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Cities are key places of economic activity, as they produce an enormous amount
of wealth compared to the land they cover. Their study is, therefore, of primary
importance in understanding the success of nations. Given the many interactions
among people that happen within them, cities are well described as complex evolv-
ing systems, and a thorough analysis of their economy should be able to deal with
this complexity. A likely candidate to grasp the reality of complex evolving sys-
tems, such the economy of cities, is the Economic Complexity framework (Hidalgo
and Hausmann, 2009), given its capacity to synthesize a large amount of informa-
tion into a single index.

We use patent data to compute the knowledge complexity index (KCI) of Euro-
pean metropolitan areas and describe their economy in terms of their innovative
potential. Interpreted as a dimensionality-reduction algorithm, as proposed by
Mealy et al. (2019), KCI helps to filter out the background noise from the abundant
information produced by the interactions that happen within cities. By extending
the work by van Dam et al. (2021), we highlight the relevance of going beyond the
first leading eigenvector, to the analysis of which the rest of the literature is limited.
We define clusters of similar cities, based on the additional dimensions obtained
through this dimensionality-reduction procedure. The introduction of clusters dra-
matically increases the predicting power of KCI. Under this lens, the Economic
Complexity framework is more than a single index: it is a powerful methodology
to reveal the organized complexity hidden behind the large amount of chaotic in-
formation produced by out-of-equilibrium economic systems such as cities.
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1 Introduction

The role of urbanization in economic development attracted increasing popularity in
recent years (OECD, 2015; UN-Habitat, 2016). To understand why, it is perhaps suf-
ficient to say that, worldwide, urbanization increased from 30% to 50% in the last 50
years and is expected to keep growing (UN-DESA, 2019). Moreover, while metropolitan
areas cover only a tiny fraction of the planet, they are highly productive places, funda-
mental for national competitiveness in global markets. For instance, between 2000 and
2012, metropolitan areas accounted for about 45% of the EU15 Gross Domestic Product
(GDP), although covering only 10% of its land (own elaboration from OECD, 2013b).

For this reason, an understanding of cities’ economic performance is key to incen-
tivizing countries’ economic growth. However, it is not straightforward to capture
cities’ dynamics, and standard (neoclassical) economic-policy tools seem not well suited
to deal with their complexity. This chapter contributes to show that a complexity eco-
nomics perspective is more suitable for the analysis of cities’ economy.

Neoclassical and complexity economics correspond to distinct ontological claims about
the world (Arthur, 1999; 2021) and, like oil and water, cannot mix with each other
(Fontana, 2010). Indeed, neoclassical economics describes an economic system as com-
posed of some (perfectly and boundlessly rational) representative agents who, in facing
several well-defined problems, behave consistently with the aggregate outcome of their
actions (Arthur, 2021). Without the intervention of some extra-economic factor, the
outcome of such a “well-functioning machine” will be a timeless equilibrium, where
there cannot be growth, if not in quantitative terms (Schumpeter, 1911). On the con-
trary, complexity economics looks at economies as an evolving system in which novelty
emerges from within because of the creative reactions of its agents to macro-level out-of-
equilibrium conditions (Antonelli, 2015; Schumpeter, 1947). Agents need to collectively
contribute to develop a knowledge base constituted of a coherent scaffolding of tech-
nologies, institutions, firms, routines, etc. In this way, this emergent environment that
they co-create through their (decentralized) efforts will guide them toward mutually
satisfactory ends, in a continuous feedback loop process.

Metropolitan areas hardly fit with the neoclassical paradigm, being perfect examples
of out-of-equilibrium systems (Prigogine, 1977). Conversely, cities are complex evolv-
ing systems with many interacting physical and social components (Batty, 2013; Jacobs,
1961).

Here, we analyze cities by focusing on their technological endowment. Since new
knowledge is generated through the recombination of existing knowledge pieces (Arthur,
2009), the study of the technical knowledge available in a city is crucial to foresee its
future economic development potential. While cities are the locus of countries’ tech-
nological progress , not all cities are able to translate their technological development
efforts into a more competitive economic system. This chapter shows how the so-called
economic complexity framework (E.C. for brevity), applied to cities and their technological
capabilities, can offer a useful tool to synthesize complex information – resulting from
multiple interactions among cities’ actors – and describe how cities evolve.

