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If the large collection of microarray-specific statistical
tools was applicable to the analysis of quantitative shot-
gun proteomics datasets, it would certainly foster an im-
portant advancement of proteomics research. Here we
analyze two large multidimensional protein identification
technology datasets, one containing eight replicates of
the soluble fraction of a yeast whole-cell lysate and one
containing nine replicates of a human immunoprecipitate,
to test whether normalized spectral abundance factor
(NSAF) values share substantially similar statistical prop-
erties with transcript abundance values from Affymetrix
GeneChip data. First we show similar dynamic range and
distribution properties of these two types of numeric val-
ues. Next we show that the standard deviation (S.D.) of a
protein’s NSAF values was dependent on the average
NSAF value of the protein itself, following a power law.
This relationship can be modeled by a power law global
error model (PLGEM), initially developed to describe the
variance-versus-mean dependence that exists in Gene-
Chip data. PLGEM parameters obtained from NSAF data-
sets proved to be surprisingly similar to the typical pa-
rameters observed in GeneChip datasets. The most
important common feature identified by this approach
was that, although in absolute terms the S.D. of replicated
abundance values increases as a function of increasing
average abundance, the coefficient of variation, a relative
measure of variability, becomes progressively smaller un-
der the same conditions. We next show that PLGEM pa-
rameters were reasonably stable to decreasing numbers
of replicates. We finally illustrate one possible applica-
tion of PLGEM in the identification of differentially abun-
dant proteins that might potentially outperform standard
statistical tests. In summary, we believe that this body of
work lays the foundation for the application of microar-
ray-specific tools in the analysis of NSAF datasets.
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In recent years, the biomedical research community has
recognized a need to shift its focus from the single compo-

nent level to the whole system level to understand complex
physiological processes as well as elusive pathological con-
ditions (1–3). Massive sequencing projects have provided
comprehensive lists of the players in these games, and ad-
vancements in microarray technology (4, 5) and mass spec-
trometry (6, 7) today allow the measurement of abundances of
all known mRNA and numerous protein species in a cell. The
next challenge is to reverse engineer the “rules of the game”
by observing how players behave and how they interact with
each other (8).

To this end, the first layer of complexity that can be ad-
dressed by such technologies is exemplified by the following
question. Which transcripts or proteins change their abun-
dance in a given cell as a result of a normal biological process,
in response to a specific perturbation, or as a consequence of
disease? Although not conclusive, answering this type of
question has already proven to help pinpoint the major play-
ers in several biological systems (9–12). In contrast to mi-
croarray-based transcriptomics, mass spectrometry-based
proteomics (13) has unfortunately received fewer contribu-
tions from statistics and bioinformatics in terms of specific
algorithms and software that are designed to answer the
types of questions described above. Therefore, if the wealth
of microarray-specific statistical tools could be directly ap-
plied to analyze proteomics data, this would most likely rep-
resent an enormous benefit for the rapid advancement of
systems biology.

Conceptually there are significant similarities between MS-
based proteomics data and microarray-based gene expres-
sion data. Primarily both technologies are believed to meas-
ure abundances of biological entities in a largely unbiased
way (6, 14), which allows the use of a common mathematical
representation of the data. Both types of datasets are typically
represented as a matrix of numeric values where rows repre-
sent different transcripts or proteins in a cell, columns repre-
sent distinct microarray hybridizations or MS runs, and each
entry represents the measured abundance level. Microarray
data analysts have recognized long ago that standard statis-
tical tools are not appropriate to analyze these data matrices
because of the “many-genes-few-replicates” problem (15,
16). More precisely, all standard statistical methods rely on
judging whether the difference in means between two series
of values (here representing abundances of biological entities
in two experimental conditions of interest) is significantly
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higher than the variation expected by chance. Classically
statistical tests estimate this random variation by measuring
the variability between the replicated measures within each
series of values. But when the number of available replicates
is 100 or 1000 times smaller than the number of analyzed
transcripts (or proteins), the chance of occasionally measuring
artificially small or artificially large standard deviations be-
comes dominant, potentially leading to an increase in both
false positive and false negative identifications. To address
this issue, several microarray-specific tools have been devel-
oped (16–20). It would therefore be of particular interest to
test whether these methods are applicable to the analysis of
proteomics data as well.

One hindrance to the direct transfer of expertise between
these two approaches has been the widespread belief that,
due to the different chemistry of nucleic acids and polypep-
tides and the different technologies used to analyze them,
transcriptome data and proteome data had to be analyzed
with distinct sets of tools. Until very recently, for example,
LC-MS/MS (also known as “shotgun”) proteomics was not
even granted the definition of being a quantitative technique
unless it was coupled with specific labeling methods that
would make it suitable for relative quantification of proteins in
an equimolar mixture of two samples of interest (21, 22). But
sampling statistics, such as spectral counts, obtained by
shotgun proteomics either with labeling or label-free have
proven to allow quantification of proteins in single samples
(23–25). For instance, we have recently used normalized
spectral abundance factor (NSAF)1 values obtained by multi-
dimensional protein identification technology (MudPIT) to de-
termine the relative protein abundances inside the human
Mediator complex (26) or for identifying abundance changes
of yeast transmembrane proteins upon shift from a minimal to
a rich culture medium (27). One feature of spectral counting-
based approaches, like NSAF, is that they provide measures
of protein abundances between different proteins in datasets
and are applicable to any sample type. In our view, these
represent important steps forward that render shotgun pro-
teomics data conceptually more similar to microarray gene
expression data.

Besides conceptual similarities, applicability of microarray-
specific statistical methods to the analysis of shotgun pro-
teomics data will ultimately depend also on more substantial
similarities. At the least, numeric values representing tran-
script or protein abundance levels should have similar statis-
tical properties, such as dynamic range or overall shape of the
distribution of values. Furthermore it would be important if

proteomics datasets and microarray datasets obeyed a sim-
ilar global error model. Several authors, for example, have
reported that variability of gene expression data is dependent
on the average expression level of the gene itself and have
termed this phenomenon “variance-versus-mean depend-
ence” (28, 29). Taking this relationship explicitly into account
has shown to partially solve the “many-gene-few-replicates”
problem and to significantly improve the performance of the
identification of differentially expressed genes (20, 30, 31).
More specifically, we have reported previously that standard
deviations from replicated Affymetrix GeneChip data could be
modeled via a power law global error model (PLGEM); and
use of PLGEM-derived standard deviations allowed the de-
tection of a higher number of truly differentially expressed
genes without increasing the false positive rate (20). The
PLGEM-based method was then implemented into a freely
available Bioconductor (32) package, called “plgem,” as well
as in an automated microarray data analysis pipeline (33).
These implementations have already been applied, both by us
(34) as well as by other authors (35), to successfully analyze
real microarray data addressing real biological questions. An-
other study reported the successful application of a quadratic
model to explain the dependence between noise variances
and mean peak intensities in LC-MS proteomics datasets;
and application of this error model resulted in a false positive
rate that was closer to the expectation value compared with
the false positive rate obtained by a standard Welch’s t test
(36). To the best of our knowledge, there is to date in the
scientific literature no equally detailed error modeling study of
shotgun proteomics data. If it was proven that NSAF data also
obeyed a global error model, this could improve our ability to
distinguish true protein abundance changes from random
fluctuations.

