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Summary

We propose a multivariate regime switching model based on a Student-t copula function with pa-
rameters controlling the strength of correlation between variables and that are governed by a latent
Markov process. To estimate model parameters by maximum likelihood, we consider a two-step
procedure carried out through the Expectation–Maximisation algorithm. To address the main com-
putational burden related to the estimation of the matrix of dependence parameters and the num-
ber of degrees of freedom of the Student-t copula, we show a novel use of the Lagrange multipliers,
which simplifies the estimation process. The simulation study shows that the estimators have good
finite sample properties and the estimation procedure is computationally efficient. An application
concerning log-returns of five cryptocurrencies shows that the model permits identifying bull and
bear market periods based on the intensity of the correlations between crypto assets.

Key words: copula models; cryptocurrencies; daily log-returns; expectation–maximisation algorithm;
latent variable models.

1 INTRODUCTION

Financial analysis and risk management research shows that the dependence structure of fi-
nancial time-series changes during crises, with interdependence among assets increasing com-
pared with stable periods (Das & Uppal, 2004; Patton, 2004). This phenomenon, known as
asymmetric dependence (Ang & Bekaert, 2002; Ang & Chen, 2002; Longin & Solnik, 2002),
is particularly relevant in cryptocurrency markets due to their vulnerability to changes in eco-
nomic developments and news (Garcia & Ghysels, 1998; Kristoufek, 2013; Telli & Chen, 2020).
For this reason, it is important to consider suitable specifications for the joint distribution of
log-returns to capture possible sudden changes in market dynamics.
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Extensive research supports the existence of regime switches in cryptocurrency returns, vol-
atilities, and cross-correlation structure; see Ardia et al. (2019), Shen et al. (2020) and
Cremaschini et al. (2023). Hamilton (1989) first argued that the switching dynamics of financial
returns may be easily modelled through a Markovian process, see also the monograph by
Frühwirth-Schnatter (2006), for further references and more details. In particular, regime
switching (RS) copula models, also known as Markov-switching copulas (Jondeau &
Rockinger, 2006; Rodriguez, 2007; Okimoto, 2008; Chollete et al., 2009), accurately describe
persistent correlation dynamics (Ang & Timmermann, 2012) in log-returns by modelling the
joint distribution as a copula function that changes according to latent states. These models in-
volve two stochastic processes: the first corresponds to the observed series, and the other to an
underlying (latent) process describing the evolution of the hidden states over time. RS copula
models are employed for exchange rates data, for the analysis of the correlation between S&P
500 and NASDAQ indexes, for the study of gold-oil dependence structure, and to describe mo-
mentum shifts in football matches (Stöber & Czado, 2014; Härdle et al., 2015; Nasri &
Rémillard, 2019; Tiwari et al., 2020; Ötting et al., 2021).

In the present paper, we propose a new model named RS Student-t copula (RSStC) model
tailored to account for stylised facts of cryptocurrency returns, such as heavy-tailed distribu-
tions and non-linear dependencies. The model is based on a Student- t copula (Demarta &
McNeil, 2005), which is parametrised by the number of degrees of freedom and the matrix of
dependence parameters. Student-t copula is generally preferred to Gaussian copula for financial
time-series because it allows the modelling of tail dependence and kurtosis (Breymann
et al., 2003; Fischer et al., 2009; Huang et al., 2009). Compared with Archimedean copulas
(Genest et al., 2011), which rely on a single dependence parameter for all variables, the pro-
posed RSStC formulation offers superior accuracy in modelling the correlation structure. Addi-
tionally, while Vine copulas (Joe & Kurowicka, 2011; Czado & Nagler, 2022) are quite flexible
to model different distributions, they have a more complex analytical form.

Maximum likelihood estimation of the RS copula parameters is typically performed through the
Expectation–Maximisation (EM) algorithm (Dempster et al., 1977). However, even in the case of a
simple multidimensional Student-t copula model, Hernández et al. (2014) show that maximum
likelihood estimation can be highly computationally inefficient. We provide a new approximation
method for the EM algorithm tailored for estimating RSStC models. The proposal consists in an
iterative procedure for estimating the matrix of dependence parameters and the number of degrees
of freedom of the multivariate RSStC model. Following the approach of Trede (2020), developed
for estimating a simple Student-t copula model, we maximise the log-likelihood function corre-
sponding to the Student-t copula density in two steps. At the first step, we estimate the matrix of
dependence parameters for a fixed number of degrees of freedom through Lagrange multipliers re-
lying on a closed form solution; then, we numerically optimise the log-likelihood with respect to
the number of degrees of freedom, keeping fixed the estimated matrix of dependence parameters.
This procedure is simple, computationally feasible, and fast, even for long series with many assets.
To evaluate the proposal, we rely on a simulation study assessing the good finite sample properties
of the estimates and the computational efficiency of the procedure. An important feature of the pro-
posal is that it can account for persistence in market regimes. This is a relevant aspect because, as
suggested in Nystrup et al. (2020), when the state sequence contains several jumps, the RS model
tends to a finite mixture model (McLachlan & Peel, 2000).

We apply the proposed approach to analyse log-returns of the five cryptocurrencies, Bitcoin
(BTC), Ethereum (ETH), Ripple (XRP), Litecoin (LTC), and Bitcoin Cash (BCH), for 5 years,
from 17 September 2017 to 2 October 2022. At least to our knowledge, these data have never
been analysed with RS copula models; for a recent review of the methods proposed in the liter-
ature for the analysis of multiple cryptoassets, see, among others, Koki et al. (2022). We select
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the optimal number of latent states relying on the Integrated Completed Likelihood (ICL)
criterion (Biernacki et al., 2000) and, following Pennoni et al. (2021), we predict the latent
regimes considering global decoding (Viterbi, 1967; Juang & Rabiner, 1991). Additionally,
we compare the forecasting performance of the proposed model with that of a more common
hidden Markov model (HMM, Zucchini et al., 2017) and a multivariate random walk (MRW)
process considered as benchmark.
To summarise, we provide three main contributions to the existing literature. First, we pro-

pose a multivariate RSStC model, whereas most previous works focus only on the bivariate case.
Second, we implement a novel and computationally efficient method for estimating the matrix
of dependence parameters and the number of degrees of freedom. Finally, we show the applica-
bility of the proposal analysing cryptocurrency log-returns in a novel way.
We implemented the code developed to carry out the estimation of the RSStC model and to

perform simulations in the C++ language, through the R (R Core Team, 2023) package Rcpp
(Eddelbuettel & François, 2011). The code is freely available at the following link: https://
github.com/FedericoCortese/RSstcopula/find/main.
The remainder of the paper is organised as follows. In Section 2, we introduce the RSStC

model. In Section 3, we show the proposed procedure for maximum likelihood estimation of
the model parameters, the initialisation strategy, and the convergence criterion chosen for the
EM algorithm. In Section 4, we illustrate the simulation study aimed at assessing the validity
of the proposed estimation procedure, and we comment on the results. In Section 5, we apply
the proposal to analyse the daily log-returns of the five cryptocurrencies and present the results
along with comparative analysis. In Section 6, we discuss the obtained results. In Appendix A
of the paper, we show additional details of the E- and M-steps of the EM algorithm, and we de-
scribe the model selection criterion. Appendix B contains more details on the simulation results.
In the supporting information, we show an application in which the model is estimated using a
semi-parametric approach (Section A), and we provide further insights into the simulation re-
sults (Section B).

2 REGIME SWITCHING STUDENT-t COPULA MODEL

We consider an r-dimensional copula function C, which is a multivariate cumulative distri-
bution function on the hypercube ½0; 1�r with marginal uniform distributions in ½0; 1�. Estimating
such a model through inferential procedures becomes challenging due to limitations in numer-
ical optimisation methods when dealing with high-dimensional parameter vectors. Additionally,
the joint likelihood often involvesmultidimensional integrals, posing difficulties in numerical com-
putations. To solve this problem, we rely on Sklar’s theorem (Sklar, 1959), suggesting that it is pos-
sible to separately estimate each marginal cumulative distribution function and the copula function.
The inference for margins approach of Joe & Xu (1996) allows us to split the estimation into two
steps: first, we fit the marginal distribution of each univariate time-series; second, we estimate the
joint distribution of integral transforms of these series using a RS copula model.
In the following, for the sake of clarity, we explicitly refer to the practical context of financial

data. Let yt ¼ ðyt1; …; ytrÞ0 denote the vector of log-returns of the r time-series at time t ¼
1; …; T . Following a parametric approach (Joe, 1997; Nasri & Rémillard, 2019), we assume
a generalised error model (Du, 2016) for each of the r univariate time-series. This model pos-
tulates a cumulative distribution function denoted as Gβj , and characterises the integral trans-
forms ztj ¼ Gβ̂jðytjÞ as independent and identically distributed random variables, each with
continuous distribution function Fj; j ¼ 1; …; r. To eliminate the dependence of the estimated
copula parameters on the marginal distributions, as suggested by Nasri & Rémillard (2019), we
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initially estimate the parameters βj through a consistent estimator β̂j ; then we compute the uni-
form pseudo-observations ztj , and finally, we calculate normalised ranks, denoted by êtj ¼
rankðztjÞ=ðT þ 1Þ, for t ¼ 1; …; T ; j ¼ 1; …; r. Following a semi-parametric approach, nor-
malised ranks can be directly calculated from the observed log-returns, thus obtaining êtj ¼
rankðytjÞ=ðT þ 1Þ. This is a valid alternative when there is no interest in estimating a parametric
model for the marginal univariate time-series, which might be the case when the focus is only on
the association between a set of random variables and not on their marginal distributions. We
consider the first method in the application presented in Section 5 to analyse cryptocurrency
log-returns, and we also offer the results with the semi-parametric approach in the supporting
information.

