(
ϕ(x1) · · ·ϕ(xn)

)
= (Dθ′ ◦ U(ϕ))(x1 · · ·xn).

Theorem 7.7.2. Let LieBialg and QUAlg denote respectively the categories of Lie bialgebras and of
quantized universal enveloping algebras. Then the assignment

Q̌ : LieBialg→ QUAlg

(b, [·, ·], δ) 7→
(
Ǔ(b), µ̌, η̌, ∆̌, ε̌, Š

)
ϕ : b→ b′ 7→ U(ϕ) : Ǔ(b)→ Ǔ(b′).

is a functor.

Proof. We already shown in the previous Section that (Ǔ(b), µ̌, η̌, ∆̌, ε̌, Š) is a topological Hopf
algebra quantizing b. We prove that U(ϕ) is a morphism of Hopf algebras. We have

U(ϕ) ◦ Š = U(ϕ) ◦ S0 ◦ e−~/2Dθ

= S ′0 ◦ U(ϕ) ◦ e−~/2Dθ

= S ′0 ◦ e−~/2Dθ′ ◦ U(ϕ)

= Š ′ ◦ U(ϕ).

hence U(ϕ) intertwines the antipodes. Since the units and the counits are not deformed, they are
intertwined in view of the property of the functor U. Next, using statement (ii) of the previous
lemma, we get

U(ϕ) ◦ µ̌ = U(ϕ) ◦
(
µ0 ◦ (S0⊗̄idU(b)) ◦ ψ(Ob)Φ

~
(U(b),U(b)) ◦ ((Š)−1⊗̄idU(b))

)
= µ′0 ◦

(
U(ϕ)⊗̄U(ϕ)

)
◦ (S0⊗̄idU(b)) ◦ ψ(Ob)Φ

~
(U(b),U(b)) ◦ ((Š)−1⊗̄idU(b))

= µ′0 ◦ (S ′0⊗̄idU(b′)) ◦
(
U(ϕ)⊗̄U(ϕ)

)
◦ ψ(Ob)Φ

~
(U(b),U(b)) ◦ ((Š)−1⊗̄idU(b))

= µ′0 ◦ (S ′0⊗̄idU(b′)) ◦ ψ(Ob′ )Φ
~
(U(b′),U(b′)) ◦

(
U(ϕ)⊗̄U(ϕ)

)
◦ ((Š)−1⊗̄idU(b))

= µ′0 ◦ (S ′0⊗̄idU(b′)) ◦ ψ(Ob′ )Φ
~
(U(b′),U(b′)) ◦ ((Š ′)−1⊗̄idU(b′)) ◦

(
U(ϕ)⊗̄U(ϕ)

)
= µ̌′ ◦

(
U(ϕ)⊗̄U(ϕ)

)
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and (
U(ϕ)⊗̄U(ϕ)

)
◦ ∆̌ =

(
U(ϕ)⊗̄U(ϕ)

)
◦ ψ2

(Ob)Φ
~
(U(b),U(b)) ◦∆0

= ψ2
(Ob′ )Φ

~
(U(b′),U(b′)) ◦

(
U(ϕ)⊗̄U(ϕ)

)
◦∆0

= ψ2
(Ob′ )Φ

~
(U(b′),U(b′)) ◦∆′0 ◦

(
U(ϕ)⊗̄U(ϕ)

)
Hence U(ϕ) is a morphism of topological Hopf algebras. Therefore, since U is a functor (and then
U(ϕ ◦ φ) = U(ϕ) ◦ U(φ)) we get that Q̌ is a functor.

7.8 Quantization of twists

Let b be a Lie bialgebra, j ∈ Λ2(b) a Lie bialgebra twist (see §4.6) and consider the comonoids
U(b) and U(b)j of DY(b), see Theorem 4.5.2 and Remark 4.6.10. The functor of coinvariants of
§7.4 is both U(b)–adapted and U(b)j–adapted, in view of Proposition 7.4.3 and of the fact that
U(b)j carries the same comonoid structure of U(b). Set M = U(b), N = U(b)j, H = F b(M ⊗M),
Hj = F b(N⊗N), and B = F b(M⊗N). Then in view of the considerations of Remark 7.2.3 we have
that B is a H–Hj–bimodule. Recall also that B has a comonoid structure whose comultiplication
and counit are respectively

∆B = ψ2
F b(M ⊗M,N ⊗N) ◦ F b(βM,M,N,N) ◦ F b(∆M ⊗∆N)

εB = ψ0
F b ◦ F b(`K ◦ (εM ⊗ εN)).

From now on we shall denote with the same symbols the deformed objects M,N ∈ DY(b)Φ
~ ,

H,Hj, B ∈ TopFreeK. We need the following

Lemma 7.8.1. The left action and right action

µMM,N : F b(M ⊗M)⊗ F b(M ⊗N) = H ⊗B → F (M ⊗N) = B

µNM,N : F b(M ⊗N)⊗ F b(N ⊗N) = B ⊗Hj → F (M ⊗N) = B

are morphisms of coalgebras.

Proof. The proof relies on the following four principles (which are the same used to prove that
F (M ⊗′M) is a bimonoid in Theorem 7.3.1):

• For any braided monoidal category C , we have that Comon(C ) is a monoidal category: hence
if (C1,∆1, ε1), (C2,∆2, ε2), (C3,∆3, ε3), (C4,∆4, ε4) are four comonoids and α : C1 → C2,
γ : C3 → C4 are morphisms of comonoids, then α ⊗ γ is a morphism of comonoids (see
statement (ii) of Proposition 3.3.3).

• If (F, ψ0
F , ψ

2
F ) is a comonoidal functor, (C1,∆1, ε1), (C2,∆2, ε2) are two comonoids and α :

C1 → C2 is a morphism of comonoids, then so is F (α) (see statement (ii) of Proposition
3.3.4).

• If (F, ψ0
F , ψ

2
F ) is a comonoidal functor and (C1,∆1, ε1), (C2,∆2, ε2) are two comonoids, then

ψ2
F (C1, C2) is a morphism of comonoids (see statement (iii) of Proposition 3.3.4).
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• If (C,∆, ε) is a cocommutative comonoid then ∆ : C → C ⊗ C is a morphism of comonoids
(see statement (iii) of Proposition 3.3.3).

Hence, recalling that

µMX,Y := F (rX ⊗′ idY ) ◦ F ((idX ⊗′ εM)⊗′ idY ) ◦ (γMX,Y )−1

and
γMX,Y := ψ2

F (X ⊗′M,M ⊗′ Y ) ◦ F (α′X,M,M,Y ) ◦ F ((idX ⊗′ ∆M)⊗′ idY )

we have that the maps µMM,N , µ
N
M,N are built up of compositions of morphisms of coalgebras, and

then they are so.

Notation 7.8.2. We shall use – as P. Ševera – the following shortcuts for all a ∈ H, c ∈ Hj,
b ∈ B:

µMM,N(a⊗ b) := a · b
µNM,N(b⊗ c) := b · c.

For any n ∈ N, we have that B⊗n is a H⊗n–H⊗j –bimodule given by the usual left and right actions

(a1 ⊗ · · · ⊗ an) · (b1 ⊗ · · · bn) := (a1 · b1)⊗ · · · ⊗ (an · bn)

(b1 ⊗ · · · ⊗ bn) · (c1 ⊗ · · · cn) := (b1 · c1)⊗ · · · ⊗ (bn · cn)

Next, note that the topologically Hopf algebras H and Hj have the same unit element

1B = 1H = 1Hj = [1⊗ 1]

where [1 ⊗ 1] denotes the equivalence class of 1 ⊗ 1 ∈ U(b) ⊗ U(b) inside the quotient U(b)⊗U(b)
b·(U(b)⊗U(b))

.

However, as opposed to H and Hj, B is just a coalgebra (and not an algebra), and moreover the
element 1B is not even grouplike with respect to the comultiplicagion ∆B. This simple observation
will be the key idea for the whole reasoning. First we need the following

Lemma 7.8.3. Consider the following maps

Λ : H → B

a 7→ a · 1B
P : Hj → B

c 7→ 1B · c

Then their ~–adic completions Λ and P are invertible, and in particular

Λ mod ~ = P mod ~ = idU(b).

Proof. We compute the zeroth order of the maps γMM,N and γNM,N . Let u, v ∈ U(b). Then we get –
ignoring the completion of the deformed associator –

(γMM,N)0([1⊗ (u⊗ v)]) =
∑
(u)

[1⊗ u(1)]⊗ [u(2) ⊗ v] =
∑
(u)

[1⊗ u(1)]⊗ [1⊗ S(u(2)v)]
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Next, for any ũ, ṽ ∈ U(b) define

g([1⊗ ũ]⊗ [1⊗ ṽ]) :=
∑
(ũ)

[1⊗ ũ(1) ⊗ ũ(2)ṽ].

Hence we have

g
(
(γMM,N)0([1⊗ (u⊗ v)])

)
=
∑
(u)

g
(
[1⊗ u(1)]⊗ [1⊗ S(u(2)v)]

)
=
∑
(u)

g
(
1⊗ u(1) ⊗ u(2)S(u(3))v]

)
=
∑
(u)

g
(
1⊗ u(1) ⊗ ε(u(2))v]

)
= [1⊗ u⊗ v]

and

(γMM,N)0

(
g([1⊗ u]⊗ [1⊗ v])

)
=
∑
[u]

(γMM,N)0

(
[1⊗ u(1) ⊗ u(2)v]

)
=
∑
(u)

[1⊗ u(1)]⊗ [u2 ⊗ u(3)v]

=
∑
(u)

[1⊗ u(1)]⊗ [1⊗ S(u(2))u(3)v]

= [1⊗ u]⊗ [1⊗ v]

showing that (
(γMM,N)0

)−1
= g =

(
(γNM,N)0

)−1
.

Finally, we have

Λ0([1⊗ u]) =
(
(F b)Φ

~ (idM⊗̄εM⊗̄idN) ◦ (γMM,N)0

)−1)
([1⊗ u]⊗ [1⊗ 1])

= (F b)Φ
~ (idM⊗̄εM⊗̄idN)

(∑
(u)

[1⊗ u(1) ⊗ u(2)]
)

=
∑
(u)

[1⊗ εM(u(1))u(2)] = [1⊗ u]

and similarly
P 0([1⊗ u]) = [1⊗ u]

proving the statement.

We now prove the main result of this Section

Proposition 7.8.4. [Šev16, Rmk.9] We have that

(i) The element J := (Λ⊗̄Λ)−1(∆B(1B)) is a Hopf algebra twist, i.e. it satisfies(
(idH⊗̄∆H)(J)

)
(1H⊗̄J) =

(
(∆H⊗̄idH)(J)

)
(J⊗̄1H) (7.8.1a)

(εH⊗̄idH)(J) = (idH⊗̄εH)(J) = 1. (7.8.1b)
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(ii) The map

I : H → Hj

a 7→ P−1(Λ(a))

is an isomorphism of topological Hopf algebras and satisfies

∆Hj(I(a)) = (I⊗̄I)
(
J−1∆H(a)J

)
. (7.8.2)

(iii) The element ζM⊗M(J) is a quantization of the Lie bialgebra twist j, i.e.

ζM⊗M(J) = 1 + ~j +O(~2).

Proof. (i): consider the Sweedler’s notation

J =
∑
J

J ′⊗̄J ′′.

Then –using Lemma 7.8.1 – we have(
(∆B⊗̄idB) ◦∆B

)
(1B) = (∆B⊗̄idB)

(∑
J

(J ′⊗̄J ′′) · (1B⊗̄1B)
)

=
∑
J

(∆B ⊗ idB)(J ′ · 1B⊗̄J ′′ · 1B)

=
∑
J

∆B(J ′ · 1B)⊗̄J ′′ · 1B

=
∑
J

(
∆H(J ′)) ·∆B(1B)

)
⊗̄J ′′ · 1B

=
∑
J

(
(∆H(J ′)J) · 1B⊗̄1B

)
⊗̄J ′′ · 1B

=
∑
J

(
(∆H(J ′)⊗̄J ′′)(J⊗̄1H)

)
(1B⊗̄1B⊗̄1B)

and likewise (
(idB⊗̄∆B) ◦∆B

)
(1B) =

∑
J

(
(J ′⊗̄∆H(J ′′))(idH⊗̄J)

)
(1B⊗̄1B⊗̄1B).

Therefore, Equation (7.8.1a) follows using the coassociativity of ∆B and the fact that Λ⊗̄Λ⊗̄Λ is
invertible. The proof of Equation (7.8.1b) follows by a similar argument (by using the counity of
εH).
(ii): We first note that I is composition of invertible maps, and then is invertible too (see Lemma
7.8.3). For any a, a′ ∈ H we have

(aa′) · 1B = 1B · I(aa′) = a · (a′ · 1B) = (a · 1B) · I(a′) = (1B · I(a)) · I(a) = 1B · (I(a)I(a′))

hence P (I(aa′)) = P (I(a)I(a′)), and since P is invertible (see Lemma 7.8.3) we have I(aa′) =
I(a)I(a′). Moreover, we have 1B · 1Hj = 1B = 1H · 1B = 1B · I(1H) hence P (1Hj) = P (I(1H)),
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and using again the fact that P is invertible gives I(1H) = 1Hj , showing that I is a morphism of
algebras. Next, for any a ∈ H we have – using Lemma 7.8.1 –

εB(a · 1B) = εH(a)εB(1B) = εH(a)

and on the other side

εB(a · 1B) = εB(1B · I(a)) = εB(1B)εHj(I(a)) = εHj(I(a))

giving εHj ◦ I = εH . Finally, for any a ∈ H we have – using Lemma 7.8.1 –

∆B(a · 1B) = ∆H(a) ·∆B(1B)

= ∆H(a) · (J · (1B⊗̄1B))

= (∆H(a)J)(1B⊗̄1B)

and on the other side

∆B(a · 1B) = ∆B(1B · I(a))

= ∆B(1B) ·∆Hj(I(a))

=
(
J · (1B⊗̄1B)

)
·∆Hj(I(a))

=
(
J(I−1⊗̄I−1)(∆Hj(I(a)))

)
· (1B⊗̄1B)

showing that I is an isomorphism of coalgebras satisfying Equation (7.8.2).
(iii): It is clear that ∆B mod ~ = ∆0, i.e. the usual comultiplication of the universal enveloping
algebra U(b), and that µMM,N(u⊗ v) mod ~ = uv. Therefore, ∆B(1) mod ~ = 1B ⊗ 1B, and then J
mod ~ = 1H ⊗ 1H . Next, we compute the order 1 term: we have

(∆B(1B))1 = (∆B)1(1B)

=
(
ψ2

(F b)Φ
~ (M⊗̄N,M⊗̄N) ◦ F

b(β
Φ

M,M,N,N)1 ◦ (F b)Φ
~ (∆0⊗̄∆0)

)
[1⊗ 1]

=
(
ψ2

(F b)Φ
~ (M⊗̄N,M⊗̄N) ◦ F

b(β
Φ

M,M,N,N)1

)
([(1⊗ 1)⊗ (1⊗ 1)])

= ψ2
(F b)Φ

~ (M⊗̄N,M⊗̄N)

(
[1M ⊗ tbM,N(1M ⊗ 1N)⊗ 1N ]

)
where we used that the first order of a Drinfeld associator is zero, and we have ignored the completion
of the undeformed associator. Using that ρ̃U(b)(1) = 0 and ρ̃U(b)j(1) = −j we get

tM,N(1M ⊗ 1N) =
∑
[1M ]

1
[1]
M ⊗ 1

[0]
M · 1N +

∑
[1N ]

1
[0]
N · 1M ⊗ 1

[1]
N

= 0 +
∑
[1N ]

1
[0]
N ⊗ 1

[1]
N

= −j

Hence

J1 =
∑
j

(
[1⊗ j′]⊗ [j′′ ⊗ 1]

)
= −

∑
j

(
[1⊗ j′]⊗ [1⊗ S0(j′′)]

)
= +

∑
j

(
[1⊗ j′]⊗ [1⊗ j′′]

)
.
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Hence

ζU(b)⊗̄U(b)

(∑
j

(
[1⊗ j′]⊗ [1⊗ j′′]

)
= j.

Remark 7.8.5. The previous proof was shortly provided by P. Ševera, considerably simplifying the
analogous result for the Etingof–Kazhdan quantization due to Enriquez and Halbout [EH10a].

7.9 Quantization of Drinfeld–Yetter modules

Lemma 7.9.1. Let D be a braided monoidal category, (M,∆M , εM) be a cocommutative comonoid
in D , X be an object of D , and ∆M⊗X : M ⊗X → (M ⊗X)⊗ (M ⊗M) given by the composition

∆M⊗X := βM,M,X,M ◦ idM⊗M⊗c−1
X,M ◦αM,M,M,X ◦aM,M,M⊗ idX ◦(∆M⊗ idM)⊗ idX ◦∆M⊗ idX . (7.9.1)

Then (M ⊗X,∆M⊗X) is in Comod(M ⊗M), i.e. is a right M ⊗M–comodule.