The scope of the present work was therefore to compare
general statistical properties of protein abundance values rep-
resented by NSAF values with those of transcript profiling
data obtained by GeneChip experiments. Using two large
MudPIT datasets (one containing eight biological replicates of
the soluble fraction of a yeast whole-cell lysate and one
containing nine technical replicates of a human protein com-
plex preparation), we compared global distributions of major
statistical parameters and tested whether NSAF datasets are
characterized by a variance-versus-mean dependence similar
to that governing GeneChip data. This work shows that there
are indeed substantial similarities between the quantitative
values obtained by these two apparently dissimilar technolo-
gies and provides the basis for applying PLGEM-based meth-
ods, and possibly other microarray-specific tools, to NSAF
datasets for the identification of differentially abundant
proteins.

EXPERIMENTAL PROCEDURES

Protein Extraction for the Yeast Proteome—For the control yeast
dataset Saccharomyces cerevisiae strain BY4741 (37) was grown to

1 The abbreviations used are: NSAF, normalized spectral abun-
dance factor; MudPIT, multidimensional protein identification tech-
nology; PLGEM, power law global error model; FDR, false discovery
rate; S.D., standard deviation; CV, coefficient of variation; LP, loga-
rithmic phase; SP, stationary phase; GO, Gene Ontology; BCA, bicin-
choninic acid; SAF, spectral abundance factor; FC, -fold change;
STN, signal-to-noise.
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middle log phase (A at 600 nm of 1–1.5) in 2.5 liters of rich medium
consisting of 100 ml of 10� concentrated BioExpress 1000 contain-
ing amino acids either labeled with 14N or 15N (Cambridge Isotope
Laboratories, Andover, MA), 20 mg/liter uracil, 1.8 g/liter yeast nitro-
gen base without amino acids and ammonium sulfate, and 2% dex-
trose. A total of eight independent cultures were grown, four in 14N-
and four in 15N-medium. Cells were collected and washed in cold
ultrapure water by centrifugation for 20 min at 4000 � g at 4 °C. Cell
pellets were resuspended in lysis buffer (310 mM sodium fluoride, 3.45
mM sodium orthovanadate, 12 mM ethylenediamine tetraacetic acid,
250 mM sodium chloride, and 100 mM sodium carbonate) and broken
using silica glass beads by 10 cycles consisting of 1 min of vortexing
at 2,500 rpm followed by 30-s incubation at 4 °C. Unbroken cells were
removed by centrifugation for 20 min at 4000 � g at 4 °C. The
supernatant was transferred to a 50-ml centrifuge tube, and soluble
proteins were separated from the crude membrane fraction by cen-
trifugation for 1 h at 22,000 � g at 4 °C. The supernatant containing
the soluble protein extract was collected, centrifuged, and transferred
to a clean 50-ml tube and stored at �80 °C. Protein concentration
was determined by bicinchoninic acid (BCA) assay (Pierce). The eight
independent samples were combined into four independent pools,
each of which contained 500 �g of total 14N- and 15N-labeled proteins
mixed at a 1:1 ratio before TCA precipitation and MudPIT analysis.

For the comparative growth phase proteomics analysis, S. cerevi-
siae strain BY4741 was grown in 14N as described before. The loga-
rithmic phase (LP) and stationary phase (SP) proteomics analyses
were performed on cells collected, respectively, at an averaged A at
600 nm of 0.96 � 0.06 and 4.5 � 0.15 over four replicated experi-
ments. Cells were collected and washed as described before and
stored at �80 °C before protein extraction. For protein extraction, cell
pellets were resuspended in lysis buffer (310 mM sodium fluoride, 3.45
mM sodium orthovanadate, 12 mM ethylenediamine tetraacetic acid,
250 mM sodium chloride, and 100 mM sodium carbonate) and broken
using silica glass beads by 12 cycles consisting of 30 s of bead
beating, using bead beater model 1107900 (BioSpec Products Inc.),
followed by 1-min incubation at 4 °C. The beads and cells debris were
removed by centrifugation for 30 min at 4000 � g at 4 °C. The
supernatant was collected and centrifuged for 1.5 h at 45,000 � g at
4 °C. The supernatant containing the whole cells extract was col-
lected and stored at �80 °C. Protein concentration was determined
by BCA assay (Pierce). For each replicated experiment and growth
condition, MudPIT analysis was performed on 500 �g of protein
extract desalted by TCA precipitation.

Protein Extraction for the Mediator Complex—The mammalian Me-
diator of RNA polymerase II transcription is a multiprotein complex
composed of over 30 subunits. Stably transfected HeLa cell lines,
each expressing a different FLAG-tagged Mediator subunit, i.e. hu-
man MED9, MED10, MED19, MED26, MED28, and MED29 or the
mouse orthologs of MED9 or MED19, were constructed. Nuclear
proteins from these cell lines were extracted and purified by anti-
FLAG-agarose immunoaffinity chromatography as described previ-
ously (38). The third elutions of all preparations involving a FLAG-
tagged Mediator subunit were pooled, TCA-precipitated, and
quantified by BCA assay (Pierce). The pooled mixture was split into
identical aliquots of 10 �g each, nine of which were independently
analyzed in the present study.

MudPIT Analysis—Protein mixtures were TCA-precipitated, urea-
denatured, reduced, alkylated, and digested with endoproteinase
Lys-C followed by modified trypsin digestion (both from Roche Ap-
plied Science) as described previously (6). Peptide mixtures from the
yeast proteins or the Mediator complex were loaded, respectively,
onto split phase or three-phase 100-�m fused silica microcapillary
columns both packed with 5-�m C18 reverse phase (Aqua, Phenome-
nex), strong cation exchange particles (Partisphere SCX, Whatman),

and reverse phase (39). Loaded microcapillary columns were placed
in line with a Quaternary Agilent 1100 series HPLC pump and an LTQ
linear ion trap ion trap mass spectrometer equipped with a nano-LC
electrospray ionization source (ThermoFinnigan). Fully automated
seven-step MudPIT runs were carried out on the electrosprayed
peptides for the Mediator samples as described previously (40),
whereas a 12-step MudPIT run was performed for the yeast proteome
analyses as described previously (27). Each full MS scan (from 400 to
1600 m/z range) was followed by five MS/MS events using data-de-
pendent acquisition where the five most intense ions from a given MS
scan were subjected to CID.

