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Abstract Investigating the polarization of weak bosons
provides an important probe of the scalar and gauge sector
of the Standard Model. This can be done in the Higgs decay
to four leptons, whose Standard-Model leading-order ampli-
tude enables to generate polarized observables from unpo-
larized ones via a fully-differential reweighting method. We
study the Z-boson polarization from the decay of a Higgs
boson produced in association with two jets, both in the
gluon-fusion and in the vector-boson fusion channel. We also
address the possibility of extending the results of this work
to higher orders in perturbation theory.

1 Introduction

The discovery of the Higgs boson [1,2] has enabled a large
number of tests of the Standard Model (SM) scalar and gauge
sectors.

In the SM, electroweak bosons (W and Z) acquire their
mass and, as a consequence, an additional longitudinal polar-
ization, through their coupling to the Higgs field. Therefore
the interplay between the Higgs boson and weak-boson polar-
izations represents a crucial probe for the SM electroweak
symmetry breaking mechanism as well as an ideal framework
for searches of possible modifications due to new-physics
effects.

The gold-plated channel for these searches is given by
vector-boson scattering (VBS), as in the high-energy regime
the unitarity-violating behaviour of the scattering among lon-
gitudinal bosons is regularized by the inclusion of Higgs
exchange contributions [3–5]. Studying the Higgs coupling
to polarized weak bosons can provide relevant insight also at
the Higgs-boson resonance itself [6], in particular with the
aim of discriminating between the SM and models with mod-
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ified Higgs sectors. Since vector-boson polarizations are best
accessed through the angular distribution of their decay prod-
ucts, the cleanest channel is the Higgs decay to four charged
leptons.

The Higgs-boson decay into four charged leptons has been
widely studied by the ATLAS and CMS experimental collab-
orations with Run-1 (7 and 8 TeV) and Run-2 data (13 TeV),
with the purpose of determining the Higgs-boson mass [7–9]
and width [10–12], its spin and parity properties [7,13–15],
the inclusive and differential cross-sections [14–20], and the
Higgs coupling to weak bosons in the on-shell and off-shell
regions [12–14,21–23]. So far, all measurements are compat-
ible with the SM predictions. This decay channel features a
large signal-to-background ratio, thanks to the possibility to
fully reconstruct the decay products and to small background
contributions.

The four-lepton Higgs-boson decay has been extensively
investigated also from a theoretical point of view, providing
a very precise characterisation of the scalar boson properties.
The SM decay of a Higgs boson into four leptons is known
perturbatively up to next-to-leading order (NLO) in the elec-
troweak (EW) coupling [24] and has been matched to QED
parton-showers [25]. This decay channel has been computed
at EW NLO also for beyond-the-SM theories with modi-
fied Higgs sectors [26–28], and has been investigated within
an effective-field-theory framework [29–31]. Spin effects,
angular and energy correlations have been widely studied
[32–41].

At the Large Hadron Collider (LHC), the Higgs boson is
mostly produced in the gluon-fusion (GGF) and in the vector-
boson-fusion (VBF) channels. Experimental analyses can be
either inclusive or exclusive in the production mode of the
Higgs boson, depending on the specific target of the investi-
gation. For the purposes of this work, we only consider the
production of a Higgs boson in association with two jets. In
this channel the GGF and VBF contributions are comparable.
The SM prediction for an on-shell Higgs boson produced in
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GGF in association with two jets is known at leading order
(LO) in QCD, including also dependence on the top-quark
mass [42–44]. Predictions in the large-mt limit are known up
to NLO QCD [45]. The full mass dependence has also been
studied in the presence of high-energy jets [46]. The predic-
tions for VBF are known at NLO QCD+EW accuracy [47],
and up to N3LO QCD [48] in the structure-function approx-
imation [49]. It has been shown [42,43] that for an on-shell
Higgs produced in GGF in association with two jets, the
large-mt approximation gives a very good description of the
loop-induced SM process with full mt dependence, of order
O(α4

s α), provided that the transverse-momenta of jets and the
Higgs-boson mass are smaller than the top-quark mass. The
logarithmic structure of Higgs production in association with
up to two jets and the kinematic configurations where finite
top-mass effects become relevant are also known [50,51].
The large-mt approximation works well also in the presence
of a two-jet system with large invariant mass [42,43,52],
which is the typical VBF phase-space region. The interfer-
ence between VBF and GGF signals has been proved to be
negligible [53].

The phenomenology of weak-boson polarizations has
been widely investigated both in experimental analyses and
in theoretical studies.