With a slight abuse of notation, let us denote with yt ¼ ðyt1; …; ytrÞ0; t ¼ 1; …; T, the r-di-
mensional vector of pseudo-observations following an RSStC model, and let ut denote the latent
variable following a time homogeneous Markov process of first order with k latent states. We
postulate that:

• The latent process is characterised by a vector of initial probabilities λ with elements λu ¼
Pðu1 ¼ uÞ; u ¼ 1; …; k, and a transition matrix denoted as Π, with elements πvju ¼ Pðut ¼
vjut � 1 ¼ uÞ; u; v ¼ 1; …; k.

• The vectors of pseudo-observations y1; …; yT are conditionally independent given the latent
regimes u1; …; uT, each with copula density cð · ; Ru1 ; νu1Þ; …; cð · ; RuT ; νuT Þ, whereRu de-
notes the matrix of dependence parameters with entries ρðijÞu ; i; j ¼ 1; …; r; i ≠ j, each mea-
suring the correlation between asset i and j, and νu is the number of degrees of freedom of the
Student-t copula.
The joint density of the pseudo-observations is given by

f ðy1; …; yT Þ ¼
Xk
u1¼1

πu1cðy1; Ru1 ; νu1Þ
Xk
u2¼1

πu2ju1cðy2; Ru2 ; νu2Þ…
Xk
uT¼1

πuT juT � 1
cðyT ; RuT ; νuT Þ:

(1)

More specifically, following Joe (2014), cðyt; Rut ; νutÞ; t ¼ 1; …; T , is given by

cðyt; Ru; νuÞ ¼ tr; νu xt; Ruð ÞQr
j¼1t1; νu xtj

� �; u ¼ 1; …; k;

where xt ¼ ðx1t; …; xrtÞ0 is the vector with components xtj ¼ T�1
1; νuðytjÞ; j ¼ 1; …; r, t = 1, …,

T, and T�1
1; νu is the inverse cumulative distribution function of a one-dimensional Student-t ran-

dom variable with νu degrees of freedom. The univariate and r-variate Student-t densities, de-
noted as t1; νu and tr; νu , are defined as

t1; νuðxtjÞ ¼
Γððνu þ 1Þ=2Þffiffiffiffiffiffiffi
πνu

p
Γðνu=2Þ 1þ x2tj

νu

 !�ðνu þ 1Þ=2
;

tr; νuðxt; RuÞ ¼
Γ

νu þ r

2

� �
Γ

νu
2

� �
ν
r
2
uπ

r
2jRuj

1
2

1þ 1

νu
xTt R

�1
u xt

� ��νu þ r
2

;

where Γ(·) is the gamma function.
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To measure correlation between variables, we employ the Kendall’s tau (Kendall, 1938),
which offers advantages over the linear correlation coefficient, particularly in its ability to con-
sider non-linear dependencies. Starting from the dependence parameters ρðijÞu of the Student-t
copula, Kendall’s tau can be computed through the following formula:

τðijÞu ¼ 2

π
arcsin ρðijÞu ; i; j ¼ 1; …; r; i ≠ j: (2)

3 MAXIMUM LIKELIHOOD ESTIMATION

Let ℓ θjy1; …; yTð Þ denote the log-likelihood of the proposed model, corresponding to the
logarithm of (1), with θ being the column vector of parameters including the non-redundant el-
ements of Ru, together with νu and λu, for u ¼ 1; …; k, and πvju, for u; v ¼ 1; …; k. Maximum
likelihood estimation of the model parameters is performed through the EM algorithm; for the
Student-t copula parameters, we use a two-step procedure where we first estimate the matrix of
dependence parameters for a fixed number of degrees of freedom, through Lagrange multi-
pliers, and then we estimate the number of degrees of freedom through numerical optimisation
of the complete log-likelihood, keeping fixed the previously estimated matrix. In the following
section, we show the steps of the EM algorithm, details of which are provided in Appendix A,
and in Section 3.2 we provide additional information on the initialisation of the algorithm and
its convergence.

3.1 Expectation–Maximisation Algorithm

The complete-data log-likelihood, denoted as ℓ∗ θjðy1; u1Þ; …; ðyT ; uT Þð Þ; is the
log-likelihood computed assuming the knowledge of the hidden states u1; …; ut, and expressed
as

ℓ∗ θjðy1; u1Þ; …; ðyT ; uT Þð Þ ¼ P
T
t¼1

P
k
u¼1wtulog cðyt; Ru; νuÞþ

P
k
u¼1w1ulogλu

þPT
t¼2

P
k
u¼1

P
k
v¼1ztuvlogπvju;

(3)

beingwtu ¼ Iðut ¼ uÞ an indicator variable equal to 1 when the latent process is in stateu at time
t (0 otherwise), and ztuv ¼ Iðut � 1 ¼ u; ut ¼ vÞ equal to 1 if the latent process switches from
state u at time t � 1 to state v a time t (0 otherwise). Note that this log-likelihood is the sum
of three components that may be maximised separately.
Starting from some initial values for the parameters collected into the vector θð0Þ , the

EM-algorithm maximises ℓðθjy1; …; yT Þ , by alternating, at each iteration m, the following
two steps until convergence:

• E-step. Compute the conditional expected value of ℓ∗ θjðy1; u1Þ; …; ðyT ; uT Þð Þ, given the
values of the parameters at the previous iteration and the pseudo-observations. At this step,
we rely on the posterior expected values of the previous indicator variables, denoted by ŵtu

and ẑtuv, whose formulas are provided in Appendix A.
• M-step. Maximise the expected value of ℓ∗ θjðy1; u1Þ; …; ðyT ; uT Þð Þ and update the model
parameters. In particular, parameters λu and πvju are updated by using the following explicit
rules:
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λðmÞu ¼ bw1uPk
v¼1bw1v

; u ¼ 1; …; k; (4)

πðmÞvju ¼
PT

t¼2bztuvPT
t¼2bwt � 1u

; u; v ¼ 1; …; k: (5)

The updated values of the remaining parameters, that is, RðmÞ
u and νðmÞu , are obtained by solving

the following optimisation problem:

max
Ru; νu

XT
t¼1

bwtulog cðyt; Ru; νuÞ; u ¼ 1; …; k; (6)

direct numerical maximisation of (6) may be performed. However, it results computationally
inefficient, especially when the number of available assets is large. Following Trede (2020),
we maximise (6) with respect to Ru; u ¼ 1; …; k , given νðm � 1Þ

u using Lagrange multipliers,
to obtain RðmÞ

u , and then with respect to νu given RðmÞ
u , obtaining νðmÞu . In particular, we

obtain an estimated approximation of the matrix of dependence parameters via the following
rule:

RðmÞ
u ¼ Aðm � 1Þ þ Rðm � 1Þ

u diag Rðm � 1Þ
u ∘Rðm � 1Þ

u

� ��1
1 � aðm � 1Þ
� �	 


Rðm � 1Þ
u ; (7)

with

Aðm � 1Þ ¼ νðm � 1Þ
u þ r

νðm � 1Þ
u

PT
t¼1ŵtu

XT
t¼1

ŵtuxtx
0
t 1þ

x0t R
ðm � 1Þ
u

� ��1
xt

νðm � 1Þ
u

264
375
�1

;

where ∘ in (7) denotes the element-wise product, 1 is a vector of 1s, aðm � 1Þ denotes the vector

of diagonal elements of Aðm � 1Þ , and xt is the vector with components T�1
1; νu ytj

� �
, with j ¼

1; …; r. In this way, we do not require numerical optimisation methods for such an estimate,
thus reducing the computational effort. See Appendix A for additional details on the derivation
of the above formulas.