MS/MS Data Processing—Proteins were identified by database
searching using SEQUEST software (41). The list of parameters used
for the yeast and human datasets searches are available in Supple-
mental Tables 1, A–D, and 2A, respectively. Briefly no enzyme spec-
ificity was imposed during searches, setting a mass tolerance of 3
amu for precursor ions and 0 amu for fragment ions. In all searches,
cysteine residues were considered to be fully carboxamidomethyl-
ated (�57 Da statically added). No variable modifications were
searched. For the yeast proteome, tandem mass spectra were
searched against a database containing 14,176 protein sequences
combining 6911 S. cerevisiae proteins (from the National Center of
Biotechnology Information (NCBI) March 3, 2006 release), 177 com-
mon contaminants, such as keratin and immunoglobulins, and their
corresponding 7088 randomized amino acid sequences. Each
MS/MS dataset was searched four times following these criteria: 1)
14N-amino acids, 2) 14N-amino acids and �16 Da statically added to
methionine (referred to as methionine oxidation), 3) 15N-amino acids
for which the appropriate number of nitrogen atoms were statically
added to their masses, and 4) 15N-amino acids and methionine oxi-
dation (Supplemental Table 1, A–D). The sqt files generated from the
four independent searches were merged in the final dataset as de-
scribed before (27). For the yeast log phase versus stationary phase
comparative analyses, no 15N was used so each dataset was
searched using 14N-specific parameters found in Supplemental Table
1, A and B. Each MS/MS dataset was searched two times following
these criteria: 1) 14N-amino acids and 2) 14N-amino acids and �16 Da
statically added to methionine. The sqt files generated from the two
independent searches were merged in the final dataset as described
before (27). For the Mediator samples, MS/MS spectra were searched
against a database of 60,234 amino acid sequences consisting of
29,890 human proteins (non-redundant entries from NCBI November
11, 2006 release), 160 usual contaminants (such as human keratins,
IgGs, and proteolytic enzymes), 67 epitope-tagged proteins (including
mouse orthologs of MED9 and MED19), and 30,117 randomized
amino acid sequences derived from each non-redundant protein
entry. Peptide/spectrum matches, including precursor ion m/z values
and charge states, for the yeast control, human, and yeast log phase
versus stationary phase datasets are provided, respectively, as Sup-
plemental Tables 1E, 2B, and 3A. The lists of detected peptides and
proteins were sorted and selected using DTASelect (42) with the
following criteria set: spectra/peptide matches were only retained if
they had a �Cn of at least 0.1; minimum XCorr of 1.5 for singly, 2.5 for
doubly, and 3.0 for triply charged spectra; and maximum Sp rank of
10. In addition, peptides had to be fully tryptic and at least seven
amino acids long. Peptide hits from multiple runs were compared
(Supplemental Tables 1F, 2C, and 3B) using CONTRAST (42) and
contrast-report (43). Proteins that were subsets of others were re-
moved using the parsimony option in DTASelect (42). The false dis-
covery rate (FDR) was calculated as the number of spectra matching
randomized peptides multiplied by 2 and divided by the total number
of spectra, as described before (44), and ranged between 0 and
0.465% for all MudPIT runs (Supplemental Tables 1F, 2C, and 3B).

Protein abundances were estimated using NSAF values calculated
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from the spectral counts of each identified protein (27). Briefly to
account for the fact that larger proteins tend to contribute more
peptide/spectra, spectral counts were divided by protein length to
provide a spectral abundance factor (SAF). SAF values were then
normalized against the sum of all SAF values in the corresponding
run, allowing the comparison of protein levels across different runs.
No particular thresholds or outlier removal steps were applied prior to
NSAF calculation. The NSAF values of each detected protein from the
yeast, Mediator, and yeast log phase versus stationary phase MudPIT
datasets are provided as Supplemental Tables 1F, 2C, and 3B, re-
spectively. For subsequent statistical analysis, all datasets were fur-
ther processed to retain only proteins that were identified at least in
three replicated experiments. Finally contaminant proteins were
removed.

GeneChip Datasets—The mouse GeneChip dataset used in the
present study is a subset of a previously published dataset (45). This
subset contains 11 replicates of the transcriptome of untreated
mouse dendritic cells measured by MG-U74Av2 GeneChip arrays
(Affymetrix, Santa Clara, CA) following standard procedures. All ex-
perimental details can be found in the original publication (45). All
remaining microarray datasets were downloaded on February 22,
2007 from the Gene Expression Omnibus database (46) using the
following search criteria. (i) The microarray platform had to be an
Affymetrix GeneChip. (ii) Absolute signal intensities had to be ob-
tained by standard image processing, background correction, and
summarization methods as implemented either in the MicroArray
Suite 5.0 or in the GeneChip Operating System software application
(both from Affymetrix). (iii) Datasets had to contain at least one ex-
perimental condition with a minimum of three replicates. The combi-
nation of these selection criteria yielded 26 distinct studies across
seven distinct platforms and five species (Homo sapiens: HG-
U133Plus2.0 and HG-U133A; Mus musculus: MOE-430A and MG-
U74Av2; Rattus norvegicus: RG-U34A; Arabidopsis thaliana: ATH1;
S. cerevisiae: YG-S98) with a total of 336 samples grouped in 101 sets
of replicates. Each set of replicates represented either a unique
experimental condition or a unique combination of experimental fac-
tors (in case that more than one experimental factor was annotated in
the database for a particular dataset) and contained between three
and five, either biological or technical, replicates. All accession num-
bers of the downloaded data can be found in Supplemental Table 4.

Statistical Analysis—NSAF datasets and GeneChip datasets were
imported into the R environment for statistical computing (47) and
parsed into individual “exprSet” objects to allow recognition by spe-
cific Bioconductor packages (32). Missing values were replaced with
zeros, and data were normalized by dividing each value by the mean
value of the corresponding column. The Bioconductor package
plgem (20) was used to fit a PLGEM to the individual datasets,

evaluate the goodness of fit of the model to the data, and detect
differentially abundant transcripts or proteins. Relevant algorithmic
details of the PLGEM method will be explained under “Results.” All R
scripts written to dynamically generate all the figures and tables in the
present work are available from the authors upon request.