The ATLAS and CMS collaborations have measured final-
state vector-boson polarizations (typically using the leptonic
decay channel) in several multi-boson processes in 8 and 13
TeV hadronic collisions, including V+jets [54–57], di-boson
production [58] and vector-boson scattering [59]. Polariza-
tions have also been measured for W bosons produced in
top-quark decays [60–62], as well as for V bosons produced
in Higgs-boson decays, h → VV ∗ [63,64]. Enhanced sen-
sitivity to polarizations is expected in the forthcoming high-
luminosity and high-energy LHC runs [65,66].

From the theory side, the W-boson polarization at the LHC
has been studied in Ref. [67] in the absence of lepton cuts.
Realistic selection cuts has been introduced in Ref. [68] both
in V + jets and in other multi-boson production processes.
The interference between amplitudes for different polariza-
tions has been investigated in Ref. [69].

In Ref. [70] a simple and natural method to define cross
sections corresponding to vector bosons of definite polariza-
tion has been proposed. This method has been applied to
study the polarization of W and Z bosons in vector-boson
scattering at LO [70–72] and in di-boson production at NLO
QCD [73,74] with purely leptonic final states. Polarizations
in W±Z production, including NLO QCD and EW correc-
tions have been analyzed in Refs. [75,76]. Recently Mad-
Graph has introduced the possibility of generating polar-
ized amplitudes [77]. Ref. [78] has suggested that a study of
vector-boson polarizations in gluon-induced ZZ production
could be sensitive to the Ztt̄ coupling.

A study of the vector-boson polarization effects at the
Higgs resonance in VBF has been performed in the W+W−
channel, using effective Higgs couplings to longitudinal and
transverse bosons and including a general dimension-six EFT
interpretation [6]. The possibility of measuring the coupling
of the Higgs to polarized bosons is studied in Ref. [64].

In this work we perform a phenomenological study of
polarized electroweak bosons from the decay of a SM Higgs
boson produced in association with two jets at the LHC. In
Ref. [79] a first assessment of polarized bosons from Higgs
decays has been performed in the LO production of a Higgs
in gluon fusion, that is, for a Higgs with vanishing transverse
momentum. In this paper we consider the case in which the
Higgs boson is produced in association with two jets, both in
VBF and in GGF. Although the focus is on the Higgs signals,
a number of comments are made concerning the impact of the
QCD background and of the pure electroweak contributions
to VBF.

The phenomenological analysis is limited to the four-
lepton Higgs decay, with two pairs of opposite-charge leptons
and different flavours. Despite a very small cross-section, due
to the small branching ratio, the considered decay channel has
two advantages. First, it enables the complete reconstruction
of the Higgs-boson kinematics, thanks to the absence of neu-
trinos in the final state. Second, it allows for an unambiguous
determination of the kinematics of each Z-boson, thanks to
the different lepton flavours.

VBF and GGF Higgs production with two jets has already
been widely investigated [80–83], mostly with the purpose
of finding kinematic regimes and observables that discrimi-
nate between the two signals. In this work, however, we do
not aim to separate the Higgs signals, instead, we address the
possibility to perform a polarization study of vector bosons in
Higgs decay, rather independently of the Higgs-production
mechanism. Given the very small fraction of Higgs bosons
decaying into four charged leptons, being able to sum over
different production channels is crucial to enhance the exper-
imental sensitivity to the polarization structure.

As a last comment, we choose to work in the large-mt

limit for the GGF signal. Given the purposes of this work, it
represents a satisfactory approximation.

This paper is organised as follows. In Sect. 2 we show the
details of the matrix-element reweighting method that we use
to generate polarized cross-sections and distributions. The
fiducial setup we employ for numerical simulations is given
in Sect. 4. In Sect. 5 we validate the reweighting technique
comparing its results with those obtained directly simulating
polarized events [70]. The polarized results for VBF and GGF
signals are shown and discussed in Sect. 6. In Sect. 7 we draw
our conclusions.
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Fig. 1 General structure of the Standard Model amplitude for the pro-
duction of a Higgs boson (decaying into four charged leptons) in asso-
ciation with jets

2 Matrix-element reweighting

In Fig. 1 we show the general structure of Higgs-mediated
amplitudes contributing to a reaction producing the Higgs-
decay products (four charged-leptons) and an arbitrary num-
ber of jets.

We notice that these amplitudes (which we call signal
contributions) are only a sub-set of all amplitudes for the
production of four charged leptons in association with jets.
Therefore, they are not gauge invariant per sè. Nonetheless,
we have checked numerically that with a sharp but realistic
cut on the invariant mass of the four leptons, e.g. |M4� −
Mh| < 5 GeV, the s-channel Higgs contributions are largely
dominant and sufficient to describe the full-matrix-element
calculation up to few-permille effects.

We observe that for this work it is important that the Higgs-
decay products can be unambiguously identified and distin-
guished from the additional jets produced in association with
the Higgs boson in order to minimize the impact of irre-
ducible backgrounds and reconstruction effects.

