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1 Introduction

Infrared divergences arising from exchanges of soft and collinear massless particles are well

known to cancel in infrared-safe observable cross sections, where singularities in virtual cor-

rections to scattering amplitudes are compensated by divergences arising from the phase-

space integration of unresolved real radiation [1–4]. The concrete implementation of this

cancellation in perturbative calculations for massless gauge theories is relatively straight-

forward for low-multiplicity final states and for highly inclusive cross sections, where the

involved phase-space integrals and the structure of typical observables are sufficiently sim-

ple (witness, for example, the four-loop calculation of the total cross section for annihilation

of electroweak gauge bosons into hadrons [5, 6]). The situation is considerably more chal-

lenging for higher multiplicities and for typical collider observables, where real radiation

is subject to intricate phase-space constraints, possibly involving non-trivial recursive jet

algorithms. In these cases the phase-space integration must be performed numerically,

and the cancellation of soft and collinear divergences is much more difficult to implement.

Common approaches involve the definition of approximate real-radiation matrix elements

with the correct singularity structure, which are then integrated analytically in order to

achieve the required singularity cancellation before numerical tools are employed.

Any solution to the subtraction problem hinges upon our general understanding of in-

frared divergences in perturbation theory. In particular, the structure of soft and collinear

singularities in virtual corrections to scattering amplitudes is very precisely understood [7–

17]: divergent contributions to generic massless gauge theory amplitudes can be factorised
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from the hard scattering in terms of a small set of universal functions, defined by gauge-

invariant operator matrix elements. Furthermore, these functions obey evolution equations

that can be solved in terms of soft and collinear anomalous dimensions, which are com-

pletely known in the massless case up to three loops [18, 19]. Differential information

on real-radiation matrix elements is somewhat less detailed: the latter have been shown,

in considerable generality, to factorise in soft and collinear limits into products of lower-

point amplitudes multiplied times universal kernels [20–22]; all the relevant kernels needed

for NNLO calculations are known [22–25], with partial information available at N3LO as

well [26–30].

At NLO, such factorisation properties were first employed for the general cancellation

of infrared singularities in the so-called ‘slicing’ approaches [31, 32]: these involve isolating

singular regions of phase space by means of a small resolution scale (the ‘slicing parameter’),

approximating real radiation matrix elements by the relevant infrared kernels below that

scale, and integrating the latter in d dimensions, so as to explicitly cancel the infrared poles

of virtual origin. This procedure yields a correct result up to powers of the slicing param-

eter, which then has to be taken as small as possible, compatibly with numerical stability.

In order to avoid this parameter dependence, ‘subtraction’ algorithms [33–35], were later

developed at NLO: in these schemes, one introduces local infrared counterterms containing

the leading singular behaviour of the radiative amplitudes in all relevant regions of phase

space. One then subtracts the local counterterms from the radiative amplitude, leaving be-

hind an integrable remainder, and one adds back to the virtual correction the exact integral

of the local counterterms over the radiation phase space, cancelling explicitly the virtual

infrared singularities; the resulting finite cross section can safely be integrated numerically,

and the whole procedure is exact, not involving any approximation. These NLO subtraction

algorithms are currently implemented in efficient generators [36–44], and the handling of

infrared singularities is not a bottleneck for phenomenological predictions at this accuracy.

At NNLO and beyond, the construction of general subtraction algorithms is the subject

of intense current research. The technical difficulties are significant, due to the prolifer-

ation of overlapping singular regions when the number of unresolved particles is allowed

to grow, and due to the increasing complexity of the soft and collinear splitting kernels

at higher orders. Several schemes have been proposed to address the NNLO problem, be-

longing either to the slicing [45–52] or to the subtraction [53–67] families. Novel ideas are

also being introduced [68, 69], and the first studies of simple N3LO processes have recently

appeared [70–72]. The variety of NNLO methods developed so far underscores both the

phenomenological interest and the technical difficulty of the problem, which so far has

not been solved in full generality. It is clear that in the near future it will become phe-

nomenologically relevant, and theoretically interesting, to extend the application of NNLO

methods to more complicated processes, and to devise subtraction algorithms at higher

orders. Such extensions will require a high degree of optimisation of existing procedures,

and possibly the implementation of new methods and theoretical ideas.