RESULTS

Global Statistical Properties of NSAF Datasets—In the pres-
ent study, MudPIT was used to generate large scale shotgun
proteomics data, and NSAF values were generated to obtain
quantitative information from these datasets. We then com-
pared the statistical properties of two previously unpublished
NSAF datasets (Supplemental Tables 1 and 2) with those
found in previously published GeneChip datasets. Before
demonstrating the existence of significant similarities be-
tween these two types of numerical data, we first acknowl-
edge the presence of some important differences. One obvi-
ous difference among the datasets analyzed in the present
work is related to the size of the corresponding data matrices
(Table I). By definition, a microarray experiment will provide
abundance values for every transcript probed by the chip
regardless of the actual presence of the corresponding tran-
scripts in the analyzed sample. Instead due to the sampling
nature of shotgun proteomics approaches (23), MudPIT will
detect only those proteins that are present in the sample with
a concentration that is higher than the sensitivity threshold of
the technology. In accordance with this view, the number of
proteins present in the yeast and in the Mediator NSAF data-
set were, respectively, �15 and �42 times smaller than the
number of transcripts present in the mouse GeneChip dataset
(Table I). For the same reason, an abundance value equal to
zero (hereafter referred to as a ‘zero value‘) was extremely
unlikely in the mouse GeneChip dataset (representing only
�0.02% of the total values), whereas it accounted for �29
and �35% of all values present in the yeast and the Mediator
NSAF datasets, respectively (Table I). Interestingly the per-
centage of transcripts associated with an ‘absent call‘ in the
GeneChip dataset (�50%) was similar to the percentage of
zero values in the two NSAF datasets, suggesting a possible
semantic equivalence between these two types of informa-

TABLE I
Basic descriptive statistics of the datasets analyzed in the present study

A summary of basic statistical properties is reported for the GeneChip and the NSAF datasets analyzed in the present study. In NSAF
datasets, zero values were introduced in place of missing values. In GeneChip datasets, absent calls are reported by the microarray scanning
software for those transcripts that are considered as not reliably detected. Dynamic ranges were calculated as the base 10 logarithm of the
ratio between the 99.95th percentile and the 0.05th percentile after removing the zero values. NA, not applicable; OOM, orders of magnitude.

Descriptive statistic Mouse GeneChip Yeast NSAF Mediator NSAF

Number of rows 12,488 845 295
Number of columns 11 8 9
Total number of data points 137,368 6,760 2,655
Zero values (%) 0.02 29.1 34.61
Absent calls (%) 50.13 NA NA
Dynamic range of values (OOM) 4.68 3.82 3.6
Dynamic range of rowMean values (OOM) 4.16 3.69 3.32
Dynamic range of rowS.D. values (OOM) 3.72 3.34 3.07
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tion. Most probably as a third consequence of the phenom-
enon described above, the dynamic range of measured abun-
dance values in the yeast and the Mediator NSAF datasets
was �3.6–3.8 orders of magnitude, whereas those in the
mouse GeneChip dataset reached almost 4.7 orders of mag-
nitude (Table I). Nonetheless these data confirm that, despite
important differences in the overall size and in the presence of
zero values, microarray datasets and proteomics datasets are
both able to measure abundances of biological entities over
several orders of magnitude.

Such a wide dynamic range of values is unlikely to be
produced by a normal distribution. Instead spot intensities
from microarray data (48, 49) and NSAF values from shotgun
proteomics datasets (27) have both been proposed to be
approximately log-normally distributed. In a previous study,
we have shown that the distribution of log-transformed NSAF
values from a MudPIT dataset was not significantly different
from a normal distribution (27). In that study, to allow the log
transformation step, we analyzed only those proteins that
were identified in a significant proportion of all performed MS
runs and replaced the remaining zero values by a fraction of a

spectral count before calculating the corresponding NSAF.
Following the same approach, we observed a similar distri-
bution of values also in the two NSAF datasets analyzed in the
present work (data not shown). These results certainly sup-
port the hypothesis that the NSAF values of the most highly
abundant proteins in a MudPIT dataset are log-normally dis-
tributed. Here to provide a more general description of the
distribution of values that would encompass also more lowly
abundant proteins and given the high percentage of zero
values in the two NSAF datasets of the present study, we
judged not to be appropriate the replacement of the zero
values with a fractional value to avoid introduction of a sig-
nificant distortion in the data. Instead we decided to focus our
attention on the distribution of average (untransformed) NSAF
values calculated for every protein in the dataset using all
available replicates, which by definition have to be non-zero
and will be referred hereafter as ‘rowMean values.‘ Interest-
ingly the overall distribution of rowMean values was more
complex than a simple log-normal distribution (Fig. 1). In fact,
it could be explained more realistically as a combination of
multiple log-normal distributions. In the case of the mouse

FIG. 1. NSAF and GeneChip data have similar distribution properties. A-C, the rowMean value was calculated for each transcript or
protein in the indicated dataset and subsequently transformed to its base 10 logarithm. The black line in each plot represents the density
distribution of all log10(rowMean) values in the corresponding dataset. The blue lines in each plot represent the density distribution of
log10(rowMean) values of transcripts or proteins that were detected with a specific number of absent calls (in the case of the GeneChip dataset)
or zero values (in the case of the NSAF datasets). The color intensity of the blue lines was chosen from a gradual color palette to reflect the
actual number of absent or zero values according to the color bar depicted at the bottom of the figure. D–F, the rowS.D. value for each
transcript or protein was measured across all available replicates in the indicated dataset and subsequently transformed to its base 10
logarithm. The density distributions of the log10(rowS.D.) values were plotted according to the same color coding scheme described for the
upper panels. A and D represent mouse GeneChip data, B and E represent yeast NSAF data, and C and F represent Mediator NSAF data.
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GeneChip dataset, the distribution of rowMean values could
be clearly explained by two dominant log-normal distribu-
tions, one representing transcripts flagged as ‘absent‘ across
all 11 replicates and the other one representing transcripts
without a single absent call. Only a minor proportion of tran-
scripts had an intermediate number of ‘absent calls‘ (Fig. 1A).
Also the distribution of rowMean values in the NSAF datasets
showed two dominant log-normal components, one repre-
senting proteins with exactly three non-zero values and the
other one representing proteins without zero values (Fig. 1, B
and C). But in this case, the contribution of proteins with an
intermediate number of zero values was more important as
compared with the contribution of transcripts with an inter-
mediate number of absent calls in the GeneChip dataset.
These results support a strategy of including in an NSAF data
analysis also proteins identified only in a minor fraction of all
performed MS runs because these might simply represent
more lowly abundant proteins that only occasionally pass the
sensitivity threshold of the technology. Statistical methods
capable of dealing with these rarely identified proteins will
surely enhance our ability to fully interpret a shotgun proteom-
ics dataset.

We next sought to provide a description of the distribution
of the standard deviations measured for each transcript or
protein across all available replicates, referred to hereafter as
rowS.D. values. The distribution of rowS.D. values was sur-
prisingly similar to the distribution of rowMean values in the
corresponding dataset (Fig. 1, D–F). This suggested the in-
triguing hypothesis that, as has been demonstrated in mi-
croarray datasets, also in proteomics datasets there is a re-
lationship between the reproducibility of the abundance
values of a protein and the average abundance level of a
protein.