The E.C. framework has been introduced by Hidalgo and Hausmann in 2009 to de-
scribe countries’ competitiveness in terms of exported products. More recent applica-
tions of this framework to the knowledge base of metropolitan areas led to the defini-
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tion of the Knowledge Complexity Index (Balland et al., 2019; Balland and Rigby, 2017),
an indicator that summarizes the knowledge and innovative potential of a city.1

Interpreted as a dimensionality-reduction algorithm (Gomez-Lievano, 2018; Mealy et
al., 2019), this index filters out random noise from the abundant information produced
by cities.

Focusing on this interpretation helps to fit the E.C. framework within a complex
systems’ perspective. In line with the definition of organized complexity, (Jacobs, 1961;
Weaver, 1948), the E.C. methodology is an attempt to overcome the limitations of the
science of simplicity approach of the usual production functions that oversimplifies the
problems by taking for granted given inputs, such as capital and labor. As highlighted
by Hidalgo (2021), the E.C. framework proposes, instead, to let places reveal the ab-
stract factors of production they are endowed with. And, as shown by a growing litera-
ture, by organizing the abundant information provided by such fine-grained databases,
the E.C. framework proved to accurately predict the performance and growth perspec-
tives of local economies.2

Here, we provide an example of the potential of this approach in describing city
economic development. We apply the KCI to study the evolution of the European
metropolitan areas between 2004 and 2008. We compute the index by collecting data
on European Patent Office (EPO) patent applications from 214 Metropolitan Regions of
EU28 and EFTA countries. By interpreting the E.C. methodology as a dimensionality-
reduction algorithm and preserving additional dimensions resulting from this proce-
dure, we show that it is possible to complement the KCI with additional information
and improve its ability in describing the role of technical knowledge for the competi-
tiveness of these metropolitan areas.

The chapter is organized as follows. Section 2 presents the motivation and a review
of the previous literature. Section 3 introduces the Knowledge Complexity Index. Sec-
tion 4 details the data and discusses the results. Lastly, Section 5 concludes.

2 Motivation and literature background

In complex evolving systems, the “complexity” may arise, among other factors, from the
large number of variables involved. Even though low-dimensional complex systems
exist, when you face complex phenomena, reducing the dimensionality of the system
helps in dealing with the problem of interest.

Cities and technical change Since technical progress is the only factor able to grow in
per-capita terms, investing in research and innovation is considered the fundamental
endogenous engine of economic development (Foray, 2004; Jones and Romer, 2010; Lu-
cas, 1988; Romer, 1990; Schumpeter, 1911). In a globalized economy, national prosperity

1In this context, we analyze cities’ knowledge base and technologies instead of countries’ economy as
a whole and exported products. Therefore, we call Knowledge Complexity Index (KCI) what in the
original framework by Hidalgo and Hausmann (2009) was called Economic Complexity Index (ECI),
and Technological Complexity Index (TCI) what was called Product Complexity Index (PCI). However,
even if the terminology differs, the methodology is exactly the same as in the original contribution of
2009.

2For a similar perspective on complexity economics, see also Lü et al. (2023) in this book.
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substantially depends on the capacity of a country to continually commercialize new
and high-value (even unique) products, services, and processes (Porter, 1990; 1998).

In other words, the most competitive nations are those able to mobilize a significant
amount of diversified knowledge to achieve technical progress. However, technical
progress depends on three distinct knowledge sources (Hausmann, 2016): embodied,
codified, and tacit knowledge (i.e., know-how). This latter is the stickiest since it moves with
the people and requires long training sessions to be transferred from person to person
(Breschi and Lissoni, 2009; Jaffe et al., 1993; Polanyi, 1966). Therefore, the mobilization
of know-how can be seen as the key competitive advantage of a nation (Hausmann et
al., 2014). Moreover, from a complexity economics perspective, it is not merely a fact of
how diverse the knowledge base of an economy is, but also of how much this pool is
organized and how the elements interact with each other.3

Links between urbanization and technical progress (Florida, 2002; Giersch, 1995; Glaeser,
2011; Henderson and Thisse, 2004) and between urban density and inventiveness (Berkes
and Gaetani, 2020; Bettencourt et al., 2007; Carlino et al., 2007; Moretti, 2019) have
been repetitively shown. Given the limited human capacity of acquiring and storing
know-how, the production of highly complex products requires institutions that gather
different knowledge elements, scattered among several brains, and steer them towards
a collective effort (Henrich, 2004; Mokyr, 2002; Richerson and Boyd, 2005). And cities
are, in knowledge-based capitalism, the most important of such institutions (Betten-
court, 2013; Glaeser, 1999). Even more, they are «not just the containers where innova-
tion and entrepreneurship happen, they are the key mechanisms which enable them»
(Florida et al., 2017, p. 93), first and foremost because of their capacity to contain and
organize such a diverse pool of technical knowledge towards creative outputs.