Proof. In order to give the proof we may suppose that that D is strict. The fact that the pair
(M ⊗X,∆M⊗X) satisfies the commutativity of the diagram (3.4.1) follows by considering the joint
diagram

(1) (2) (3)

(4) (5)

(6) (7)

whose seven subdiagrams are the following

(1)

M ⊗X M⊗2 ⊗X M⊗3 ⊗X

M⊗2 ⊗X M⊗4 ⊗X

M⊗3 ⊗X M⊗5 ⊗X M⊗5 ⊗X

∆M⊗idX

∆M⊗idX ∆M⊗M⊗X

∆M⊗idM⊗M⊗X

∆M⊗idM⊗X ∆M⊗idM⊗M⊗M⊗X

idM⊗∆M⊗∆M⊗idX idM⊗M⊗cM,M⊗idM⊗X
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(2)

M⊗3 ⊗X M⊗2 ⊗X ⊗M

M⊗4 ⊗X M⊗3 ⊗X ⊗M

M⊗5 ⊗X M⊗4 ⊗X ⊗M

∆M⊗idM⊗M⊗X

idM⊗M⊗cX,M

∆M⊗idM⊗X⊗M

∆M⊗idM⊗3⊗X ∆M⊗idM⊗M⊗X⊗M
idM⊗4⊗cX,M

(3)

M⊗2 ⊗X ⊗M M ⊗X ⊗M⊗2

M⊗3 ⊗X ⊗M M⊗2 ⊗X ⊗M⊗2

M⊗4 ⊗X ⊗M M⊗3 ⊗X ⊗M⊗2

idM⊗cM,X⊗idM

∆M⊗idM⊗X⊗M ∆M⊗idX⊗M⊗2

∆M⊗idM⊗2⊗X⊗M ∆M⊗idM⊗X⊗M⊗2

idM⊗3⊗cM,X⊗idM

(4)

M⊗3 ⊗X M⊗5 ⊗X

M⊗2 ⊗X ⊗M M⊗3 ⊗X ⊗M

idM⊗∆M⊗∆M⊗idX

idM⊗M⊗cX,M

idM⊗∆M⊗idX⊗∆M

idM⊗3⊗cX,M⊗M

(5)

M⊗5 ⊗X M⊗5 ⊗X M⊗4 ⊗X ⊗M M⊗3 ⊗X ⊗M⊗2

M⊗3 ⊗X ⊗M⊗2 M⊗2 ⊗X ⊗M⊗3

idM⊗2⊗cM,M⊗idM⊗X idM⊗4⊗cM,X idM⊗3⊗cM,X⊗idM

idM⊗3⊗cX,M⊗M

idM⊗M⊗cM,X⊗M⊗idM

idM⊗2⊗cX,M⊗idM⊗2

(6)

M⊗2 ⊗X ⊗M M⊗3 ⊗X ⊗M⊗2

M ⊗X ⊗M⊗2 M ⊗X ⊗M⊗4

idM⊗cM,X⊗idM

idM⊗∆M⊗idX⊗∆M

idM⊗cM⊗M,X⊗idM⊗M
idM⊗X⊗∆M⊗∆M

(7)

M⊗3 ⊗X ⊗M⊗2 M⊗2 ⊗X ⊗M⊗3

M ⊗X ⊗M⊗4 M ⊗X ⊗M⊗4

idM⊗cM⊗M,X⊗idM⊗M

idM⊗M⊗cM,X⊗M⊗idM

idM⊗cM,X⊗idM⊗3

idM⊗X⊗M⊗cM,M⊗idM

here the first follows from the commutativity and coassociativity of ∆M , the second and the third
follow from Equation (2.5.1a), the fourth and the sixth follow from the naturality of the braiding,
the fifth from Equation (2.5.3), and the seventh by Equation (2.2.1).
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We now show that (M ⊗ X,∆M⊗X) satisfies (the strict counterpart of) the commutativity of the
diagram (3.4.2), i.e. that (idM⊗X ⊗ εM⊗M) ◦∆M⊗X = idM⊗X . We have

(idM⊗X ⊗ εM⊗M)∆M⊗X = (idM⊗2 ⊗ εM ⊗ εM)(idM ⊗ cM,X ⊗ idM)(idM⊗2 ⊗ c−1
M,X)(∆

(2)
M ⊗ idX)

= (idM ⊗ ((idX ⊗ εM) ◦ cM,X)⊗ εM)(idM⊗2 ⊗ c−1
M,X)(∆

(2)
M ⊗ idX)

= (idM ⊗ (cI,X ◦ (ε⊗ idX))⊗ εM)(idM⊗2 ⊗ c−1
M,X)(∆

(2)
M ⊗ idX)

= (idM ⊗ εM ⊗ idX ⊗ εM)(idM⊗2 ⊗ c−1
M,X)(∆

(2)
M ⊗ idX)

= ((idM ⊗ ε)(c−1
X,I(εM ⊗ idX)))(∆

(2)
M ⊗ idX)

= (idM ⊗ εM ⊗ εM ⊗ idX)(∆
(2)
M ⊗ idX)

= idM ⊗ idX = idM⊗X

where we used the naturality of the braiding, Equation (2.5.1a), and the identities cI,X = idX = cX,I
and (εM ⊗ idM)∆M = idM .

Remark 7.9.2. Let C ,D be two braided monoidal categories, (M,∆M , εM) a cocommutative comonoid
object in D and (F, ψ0

F , ψ
0
F ) : D → C be a M–adapted functor. Then for any object X of C , we have

both a left F (M ⊗′M)–module and right F (M ⊗′M)–comodule structure on the object F (M ⊗′X),
where:

• The left F (M ⊗′ M)–module structure is the multiplication of X,M along the comonoid M
µMX,M , see §7.2.

• The right F (M ⊗′M)–comodule structure is given by ψ2
F (M ⊗′ X,M ⊗′M) ◦ F (∆M⊗′X), see

Lemma 7.9.1 and Proposition 3.4.4.

We shall prove that such left module and right comodule structures satisfy the compatibility relation
(3.6.1). Let C ,D be two braided monoidal categories, (M,∆M , εM) a cocommutative comonoid
object in D and (F, ψ0

F , ψ
0
F ) : D → C be a M–adapted functor. Denote by G the (braided and

strongly comonoidal) functor given by the composition G = F ◦M⊗′–. Let X, Y be in Obj(D) and
set V := F (M ⊗′ X) = G(X), W := F (M ⊗′ Y ) = G(Y ) and H := F (M ⊗′M) = G(M). Consider
the natural morphism given by the composition

c̃X,Y := ψ2
G(Y,X) ◦ F

(
idM ⊗′ (c′Y,X)−1

)
◦
(
ψ2
G(X, Y )

)−1
: V ⊗W → W ⊗ V (7.9.2)

i.e. such that the following diagram commutes

V ⊗W W ⊗ V

Z F (M ⊗′ (Y ⊗′ X))

c̃X,Y

ψ2
G(X,Y )

F (idM⊗′(c′X,Y )−1)

ψ2
G(Y,X)

Proposition 7.9.3. Under the previous hypotheses and notation, we have

(i) The morphism G(c′X,Y ) : F (M ⊗′ (X ⊗′ Y )) → F (M ⊗′ (Y ⊗′ X)) is a morphism of left
H–modules.

(ii) The morphism ψ2
G(X, Y ) : F (M ⊗′ (X ⊗′ Y )) → F (M ⊗′ X) ⊗ F (M ⊗′ Y ) is a morphism of

left H–modules.
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(iii) The morphism c̃X,Y : V ⊗W → W ⊗ V is a morphism of left H–modules.

(iv) The following identity holds

c̃M,Y ◦ (ηF (M⊗′M) ⊗ idW ) ◦ `−1
W = ∆W . (7.9.3)

Proof. In order to give the proof we may suppose that C and D are strict.
(i): the claim follows by considering the diagram

(1) (2) (3)

whose three subdiagrams are the following

(1)

F (M ⊗′M)⊗ F (M ⊗′ X ⊗′ Y ) F (M⊗′3 ⊗′ X ⊗′ Y )

F (M ⊗′M)⊗ F (M ⊗′ Y ⊗′ X) F (M⊗′3 ⊗′ Y ⊗′ X)

idF (M⊗′M)⊗F (idM⊗′c′X,Y )

ψ2
F (M⊗′M,M⊗′X⊗′Y )

F (id
M⊗′3⊗c

′
X,Y )

ψ2
F (M⊗′M,M⊗′Y⊗′X)

(2)

F (M⊗′3 ⊗′ X ⊗′ Y ) F (M⊗′2 ⊗′ X ⊗′ Y )

F (M⊗′3 ⊗′ Y ⊗′ X) F (M⊗′2 ⊗′ Y ⊗′ X)

F (id
M⊗′3⊗c

′
X,Y )

F (idM⊗′∆M⊗′idX⊗′Y )

F (id
M⊗′2⊗c

′
X,Y )

F (idM⊗′∆M⊗′idY⊗′X)

(3)

F (M⊗′2 ⊗′ X ⊗′ Y ) F (M ⊗′ X ⊗′ Y )

F (M⊗′2 ⊗′ Y ⊗′ X) F (M ⊗′ Y ⊗′ X)

F (id
M⊗′2⊗c

′
X,Y )

F (idM⊗′εM⊗′idX⊗′Y )

F (idM⊗′c′X,Y )

F (idM⊗′εM⊗′idY⊗′X)

here the first follows from the naturality of ψ2
F , while the second and the third follow by Equation

(2.5.1a).
(ii): Set Z := F (M ⊗′X⊗′ Y ). Recalling the module structure of V ⊗W given by Equation (3.5.2),
we have to show that the following diagram commutes

H ⊗ Z Z

H ⊗H ⊗ V ⊗W

H ⊗ V ⊗H ⊗W V ⊗W

∆H⊗ψ2
G(X,Y )

µZ

ψ2
G(X,Y )

βH,H,V,W

µV ⊗µW
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Recalling that the comonoidal structure of G is given by Proposition 2.1.3, we obtain a diagram
with the following shape

(1)

(2)

(4) (3) (10) (11)

(5)

(6) (7) (8)

(9) (12) (13)

The following eight diagrams commute thanks to the naturality of ψ2
F :

(1)

H ⊗ Z F (M⊗′3 ⊗′ X ⊗′ Y )

H⊗2 ⊗ F (M⊗′2 ⊗′ X ⊗′ Y ) F (M⊗′6 ⊗′ X ⊗′ Y )

F (∆
(2)
M )⊗F (∆M⊗′idX⊗′Y )

ψ2
F (M⊗′M,M⊗′X⊗′Y )

F (∆
(3)
M ⊗

′idX⊗′Y )

ψ2
F (M⊗

′4,M⊗
′2⊗′X⊗′Y )

(2)

H⊗2 ⊗ F (M⊗′2 ⊗′ X ⊗′ Y ) F (M⊗′6 ⊗′ X ⊗′ Y )

H⊗2 ⊗ F (M⊗′2 ⊗′ X ⊗′ Y ) F (M⊗′6 ⊗′ X ⊗′ Y )

F (β′M,M,M,M )⊗F (id
M⊗′2⊗′X⊗′Y )

ψ2
F (M⊗

′4,M⊗
′2⊗′X⊗′Y )

F (β′M,M,M,M⊗
′id
M⊗′2⊗′X⊗′Y )

ψ2
F (M⊗

′4,M⊗
′2⊗′X⊗′Y )
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(3)

H ⊗H ⊗ F (M⊗′2 ⊗′ X ⊗′ Y ) H⊗2 ⊗ F (M⊗′2 ⊗′ X ⊗′ Y )

H ⊗H ⊗ F (M ⊗′ X ⊗′M ⊗′ Y ) H⊗2 ⊗ F (M ⊗′ X ⊗′M ⊗′ Y )

idH⊗H⊗′F (β′M,M,X,Y ) F (id
M⊗′4⊗

′β′M,M,X,Y )

ψ2
F (M⊗′M,M⊗′M)⊗′id

M⊗′2⊗′X⊗′Y

ψ2
F (M⊗′M,M⊗′M)⊗′idM⊗′X⊗′M⊗′Y

(4)

H⊗2 ⊗ F (M⊗′2 ⊗′ X ⊗′ Y ) F (M⊗′6 ⊗′ X ⊗′ Y )

H⊗2 ⊗ F (M ⊗′ X ⊗′M ⊗′ Y ) F (M⊗′5 ⊗′ X ⊗′M ⊗′ Y )

F (id
M⊗′4⊗

′β′M,M,X,Y ) F (id
M⊗′4⊗

′β′M,M,X,Y )

ψ2
F (M⊗

′4,M⊗
′2⊗′X⊗′Y )

ψ2
F (M⊗

′4,M⊗′X⊗′M⊗′Y )

(7)

H ⊗ F (M⊗′3 ⊗′ X)⊗W H ⊗ F (M⊗′3 ⊗′ X ⊗′M ⊗′ Y )

H ⊗ F (M ⊗′ X ⊗′M⊗′2)⊗W H ⊗ F (M ⊗′ X ⊗′M⊗′2 ⊗′M ⊗′ Y )

idH⊗F (c′
M⊗′M,M⊗′X)⊗idW

idH⊗ψ2
F (M⊗

′3⊗′X,M⊗′Y )

idH⊗F (c′
M⊗′M,M⊗′X⊗

′idM⊗′Y )

idH⊗ψ2
F (M⊗′X⊗′M⊗′2,M⊗′Y )

(8)

H ⊗ F (M⊗′3 ⊗′ X ⊗′M ⊗′ Y ) F (M⊗′5 ⊗′ X ⊗′M ⊗′ Y )

H ⊗ F (M ⊗′ X ⊗′M⊗′2 ⊗′M ⊗′ Y ) F (M⊗′3 ⊗′ X ⊗′M⊗′3 ⊗′ Y )

idH⊗F (c′
M⊗′M,M⊗′X⊗

′idM⊗′Y )

ψ2
F (M⊗

′2,M⊗
′3⊗′X⊗′M⊗′Y )

F (idM⊗β′
M,M⊗′2,M⊗′X,M

⊗′idY )

ψ2
F (M⊗

′2,M⊗′X⊗′M⊗′3⊗′Y )

(12)

F (M⊗′3 ⊗X ⊗′M⊗′3 ⊗′ Y ) F (M⊗′2 ⊗X ⊗′M⊗′2 ⊗′ Y )

F (M⊗′3 ⊗′ X)⊗ F (M⊗′3 ⊗′ Y ) F (M⊗′2 ⊗′ X)⊗ F (M⊗′2 ⊗′ Y )

ψ2
F (M⊗

′3⊗′X,M⊗′3⊗′Y ) ψ2
F (M⊗

′2⊗′X,M⊗′2⊗′Y )

F (idM⊗′∆M⊗′idX⊗′M⊗∆M⊗′idY )

F (idM⊗′∆M⊗′idX)⊗F (idM⊗′∆M⊗′idY )

(13)

F (M⊗′2 ⊗X ⊗′M⊗′2 ⊗′ Y ) F (M ⊗′ X ⊗′M ⊗′ Y )

F (M⊗′2 ⊗′ X)⊗ F (M⊗′2 ⊗′ Y ) V ⊗W

ψ2
F (M⊗

′2⊗′X,M⊗′2⊗′Y )

F (idM⊗′εM⊗′idX⊗′M⊗′εM⊗′idY )

ψ2
F (M⊗′X,M⊗′Y )

F (idM⊗′εM⊗′X)⊗F (idM⊗′εM⊗′idX)

while, using the fact that (F, ψ0
F , ψ

2
F ) is a braided comonoidal functor, we have that the following

three diagrams commute:
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(5)

H ⊗H ⊗ F (M ⊗′ X ⊗′M ⊗′ Y ) F (M⊗
′4)⊗ F (M ⊗′ X ⊗′M ⊗′ Y )

H ⊗H ⊗ V ⊗W F (M⊗
′5 ⊗′ X ⊗′M ⊗′ Y )

H ⊗ F (M⊗
′3 ⊗′ X)⊗W H ⊗ F (M⊗

′3 ⊗′ X ⊗′M ⊗′ Y )

idH⊗H⊗ψ2
F (M⊗′X,M⊗′Y )

ψ2
F (M⊗

′2,M⊗
′2)⊗′idF (M⊗′X⊗′M⊗′Y )

ψ2
F (M⊗

′4,M⊗′X⊗′M⊗′Y )

ψ2
F (M⊗

′2,M⊗
′3⊗′X⊗′M⊗′Y

)idH⊗ψ2
F (M⊗

′2,M⊗′Y )⊗idW
idH⊗ψ2

F (M⊗
′3⊗′X,M⊗′Y )

(6)

H ⊗H ⊗ V ⊗W H ⊗ F (M⊗′3 ⊗′ X)⊗W

H ⊗ V ⊗H ⊗W H ⊗ F (M ⊗′ X ⊗′M⊗′2)⊗W

βH,H,V,W

idH⊗ψ2
F (M⊗

′2,M⊗′X)⊗idW

idH⊗c′M⊗′M,M⊗′X⊗idW

idH⊗ψ
(
FM⊗

′X,M⊗
′2)⊗idW

(9)

H ⊗ F (M ⊗′ X ⊗′M⊗′3 ⊗′ Y ) F (M⊗′3 ⊗′ X ⊗′M⊗′3 ⊗′ Y )

H ⊗ F (M ⊗′ X ⊗′M⊗′3)

H ⊗ V ⊗H ⊗W F (M⊗′3 ⊗′ X)⊗ F (M⊗′3 ⊗′ Y )

idH⊗F (M⊗′X⊗′M⊗′2,M⊗′Y )

ψ2
F (M⊗

′2,M⊗′X⊗′M⊗′3⊗′Y )

ψ2
F (M⊗

′3⊗′X,M⊗′3⊗′Y )

idH⊗ψM⊗′X,M⊗′2⊗idW

ψ2
F (M⊗

′2,M⊗′X)⊗ψ2
F (M⊗

′2,M⊗′Y )

Finally, we treat the subdiagrams (10) and (11) with a diagramatic approach. The diagram (10)
reads

F (M⊗′3 ⊗′ X ⊗′ Y ) F (M⊗′2 ⊗′ X ⊗′ Y )

F (M⊗′6 ⊗′ X ⊗′ Y ) F (M⊗′4 ⊗′ X ⊗′ Y )

F (M⊗′6 ⊗′ X ⊗′ Y ) F (M⊗′3 ⊗′ X ⊗′M ⊗′ Y )

F (M⊗′5 ⊗′ X ⊗′M ⊗′ Y )

F (M⊗′3 ⊗′ X ⊗′M⊗′3 ⊗′ Y ) F (M⊗′2 ⊗′ X ⊗′M⊗′2 ⊗′ Y )

F (∆
(3)
M ⊗idX⊗′Y ) F (∆M⊗′∆M⊗idX⊗′Y )

F (idM⊗′∆M⊗′idX⊗′Y )

F (β′M,M,M,M⊗
′id
M⊗′2⊗′X⊗′Y ) F (idM⊗′c′M,M⊗

′c′M,X⊗
′idY )

id
M⊗′4⊗

′β′M,M,X,X

F (id
M⊗′2⊗

′c′M,X⊗
′idM⊗′X)

F (id
M⊗′2⊗

′c′
M⊗′2,M⊗′X

⊗′idM⊗′Y )

F (idM⊗′∆M⊗′idX⊗′M⊗′∆M⊗′idY )
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while the diagram (11) reads

F (M⊗′2 ⊗′ X ⊗′ Y ) Z

F (M⊗′4 ⊗′ X ⊗′ Y ) F (M⊗′2 ⊗′ X ⊗′ Y )

F (M⊗′3 ⊗′ X ⊗′M ⊗′ Y )

F (M⊗′2 ⊗′ X ⊗′M⊗′2 ⊗′ Y ) F (M ⊗′ X ⊗′M ⊗′ Y )

F (∆M⊗′∆M⊗idX⊗′Y )

F (idM⊗′εM⊗′idX⊗′Y )

F (∆M⊗′idX⊗′Y )

F (idM⊗′c′M,M⊗
′c′M,X⊗

′idY )

F (idM⊗′c′M,X⊗
′idY )

F (id
M⊗′2⊗

′c′M,X⊗
′idM⊗′X)

F (idM⊗′εM⊗′idX⊗′M⊗′εM⊗′idY )

Let us denote the maps ∆M , εM and c′ of D respectively with the pictures

•

•

which are read from up to down, see [Kas12, XIV.1] for more details on notations. Then, denoting
maps of M (resp. of X resp. Y ) with black (resp. red resp. green) strings, we have that the
commutativity of diagram (10) is represented by the equality of pictures

•

•

•

•

•

•
=

•

• •

following by the naturality of c′, the cocommutativity and the coassociativity of ∆M , and the
Hexagon Equation (2.2.1). Similarly, the commutativity of diagram (11) is represented by the
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equality of pictures