In this paper, we propose a theoretical framework to systematically analyse the struc-

ture of soft and collinear local subtraction counterterms to any order in perturbation theory.

Our guiding principle is the well-understood structure of infrared divergences in virtual cor-
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rections to scattering amplitudes. We note that the detailed structure of virtual factorisa-

tion must be reflected in the organisation of local counterterms: this implies significant sim-

plifications, in particular for overlapping soft and collinear singularities, which are straight-

forwardly handled in the virtual case. Furthermore, we note that explicit high-order calcu-

lations of soft anomalous dimensions have shown that many kinematic and colour structures

which could potentially contribute to infrared divergences are in fact absent or highly con-

strained, a feature that must also be reflected in the form of the real-radiation counterterms.

Finally, we note that virtual corrections to infrared singularities exponentiate non-trivially,

providing connections between low-order and high-order contributions. These interesting

and well-understood properties have not so far been fully exploited for the analysis of real-

radiation subtraction counterterms, and we hope that our discussion in this paper will lead

to progress in this direction. Indeed, our central result is a set of definitions for local soft

and collinear counterterms, written in terms of gauge-invariant matrix elements of fields

and Wilson lines, and valid to all orders in perturbation theory, which can be shown to

cancel all virtual and mixed real-virtual singularities on the basis of general cancellation

theorems [2, 3], and of simple completeness relations. These definitions can easily be shown

to reproduce known results at NLO and NNLO, and provide the basis for a first-principle

calculation of higher-order universal infrared kernels. Applying this technology at NNLO,

we find a simple and physically transparent organisation of soft and collinear subtractions,

including in particular the treatment of double counting of the soft-collinear regions.

The paper is organised as follows: in section 2, we briefly review the infrared factorisa-

tion of multi-parton scattering amplitudes for massless gauge theories; then, in section 3,

we present a basic outline of the subtraction problem at NLO and NNLO: a companion

paper [73] is devoted to a detailed construction of a full subtraction algorithm for final-state

singularities; in sections 4 and 5, we present our definitions for soft and collinear local coun-

terterms, valid to all to all orders in perturbation theory; in section 6, we briefly illustrate

the definitions by showing how they reconstruct the well-understood structure of final-state

infrared subtraction at NLO; in section 7 we apply our general results to the problem of

NNLO subtraction, and we provide precise expressions for all the local counterterms re-

quired for hadronic massless final states; finally, we discuss future developments in section 8.

2 Infrared factorisation for virtual corrections

We begin by describing the simple multiplicative structure of infrared poles that emerges

from the factorisation of fixed-angle multi-particle gauge-theory amplitudes, in order to

illustrate the potential simplification that might follow for real soft and collinear radiation.

Infrared singularities in these amplitudes factorise in a way which is reminiscent of the

renormalisation of ultraviolet divergences: for an amplitude involving n massless particles

with momenta pi, the result takes the form [14–16]

An
(
pi
µ
, αs(µ

2), ε

)
= Zn

(
pi
µ
, αs(µ

2), ε

)
Fn
(
pi
µ
, αs(µ

2), ε

)
. (2.1)

In this compact notation, the amplitude An and the finite coefficient function Fn are vectors

in the finite-dimensional space of colour configurations, and the divergent factor Zn is a
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colour operator. Soft-collinear factorisation implies evolution equations, which lead to the

exponentiation of infrared poles in terms of a finite infrared anomalous dimension matrix

Γn. One may write

Zn
(
pi
µ
, αs(µ

2), ε

)
= P exp

[
1

2

∫ µ2

0

dλ2

λ2
Γn

(pi
λ
, αs
(
λ2, ε

))]
, (2.2)

where all infrared singularities are generated by the integration of the d-dimensional run-

ning coupling over the scale λ, extending to λ = 0 [74]. The infrared anomalous dimension

matrix Γn is strongly constrained in the massless case by the factorisation of soft and

collinear poles (see eq. (2.6) below). In full generality, one writes

Γn

(
pi
µ
, αs(µ

2)

)
= Γdip

n

(
sij
µ2
, αs(µ

2)

)
+ ∆n

(
ρijkl, αs(µ

2)
)
, (2.3)

where sij = 2pi · pj , Γdip
n contains only two-particle correlations, and ∆n is constructed out

of quadrupole correlations, starting at three loops [18, 19], and constrained to depend on

momenta only through the conformal-invariant cross ratios

ρijkl =
pi · pj pk · pl
pi · pl pj · pk

. (2.4)