Therefore, we can consider cities as the core of nations’ competitiveness since they
provide an institutional scaffolding enabling the production of a diversified pool of
activities, among which some know-how-intensive ones. The latter, being rare and
hard to imitate, provides nations with lasting competitive advantages.

Economic Complexity The E.C. framework, proposed by Hidalgo and Hausmann
(2009), described national economies through country exports. The two authors rein-
terpreted the countries-products bipartite network as the sign left by a tripartite net-
work connecting countries to the capabilities they have and products to the capabilities
they require.4 In this way, the authors showed that it is possible to indirectly measure
these capabilities by looking at who produces what.5 Building on this intuition, the
authors introduced the so-called Economic Complexity Index (ECI): an index aiming to
measure how much know-how an economy is able to mobilize in its productive effort
(Hausmann et al., 2014). Since then, this index has been widely used in many contexts
(see Balland et al., 2022; Hidalgo, 2021, for a comprehensive review).

3About knowledge from a complexity economics perspective, see also Hidalgo (2023) in this book.
4Capabilities are chunks of knowledge needed to achieve a goal. For the purpose of this chapter, one can

read it indistinguishably from know-how, even though they are two separate concepts. See Aistleitner
et al. (2021) for an extensive review of the concept.

5To this seminal paper many other works based on the same intuition followed and two main streams of
literature can be identified. On the one hand, Hausmann, Hidalgo, and their co-authors have defined
the so-called Economic Complexity Index (Hausmann et al., 2014). On the other hand, Pietronero and
his co-authors proposed a measure called Fitness (Cristelli et al., 2013; Tacchella et al., 2012).
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Specifically, Balland and Rigby (2017) and Pintar and Scherngell (2021) applied the
E.C. framework to technological knowledge at the metropolitan level by defining a
Knowledge Complexity Index (KCI), i.e. the ECI computed on the city-knowledge bi-
partite network. Results offer evidence, both in the US and Europe, of the influence of
knowledge complexity on cities’ capacity to generate new knowledge and, ultimately,
grow in the long run. Antonelli et al. (2017) and Antonelli et al. (2020) looked at the
knowledge complexity of European regions and showed that more complex regions
generate new technical knowledge with more ease, while the evidence about a nexus
with productivity enhancements is less straightforward than expected. Lastly, Petralia
et al. (2017) observe that, along their development path, countries tend to move towards
more complex and valuable technological domains. Overall, these studies showed that
the type of regional knowledge-based activities, as well as the structural characteristics
of this complex bundle, matter to produce new knowledge and, ultimately, influence
the pace and directionality of an economy’s growth path. At the same time, they high-
lighted the primary role of the relative scarcity of each element. A bundle of knowledge
items able to yield strong Jacobian externalities will include many rare activities. Since
only regions with many high-skilled individuals and specific technical competencies
will develop sophisticated – and thus rarer – technologies, these regions are expected
to be the most competitive ones.

About its interpretation, it is common to see the E.C. framework read as a general-
ized notion of diversity. However, more recently, Gomez-Lievano (2018) and Mealy
et al. (2019) showed that it is, ultimately, a dimensionality-reduction algorithm. Conse-
quently, the index is not a measure of how much two economic systems are diversified
within themselves, but it captures how much the two are similar to each other in terms
of specialization pattern.

As recently highlighted by Hidalgo (2021), the ECI as a dimensionality-reduction
technique is also an alternative to traditional economics approaches that isolate the
components of an aggregated output, like the GDP, assuming the nature of its inputs,
such as capital and labor. Unlike these approaches, the ECI learns, from fine-grained
databases about the “behavior” of several economic systems, which are the “abstract
factors of production” each place is endowed with.

Moreover, this interpretation aligns the E.C. framework with the broader literature on
network science and complex systems methods for economics, which frequently suggests
tools that separate random noise from the underlying signal of interest (Hidalgo, 2021;
Pugliese and Tübke, 2019).