It is simple to numerically maximise Equation (6) with respect to νu once we set Ru ¼ RðmÞ
u ,

because the number of degrees of freedom νu of the Student-t copula is a scalar parameter. The
estimates for νu; u ¼ 1; …; k, are obtained as

νðmÞu ¼ argmax
νu

XT
t¼1

bwtulog cðyt; RðmÞ
u ; νuÞ; u ¼ 1; …; k: (8)

We employ a heuristic approach with specific bounds to ensure successful computation of the
objective function for estimating the parameter νu . We set the lower bound at 2 for practical pur-
poses, and the upper bound is chosen as 25 to prevent numerical instability of the algorithm at
higher values. As also reported in Trede (2020), larger values of νu imply a significantly higher
computational time needed to achieve convergence to the maximum of the log-likelihood func-
tion. Additionally, as the number of degrees of freedom increases, the Student-t copula gradually
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approximates the Gaussian copula, and it may result less effective to model extreme returns. In
the simulation study of Section 4 and in the application presented in Section 5, we arrange these
regimes in ascending order of determinants, from 1 to 0, corresponding to decreasing overall
correlation values.
Standard errors for the parameter estimates are computed by parametric bootstrap (Davison

& Hinkley, 1997; Chernick, 2011). In particular, we make use of the stationary block bootstrap
(Politis & Romano, 1994) to preserve time-series dependence of the data: it consists in resam-
pling blocks of consecutive observations assuming that the length of each block is distributed as
a geometric random variable with average size proportional to OðT2=3Þ.

3.2 Initialisation and Convergence of the Algorithm

In the literature, there is currently no consensus on the most appropriate approach for
initialising the values in θð0Þ within the context of the EM algorithm. We follow the proposal
in Bartolucci et al. (2013) using a deterministic rule as an initialisation strategy for Ru; u ¼
1; …; k, such that initial values are defined on the basis of the descriptive statistics computed
for the observed time-series. To determine the initial values for the dependence parameters,
we begin by computing the matrix of sample Kendall’s tau. Subsequently, we invert the formula
in Equation (2) to obtain initial estimates of ρðijÞu . Other possible choices for initialization are
illustrated in Maruotti & Punzo (2021). The starting values for the initial probabilities λu are
set equal to 1=k , and those of the transition probabilities πvju are set equal to 1=ðγþ kÞ for
v ≠ u and equal to ðγþ 1Þ=ðγþ kÞ for v ¼ u, where γ is a suitable constant (we use γ ¼ 0 in
the application of Section 5). We note that a moderate initial value of νu is the best practical
choice: it should not be too large or too small because we might encounter convergence issues.
For this reason, based on a heuristic strategy, the number of degrees of freedom of the Student-t
copula is initialised with 4.
Regarding algorithm convergence, we employ two common approaches: monitoring the dis-

tance between estimated parameter vectors at consecutive steps and tracking the increase in the
log-likelihood function at each step. Specifically, the E- and M-steps iterate until either or both
of the following conditions are met

max
h θðm þ 1Þ

h � θðmÞh

��� ��� < ϵ1;

ℓðθðm þ 1ÞÞ � ℓðθðmÞÞ�� �� < ϵ2;

beingθðmÞh theh-th element of the vectorθðmÞ at them-th iteration of the algorithm and ϵ1; ϵ2 > 0
suitable tolerance levels. In the simulation study presented in Section 4 and in the empirical
analysis of Section 5, both tolerance levels are set equal to 10�8.

4 SIMULATION STUDY

We validate the proposed RSStCmodelling approach through a simulation study, examining the
properties of the estimators of the dependence parameters, number of degrees of freedom, initial and
transition probabilities. In particular, we present the simulation results for a 3-state RSStC model.
We conduct experiments on a Standard NC6 Promo virtual machine with 6 cores and 56 GB

of memory. As mentioned in the introduction, we implement the R code for the EM algorithm
through the package Rcpp, which allows the user to easily integrate C++ into the R
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environment. The code is available at the following link: https://github.com/FedericoCortese/
RSstcopula/find/main.

The estimation procedure is remarkably efficient, as it takes only around 50 seconds to estimate
a 3-state model with data consisting of 1,500 observations and 5 marginals. Moreover, the compu-
tational time increases linearly with both the length of the data (T ) the number of assets (r).

4.1 Three State Regime Switching Student-t Copula Model

We generate data from a 3-state RSStC model drawing B ¼ 1,000 samples of dimension r ¼ 5,
each with a total number of observations T = 1,500, with vector of initial probabilities λ ¼
ð1=3; 1=3; 1=3Þ0 and transition probability matrix given by

Π ¼
0:700 0:200 0:100

0:300 0:600 0:100

0:100 0:100 0:800

264
375:

The dependence matrices are defined as

R1 ¼

1:000 � � � �
0:900 1:000 � � �
0:700 0:750 1:000 � �
0:800 0:900 0:700 1:000 �
0:800 0:800 0:800 0:800 1:000

2666666664

3777777775
;

R2 ¼

1:000 � � � �
0:500 1:000 � � �
0:300 0:400 1:000 � �
0:500 0:400 0:400 1:000 �
0:400 0:500 0:500 0:300 1:000

2666666664

3777777775
;

R3 ¼

1:000 � � � �
0:100 1:000 � � �
0:150 �0:100 1:000 � �
0:050 0:100 0:050 1:000 �
0:050 �0:050 0:100 �0:010 1:000

2666666664

3777777775
;

with state-specific numbers of degrees of freedom equal toν1 ¼ 3; ν2 ¼ 6andν3 ¼ 10, respectively.
We evaluate the estimators in terms of the average bias and root mean squared error (RMSE)

across B = 1,000 samples computed for the h-th parameter θh as

Bias ¼ E ~θh � θh
� �

;

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ~θh � θh
� �2 þ Var ~θh

� �q
;
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where ~θh denotes the h-th component of the vector of parameters ~θ estimated on the simulated
sample, and θh the corresponding component of the vector θ of true parameters. We also com-
pute bootstrap percentiles confidence intervals (CIs) at 95% confidence level.
Table 1 shows results for the parameters of the proposed model under the above scenarios.

The bias is always low and RMSEs of the initial probabilities are around 0.5, while they are be-
low 0.168 for the transition probabilities. CIs of the transition probabilities are narrower for
higher probabilities.
Table 2 reports results referred to the dependence parameters ρðijÞu and the number of degrees

of freedom νu. The maximum absolute bias is 0.037 for the pair of marginals ð2; 3Þ in the sec-
ond state. RMSE values are all below 0.135. CIs for the first state are narrower, indicating
more accurate estimates when the correlation is high, while CIs for the second state show
higher uncertainty in the estimated parameters. As νu decreases, bias tends to decrease, thus
using distributions with fat tails provides better results.
We also examined a 2-state RSStC model in a separate simulation study, and the outcomes

closely resemble those of the 3-state model. Furthermore, we varied the number of observations,
T, and the number of assets, r. Our findings indicate that the proposed approach has good finite
sample properties, as evidenced by a decline in RMSE for increasing values of T. Similarly, as r
increases, the RMSE decreases for initial and transition probabilities, as well as for the number
of degrees of freedom, while it increases with respect to dependence parameters. Comprehen-
sive information on these simulation results can be found in Appendix B.

5 EMPIRICAL STUDY

Data used for the application are multidimensional time-series of the daily log-returns consid-
ered at closing prices of BTC, ETH, XRP, LTC, and BCH, which are, in terms of market
capitalisation, the less manipulated and more liquid crypto assets. Data are provided by the
Crypto Asset Lab (https://www.diseade.unimib.it/it/ricerca/osservatori/crypto-asset-lab), which
is an independent academic lab established at the University of Milano-Bicocca. We recall that
BTC is the first cryptocurrency that has operated digitally since 2009 with a decentralised led-
ger system known as blockchain. ETH, released in 2015, has a semi-decentralised network that
allows creating and running smart contracts, whereby it differs from other cryptocurrencies with
its unlimited supply. LTC is a clone of BTC, created in 2011. Meanwhile, XRP was created in
2012 with a different design from BTC as it has a centralised network and an un-mineable coin.
Finally, BCH is an altcoin created in 2007. In particular, recently, they got increasing public at-
tention because they differentiate quite a lot from other more common assets due to their ex-
traordinary return potential in phases of extreme price growth. We consider 1,842 daily closing
prices observed over a 5 years period from 17 September 2017 to 2 October 2022. Log-returns
of the daily closing prices are given by

ytj ¼ log
pt þ 1; j

ptj
; j ¼ 1; …; r; t ¼ 1; …; T ;

where ptj denotes the closing price for asset j at time t . Similar data have been analysed in
Pennoni et al. (2021) through a Gaussian HMM based on discrete latent variables, to which
we refer the reader for more details.
Table 3 presents the sample unconditional means and standard deviations of the log-returns

for the five cryptocurrencies. Volatilities exhibit remarkably high values, while the average
log-returns are approximately 0. Table 4 shows the observed linear correlations: a positive
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association is present for each pair, with a maximum value of 0.787 for the pair of cryptos BTC-
ETH.