Provided we define vector-boson polarizations in the
Higgs rest frame, we can easily parametrize the Higgs-decay
amplitude as a sum of polarized and interference terms [79]:

|ASM
h→ZZ|2 =

[
|ALL|2 + |A++|2 + |A−−|2

+2 Re(ALL
∗A++) + 2 Re(ALL

∗A−−)

+2 Re(A++∗A−−)
]

(1)

where the first three terms in the sum correspond to a definite
polarization state λ for both bosons, longitudinal (λ = L),
right-handed (λ = +) and left-handed (λ = −), while the
fourth and fifth terms are contributions from longitudinal-
transverse interference, and the last one comes from left-
right interference. Note that, since polarization vectors are
defined in the Higgs-boson rest frame there are no mixed-
state contributions, i.e. Aλλ′ = 0 for λ �= λ′. The analytic

expression for each term of the sum of Eq. 1 reads
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(7)

In Eqs. 2–7 we have defined the P(Qi ) propagator factor as

P(Qi ) = 2 ghZZ Q2
i(

Q2
i − M2

Z

)2 + Γ 2
Z M2

Z

, (8)

depending on the Higgs-to-gauge-boson coupling (ghZZ), the
Z pole mass and width, and the invariant mass of the i-th Z
boson (Qi ). We have also introduced the factor

K = Q2 − Q2
1 − Q2

2

2 Q1 Q2
, (9)
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where Q is the Higgs-boson invariant mass. The cL , cR
parameters represent the SM left- and right-chirality cou-
pling of the Z boson to massless leptons. The variables
θ∗

1(2), φ
∗
1(2) are the positively-charged-lepton decay angles

computed in the corresponding Z-boson rest frame, with
respect to the boson flight direction in the Higgs rest frame,
and Δφ∗

12 = φ∗
1 − φ∗

2 .
Instead of considering the left-handed and right-handed

contributions separately, we combine them in a single trans-
verse (T) contribution which includes also the left-right inter-
ference term,

|ATT|2 = |A++|2 + |A−−|2 + 2 Re(A++∗A−−) . (10)

The definition of the transverse mode as a coherent sum of
the left and right modes minimizes the interference effects,
which now come only from longitudinal-transverse terms in
Eqs. 5-6. Moreover, it is known [79] that in the Higgs decay to
four charged leptons the longitudinal-transverse interference
is only a few percent of the total result, much smaller than the
interference between the right and left amplitudes included in
Eq. 10. Introducing the following longitudinal or transverse
weights,

wλ =
∣∣Aλλ

∣∣2

∣∣ASM
h→ZZ

∣∣2 , λ = L, T , (11)

it is possible to compute any polarized distribution, with arbi-
trary cuts on the lepton kinematics, multiplying the weight
of each unpolarized event by the factor in Eq. 11. In this way
it becomes unnecessary to generate separately the individual
polarized contributions. All the subtleties related to sampling
events with negative weights are avoided.

We stress that this procedure is accurate only because
of the special (and relatively simple) Higgs-decay analytic
structure. Applying the same approach to general multi-
boson processes would require building weights that depend
on non-factorized amplitudes, which would be much more
time-consuming and equivalent to directly generate events
with polarized amplitudes.

This method is designed for the LO Higgs decay into four
leptons. However, it could be extended to NLO, provided that
it is possible to disentangle polarized contributions to the Z
boson propagators. The NLO QCD corrections would only
affect the production mechanism, therefore this entire for-
malism can be extended with no modifications to this pertur-
bative order. However, we do not include QCD radiative cor-
rections to the specific production processes that are consid-
ered in this paper, as this would not affect the main results of
this work. The extension of this reweighting method to NLO
EW corrections is more involved, in particular for the virtual
contributions. These corrections are of the order of 2% [24].
The description of weak boson polarizations is not trivial if
EW corrections are included, since a standard narrow-width

or double-pole approximation [84] is not viable for vector
bosons from a 125-GeV Higgs-boson decay. Below the 2MV

threshold the NLO EW corrections can be computed via an
improved-Born approximation [85], which is only valid for
MVV ≈ 2MV − nΓV, with n = 2 ÷ 3. However, a rigor-
ous description of weak boson polarizations in Higgs decay
at NLO EW is possible in the single-pole approximation,
namely projecting on mass shell only one of the two vector
bosons. This is discussed in Sect. 3.