3 The Knowledge Complexity Index

According to the theory previously exposed, we can extract information about cities’
knowledge complexity from a city-by-technology matrix Q. Following the literature in
economics of innovation (Griliches, 1990; Hall et al., 2001), we use patent information
to proxy regional knowledge production so that each cell of the matrix, Qck, counts
the (fractional) number of citation-weighted6 patent applications, in the technological

6In this way, we assign a higher weight to more relevant patents (see section 4.1).
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domain k, of inventors located in city c.7

Firstly, we use the Revealed Technological Advantage (RTA) to find the portfolio of
technological (relative) specializations of each city (Soete and Wyatt, 1983). We trans-
pose this information into a binary bi-adjacency matrix, M = [mck], stating whether
a city c reveals a comparative advantage in technology k or not. That is, mck = 1 if
RTA(Q)ck ≥ 1, and 0 otherwise, where RTA(Q)ck = qck

qc·
/ q·k

q·· ; qc· = ∑k qck; q·k = ∑c qck;
and q·· = ∑k ∑c qck.

Secondly, we define two indices, the Knowledge Complexity Index (
−→
KCI) and the

Technological Complexity Index (
−→
TCI), that are deeply related to each other. As pro-

posed by Hausmann et al. (2014),
−→
KCI is the eigenvector, v⃗2, associated with the second-

largest eigenvalue, λ2, that solves the problem:8

M̃v = λv, (1)

where M̃ = D−1
c M D−1

k MT is a stochastic matrix of pairwise similarities between cities;
Dc = diag(mc·) and Dk = diag(m·k) are diagonal matrices; mc· = ∑k mck is the number
of technological domains in which a city has a comparative advantage (city diversity);
and m·k = ∑c mck is the number of cities having a comparative advantage in a techno-
logical domain (technology ubiquity). The values are standardized, so that:

−→
KCI =

v⃗2 − ⟨⃗v2⟩
sd(⃗v2)

.

As well, it is possible to solve a symmetric problem with respect to the technological
domains, M̂u = λu, where M̂ = D−1

k MT D−1
c M is a stochastic matrix of pairwise sim-

ilarities between technological domains. Its solution leads to the Technological Com-
plexity Index,

−→
TCI = u⃗2−⟨⃗u2⟩

sd(⃗u2)
, where TCIk is the complexity of the technological domain

k.9

Economic Complexity and Correspondence Analysis As explained by Mealy et al.
(2019), Eq. 1 is equivalent to the problem solved by Correspondence Analysis (CA),
a multivariate statistical method for analyzing relationships between two categorical
variables (Greenacre, 1984; Hill, 1974). Like Principal Component Analysis, CA de-
composes the χ2 statistic associated with the contingency table M into orthogonal axes.
CA can be used to summarize the association between rows’ and columns’ categories
of a contingency table in a lower-dimensional space.

Let us define the specialization pattern of city c as mc = [mc1
/

mc. . . . mcK
/

mc.], where
each element is its propensity to patent in the k-th technological domain. Geometrically,
CA defines a vector space where the distance between the specialization pattern of two

7Although we are aware of the many concerns about the use of patents as generic indicators of inventive
activity –principally, that not all inventions are patented and that some relevant types of inventions
cannot be patented at all (Griliches, 1990)– we nevertheless see, in line with the literature, patents as a
useful proxy for inventions in empirical studies (Jaffe and Trajtenberg, 2002)

8For a detailed description of the E.C. methodology with an in-depth discussion about how we can
interpret the meaning of eigenvector within it, see also Hidalgo (2023) in this book.

9The vector v⃗2 is supposed to positively correlate with the city diversity. Otherwise, v⃗2 ≡ −v⃗2. In this
case, also u⃗2 ≡ −u⃗2. Moreover, when KCI is compared with other subsequent eigenvectors (⃗v3, v⃗4,
etc.), we standardize also these last as we do for the v⃗2.
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cities is defined as d2(mc, mc′) = ∑K
k=1

(
mck

/
mc. − mc′k

/
mc′.

)2/(m.k
/

m..
)
, known as “χ2

distance” (Greenacre and Hastie, 1987). The same can be said about the localization
patterns of two technological domains. This space can be approximated by reducing
its dimensions to a subset of the eigenvectors in which it has been decomposed. From
this perspective, the KCI and TCI are proportional to the best one-dimensional approx-
imations of the cities and technologies specialization patterns space, respectively: i.e.,
KCIc − KCIc′ ∝ d(mc, mc′) and TCIk − TCIk′ ∝ d(mk, mk′).

Economic Complexity as similarity in low-dimensions To interpret the E.C. metho-
dology as CA (van Dam et al., 2021; Mealy et al., 2019) reveals that KCI captures how
similar two cities are, in terms of technological specialization. As well, TCI provides in-
formation on how similar two technological domains are, in terms of which cities show
a propensity to patent in such domains. This is true, the more the first axis in which CA
decomposed M represent most of the variance (total inertia) present in the data; i.e., the
higher the eigenvalues associated, respectively, to KCI and TCI.