First, we assume the well-known ARMA(1,1)-GARCH(1,1) model (Engle &
Bollerslev, 1986) for the marginals. Its efficacy, when combined with copula models, has been
demonstrated in previous studies such as Bauwens et al. (2006) and Patton (2012). It postulates
the following autoregressive equations for the conditional mean and variance of each log-return
series:

ytj ¼ α1jyt � 1; j þ α2jζ t � 1; j þ
ffiffiffiffiffi
σ2tj

q
ξ tj;

σ2tj ¼ ω0j þ ω1jζ 2t � 1; j þ ω2jσ2t � 1; j;
(9)

where α1j; α2j; ω0j; ω1j, and ω2j, are the ARMA(1,1)-GARCH(1,1) parameters for time-series
j; j ¼ 1; …; r, and ζ tj ¼ ytj � ytj , with ytj ¼ α1jyt � 1; j þ α2jζ t � 1; j . Second, we assume that
the innovations ξ tj follow a skewed generalised error distribution (SGED, Theodossiou, 2015),
whose density is given by

f x; ϕ; κð Þ ¼
κexp �1

κ
x þ δ1

δ2 1 þ ϕ sign x þ δ1ð Þð Þ
��� ���κ	 

2δ2Γ

1

κ

� � ; (10)

where ϕ is the skewness parameter, κ the shape parameter and

δ1 ¼
2

2
κδ2ϕΓ

1

2
þ 1

κ

� �
ffiffiffi
π

p ;

δ2 ¼
π 1þ 3ϕ2
� �

Γ
3

κ

� �
� 16

1
κϕ2Γ

1

2
þ 1

κ

� �
Γ

1

κ

� �
πΓ

1

κ

� � :

Table 4. Observed linear correlations between log-returns of BTC, ETH, XRP, LTC, and BCH.

BTC ETH XRP LTC BCH

BTC 1.000 - - - -
ETH 0.787 1.000 - - -
XRP 0.560 0.653 1.000 - -
LTC 0.765 0.823 0.644 1.000 -
BCH 0.678 0.742 0.583 0.732 1.000

Table 3. Sample means and standard deviations (SD) of BTC, ETH, XRP, LTC, and BCH log-returns referred to the period
from 17 September 2017 to 2 October 2022.

Cryptocurrency

BTC ETH XRP LTC BCH

Mean (%) 0.090 0.087 0.049 0.002 �0.073
SD (%) 4.166 5.271 6.451 5.659 6.585

12 CORTESE ET AL.

International Statistical Review (2024)
© 2024 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12562 by C

ochraneItalia, W
iley O

nline L
ibrary on [26/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SGED is particularly flexible because it reduces to the standard Gaussian distribution whenϕ ¼
0 and κ ¼ 2 and to the Laplace distribution when ϕ ¼ 0 and κ ¼ 1. It has been used previously
to model univariate cryptocurrency time-series in Cerquetti et al. (2020).
Table 5 reports the estimated coefficients of the marginals models. Standard errors are ob-

tained with the nonparametric block bootstrap as detailed in Section 3.1, considering an average
block length of 127 and B ¼ 1,000 bootstrap samples.
Following Nasri & Rémillard (2019), we perform a parametric bootstrap (PB) test to evaluate

the adequacy of the marginal models (Rémillard, 2011). The implementation proceeds in two
steps: firstly, we generate simulated data based on the estimated marginal model; secondly,
we compute the Cramér-Von Mises test statistic for the bootstraped data and compare this value
with the value of the test statistic computed for the observed data in order to assess model ad-
equacy. Results reported in Table 6 show that the null hypothesis of a correct specification for
the marginal distribution is never rejected at each statistical significance level. In the same table,
results from the Dickey-Fuller (DF) test suggest that the null hypothesis of non-stationarity of
the innovations is rejected at each significance level.
We also investigate the presence of change-points in the residuals, employing the wild binary

search procedure proposed by Fryzlewicz (2014). Results indicate the existence of a minimum
of six change-points for all cryptocurrencies, with some displaying an even higher number of
changes.
Once we have computed the marginal pseudo-observations through the normalised ranks of

the integral transformation of the innovations from the previous models, we can estimate the
RSStC model, and perform model selection. The Bayesian information criterion (BIC,

Table 5. Estimated parameters of the ARMA(1,1)-GARCH(1,1) model as in Equation (9). The coefficients ϕj and κj; j ¼
1; …; 5, refer to the skewness and shape parameters of the SGED. Standard errors (in brackets) are obtained through
the nonparametric block bootstrap.

Cryptocurrency

Parameter BTC ETH XRP LTC BCH

α1j �0.122 �0.214 �0.021 �0.045 �0.124
(0.009) (0.015) (0.003) (0.012) (0.014)

α2j 0.038 0.113 �0.149 �0.060 0.018
(0.003) (0.010) (0.008) (0.014) (0.009)

ω0j 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

ω1j 0.067 0.085 0.126 0.079 0.062
(0.006) (0.017) (0.021) (0.019) (0.013)

ω2j 0.923 0.854 0.854 0.864 0.911
(0.005) (0.025) (0.022) (0.033) (0.018)

ϕj 0.963 0.972 0.990 0.986 1.016
(0.006) (0.016) (0.015) (0.018) (0.041)

κj 0.910 1.040 0.874 1.054 0.908
(0.047) (0.043) (0.033) (0.042) (0.035)

Table 6. P-values of the parametric bootstrap ( PB) and Dickey–Fuller (DF) tests.

Cryptocurrency

Test BTC ETH XRP LTC BCH

PB 0.106 0.433 0.369 0.894 0.146
DF <0.01 <0.01 <0.01 <0.01 <0.01

13

International Statistical Review (2024)
© 2024 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12562 by C

ochraneItalia, W
iley O

nline L
ibrary on [26/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Schwarz, 1978) is commonly employed to choose a suitable number of latent states, although, it
may overestimate this number. Alternatively, as demonstrated in Pohle et al. (2017), ICL pro-
vides more parsimonious results. In Table 7, we show the values of BIC and ICL under the
RSStC model with k ranging from 1 to 4. While the BIC decreases as k increases, ICL leads
us to select a model with two latent states. The maximum log-likelihood for the 2-state
RSStC model is ℓ̂ðθjy1; …; yT Þ ¼ 4,902.366 with K ¼ 25 estimated parameters.

Table 8 reports the estimated number of degrees of freedom and the determinant of the
fitted matrices of dependence parameters under the RSStC model with 2 states. Notably,
regimes with strong dependence exhibit a lower estimated number of degrees of freedom,
indicating distributions with fat tails for states showing high correlations. This suggests that
when the correlation among crypto assets is high, joint high losses (or earnings) occur more
frequently.

Table 9 presents the matrix of the estimated dependence parameters and Table 10 displays the
computed Kendall’s tau values using Equation (2). These estimates allow us to characterise each
regime based on pair-specific correlations. The first regime exhibits the highest Kendall’s tau
values, indicating a highly correlated market state. In contrast, the second regime displays cor-
relation values ranging from 0.324 to 0.519, suggesting a market regime with lower
interdependence.

Table 11 reports the estimated transition probability matrices under the 2-state RSStC model.
We notice a general persistence in each regime: the maximum off-diagonal entry is observed
from regime 2 to regime 1 (0.121). The estimated stationary distribution has probabilities
(0.579, 0.421).

In Table 12 we present the estimated state-conditional means and standard deviations for the
five cryptocurrency log-returns, with the state prediction performed through the Viterbi algo-
rithm (Viterbi, 1967). Findings reveal that the 1st state, which represents a regime characterised
by high correlations among cryptocurrencies, is associated with negative daily log-returns. Con-
versely, the 2nd state demonstrates positive average returns. Based on these observations, we
can characterise the two states as bearish and bullish market regimes. Moreover, the
state-conditional standard deviations indicate high volatility in both regimes.

Figure 1 displays the decoded state sequence alongside the prices of BTC, ETH, XRP, LTC,
and BCH. The analysis reveals distinct periods characterised by different market regimes. Ini-
tially, a bullish market regime dominates, followed by a significant presence of a bearish market

Table 8. Estimated number of degrees of freedom νu, and determinant of the estimated matrices of dependence parameters
under the 2-state RSStC model. Standard errors (in brackets) are obtained with nonparametric block bootstrap.

State u ¼ 1 u ¼ 2

νu 6.231 9.416
(1.275) (3.627)

det(Ru) 0.001 0.065

Table 7. Integrated completed likelihood ( ICL) and Bayesian information criteria (BIC) computed for increasing values of
the number of hidden regimes k. The minimum values are indicated in bold.

k

Information Criterion 1 2 3 4

ICL �9,469.583 �9,616.781 �9,449.637 �9,601.758
BIC �9,469.583 �9,887.301 �9,935.296 �9,988.286
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regime until mid-2018. After a brief period of price increases, bearish periods become promi-
nent until early 2020. Subsequently, all cryptocurrencies exhibit positive returns until late
2021, and from this period a prevailing bearish trend reemerges.
Notably, a consistent increase or descrese in prices corresponds to bullish or bearish market

regimes, which can be identified solely by examining correlations. This implies that the pres-
ence of a specific market regime can be detected without relying on the first-order and
second-order moments of cryptocurrency log-returns. Bullish and bearish regimes are visited
59.1%, 40.9% of the time, respectively, and the average sojourn times are equal to 23 days
for the first state and 16 days for the second state.

