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ABSTRACT

This paper presents a comparative analysis of transformer-
based fusion methods applied to a novel multimodal dataset
for remote sensing semantic segmentation. This investiga-
tion evaluates the impact of several fusion methods on the
accuracy of the results. In particular, for early fusion, we
investigate the Early Concatenation. For middle fusion, we
investigate four methods, namely the Token Patch Embed-
ding, Channel Patch Embedding, Token Fusion at Attention
Level, and Cross-Attention. Finally, as a representative of late
fusion, we investigate the use of Late Concatenation. The
methods presented here are specifically designed to operate
effectively with all modalities under investigation. Experi-
ments conducted on the Ticino dataset show that Late Con-
catenation outperforms the best single modality RGB method
of 4.04%, 2.24% and 3.47% respectively on accuracy, preci-
sion and mIoU. This study provides an opportunity to further
explore fusion methods utilizing transformers, thereby en-
hancing our understanding of the potential of data fusion.

Index Terms— Remote sensing, Semantic Segmentation,
Multimodal fusion, Vision Transformers

1. INTRODUCTION

Multimodal Learning (MML) represents a versatile approach
to constructing AI models capable of extracting and correlat-
ing information from various data sources, which are com-
monly referred to as modalities [1]. In Remote Sensing (RS),
each modality is often associated with a specific sensor, serv-
ing as a distinct information source characterized by its own
unique statistical attributes [2]. The fusion of different RS
data sources captured within the same geographic area holds
great promise as a strategy to enhance material identification
on the Earth’s surface [3]. This approach exploits the infor-
mation present in diverse data sources, enabling more detailed
and precise scene understanding, particularly in challenging
scenarios where individual modalities may struggle to differ-
entiate between similar surface categories. One of the central
tasks in RS is semantic segmentation. This method involves
classifying each individual pixel within an image, thus yield-
ing an output map with the same spatial extent as the input

image. In this map, pixels are grouped into areas that share
the same semantic class [4]. Semantic segmentation plays a
crucial role in various remote sensing applications, includ-
ing precision agriculture, environmental monitoring, land-use
planning, ecosystem-oriented natural resource management,
food supply management, nature conservation, and numerous
other essential domains. Moreover, semantic segmentation,
due to its inherent complexity, poses a unique challenge in
the context of multimodal learning. Semantic segmentation,
like several other computer vision tasks, has advanced sig-
nificantly with the introduction of deep learning techniques.
Notably, this progress is exemplified by the emergence of two
key neural architectures: convolutional neural networks [5]
and vision transformers [6]. Transformer-based architectures
have emerged as a prominent choice in MML research, but
their utilization for semantic segmentation of RS images re-
mains relatively underexplored [7]. Transformers present two
critical challenges: the need for large amounts of data, and
high computational complexity due to the quadratic nature
of the self-attention mechanism that characterizes them. To
address these concerns, the Shifted-Window Transformer
(Swin) was introduced to specifically resolve issues related
to computational complexity [8], while data-efficient trans-
formers were proposed to mitigate the demands for extensive
training data [9].

In this work, we present a comprehensive analysis of mul-
timodal fusion methods for semantic segmentation of RS im-
ages based on the use of Swin-UperNet transformers [8]. We
experimented with several early, middle and late fusion meth-
ods on the newly introduced Ticino dataset [10]. This dataset
consists of 1502 tiles covering an area of 1332 km2, featur-
ing three modalities: RGB, Hyperspectral (HS), and Digital
Terrain Model (DTM); as well as a Land-Cover pixel-wise
labeling. Results show the effectiveness of multimodal ap-
proaches when compared with single modality approaches,
as well as they reveal that middle and late fusion methods
achieve greater accuracy than an early fusion method. More-
over, insights regarding the computational complexity of the
fusion methods will be discussed.
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Fig. 1. Fusion methods schemes considered in this work: (a) Early concatenation; (b) Token Patch Embedding; (c) Channel
Patch Embedding; (d) Token Fusion at Attention Level; (e) Cross-Attention; and (f) Late Concatenation.