Correspondence Analysis and clustering However, in accordance with this CA inter-
pretation, to explain a higher share of the variance we can consider additional eigen-
vector solutions of Eq. 1 (⃗v3, v⃗4, etc.) to further identify cities’ common specialization
patterns (or hidden features), as proposed by van Dam et al. (2021).

To retrieve the maximum amount of information and preserve, at the same time, the
convenience of having a single index for each city, we define clusters of cities based on
these additional orthogonal dimensions. We use a k-means algorithm to define clusters,
and we determine the optimal number of clusters in the data based on Hartigan’s rule
(Hartigan, 1975).10 Then, we combine the KCI with the belonging of a city to these
clusters to better describe the determinants of cities’ competitiveness. To avoid data
over-fitting and select only meaningful clusters, we reduce the sample of additional
eigenvalues to those that, cumulatively (including the KCI), explain the 20% of the total
inertia.

4 KCI and cities’ competitiveness

We now apply these measures to show that the KCI is a proper tool to disentangle
the complexity of cities and illustrate what is the role of the additional dimensions in
better describing these complex systems.11 In particular, we study the ability of the
KCI to describe the competitiveness of cities in the near future, as measured by labor
productivity (LP).12 We also provide evidence on the advantages of the combined use
of the KCI and clustering to improve the explanatory power of the KCI. Specifically,

10This index compares data variability in different levels of hierarchical clusters and selects the number
of clusters that maximize the distance between them.

11The analysis has been performed using the R package SCCA (van Dam et al., n.d.).
12Since we defined a competitive city as one able to continuously innovate, we believe that labor produc-

tivity is able to capture cities’ competitiveness, at least partly. This is because, only by increasing the
efficiency in the use of the inputs required by the pre-existing activities, a city can free the resources
needed to introduce new products in the economy. Anyhow, we acknowledge the narrowness of this
shortcut, partly justifiable by the fact that this empirical exercise is only illustrative of a more general
idea, which is the true core of this chapter.
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we show that the KCI is remarkably associated with labor productivity only if we look
at a subset of metropolitan areas, which we can easily identify using the additional
information provided by the eigenvectors after the leading one, i.e. the KCI itself.

4.1 Data

We fetch 246,644 patent applications submitted to the European Patent Office (EPO)
by EU28 and EFTA inventors between 2004 and 2008. This time-window has been
chosen with two aims in mind. Firstly, our measures rely on citations that patents
received in the five-year period that follows their publication date, as discussed later
in more detail. Therefore, we have to limit our analysis to patents published before
2013 (due to data availability and completeness). Secondly, the paper aims to provide
a methodological contribution: the key point of the chapter is that the KCI, if properly
interpreted, is a useful tool to summarize the large amount of information produced by
a complex evolving system (e.g., cities). Therefore, to avoid further complications to the
analysis, we selected a time-window that, to the best of our knowledge, is considered
not particularly turbulent by the macroeconomics literature.

Patents are attributed to 443 NUTS-3 regions, belonging to 30 different countries,
by inventor residence, using REGPAT (OECD, 2020). We aggregate NUTS-3 regions
into 214 Metropolitan Regions as defined by the Eurostat, excluding (fractional) patents
located outside Metropolitan Regions.13 Patents of Metropolitan Regions account for
85% of the entire European patent production.

Each patent is classified, by patent offices, into several (hierarchical) technological
classes, following the Cooperative Patent Classification (CPC). In the analysis, we use
621 sub-classes (4 digits) to proxy technological capabilities.

Patents vary enormously in their importance or value, and hence, simple patent
counts are problematic as proxies of innovative output. To partly correct this issue,
we follow Pintar and Scherngell (2021), and we weigh each patent by the number of
citations, q, it received from other EPO patents in the five years after the publication
date.14 To account for the differences in citation patterns over the years and among
technological domains, we discount the citations (npt f ) received by patent p by the av-
erage number of citations received by patents applied in the same year, t, and belonging
to the same technical field, f : wpt f = npt f + 1

/
E(nt f ) + 1.15

13According to the definition provided by the OECD and the EU (2012), an urban area is a “functional
economic unit” formed by a densely inhabited city and its “related” commuting zone. Consequently,
the Eurostat defines Metropolitan Regions combining several NUTS-3 regions designed to represent,
overall, at least 250,000 inhabitants, commuter belts around an urban core included. In the analysis,
we use Metropolitan Regions based on the NUTS 2013 classification.