To identify the possible underlying relationship between
data variability and average abundance levels, we drew two
types of scatter plots for each dataset (Fig. 2). In the first case,
we analyzed rowS.D. values, which can be seen as an abso-
lute measure of data variability, as a function of the corre-
sponding rowMean values in a log-log space (Fig. 2, A–C).
These plots revealed a striking linear relationship over the
whole dynamic range in all three analyzed datasets with highly
abundant transcripts or proteins showing a higher S.D. com-
pared with lowly abundant ones. Although the S.D. is consid-
ered an absolute measure of data variability, the coefficient of

FIG. 2. NSAF and GeneChip datasets have a similar variance-versus-mean dependence. A–C, the rowMean and the rowS.D. of the
abundance values for each transcript or protein were measured across all available replicates in the indicated dataset and subsequently
transformed to their corresponding base 10 logarithms. Scatter plots of log10(rowS.D.) versus log10(rowMean) were color-coded according to
the same scheme described in the legend of Fig. 1. D–F, the rowCV of each transcript or protein was measured as the ratio between the
rowS.D. and the rowMean in the indicated dataset and subsequently transformed to its corresponding base 10 logarithm. Scatter plots of
log10(rowCV) versus log10(rowMean) were color-coded according to the same scheme described in the legend of Fig. 1. Note that a linear
relationship in a log-log space is mathematically equivalent to a power law relationship in a linear-linear space. A and D represent mouse
GeneChip data, B and E represent yeast NSAF data, and C and F represent Mediator NSAF data.
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variation (CV) can be seen as a relative measure of data
variability. The CV is defined as follows.

CV �
S.D.

mean
(Eq. 1)

In the second series of scatter plots, we therefore analyzed
the CV of the transcript or the protein, measured as the ratio
between the corresponding rowS.D. and rowMean, hereafter
referred to as rowCV. Also plots of the rowCV values as a
function of the corresponding rowMean values in a log-log
space revealed a striking linear relationship over the whole
dynamic range in all three analyzed datasets (Fig. 2, D–F). But
conversely to the behavior of the rowS.D. values, here highly
abundant transcripts or proteins had smaller rowCV values
compared with lowly abundant ones.

Goodness of Fit of PLGEM on NSAF Datasets—The sim-
plest model able to explain a linear relationship in a log-log
space is a power law relationship in the linear-linear space. In
mathematical terms, if

ln(rowS.D.) � k � ln(rowMean) � c � � (Eq. 2)

where k, c, and � respectively represent the slope, the inter-
cept, and a normally distributed residual error of a linear
regression, then

rowS.D. � rowMeank � exp(c) � exp(�). (Eq. 3)

And because

rowCV �
rowS.D.

rowMean
(Eq. 4)

then

rowCV � rowMean�k�1	�exp�c	 � exp(�). (Eq. 5)

According to this model, if k � 1, then the rowS.D. would be
directly proportional to the rowMean, whereas the rowCV
would be constant over the whole dynamic range of rowMean
values. Values of k 
 1 would cause both the rowS.D. and the
rowCV to increase as a function of the rowMean, whereas
values of k � 0 would lead to a decrease of both the rowS.D.
and the rowCV. Hence there is a critical range 0 � k � 1 in
which the absolute variability increases with increasing aver-
age abundance (because of the positive power coefficient k in
Equation 3), whereas the relative variability decreases (be-
cause of the negative power coefficient (k � 1) in Equation 5).
An error model with parameter k within this critical range
would therefore fully explain the observations made in Fig. 2.
In addition, such a model would also be consistent with the
fact that the dynamic range of rowS.D. values was signifi-
cantly smaller than the dynamic range of the rowMean values
in the same dataset (Table I).

We have previously described the above variance-versus-
mean dependence to be at the basis of GeneChip data, and
we modeled this relationship via a PLGEM (20). Here we

tested whether and how PLGEM would be able to explain the
variability present in a typical NSAF dataset as well. Using the
Bioconductor package plgem we fitted a PLGEM either to a
simulated dataset (forced to obey a PLGEM) or to the Gene-
Chip and the two NSAF datasets under investigation in the
current study (Fig. 3). Details about the robust PLGEM fitting
method implemented in the plgem package can be found in
the original publication (20). Briefly the dynamic range of
rowMean values is partitioned into equally sized bins, and a
modeling point is determined in each partition so that it cap-
tures the local median variation (20). Then a linear regression
is performed through the set of modeling points in the log-log
space to obtain the slope k and the intercept c of the PLGEM.
As quality controls, a Pearson’s correlation coefficient was
calculated between all available ln(rowS.D.) values and the
corresponding ln(rowMean) values, and an adjusted r2 value
was calculated between the fitted PLGEM and the modeling
points. In general, PLGEM fitted equally well on all analyzed
datasets (Fig. 3, A–D) with correlation coefficients 
0.96 and
adjusted r2 values 
0.99. An additional evaluation of the good-
ness of fit of PLGEM was performed through an analysis of the
residuals of the model. Residuals were calculated as differ-
ences between the modeled and the measured ln(rowS.D.).
As expected from a good fit, in all analyzed datasets the
residuals were relatively constant across the whole dynamic
range (Fig. 3, E–H) and were approximately normally distrib-
uted (Fig. 3, I–P).

Once it was established that NSAF datasets could be mod-
eled by a PLGEM similarly to GeneChip datasets, we next
asked whether the model parameters obtained by fitting
PLGEM on NSAF datasets were similar to the typical param-
eters observed in GeneChip data. To this end, we took ad-
vantage of the Gene Expression Omnibus database, a public
repository of microarray experiments (46). We fitted PLGEM
on 101 distinct GeneChip datasets downloaded from this
database, which represented microarray experiments per-
formed across five different species and seven different plat-
forms, and drew density distribution plots of the PLGEM
slopes, the PLGEM intercepts, the correlation coefficients,
and the adjusted r2 values found in these datasets (Fig. 4). The
PLGEM slopes found in the 101 analyzed GeneChip datasets
were all within the range 0.5 � k � 1, which was well within
the critical range described above (Fig. 4C). Importantly cor-
relation coefficients and adjusted r2 values found both in the
yeast and in the Mediator datasets were among the highest
values observed for GeneChip datasets, suggesting that the
fitting of PLGEM was particularly good in the analyzed NSAF
datasets (Fig. 4, A and B). Notably both the yeast and the
Mediator NSAF datasets had PLGEM slopes �0.8, which was
very close to the average PLGEM slope generally found in
GeneChip datasets (Fig. 4C).