3 Single-pole approximation

In this section we briefly address the possibility of studying
Z boson polarizations in Higgs decay including NLO EW
effects. The presence of non-factorizable corrections both in
the real and the virtual contributions makes the separation of
polarizations of off-shell Z bosons not well defined, as several
diagram topologies do not feature two s-channel Z-boson
propagators. Such diagrams cannot be simply dropped as the
result would not be gauge invariant. The pole approximation
[86,87] can help in addressing this issue. Since on the Higgs
resonance one of the two Z bosons is off its mass shell, it is
only possible to project on-shell one of the two bosons. This
method consists in:

– selecting only diagrams which feature at least a resonant
Z boson decaying into two leptons,

– projecting the momenta of the s-channel Z-boson decay
products such that their sum gives the momentum of an
on-shell Z momentum,

– computing the numerator of the amplitude with the on-
shell-projected kinematics, while evaluating the denom-
inator with the original kinematics, to retain the Breit-
Wigner modulation of an off-shell Z boson.

The method is accurate in the vicinity of the resonance pole
mass [85–87], and is characterized by an intrinsic uncer-
tainty of order O(ΓZ/MZ) ≈ O(α). This procedure requires
a careful treatment of non-factorizable QED corrections
[85,88,89], because of spurious infrared singularities that
arise when setting the Z-boson momentum on its mass shell.
Furthermore, the presence of photon contributions in the vir-
tual corrections makes it essential to constrain the decay lep-
tons to have an invariant mass that is as close as possible to the
Z pole mass. This requirement has the advantage of making
the Z-resonant contributions more dominant over the non-
resonant ones, giving a more accurate pole-approximated
description of the process. This induces the loss of signal
events, due to the tighter constraint on the two leptons decay-
ing from the almost-on-shell Z boson. We have calculated that
with realistic kinematic selections (see LEP setup of Sect. 4),
the additional constraint |Me+e− −MZ| < 5 GeV reduces the
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VBF total cross-section by 70%. Most of the effect comes
from the fact that only half of the events contain an almost-
on-shell e+e− pair. However, one should include also the
contribution from almost-on-shell μ+μ− pairs.

The choice of the specific on-shell projection is not unique
[70,71,84,85], and introduces an artificial modification of the
momenta, which depends on the physical quantities that one
chooses to conserve. In Higgs decay, the choice of such a
projection is even more delicate than in other processes, as
changing the momenta of one Z boson could induce a shift
in the total momentum of the Higgs boson itself, resulting in
a bad phase-space sampling in the region of the Higgs res-
onance and in large discrepancies w.r.t. the full calculation.
Therefore, an essential requirement for the on-shell projec-
tion is to preserve the total momentum of the four leptons. A
viable projection for the process h → Z1(→ e+e−) Z∗

2(→
μ+μ−) preserves:

– the spatial direction of e± in the rest frame of the e+e−
system,

– the spatial direction of μ± in the rest frame of the μ+μ−
system,

– the spatial direction of the e+e− system in the rest frame
of the four-lepton system,

– the invariant mass of the μ+μ− system,
– the four-momentum of the four-lepton system.

This choice preserves the decay angles of the leptons in the
corresponding Z-boson rest frame, minimizing the effect of
the pole approximation on polarization-sensitive variables.
This specific on-shell projection only works if the invariant
mass of the Higgs boson is larger than the sum MZ +Mμ+μ− ,
giving a decrease in the total cross-section, which is of the
same order of magnitude as the intrinsic uncertainty of the
pole approximation.

This approach, despite some technical details which must
be properly taken care of, is expected to give a reliable
description of the Higgs-boson decay into four leptons at
NLO EW, in the case where one of the two lepton pairs is
close to the Z-boson mass shell. The single-pole approxima-
tion allows to select in a gauge invariant way only resonant
contributions and therefore to reliably separate the polariza-
tions of a single boson at the amplitude level. Since in the SM
the Higgs couples to two weak bosons with like-wise polar-
ization mode, selecting the polarization mode of the on-shell
Z boson intrinsically gives important information about the
polarization of the off-shell boson, which can be then stud-
ied by means of the usual angular observables of its decay
leptons.

We conclude that the single-pole approximation repre-
sents a viable procedure to extend the LO polarization stud-
ies on the Higgs resonance to higher orders, in particular for
NLO EW corrections. We leave this for future investigations.

4 Setup

We now proceed to the results for the parton-level process

p p → j j h(→ e+e−μ+μ−) , (12)

at the LHC with 13 TeV centre-of-mass energy. We have
computed VBF and GGF signals at LO, the former simulated
in the SM, the latter in the large-mt approximation, with the
same numerical setup. A unit CKM matrix is assumed in both
processes. We use NNPDF3.0 parton distribution functions
(PDF) [90] computed at LO with αs(MZ) = 0.118, via the
LHAPDF interface [91]. The complex-mass scheme [92,93]
is understood for the treatment of electroweak-boson masses
and couplings in the SM. The pole masses and widths of weak
bosons and of the Higgs are set to the following values:

MW = 80.358 GeV , ΓW = 2.084 GeV ,

MZ = 91.153 GeV , ΓZ = 2.494 GeV ,

Mh = 125 GeV , Γh = 4.07 MeV . (13)

The electroweak coupling α is computed in the Gμ scheme,
with the Fermi constant set to Gμ = 1.16637 · 10−5 GeV−2.
For both GGF and VBF, we work in the five-flavour scheme,
i.e. including partonic processes with external massless b-
quarks. These contributions account for less than 2% of the
total cross-section.