2. METHODOLOGY

All the fusion techniques we experimented with, are based
on U-shaped neural architecture composed of an encoder
and a decoder module. The encoder is a hierarchical shifted
window-based vision transformer (Swin) [8], while the de-
coder is a UperNet with skip connections [11], which is a
powerful semantic segmentation model known for its ef-
fectiveness in capturing intricate spatial relationships and
high-level context. We deployed and compared six multi-
modal fusion techniques: (1) Early Concatenation (EC); (2)
Token Patch Embedding (TPE); (3) Channel Patch Embed-
ding (CPE); (4) Token Fusion at Attention Level (TFA); (5)
Cross-Attention (CA); (6) Late Concatenation (LC). A gen-
eralized schematic representation of these fusion methods
can be seen in Figure 1. They are categorized into three
classes based on where the fusion occurs: early fusion at
the input level Figure 1(a), middle fusion at an intermedi-
ate point within the encoder Figure 1(b)-(e) and late fusion
after the encoder’s processing Figure 1(f). The investigated
methodologies can vary considerably in terms of complexity,
performance capabilities and computation requirements. For
both Early Concatenation and Late Concatenation methods,
we needed to modify the Swin-UperNet to accommodate all
three modalities presented in the dataset used in our experi-
ments. In the case of the middle fusion methods, we had to
devise suitable strategies for integrating these three modali-
ties, drawing inspiration from prior research in multimodal
fusion.

2.1. Swin-based encoder

The encoder is based on the canonical Swin transfomer ar-
chitecture [8], consisting of 4 stages {Si}4i=1. Each Stage,
apart from the first one, is characterized by a Patch Merging
module and a Swin Transformer Block (STB). Each Block in-

cludes at least a pair of consecutive Window Multi-head Self
Attention (W-MSA) and Shifted Window Multi-head Self At-
tention (SW-MSA) modules. The first stage S1 consists of
a Linear Embedding layer and a STB. At the beginning, the
image is divided into N patches {pi}Ni=1 that are then intro-
duced into the first Stage S1. Here, each patch pi is projected
by the Linear Embedding (embedding()) layer into a token
zi. All tokens Z = {zi}Ni=1 enter into the STB and con-
sequently in the self-attention modules that extract the new
tokens and give them to the stage S2. Each stage, from the
second to the last, starts with the Patch Merging module that
reduces the number of patches grouping them 2 by 2 and then
giving them to the STB. Given the U-shape of our encoder-
decoder model, intermediate representations produced after
each stage of the Swin encoder are subsequently fed into the
symmetric UperNet decoder using skip connections.

2.2. Fusion techniques

Let’s consider the case of fusing three modalities {Xi}i=1,2,3

(RGB, HS and DTM in this paper). Zi denotes the respective
set of token embeddings of the modality Xi and Z the input
of the STB derived by the previous operations.

Early fusion. The simplest fusion strategy is the Early
Concatenation (EC), where the images from multiple modal-
ities are concatenated (concat()) at input level on channel di-
mension and then processed by one Swin-based Encoder:

X(1,2,3) = concat(X1, X2, X3)

Z = embedding(X(1,2,3)).

Middle fusion. A middle fusion solution is the Token Patch
Embedding (TPE) concatenation in which the token embed-
ding sequences from multiple modalities are concatenated
and fed into the Swin Transformer layers of the first STB [6]:

Zi = embedding(Xi) with i = 1, 2, 3



Z = concat(Z1, Z2, Z3).

Another middle fusion method is the Channel Patch Em-
bedding (CPE) [12], which involves generating individual
token embeddings for each channel within every modality.
These embeddings are then concatenated and fed as input to
the first STB. For example for hyperspectral data, this would
correspond to the individual spectral bands, while for RGB
data, to the different color channels. Formally:

Zi,j = embedding(Xi,j)

where i is for the modality and j for the channel of the modal-
ity. Then, for i = 1, 2, 3 and each channel j:

Z = concat(Zi,j).

The Token Fusion at Attention Level (TFA) method in-
volves processing the three modalities separately within three
distinct Swin Transformer encoders, alternating one and three
streams throughout the process. It has been designed by us as
a variant of the Token Patch Embedding where the concatena-
tion is done at the token level at each stage. Before computing
W-MSA and before SW-MSA in each transformer block, the
tokens generated by the three modalities up to that point are
concatenated, allowing for joint attention computation. After
attention computation, the outputs are divided (split()) and
processed individually by the three encoders until the next at-
tention module. In this particular case, let’s also consider Y l

i

as the tokens of the i-th modality at stage l (in the first stage
it will be equal to Zi) and Y l as the input of the Transformer
Block in Sl. For each stage l the operations are as follows:

Y l = concat(Y l
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l
3 )
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These operations are computed for every self-attention oper-
ation in every STB. Every Y l is fed into the decoder through
skip connections.