Up to two loops, only the dipole part of the infrared anomalous dimension matrix is rele-

vant. It can be written as [13–16]

Γdip
n

(
sij
µ2
, αs(µ

2)

)
= −1

2
γ̂K
(
αs(µ

2)
) n∑
i=1

n∑
j=i+1

log

(
−sij − iε

µ2

)
Ti ·Tj

+

n∑
i=1

γi
(
αs(µ

2)
)
, (2.5)

where γi is a collinear anomalous dimension, dependent on particle spin and related to

the corresponding field anomalous dimension. The operators Ti act as ‘gluon insertion’

operators, in a manner dependent on the colour representation of the hard particle i, as

discussed in [34, 75]. The coefficient of the logarithmic term is extracted from the light-like

cusp anomalous dimension for colour representation r, γr
K(αs), assuming that γr

K(αs) =

Cr γ̂K(αs), and dropping the quadratic Casimir eigenvalue Cr: this assumption (‘Casimir

scaling’) is known to be valid up to three loops, while there is solid numerical evidence that

it breaks down at four loops, due to the presence of fourth-order Casimir invariants [76, 77].

Eqs. (2.3) and (2.5) highlight several remarkable simplifications in the general structure

of infrared poles: first of all, exponentiation ties together different orders in perturbation

theory in a non-trivial way; furthermore, one observes that correlations involving three

coloured particles are absent at NNLO at the level of the soft anomalous dimension, and can

only arise in amplitudes through the mixing of one- and two-loop effects upon expanding the

exponential; finally, to all orders in perturbation theory, non-dipole corrections are severely

constrained to depend on momenta only through the variables in eq. (2.4). We expect these

simplifying features to be reflected in the detailed structure of real radiation, and our goal is
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to set up tools to uncover and implement these simplification. In order to proceed, we note

that the compact expression in eq. (2.2) is not sufficiently detailed to extract information

relevant to the subtraction problem, where it is important to distinguish the contributions

of soft and collinear configurations, and to understand the issue of double counting of soft-

collinear poles. It is therefore necessary to take a step back to the full factorisation formula

underlying eq. (2.2), which can be written as [7–17]

An
(
pi
µ

)
=

n∏
i=1

Ji
(

(pi · ni)2/(n2
iµ

2)
)

Ji,E
(

(βi · ni)2/n2
i

)
Sn (βi · βj)Hn

(
pi · pj
µ2

,
(pi · ni)2

n2
iµ

2

)
, (2.6)

where for simplicity we suppressed the dependence on the renormalised coupling αs(µ
2) and

on the regulator ε. In eq. (2.6), the colour vector Hn is a finite remainder (related, but not

equal to Fn in eq. (2.1)). For each hard massless particle with momentum pi, we introduced

a four-velocity vector βi, β
2
i = 0, obtained by rescaling pi by an arbitrary hard scale, say

βi = pi/µ, and a ‘factorisation vector’ ni, n
2
i 6= 0, responsible for isolating the collinear

region for particle i, and in order to enforce the gauge invariance of the collinear factors.

For each hard particle, the jet function Ji collects all collinear singularities associated with

the direction defined by pi. The jet functions are spin dependent, and defined in terms

of gauge-invariant matrix elements of fields and Wilson lines. For outgoing quarks with

momentum p and spin polarisation s one defines

us(p)Jq
(

(p · n)2

n2µ2

)
= 〈p, s |ψ(0) Φn(0,∞) |0〉 , (2.7)

where the Wilson line operator is

Φv(λ2, λ1) ≡ P exp

[
igs

∫ λ2

λ1

dλ v ·A(λv)

]
. (2.8)

For (outgoing) gluons with momentum k and polarisation λ, the definition is more delicate,

due to the requirement of gauge invariance: a straightforward substitution of a gluon field

for the quark field in eq. (2.7) is not satisfactory, due to the non-homogeneous term in the

gluon gauge transformation. The issue has been well understood for a long time, initially in

the context of giving operator definitions of parton distribution functions for gluons [78].