We use a dynamical factorization and renormalization
scale,

μF = μR = √
pT, j1 pT, j2 , (14)

that is a typical choice for GGF production [42,43]. We have
verified that the typical scale choice used for on-shell Higgs
production [94] gives results for VBF which differ by a few
percent (both at the integrated and differential level) from
those obtained with the dynamical choice in Eq. 14. We
stress that the scale choice does not affect the main results
of our work, as the reweighting procedure detailed in Sect. 2
is independent of the Higgs-production mechanism and its
corresponding central-scale choice. We have employed two
different setups.

The first setup (label INC) is inclusive in lepton kinemat-
ics, and is used for validation purposes:

– jets with minimum tranverse momentum pT, j > 25 GeV
and maximum pseudo-rapidity |η j | < 4.5;

– a two-jet system with rather large invariant mass, Mjj >

300 GeV, large pseudo-rapidity separation, |Δηjj| > 2.5,
and such that η j1 · η j2 < 0;

– a four-lepton invariant mass close to the Higgs pole mass,
|M4� − Mh| < 5 GeV;

– two pairs of opposite-charge leptons of different flavours,
with M�+�− > 10 GeV, for � = e, μ.
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Table 1 Total cross-sections (in 10−6 pb) in the INC and LEP setups,
obtained with polarized amplitudes (MC) and with the matrix-element
reweighting method (Rew.). In the INC setup also the results of
Legendre-polynomial projections (Leg.) are shown. Numerical errors
are given in parentheses

Pol. Setup INC Setup LEP

MC Rew. Leg. MC Rew.

unp. 91.68(7) – – 8.566(5) –

LL 53.79(4) 53.76(5) 53.8(2) 5.507(4) 5.505(5)

TT 37.90(3) 37.89(4) 37.8(1) 3.055(9) 3.057(3)

The requirements on the leading-jet pair are somewhat
milder than those used for on-shell Higgs production in VBF
[94] and slightly stronger than those used in ZZ scattering
studies [95].

The second setup (label LEP) includes, in addition to the
ones of the INC setup, the following cuts on the lepton kine-
matics:

– for all charged leptons, pT,�± > 20 GeV, |η�±| < 2.5.

Note that the effect of the lepton pT and η cuts is dra-
matic, as they decrease the signal cross-section roughly by a
factor of 10, with respect to the INC setup. These cuts are the
same used in the study of polarized Z-boson scattering per-
formed in Ref. [71]. In recent experimental results on Higgs
decay to four charged leptons [20,96] the fiducial lepton cuts
are slightly looser than those used in this work, therefore
we expect a milder effect on polarized results in a realistic
experimental analysis than in the present phenomenological
setup.

For the simulation of the unpolarized VBF signal we have
used the Phantom Monte Carlo [97], which enables the
selection of diagrams with an s-channel Higgs exchange
from the complete set of tree-level, electroweak diagrams
in the SM [98]. The same process has been simulated also
withMadGraph [99], with an agreement to better than 0.5%
both in the total cross-section and in all analyzed differen-
tial distributions. The GGF signal has been simulated with
MadGraph (version 2.7.3 [77]), in the large-mt approxi-
mation [29], using the spin-correlated decay chain for the
s-channel Higgs boson. We observe that the off-shell-ness
of the Higgs boson is preserved both in MadGraph and
in Phantom. The numerical integration is carried out by
means of a Breit-Wigner phase-space mapping restricted to
the region |M4� −Mh| < 5 GeV, which is also the kinematic
region determined by the selection cuts.

5 Validation of the method

In order to validate the matrix-element-reweighting method
(MERM), we first compare the polarized cross sections com-
puted with the MERM with those extracted fromPhantom in
VBF. In the first case, we reweight each unpolarized event as
described in Sect. 2. In the second case, we use the approach
of polarized amplitudes that has been already applied to VBS
and di-boson production [70–74]. Differently from previous
studies in VBS [70–72], we do not apply any double-pole
approximation (DPA), since it is not possible to project both
bosons on their mass shell. The comparison has been per-
formed both in the INC setup and in the LEP one, and the
results are shown in Table 1.

In the absence of lepton cuts, polarized cross sections can
also be extracted from unpolarized angular distributions of
the charged leptons, via appropriate projections onto Leg-
endre polynomials [70]. The corresponding results are pre-
sented in the third column of the INC section of Table 1. They
agree with those computed by other means at the sub-percent
level. In the LEP setup the cross sections computed with the
MERM and those obtained from polarized amplitudes are
in excellent agreement. This check ensures that separating
polarizations of off-shell Z bosons from Higgs decay is well
defined.