14Pintar and Scherngell (2021) use only citations coming from patents assigned to locations other than the
Metropolitan Region of the focal patent since they would like to approximate for knowledge something
similar to export data, in analogy with the original work by Hidalgo and Hausmann. Instead, we use
any citation, as counted by the OECD’s PATENT QUALITY database (OECD, 2013a). Indeed, we
aim to follow a well-established tradition that uses patent citations to correct for differences in the
innovativeness value of each patent (Trajtenberg, 1990). Facing this issue is particularly significant in
this context since rare knowledge domains can be as such either because more complex or because less
useful than others.

15While in the rest of the chapter we use CPC sub-classes to proxy the technological domain of a patent,
the citations are normalized with respect to the average patent belonging to the same technical field,
f , as defined in Schmoch (2008) and subsequent updates. This is convenient, among other reasons,
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Following the previous literature, we aggregate citation-weighted patents over five
years, because the patenting patterns of each metropolitan area vary significantly from
year to year. As well, we dropped regions belonging to the twentieth percentile, in
terms of fractionally counted patent applications in five years (88 patents) and CPC
sub-classes belonging to the fifth percentile (6 cities), to remove the less informative
part of the co-occurrence matrix.

Finally, we retrieve information on the gross value added at current prices and the
number of employees at the NUTS-3 level in 2009 from ARDECO (Eurostat, 2020).
These data are not available for Switzerland and Iceland, so we cannot include these
countries in the final estimations, while we still consider their patents to compute the
KCI. We aggregate NUTS-3 regions into Metropolitan Regions, as previously done for
patents. Then, we define Labor Productivity as the Gross Value Added per employee.
The average Labor Productivity in EU28 countries and Norway in 2009 is AC 48.57 per
employee, ranging from a minimum of 7.03 to a maximum of 98.64 euros.

4.2 Analysis and discussion

Knowledge complexity as sorting Fig. 1a represents the specialization pattern (ma-
trix M) of a Metropolitan Region (row) in each technological domain (column). The
rows (columns) have been sorted according to the diversity (ubiquity) of each city (tech-
nology). The matrix shows a peculiar quasi-triangular shape, well-known in ecology
as nestedness and already observed in several economic contexts: from trade data to in-
dustrial sectors, occupations, and patents; from countries to regions, to cities (Antonelli
et al., 2017; Balland and Rigby, 2017; Bustos et al., 2012; Mealy et al., 2019; Saracco et al.,
2015).

Nested bipartite networks tend to be disassortative (Jonhson et al., 2013), so that the
average ubiquity of the activities present in a place tends to correlate negatively with
the diversity of such a place. Fig. 1c confirms a clear disassortativity in our data. In light
of the literature discussed in Section 2, this property reflects the idea that know-how is
sticky and tends to diffuse slowly, from the location where it has been produced to
other places. Moreover, it diffuses neither to all areas nor in all technological domains
at the same pace (Petralia et al., 2017). Therefore, cities that patent more, tend to be
more diversified (Spearman’s rank correlation: 0.75) and to patent also in domains that
are rarer than the average.

Based on the previous discussion, this observation is somewhat surprising. Indeed,
we would expect that cities will try to increase their competitiveness by patenting only
in the rarest technological domains that are feasible given their capabilities. Fig. 1b
partly reconciles with this hypothesis. By sorting the rows and columns of the matrix
by their KCI and TCI, instead of by their diversity and ubiquity, we observe that high-
KCI cities patent, preferably, in high-TCI domains, as already observed for trade data
(Saracco et al., 2015; Schetter, 2019; Straka, 2018). In other words, Fig. 1 shows why
it makes sense to look at the patenting-basket diversity of a city to describe its level of

because in the OECD PATENT QUALITY database each patent is characterized by only one technical
field but by multiple technological domains. Moreover, to preserve in the analysis patents that receive
no citations, we add 1 to both the terms of the fraction. Lastly, for both the numerator and the denomi-
nator, we limit the count to the first five years from the publication date of each patent, to consider the
different probability of receiving a citation among the latest and more ancient patents.
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(a)

(b) (c)

Figure 1: (a) M matrix with axes sorted by diversity and ubiquity. Black squares indicate
the presence of cities’ technological comparative advantages in certain tech-
nological domains, while white squares signal their absence. (b) M matrix
with axes sorted by KCI and TCI. (c) City diversity and average ubiquity of
the technological domains in which it patents.

competitiveness. But, at the same time, it also shows why the KCI is better than diversity
at ranking cities from the least to the most competitive ones.