The NSAF datasets analyzed in the present work contained
an unusually high number of replicates, which was important
for a solid investigation of the statistical properties of these
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FIG. 3. PLGEM fits equally well on NSAF and GeneChip datasets. A–D, contour plots of ln(rowCV) versus ln(rowMean) scatter plots of the
indicated datasets were drawn to visualize regions with a higher (orange contours), a medium (green contours), or a lower density of points (light
blue contours). The modeling points used to fit a PLGEM were superimposed on the corresponding contour plots as black circles. Red lines
represent the PLGEM fitted to the indicated dataset. E–H, for each transcript or protein in the indicated dataset a residual was calculated as
the difference between the measured ln(rowS.D.) value and the ln(rowS.D.) value predicted by PLGEM. Residuals were then plotted as a
function of the rank of the rowMean value and visualized as contour plots following the same color code described for the upper panels. I–L,
the distribution of the residuals in the indicated dataset was plotted as a histogram of counts in equally sized bins. M–P, the similarity between
the distribution of residuals and a standard normal distribution was visualized as a quantile-quantile (Q-Q) plot. A, E, I, and M represent a
simulated dataset; B, F, J, and N represent mouse GeneChip data; C, G, K, and O represent yeast NSAF data; and D, H, L, and P represent
Mediator NSAF data. The simulated dataset contained 10 columns and 1000 rows. The 1000 rowMean values of the simulated dataset were
randomly drawn from a log-normal distribution with ln(�) � 0 and ln(�) � 0.25. The rowS.D. values of each row were then forced to obey a
PLGEM with k � 0.75, c � �1, and � randomly drawn from a normal distribution with � � 0 and � � 0.25. The 10 values in each row were
finally randomly generated from a normal distribution with � � rowMean and � � rowS.D..
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types of datasets. However, in a realistic experimental setting,
it would be unlikely to have eight or nine replicates. Therefore,
if PLGEM was to be proposed as a novel tool in NSAF data
analysis, we deemed it important to test its behavior also
when a significantly smaller number of replicates were avail-
able for a given experiment. We therefore simulated the effect
of decreasing the number of available replicates by randomly
removing one or more columns from the datasets analyzed
above until only three replicates were retained (Fig. 5). As
expected, a smaller number of replicates caused a less obvi-
ous linearity between the ln(rowS.D.) values and the ln(row-
Mean) values, as demonstrated by the progressive decay of
the Pearson’s correlation coefficient (Fig. 5A), and a conse-
quent decrease of the goodness of fit of PLGEM, as exem-
plified by the drop in the adjusted r2 of the modeling points
(Fig. 5B). Nonetheless even in the datasets with only three
replicates, all measured correlation coefficients were 
0.85,
and the r2 values were 
0.96, demonstrating a reasonably
good fit. In addition, PLGEM slopes and intercepts deviated
only marginally from the parameters obtained from the full
dataset (Fig. 5, C and D). However, there was a large benefit
in both accuracy and precision in the determination of all
parameters when the number of available replicates was in-
creased from three to four or, although to a lesser extent, from

four to five. A further increase in the number of replicates
mainly affected the precision but only marginally affected the
accuracy by which PLGEM parameters were estimated (Fig.
5, C and D). Taken together, these data stress once more the
importance of performing as many replicates as possible in
these types of experiments. In addition, these results suggest
that four or five replicates might represent a reasonable com-
promise between the cost of a MudPIT experiment and the
accuracy and precision with which the underlying PLGEM
parameters can be estimated from NSAF values.

Use of PLGEM to Detect Differentially Abundant Proteins—
The main benefit of an error model relies in its ability to more
accurately estimate data variability compared with measuring
it directly from the data alone (18). As a consequence, using
model-derived rather than data-derived S.D. estimates has
shown to significantly improve, in both GeneChip (20) and
LC-MS proteomics data (36), the performance of statistical
methods designed to detect significant abundance changes
between two experimental conditions of interest. We there-
fore asked whether PLGEM could improve the identification of
differentially abundant proteins also in NSAF datasets.

To test the added value provided by the use of PLGEM in
the analysis of NSAF-based proteomics datasets, we per-
formed a MudPIT experiment designed to detect proteins that
show differential abundance in different yeast growth phases.
Whole-cell extracts from four biological replicates of a yeast
cell culture grown in rich medium and harvested either in LP or
in SP were analyzed by a total of eight independent MudPIT
runs and quantified using the NSAF approach to search for
proteins up- or down-regulated during the growth phase shift
(Supplemental Table 3). A total of 783 proteins were consis-
tently identified in at least three of four replicates in either the
LP or the SP samples. Of these, 108 were identified only in the
SP samples, and 164 were identified only in the LP samples.
These two subsets, respectively, represent proteins induced
or repressed in different growth phases and are consistent
with prior knowledge on the biology of stationary phase in
yeast (data not shown and Ref. 50). Although these proteins
provide insights into the global changes occurring in response
to this physiological transition, they represent only a minor
fraction of the total identified proteins. In addition, their be-
havior can be modeled as an on/off response and are there-
fore less challenging to detect. The identification of differential
abundance among the remaining majority of proteins (511 of
783, i.e. �65%), which were consistently identified in most of
the samples, represents instead a much more challenging
task. It is in this type of analysis that a model-based statistical
analysis might prove its benefits.

A standard procedure in quantitative proteomics data anal-
ysis makes use of the ‘-fold change‘ (FC) as a measure of
differential abundance of proteins across two groups of rep-
licated samples. It is implicitly assumed that the higher the
FC, the more the protein abundance level varies between the
two experimental conditions of interest. A more rigorous pro-

FIG. 4. NSAF and GeneChip datasets have similar PLGEM pa-
rameters. PLGEM was fitted on 101 publicly available GeneChip
datasets, four relevant fitting parameters were recorded, and density
distributions were plotted for each of these parameters. A, Pearson’s
correlation coefficients were calculated between all available ln(rowS.D.)
values and the corresponding ln(rowMean) values. B, adjusted r2

values were calculated between the fitted PLGEM and the modeling
points. Also shown are slopes (C) and intercepts (D) of the fitted
model. Superimposed on the density plots are the actual values of the
same four parameters as obtained from the mouse GeneChip (blue
circles), the yeast NSAF (red squares), and the Mediator NSAF data-
sets (green diamonds).
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cedure would take the within-group variability into account as
well to tell whether the signal we are interested in (the differ-
ence in abundance of the protein) is higher than the noise (the
background variability caused by a combination of biological
and technical variation). In such an analysis it becomes im-
portant to obtain accurate estimates of the standard deviation
of NSAF measurements across different replicates of a same
experimental condition to not over- or underestimate the
background noise and thus under- or overestimate the signal-
to-noise (STN) ratio. We therefore tested the performance of
PLGEM in providing more accurate estimates of standard
deviation by incorporating PLGEM-derived standard deviation
into the following STN statistic.

rowSTN �
rowMeanSP � rowMeanLP

rowS.D.SP � rowS.D.LP
(Eq. 6)

Because they were independently analyzed, two distinct sets
of PLGEM parameters were fit to the SP NSAF dataset and
the LP NSAF dataset (Supplemental Fig. 1). It has to be noted
that although the above statistic has successfully proven to
provide excellent results in the analysis of GeneChip data (9,
20, 34, 35, 45), it has not yet been used for the analysis of
NSAF-based proteomics data.