The reweighting method works very well also at the dif-
ferential level, as can be appreciated in Fig. 2, where we con-
sider four kinematic variables, in the LEP setup. The polar-
ized distributions are perfectly reproduced by the reweight-
ing both for the decay angle θ∗

e+ (Fig. 2a) that appears in
Eqs. 2–7, and for the azimuthal difference Δφe+μ+ com-
puted in the Higgs rest frame (Fig. 2b) with the z-axis
defined by the Higgs direction of flight in the laboratory.
Notice that this angular separation does not coincide with
Δφ∗

e+μ+ in Eqs. 2–7, where the z-axis is defined by the
Z boson direction of flight. The invariant-mass variables
considered in Fig. 2c, d are also perfectly described by
the reweighting procedure. We stress that the impressive
agreement is motivated by the fact that the reweighting
factors of Eq. 11 are fully-differential. Therefore not only
the variables appearing in the amplitude parametrization of
Eq. 1, but any variable depending on the lepton momenta is
well modelled, independently of the selection cuts that are
applied.

We have successfully validated the method also for other
observables, giving us confidence that the matrix-element
reweighting procedure furnishes a useful tool to generate
polarized observables from unpolarized ones.
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(d)

(b)(a)

(c)

Fig. 2 Differential cross-sections for VBF Higgs production at the
LHC@13TeV: cosine of the positron decay angle in the correspond-
ing Z boson rest frame (a), azimuthal difference (in the Higgs rest
frame) between the positron and the antimuon (b), invariant mass of the
positron-electron pair (c) and of the positron-antimuon pair (d). Com-

parison between the Monte Carlo polarized distributions (solid curves,
label: MC) and the results of the matrix-element reweighting of the
unpolarized-signal distribution (dashed curves, label: rew.). The LEP
setup described in Sect. 4 is understood

6 Results

In this section we only consider the LEP setup defined in
Sect. 4.

Before starting the discussion on the VBF and GGF sig-
nals, it is worth commenting on the impact of some irre-
ducible EW and QCD backgrounds. The evaluation of such
backgrounds to the Higgs signal is in fact an important step
in any polarization study. We have computed with Phantom
the full process

p p → j j e+e−μ+μ− , (15)

Table 2 Total cross-sections and polarization fractions in the LEP
setup. Numerical errors for the unpolarized signals are shown in paren-
theses

Mode GGF VBF
unp. 6.988(5)×10−6 pb 8.566(5)×10−6 pb

LL 63.60% 64.26%

TT 36.35% 35.67%

interf. 0.05% 0.07%

which, at LO order [O(α6)], receives contributions from sev-
eral diagram topologies in which no s-channel Higgs prop-
agator is present. However, the tight but realistic cut on the
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(a) (b)

Fig. 3 Distributions for Higgs production in GGF (dashed curves) and
VBF (solid curves) at the LHC@13TeV: cosine of the positron decay
angle in the corresponding Z boson rest frame (a) and azimuthal differ-
ence between the two jets (b). Polarized VBF (GGF) curves are obtained

via the matrix-element reweighting of the unpolarized VBF (GGF) dis-
tribution. Top panel: differential cross-sections. Bottom panel: normal-
ized distributions (unit integral). The LEP setup described in Sect. 4 is
understood

four-lepton invariant mass (|M4� − Mh| < 5 GeV), intro-
duced in Sect. 4, suppresses these non-signal contributions.
The contribution from Higgs-strahlung is suppressed by the
large jet-pair invariant-mass cut. The impact of all non-signal
contributions on the total cross-section is below 0.5%.

The fiducial cross-section of the QCD background, com-
puted at LO [O(α2

s α4)] is 2.6% of the VBF signal. The signal
cross-sections in GGF and VBF are shown in Table 2. The
two LO cross-sections are of the same size. Given the very
low statistics of the process it is essential to sum over them,
provided that they show the same polarization structure. The
sizable scale uncertainties that characterize the GGF channel
[6.988(5)+37.7%

−25.4% ·10−6 pb] make it important, in the lights of
a realistic analysis, to include higher-order QCD corrections.
The LO scale uncertainties in VBF production are much
smaller [8.566(5)+3.9%

−3.8% ·10−6 pb] and the NLO QCD correc-
tions are expected to reduce them further. As already pointed
out, the MERM applies, in the case of a Higgs-boson decay
to four leptons, in exactly the same way whether radiative
QCD corrections are included or not.

Table 2 shows that the polarization fractions (polarized
cross-sections over the unpolarized one) amount to 65% for
the longitudinal mode, 35% for the transverse one. These
fractions are almost the same for the two signals, showing

that in the SM the polarization content only depends on the
decay of the Higgs, and not on its production mechanism.
The small differences in the fractions can be traced back to
the slightly different kinematics for the two signals, which
implies different effects of the selection cuts. The interfer-
ences are very small, in spite of quite tight lepton cuts.