The equivalence between KCI (TCI) and what is known as dual scaling explain why
they order the data along the diagonal of the matrix (Greenacre, 1984; Nishisato, 1980;
2006). Dual scaling, essentially equivalent to CA, provides a way of obtaining quanti-
tative scale values for categorical data, like a contingency table. These scalar values are
determined in such a way that the data, weighted by KCI and TCI, attain the maximum
Pearson correlation. As said, to learn something about which capabilities are present in
a city, it is more informative to know which kind of economic activities are performed
in it than to know the size of the economic activities performed there. The E.C. frame-
work helps to transform this qualitative information into a quantitative one, so that it
can be used in subsequent empirical models, like regression analysis.

Knowledge complexity as clustering As described in Section 3, it is worth including
CA additional axes in the analysis to retrieve as much information as possible. Fig. 2
presents the inertia associated with the first twenty non-trivial axes (hidden features).
This figure shows that the first axis (i.e., the KCI) accounts for 3% of the total variance in
the data, while the first thirteen axes explain 20% of the total inertia. It is worth noticing
that the ECI computed on the countries-exports data, as in the original application by
Hidalgo and Hausmann (2009), explains a similar share (3.5%) of the total variance in
the data (van Dam et al., 2021).

As explained in Section 3, we can use the additional CA axes to retrieve more infor-
mation about M. Fig. 3 shows two scatter plots that combine information about the KCI
and the first two additional axes (⃗v3 and v⃗4) of each European Metropolitan Regions.

10



Figure 2: Inertia (left panel) and cumulative inertia (right panel) corresponding to the
first twenty orthogonal axes from CA (the first eigenvalue is the trivial solu-
tion, so it is not included in the figure). To compute clusters, we select the
axes that explain, cumulatively, the 20% of the inertia in the data (red line in
the right panel).

Let us look at the three examples: Brussels (BE), Eindhoven (NL), and Uppsala (SE). The
figure suggests that different axes capture different characteristics in terms of techno-
logical specialization patterns. All three areas show a very high KCI, and they are even
more similar looking at the hidden feature captured by v⃗4. On the contrary, these three
metropolitan areas differ substantially (and so, are very far apart) if we focus on the
information carried by v⃗3. These observations suggest that they must have something
in common (as shown by v⃗2 and v⃗4), but they also differ in some other characteristics
(as captured by v⃗3).16

To better capture these differences and similarities, we select the additional CA axes
that explain 20% of the total inertia and compute metropolitan cities’ clusters based on
these additional dimensions. The optimal number of clusters, computed with Harti-
gan’s rule, is equal to 5 and the resulting clusters are mapped in Fig 4. If we consider
the three metropolitan areas in the example above, in terms of clusters the differences
between them result in their belonging to different clusters: Brussels is in cluster 2;
Eindhoven in cluster 4; while Uppsala in cluster 1.

Combining sorting and clustering By looking at the relationship between the KCI and
Labor Productivity, Fig. 5a shows that the KCI of a city is positively associated with its
(future) productivity. However, a linear regression between the two variables explains
only 3% of the variance, as signaled by the R2. At first sight, this might suggest that the
KCI captures only partially the competitiveness of Metropolitan Regions. However, the
KCI is only one – even though the most important – dimension that captures similarities
in our data.17 The idea of including clusters in the analysis is to complement KCI and
increase the amount of information provided by this index.

16For a complete picture, we should look at all possible eigenvectors in which the matrix has been decom-
posed. But the first three are already enough to highlight the point that is relevant here.

17It is worth noticing that we are including the KCI as the only dependent variable, without further con-
trols and fixed effects.
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Figure 3: KCI vs v3 (Eigenvector 3) and KCI vs v4 (Eigenvector 4). Each dot corresponds
to a metropolitan area in the period 2004-2008. A few examples of metropoli-
tan areas are highlighted in red.

Figure 4: Classification of the European Metropolitan Regions in five clusters based on
the additional CA axes.
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(a) All metropolitan regions (b) Selected clusters

Figure 5: Relationship between the KCI and Labor Productivity for all metropolitan ar-
eas (left panel) and selected clusters (right panel). The colors signal the clus-
ters, and the red lines reflect linear regression results.