•

•

•

• •

=

•

•

following by the naturality of c′ and the fact that εM is a counit for ∆M .
(iii): follows directly by statements (i) and (ii) and by the definition of c̃ (7.9.2).
(iv): We first prove the identity

(ψ2
G(M,Y ))−1 ◦ (ηF (M⊗M) ⊗ idW ) = F (∆M ⊗ idY ) (7.9.4)

which is given by the commutativity of the diagram

(1) (3) (4)

(2) (5) (6)

(7) (8)

whose eight subdiagrams – using that (F, ψ0
F , ψ

2
F ) is comonoidal, the naturality of ψ2

F and c′, and
the fact that (M,∆M , εM) is a cocommutative coassociative counital comonoid – are

(1)

F (I ′)⊗ F (M ⊗′ Y )

F (M ⊗′ Y ) = I ⊗ F (M ⊗′ Y ) F (I ′ ⊗′M ⊗′ Y )

ψ0
F⊗idF (M⊗′Y )

ψ2
F (I′,M⊗′Y )
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(2)

F (M ⊗′ Y ) = I ⊗ F (M ⊗′ Y ) F (I ′ ⊗′M ⊗′ Y )

F (M ′ ⊗′ I ′ ⊗′ Y )

(3)

F (I ′)⊗ F (M ⊗′ Y ) F (M)⊗ F (M ⊗′ Y )

F (I ′ ⊗′M ⊗′ Y ) F (M⊗′2 ⊗′ Y )

F (εM )⊗idF (M⊗′Y )

ψ2
F (I′,M⊗′Y )

F (εM⊗′idM⊗′Y )

ψ2
F (M,M⊗′Y )

(4)

F (M)⊗ F (M ⊗′ Y ) F (M⊗′2)⊗ F (M ⊗′ Y )

F (M⊗′2 ⊗′ Y ) F (M⊗′3 ⊗′ Y )

F (∆M )⊗idF (M⊗′Y )

ψ2
F (M,M⊗′Y )

F (∆M⊗′idM⊗′Y )

ψ2
F (M⊗

′2,M⊗′Y )

(5)

F (I ′ ⊗′M ⊗′ Y ) F (M⊗′2 ⊗′ Y )

F (M ⊗′ I ′ ⊗′ Y ) F (M⊗′2 ⊗′ Y )

F (εM⊗′idM⊗′Y )

F (c′M,M⊗
′idY )

F (idM⊗′εM⊗′idY )

(6)

F (M⊗′2 ⊗′ Y ) F (M⊗′3 ⊗′ Y )

F (M⊗′2 ⊗′ Y ) F (M⊗′3 ⊗′ Y ) F (M⊗′3 ⊗′ Y )

F (∆M⊗idM⊗′Y )

F (c′M,M⊗
′idY )

F (idM⊗′∆M⊗′idY ) F (cM,M⊗idF⊗′Y )

F (idM⊗′cM,M⊗′idY )

(7)

F (M ⊗′ I ′ ⊗′ Y ) F (M⊗′2 ⊗′ Y )

F (M ⊗′ Y )

F (idM⊗′εM⊗′idY )

F (∆M⊗′idY )

(8)

F (M⊗′2 ⊗′ Y ) F (M⊗′3 ⊗′ Y ) F (M⊗′3 ⊗′ Y )

F (M ⊗′ Y ) F (M⊗′2 ⊗′ Y )

F (idM⊗′∆M⊗′idY ) F (cM,M⊗idF⊗′Y )

F (∆M⊗′idY )

F (∆M⊗′idY )

F (∆M⊗′idM⊗′Y )
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We now can prove Equation (7.9.3). We have

c̃M,Y ◦ (ηF (M⊗′M) ⊗ idW )

= ψ2
G(Y,M) ◦ F

(
idM ⊗′ (c′M,Y )−1

)
◦
(
ψ2
G(M,Y )

)−1 ◦ (ηF (M⊗′M) ⊗ idW )

= ψ2
G(Y,M) ◦ F

(
idM ⊗′ (c′M,Y )−1

)
◦ F (∆M ⊗ idY )

= ψ2
F (M ⊗ Y,M ⊗M) ◦ F (β′M,M,Y,M) ◦ F (∆M ⊗′ idY⊗′M) ◦ F

(
idM ⊗′ (c′M,Y )−1

)
◦ F (∆M ⊗ idY )

= F (∆M ⊗′ idY⊗′M) ◦ F (∆M⊗′Y )

= ∆F (M⊗′Y )

where the first equality follows by the definition of c̃, the second by Equation (7.9.4), the third by
Proposition 2.1.3, and the fourth (using the naturality of c′) by Equation (7.9.1).

Corollary 7.9.4. Under the previous hypotheses and notations, for any object X of C , F (M ⊗′X)
is a left–right Drinfeld–Yetter F (M ⊗′M)–module.

Proof. The claim follows directly by the previous statement and by Theorem 3.6.3.

Next, by computing the semiclassical limit, we obtain the compatibility of Ševera’s quantization with
Drinfeld–Yetter modules. Let b be a Lie bialgebra and (V, πV , π

∗
V ) be a Drinfeld–Yetter b–module

and set M = U(b). We have showed above that (F b(M⊗V ), µMM,V ,∆F b(M⊗V )) is a left–right Yetter–

Drinfeld F b(M ⊗ M)–module. Consider its ~–adic completion
(
(F b)Φ

~ (M ⊗ V ), µMM,V ,∆F b(M⊗V )

)
in the usual deformed category where associativity constraints and braidings are deformed. Let us
compute µMM,V mod ~. Recall that

µMM,V = F (idM⊗̄(εM⊗̄idV )) ◦ (γMM,V )−1.

Note that, since the first order term of the Drinfeld associator is zero, we have (µMM,V )0 = 0. In
order to compute the term proportional to ~, using the same computations of Lemma 7.8.3 we get

(µMM,V )1 = [1⊗ u · v],

here u · v denotes the canonical U(b) left action induced by the left Lie algebra action πV . Next, for
any v ∈ V we compute(

∆(F b)Φ
~ (M⊗V )

)
0
([1⊗ v]) =

(
ψ2

(F b)Φ
~
(M⊗̄M,M⊗̄V ) ◦ (F b)Φ

~ (idM ⊗ (τΦ
M,V )0) ◦ (∆

(2)

0 ⊗ idV )
)
([1⊗ v])

= ψ2
(F b)Φ

~
(M⊗̄M,M⊗̄V )([1⊗̄v⊗̄1⊗ 1]) = [1⊗̄v]⊗̄[1⊗̄1]

and then

ζM⊗V
((

∆(F b)Φ
~ (M⊗V )

)
0
([v⊗̄1])

)
= v⊗̄1.

Next, we compute the first order term. Recalling that

(τΦ
V,W )1 =

1

2

(
(τV,W ) ◦ tbV,W

)
and (τΦ

W,V )−1
1 = −1

2

(
tbW,V ◦ (τV,W )

)
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we have, for any v ∈ V :(
∆M⊗V

)
1
([1⊗ v]) =

1

2

(
(idM⊗̄(τM,V ◦ tbM,V )⊗̄idM) ◦ (idM⊗M⊗̄τM,V ) ◦ (∆

(2)

0 ⊗̄idV )
)

(1⊗̄v)

− 1

2

(
(idM⊗̄τM,V ⊗̄idM) ◦ (idM⊗M⊗̄(tbV,M ◦ τM,V )) ◦ (∆

(2)

0 ⊗̄idV )
)

(1⊗̄v)

=
1

2

(
(idM⊗̄τM,V ⊗̄idM)

)(
(1⊗̄tM,V (1⊗̄v)⊗̄1)− (1⊗̄1⊗̄tV,M(1⊗ 1))

)
=

1

2

(∑
[v]

(1⊗̄v[1]⊗̄v[0]⊗̄1− 1⊗̄v[1]⊗̄1⊗̄v[0])
)

Hence(
∆(F b)Φ

~ (M⊗V )

)
1
([1⊗ v]) =

1

2
ψ2

(F b)Φ
~
(M ⊗ V,M ⊗ V )

(∑
[v]

([1⊗̄v[1]⊗̄v[0]⊗̄1]− [1⊗̄v[1]⊗̄1⊗̄v[0]])
)

=
1

2

∑
[v]

([1⊗̄v[1]]⊗̄[v[0]⊗̄1]− [1⊗̄v[1]]⊗̄[1⊗̄v[0]])

=
1

2

∑
[v]

([1⊗̄v[1]]⊗̄[1⊗̄S0(v[0])]− [1⊗̄v[1]]⊗̄[1⊗̄v[0]])

= −
∑
[v]

[1⊗̄v[1]]⊗̄[1⊗̄v[0]].
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Part III

Universal constructions
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Chapter 8

PROPs

In this Chapter we introduce the concept of PROP, which appeared for the first time in [ML65].
PROPs are used in order to encode the data of algebraic structures by modeling them in a K–linear
strict symmetric monoidal category. The universal functors between algebraic structures are formal-
ized through the concept of universal construction. All the PROPs of our interests will be quotients
of the free PROP (see [Val07] for more details) subject to generators and relations, depending on the
algebraic structure we are considering. Richer algebraic structures, such as Drinfeld–Yetter mod-
ules over a Lie bialgebra, can be encoded in a extended notion of PROP, namely colored PROPs.
For further details on PROPs we remand to [EK98, §1.1–1.2], [ES02, Chapter 20], [EE05, §2],
[ATL18, §6].

8.1 PROPs

Definition 8.1.1. Let K be a field of characteristics zero. A K–linear PROP (product and per-
mutation category) is a K–linear, strict, symmetric monoidal category whose objects are indexed by
non–negative integers and whose tensor product is given by [n] ⊗ [m] = [n + m]. In particular, the
unit object with respect to the tensor product is [0] and [1]⊗n = [n].
A morphism of PROPs is a strongly monoidal functor F : P→ Q which is the identity on the objects
and whose monoidal structure is the trivial one, i.e.

F ([n]P)⊗ F ([m]P) = [n]Q ⊗ [m]Q = [n+m]Q = F ([n+m]P).

Remark 8.1.2. Note that, if P is a PROP, we have that for any n > 0 there is an action

K[Sn]→ HomP([n], [n]).

We shall call such morphisms permutation morphisms and we shall denote them with the related
permutation. In all examples of our interest, we have that such action is faithful.

It is possible to define PROPs in a more generic setting, i.e. giving to P an enrichment over any
symmetric monoidal category V (see [Kel82] for more details on enrichments). An important case
will be where V is the category of all topologically free K[[~]]–modules, and in this case we say that
P is a topological PROP.
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8.2 The PROP of Lie bialgebras

Definition 8.2.1. The PROP LBA of Lie bialgebras is the PROP generated by morphisms Lie
cobracket δ : [1]→ [2] and Lie bracket µ : [2]→ [1] with the following five relations

µ ◦ (id[2] + (12)) = 0 (8.2.1a)

µ ◦ (µ⊗ id[1]) ◦ (id[3] + (123) + (312)) = 0 (8.2.1b)

(id[2] + (12)) ◦ δ = 0 (8.2.1c)

(id[3] + (123) + (312)) ◦ (δ ⊗ id[1]) ◦ δ = 0 (8.2.1d)

δ ◦ µ− (id[2] − (12)) ◦ (id[1] ⊗ µ) ◦ (δ ⊗ id[1]) ◦ (id[2] − (12)) = 0 (8.2.1e)

that respectively represent the antisymmetry of the bracket, the Jacobi identity, the antisymmetry of
the cobracket, the coJacobi identity and the cocycle identity.
Similarly, the PROP LA of Lie algebras is the PROP generated by µ : [1] → [2] with relations
(8.2.1a) and (8.2.1b), while the PROP LCA of Lie coalgebras is the PROP generated by δ : [2]→ [1]
with relations (8.2.1c) and (8.2.1d).

Notation 8.2.2. We shall represent the Lie bracket morphism and the Lie cobracket morphism of
LBA respectively with the diagrams

which are read from left to right. According to this pictorial representation, we represent the Lie
algebra axioms (the antisymmetry of the bracket and the Jacobi rule) respectively with

= − and

(
+ +

)
= 0

(8.2.2)

while the Lie coalgebra axioms (the antisymmetry of the cobracket and the coJacobi rule) are repre-
sented respectively by

= −

(
+ +

)
= 0and

(8.2.3)

and the cocycle condition is represented by

= + + +
(8.2.4)

The same left-to-right notation can be find in [ES02, 8.2] and [ATL19, 5.10]. Some authors prefer a
up-to-down notation, see e.g. [ES02, 19.1.4] and a down-to-up notation, see e.g. [Šev16, p. 1567].
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8.3 The PROP of Hopf algebras

Definition 8.3.1. The PROP HA of Hopf algebras is the PROP generated by the following mor-
phisms (the universal multiplication, unit, comultiplication, unit, antipode and inverse antipode)

m : [2]→ [1]

η : [0]→ [1]

∆ : [1]→ [2]

ε : [1]→ [0]

S : [1]→ [1]

S−1 : [1]→ [1]

subject to the following relations encoding all the usual axioms of Hopf algebras

µ ◦ (µ⊗ id[1]) = µ ◦ (id[1] ⊗ µ) (8.3.1a)

µ ◦ (η ⊗ id[1]) = µ ◦ (id[1] ⊗ η) = id[1] (8.3.1b)

(∆⊗ id[1]) ◦∆ = (id[1] ⊗∆) ◦∆ (8.3.1c)

(id[1] ⊗ ε) ◦∆ = (ε⊗ id[1]) ◦∆ = id[1] (8.3.1d)

∆ ◦ µ = (µ⊗ µ) ◦ (23) ◦ (∆⊗∆) (8.3.1e)

η ⊗ η = ∆ ◦ η (8.3.1f)

ε⊗ ε = ε ◦ µ (8.3.1g)

ε ◦ η = 0 (8.3.1h)

µ ◦ (S ⊗ id) ◦∆ = µ ◦ (id⊗ S) ◦∆ = η ◦ ε (8.3.1i)

S ◦ S−1 = S−1 ◦ S = id[1]. (8.3.1j)

Similarly, the PROP AA of associative algebras is the one generated by m, η as above subject to
relations (8.3.1a), (8.3.1b); the PROP CC of coassociative coalgebras is the one generated by ∆, ε
as above subject to relations (8.3.1c), (8.3.1d); the PROP BA of bialgebras is the one generated by
m, η,∆, ε as above subject to relations (8.3.1a)–(8.3.1h).

For a pictorial representation of the generating morphisms and relations, see [ES02, p. 72].

8.4 Universal constructions

Definition 8.4.1. Let b = {bn}n>2 be a family of bracketings, i.e. every bn is a fixed way of
bracketing of a n–tensor (among all the possible Cn ones, where Cn is the (n−1)–th Catalan number).
Let P be a PROP and C be a symmetric monoidal category. A linear algebraic structure of type
P on an object X in Obj(C ) is a symmetric monoidal functor FX : P→ C such that FX([n]) = X⊗nbn .

Example 8.4.2. Fix a field K and a family of bracketings b = {bn}n>2. Consider AA the PROP of
associative algebras and VectK the category of all vector spaces. Then A is a K–algebra if and only
if there exists a symmetric monoidal functor FA : AA→ VectK such that F ([1]) = A.

Definition 8.4.3. Let P1,P2 be two PROPS. A universal construction from P1 to P2 is a strict
symmetric functor F : P2 → P1.
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The idea of this Definition is that a universal construction gives a description of the generating
morphisms of P2 in terms of the ones of P1. This will be clearer by considering the following

Example 8.4.4. Consider the PROPs AA and LA of associative algebras and of Lie algebras. The
following functor is a universal construction

Lie : LA→ AA

[1]LA 7→ [1]AA

µ 7→ m−m ◦ (12)

The fact that any associative algebra A has a natural Lie algebra structure with [a, b] = ab − ba is
thus described by the composition of the symmetric monoidal functors FA ◦ Lie : LA→ VectK.

In order to describe the functor universal enveloping algebra in a PROPic way, one needs the
following

Definition 8.4.5. Let C be a category. The Karoubi envelope1 of C is the category C kar whose
objects are pairs (X, π), where X ∈ C and π : X → X is an idempotent morphism, and whose
morphisms are

HomC kar((X, π), (Y, ρ)) = {f ∈ HomC (X, Y ) | ρ ◦ f = f = f ◦ π}.

In the Karoubi envelope of a category one has that every idempotent splits. Moreover, C kar is the
category containing C which is universal with respect the property that every idempotent is a split
idempotent, see [BS01, Lem. 1.8] and references therein for more details. In particular, if P is a
PROP and Pkar is its Karoubi envelope, we can consider in Pkar the object [n]Pkar := ([n], 1

n!

∑
σ∈Sn σ)

for any n ∈ N. If therefore Pkar is the closure of Pkar with respect to all infinite inductive limits,
one can consider the object

S[1] :=
⊕
n>0

(
[n],

1

n!

∑
σ∈Sn

σ

)
∈ Pkar

which is the universal symmetric algebra. Its multiplication is given explicitely in [ATL18, 6.5].
Since for any Lie algebra g there is an isomorphism of coalgebras S(g) ∼= U(g), one can define the
universal enveloping algebra functor in a PROPic way through a universal construction

U : AA→ LAkar

[1]AA 7→ S[1]

m 7→ m0

see [ATL18, 6.6] for more details. Note that the usual comultiplication of the Universal enveloping
algebra can be described in a PROPic way as

∆0([1]LBAkar) := id[1]
LBAkar

⊗ id[0]
LBAkar

+ id[0]
LBAkar

⊗ id[1]
LBAkar

which uniquely extends to any [n]LBAkar

1In [BS01] he Karoubi completion is called idempotent completion
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8.5 Colored PROPs

Definition 8.5.1. Let K be a field of characteristic zero. A colored PROP is a K–linear, strict,
symmetric monoidal category whose objects are finite sequences over a set A. In other words, in a
colored PROP P one has

Obj(P) =
∐
n>0

An.

Here the tensor product of two elements is the concatenation of sequences, and the unit with respect
to the tensor product is the empty sequence. The set A is said to be the set of colors of P.

Note that any PROP is a colored PROP with A = {∗}. Using colored PROPs one can describe
richer algebraic structures in a categorical framework.