Cross Attention (CA) is a method used in two-stream
Transformers [13], to facilitate cross-modal interactions by
exchanging query embeddings between modalities. In this
case, we leveraged the third modality following the idea
outlined by Dufter et al. [14], and utilizing it as positional
embedding. Considering Qi, Ki, Vi, the query, key and
value of the canonical self-attention technique for the i-th
modality and MSA as self-attention operator valid for both
W-MSA and SW-MSA, the cross attention between only X1

and X2 is computed as:{
M1 = MSA(Q2,K1,V1)

M2 = MSA(Q1,K2,V2)

where M1 and M2 are the token outputs for the first stream
of modality 1 and the second stream of modality 2. Cross-
attention allows for cross-modal interactions, highlighting the
importance of considering self-attention within each modality
for a more comprehensive understanding.

Late fusion. Late Concatenation (LC) works in a multi-
stream mode. It involves processing the three modalities sep-
arately in three distinct Swin Transformer encoders. The out-
put of each stage is then concatenated on the channel dimen-
sion and into the UperNet decoder. Formally, let’s consider
the output at each stage l for each i-th modality as Ol

i:

Oj = concat(Ol
1, O

l
2, O

l
3).

Each Oj is then used in the skip connection with the corre-
spondent layer of the UperNet decoder.

3. EXPERIMENTS

The pansharpened version of the Ticino dataset [10] was used
in our experiments. The data cover an area in the South of
Milan of around 1332 km2 with a total of 1502 tiles. This
version of the dataset consists of three modalities: RGB, Pan-
sharpenend Hyperspectral (HS↑) and DTM. These modalities
offer intrinsic advantages defined by their nature. In par-
ticular, RGB is mainly considered for spatial information,
HS↑ for spectral information and DTM for morphological
structure. RGB has 3 color bands and a spatial resolution of
about 2m/px. HS↑ has a spatial resolution of 5m/px and 182
spectral bands cleaned from corrupted bands [10] that cov-
ers both VNIR and SWIR components of the spectrum (400-
2500nm), having more discriminating power with materials.
DTM image consists of a single band with a spatial resolu-
tion of 5m/px and an elevation range from 51.86 to 124.75
meters. Finally, the labeling considered in our experiments
is the Land Cover from the Ticino dataset. It consists of 8
semantic classes: Background, Building, Road, Residential,
Industrial, Forest, Farmland, and Water.

To address the curse of dimensionality problem, typical
of HS data, and to adapt it to our experiments and resources,
we applied Principal Component Analysis to the pansharp-
ened image, extracting spectrally homogeneous regions. The
first four principal components were retained, accounting for
99% of the variation and resulting in a revised HS* with four
spectral bands. To train and test the models, the 1502 tiles
were split into 1051 training, 225 validation, and 226 test im-
ages [10].

3.1. Implementation Details

All fusion methods were implemented using three modalities:
RGB, HS*, and DTM except for Cross-Attention in which
we employed RGB and HS* as main modalities and DTM
as positional embedding. Before training, a data augmenta-
tion strategy based on the Albumentations library [15] was



Table 1. Land Cover overall results for each method, dividing
single modality and multimodality fusion methods. The bold
and underlined values represent the best and the second-best
performance achieved for each metric, respectively.

Method Acc Pr mIoU Macs Pars

Si
ng

le RGB 58.82 63.66 48.75 9.65 39.28
HS* 50.84 54.87 39.82 9.65 39.28
DTM 18.30 20.55 31.81 9.65 39.28