In that case, the requirement is to find a gauge invariant quantity reducing to a gluon

number operator in a physical gauge; a possible solution is to use a particular projection

of a field strength operator in place of the gluon field in the equivalent of eq. (2.7): the

homogeneous gauge transformation of the field strength can then be compensated by the

Wilson line insertion. At amplitude level, an elegant proposal was put forward in the

context of SCET in [79, 80], and we will use it in what follows. We define

gs ε
∗ (λ)
µ (k)J µνg

(
(k · n)2

n2µ2

)
≡ 〈k, λ|

[
Φn(∞, 0) iDν Φn(0,∞)

]
|0〉 , (2.9)

where we have not displayed colour indices, the covariant derivative Dµ = ∂µ − igsAµ is

evaluated at x = 0, and the extra power of gs on the left-hand side compensates for the

effect of differentiating the Wilson line.
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We note that jet functions are single-particle quantities and do not carry any colour

correlations from the full amplitude: the fact that collinear poles have this property is

a highly non-trivial consequence of gauge invariance and diagrammatic power counting.

Colour-correlated singularities arise only from soft gluons, which, at leading power in their

momentum, cannot transfer energy between hard particles, but induce long-range colour

mixing. The soft factor Sn is therefore a colour operator, defined in terms of semi-infinite

light-like Wilson lines radiating out of the hard collision, each along the classical trajectory

of one of the hard particles. One defines

Sn (βi · βj) = 〈0|
n∏
k=1

Φβk(∞, 0) |0〉 , (2.10)

where βi is the dimensionless four-velocity of the i-th hard particle, and where, for sim-

plicity, we do not display the color indices of the Wilson lines.

Gluons that are both soft and collinear to one of the hard coloured particles are present

both in the jet functions, eq. (2.7) and eq. (2.9), and in the soft matrix, eq. (2.10), and are

therefore counted twice. It is however straightforward to subtract this double counting,

since the soft approximation of the jet function is simply given by the eikonal jet [12]

JE

(
(β · n)2

n2

)
= 〈0|Φβ(∞, 0) Φn(0,∞) |0〉 , (2.11)

and soft poles cancel in the ratio of the full jet to the eikonal jet, separately for each hard

particle. This simple pattern of cancellation for soft-collinear regions (which in partic-

ular does not contain any colour correlations) will be reflected in the structure of local

counterterms for real radiation.

We conclude this section with two technical remarks. First, we note that the require-

ment that n2
i 6= 0 for all jet and eikonal jet functions is designed in order to avoid the

presence of spurious collinear divergences associated with emissions from the ni Wilson

lines. In practical calculations, however, it is highly economical to take the n2
i → 0 limit,

provided one can precisely control the contributions of spurious poles.1 Finally, we note

that in dimensional regularisation all correlators of (semi-)infinite Wilson lines are com-

puted in perturbation theory in terms of scaleless integrals, which vanish in dimensional

regularisation, so that the bare soft matrix and eikonal jets equal unity. One can therefore

extract the infrared poles of these matrix elements by computing their ultraviolet diver-

gences, which allows to make use of standard renormalisation group arguments. In practice,

calculations can be performed with auxiliary regulators for soft and collinear poles: one

may for example tilt the βi Wilson lines off the light cone, and introduce a suppression for

gluon emission at large distances, as done for example in [82, 83]. General theorems then

guarantee [84–86] that the resulting anomalous dimensions are independent of the chosen

collinear and soft regulators.

1For a discussion of this point, see [81].
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3 Subtraction procedures at NLO and NNLO

We now provide a brief description of a subtraction procedure at NLO and NNLO, for

the case of massless coloured particles in the final state, identifying the local counterterms

required in this case. Our goal here is to present the general structure of the procedure,

which is sufficient for the purposes of the present paper: a detailed construction of a

complete subtraction algorithm for this case is presented in [73].

Let us begin by establishing some notation. Given a scattering amplitude with n

massless particles in the final state, we write

An(pi) = A(0)
n (pi) + A(1)

n (pi) + A(2)
n (pi) + . . . , (3.1)

where A(0)
n (pi) is the Born amplitude for the process at hand (which may of course already

contain powers of the strong coupling), while A(k)
n (pi) is the k-loop correction. Given

an infrared-safe observable X, one can then construct the perturbative expansion for the

differential distribution of X, as

dσ

dX
=

dσLO

dX
+
dσNLO

dX
+
dσNNLO

dX
+ . . . . (3.2)

At each non-trivial order in perturbation theory, the differential distribution contains con-

tributions with different numbers of final state particles, and the cancellation of infrared

singularities takes place upon integration over the phase space of unresolved radiation.