8.6 The colored PROP of Drinfeld–Yetter modules

Definition 8.6.1. Let n > 1. The n–th Drinfeld–Yetter PROP is the colored PROP DYn

generated by n+ 1 objects [1] and {[Vk]}k=1,...,n and by 2n+ 2 morphisms

µ : [2]→ [1]

δ : [1]→ [2]

πk : [1]⊗ [Vk]→ [Vk]

π∗k : [Vk]→ [1]⊗ [Vk]

such that the triple ([1], µ, δ) satisfies relations (8.2.1a)–(8.2.1e) and for any k = 1, . . . , n the triple
([Vk], πk, π

∗
k) is a Drinfeld–Yetter module over [1], i.e. the following conditions are satisfied

πk ◦ (µ⊗ id[Vk]) = πk ◦ (id[1] ⊗ πk)− πk ◦ (id[1] ⊗ πk) ◦ (21) (8.6.1a)

(δ ⊗ id[Vk]) ◦ π∗k = (21) ◦ (id[1] ⊗ π∗k) ◦ π∗k − (id[1] ⊗ π∗k) ◦ π∗k (8.6.1b)

π∗k ◦ πk = (id[1] ⊗ πk) ◦ (12) ◦ (id[1] ⊗ π∗k) + (µ⊗ id[Vk]) ◦ (id[1] ⊗ π∗k)− (id[1] ⊗ πk) ◦ (δ ⊗ id[Vk]).
(8.6.1c)

We shall represent the generating morphisms of the category DY1 with the following diagrams. We
represent id[1] with a horizontal line, id[Vk] with a horizontal green bold line, and the morphisms
µ, δ, π1, π

∗
1 respectively by the diagrams

which are read from left to right. The fact that the triple ([1], µ, δ) is a Lie bialgebra object in
DY1 is then represented by the diagrams (8.2.2), (8.2.3), (8.2.4). Finally, relations (8.6.1a) (8.6.1b)
(8.6.1c) are respectively represented by the following three pictorial identities

= −
(8.6.2)
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= −
(8.6.3)

= + −
(8.6.4)

From now on, we shall refer to relations (8.6.2), (8.6.3) and (8.6.4) as respectively the action rule,
the coaction rule and the Drinfeld–Yetter rule, and we shall denote single strings with a thin line
and multiple strings with a bold line. We shall need the following

Definition 8.6.2. We say that a morphism of DY1 is normally ordered if all coactions precede
all actions and all cobrackets precede all brackets.

Remark 8.6.3. Note that, if φ is a non–normally ordered morphism of DY1, one can use the
Drinfeld–Yetter, action and coaction rules in order to get a sum of normally ordered elements of
HomDY1. This reasoning will be the key idea of Proposition 10.3.3.

8.7 Universal quantization functors

Definition 8.7.1. ([EK98, p.5],[EE05, p.6]) The PROP QUE of quantized universal enveloping
algebras is the topological PROP generated by the following morphisms

m : [2]→ [1]

η : [0]→ [1]

∆ : [1]→ [2]

ε : [1]→ [0]

δ : [1]→ [2]

subject to the following relations

µ ◦ (µ⊗ id[1]) = µ ◦ (id[1] ⊗ µ)

µ ◦ (η ⊗ id[1]) = µ ◦ (id[1] ⊗ η) = id[1]

(∆⊗ id[1]) ◦∆ = (id[1] ⊗∆) ◦∆

(id[1] ⊗ ε) ◦∆ = (ε⊗ id[1]) ◦∆ = id[1]

∆ ◦ µ = (µ⊗ µ) ◦ (23) ◦ (∆⊗∆)

η ⊗ η = ∆ ◦ η
ε⊗ ε = ε ◦ µ
ε ◦ η = 0

∆− (12) ◦∆− ~δ = 0

(id[1] − η ◦ ε)⊗n ◦∆(n) = 0

where ∀n ∈ N we set ∆(n) := (∆⊗ id[n−2]) ◦ (∆⊗ id[n−3]) · · · ◦ (∆⊗ id[1]) ◦∆ : [1]→ [n].
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Definition 8.7.2. A universal quantization functor of Lie bialgebras is a universal con-
struction

Q : QUE→ LBAkar[[~]]

such that

Q([1]QUE) = S[[1]LBA]

Q(m) = m0 mod ~
Q(∆) = ∆0 mod ~

Q(∆− (12) ◦∆) = ~δ mod ~2

where m0 (resp. ∆0) is the multiplication (resp. comultiplication) of the (universal) universal
enveloping algebra U([1]LBA).

The Etingof–Kazhdan quantization technique provides a universal quantization functor, see [EK98,
§1] and [ATL18, §6.7– §6.17].
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Chapter 9

Enriquez–Etingof “Hensel” Lemma

In the second article of their series [EK98], Etingof and Kazhdan prove that their universal quantiza-
tion functor is invertible. In particular, their proof rely on the Grothendieck–Teichmüller semigroup
(see [Dri90a] [Sch97] [Mer21] for more details).
In the article [EE05], Enriquez and Etingof give a simpler proof of the invertibility of the Etingof–
Kazhdan functor, relying on a so–called Hensel’s Lemma. In this Chapter we provide a detailed
proof of the Enriquez–Etingof Hensel Lemma.

9.1 Modules over rings of formal power series

In this Section we recall some standard definitions and properties of formal power series and topo-
logically free modules, see [Kas12, p.385-390].

Definition 9.1.1. Let K be a field and ~ be a formal parameter. The ring of all formal power
series R := K[[~]] with coefficients in K is

K[[~]] :=

{
∞∑
r=0

ar~r
∣∣∣∣∣ a0, a1, . . . ∈ K

}
.

equipped with componentwise addition and the Cauchy multiplication. For a given vector space V
over K, the topologically free module generated by V is

V [[~]] :=

{
∞∑
r=0

vr~r
∣∣∣∣∣ v0, v1, . . . ∈ V

}
.

which is a R–module by means of the Cauchy multiplication.

Remark 9.1.2. Note that R = K[[~]] is a filtered ring by the powers ~rR, r ∈ N\{0}, of its maximal
ideal I = ~R: V [[~]], i.e.

R = R(0) ⊃ I = ~R = R(1) ⊃ · · · ⊃ Ir = ~rR = R(r) ⊃ · · ·

Moreover each R–module E carries a descending filtration
(
E(n)

)
n∈N derived from the descending

filtration
(
R(n)

)
n∈N, compare [Bou89, p.163], i.e. ∀n ∈ N: E(n) := ~nE = InE, which we shall call

the ~–adic filtration of the R–module E. It is obvious that every R-linear map g : E → E ′ preserves
the above derived filtrations, i.e. ∀ n ∈ N we have g(En) ⊂ E ′(n).
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Recall the well–known canonical topology on the module E, the so-called ~–adic topology, is
associated to this filtration, see e.g. [Bou89, p.171-173] for the general theory. More precisely, it is
defined as follows: for each x ∈ E and each nonnegative integer m set

Vx,m := x+ E(m). (9.1.1)

For any x, y ∈ E and nonnegative integers m,n we have

Vx,m ∩ Vy,n =


∅ if x− y 6∈ E(min{m,n}),

Vx,m if x− y ∈ E(min{m,n}) and m = max{m,n},
Vy,n if x− y ∈ E(min{m,n}) and n = max{m,n}.

(9.1.2)

which can easily be deduced from the fact that Vx,m ∩ Vy,n 6= ∅ if and only if there are elements
z ∈ E, vm ∈ E(m) and vn ∈ E(n) such that z = x+ vm = y + vn from which the three conditions on
the right hand side of equation (9.1.2) can easily be deduced. This implies that the family of subsets
(Vx,m)(x,m)∈E×N is closed under finite intersections. It follows that the familiy of all arbitrary unions
of the sets Vx,m together with the empty set forms a topology on E which is equal to the ~–adic
topology. We shall refer to the sets x+E(n) as the basic open sets of the topology and they form a
base of the ~–adic topology.

Notation 9.1.3. For each integer m > 0 we denote by Em the following factor module

Em := E/E(m+1)

and by πEm the canonical projection
πEm : E → Em.

Clearly, for any R–linear map g : E → E ′ and for any nonnegative integer n there is an induced
map gn : En → E ′n such that the following diagram commutes since g(E(n)) ⊂ E ′(n):

E E ′

En E ′n

g

πEn πE
′

n

gn

(9.1.3)

In particular, for n = 0 the induced map g0 can be considered as a K–linear map E0 → E ′0. Clearly,
for another R-linear map h : E ′ → E ′′ we have

(h ◦ g)n = hn ◦ gn (9.1.4)

for all nonnegative integeres n. We have the following

Lemma 9.1.4. Let E,E ′ be two R–modules (equipped with their ~-adic topologies), let F ⊂ E a
R–submodule, let E/F be the factor module (with its ~-adic topology) and denote by π : E → E/F
the canonical projection. Then we have the following:

(i) E is a Hausdorff topological space iff its ~–adic filtration is separated, i.e.⋂
n∈N

E(n) = {0}. (9.1.5)
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(ii) Each R–linear map f : E → E ′ is continuous.

(iii) Each R–linear sujective map f : E → E ′ is open.

(iv) Each R–linear isomorphism f : E → E ′ is a homeomorphism.

(v) The ~–adic topology on E/F is equal to the quotient topology, i.e. to the family of all subsets
of E/F whose inverse images under the projection π are open in E.

Proof. (i): Suppose first that the ~–adic filtration is separated. Let x, y ∈ E with x 6= y. Hence
x − y 6= 0 and there is a non–negative integer n such that x − y 6∈ E(n). According to (9.1.2)
the two open sets Vx,n and Vy,n have empty intersection, and clearly x ∈ Vx,n, and y ∈ Vy,n. It
follows that the topological space E is Hausdorff. Conversely, suppose that the ~–adic filtration
is not separated. Let z ∈

⋂
n∈NE(n) a non–zero element. If there were open sets Uz and V0 with

z ∈ Uz, 0 ∈ V0, and Uz ∩ V0 = ∅, then in particular there would exist two nonnegative integers
m,n and two basic open sets of the form z + E(m) and E(n) such that

(
z + E(m)

)
∩ E(n) = ∅. By

assumption, z ∈ E(k) for all non–negative integers k, hence z ∈ E(m), and z + E(m) = E(m), hence(
z + E(m)

)
∩ E(n) = E(m) ∩ E(n) 3 0 so this intersection cannot be empty, and therefore E is not

Hausdorff.
(ii): It suffices to show that the inverse image of any open set of the form x′ + E ′(n+1) ⊂ E ′ is an
open set in E. Indeed for all x ∈ E

x ∈ f−1
(
x′ + E ′(n)

)
⇔ f(x) ∈ x′ + E ′(n+1) ⇔ πE

′

n

(
f(x)

)
= πE

′

n (x′) ⇔ fn
(
πEn (x)

)
= πE

′

n (x′),

hence for each x ∈ f−1
(
x′ + E ′(n+1)

)
it is clear that x + v(n+1) ∈ f−1

(
x′ + E ′(n+1)

)
for all v(n) ∈

E(n+1) = ker(πEn ), and we get

f−1
(
x′ + E ′(n+1)

)
=

⋃
x∈f−1

(
x′+E′

(n+1)

) (x+ E(n+1)

)
,

which is a union of open sets of E, proving the continuity of f .
(iii): For any x ∈ E and n ∈ N we get

f
(
x+ E(n+1)

)
= f(x) + ~n+1f(E) = f(x) + ~n+1E ′ = f(x) + E ′(n+1)

hence, since every open set is a union of the basic open sets x + E(n+1) and direct images preserve
unions it follows that the image of every open set is open.
(iv): Is a direct consequence of (ii).
(v): By definition of the quotient topology, the map π is continuous with respect to the quotient
topology on E/F , and since π is R–linear, then for (ii) it is continuous with respect to the ~-
adic topology on E/F . Since the quotient topology is the finest topology on E/F such that π is
continuous we can infer that the ~–adic topology is a subfamily of the quotient topology. On the
other hand, let U ⊂ E/F be an open in the quotient topology. Its inverse image f−1(U) is an open
set of the ~-adic topology of E, hence there is a set S such that for each s ∈ S there is an element
xs ∈ E and a non–negative integer ns such that

π−1(U) =
⋃
s∈S

(
xs + E(ns)

)
.
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Since π is surjective we have π
(
π−1(U)

)
= U , and therefore we get

U = π
(
π−1(U)

)
=
⋃
s∈S

(
π(xs) + π(E(ns))

)
=
⋃
s∈S

(
π(xs) + (E/F )(ns)

)
hence U belongs to the ~-adic topology of E/F .

We shall need the following two facts:

Lemma 9.1.5. Let E be an R–module, A ⊂ E be a subset and let W ⊂ E be a submodule. Then:

(i) The closure of A is given by

A =
∞⋂
n=0

(
A+ E(n)

)
. (9.1.6)

(ii) The quotient module E/W is Hausdorff if and only if W ⊂ E is closed.

Proof. (i): Clearly A ⊂ A. We first show that A is closed: indeed, let B := E \ A. Since

A =
∞⋂
n=0

⋃
a∈A

(
a+ E(n)

)
we have

B = E \ A =
∞⋃
n=0

⋂
a∈A

(
E \

(
a+ E(n)

))
= {y ∈ E | ∃ n ∈ N ∀ a ∈ A : y 6∈ a+ E(n)

}
. (9.1.7)

For all zn ∈ E(n) whe have that y 6∈ a+E(n) implies y + zn 6∈ a+E(n) (since zn ∈ E(n)), whence for
each y ∈ B there is n ∈ N such that the basic open set y +E(n) ⊂ B (and so B) is open. Therefore
A is closed. Now let C ⊂ E be a closed subset containing A and let z ∈ E \C. Then there is n ∈ N
such that z + E(n) ⊂ E \ C ⊂ E \ A. Hence it follows that

∀ z ∈ E \ C ∃ n ∈ N ∀ a ∈ A : a 6∈ z + E(n) ⇔ ∀ z ∈ E \ C ∃ n ∈ N ∀ a ∈ A : z 6∈ a+ E(n)

hence E \ C ⊂ E \ A, i.e. A ⊂ C, proving that A is the smallest closed subset of E containing A,
hence the closure of A.
(ii): Suppose that E/W is Hausdorff. Then the singleton set {0} is a closed subset of E/W , and its
inverse image with respect to the canonical projection π−1

(
{0}
)

= W is closed (since π is continuous,
see part (ii) of Lemma 9.1.4).
Conversely, suppose that W is closed. We check whether the ~-adic filtration

(
(E/W )(n)

)
n∈N of

E/W is separated: observing that for all n ∈ N we have (E/W )(n) = π
(
E(n)

)
we can infer using the

surjectivity of π:

{0} =
⋂
n∈N

π
(
E(n)

)
⇔ W = π−1

(
{0}
)

=
⋂
n∈N

π−1
(
π
(
E(n)

))
=
⋂
n∈N

(
W + E(n)

) (9.1.6)
= W.

Since by assumption W is closed we have W = W , and then the claim follows.

Remark 9.1.6. Note that we did not assume in the second statement that E was Hausdorff: note
that the intersection

⋂
n∈NE(n) is the closure of the singleton {0} and is thus contained in every

closed submodule of E.
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Next, we recall that for two nonnegative integers m 6 n there is a unique canonical R–linear map
pmn : En → Em such that the following triangle commutes:

E

En Em

πEn πEn

pmn

(9.1.8)

We can thus form the inverse limit in the category of R-modules

Ẽ := lim
∞←n

En =

{
ξ = (xn)n∈N ∈

∏
n∈N

En

∣∣∣∣∣ ∀ m,n ∈ N : if m ≤ n, then xm = pmn(xn)

}
,

where ∏
n∈N

En :=

{
ξ : N→

∐
n∈N

En

∣∣∣∣∣ ∀ n ∈ N : ξ(n) =: ξn ∈ En

}
and

∐
n∈NEn denotes the disjoint union of the sets En. Recall the canonical morphism of R–modules

pE : E → Ẽ : x 7→
(
πEn (x)

)
n∈N whose values are well–defined elements in the submodule lim∞←nEn

of
∏

n∈NEn thanks to the triangle diagram (9.1.8). Its kernel is given by the closure of {0}, see
Equation (9.1.5).

Definition 9.1.7. A R–module E is said to be complete if pE is surjective.

Remark 9.1.8. Note that pE is an isomorphism if and only if E is Hausdorff and complete.

Definition 9.1.9. A R-module E is called a topologically free R-module if there is a K-vector
space V and an R-linear isomorphism f : V [[~]] → E. We denote the category of all topologically
free K–modules by TopFreeK.

Remark 9.1.10. A topologically free module E is Hausdorff and complete since

V [[~]](n) =
{ ∞∑
r=n

vr~r | vn, vn+1, . . . ,∈ V
}

and V [[~]]n ∼= {
∑n

r=0 vr~r | v0, . . . , vn ∈ V } (as K–vector spaces). Moreover, there is a vector space
isomorphism V ∼= E0 = E/~E.

Lemma 9.1.11. Let V,W be two K–vector spaces, and let E ′ be a complete R–module. Then there
is a natural isomorphism of R–modules

HomR

(
V [[~]], E ′

) ∼= HomK
(
V,E ′) (9.1.9)

defined by restriction of any R-linear map V [[~]]→ E ′ to V ⊂ V [[~]]. In particular

HomR

(
V [[~]],W [[~]]

) ∼= HomK
(
V,W )[[~]]. (9.1.10)

For a proof, see [Kas12, Prop. XVI.2.3].
We mention a last result which will be useful:

Lemma 9.1.12. Let A be an algebra over K. Then A[[~]] carries a structure of algebra over
R = K[[~]]. In particular, for any a ∈ A[[~]] the element 1 + ~a is invertible in A[[~]] where the
inverse is given by the ususal geometric series formula

(1 + ~a)−1 =
∞∑
r=0

(−~)rar.
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9.2 Proof of the Enriquez–Etingof “Hensel” Lemma

This Section is devoted to the proof of the following Theorem which Enriquez and Etingof called
Hensel’s Lemma in [EE05, Lemma 3.1]. In the following we set R = K[[~]].

Theorem 9.2.1. Let E be a topologically free R-module, and let Z ⊂ E be a closed R-submodule.
Denote by N := E/Z the quotient module. Finally, let M be a vector space over K, and let
f : N → M [[~]] be a R-linear map such that its 0-component f0 : N0 = N/(~N)→ M = M [[~]]0 =
M [[~]]/(~M [[~]]) is an isomorphism of K–vector spaces. Then:

(i) f is an isomorphism of R-modules.

(ii) N is topologically free.

(iii) Z is isomorphic to a topologically free module V ′′[[~]] with V ′′ ⊂ E0.

Before giving the proof, let us see why such a result give rise to a dequantization statement. Let
Q : P1 → P2 be a certain quantization functor between two topological PROPs. Applying Theorem
9.2.1 to the collection of maps Qn,m : HomP1

([n], [m])→ HomP2
([n], [m]), we obtain that Q : P1 → P2

is an isomorphism of PROPs. For more details we refer to [EE05].