Table 9. Estimated dependence parameters ρðijÞu under the 2-state RSStC model. Standard errors (in brackets) are obtained
with nonparametric block bootstrap.

State u ¼ 1 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
(0.000)

ETH 0.911 1.000 - - -
(0.016) (0.000)

XRP 0.902 0.910 1.000 - -
(0.025) (0.020) (0.000)

LTC 0.875 0.902 0.910 1.000 -
(0.034) (0.026) (0.034) (0.000)

BCH 0.902 0.907 0.927 0.901 1.000
(0.023) (0.022) (0.027) (0.035) (0.000)

State u ¼ 2 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
(0.000)

ETH 0.652 1.000 - - -
(0.128) (0.000)

XRP 0.667 0.728 1.000 - -
(0.067) (0.039) (0.000)

LTC 0.487 0.613 0.592 1.000 -
(0.122) (0.087) (0.066) (0.000)

BCH 0.569 0.645 0.672 0.517 1.000
(0.156) (0.090) (0.123) (0.145) (0.000)

Table 10. Kendall’s tau as in Equation (2) computed with the estimated dependence parameters ρðijÞu under the 2-state RSStC
model.

State u ¼ 1 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
ETH 0.730 1.000 - - -
XRP 0.715 0.728 1.000 - -
LTC 0.678 0.715 0.728 1.000 -
BCH 0.716 0.724 0.756 0.714 1.000

State u ¼ 2 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
ETH 0.452 1.000 - - -
XRP 0.465 0.519 1.000 - -
LTC 0.324 0.420 0.403 1.000 -
BCH 0.385 0.446 0.469 0.346 1.000
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Our findings corroborate the results from the previous study by Ardia et al. (2019), in which
the authors use a 2-state Markov-switching GARCH model fitted on univariate BTC time-
series. Their model employs a fat-tailed distribution across two regimes identified by low and
high unconditional volatilities which exhibit strong persistence. Koki et al. (2022) estimate
different HMMs to the log-returns of three cryptocurrencies, namely, BTC, ETH, and XRP,
with different numbers of states. They determine that a 4-state model provides the most accurate
forecasting results among all considered model specifications. Nonetheless, the statistical prop-
erties of the hidden states exhibit differences among the three cryptocurrencies, making the in-
terpretation of these latent states as distinct economic regimes a more challenging task.

5.1 Comparative Analysis

We compare the results of our proposal with those obtained with the basic HMM (Zucchini
et al., 2017). We also show the forecast performance of both models and a benchmark model,
based on the MRW process.

The basic HMM assumes a conditional Gaussian distribution and it is generally not robust for
analysing extreme events usually observed in financial data. Cryptocurrency markets are
characterised by heavy-tailed distributions that lead to frequent extreme price movements,
whether positive or negative, more than in traditional financial markets. In this regard, the
Student-t copula accommodates heavy-tailed distributions, allowing us to model the idiosyncra-
sies of cryptocurrency log-returns. Thus, the proposed RSStC model may appropriately repre-
sents the observed underlying trends of the cryptocurrency log-returns.

Estimation of the parameters of the HMM is performed with the routines provided within the
R package RcppHMM (Ardenas-Ovando et al., 2017); for an alternative HMM formulation the
LMest package (Bartolucci et al., 2017) can be used. Model selection performed with both BIC
and ICL criteria suggests a HMM with 6 regimes. In the following, we show some results ob-
tained with both 2- and 6-states HMMs, denoted as HMM-2, and HMM-6, respectively.

We note that the self-transition probabilities estimated under the HMM-2 are 0.633 and
0.873, respectively, and those of the HMM-6 range in the interval (0.425, 0.673). Notably, as
illustrated in the previous section and shown in Table 11, the RSStC model exhibits higher

Table 11. Estimated transition probabilities πujv under the 2-state RSStC model. Standard errors (in brackets) are obtained
with nonparametric block bootstrap.

State u ¼ 1 u ¼ 2

v ¼ 1 0.912 0.088
(0.046) (0.041)

v ¼ 2 0.121 0.879
(0.046) (0.041)

Table 12. Estimated state-conditional means and standard deviations of the five cryptocurrencies log-returns with state
allocation obtained through global decoding under the 2-state RSStC model.

State 1 Mean (%) SD (%) State 2 Mean (%) SD (%)

BTC �0.363 4.121 BTC 0.744 4.147
ETH �0.509 5.400 ETH 0.948 4.957
XRP �0.699 5.377 XRP 1.131 7.619
LTC �0.725 5.454 LTC 1.052 5.788
BCH �0.902 6.013 BCH 1.125 7.169
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Figure 1. Observed prices of BTC, ETH, XRP, LTC, and BCH (17 September 2017 to 2 October 2022) with the global
decoding state sequence highlighted in red for state 1 (bearish market) and green for state 2 (bullish market).
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values. Such a model is sometimes preferable to make profitable investment decisions because
asset allocation is more stable and the portfolio turnover is low. In fact, disposing of a model
with more stable regimes allows us to avoid frequent reallocation or trading in response to
short-term market fluctuations. This strategy implies reduced transaction costs and
tax-efficient investments strategies, as also noticed in Nystrup et al. (2020).

Forecasts are implemented through a rolling window approach for each model: it consists in
dividing the available data into overlapping windows, each consisting of 1,500 observations.
We estimate parameters using each window and employ the estimates to generate one-step-
ahead forecasts for the log-returns of the five cryptocurrencies. In more details, we obtain fore-
casts for the RSStC model according to the following steps, as suggested in Simard &
Rémillard (2015):

1 Estimate the RSStC model as explained in Sections 2 and 3.
2 Simulate pseudo-marginals from the fitted copula model. This involves generating random

samples from the copula function corresponding to the estimated dependence structure. In
particular, we consider 1,000 observations.

3 Transform the generated uniform samples into the target marginal distributions using the in-
verse of the estimated marginal cumulative distribution functions.

4 Use data obtained at the previous step to forecast future values of each variable in the
time-series using the sample mean, and estimate prediction intervals using the sample
quantiles.
To estimate HMM and MRW forecasts, we adopt an approach similar to the previous one.

We utilise the estimated parameters for the HMM to simulate portfolio realisations for the
one-step-ahead observation. This process involves generating latent states based on the HMM’s
predictive distribution. These latent states are then used to create corresponding portfolio
returns for the next period. Similarly, for the MRW process, we use the estimated parameters
to simulate future portfolio returns.

We evaluate forecast quality through two different metrics. We employ the RMSE and the
percentage of correct sign predictions (CSP). RMSE quantifies the accuracy between true and
forecasted values by calculating the average of squared differences. CSP, on the other hand,
measures the frequency with which we accurately forecast the sign of returns. We present the
results in Table 13. We additionally test models forecast accuracy using Diebold and Mariano
(2002) test, finding no significant difference in squared error estimates. We also consider the
model confidence set (MCS) procedure of Hansen et al. (2011), identifying RSStC as the top
model for LTC, XRP, and BCH log-returns, and MRW for BTC and ETH. We also
evaluate the accuracy of Value-at-Risk forecasts using Christoffersen’s (1998) conditional cov-
erage test. Our findings show that, at a 1% significance level, the hypothesis that the models ac-
curately predict losses exceeding the Value-at-Risk threshold cannot be rejected for RSStC and
HMMs.

As Timmermann (2018) wisely noted: ‘detecting breaks in financial forecasting models is a
formidable task, and transforming such evidence into more accurate forecasts is even more
challenging’. Our approach acknowledges this inherent complexity, positioning it as a practical

Table 13. RMSE between true and forecasted values of the five cryptocurrencies and percentage CSP obtained under the
2-state RSStC, HMM-2, HMM-6 and MRW models.

RSStC HMM-2 HMM-6 MRW

RMSE 0.061 0.065 0.067 0.093
CSP (%) 53.26 49.03 50.73 50.67
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solution for decision-making processes, even without aiming for extraordinary predictive accu-
racy. In fact, in terms of forecasting performance, the RSStC model achieves lower RMSE com-
pared with traditional models, thus providing enhanced accuracy in predicting cryptocurrency
returns which can results particularly useful in case of future financial crisis events.