Denoting with dΦm the Lorentz-invariant phase space measure for m massless final state

particles, and assuming that the observable involves n particles at Born level, one can write

in more detail

dσLO

dX
=

∫
dΦnBn δn(X) ,

dσNLO

dX
= lim

d→4

{∫
dΦn Vn δn(X) +

∫
dΦn+1Rn+1 δn+1(X)

}
, (3.3)

dσNNLO

dX
= lim

d→4

{∫
dΦn V Vn δn(X) +

∫
dΦn+1RVn+1 δn+1(X)

+

∫
dΦn+2RRn+2 δn+2(X)

}
,

where δm(X) ≡ δ(X −Xm) fixes Xm, the expression for the observable appropriate for an

m-particle configuration, to the prescribed value X. The integrands of the various terms

can be expressed in terms of the squared scattering amplitudes involving n, n+ 1 and n+ 2

particles as

Bn =
∣∣∣A(0)

n

∣∣∣2 , Rn+1 =
∣∣∣A(0)

n+1

∣∣∣2 , RRn+2 =
∣∣∣A(0)

n+2

∣∣∣2 ,
Vn = 2Re

[
A(0)∗
n A(1)

n

]
, V Vn =

∣∣∣A(1)
n

∣∣∣2 + 2Re
[
A(0)∗
n A(2)

n

]
,

RVn+1 = 2Re
[
A(0)∗
n+1A

(1)
n+1

]
, (3.4)
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where unobserved quantum numbers (such as colour) not affecting the observable X have

been implicitly summed over. As briefly discussed in the Introduction, the problem of

subtraction arises because the expressions Xm for typical observables in the m-particle

phase space, as well as the corresponding matrix elements, are very intricate, requiring

numerical integrations of the real emission contributions. It is then often necessary to

perform the cancellation of infrared poles analytically, before turning to numerical tools.

The subtraction approach proceeds by seeking approximations to the real-radiation matrix

elements which must be accurate at leading power in the appropriate variables (for instance,

energies or transverse momenta) in all singular regions. To be more precise, let us first

consider the NLO distribution. In that case, we seek a local counterterm function Kn+1

in the (n+ 1)-particle phase space, with the requirement that it reproduces the singular

behaviour of the real-radiation transition probability Rn+1 in all infrared limits, and, in our

approach, with the further requirement that it should have a minimal degree of complexity,

in order to allow for a direct analytic integration. Given such a function, we define the

integrated NLO counterterm as

In =

∫
dΦradKn+1 , (3.5)

where we introduced the single-particle phase space measure dΦrad = dΦn+1/dΦn. We

can now subtract the local counterterm Kn+1 from the real-emission probability Rn+1,

obtaining an integrable function in the (n+ 1)-particle phase space, and then add back to

the distribution the integrated counterterm In, which must cancel the explicit poles of the

NLO virtual correction Vn. The result is

dσNLO

dX
=

∫
dΦn

(
Vn + In

)
δn(X)

+

∫
dΦn+1

[
Rn+1 δn+1(X) − Kn+1 δn(X)

]
. (3.6)

Note that no approximation has been introduced in passing from the second line of eq. (3.3)

to eq. (3.6). Thanks to the infrared safety of the observable X, the integrand in the second

line of eq. (3.6) is now integrable everywhere in the (n+ 1)-particle phase space, and, at

the same time, the first line is free of infrared poles. The differential distribution in this

form is therefore amenable to a direct numerical evaluation.