The results of Table 2 are not directly related to the SM
Higgs coupling to vector bosons (ghVV), which is indepen-
dent of the polarization mode of the weak bosons. Therefore,
a modification of gHVV due to new-physics effects would
result in a enhanced (or diminished) cross-section at the
unpolarized level, but one would not expect a strong modifi-
cation of the relative weight of the longitudinal and the trans-
verse mode. However, as shown in Ref. [6], if a new-physics
model allows for different Higgs couplings to longitudinal
and transverse vector bosons, the effect on the polarization
fractions would be relevant. In addition, since the GGF cross-
section depends on g2

hZZ, while the VBF one depends either
on g4

hZZ or on g2
hZZ g

2
hWW, polarization-dependent Higgs cou-

plings to weak bosons could imply sizeable differences in
the polarization structure of the GGF and the VBF signals.
Therefore, a good understanding of both signals within the
SM is the first step towards the search of beyond-SM effects
via the polarization of weak-bosons.
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(b)(a)

Fig. 4 Distributions for Higgs production in GGF (dashed curves)
and VBF (solid curves) at the LHC@13TeV: difference between the
azimuthal decay angles of the positron and of the antimuon, computed

in the corresponding Z-boson rest frame, starting from the Higgs-boson
rest frame (a), azimuthal difference (in the Higgs rest frame) between
the positron and the antimuon (b). Same structure as Fig. 3

The integrated results are not enough to fully character-
ize the polarization structure in the Higgs-boson decay. The
study of differential distributions is essential to identify LHC
observables that are capable of discriminating among polar-
ization states. Furthermore, the interference terms could give
noticeable shape distortions, in spite of an integrated contri-
bution which is close to zero.

In Figs. 3, 4 and 5 we compare the distributions for differ-
ent polarization states, separating the GGF and VBF produc-
tion mechanisms. We present the results in terms of differ-
ential cross-sections (upper panels) and normalized shapes
(lower panels).

In Fig. 3a we consider the cosine of the positron decay
angle θ∗

e+ in the corresponding Z-boson rest frame, that is
directly related to the polarization mode of the weak boson
(see Eq. 1). This angular variable can be directly recon-
structed at the LHC, thanks to the final state with four charged
leptons. The VBF and GGF distributions have the same
shape, both in the LL and in the TT component. The inter-
ferences play a negligible role for this distribution, as at the
integrated level. The symmetric LL shape features a maxi-
mum at cos θ∗

e+ = 0 and a minimum in the (anti)collinear
regime, similar to the corresponding distribution in the INC
setup (dσ/d cos θ∗

e+ ∝ fLL (1 − cos2 θ∗
e+)). The TT distribu-

tions has constant convexity which is very close to zero, but

with opposite sign w.r.t. the LL one. The noticeable differ-
ence in shape between the LL and the TT distributions makes
this variable well suited for polarization discrimination.

In Fig. 3b we consider the azimuthal difference between
the two tagging jets, computed in the laboratory frame. The
GGF distribution shape is sizeably different from the VBF
one, as expected from the different kinematics of the forward-
backward jets in the two signals. In fact, this variable has been
used to discriminate the GGF signal from its largest EW and
QCD backgrounds in the h → WW∗ decay channel [80]. The
LL and TT distributions in a given signal do not show rele-
vant differences, as the kinematics of the decay leptons is just
mildly affected by the different kinematics of the production
part of the amplitudes. This azimuthal difference can be use-
ful for polarization measurements only in combination with
other variables that discriminate among polarization modes,
and if it is needed to separate different signal processes.

In Fig. 4 we consider two azimuthal-difference variables
that concern the charged-lepton kinematics.

The difference between the two azimuthal decay angles
of the positively-charged leptons Δφ∗

e+μ+ is considered in
Fig. 4a. This variable appears in the squared-amplitude
parametrization of Eq. 1, and gives a modulation to the
interferences terms of Eqs. 5–7. In the INC setup the LL
distribution is flat, while the TT one it is dominated by a
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(b)(a)

Fig. 5 Distributions for Higgs production in GGF (dashed curves) and VBF (solid curves) at the LHC@13TeV: invariant mass of the positron-
electron pair (a) and of the positron-antimuon pair (b). Same structure as Fig. 3

cos(2Δφ∗
e+μ+) functional dependence, since the interference

between left and right modes is included in the cross-section
[79]. In the LEP setup, the behaviour of the TT distribution is
quite similar to the one in the INC setup, while the LL shape
is no more flat.