We first compared the results obtained by analyzing the
above mentioned 511 yeast proteins either with the simple FC
method or with the STN statistic incorporating classical data-

derived estimates of standard deviation (Standard-STN). The
FC statistic was implemented here as the log ratio of the
average NSAF value in the SP samples over the average
NSAF value in the LP samples. The 511 proteins were ranked
based on the absolute value of either of the two statistics, and
the top 100 with the most extreme values were selected as
the most significantly changing (Supplemental Table 5).
Whereas the FC method was biased toward detection of the
most lowly abundant proteins because these are the ones
expected to vary most, the Standard-STN method selected
several proteins with very low -fold changes and missed other
proteins with very high -fold changes (Fig. 6). Among the
proteins with low FC values that were nonetheless selected by
the Standard-STN method, some were identified with ex-
tremely small spectral counts like the transcriptional elonga-
tion protein Spt6, identified by zero, one, two, and three
spectra in the four LP replicates and by two, three, three, and
three spectra in the SP samples (Fig. 6). Proteins with very
small spectral counts have been ranked among the 100 most
differentially abundant ones by Standard-STN only because
they happened to have reproducibly small NSAF values, but
due to the variability of such low spectral counts they should
likely be regarded as false positives. Among the proteins with
large changes that were not ranked among the most signifi-
cant ones using the Standard-STN method, many are well
known to be down-regulated during a shift from LP to SP in

FIG. 5. PLGEM parameters are reasonably stable to decreasing number of replicates. A series of simulations was performed to test the
effect of randomly removing one or more replicates from the indicated dataset. A total of 100 random deletions were performed for each
indicated number of retained replicates (x axis label). Matrix rows associated only with zero values after the column removal step were
discarded before fitting a PLGEM. For each generated dataset a Pearson’s correlation coefficient (A), an adjusted r2 value (B), a PLGEM slope
(C), and a PLGEM intercept (D) were recorded. Circles and error bars, respectively, represent means and standard deviations of the indicated
PLGEM parameters obtained from the corresponding 100 simulated datasets.
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yeast and should therefore be regarded as false negatives. An
example of such a protein is the ribosomal protein Rpl8a,
identified by 5, 11, 20, and 76 spectra in the LP samples and
by zero, two, three, and six spectra in the SP samples (Fig. 6).
The most likely cause, for which these proteins were missed
by the Standard-STN method, was their relatively high stand-
ard deviations.

We next analyzed the same dataset using STN ratios incor-
porating PLGEM-based estimates of standard deviation
(PLGEM-STN). In contrast to the FC and Standard-STN meth-
ods, the PLGEM-STN statistic was more stringent in calling a
significant hit among proteins with low average NSAF value
and was less stringent for proteins with high abundance val-
ues (Fig. 6). As a consequence, none of the proteins ranked by
PLGEM-STN among the 100 most significantly changing pro-
teins had reproducibly different but very low total spectral
counts in both conditions, like Spt6p, which was instead
selected by the Standard-STN method (Fig. 6). On the other
hand, none of the proteins that showed a large negative FC
during the shift from LP to SP, like Rpl8a, were missed by
PLGEM-STN, although many of them were missed by Stand-

ard-STN (Fig. 6). These results demonstrate that incorporation
of PLGEM into an STN-based ranking analysis of an NSAF-
processed MudPIT dataset naturally selects for proteins with
changes in abundance between samples that intuitively
makes more sense compared with the use of FC or
Standard-STN.

Ranking of proteomics hits based on some significance
criterion is a common procedure to prioritize the follow-up of
candidate proteins potentially involved in the biological phe-
nomenon under investigation. We therefore tested the biolog-
ical significance of the proteins identified with the FC, the
Standard-STN, or the PLGEM-STN method. To this end, sig-
nificant enrichment of Gene Ontology (GO) annotation terms
or Swiss-Prot keywords among the top ranking 100 proteins
was evaluated. We submitted the three different lists of 100
RefSeq IDs corresponding to the proteins selected by each
method to FatiGO� (51) to test whether any functional anno-
tation terms were significantly over-represented in the query
list in comparison with the background list of 411 non-se-
lected proteins. This website provides p values from a Fisher’s
exact test that are adjusted for multiple testing by an FDR-
based method. Whereas no statistically significant hits were
returned for the 100 proteins with the highest FC values or the
highest Standard-STN values, FatiGO� detected a significant
enrichment of GO Biological Process annotation terms ‘bio-
synthetic process‘ (FDR-adjusted p value � 2.3 � 10�3),
‘cellular biosynthetic process‘ (FDR-adjusted p value � 2.1 �

10�3), ‘macromolecule biosynthetic process‘ (FDR-adjusted
p value � 3.7 � 10�4), and ‘translation‘ (FDR-adjusted
p value � 5.7 � 10�4) and for the Swiss-Prot keyword ‘ribo-
somal protein‘ (FDR-adjusted p value � 2.6 � 10�6) among
the 100 proteins with the highest PLGEM-STN values. It has
to be noted that from a biological perspective the shift from
LP to SP is well known in yeast to be accompanied by a
progressive slow down of the whole biosynthetic machinery
and especially of translation (52), and only by using PLGEM in
this analysis did we capture this information.

DISCUSSION

The major findings of the present study can be summarized
in the following way. (i) From a statistical point of view, NSAF
datasets are more similar to GeneChip data than previously
anticipated. (ii) The variability of NSAF values can be accu-
rately modeled by a PLGEM. (iii) PLGEM-based methods can
be used to identify differentially abundant proteins in NSAF
datasets. The most important implications of these results are
discussed below.