6 DISCUSSION

In this paper, we provide three main contributions to the existing literature on regime
switching copula models. First, we generalise the regime switching Student-t copula model to
the multivariate case. Second, we propose a novel maximum likelihood estimation procedure
for multivariate regime switching Student-t copula models through a two-step method, initially
estimating the dependence matrix and then the number of degrees of freedom. Third, we analyse
the joint distribution of the log-returns of five cryptocurrencies during the period 2017–2022
with the proposed model.
Our simulation studies demonstrate the good finite sample properties of the proposed estima-

tor highlighting its ability to accurately detect the true number of degrees of freedom, especially
in scenarios where this number is small, denoting a process with fat tails.
By analysing 5 years of time-series data encompassing the log-returns of Bitcoin, Ethereum,

Ripple, Litecoin, and Bitcoin Cash, we show the suitability of a 2-state regime switching
Student-t copula model for detecting market trends. Through the application of the Viterbi al-
gorithm using the decoded state sequences, we can effectively distinguish between bullish
and bearish market phases. Notably, bearish periods in financial markets correspond to increas-
ing correlations among assets. In comparison to two commonly used models, our approach is
more robust and yields slightly improved forecasting results. These advantages translate into
the potential for making more profitable investment decisions and implementing portfolio trad-
ing strategies. The estimated allocation into each regime, as determined through global
decoding, plays a crucial role in achieving these benefits. Given the ongoing growth of these
cryptocurrencies and the presence of co-integration and dynamic interdependencies between
them, the ability to detect signals of market dynamics is of primary importance, not only for
optimising investment strategies but also for identifying early warnings of potential financial
crises.
As lines for future research, we highlight that it would be of interest to model marginals dis-

tributions with a Markov process along with the joint distribution. Additionally, it could be in-
teresting to investigate joint distributions that incorporate skewness, such as a skewed Student-t
copula, to gain an even greater understanding of the underlying dynamics.

ACKNOWLEDGEMENTS

We acknowledge the University of Milano-Bicocca Data Science Lab (datalab) for supporting
this work by providing some computational resources and the Crypto Asset Lab for providing
the data employed to illustrate the feasibility of the proposed model. F. Pennoni and F.
Bartolucci acknowledge the financial support from the grant ‘Hidden Markov Models for Early
Warning Systems’ of Ministero dell’Università e della Ricerca (PRIN 2022TZEXKF) funded
by European Union - Next Genereation EU.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the authors with the permis-
sion of the Crypto Asset Lab of the University of Milano-Bicocca.

19

International Statistical Review (2024)
© 2024 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12562 by C

ochraneItalia, W
iley O

nline L
ibrary on [26/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



REFERENCES

Ang, A. & Bekaert, G. (2002). International asset allocation with regime shifts. The Rev. Finan. Stud., 15, 1137–1187.
https://doi.org/10.1093/rfs/15.4.1137

Ang, A. & Chen, J. (2002). Asymmetric correlations of equity portfolios. J. Finan. Econ., 63, 443–494.
Ang, A. & Timmermann, A. (2012). Regime changes and financial markets. Ann. Rev. Finan. Econ., 4, 313–337.
Ardenas-Ovando, R., Noguez, J. & Rangel-Escareno, C. 2017. RcppHMM: Rcpp Hidden Markov Model. R package
version 1.2.2.

Ardia, D., Bluteau, K. & Rüede, M. (2019). Regime changes in bitcoin GARCH volatility dynamics. Finance Res.
Lett., 29, 266–271.

Bartolucci, F., Farcomeni, A. & Pennoni, F. (2013). Latent Markov Models for Longitudinal Data. Boca Raton, FL:
Chapman & Hall/CRC Press.

Bartolucci, F., Pandolfi, S. & Pennoni, F. (2017). LMest: An R package for latent Markov models for longitudinal
categorical data. J. Stat. Softw., 81, 1–38.

Baum, L.E. & Petrie, T. (1966). Statistical inference for probabilistic functions of finite state Markov chains. The Ann.
Math. Stat., 37, 1554–1563.

Bauwens, L., Laurent, S. & Rombouts, J.V.K. (2006). Multivariate GARCH models: A survey. J. Appl. Econometr.,
21, 79–109.

Biernacki, C., Celeux, G. & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated com-
pleted likelihood. IEEE Trans. Pattern Anal. Mach. Intell., 22, 719–725.

Breymann, W., Dias, A. & Embrechts, P. (2003). Dependence structures for multivariate high-frequency data in fi-
nance. Quant. Finance, 3, 1–14.

Cerquetti, R., Giacalone, M. & Mattera, R. (2020). Skewed non-Gaussian GARCH models for cryptocurrencies vol-
atility modelling. Inform. Sci., 527, 1–26.

Chernick,M.R. (2011).BootstrapMethods: AGuide forPractitioners andResearchers. Newtown, PA: JohnWiley&Sons.
Chollete, L., Heinen, A. & Valdesogo, A. (2009). Modeling international financial returns with a multivariate
regime-switching copula. J. Finan. Econometr., 7, 437–480.

Christoffersen, P.F. (1998). Evaluating interval forecasts. Int. Econ. Rev., 841–862.
Cremaschini, A., Punzo, A., Martellucci, E. & Maruotti, A. (2023). On stylized facts of cryptocurrencies returns and
their relationship with other assets, with a focus on the impact of COVID-19. Appl. Econ., 55, 3675–3688.

Czado, C. & Nagler, T. (2022). Vine copula based modeling. Ann. Rev. Stat. Appl., 9, 453–477. https://doi.org/10.
1146/annurev-statistics-040220-101153

Das, S.R. & Uppal, R. (2004). Systemic risk and international portfolio choice. The J. Finance, 59, 2809–2834.
Davison, A.C. & Hinkley, D.V. (1997). Bootstrap Methods and Their Application. Cambridge, MA: Cambridge
University Press.

Demarta, S. & McNeil, A.J. (2005). The t copula and related copulas. Int. Stat. Rev., 73, 111–129.
Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm.
J. R. Stat. Soc.: Ser. B, 39, 1–22.

Diebold, F.X. & Mariano, R.S. (2002). Comparing predictive accuracy. J. Bus. Econ. Stat., 20, 134–144.
Du, Z. (2016). Nonparametric bootstrap tests for independence of generalized errors. The Econometr. J., 19, 55–83.
Eddelbuettel, D. & François, R. (2011). Rcpp: Seamless R and C++ integration. J. Stat. Softw., 40, 1–18.
Engle, R.F. & Bollerslev, T. (1986). Modelling the persistence of conditional variances. Economet. Rev., 5, 1–50.
Fischer, M., Köck, C., Schlüter, S. & Weigert, F. (2009). An empirical analysis of multivariate copula models. Quant.
Finance, 9, 839–854.

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Ann. Stat., 42, 2243–2281.
Frühwirth-Schnatter, S. (2006) Finite mixture and Markov switching models. Springer, New York.
Garcia, R. & Ghysels, E. (1998). Structural change and asset pricing in emerging markets. J. Int. Money Finance, 17,
455–473.

Genest, C., Nešlehová, J. & Ziegel, J. (2011). Inference in multivariate Archimedean copula models. Test, 20,
223–256.

Härdle, W.K., Okhrin, O. &Wang, W. (2015). Hidden Markov structures for dynamic copulae. Economet. Theory, 31,
981–1015.

Hamilton, J.D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle.
Econometrica, 57, 357–384.

Hansen, P.R., Lunde, A. & Nason, J.M. (2011). The model confidence set. Econometrica, 79, 453–497.
Hernández, L., Tejero, J. & Vinuesa, J. 2014. Maximum likelihood estimation of the correlation parameters for ellip-
tical copulas. arXiv:1412.6316, 1–13.

20 CORTESE ET AL.

International Statistical Review (2024)
© 2024 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12562 by C

ochraneItalia, W
iley O

nline L
ibrary on [26/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1093/rfs/15.4.1137
https://doi.org/10.1146/annurev-statistics-040220-101153
https://doi.org/10.1146/annurev-statistics-040220-101153


Huang, J.-J., Lee, K.J., Liang, H. & Lin, W.F. (2009). Estimating value at risk of portfolio by conditional
copula-GARCH method. Insur.: Math. Econ., 45, 315–324.

Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts. London: Chapman & Hall.
Joe, H. (2014). Dependence Modeling With Copulas. Boca Raton, FL: CRC Press.
Joe, H. & Kurowicka, D. (2011). Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific.
Joe, H. & Xu, J.J. (1996). The estimation method of inference functions for margins for multivariate models. In 166,
University of British Columbia, Department of Statistics.

Jondeau, E. & Rockinger, M. (2006). The copula-GARCH model of conditional dependencies: An international stock
market application. J. Int. Money Finance, 25, 827–853.

Juang, B.H. & Rabiner, L.R. (1991). Hidden Markov models for speech recognition. Technometrics, 33, 251–272.
Kendall, M.G. (1938). A new measure of rank correlation. Biometrika, 30, 81–93.
Koki, C., Leonardos, S. & Piliouras, G. (2022). Exploring the predictability of cryptocurrencies via Bayesian hidden
Markov models. Res. Int. Bus. Finance, 59, 101554.

Kristoufek, L. (2013). Bitcoin meets Google trends and Wikipedia: Quantifying the relationship between phenomena
of the Internet era. Sci. Rep., 3, 1–7.