At NNLO, the cancellation pattern is considerably more intricate, but an exact sub-

traction procedure can still be constructed. At this order, infrared singularities arise in

three different configurations: in the double-radiation transition probability RRn+2, ei-

ther one or two emitted particles can become unresolved, and in the real-virtual transition

probability RVn+1 the single emitted particle can similarly become unresolved. It is there-

fore necessary to define three local counterterms: a function Kn+2 in the (n+ 2)-particle

phase space, approximating RRn+2 in all singular regions with two unresolved particles,

a function K
(1)
n+2 in the (n+ 2)-particle phase space, approximating RRn+2 in all singular

regions with one unresolved particle, and a function K
(RV)
n+1 , in the (n+ 1)-particle phase

space, approximating RVn+1 in all singular regions where the radiated particle becomes

– 8 –
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unresolved. It is furthermore appropriate to separate the double-unresolved counterterm as

Kn+2 = K
(12)
n+2 +K

(2)
n+2 , (3.7)

where the first term collects all double-unresolved limits which are reached hierarchically,

with the first particle becoming unresolved at a faster rate than the second one, while the

second term contains all remaining double-unresolved contributions, where the two parti-

cles become unresolved at the same rate (for a detailed discussion of how to achieve this

separation, see [73]). One may then define the respective radiation phase spaces as

dΦrad,1 = dΦn+2/dΦn+1 , dΦrad,2 = dΦn+2/dΦn , dΦrad = dΦn+1/dΦn , (3.8)

and introduce the integrated counterterms as

I
(1)
n+1 =

∫
dΦrad, 1K

(1)
n+2 , I

(12)
n+1 =

∫
dΦrad, 1K

(12)
n+2 ,

I (2)
n =

∫
dΦrad, 2K

(2)
n+2 , I (RV)

n =

∫
dΦradK

(RV)
n+1 . (3.9)

As was the case at NLO, in eq. (3.5), also in eq. (3.9) the subscripts indicate the number

of particles whose phase space still needs to be integrated. Specifically, I
(2)
n and I

(RV)
n

depend on the Born phase-space configuration, with all n particles resolved, and contain

explicit infrared poles that cancel those of the double virtual transition probability V Vn.

On the other hand, I
(1)
n+1 depends on the phase space variables of (n+ 1) particles, and has

explicit infrared poles cancelling those of the real-virtual transition probability RVn+1; the

resulting finite combination, however, can still have singular limits when the radiated par-

ticle becomes unresolved: those singular limits must be subtracted by combining K
(RV)
n+1

with I
(12)
n+1 , in order to cancel the respective explicit poles. Our final expression for the

subtracted NNLO distribution is therefore

dσNNLO

dX
=

∫
dΦn

[
V Vn + I (2)

n + I (RV)
n

]
δn(X) (3.10)

+

∫
dΦn+1

[(
RVn+1 + I

(1)
n+1

)
δn+1(X)−

(
K

(RV)
n+1 − I

(12)
n+1

)
δn(X)

]
+

∫
dΦn+2

[
RRn+2 δn+2(X)−K (1)

n+2 δn+1(X)−
(
K

(12)
n+2 +K

(2)
n+2

)
δn(X)

]
.

One verifies that no approximation has been made in going from the third line of eq. (3.3)

to eq. (3.10). Furthermore, each line in eq. (3.10) is both finite in four dimensions, and

integrable in the respective phase spaces.

Clearly, eq. (3.10) is only the starting point in the construction of a full-fledged sub-

traction algorithm: the next crucial step is the explicit definition of the necessary local

counterterms, which must properly organise all soft, collinear and soft-collinear regions

avoiding double counting; in the process, it is necessary to construct precise phase-space

mappings in order to exactly factorise radiative from non-radiative phase spaces; finally,

the local counterterms must be analytically integrated in the respective radiation phase

spaces. In the remainder of this paper, we discuss a systematic construction of the local
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counterterms, which we will carry out explicitly up to NNLO, but which is applicable in

principle at any perturbative order. A detailed algorithmic implementation of eq. (3.10) for

final-state massless partons has been presented in [73]. In what follows, our main concern

is not the calculation of NNLO kernels, which have been known for a long time [22–25]:

rather, we plan to show how information from the factorisation of virtual corrections al-

lows to organise and simplify the NNLO subtraction procedure, pointing to possible future

extensions to higher perturbative orders.