Proof. We denote by τ : E → E/Z = N the canonical projection. By applying an isomorphism of
topologically free modules we can suppose that E = V [[~]] for the K–vector space V = E0. Moreover,
let F : V [[~]] → M [[~]] be the composed map F = f ◦ τ. First, we show that τ0 : V = E0 → N0 is
surjective: indeed, let y ∈ N0. Since the projection πN0 : N → N0 is surjective there is η ∈ N with
y = πN0 (η). Since τ : E → N is surjective there is ξ ∈ E such that η = τ(ξ), hence

y = πN0
(
τ(ξ)

) (9.1.3)
= τ0

(
πE0 (ξ)

)
=: τ0(v)

with πE0 (ξ) =: v ∈ V = E0, and τ0 is surjective. It follows that

F0
(9.1.4)

= f0 ◦ τ0 : V = E0 →M = M [[~]]0

is surjective as a composition of surjective maps. Define V ′′ := ker(F0) ⊂ V, and choose a comple-
mentary K-subspace to V ′′, i.e. V ′ ⊂ V such that V = V ′ ⊕ V ′′. Let p′ (resp. p′′): V → V denote
the canonical projection on V ′ (resp. on V ′′) having kernel V ′′ (resp. V ′). Obviously p′ + p′′ = idV .
Now since the restriction of F0 to V ′ is injective and surjective by construction, hence there is a
K-linear inverse map ϕ : M → V ′, i.e.

F0 ◦ ϕ = idM , and ϕ ◦ F0 = p′

where we have not written the canonical injection V ′ ↪→ V . Recall that F takes the general form

F =
∞∑
r=0

Fr~r

where for each nonnegative integer r the symbol Fr denotes a K-linear map V → M , see Lemma
9.1.11, Equation (9.1.10). For r = 0 the component F0 of the formal series of F coincides with
the induced map F0 according to (9.1.3). In the following we shall denote the natural extension
of a K-linear map h : X → Y between K–vector spaces X, Y to an R-linear map X[[~]] → Y [[~]]
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(by considering it as a constant formal power series) by the same symbol. Define the R-linear map
H : V [[~]]→ V [[~]] by

H := p′′ + ϕ ◦ F = p′′ + ϕ ◦ F0 + ~
∞∑
r=0

~r(ϕ ◦ Fr+1) = idV + ~
∞∑
r=0

~r(ϕ ◦ Fr+1) =: idV + ~H+.

Being of the form idV + ~H+ it is invertible by Lemma 9.1.12 upon choosing A = HomK(V, V )
as the algebra (with composition as multiplication and unit element idV ). Since F0 ◦ p′′ = 0 and
F0 ◦ ϕ = idM we get

F0 ◦H = F0 ◦
(
p′′ + ϕ ◦ F

)
= 0 + idM ◦ F = F. (9.2.1)

Thanks to the fact that F0 is surjective and H an isomorphism we get that F = f ◦ τ is surjective,
whence f must be surjective.
We can use the R-linear isomorphism H and Equation (9.2.1) to replace the hypotheses of the
Theorem by equivalent, but simpler ones: define

Z̃ := H(Z) and τ̃ := τ ◦H−1

and keep N and f . Since H : V [[~]]→ V [[~]] is a linear isomorphism it is a homeomorphism (see part
(iv) of Lemma 9.1.4), hence Z̃ is also a closed submodule of V [[~]], and N = τ̃(V [[~]]) ∼= V [[~]]/Z̃.
Moreover we get

Z̃ = ker(τ̃) ⊂ ker(f ◦ τ̃) = ker(F0) = V ′′[[~]].

We describe the kernel of f :

V ′′[[~]] = ker(f ◦ τ̃) = (f ◦ τ̃)−1
(
{0}
)

= τ̃−1
(
f−1({0})

)
= τ̃−1

(
ker(f)

)
hence, applying τ̃ upon using its surjectivity, we find

ker(f) = τ̃(V ′′[[~]]) ∼= V ′′[[~]]/Z̃.

Define the following R-submodules of N

N ′ := τ̃
(
V ′[[~]]

)
and N ′′ := τ̃

(
V ′′[[~]]

)
.

Obviously, since E = V ′[[~]]⊕ V ′′[[~]] and according to what has already been shown:

N ′ = ker(f) and N = N ′ +N ′′.

In order to show that the sum is direct, let η be an element of N ′ ∩N ′′. Then there is ξ′ ∈ V ′′[[~]]
such that τ̃(ξ′) = η and f(η) = 0, hence

0 = f
(
τ̃(ξ′)

)
= F0(ξ′)

Hence ξ′ ∈ ker(F0) = V ′′[[~]], but since ξ′ ∈ V ′[[~]] it must vanish since the intersection V ′[[~]] ∩
V ′′[[~]] = (V ′ ∩ V ′′)[[~]] vanishes. It follows that

N ′ ∩N ′′ = {0}, hence N = N ′ ⊕N ′′.

We shall now pass to the ‘classical limit of N ’, N0: consider the projection πN0 : N → N0 whose
kernel is given by N(1) = ~N . Since N ′(1) = ~N ′ ⊂ ~N and N ′′(1) = ~N ′′ ⊂ ~N the projection πN0
passes to the quotients to define a well-defined R-linear map

φ : N ′0 ⊕N ′′0 → N0 :
(
πN

′

0 (η′), πN
′′

0 (η′′)
)
7→ πN0 (η′ + η′′).

191



Thanks to N = N ′⊕N ′′ the map φ is clearly sujective. In order to prove that φ is also injective we
compute the kernel of φ: let η′ ∈ N ′, η′′ ∈ N ′′ such that 0 = φ

(
πN

′
0 (η′), πN

′′
0 (η′′)

)
, hence η′+η′′ ∈ ~N .

It follows that there are η̌′ ∈ N ′ and η̌′′ ∈ N ′′ such that

η′ + η′′ = ~η̌′ + ~η̌′′, hence η′ − ~η̌′︸ ︷︷ ︸
∈N ′

= −
(
η′′ − ~η̌′′

)︸ ︷︷ ︸
∈N ′′

and thanks to N = N ′ ⊕ N ′′ we have η′ − ~η̌′ = 0 whence πN
′

0 (η′) = 0 and η′′ − ~η̌′′ = 0 whence
πN

′′
0 (η′′) = 0 proving that the R-linear map φ is an isomorphism.

According to the hypotheses of the Theorem, the induced map f0 : N0 → M is an isomorphism.
Since N ′′ = ker(f) it follows that φ(N ′′0 ) is in the kernel of f0: indeed, let y′′ ∈ φ(N ′′0 ), then there is
η′′ ∈ N ′′ such that y′′ = πN0 (0 + η′′) and

f0

(
πN0 (η′′)

) (9.1.3)
= π

M [[~]]
0

(
f(η′′)

)
= 0

because η′′ ∈ N ′′ is in the kernel of f . Since the kernel of f0 vanishes by hypothesis it follows that

N ′′0 = {0} ⇐⇒ N ′′ = ~N ′′.

This implies that

N ′′ =
⋂
n∈N

N ′′(n). (9.2.2)

On the other hand, note that the subspace topology of V ′′[[~]] ⊂ V [[~]] coincides with the ~-adic
topology of V ′′[[~]] since the intersection of ξ + ~nV [[~]], ξ ∈ V [[~]], with V ′′[[~]] is always of the
form ξ̂′′ + ~nV ′′[[~]] with ξ̂′′ ∈ V ′′[[~]] as can easily be checked for each power of ~ separately by
taking V ′- and V ′′-components in V . It follows that Z̃ is a closed subset in V ′′[[~]] with respect to
the ~-adic topology, whence the quotient module V ′′[[~]]/Z̃ ∼= N ′′ is Hausdorff according to Lemma
9.1.5, 2.. But then eqn (9.2.2) implies that

{0} = N ′′ = ker(f) ⇐⇒ Z̃ = V ′′[[~]],

and f is an R-linear bijection which proves all the statements of the Theorem.

Remark 9.2.2. Note that Enriquez–Etingof’s original assumption that f has to be continuous is
superfluous since this is automatically the case in view of statement (ii) of Lemma 9.1.4.
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Chapter 10

The universal Drinfeld–Yetter algebra
and its combinatorics

In this Chapter we present a description of the universal Drinfeld–Yetter algebra (see Definition
10.3.2) in terms of some combinatorial objects, the Drinfeld–Yetter mosaics (§10.4) and Drinfeld–
Yetter looms (§10.5). What follows is based on the forthcoming paper [AR].

10.1 Enriquez’s universal algebras

In this Section we present Enriquez’s universal algebras (see [Enr01b] [Enr01a] [Enr05]).

The original idea of Enriquez was to define a family of universal algebras {USn
univ}n>0 with the

following properties:

• (Universal property): for any quasi–triangular, finite–dimensional Lie bialgebra b there exists
a morphism of algebras

ρnb : USn
univ → U(b)⊗n. (10.1.1)

• There exists a family of insertion-coproduct maps USn
univ → USn+1

univ which gives rise to a
universal version of the coHochschild differential of U(b).

It is well–known that the existence of quantizations of a Lie bialgebra b is governed by the Hochschild
cohomology of U(b), see [Kas12, XVIII]. Hence, the idea of Enriquez was to replicate the Drinfeld’s
cohomological proof of the existence of quantization of Lie bialgebras, obtaining a cohomological
interpretation of the Etingof–Kazhdan quantization. In particular, Enriquez’s main result provides,
for any Drinfeld associator Φ, a universal twist JΦ ∈ S2

univ killing the associator. The universal
realization maps (10.1.1) allows thus to, for any finite–dimensional, quasi–triangular Lie bialgebra
b, realize the twist on U(b), giving rise to a universal quantization.
More specifically, for any n,N > 1 let AN be the free algebra in N variables xi, i = 1, . . . , N and
let (A⊗nN )δN be the subspace of A⊗nN generated by elements of degree one in each variable. We have
that the symmetric group SN acts diagonally on (A⊗nN )δN ⊗ (A⊗nN )δN by simultaneus permutation
of the variables. The n–th Enriquez’s universal algebra is

USn
univ =

∑
N>0

(
(A⊗nN )δN ⊗ (A⊗nN )δN

)
SN
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where
(
(A⊗nN )δN ⊗ (A⊗nN )δN

)
SN

is the space of Sn–coinvariants. Note that USn
univ is equipped with

a standard basis defined as follows. For any N,N ′ ∈ Nn with |N | = |N ′| = N and σ ∈ SN , consider
elements xN and yσ(N ′) of (A⊗nN )δN defined by

xN = x1 · · ·xN1 ⊗ xN1+1 · · ·xN1+N2 ⊗ · · · ⊗ xN1+···+Nn−1+1 · · ·xN
yσ(N ′) = yσ(1) · · · yσ(N ′1) ⊗ · · · ⊗ yσ(N ′1+···+N ′n−1+1 · · · yσ(N)

Then the collection {xN ⊗ yσ(N ′)} is a basis of USn
univ. Following [Enr01b], the algebra structure of

USn
univ is provided through a very intricate formula, and is proved to be associative by a lenghty

computation. For n = 1, one has that US1
univ is isomorphic – as a vector space – to the direct sum⊕

N>0 K[SN ], and the product is the concatenation of permutations.
Finally, for any finite–dimensional, quasi–triangular Lie bialgebra b with r–matrix r =

∑
i bi ⊗ bi,

the realization map – we provide for simplicity the case n = 1 – ρb is defined as follows:

ρb : US1
univ → U(b)

xN ⊗ y(σ(N)) 7→
∑
i∈IN

bi1 · · · biN biσ(1) · · · biσ(N) .

However, it turns out that such a map does not satisfy the desired universal property, as showed in
the following

Example 10.1.1. Consider the quasi–triangular complex Lie bialgebra sl2 with standard genera-
tors e, f, h and standard r–matrix r = e ⊗ f + 1

4
h ⊗ h. Take the Poincaré–Birkhoff–Witt basis

{eif jhk, i, j, k ∈ N} of U(sl2) and consider the elements id1 ∈ S1, id2 ∈ S2, (12) ∈ S2. Then it is
easy to see – through a lenghty but elementary computation – that

ρsl2(id1) = ef +
1

4
h2

(ρsl2(id1))2 = e2f 2 − efh+
efh2

2
+
h4

16
+ 2ef

ρsl2(id2) = e2f 2 − efh+
efh2

2
+
h4

16
+ ef

ρsl2((12)) = e2f 2 − efh+
efh2

2
+
h4

16

It is clear that (ρsl2(id1))2 6= ρsl2(id2), i.e. that the concatenation of permutations does not satisfy
the required universal property. On the other hand, we have the following identity

(ρsl2(id1))2 = 2 · ρsl2(id2)− ρsl2((12)). (10.1.2)

In [ATL19] Appel and Toledano Laredo define a family of universal algebra satisfying the desired
property (and in particular Equation (10.1.2), see Lemma 10.9.1), see the next Section for more
details.

10.2 Drinfeld–Yetter universal algebras

In this Section we present Drinfeld–Yetter universal algebras, defined by Appel and Toledano Laredo
– in their attempt to clarify the Enriquez’s construction – in [ATL19].
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Definition 10.2.1. Let n > 1. The n–th universal Drinfeld–Yetter algebra UnDY is

UnDY := EndDYn([V1]⊗ · · · ⊗ [Vn])

where DYn is the n–th Drinfeld Yetter PROP (see §8.6) and the associative multiplication is given
by composition of endomorphisms.

The algebra UnDY has the following vector space structure. For any N ∈ N and N = (N1, . . . , Nn) ∈
Nn such that |N | = N consider the following morphisms of DYn

π(N) : [N ]⊗
n⊗
k=1

[Vk]→
n⊗
k=1

[Vk] and π∗(N) :
n⊗
k=1

[Vk]→ [N ]⊗
n⊗
k=1

[Vk]

which are respectively the ordered composition of Ni actions (resp. coactions) on [Vi]. Then we
have

Proposition 10.2.2. ([ATL19, Prop. 5.12]) The collection of elements{
rσN,N ′ := π(N) ◦ (σ ⊗ id) ◦ π∗(N ′)

}
where N > 0, N,N ′ ∈ Nn are such that |N | = |N ′| = N , and σ ∈ SN is a basis of UnDY.

We are going to study in detail the case n = 1. The following proposition gives the universal
property of the algebra U1

DY:

Proposition 10.2.3. For any finite–dimensional, quasi–triangular Lie bialgebra b with r–matrix
r =

∑
i∈I ai ⊗ bi the map

ρb : U1
DY → U(b)

rσn 7→
∑
i1∈I

· · ·
∑
in∈I

ai1 · · · ainbiσ−1(n)
· · · biσ−1(1)

(10.2.1)

is a morphism of algebras, where rσn := π
∗(n)
1 ◦ (σ ⊗ id[V1]) ◦ π1

(n), see next Section for more details.

It is possible to show that for any infinite–dimensional, quasi–triangular Lie bialgebra b the map
(10.2.1) satisfies – up to completing opportunely the algebra U(b) – such a universal property.
Next, we give a relationship between the algebras UnDY and USn

univ in the following

Proposition 10.2.4. We have that:

(i) ([ATL19, p.31]) There exist algebra homomorphisms ∆n
i : UnDY → Un+1

DY giving to the tower of
algebras {UnDY}n>0 the structure of a cosimplicial complex.

(ii) ([ATL19, p.37]) The collection of maps

ξn : UnDY → USn
univ

rσN,N ′ 7→ xN ⊗ yσ̃(N ′)

is a collection of isomorphims of vector spaces, where σ̃ := σ−1 ◦ τ , and τ is the element of
SN such that τ(i) = N − i.

(iii) ([ATL19, p.44]) The isomorphisms ξn induce an isomorphism of cosimplicial chains.
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10.3 The universal Drinfeld–Yetter algebra U1
DY

In this Section we show that, as a vector space, the algebra U1
DY is isomorphic to the direct sum of

all group algebras of all symmetric groups. We then provide an an algorithmic process to calculate
the multiplication with respect to the standard basis (i.e. the basis indexed by all permutations of
all symmetric groups).

Notation 10.3.1. From now on we will denote composition between morphisms in PROPs from
left to right (as they are read in the respectively pictorial representation).

Definition 10.3.2. The universal Drinfeld–Yetter algebra is U1
DY := EndDY([V1]).

Note that any element of U1
DY can be represented by a linear combination of oriented diagrams of

the form

φ

mn (10.3.1)

i.e. each of them necessarily starting with a certain number n > 1 of coactions, ending with a
certain number m > 1 of actions, and containing a morphism φ ∈ HomDY1([n]⊗ [V1], [m]⊗ [V1]) in
the middle. If n is a non–negative integer and σ ∈ Sn, we denote by rσn the following element of
U1
DY

rσn = π
∗(n)
1 ◦ (σ ⊗ id[V1]) ◦ π1

(n),

where π
(n)
1 : [n] ⊗ [V1] → [V1] denotes the n-th iterated action and π

∗(n)
1 : [V1] → [n] ⊗ [V1] denotes

the n-th iterated coaction. The pictorial representation of rσn is the following

σ

nn (10.3.2)

The following result describes the vector space structure of U1
DY:

Proposition 10.3.3. The collection of endomorphisms of [V1] given by

B = {rσn, n > 0, σ ∈ Sn} (10.3.3)

is a basis of U1
DY.

Proof. We proceed as in [ATL19, 5.10]. In order to show that the set B generates U1
DY, let f ∈

EndDY([V1]) be represented by a linear combination of oriented diagrams of the form (10.3.1). The
Drinfeld–Yetter relation (8.6.4)

= + −
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allows to reorder π1 and π∗1, moving every coaction before any action. The cocycle condition (8.2.4)

= + + +

allows to reorder brackets and cobrackets in such a way cobrackets horizontally precede brackets.
Finally, the relations (8.6.2), (8.6.3)

= −

= −

allow to remove from the graph every µ and every δ involved. It follows that f can be represented
as a linear combination of endomorphisms of type (10.3.2), showing that B is a set of generators
for U1

DY. In order to show that the rσn’s are linearly independent, consider a Lie bialgebra b whose
underlying Lie algebra is free. Therefore, any non–trivial linear combination

∑
i cir

σi
ni

= 0 would
induce, through the universal property of U1

DY, a non–trivial relation in U(b), contradicting its
freeness.

With a similar argument one can construct a basis for UnDY for n > 2, see [ATL19, 5.12] for more
details. As a direct consequence of the result above, we obtain the following

Corollary 10.3.4. There is a canonical isomorphism of vector spaces

U1
DY '

⊕
n>0

K[Sn] (10.3.4)

mapping rσn to σ ∈ Sn.

From now on we shall refer to (10.3.3) as the standard basis of U1
DY. In addition to describing the

vector space structure of the algebra U1
DY, Proposition 10.3.3 gives an algorithmic way to compute

the multiplication with respect to the standard basis (10.3.3). Namely, one can proceed in the
following way: given rσn, r

τ
m ∈ B, consider the following algorithm:

(1) Apply repeatedly the Drinfeld–Yetter rule (8.6.4) until there is no action preceding any coac-
tion;

(2) Apply repeatedly the action rule (8.6.2) in order to remove all the brackets from the expansion
obtained in (1);

(3) Apply repeatedly the coaction rule (8.6.3) in order to remove all the cobrackets from the
expansion obtained in (2).