Longin, F. & Solnik, B. (2002). Extreme correlation of international equity markets. The J. Finance, 56, 649–676.
Maruotti, A. & Punzo, A. (2021). Initialization of hidden Markov and semi-Markov models: A critical evaluation of
several strategies. Int. Stat. Rev., 89, 447–480.

McLachlan, G.J. & Peel, D. (2000). Finite Mixture Models. New York: Wiley.
Nasri, B.R. & Rémillard, B.N. (2019). Copula-based dynamic models for multivariate time series. J. Multivariate
Anal., 172, 107–121.

Nasri, B.R., Rémillard, B.N. & Thioub, M.Y. (2020). Goodness-of-fit for regime-switching copula models with appli-
cation to option pricing. The Can. J. Stat., 48, 79–96.

Nystrup, P., Lindström, E. & Madsen, H. (2020). Learning hidden Markov models with persistent states by penalizing
jumps. Expert Syst. Appl., 150, 113307.

Okimoto, T. (2008). New evidence of asymmetric dependence structures in international equity markets. J. Financial
Quant. Anal., 43, 787–816.

Ötting, M., Langrock, R. & Maruotti, A. (2021). A copula-based multivariate hidden Markov model for modelling
momentum in football. AStA Adv. Stat. Anal., 1–19. https://doi.org/10.1007/s10182-021-00395-8

Patton, A.J. (2004). On the out-of-sample importance of skewness and asymmetric dependence for asset allocation.
J. Financial Economet., 2, 130–168.

Patton, A.J. (2012). A review of copula models for economic time series. J. Multivariate Anal., 110, 4–18.
Pennoni, F., Bartolucci, F., Forte, G. & Ametrano, F. (2021). Exploring the dependencies among main cryptocurrency
log-returns: A hidden Markov model. Econ. Notes, 51, e12193. https://doi.org/10.1111/ecno.12193

Pohle, J., Langrock, R., van Beest, F.M. & Schmidt, N.M. (2017). Selecting the number of states in hidden Markov
models: Pragmatic solutions illustrated using animal movement. J. Agricul., Biol. Environ. Stat., 22, 270–293.

Politis, D.N. & Romano, J.P. (1994). The stationary bootstrap. J. Am. Stat. Assoc., 89, 1303–1313.
R Core Team 2023. R: A language and environment for statistical computing, R Foundation for Statistical Computing,
Vienna, Austria. https://www.R-project.org/

Rémillard, B. 2011. Validity of the parametric bootstrap for goodness-of-fit testing in dynamic models. Available at
SSRN 1966476, 1–43.

Remillard, B. (2013). Statistical Methods for Financial Engineering. CRC Press: Boca Raton, FL.
Rodriguez, J.C. (2007). Measuring financial contagion: A copula approach. J. Empir. Finance, 14, 401–423.
Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat., 6, 461–464.
Shen, D., Urquhart, A. & Wang, P. (2020). Forecasting the volatility of Bitcoin: The importance of jumps and struc-
tural breaks. Eur. Finan. Manag., 26, 1294–1323.

Simard, C. & Rémillard, B. (2015). Forecasting time series with multivariate copulas. Depend. Model., 3, 59–82.
Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut Statistique de
l’Université de Paris, 8, 229–231.

Stöber, J. & Czado, C. (2014). Regime switches in the dependence structure of multidimensional financial data.
Comput. Stat. Data Anal., 76, 672–686.

Telli, S. & Chen, H. (2020). Structural breaks and trend awareness-based interaction in crypto markets. Phys. A: Stat.
Mech. Appl., 558, 124913.

Theodossiou, P. (2015). Skewed generalized error distribution of financial assets and option pricing. Multinatl. Fi-
nance J., 19, 223–266.

Timmermann, A. (2018). Forecasting methods in finance. Ann. Rev. Financial Econ., 10, 449–479.
Tiwari, A.K., Aye, G.C., Gupta, R. & Gkillas, K. (2020). Gold-oil dependence dynamics and the role of geopolitical
risks: Evidence from a Markov-switching time-varying copula model. Energy Econ., 88, 104748.

21

International Statistical Review (2024)
© 2024 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12562 by C

ochraneItalia, W
iley O

nline L
ibrary on [26/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/s10182-021-00395-8
https://doi.org/10.1111/ecno.12193
https://www.R-project.org/


Trede, M. (2020). Maximum likelihood estimation of high-dimensional Student-t copulas. Stat. Probab. Lett., 159,
108678.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE
Trans. Inform. Theory, 13, 260–269.

Welch, L.R. (2003). Hidden Markov models and the Baum-Welch algorithm. IEEE Inform. Theory Soc. Newslett., 53,
1–13.

Zucchini, W., MacDonald, I.L. & Langrock, R. (2017). Hidden Markov Models for Time Series: An Introduction
Using R. Boca Raton, FL: CRC Press.

APPENDIX A

Let us denote with θ the full vector of parameters and with ℓ∗ θjðy1; u1Þ; …; ðyT ; uT Þð Þ the
complete-data log-likelihood as in Equation (3). Starting from an initial parameter vector θð0Þ,
at the m-iteration the algorithm performs the following steps:

• E-step: compute the posterior expected value of the indicator variables wtu and ztuv given by
the quantities

ŵtu ¼ Pðut ¼ ujy1; …; yT Þ;

ẑtuv ¼ Pðut � 1 ¼ u; ut ¼ vjy1; …; yT ; Þ;

for t ¼ 1; …; T , and for all u; v ¼ 1; …; k . We also define (see also Remillard, 2013; Nasri
et al., 2020)

ηtðuÞ ¼ Pðut ¼ ujyt þ 1; …; yTÞ; t ¼ 1; …; T ;

ηtðuÞ ¼ Pðut ¼ ujy1; …; ytÞ; t ¼ 2; …; T ;

where the conditioning argument disappears from the first expression for t ¼ T . The above
quantities are initialised as

ηTðuÞ ¼ 1=k; η1ðuÞ ¼
λucðy1; Ru; νuÞPk
v¼1πvcðy1; Rv; νvÞ

; u ¼ 1; …; k;

and are computed recursively (Baum & Petrie, 1966; Welch, 2003; Nasri et al., 2020) through

ηtðuÞ ¼
cðyt; Ru; νuÞ

Pk
v¼1ηt � 1ðvÞπujvPk

a¼1cðyt; Ra; νaÞ
Pk

v¼1ηt � 1ðvÞπajv
; t ¼ 2; …; T ;

ηtðuÞ ¼
Pk

v¼1ηt þ 1ðvÞπvjucðyt þ 1; Rv; νvÞPk
a¼1

Pk
v¼1ηt þ 1ðvÞπvjacðyt þ 1; Rv; νvÞ

; t ¼ 1; …; T � 1;

to be evaluated in reverse order. From the previous expressions, we obtain ŵtu and ẑtvu as

ŵtu ¼ ηtðuÞηtðuÞPk
a¼1ηtðaÞηtðaÞ

; t ¼ 1; …; T ; u ¼ 1; …; k;
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ẑtuv ¼
πvjuηt � 1ðuÞηtðvÞcðyt; Ru; νuÞP

k
a¼1

P
k
b¼1πbjaηt � 1ðaÞηtðbÞcðyt; Rb; νbÞ

; t ¼ 2; …; T ; u; v ¼ 1; …; k:

The expected value of the complete-data log-likelihood is then obtained by substituting ŵtu and
ẑtuv to wtu and ztuv , in Equation (3). This expected value is denoted by Qðθjθðm � 1ÞÞ where
θðm � 1Þ is the vector of parameters provided by the previous M-step, on the basis of which
ŵtu and ẑtuv are computed.

• M-step. The new parameter vector θðmÞ is obtained as argmaxθQðθjθðm � 1ÞÞ. Parameters λu
and πvju are updated by using formulas in (4) and (5). Following Trede (2020), the updated

values of the remaining parameters, RðmÞ
u and νðmÞu , are obtained as follows: for a given u; u ¼

1; …; k, we maximise

XT
t¼1

ŵtulog cðyt; Ru; νuÞ;

subject to the restriction that Ru is symmetric, positive definite, and with all diagonal elements
equal to 1. The Lagrangians are the following

LðRujνuÞ ¼
XT
t¼1

ŵtulog c yt; Ru; νuð Þ þ
Xr
j¼1

μj ρðjjÞu � 1
� �

;

withμ ¼ ðμ1; …; μrÞ0 being the Lagrange multipliers. Setting the first derivative with respect to
Ru equal to 0 turns to

∂LðRujνuÞ
∂Ru

¼ �
P

tŵtu

2
R�1
u þ νu þ r

2νu

XT
t¼1

ŵtuR
�1
u xtx

0
tR

�1
u 1þ 1

v
x0tR

�1
u xt

� ��1

þM ¼ 0;

where we denote withM ¼ diagðμÞ the matrix with diagonal elements equal to μ1; …; μr, and

zero in all other positions, and with xt the vector with components T�1
1; νu ytj

� �
, with j ¼ 1; …; r.