Similarities between NSAF and GeneChip Data—Here we
have provided evidence that NSAF datasets share with
GeneChip data substantial statistical similarities. Not only
were the dynamic range and the distribution of values quali-
tatively very similar between the two technologies, but also,
and perhaps more importantly, these two types of data have
proven to obey the same global error model with surprisingly

FIG. 6. Identification of differentially abundant proteins in the
yeast growth phase NSAF dataset. The 511 proteins consistently
identified in both the LP and the SP samples in at least three of four
biological replicates of the yeast growth phase NSAF dataset (gray
dots) were plotted in the space defined by the base 2 logarithm of the
ratio of the average NSAF value of the protein in the SP samples over
the average NSAF value in the LP samples (y axis) and the base 10
logarithm of the average NSAF value of the protein in the LP samples
(x axis). Highlighted in the same plot are the 100 proteins with the
most extreme -fold changes (small red circles), with the 100 most
extreme STN ratios (medium goldenrod circles), or with the 100 most
extreme PLGEM-STN ratios (large blue circles). The red dashed lines
delineate the boundaries separating the 100 proteins with the largest
-fold changes from the other 411 proteins; the blue dashed lines
separate the 100 proteins with the highest PLGEM-STN ratios from
the remaining 411 proteins. The data points for Spt6 and Rpl8a are
highlighted and described under “Results”.
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similar parameters (see ‘PLGEM as an Error Model for Shot-
gun Proteomics‘ for a more detailed discussion of the latter
point). These similarities offer the exciting opportunity to take
advantage of the multitude of statistical tools that have been
designed to specifically deal with open issues in microarray
data analysis and to test whether they perform as well in
proteomics data analysis. There is for instance a wealth of
literature, algorithms, and software that has been devoted to
solve microarray data analysis problems related to missing
values (53–55), multiple testing (56, 57), variance-versus-
mean dependence (20, 29, 30), etc. We foresee that most of
these issues will be recapitulated also in shotgun proteomics
data. Therefore, if these microarray-specific tools were di-
rectly applicable to the analysis of proteomics data, this
would represent a significant shortcut in the advancement of
proteomics research. Other authors have already successfully
applied specific microarray tools in the analysis of proteomics
data (25) without providing a more general demonstration of
the underlying assumption that proteomics data are substan-
tially similar to transcriptomics data. The substantial similari-
ties shown here between NSAF data and GeneChip data
suggest instead that most GeneChip-specific statistical tools
should be applicable to the analysis of NSAF datasets as well.

PLGEM as an Error Model for Shotgun Proteomics—The
most important similarity between NSAF and GeneChip data-
sets was that not only both types of datasets obeyed a
PLGEM, but the most critical parameter of the model, i.e. the
power coefficient k, was surprisingly conserved. The fact that
this parameter was always inside the critical range 0 � k � 1
for more than 100 distinct GeneChip datasets from five dis-
tinct species as well as for four NSAF datasets, three from
yeast and one from human samples, indicates that this global
error model might really be a general model of GeneChip and
NSAF data regardless of the specific nature of the analyzed
samples. The main consequence of such a model with such
constraints would be that transcript or protein abundance
levels of more highly expressed genes would be intrinsically
more stable than those of more lowly expressed genes. This
observation raises the question about the reason for this
skew. A possible explanation for this is that cells might have
skewed their gene expression control system by concentrat-
ing their efforts in more precisely controlling the expression of
genes with a potentially higher impact on cellular functions
rather than dissipating energy in controlling the expression of
genes the products of which would be expressed at low levels
anyway. What argues against this explanation is that it as-
sumes a direct relationship between the expression level of a
gene and the biological impact of the encoded protein, which
might not always be the case. Investigation of the real reason
behind this peculiar phenomenon goes well beyond the scope
of the present work.

It has to be noted that there is nothing radically distinct
about PLGEM as compared with previously proposed error
models for these types of measurements. In fact, PLGEM

could be seen as a generalization of these models. For in-
stance, two-component error models have been proposed
previously for atomic absorption spectroscopy (58), gas chro-
matography-MS (58), LC-MS (36), or microarray data (29).
These models assume a constant rowS.D. for very low abun-
dances and a constant rowCV for higher abundances. A con-
stant rowCV model would in fact be able to explain an in-
crease of the rowS.D. as the function of the rowMean but
would not account for the progressive decay of rowCV that
we have observed in both GeneChip data (20) and NSAF data
(Fig. 2) for increasingly higher values of the rowMean. PLGEM,
conversely, by not assuming any particular value of the power
coefficient k, relies on more relaxed assumptions. Notably a
PLGEM with k � 1 would result in an approximately constant
rowCV model. Thus, a PLGEM with k � 1 would be difficult to
distinguish from a ‘constant-CV‘ model especially if the ana-
lyzed dynamic range was not sufficiently large. The wide
dynamic range of abundance levels that can be measured
with NSAF and the GeneChip technology instead allows a
clear distinction between these two models. The fact that we
observed the power coefficient k to be in the range 0.7–0.8 for
most analyzed GeneChip and NSAF datasets (Fig. 4) might
therefore explain why in the past the constant-CV assumption
has been often taken for granted.

Identification of Differentially Abundant Proteins—The unbi-
ased sampling nature of shotgun proteomics approaches the-
oretically allows the detection of virtually any protein in a
sample regardless of its concentration provided that the ex-
periment is replicated a sufficiently large number of times (23).
However, these extremely lowly abundant proteins pose nu-
merous challenges in their statistical analysis because of the
presence of several zero values and the intrinsically low re-
producibility described above. To increase the confidence of
downstream statistical analyses, it is therefore common prac-
tice to discard proteins identified only in a minority of the
analyzed replicates of a MudPIT experiment or transcripts
flagged as absent in the majority of replicates in a GeneChip
experiment. But in a comparative analysis, where significant
differences between two experimental conditions are sought,
a transcript or a protein that passed the above criteria in one
experimental condition but was virtually absent in the other
condition would represent a valuable candidate for follow-up
studies. Statistical methods able to deal with these lowly
abundant transcripts or proteins and to detect a significant
difference between a virtual absence and a modest presence
will certainly expand the coverage by which we can interpret
the outcomes of these experiments.

We have shown here that PLGEM fits equally well over the
whole dynamic range of average NSAF values even to pro-
teins identified in a minor fraction of all available replicates, i.e.
three of eight in the case of the yeast dataset and three of nine
in the case of the Mediator dataset. In addition, we observed
that PLGEM fitted equally well also on NSAF datasets where
�50% of the proteins were identified in only one or two
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replicates (data not shown). This suggests that PLGEM has
the potential to improve our ability to cope with these lowly
abundant proteins because it provides a reasonable estimate
of the expected standard deviation despite the presence of
only a small number of non-zero NSAF values.

The performance of a PLGEM-based method for the anal-
ysis of GeneChip experiments has already been thoroughly
investigated and compared with the behavior of other com-
monly used statistical methods (20). In the present work, we
have shown that the use of PLGEM-based standard devia-
tions to calculate STN ratios in an NSAF dataset improves our
ability to determine protein expression changes between
yeast sampled at LP and SP (Fig. 6 and Supplemental Table
3). Although determining which proteins were present in one
growth condition and absent in another is relatively straight-
forward, determining changes in abundance of proteins found
in both LP and SP is challenging. The PLGEM-STN statistic
outperformed both FC and Standard-STN by being more
conservative with proteins of low abundance than proteins
with high abundance. In conclusion, we envision a broad
range of applications of PLGEM in the analysis of NSAF data.
PLGEM might assist in prioritizing the follow-up analysis of
candidate proteins that show significant abundance changes
between any two samples of interest, i.e. in the comparison of
a wild-type versus a knock-out cell line, a diseased versus a
normal tissue, or a treated versus an untreated patient.
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