The result of this process gives the multiplication rσn ◦rτm with respect to the standard basis (10.3.3).
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Remark 10.3.5. Since in every step of the algorithm described above the total number of the strings
is preserved, we have that U1

DY is a N–graded algebra: for any rσn, r
τ
m ∈ B there exist unique coeffi-

cients cγσ,τ such that

rσn ◦ rτm =
∑

γ∈Sn+m

cγσ,τ · r
γ
n+m. (10.3.5)

Moreover, it follows from the identities involved that the coefficients cγσ,τ are integers. Therefore, the
structure of U1

DY naturally induces a N–graded algebra structure (with integral structure constants)
on the vector space

⊕
n>0 K[Sn].

A really challenging problem is to find an explicit formula for the structure constants cγσ,τ in terms
of symmetric groups. This problem appears to be highly nontrivial: for instance, the number of
summands appearing after the application of the algorithm described above seems to have exponen-
tial growth, as conjectured in 10.10.1.
In the next Sections we shall describe the algebra structure of U1

DY through some combinatorial
objects, namely the Drinfeld–Yetter mosaics and Drinfeld–Yetter looms.

10.4 Drinfeld–Yetter mosaics

In this Section we define the set Mn,m of n×m Drinfeld–Yetter mosaics, which will provide, through

Proposition 10.6.5, a combinatorial description of the morphism π
(n)
1 ◦ π∗(m)

1 , which is represented
by the picture

mn

More specifically, every element of Mn,m will represent a morphism appearing in the sum of mor-

phisms generated by the iterated application of the Drinfeld–Yetter rule (8.6.4) to π
(n)
1 ◦π

∗(m)
1 , hence

giving a combinatorial description of the application of step (1) of the algorithm described in the
previous Section. We finally present the combinatorial properties of the set Mn,m.

Notation 10.4.1. Let n,m > 1. We denote by Gn,m the grid with n rows and m columns. For
example, G2,3 is

.

If T is a given set of tiles, we define a tiling of Gn,m with the elements of T as a map

F : {1, . . . , n} × {1, . . . ,m} → T .

We shall denote F (i, j) by Fi,j. Roughly speaking, a tiling of Gn,m consists of assigning to each
position of the empty grid a tile of T .

Definition 10.4.2. Let n,m > 1 and let TM be the following set of tiles

TM =
{

, , , , ,

}
. (10.4.1)
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We define the set of n×m Drinfeld–Yetter mosaic Mn,m as the set of all possible fillings M of
Gn,m with the elements of TM such that the following three conditions are satisfied:

(1): M1,j /∈
{

,
}

for all j ∈ {1, . . . ,m}.

(2): Mi,1 /∈
{

,
}

for all i ∈ {1, . . . , n}.

(3): None of the following configurations appear in M :

Roughly speaking, the third condition avoids the existence of Drinfeld–Yetter mosaic in which there
is discontinuity between the red lines. We set by convention

M0,m =

{ }
. . . Mn,0 =

{ }
... M0,0 =

{ }

.

We shall respectively call the tiles of (10.4.1) the permutation, bracket, cobracket, action, coaction
and empty tile.

Notation 10.4.3. We will need the following auxiliary functions counting the number of bracket
and cobracket tiles in a Drinfeld–Yetter mosaic:

α : Mn,m → Z>0

β : Mn,m → Z>0

defined by

α(M) = #
{
Mi,j =

}
and

β(M) = #
{
Mi,j =

}
.
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Remark 10.4.4. Let n,m > 1. It follows by Definition 10.4.2 that the rows and the columns of an
element of Mn,m are respectively of the form

♣ . . . ♣ . . .♠ ♠ and

♥
...

♥

♦

...

♦

where

♣ ∈
{

, ,

}
, ♠ ∈

{
,

}
, ♥ ∈

{
, ,

}
, ♦ ∈

{
,

}
.

We therefore deduce the following facts:

• Every row of a Drinfeld–Yetter mosaic has at most one bracket tile.

• Every column of a Drinfeld–Yetter mosaic has at most one cobracket tile.

• The set Mn,m splits into disjoint union of three subsets

Mn,m = Mn,m tMn,m tMn,m (10.4.2)

where

M
∗
n,m :=

{
M ∈Mn,m , M1,1 = ∗ }.

Relying on the previous facts, we obtain the following

Proposition 10.4.5. Let M
(`)
1,m be the set of all 1×m Drinfeld–Yetter mosaics satisfying α(M) =

m− ` and M
[k]
n,1 be the set of all n× 1 Drinfeld–Yetter mosaics satisfying β(M) = n− k. Then

Mn,m =
m⊔
`=0

M
(`)
1,m ×Mn−1,` (10.4.3)

and

Mn,m =
n⊔
k=0

M
[k]
n,1 ×Mk,m−1. (10.4.4)

Proof. We show (10.4.3), the proof of (10.4.4) is analogous. In order to construct a Drinfeld–Yetter
mosaic M ∈Mn,m, one can freely assign the first row of M , which is an element y of M1,m having
the following form

y = ♣ . . . ♣ . . . ♣ ∈
{

,

}
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For any cobracket tile in y, we have that the tiles below are automatically determined. More
precisely, according to the defining rules of the Drinfeld–Yetter mosaics, if M1,j is a cobracket tile,
then

Mi,j =

{
if Mi,1 =

otherwise
.

Therefore, if α(y) = m − `, we have m − ` columns of M automatically determined. The other `
columns can be freely chosen among all the elements of Mn−1,`.

As a consequence of the result above, we obtain two recursive formulas for |Mn,m|:

Corollary 10.4.6. One has

|Mn,m| =
m∑
`=0

(
m+ 1

`

)
|Mn−1,`| (10.4.5)

and

|Mn,m| =
n∑
k=0

(
n+ 1

k

)
|Mk,m−1|. (10.4.6)

Proof. We show (10.4.5), the proof of (10.4.6) is analogous. Let M ∈M1,m and let t be the number
of permutation and cobracket tiles of M . Then we have

|M(`)
1,m| =

m∑
t=0

(
t

m− `

)
=

m∑
t=m−`

(
t

m− `

)
=

(
m+ 1

m− `+ 1

)
=

(
m+ 1

`

)
where the third equality follows by the well–known Hockey–Stick identity.

We now provide a formula for the cardinality of Mn,m which involves the Stirling number of the
second kind. We set Fn,m := |Mn,m|. Then, it is easy to see that Fn,m is symmetric (i.e. Fn,m = Fm,n).
By iterating equations (10.4.5) and (10.4.6), we obtain

Fn,m =
m∑

k∈In,m

n∏
i=0

(
ki + 1

ki+1

)
(10.4.7)

where In,m := {(k0, k1, . . . , kn) | k0 := m, ki 6 ki−1, i = 1, . . . , n}.
Recall that the Stirling numbers of the second kind are the non–negative integers

{
n
k

}
counting the

number of ways to partition a set of n labelled objects into k non–empty unlabelled subsets, and
they satisfy the recursive relation{

n+ 1

k + 1

}
= (k + 1) ·

{
n

k + 1

}
+

{
n

k

}
(10.4.8)

with initial conditions {
0

0

}
= 1 and

{
n

0

}
=

{
0

k

}
= 0.

One has {
n

k

}
=

1

k!

k∑
i=0

(−1)i ·
(
k

i

)
· (k − i)n.

We shall provide a concise expression of Fn,m in terms of Stirling numbers. To this end, we shall
use the following
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Lemma 10.4.7. For any 0 6 k 6 n+ 1, we have

k ·
{
n+ 1

k

}
=

n∑
`=k−1

(−1)n−` ·
(
n+ 1

`

)
·
{
`+ 1

k

}
. (10.4.9)

Proof. We proceed by induction on n. We observe that the cases k = 0, n + 1 are trivial, while for
k = 1 it reduces to the identity

n+1∑
`=0

(−1)`
(
n+ 1

`

)
= 0.

Therefore, the case n = 1 is clear.
Assume the result holds for n− 1 > 0. Then,

n∑
`=k−1

(−1)n−` ·
(
n+ 1

`

)
·
{
`+ 1

k

}
=

= (n+ 1) ·
{
n+ 1

k

}
+

n−1∑
`=k−1

(−1)n−` ·
(
n+ 1

`

)
·
{
`+ 1

k

}

= (n+ 1) ·
{
n+ 1

k

}
−

n−1∑
`=k−1

(−1)n−1−` ·
(
n

`

)
·
{
`+ 1

k

}

−
n−1∑
`=k−1

(−1)n−1−` ·
(

n

`− 1

)
·
{
`+ 1

k

}

= (n+ 1) ·
{
n+ 1

k

}
− k ·

{
n

k

}
− k

n−1∑
`=k−1

(−1)n−1−` ·
(

n

`− 1

)
·
{
`

k

}

−
n−1∑
`=k−1

(−1)n−1−` ·
(

n

`− 1

)
·
{

`

k − 1

}

= (n+ 1) ·
{
n+ 1

k

}
− k ·

{
n

k

}
+ k

n−2∑
j=k−1

(−1)n−1−j ·
(
n

j

)
·
{
j + 1

k

}

+
n−2∑
j=k−2

(−1)n−1−j ·
(
n

j

)
·
{
j + 1

k − 1

}
= (n+ 1) ·

{
n+ 1

k

}
− k ·

{
n

k

}
+ k2 ·

{
n

k

}
− k · n ·

{
n

k

}
+ (k − 1) ·

{
n

k − 1

}
− n ·

{
n

k − 1

}
= (n+ 1) ·

{
n+ 1

k

}
− (n− k + 1) ·

(
k ·
{
n

k

}
+

{
n

k − 1

})
= k ·

{
n+ 1

k

}
where the second equality follows from the recursive identity for the binomial coefficient, the third
one follows by induction and the recursive identity for the Stirling numbers (10.4.8), the fourth and
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fifth1 one by induction, and the last one by (10.4.8).

Relying on the above result, we get the following

Proposition 10.4.8. For any n,m > 0, we have

Fn,m =
n+1∑
k=1

(−1)n−k+1 · k! · km ·
{
n+ 1

k

}
. (10.4.10)

Proof. Set Bn,k := (−1)n−k · (k − 1)! ·
{
n
k

}
. Then, the formula (10.4.10) is equivalent to

Fn,m =
n+1∑
k=1

Bn+1,k · km+1.

Therefore, it is enough to prove that the numbers

Gn,m :=
n+1∑
k=1

Bn+1,k · km+1

satisfy the recursive relation (10.4.5). Note that (10.4.9) is equivalent to

k ·Bn+1,k =
n∑

`=k−1

(
n+ 1

`

)
·B`+1,k. (10.4.11)

Therefore,

n∑
`=0

(
n+ 1

`

)
G`,m−1 =

n∑
`=0

(
n+ 1

`

) `+1∑
k=1

B`+1,k · km

=
n∑
`=0

`+1∑
k=1

(
n+ 1

`

)
B`+1,k · km

=
n+1∑
k=1

(
n∑

`=k−1

(
n+ 1

`

)
B`+1,k

)
· km

=
n+1∑
k=1

Bn+1,k · km+1 = Gn,m

where the fourth identity follows from (10.4.11). Thus, Gn,m = Fn,m since they satisfy the same
recursion relation.

10.5 Drinfeld–Yetter looms

In this Section, given n,m 6 1, we define the set Ln,m of n ×m Drinfeld–Yetter looms, which will
provide, through Lemma 10.6.7, a combinatorial description of the application of steps (2)–(3) of
the algorithm of the product of U1

DY. More precisely, to any Drinfeld–Yetter mosaic M is associated
a morphism pictorially represented by

1Note that
{
k−1
k

}
= 0, thus we can assume the first sum starts at j = k − 1.
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σ

n

τ

m

mn
(
ϕn,m(M)

)

where ϕn,m(M) is a morphism in HomDY1([V ]⊗ [n], [V ]⊗ [m]) containing a Lie bracket (resp. a Lie

cobracket) if and only if the tile (resp ) appears in M , see Equation (10.6.1). The process of
removing Lie brackets and Lie cobrackets from the morphism

π
∗(n)
1 ◦ (id[1] ⊗ σ) ◦ ϕn,m(M) ◦ (id[1] ⊗ τ) ◦ π(m)

1

through formulas (8.6.2) and (8.6.3) will translates in associating to any M ∈Mn,m a set of Drinfeld–
Yetter looms L(M) (see Equation (10.5.1)). As the set of Drinfeld–Yetter mosaics Mn,m, we shall
define the set Ln,m as a set of tilings of the empty grid. Clearly, we shall use a different set of tiles
and of tiling rules, since we need to get rid of Lie bracket and Lie cobracket tiles.

Definition 10.5.1. Let n,m > 1 and let TLn,m be the following set of tiles

TLn,m =
{

, , , , , , ,

}
where the yellow line denotes k ∈ {0, . . . ,m − 1} red horizontal lines and the blue line denotes
` ∈ {0, . . . , n − 1} red vertical lines. To any tile T of TLn,m, we associate a four–tuple of integers
(t, b, l, r) that respectively indicates the number of strings occurring on the top, bottom, left and right
edge of T . We define the set of n × m Drinfeld–Yetter looms Ln,m as the set of all possible
tilings L of Gn,m with the elements of TLn,m such that the following five conditions are satisfied:

(1): bi,j = ti+1,j for all i = 1, . . . ,m− 1 and j = 1, . . . , n;

(2): li,j = ri,j+1 for all i = 1, . . . ,m and j = 1, . . . , n− 1;

(3):
∑n

i=1 li,1 +
∑m

j=1 bn,j =
∑n

i=1 ri,m +
∑m

j=1 t1,j = n+m;

(4): R1,j /∈
{

,
}

for all j ∈ {1, . . . ,m};

(5): Ri,1 /∈
{

,
}

for all i ∈ {1, . . . , n},

where (ti,j, bi,j, li,j, ri,j) denotes the tuple of weights of Li,j. We set by convention L0,m = M0,m,
Ln,0 = Mn,0 and L0,0 = M0,0.

As in the case of the Drinfeld–Yetter mosaics, the first two conditions avoids the existence of
Drinfeld–Yetter looms in which there is discontinuity between the red lines. The fourth and fifth
conditions are the analogous of the first two conditions of Definition 10.4.2.

Remark 10.5.2. Note that, as opposed to the case of Drinfeld–Yetter mosaics, the set of tiles of
Ln,m depends on n and m (more precisely, its cardinality is nm+ 3m+ 3n).
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For any L ∈ Ln,m, we shall interpret the strings occurring in the left edges of the first column of
L and the strings occurring in the down edges of the last column of L (resp. the strings occurring
in the right edges of the last column of L and the strings occurring in the up edges of the first
column of L) as ingoing (resp. ongoing) strings. Note that the path of any ingoing string across the
Drinfeld–Yetter loom must end in a outgoing string. We can therefore associate to any Drinfeld–
Yetter loom L ∈ Ln,m a permutation in Sn+m in the following way: we assign to any ingoing string
of L a number in {1, . . . , n+m}, starting from the top left to the bottom left and carrying on from
the bottom left to the bottom right. In the same way, we assign to any outgoing string of L a
number in {1, . . . , n+m}, starting from the top left to the top right and carrying on from the top
right to the bottom right.

Example 10.5.3. The permutation associated to the following Drinfeld–Yetter loom

1

2
3

4

1 23

4

is (1243) ∈ S4.

The procedure described above defines a family of maps γn,m : Ln,m → Sn+m. Note that the maps
γn,m are in general not injective nor surjective. For example, for the following L1, L2 ∈ L2,2

1

2
3

4

1 23

4

1

2

3 4

1 23

4

we have γ2,2(L1) = γ2,2(L2). On the other hand, one can show through a direct inspection that there
is no Drinfeld–Yetter loom L ∈ L1,3 such that γ1,3(L) = (12)(34) ∈ S4.
Next, we give a connection between the sets Mn,m and Ln,m. For any M ∈ Mn,m with tiles
{M1,1, . . . ,Mn,m} consider the following function associated to M
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fM : {M1,1, . . . ,Mn,m} → P(TLn,m)

7→
{ }

7→
{

,

}
7→
{

,

}
7→
{ }

7→
{ }

7→
{ }

where P(TLn,m) denotes the power set of TLn,m . Here the numbers of red lines corresponding to the
yellow and the blue ones are fixed: the yellow horizontal line in the tiles of fM(Mi,j) denotes exactly

k = #{Mi,t = , t > j}

red horizontal lines and the blue vertical line in the tiles of fM(Mi,j) denotes exactly

` = #{Ms,j = , s > i}

red vertical lines.

Definition 10.5.4. The set L(M) of all the Drinfeld–Yetter looms related to M is

L(M) = {L ∈ Ln,m | Li,j ∈ fM(Mi,j)}. (10.5.1)

Proposition 10.5.5. The collection {L(M)}M∈Mn,m defines a partition of Ln,m.

Proof. It is clear that L(M) is non–empty for any M ∈Mn,m and that M1 6= M2 implies L(M1) ∩
L(M1) = ∅. It remains to prove that the collection {L(M)}M∈Mn,m defines a covering of Ln,m, i.e.
that for any L ∈ Ln,m there exists M ∈Mn,m such that L ∈ L(M). For any L ∈ Ln,m, we construct
such a M in the following way: consider the following map

χ : TLn,m → TM
7→

7→

7→

7→

7→

7→

7→

7→
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We define the Drinfeld–Yetter loom LM associated to M as the one with Li,j = χ(Li,j). It is easy
to see that L ∈ L(MM), hence the claim is proved.

Remark 10.5.6. Note that we have the following formula for the cardinality of L(M):

|L(M)| = 2α(M)+β(M). (10.5.2)

Notation 10.5.7. As in the case of Drinfeld–Yetter mosaics, we shall need some auxiliary functions
counting the amount of some tiles occurring in a Drinfeld–Yetter loom: we set

ζ : Ln,m → Z>0

ξ : Ln,m → Z>0

defined by

ζ(L) = #
{
Li,j = ,

}
ξ(L) = #

{
Li,j = ,

}
.

Proposition 10.5.8. let M ∈Mn,m and let L ∈ L(M). Then

(−1)α(M)(−1)ζ(L) = (−1)ξ(L).

Proof. Set k = #{Li,j = }, ` = #{Li,j = } and h = #{Li,j = }. By definition of the
auxiliary functions we have α(M) = k + `, and then (−1)α(M)(−1)k = (−1)`. To end the proof it
suffices to multiply both sides for (−1)h.

10.6 An explicit formula for the multiplication of U1
DY

The aim of this Section is to provide an explicit formula for the multiplication of U1
DY with respect

to the standard basis (10.3.3). We shall first present some preliminary results (namely Proposition
10.6.5 and Lemma 10.6.7) and then give the main result in Theorem 10.6.9.