Multiplying both sides by Ru gives

Ru ¼ νu þ r

νu
P

T
t¼1ŵtu

XT
t¼1

ŵtuxtx
0
t 1þ 1

νu
x0tR

�1
u xt

� ��1

þ 2P
tŵtu

RuMRu:

Let denote the first term of the previous expression with

A ¼ νu þ r

νu
P

tŵtu

XT
t¼1

ŵtuxtx
0
t 1þ 1

νu
x0tR

�1
u xt

� ��1

;

and let a be the vector of diagonal elements ofA. The Lagrange multipliersμ satisfy the equation
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2P
T
t¼1ŵtu

ðRu∘RuÞμ ¼ 1 � a;

with Ru∘Ru being the matrix of squared elements of Ru. In order to meet the restrictions, the
Lagrange multipliers are

μ ¼
XT
t¼1

ŵtuðRu∘RuÞ�1ð1 � aÞ=2;

which, substituted in the equation for Ru, yields to

Ru ¼ Aþ Rudiag ðRu∘RuÞ�1ð1 � aÞ
h i

Ru:

The above equation cannot be solved analytically, and we consider the iterative solution as in
Equation (7). The estimate for νu is obtained by solving the optimisation problem in
Equation (8).

In the application presented in Section 5, the number of latent states k is selected according to
the ICL criterion (Biernacki et al., 2000), defined as

ICL ¼ �2log ℓ∗ðθ̂jðy1; u1Þ; …; ðyT ; uT ÞÞþK logðTÞ; (A1)

being θ̂ the vector of estimated RSStC parameters and K the number of free parameters, com-
puted as K ¼ ðk � 1Þþkðk � 1Þþkðrðr þ 1Þ=2Þþk. As suggested in Pohle et al. (2017), the
unknown sequence u1; …; uT may be replaced with the decoded time-series û1; …; ûT obtained
applying the Viterbi algorithm to the posterior probabilities estimated with the selected RSStC
model.

APPENDIX B

We report the simulation results regarding the 2-state RSStC model and the complete results
for the 2- and for the 3-state model when varying the number of observationsT or the number of
assets r.

B.1 Two State Regime Switching Student-t Copula Model

We generate data from a 2-state RSStC model, and we simulateB ¼ 1,000 samples of dimen-
sion r ¼ 5, each with a total number of observations T ¼ 1,500. We set the vector of initial
probabilities λ ¼ ð1=2; 1=2Þ0 so that each state is equally likely, and we fix the transition matrix
as follows

Π ¼ 0:800 0:200

0:200 0:800

	 

;

the matrices of dependence parameters as
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R1 ¼

1:000 � � � �
0:900 1:000 � � �
0:900 0:900 1:000 � �
0:900 0:900 0:900 1:000 �
0:900 0:900 0:900 0:900 1:000

2666666664

3777777775
;

R2 ¼

1:000 � � � �
0:200 1:000 � � �
0:000 0:000 1:000 � �
0:100 0:200 0:100 1:000 �
0:000 0:200 0:200 0:000 1:000

2666666664

3777777775
;

and the state-specific numbers of degrees of freedom as ν1 ¼ 5 and ν2 ¼ 15, respectively. We
simulate a turbulent market scenario with high asset correlation and fat tails, and a more stable
market scenario with low dependencies and higher degrees of freedom. We evaluate the results
using the criteria outlined in Section 4.
Table B1 presents the true value, bias, RMSE, and CI for each parameter. The maximum ab-

solute bias for the initial probabilities is 0.033, and for the transition probabilities is ap-
proaching zero. The maximum RMSE is 0.499 for the initial probabilities and 0.018 for the
transition probabilities. CIs for the transition probabilities are narrow and centered around the
true values, and those of the initial probabilities reflect the unitary nature of the maximum like-
lihood estimator for these parameters (Zucchini et al., 2017).
Table B2 presents simulation results for the dependence parameters ρðijÞu and the number of

degrees of freedom νu . Regarding the dependence parameters, the maximum absolute bias is

0.002, and the highest RMSE occurs for ρð15Þ2 and ρð45Þ2 , with a value of 0.041. The CIs are
narrower in the first state, indicating more accurate estimation of high correlations. In terms
of number of degrees of freedom, we observe that as νu decreases, the absolute bias and RMSE
decrease while the CI narrows.

B.2 Increasing the Series Length and the Number of Assets

In this simulated scenario, we investigate the RMSE by varying the series length (T) and the
number of assets (r). We simulate data from 2- and 3-state RSStC models using the values of the

Table B1. Simulation results for the 2-state RSStC model: true parameter value, bias, RMSE, lower and upper bounds of the
CIs (CIL and CIU , respectively) of the initial and transition probabilities.

λ1 λ2 π1j1 π1j2 π2j1 π2j2

True 0.500 0.500 0.800 0.200 0.200 0.800
Bias �0.033 0.033 0.000 0.000 0.000 0.000
RMSE 0.499 0.499 0.018 0.018 0.017 0.017
CIL 0.000 0.000 0.764 0.168 0.168 0.764
CIU 1.000 1.000 0.832 0.236 0.236 0.832
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Table B2. Simulation results for the 2-state RSStC model: true parameter value, bias, RMSE, lower and upper bounds of the
CIs (CIL and CIU , respectively) of the dependence parameters, and of the number of degrees of freedom.

State u ¼ 1 ρð12Þ1 ρð13Þ1 ρð14Þ1 ρð15Þ1 ρð23Þ1 ρð24Þ1 ρð25Þ1 ρð34Þ1 ρð35Þ1 ρð45Þ1 ν1

True 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 5.000
Bias 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 �0.001 0.000 �0.157
RMSE 0.008 0.009 0.008 0.008 0.009 0.008 0.009 0.009 0.009 0.008 0.916
CIL 0.882 0.881 0.883 0.882 0.880 0.882 0.881 0.882 0.882 0.882 3.724
CIU 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.916 0.916 0.915 7.159

State u ¼ 2 ρð12Þ2 ρð13Þ2 ρð14Þ2 ρð15Þ2 ρð23Þ2 ρð24Þ2 ρð25Þ2 ρð34Þ2 ρð35Þ2 ρð45Þ2 ν2

True 0.200 0.000 0.100 0.000 0.000 0.200 0.200 0.100 0.200 0.000 15.000
Bias 0.002 0.000 0.001 0.001 0.002 0.001 0.001 0.001 �0.001 0.002 0.668
RMSE 0.038 0.040 0.040 0.041 0.040 0.037 0.037 0.039 0.038 0.041 3.476
CIL 0.128 �0.077 0.024 �0.080 �0.077 0.132 0.125 0.022 0.123 �0.080 10.480
CIU 0.274 0.083 0.175 0.077 0.081 0.270 0.274 0.180 0.275 0.075 23.502

Figure B.1. Average RMSE for transition probabilities, dependence parameters, and number of degrees of freedom in the
2-state (a) and 3-state (b) RSStC models, with series length (T) varying from 250 to 2,000 and r ¼ 5 assets.
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parameters employed for the simulated scenarios presented in Sections B.1 and 4.1. For each
simulated sample, we calculate the average RMSE over B ¼ 1,000 samples for each type of
parameters, concerning the initial probabilities, the transition probabilities, the number of
degrees of freedom, and the dependence parameters. We consider five different series of lengths
T ¼ 250, 500, 1,000, 1,500, 2,000, referred to r ¼ 5 assets.
We summarise the results in Figure B.1, illustrating that the average RMSE decreases rapidly

as the series length increases for all parameters. We omit the average RMSE for initial proba-
bilities as it remains around 0.5 up to the fourth decimal digit.
Then, we increase the number of assets while keeping the series length fixed at T ¼ 1,000.

We consider three plausible values for r, namely, 2, 5, and 10, and we simulate B ¼ 1,000
samples from the 2- and 3-state RSStC models. In the 2-state model, the initial and transition
probabilities, as well as the vector of degrees of freedom, remain unchanged from the first
simulation study. However, the dependence parameters are kept identical for all pairs of obser-

vations. Specifically, we use ρðijÞ1 ¼ 0:9 for the first regime and ρðijÞ2 ¼ 0:1 for the second regime,
for i ≠ j. For the 3-state RSStC model, we follow a similar procedure. The initial probabilities,

Figure B.2. Average RMSE for transition probabilities, dependence parameters, and number of degrees of freedom in the
2-state (a) and 3-state (b) RSStC models, with number of assets (r) varying from 2 to 10 and T ¼ 1; 500.
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transition probabilities, and number of degrees of freedom remain the same as in the second

simulation study. The dependence parameters are set equal to ρðijÞ1 ¼ 0:9; ρðijÞ2 ¼ 0:5, and ρðijÞ3 ¼
0:1, for i ≠ j. In Figure B.2, we observe that the average RMSE for the dependence parameters
increases when the number of assets is higher than 2. However, the RMSE for the number of
degrees of freedom and the transition probabilities decreases as the number of marginals
increases.

[Received December 2022; accepted December 2023]
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