The non-symmetric character of the unpolarized distribu-
tions is due to the longitudinal-transverse interferences that
are negative for Δφ∗

e+μ+ < π/2, positive otherwise. This
effect (at most of 2%) reflects, even in the presence of lepton
cuts, the cos(Δφ∗

e+μ+) functional dependence of the inter-
ference terms of Eqs. 5 and 6. The GGF and VBF signals
show exactly the same behaviour in all polarized contribu-
tions and interference terms. The Δφ∗

e+μ+ variable can be
easily reconstructed at the LHC, with the considered final
state, in the same fashion as cos θ∗

e+ .
In Fig. 4b we consider the azimuthal difference Δφe+μ+

between the positron and the antimuon computed in the
Higgs-boson rest frame. This angular variable is related to
Δφ∗

e+μ+ , with the difference that Δφe+μ+ does not depend
on angles computed in the Z-boson rest frame, but only on
the kinematics of the four leptons in the Higgs-boson rest
frame. The shapes of the polarized distributions is markedly
different from those for Δφ∗

e+μ+ . The interferences are very
small and negative for Δφe+μ+ < 3π/4, positive and slightly
larger in size for Δφe+μ+ > 3π/4. Also this variable enables
a clear discrimination between the LL and TT modes. The
LL shape is monotonically increasing from 0 to π , while the

TT one has an absolute minimum at π/2, an absolute maxi-
mum at π and another maximum at around 0. The impressive
similarity of the SM polarized shapes for the GGF and VBF
signals confirms that, if the focus is put on angular variables
describing the Higgs-boson decay, it is safe to sum over pro-
duction mechanisms.

As pointed out in Ref. [79], not only angular variables but
also invariant-mass observables are suitable for polarization
discrimination. In Fig. 5 we consider the invariant mass of
the e+e− and e+μ+ pairs.

In the first case (Fig. 5a), the reconstructed Z-boson mass
is peaked below 40 GeV and at the pole mass, as at the Higgs
resonance one Z is typically on-shell while the other is far
off-shell. Interferences are almost negligible for this observ-
able. The difference between the LL and the TT normalized
shapes concerns only the off-shell region below 40 GeV: the
longitudinal curve peaks between 20 and 25 GeV, while the
transverse one has a narrower peak around 30 GeV. The GGF
and VBF curves for a definite polarization state are almost
identical, apart from mild differences in the TT curve around
its two peaks.

The invariant mass of the two positively-charged leptons
is shown in Fig. 5b. The GGF and VBF signals behave in
the same way, as for most of the other analyzed observables,
giving distribution shapes that are almost independent of the
production mode. The unpolarized and polarized distribu-
tions feature a maximum around MZ/2, but the LL shape is
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narrower than the TT one, making this variable quite suit-
able for polarization discrimination. The polarization frac-
tions (both for GGF and for VBF) show that the transverse
mode gives a larger cross-sections than the longitudinal in
the soft region (Me+μ+ < 20 GeV), while the LL mode is
larger in the rest of the spectrum. The interference pattern
is slightly more evident than for Me+e− . Its size is at most
2% of the total at moderate masses (Me+μ+ ≈ 70 GeV).
Comparing Fig. 5b with Fig. 9 in Ref. [79] one notices that
different selection cuts can produce significant distortions in
the observed distributions.

As a last comment, we note that in the SM not only the
polarized shapes but also the relative fraction of longitudinal
and transverse modes are almost independent of the produc-
tion channel. This results in unpolarized distributions shapes
(gray curves in bottom panels of Figs. 3, 4 and 5) that are
also independent of the production channel.

7 Conclusions

In this paper we have studied the polarization of Z bosons
decaying from a Higgs boson produced in association with
two jets, in a vector-boson-fusion kinematic regime.

We have proved that, thanks to the simple analytic struc-
ture of the Higgs-decay Standard-Model amplitude, it is pos-
sible to avoid generating separately polarized event sam-
ples by simply reweighting unpolarized events with fully-
differential weights.

We have considered the two main channels that give con-
tribution to Higgs+2j production, namely gluon-gluon fusion
and vector-boson fusion. The polarized signals show the
same behaviour in the two channels, both at the level of polar-
ization fractions, and at the level of the shape of polarized
distributions. This allows to sum over production channels.
This holds for a SM measurement, and for modelling the
background for the search of beyond-the-Standard-Model
effects.

The possibility of extending this work to higher-orders in
perturbation theory is also addressed. The usage of a single-
pole approximation enables the description of the Higgs
decay to polarized bosons in the presence of EW radiative
corrections.

The results presented in this paper provide general tech-
niques to study polarizations of vector bosons from the decay
of a scalar Higgs boson produced in any channel at hadron
colliders. The extension of such methods to an effective-field-
theory framework allows for a model-independent assess-
ment of the polarization structure at the Higgs resonance in
the presence of new-physics effects.
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