Since CA results in a list of several orthogonal axes, we can increase the amount of
information provided by KCI by considering these additional dimensions and creating
clusters of similar cities based on these common features. If we include in the analy-
sis the clusters resulting from the additional CA axes (different colors in Fig. 5a), we
observe that the prediction power of the KCI on the Labor Productivity is heteroge-
neous across clusters. This evidence suggests that the explanatory power of the KCI in
capturing cities’ similarity in terms of technical progress might vary according to other
variables and that the definition of clusters captures, at least partially, these relevant
dimensions. In particular, the explanatory power of the KCI and its association with
Labor Productivity is higher in clusters 3, 4, and 5. By selecting only the Metropolitan
Regions belonging to these clusters, we remove outliers (present especially in cluster 1)
and we substantially improve the effectiveness of the KCI in capturing cities’ competi-
tiveness, as shown in Fig. 5b. In this case, the explanatory power of the linear regression
between the KCI and Labor Productivity rises to 18%.

Even though an overall and satisfactory comprehension of the differences in KCI ex-
planatory powers from cluster to cluster goes beyond the scope of this chapter, Fig. 6
might offer a tentative explanation. Given the higher relevance of patenting for the
manufacturing sectors compared with sectors like services, we summarize the distri-
bution of the proportion of Gross Value Added (GVA) in manufacturing (NACE sec-
tors B-E) over the total GVA of a Metropolitan Region. Clusters 1 and 5 are the ones
with a lower proportion of GVA in the manufacturing sector. Cluster 4, instead, shows
both the highest average value and the highest dispersion, compared with the other
cities’ clusters. Therefore, the plot seems to suggest that the lower explanatory power
of KCI compared to clusters 1 and 5 is due to the lower proportion of manufacturing
activities in the cities belonging to such sub-samples. Instead, concerning cluster 2,
from the map in Fig. 3, we can observe that it covers most of the area around the Ruhr
(Germany). This area saw a substantial process of deindustrialization, moving from
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Figure 6: Gross Value Added (GVA) in manufacturing sectors over the total (%).

manufacturing to services in the last decades. Therefore, we might question, in a spec-
ulative way, the ability of the specialization patterns based on patents in mapping the
current capabilities owned by these metropolitan areas.

Overall, we can say that the KCI is a promising tool for describing cities’ economy,
but not for all Metropolitan Regions. The use of information provided by the addi-
tional CA axes allows selecting regions for which this tool is meaningful and captures
relevant technological specialization patterns. Therefore, the introduction of clusters
that further summarize common patterns and technological characteristics improves
the KCI itself and can help us in understanding future cities’ competitiveness. Despite
the KCI captures only 3% of the total variance in the data, it is, indeed, surprisingly
able to predict the potential growth of a Metropolitan Region once we control, through
the definition of clusters, for common characteristics of cities, as shown in Fig. 5b.

5 Conclusions

This chapter shows the relevance of the E.C. methodology to capture the hidden struc-
tures of complex evolving systems, such as the economy of a metropolitan area.

Despite its young age, this methodology developed quickly in the last decade and
found important applications in the geography of innovation literature (Antonelli et
al., 2017; 2020; Balland and Rigby, 2017; Petralia et al., 2017; Pintar and Scherngell,
2021). Moreover, given its capacity to synthesize a large amount of information into a
single index, it showed high potential as an economic-policy tool (Balland et al., 2019;
Mealy and Coyle, 2021; Pugliese and Tübke, 2019).

With respect to the most of cited literature, we embrace and stay closer to the interpre-
tation of the E.C. methodology as a dimensionality-reduction algorithm, as proposed
by Mealy et al. (2019). By extending the work by van Dam et al. (2021), we show the
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relevance of additional dimensions beyond the first leading eigenvector, to the analysis
of which the rest of the literature is limited. In this way, we showed that the E.C. frame-
work offers more than a single indicator. Instead, as recently underlined also by Hi-
dalgo (2021), it is a powerful methodology to reveal the different facets of economic
systems, extracting them from granular data. More specifically, we have shown that,
by introducing clusters based on additional CA axes, we can identify for which cities
the KCI is able to capture relevant technological specialization patterns, and for which
it does not. While the KCI explains only a fraction of the total variance in the data, the
introduction of clusters, and therefore of the additional information provided by the di-
mensionality reduction algorithm, dramatically increases the predicting power of this
tool.

Furthermore, the reading of the E.C. methodology as a dimensionality-reduction al-
gorithm lets us not only to reconcile it with the broader complexity economics literature
and help proper interpretations of the empirical findings. It also helps to keep devel-
oping this promising tool. On this trail, we believe that, as shown in this chapter, the
use of an even further amount of information, contained in the eigenvectors after the
leading one (what we called KCI), can offer further development to this literature.
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