To any Drinfeld–Yetter mosaic M ∈Mn,m we associate a morphism in HomDY1([n]⊗ [V1], [m]⊗ [V1])
by considering the picture obtained by removing all borders from the Drinfeld–Yetter mosaic and
turning it 45 degrees clockwise. This procedure defines a colletion of maps

ϕn,m : Mn,m → HomDY1([n]⊗ [V1], [m]⊗ [V1]). (10.6.1)

Example 10.6.1. Given the following Drinfeld–Yetter mosaic

M =

the procedure described above gives the following picture
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−→ −→ −→

leading to the following morphism of HomDY1([2]⊗ [V1], [2]⊗ [V1]):

ϕ2,2(M) = (id[2] ⊗ π∗(2)
1 ) ◦

((
(23) ◦ id[2] ⊗ δ ◦ (132)

)
⊗ id[V1]

)
◦ (id[2] ⊗ π1).

Remark 10.6.2. Note that ϕ0,m(M) = π
∗(m)
1 , ϕn,0(M) = π

(n)
1 and ϕ0,0(M) = id[1].

Similarly, for any M ∈Mn,m we denote by M> the morphism of HomDY1([n+m−α(M)], [n+m−
β(M)]) pictorially represented by removing all borders from M , turning it 45 degrees clockwise and
attaching horizontal lines to the end and beginning of any diangonal line.

Example 10.6.3. For the Drinfeld–Yetter mosaic M of the previous example, we obtain the fol-
lowing picture

−→ −→ −→

corresponding to the morphism

M> = (23) ◦ (id[2] ⊗ δ) ◦ (132) ∈ HomDY1([4], [3]).

Note that for any M ∈Mn,m we have

ϕn,m(M) =
(
id[n] ⊗ π∗(m−α(M))

1

)
◦ (M> ⊗ id[V1]) ◦

(
id[m] ⊗ π(n−β(M))

1

)
. (10.6.2)

Lemma 10.6.4. For any n,m > 0 we have

m

=
∑

M∈M1,m

(−1)α(M)ϕ1,m(M)

and

n

=
∑

M∈Mn,1

(−1)α(M)ϕn,1(M)

.

Proof. We prove the first identity by induction on m > 0. For m = 0 the claim holds trivially. For
m = 1 we have
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= + −

= ϕ1,1

( )
+ ϕ1,1

( )
− ϕ1,1

( )
=

∑
M∈M1,1

(−1)α(M)ϕ1,1(M)

where the first equality follows from Equation (8.6.4). If m > 1, we have

m+1

=
m

=

(
+ −

)
m

=
m

+

mm

−

=
∑

M∈M1,m+1

(−1)α(M)ϕ1,m+1(M) +
∑

M∈M1,m+1

(−1)α(M)ϕ1,m+1(M)

+
∑

M∈M1,m+1

(−1)α(M)ϕ1,m+1(M)

=
∑

M∈M1,m+1

(−1)α(M)ϕ1,m+1(M)

where the second equality follows from Equation (8.6.4) and the fourth equality follows by the
inductive hypothesis. Then the first part of the claim is proved. The proof of the second part is
analogous.

We can now prove the main result regarding Drinfeld–Yetter mosaics:

Proposition 10.6.5. Let n,m > 0. Then

mn

=
∑

M∈Mn,m

(−1)α(M)ϕn,m(M)

.
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Proof. The cases n = 0, m = 0 and n = m = 0 hold trivially, while the cases n = 1 and m = 1 hold
for Lemma 10.6.4. For n,m > 2 we have

mn

=

mn−1

=

n−1

( ∑
M∈M1,m

(−1)α(M)ϕ1,m(M)

)

=

n−1

(
m∑
`=0

∑
M∈M(`)

1,m

(−1)α(M)ϕ1,m(M)

)

=

m∑
`=0

∑
M∈M(`)

1,m

β(M)=0

(−1)α(M)

( )

+

m∑
`=0

∑
M∈M(`)

1,m

β(M)=1

(−1)α(M)

( m

m

n−1 `

`n−1

M>

M>
)

=
m∑
`=0

∑
M∈M(`)

1,m×Mn−1,`

(−1)α(M)ϕn,m(M)

=
∑

M∈Mn,m

(−1)α(M)ϕn,m(M)

where the second equality follows from Lemma 10.6.4, the third and the fifth equalities follows from
Proposition 10.4.5, the fourth equality follows from Equation (10.6.2) and the sixth equality follows
from Equation (10.4.3).

Let L ∈ Ln,m, σ ∈ Sn and τ ∈ Sm. We want to associate a permutation in Sn+m to such data,
by gluing σ to the left edge of L and τ to the top edge of L. However, since the number of
strings occurring in the left (resp. top) edge of L may be greater than n (resp. m), we extend the
permutations in such a way they move at the same time multiple strings of a tile. Finally, we get
a permutation of Sn+m by labelling the strings from 1 to n + m, following the same argument of
Example 10.5.3.

Example 10.6.6. Consider the following Drinfeld–Yetter loom L ∈ L2,3
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and the permutations σ = (12) ∈ S2 and τ = (132) ∈ S3. By gluing σ to the left edge of L and τ
to the top edge of L, we obtain the picture

1
2

3

4 5

12 3 4

5

obtaining the permutation (14)(253) ∈ S5.

The procedure described above defines a family of maps γ̃n,m : Sn×Ln,m×Sm → Sn+m. Note that
for all L ∈ Ln,m we have γ̃n,m(idn, L, idm) = γn,m(L).

Lemma 10.6.7. Let M ∈Mn,m. Then

σ

n

τ

m

mn
(
ϕn,m(M)

)
=

∑
L∈L(M)

(−1)ζ(L) γ̃n,m(σ, L, τ)

n+mn+m .

Before proving the Lemma, let us give an

Example 10.6.8. Let M be the following 2× 2 Drinfeld–Yetter mosaic

.

Then the morphism ϕ2,2(M) is pictorially represented by

.

Gluing two permutations σ, τ ∈ S2 to ϕ2,2(M) and composing with π
∗(2)
1 and π

(2)
1 we obtain

τσ

and applying relations (8.6.2) and (8.6.3), we obtain

τσ
=

+

−

−

σ̃ τ̃ σ̃ τ̃

σ̃ τ̃ σ̃ τ̃
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where σ̃ and τ̃ are the permutations of S3 moving the first two strings as they were one. On the
other hand, we have that

, ,,

{ }
L(M) = {L1, L2, L3, L4} =

and it is easy to see that

r
γ̃2,2(σ,L1,τ)
4 =

σ̃ τ̃

r
γ̃2,2(σ,L2,τ)
4 =

σ̃ τ̃

r
γ̃2,2(σ,L3,τ)
4 =

σ̃ τ̃

r
γ̃2,2(σ,L4,τ)
4 =

σ̃ τ̃

where the permutation in the middle of r
γ̃2,2(σ,Li,τ)
4 is exactly γ2,2(Li). We therefore get

π
∗(2)
1 ◦ ((σ ⊗ id[V1]) ◦ ϕ2,2(M) ◦ (τ ⊗ id[V1])) ◦ π(2)

1 = r
γ̃2,2(σ,L1,τ)
4 − rγ̃2,2(σ,L2,τ)

4 + r
γ̃2,2(σ,L3,τ)
4 − rγ̃2,2(σ,L4,τ)

4

as is claimed in the statement.

Proof. Let M ∈ Mn,m and let ϕn,m(M) be the associated morphism in DY1. Applying relations
(8.6.2), (8.6.3) we get

σ

n

τ

m

mn
(
ϕn,m(M)

)
=

∑
L∈L(M)

(−1)ζ(L) σ̃ γn,m(L) τ̃

Λ ΩΓ Θ

where

Λ =
n∑
i=1

li1, Ω =
m∑
j=1

t1j, Γ = n+m− Λ, Θ = n+m− Ω.

To end the proof it suffices to note that γ̃n,m(σ, L, τ) = (σ̃ ⊗ id[Γ]) ◦ γn,m(L) ◦ (τ̃ ⊗ id[Θ]).

We now have all the ingredients to give an explicit formula for the multiplication of U1
DY.

Theorem 10.6.9. We have

rσn ◦ rτm =
∑

L∈Ln,m

(−1)ξ(L)r
γ̃n,m(σ,L,τ)
n+m (10.6.3)

Proof. The proof is pictorial. We have
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σ

nn

τ

mm

=
∑

M∈Mn,m

(−1)α(M)
σ

n

τ

m

mn
(
ϕn,m(M)

)

=
∑

M∈Mn,m

(−1)α(M)
∑

L∈L(M)

(−1)ζ(L)
γ̃n,m(σ, L, τ)

n+mn+m

=
∑

L∈Ln,m

(−1)ξ(L)
γ̃n,m(σ, L, τ)

n+mn+m

where the first equality follows by Proposition 10.6.5, the second equality follows by Lemma 10.6.7
and the third equality follows by Proposition 10.5.5 and Proposition 10.5.8.

Theorem 10.6.9 gives an explicit formula for the product of U1
DY with respect to the standard basis

(10.3.3). However, this does not provide a formula in terms of symmetric groups, i.e. a formula of
the following form

rσn ◦ rτm =
∑

π∈Sn+m

cπσ,τr
π
n+m.

In the next Section we propose an approach to find such a formula consisting in determine a subset
of Ln,m depending on σ and τ (namely a set of (σ–τ)–essential Drinfeld–Yetter looms) satisfying
the property of being a minimal set necessary to describe the product rσn ◦ rτm through the formula
(10.6.3).

10.7 Essential Drinfeld–Yetter looms

It follows by Theorem 10.6.9 that the number of summands appearing in the multiplication rσn ◦ rτm
does not depend on σ and τ , but only on n and m, and it is equal to |Ln,m|. However, as conjectured
in 10.10.1, we have that |Ln,m| << (n + m)!. This means that there are several Drinfeld–Yetter
looms that do not give any contribution to the sum (10.6.3); we shall call such Drinfeld–Yetter
looms negligible. In order to formalize this definition, let σ ∈ Sn, τ ∈ Sm and π ∈ Sn+m. To such
permutations we associate the set

Γσ,τ,πn,m := {L ∈ Ln,m | γ̃n,m(σ, L, τ) = π}.

Consider also the following non–negative integers

P σ,τ,π
n,m := #{L ∈ Ln,m | γ̃n,m(σ, L, τ) = π , (−1)ξ(L) = 1}

Nσ,τ,π
n,m := #{L ∈ Ln,m | γ̃n,m(σ, L, τ) = π , (−1)ξ(L) = −1}

which we call the number of positive (resp. negative) Drinfeld–Yetter looms (σ, τ)–associated to the
permutation π. It is clear that {Γσ,τ,πn,m }π∈Sn+m defines a partition of Sn+m (with eventually some
empty blocks). It is also clear that

|Γσ,τπn,m | = P σ,τπ
n,m +Nσ,τπ

n,m .

Definition 10.7.1. We say that L1, L2 ∈ Ln,m is a pair of (σ, τ)–negligible Drinfeld–Yetter looms
(and we write {L1, L2} ∈ Negσ,τn,m) if γ̃n,m(σ, L1, τ) = γ̃n,m(σ, L2, τ) and (−1)ξ(L1) = −(−1)ξ(L2).
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Example 10.7.2. Recall that the set of 1× 1 Drinfeld–Yetter looms is

L1,1 =
{

, , , ,

}
.

We therefore have the following two (non–disjoint) sets of negligible 1× 1 Drinfeld–Yetter looms:{
,

}
and

{
,

}
which both refer to the permutation π = (12) ∈ S2.

Fix n,m > 1, σ ∈ Sn and τ ∈ Sm and consider the partition {Γσ,τ,πn,m }π∈Sn+m of Ln,m. For any
(non–empty) block Γσ,τ,πn,m , choose an ordering of its elements

Γσ,τ,πn,m = {L1, . . . , LPσ,τ,πn,m
, LPσ,τ,πn,m +1, . . . , LPσ,τ,πn,m +Nσ,τ,π

n,m
} (10.7.1)

in such a way the first P σ,τ,π
n,m elements are positive Drinfeld–Yetter looms and the last Nσ,τ,π

n,m elements
are negative Drinfeld–Yetter looms. Next, take Mσ,τ,π

n,m = min{P σ,τ,π
n,m , Nσ,τ,π

n,m }. It is then clear that
all the pairs {Li, LPσ,τ,πn,m +Nσ,τ,π

n,m −i+1}i=1,...,Mσ,τ,π
n,m

are disjoint elements of Negσ,τn,m. By removing all of
these pairs from Γσ,τ,πn,m , we obtain

Γσ,τ,π,essn,m := Γσ,τ,πn,m \
Mσ,τ,π
n,m⋃
i=1

{Li, LPσ,τ,πn,m +Nσ,τ,π
n,m −i+1}.

Finally, we define

Lσ,τ,essn,m :=
⋃

π∈Sn+m

Γσ,τ,π,essn,m ⊂ Ln,m

and we call it a set of (σ, τ)–essential Drinfeld–Yetter looms. Note that the construction of Lσ,τ,essn,m

strongly depends on the choice of an ordering as in (10.7.1).

Example 10.7.3. We have the following two sets of essential 1 × 1 Drinfeld–Yetter looms (which
are related to Example 10.7.2):{

, ,

}
and

{
, ,

}
.

A set of essential Drinfeld–Yetter looms is a minimal set of Drinfeld–Yetter looms necessary to
describe the multiplication of U1

DY, as is stated in the following

Proposition 10.7.4. Let n,m > 1, σ ∈ Sn and τ ∈ Sm. For any π ∈ Sn+m choose an ordering of
the elements of Γσ,τ,πn,m as in 10.7.1 and let Lσ,τ,essn,m be the associated set of essential Drinfeld–Yetter
looms. Then

(i) For any π ∈ Sn+m, the set Γσ,τ,π,essn,m is made of Drinfeld–Yetter looms having all the same sign
(i.e. they are all either positive or negative).

(ii) The following formula holds

rσn ◦ rτm =
∑

L∈Lσ,τ,essn,m

(−1)ξ(L)r
γ̃n,m(σ,L,τ)
n+m .

214



Proof. We observe that (i) follows directly by the construction of Γσ,τ,π,essn,m . We have

rσn ◦ rτm =
∑

L∈Ln,m

(−1)ξ(L)r
γ̃n,m(σ,L,τ)
n+m

=
∑

π∈Sn+m

∑
L∈Γσ,τ,πn,m

(−1)ξ(L)rπn+m

=
∑

π∈Sn+m

Pσ,τ,πn,m +Nσ,τ,π
n,m∑

i=1

(−1)ξ(Li)rπn+m

=
∑

π∈Sn+m

Pσ,τ,πn,m +Nσ,τ,π
n,m −Mσ,τ,π

n,m∑
i=Mσ,τ,π

n,m +1

(−1)ξ(Li)rπn+m

=
∑

π∈Sn+m

∑
L∈Γσ,τ,π,essn,m

(−1)ξ(L)rπn+m

=
∑

L∈Lσ,τ,essn,m

(−1)ξ(L)r
γ̃n,m(σ,L,τ)
n+m

where the second and the last equality follow from the fact that the collection {Γσ,τ,π,essn,m }π∈Sn+m

defines a partition of the set Lσ,τ,essn,m .

Corollary 10.7.5. Under the previous notations, we have

rσn ◦ rτm =
∑

π∈Sn+m

(P σ,τ,π
n,m −Nσ,τ,π

n,m )rπn+m.

Therefore, finding a complete description of the set Lσ,τ,essn,m would directly give an explicit formula for
◦ in terms of symmetric groups. However, finding such a description appear to be a very challenging
problem, due to the elusive nature of the set Ln,m.

In the rest of this Chapter, we shall present some conjectures, combinatorial properties, and ex-
plicit computations regarding the set Ln,m and the multiplication of U1

DY.

10.8 Counting Drinfeld–Yetter looms

We set Hn,m = |Ln,m|. Then, it is easy to see that Hn,m is symmetric (i.e. Hn,m = Hm,n). We have
that

Hn,m =
∑

M∈Mn,m

2α(M)+β(M)

=
∑

M∈Mn,m

2α(M)+β(M) +
∑

M∈Mn,m

2α(M)+β(M) +
∑

M∈Mn,m

2α(M)+β(M)

= 2
∑

M∈Mn−1,m

2α(M)+β(M) + 2
∑

M∈Mn,m−1

2α(M)+β(M) +
∑

M∈Mn,m

2α(M)+β(M)

= 2Hn−1,m + 2Hn,m−1 +
∑

M∈Mn,m

2α(M)+β(M)
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where the first equaility follows from Proposition 10.5.5 and Equation (10.5.2), the second equality
follows by Equation (10.4.2), and the third equality follows from the fact any Drinfeld–Yetter mosaic

M with M1,1 = (resp. T1,1 = ) has the first row (resp. the first column) automatically
determined, and the rest part of M can be chosen among all the elements of Mn−1,m (resp. Mn,m−1).
Therefore, in order to determine a recursive formula for Hn,m it suffices to find a closed formula for
the third summand of the right hand side of the Equation above.

Proposition 10.8.1. Let

Cn,m :=
∑

M∈Mn,m

2α(M)+β(M).

Then

Cn,m = (2m− 1)Hn−1,m +
m−1∑
k=1

(
m− 1

k

)
2kHn−1,m−k +

m−2∑
k=1

k∑
`=1

(
k

`

)
2`+1Hn−1,m−`.

Proof. The proof consist of counting all the possible configurations of the first row y of the elements

of Mn,m. We divide the discussion in three cases:

• α(y) = 0: in this case y must be of the form

. . . . . .
.

There is exactly one configuration with β(y) = 0, and m− 1 configurations with β(y) = 1. In
all of these configurations, we can attach to y any element of Mn−1,m, hence the number of
Drinfeld–Yetter looms related to such Drinfeld–Yetter mosaic is (2m− 1)Hn−1,m.

• α(y) > 1 and β(y) = 0: in this case y must be of the form

♣ . . . ♣ ♣ ∈
{

,

}
.

Following the same argument of Proposition 10.4.5, we have that every cobracket tile of y
automatically determines the columns below, and to fill the rest part of the Drinfeld–Yetter
mosaic we can choose any element of Mn−1,m−α(y). Letting run k = α(y) from 1 to m− 1, we
obtain that the number of Drinfeld–Yetter looms related to such Drinfeld–Yetter mosaics is

m−1∑
k=1

(
m− 1

k

)
2kHn−1,m−k.

• α(y) > 1 and β(y) = 1: in this case y must be of the form

♣ ♣. . . . . . ♣ ∈
{

,

}
.
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There are m− 2 positions in which the unique bracket tile can be (all the positions except the
first two), and after this choice the tiles on the right of the bracket tile will be automatically
determined. The other tiles (except the first one, which must be of permutation type) of y
can be permutation or cobracket tiles; and each occurrence of a cobracket tile automatically
determine the whole column of the Drinfeld–Yetter mosaic. As in the previous case, we
can fill the rest part of the Drinfeld–Yetter mosaic by choosing any element of Mn−1,m−α(y).
We therefore have that the number of Drinfeld–Yetter looms related to such Drinfeld–Yetter
mosaics is

m−2∑
k=1

k∑
`=1

(
k

`

)
2`+1Hn−1,m−`.