M
ul

ti

Early Conc. (EC) 59.12 64.01 49.05 9.68 39.29
Tok. Pat. Emb. (TPE) 60.28 64.71 50.04 16.40 60.60
Cha. Pat. Emb. (CPE) 56.89 62.28 47.12 65.43 241.96
Tok. Fus. Att. (TFA) 60.49 64.99 50.32 16.14 38.74
Cross-Att. (CA) 62.87 65.38 51.99 37.86 111.61
Late Conc. (LC) 62.86 65.90 52.23 16.14 63.29

applied. It includes random cropping, rotation, and horizon-
tal and vertical flipping to images resized to 256x256 pixels
and normalized. All models employed a Swin encoder con-
figuration with a patch size of 4, a window size of 7, and a
depth specified as 2, 2, 6, 2 along with attention heads set to
3, 6, 12, 24 and expansion layer. Due to limitations in com-
putational resources, the embedding dimension for each Swin
Transformer was adjusted accordingly: 96 for Early Concate-
nation, Token Patch Embedding and Cross-Attention, 48 for
Token Fusion at the Attention Level and Late Concatenation,
and 24 for the Channel Patch Embedding method. All models
were subject to a stochastic depth regularization of 0.3. For
training, we employed Adam optimizer and trained for 250
epochs with an initial learning rate of 10−3 and weight decay
10−4. A learning rate scheduler was also applied to reduce it.
The cross-entropy loss was used for training. All experiments
were run on NVIDIA GTX 1070 GPU with 8GB of RAM.

3.2. Results

This section presents the outcomes of the experiments, which
have been assessed and examined using three evaluation met-
rics averaged on classes: Accuracy (Acc), Precision (Pr)
and mean Intersection over Union (mIoU). We also mea-
sured the computational complexity of each method using the
number (Million) of parameters of the neural model (Pars)
and the number (Giga) of multiply–accumulate operations
(Macs). Table 1 reports the results achieved by every tested
method, comparing both single modality and multimodality
approaches. Figure 2 shows examples of visual results from
each method. As expected, due to the higher spatial reso-
lution, RGB mode performs better among single-mode ap-
proaches, achieving superior performance to HS* and DTM
on all metrics.

Comparing multimodal and single modality approaches,
it is possible to note that, apart from Channel Patch Embed-
ding, all the multimodal methods outperform RGB alone.
Among these methods, Cross-Attention and Late Concate-
nation achieve the best results. They are both comparable,
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Fig. 2. RGB samples at top-left row; Ground-truth (GT) at
top-right row; single modality results: RGB, HS* and DTM;
multimodality results: EC, TPE, CPE, TFA, CA and LC.

nonetheless, the former is the best on Acc, while the latter
reaches better results on Pr and mIoU. Nevertheless, when
taking into account Pars and Macs in the analysis, it be-
comes evident that the Late Concatenation method exhibits
a significantly lower number of Pars compared to the Cross-
Attention approach. In contrast, the Cross-Attention method
substantially increases the complexity of the RGB network
by about twice. The same argument is valid for the Macs
where the late Concatenation has less than half Macs than
Cross-Attention. Therefore, we consider Late Concatenation
as the best methods, outperforming RGB of 4.04%, 2.24%
and 3.47% on Acc, Pr and mIoU, respectively. Figure 3 shows
a comparison of all methods (excluding HS* and DTM mod-
els). Ideally, the best method is the one in the upper right
part of the plot with a small circle that indicates the number
of Pars, confirming the conclusion that Late Concatenation
is the method that overall performs better. It is worth noting
that Token Fusion at Attention Level represents an excellent
trade-off between performance and resources used, since it
is superior to RGB and, at the same time, has fewer Pars
with comparable complexity in terms of Mac (equal to Late
Concatenation).

4. CONCLUSION

In this paper, we presented a comprehensive analysis of mul-
timodal fusion methods for RS semantic segmentation using
vision transformers. We considered the multimodal dataset
Ticino, with three modalities (RGB, HS↑, and DTM), and
the transformer models Swin-UperNet. We compared single
modality and multimodal approaches, considering six differ-
ent fusion methods. In the comparison, performance, Macs,
and parameters have been evaluated. Excluding Channel



Fig. 3. Comparison of the performance fusion methods based
on Acc (x), mIoU (y) and Parameters (area of the circles).

Patch Embedding, five of six multimodal approaches out-
performed RGB and consequently any other single modality
approach. In particular, compared with RGB, two methods
distinguished themselves. The Token Fusion at Attention
Level revealed to be the best compromise in terms of perfor-
mance (outperforming RGB) and memory (parameters). The
Late Concatenation method proved to be the best multimodal
method. Results demonstrate that a multimodal approach
is more efficient in terms of performance while keeping the
consumption of resources comparable with single modality
methods.
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