Note that the discussion above can be made reasoning on the first column instead on the first row,
obtaining

Cn,m = (2n− 1)Hn,m−1 +
n−1∑
k=1

(
n− 1

k

)
2kHn−k,m−1 +

n−2∑
k=1

k∑
`=1

(
k

`

)
2`+1Hn−`,m−1.

We therefore obtain the following

Corollary 10.8.2. We have the following two recursive formulas for Hn,m:

Hn,m = 2Hn−1,m + (2n+ 1)Hn,m−1 +
n−1∑
k=1

(
n− 1

k

)
2kHn−k,m−1 +

n−2∑
k=1

k∑
`=1

(
k

`

)
2`+1Hn−`,m−1 (10.8.1)

and

Hn,m = 2Hn,m−1 +(2m+1)Hn−1,m+
m−1∑
k=1

(
m− 1

k

)
2kHn−1,m−k+

m−2∑
k=1

k∑
`=1

(
k

`

)
2`+1Hn−1,m−`. (10.8.2)

10.9 Some explicit computations in U1
DY

In this Section we exhibit some explicit calculations of the multiplication of U1
DY.

The multiplication rid1 ◦ ridn
Lemma 10.9.1. We have

rid1 ◦ rid1 = 2 · rid2 − r
(12)
2 .

Proof. We have
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= + −

= + − +

− +

= 2 −

where the first equality follows by (8.6.4) and the second equality follows by (8.6.2) and (8.6.3).

One can generalize the previous result with the following

Proposition 10.9.2. For any n > 1, we have

ridn ◦ rid1 = (n+ 1)ridn+1 −
n∑
i=1

r
(i,i+1)
n+1 (10.9.1)

and

rid1 ◦ ridn = (n+ 1)ridn+1 −
n∑
i=1

r
(i,i+1)
n+1 (10.9.2)

where (i, i+ 1) denotes the permutation that swaps i and i+ 1 and fixes all the other elements.

Proof. We show (10.9.1) by induction on n, where the base case n = 1 is given by the previous
Lemma. Let us assume that the statement holds for n. We have

n+1n+1

=
nn

=
nn

+
nn

−
nn

=
nn

+
nn

−
nn

−
nn

=

nn

−
nn

+

n+2n+2

= (n+ 1)ridn+2 −
n+1∑
i=2

r
(i,i+1)
n+2 − r(1,2)

n+2 + ridn+2

= (n+ 2)ridn+2 −
n+1∑
i=1

r
(i,i+1)
n+2

where the second equality follows by (8.6.4), the third follows by (8.6.2), the fourth by (8.6.3) and
in the fifth we used the inductive hypothesis. The proof of (10.9.2) is analogous.
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The coefficient of the identity with respect to ridn ◦ ridm
By Theorem 10.6.9, it follows that

ridn ◦ ridm =
∑

L∈Ln,m

(−1)ξ(L)r
γ̃n,m(id,L,id)
n+m =

∑
L∈Ln,m

(−1)ξ(L)r
γn,m(L)
n+m .

Note that for any Drinfeld–Yetter loom L we have that the permutation γn,m(L) is the identity of
n+m strings if and only if none of the following tiles appear in L

.

Hence, denoting cn,m := c
idn+m

idn,idm
the coefficient of idn+m with respect to the multiplication ridn ◦ rτm,

we have

cn,m = #{L ∈ Ln,m, Li,j 6= , , } = #{M ∈Mn,m,Mi,j 6= }

where the second equality follows by Proposition 10.5.5. Denoting by M×
n,m the number of Drinfeld–

Yetter mosaics of Mn,m without permutation tiles, we have

M×
n,m = (Mn,m)× t (Mn,m)×

and since

|(Mn,m)×| = |M×
n−1,m| and |(Mn,m)×| = |M×

n,m−1|

we obtain the following recurrence rule for the coefficients cn,m:{
cn,m = cn−1,m + cn,m−1

cn,0 = c0,m = 1

It follows that

cn,m =
(n+m)!

n!m!
.

Furthermore, it seems that the coefficient of ridn+m with respect to the multiplication ridn ◦ ridm is by
far the dominant term (i.e. the biggest in absolute value).

The reduction lemma

Definition 10.9.3. The convolution multiplication in U1
DY is rσn ? r

τ
m = rσ⊗τn+m.

Pictorially, ? is represented by the incapsulation of rτm inside rσn, i.e. by the picture

σ
τ

nn mm

We call the following result the reduction lemma, and it is useful in order to compute the multipli-
cation of U1

DY in some particular cases.
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Lemma 10.9.4. Let n,m > 0 and τ ∈ Sm. Then we have

rid1 ◦ (ridn ? r
τ
m) = n · ridn+1 ? r

τ
m + ridn ? (rid1 ◦ rτm)−

n∑
k=1

r
(k,k+1)
n+1 ? rτm.

Proof. The proof is by induction on n, where the base case n = 0 holds trivially. Let us assume
that the statement holds for n− 1. Using the pictorial representation, we have

τ

nn

=

=

−

=

− +

n91n91

τ

n91n91

+τ

n91n91

τ

n91n91

τ

n91n91

+τ

n+1n+1

−τ

n92n92

τ

n91n91

τ

n91n91

τ

= ridn+1 ? r
τ
m − r

(12)
n+1 ? r

τ
m + rid1 ? (rid1 ◦ (ridn−1 ? r

τ
m))

where the second equality follows by (8.6.4) and the third by (8.6.2) and (8.6.3). To end the proof
it suffices to apply the inductive hypothesis on the last term of the right hand side.

Remark 10.9.5. Note that:

(i) The reduction lemma still holds if one considers any φ ∈ U1
DY instead of rτm.

(ii) Setting m = 0 gives Equation 10.9.2.

(iii) Since rid1 is central (see [ATL19, 9.8] for a proof), one has also that

(ridn ? r
τ
m) ◦ rid1 = n · ridn+1 ? r

τ
m + ridn ? (rτm ◦ rid1 )−

n∑
k=1

r
(k,k+1)
n+1 ? rτm.

The multiplication rid1 ◦ r
(i,j)
n

We are going to provide a closed formula for rid1 ◦ r
(i,j)
n for any transposition (i, j) of Sn. We start

the discussion by considering transpositions which fix the first element.

Lemma 10.9.6. Let n > 3. Then for any k, ` such that 0 6 ` < k 6 n− 2 one has

r(n−k,n−`)
n ◦rid1 = (n−k−1)r

(n−k+1,n−`+1)
n+1 +ridn−k−1?(r

(1,k−`+1)
k+1 ◦rid1 )−

n−k−1∑
i=1

r
(i,i+1)(n−k+1,n−`+1)
n+1 . (10.9.3)
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Proof. By the reduction Lemma 10.9.4, we can write the second term of the right hand side as

ridn−k−1 ? (r
(1,k−`+1)
k+1 ◦ rid1 ) = (ridn−k−1 ? r

(1,k−`+1)
k+1 ) ◦ rid1 − (n− k − 1)ridn−k ? r

(1,k−`+1)
k+1

+
n−k−1∑
i=1

r
(i,i+1)
n−k ? r1,k−`+1

k+1

= r(n−k,n−`)
n ◦ rid1 − (n− k − 1)r

(n−k+1,n−`+1)
n+1 +

n−k−1∑
i=1

r
(i,i+1)(n−k+1,n−`+1)
n+1 .

Note that the only term of the right hand side of (10.9.3) which is not written with respect to

the standard basis is ridn−k−1 ? (r
(1,k−`+1)
k+1 ◦ rid1 ). Therefore, in order to determine a closed formula

for the multiplication r
(n−k,n−`)
n ◦ rid1 it suffices to determine a closed formula for the multiplication

r
(1,k−`+1)
k+1 ◦ rid1 .

Proposition 10.9.7. Let n > 0. Then, for any 2 6 k 6 n one has

r(1,k)
n ◦ rid1 = (k − 2)r

(1,k+1)
n+1 + (n− k + 1)r

(1,k)
n+1 −

k−1∑
i=2

r
(1,k+1)(i,i+1)
n+1

−
n∑

i=k+1

r
(1,k)(i,i+1)
n+1 + r

(1,k+1,2,3,...,k−1,k)
n+1 − r(1,k+1)(2,3,...,k)

n+1

+ r
(1,k,k−1,k−2,...,3,2,k+1)
n+1 − r(1,k+1)(2,k,k−1,...,3,2)

n+1 .

Proof. The proof is pictorial, where we set a = k−2, b = n−k. The element r1,k
n is thus represented

by the picture

a b b a .

We have

a b b a

=

=

−

=

a b b a

+
a b b a

−
a b b a

a b b a

+
a b b a

−
a b b a

a b b a

+
a b b a

a b b a

− r
(1,k+1)(2,3,...,k)
n+1 + r

(1,k+1,2,3,...,k−1,k)
n+1

.
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We can rewrite the first element of the right hand side as

a b b a

=

+

=

+ − − +

=

+

(k − 2)r
(1,k+1)
n+1 −

k−1∑
i=2

r
(1,k+1)(i,i+1)
n+1 +

a b b a

a b b a

−
a b b a

(k − 2)r
(1,k+1)
n+1 −

k−1∑
i=2

r
(1,k+1)(i,i+1)
n+1 +

a b b a

a b b a a b b a a b b a a b b a

(k − 2)r
(1,k+1)
n+1 −

k−1∑
i=2

r
(1,k+1)(i,i+1)
n+1 − r(1,k+1)(2,k,k−1,...,3,2)

n+1 + r
(1,k,k−1,...,3,2,k+1)
n+1

a b b a

and therefore to end the proof it suffices to apply the Proposition 10.9.2 to the last term.

The multiplication for small n,m

Proposition 10.9.8. Let n,m > 0 such that n+m 6 4 and let σ ∈ Sn and τ ∈ Sm. Then

rσn ◦ rτm = rτm ◦ rσn.

Proof. In view of Proposition 10.10.8 it suffices to show that rid2 commutes with r
(12)
2 . It follows by

a direct computation that

rid2 ◦ r
(12)
2 = r

(234)
4 + r

(243)
4 − 2r

(24)
4 + r

(12)
4 + r

(123)
4 + r

(132)
4

− 2r
(13)
4 + 2r

(13)(24)
4 − 2r

(1324)
4 − 2r

(1423)
4 + 2r

(14)(23)
4

= r
(12)
2 ◦ rid2 .

10.10 Some conjectures related to the algebra U1
DY

In this Section we collect some Conjectures related to Drinfeld–Yetter looms and to the algebra U1
DY.
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A closed formula for the cardinality of Ln,m

Recall that Equations (10.8.1) (10.8.2) give recursive formulas for the cardinality of Ln,m. By a
direct computation, we obtain

Hn,0 = 1

Hn,1 = 2 · 3n − 1

Hn,2 = 8 · 5n − 8 · 3n + 1

Hn,3 = 48 · 7n − 72 · 5n + 26 · 3n − 1

Hn,4 = 384 · 9n − 768 · 7n + 464 · 5n − 80 · 3n − 1.

We can therefore conjecture a closed formula for Hn,m:

Conjecture 10.10.1. We have

Hn,m =
m∑
k=0

k∑
i=0

(−1)m−i
(
k

i

)
(2i+ 1)m(2k + 1)n

=
m∑
k=0

(−1)m−kTm,k(2k + 1)n

where Tm,k is defined by the recurrence rule Tm,k = (2k+1)Tm−1,k+2kTm−1,k−1 with initial conditions
T0,0 = 1 and T0,k = 0 for any k > 1.

Knowing a closed formula for the cardinality of Ln,m would give a better understanding of the
computational complexity of an algorithm computing the multiplication.

Drinfeld–Yetter looms and permutation patterns

Recall that, given σ ∈ Sn the one–line notation for σ is σ1 · · ·σn, where σi = σ(i) (for example,
the identity of S3 is represented by 123). Recall the following definition, see [Kit11] and references
therein for more details:

Definition 10.10.2. Let n > k > 1 be two integers, and let σ ∈ Sn and τ ∈ Sk. We say that
τ = τ1 · · · τk occurs in σ = σ1 · · ·σn as a pattern if there exists a subsequence σi1 · · · σik , where
1 6 i1 < · · · < ik 6 n, such that σij < σim if and only if τi < τm. If not, we say that the permutation
σ avoids the pattern τ . If S is a set of permutations, we define the following sets

Av(S)n = {σ ∈ Sn | σ avoids every element of S as a pattern}

and
Av(S) =

⋃
n>0

Av(S)n.

If S is given by one element, we omit the curly brackets.

Example 10.10.3. Let σ = 3241 ∈ S4, τ = 231 ∈ S3 and γ = 123 ∈ S3. Then we have that τ
appears two times as a pattern in σ (with the subsequences 341 and 241), while σ avoids the pattern
γ, so we write σ ∈ Av(γ).

Conjecture 10.10.4. For any n,m > 1, there is a set of permutations Sn,m such that γn,m(Ln,m) =
Av(Sn,m).

It seems indeed reasonable that the defining rules of Drinfeld–Yetter looms do not allow the existence
of some specific permutations in γn,m(Ln,m).
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Drinfeld–Yetter looms and bumpless pipedreams

This Subsection will not contain any conjecture, but a connection between Drinfeld–Yetter looms
and other combinatorial objects called bumpless pipedreams.

Definition 10.10.5 ([LLS21], [Hec19]). Let n > 1 and let TBPD be the following set of tiles

TBPD =
{

, , , , ,

}
.

We define the set of n×n bumpless pipedreams BPDn as the set of all possible tilings B of Gn,n
with the elements of TBPD such that the following three conditions are satisfied:

(1): B1,j /∈
{

,
}

for all j ∈ {1, . . . , n}.

(2): Bi,1 /∈
{

,
}

for all i ∈ {1, . . . , n}.

(3): Bn,j /∈
{

, ,
}

for all j ∈ {1, . . . , n}.

(4): Bi,n /∈
{

, ,
}

for all i ∈ {1, . . . , n}.

(5): Strings cross pairwise at most once (with respect to the picture obtained by removing all black
borders from B).

(6): None of the following configurations appear in B:

Note that our definition of bumpless pipedreams differs from the one in [Hec19] in that the direction
of the strings goes from the left edge to the top one, and not from the right to the bottom. Note
also that there are some similarities between bumpless pipedreams and Drinfeld–Yetter mosaics.
Pipedreams are relevant in may areas of combinatorics, such as calculation of Schubert polynomials
(see [MS05]), permutation words (see [Mar13]), and maximal 0-1–fillings of moon polynomials (see
[Rub12]).
There is a canonical map sn : BPDn → Sn associating to any n × n bumpless pipedream a
permutation of the symmetric group Sn; conversely, there is a canonical map R : Sn → BPDn
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associating to any permutation σ a specific bumpless pipedream, called the Rothe bumpless
pipedream of σ, see [Hec19, §2] for more details.
We now define a map f : Ln,m → BPDn+m with the property that sn+m(f(L)) = γn,m(L). For any
L ∈ Ln,m, consider the element f(L) ∈ BPDn+m constructed according to the following steps:

(1) Stretch L horizontally and vertically in such a way every left (resp. top) tile of the first
column (resp. row) has only one string. The result of this process gives a tiling of GΛ,Ω (where
Λ =

∑n
i=1 li1 and Ω =

∑m
j=1 t1j) with elements of TBPD. However, this in general will not be

a bumpless pipedream.

(2) If Λ 6= n+m, add a row for any string occurring in the bottom edge of the last row. Then, for

any tile of the Λ–th row having a string in the bottom edge, attach the tile to its bottom

edge and fill all the left–side tiles of such a row with the tile .

(3) If Ω 6= n+m, add a column for any string occurring in the left edge of the last column. Then,

for any tile of the Ω–th column having a string in the left edge, attach the tile to its left

edge and fill all the top–side tiles of such a column with the tile .

Example 10.10.6. Consider the Drinfeld–Yetter loom L ∈ L2,2 of Example 10.5.3. Then the
procedure described above gives

(1)−→ (2)−→ (3)−→

and it is easy to see that γ2,2(L) = s4(f(L)) = (1243) ∈ S4.

Remark 10.10.7. The reasoning above shows that the set of Ln,m of n×m Drinfeld–Yetter looms
maps into the set BPDn+m of n ×m bumpless pipedreams, and so in the symmetric group Sn+m.
However, this association is not injective nor surjective. Hence Ln,m gives a refinement only of the
subset of BPDn+m given by the Rothe bumpless pipedreams.

The center of U1
DY

Recall that the center of an algebra A is defined by Z(A) = {a ∈ A | ax = xa for all x ∈ A}. A
very interesting problem is to understand whose elements of U1

DY are central. Indeed, we have that
Z(U1

DY) is non–empty, as is proved in the following result (see [ATL19, 9.8] for a proof):

Proposition 10.10.8. The element rid1 of U1
DY is central.

We state the following

Conjecture 10.10.9. The center of U1
DY is spanned by rid1 .
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The mirror permutation

We define the n–th mirror permutation as the following element of Sn:

πn :=

bn
2
c∏

i=1

(i, n− i+ 1) ∈ Sn.

For example, π2 = (12) ∈ S2, π3 = (13) ∈ S3 and π4 = (14)(23) ∈ S4.

Conjecture 10.10.10. We have the following

(i) The following identity holds in U1
DY:

rid1 ◦ rπnn = −n · rπn+1

n+1 + rπnn ? rid1 +
n∑
i=1

r
πn+1◦(i,i+1)
n+1 .

(ii) Let pn,m be the coefficient of r
πn+m

n+m with respect to the multiplication ridn ◦ rπmm . Then pn,m is
the dominant coefficient (i.e. is the biggest in absolute value). Moreover, the pn,m’s satisfy
the recursive formula pn,m = (−1)n(|pn−1,m| + |pn,m−1|) with initial conditions p1,1 = −1,
p1,m = −m and pn,1 = 0 for n > 1.
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[Müg03] M. Müger, From subfactors to categories and topology. II: The quantum double of tensor categories and
subfactors, J. Pure Appl. Algebra 180 (2003), no. 1-2, 159–219. ↑36

[Rad93] D. E. Radford, Solutions to the quantum Yang-Baxter equation and the Drinfel’d double, J. Algebra 161
(1993), no. 1, 20–32. ↑52

[Rub12] M. Rubey, Maximal 0-1-fillings of Moon polyominoes with restricted chain lengths and rc-graphs, Adv.
Appl. Math. 48 (2012), no. 2, 290–305. ↑224

[Sch01] P. Schauenburg, Turning monoidal categories into strict ones, New York J. Math 7 (2001), no. 257-265,
102. ↑10, 15, 20, 32, 33

[Sch97] L. Schneps, The Grothendieck-Teichmüller group ĜT : A survey, Geometric Galois actions. 1. around
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