4 Local counterterms for soft real radiation

Our general strategy to define local counterterms is to construct eikonal form factors and

radiative jet functions including real radiation: these functions, when integrated over the

final-state phase space and combined with their virtual counterparts using completeness

relations, build up eikonal and collinear total cross sections, which are finite by the general

theorems of refs. [1–4]. Let us begin with the case of purely soft final state radiation (which

of course includes soft-collinear particles as well). Considering n hard particles, represented

by Wilson lines in the soft approximation, radiating m soft gluons, we define the eikonal

form factor

Sn,m (k1, . . . , km;βi) ≡ 〈k1, λ1; . . . ; km, λm|
n∏
i=1

Φβi(∞, 0) |0〉

≡ ε∗ (λ1)
µ1 (k1) . . . ε∗ (λm)

µm (km) Jµ1...µmS (k1, . . . , km;βi)

≡
∞∑
p=0

S(p)
n,m (k1, . . . , km;βi) , (4.1)

where in the second line we have defined multiple soft gluon currents Jµ1...µmS , in the

third line we have introduced the perturbative expansion of the form factors, and we

are not displaying colour indices to simplify the notation. A well known property of the

soft approximation at leading power in the soft momenta is spin-independence: thus the

multiple soft gluon currents are independent of the gluon polarisations λi, and the definition

easily generalises to the emission of final state soft fermions. Note that at this stage the

form factor contains loop corrections to all orders in perturbation theory.

Our underlying assumption is that the exact amplitude for the emission of m soft gluons

(which may in turn radiate soft quark-antiquark pairs) from n hard coloured particles obeys,

to all orders, the factorisation

An,m (k1, . . . , km; pi) = Sn,m (k1, . . . , km;βi) Hn(pi) + Rn,m , (4.2)

where the remainder Rn,m is finite in four dimensions, and integrable in the soft particle

phase space. After renormalisation, the amplitude An,m is ultraviolet finite, and all virtual

soft poles, as well as all contributions that are non-integrable in the soft particle phase

space, are contained in the soft form factor Sn,m. Eq. (4.2) is proven to all orders for

m = 0, and it is consistent with all known perturbative results, in particular with the
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arguments of [22, 23, 25]; a formal all-order proof has however not yet been provided: we

treat it as a working assumption, which is known to be correct at NNLO.

Squaring eq. (4.2), and performing the trivial helicity sum, one finds, at leading-power

in the soft momenta∑
{λi}

|An,m (k1, . . . , km; pi)|2 ' H†n(pi)Sn,m (k1, . . . , km;βi) Hn(pi) , (4.3)

where we introduced the eikonal transition probability

Sn,m (k1, . . . , km;βi) ≡
∞∑
p=0

S(p)
n,m (k1, . . . , km;βi) (4.4)

≡
∑
{λi}

〈0|
n∏
i=1

Φβi(0,∞) |k1, λ1; . . . ; km, λm〉 〈k1, λ1; . . . ; km, λm|
n∏
i=1

Φβi(∞, 0) |0〉 ,

for fixed final-state soft momenta ki. Eq. (4.4) provides a natural definition of local soft

counterterms, order by order in perturbation theory: indeed integrating over the soft par-

ticle phase space for fixed m, and then summing over m, one can use completeness to get

∞∑
m=0

∫
dΦm Sn,m (k1, . . . , km;βi) = 〈0|

n∏
i=1

Φβi(0,∞)

n∏
i=1

Φβi(∞, 0) |0〉 . (4.5)

Eq. (4.5), up to simple modifications,2 can be interpreted as an eikonal total cross section.

When all coloured particles are in the final state, such a cross section is finite to all orders

by the standard cancellation theorems (which can be verified by explicit power counting);

with initial state colour, the eikonal cross section is affected by collinear divergences which

can be treated by conventional collinear factorisation [87]: indeed, in our framework, these

collinear divergences are included in eikonal jet factors to be discussed in section 5. As far

as soft divergences are concerned, we conclude that the kernels Sn,m provide completely

local soft approximations to the relevant squared matrix element, valid at leading power

in the soft momenta, and they cancel the virtual soft poles order by order in perturbation

theory: this identifies them as candidate counterterms for subtraction in the soft sector.

Let us now illustrate this general framework with simple examples, recovering known

results at low orders. A classic case in point is single-gluon emission from a multi-particle

configuration at tree level. Eq. (4.2) for m = 1 and at lowest order reads

A(0)
n, 1(k, pi) = ε∗ (λ)(k) · J (0)

S (k, βi)H(0)
n (pi) +O(k0) , (4.6)

with the definition

ε∗ (λ)(k) · J (0)
S (k, βi) = S(0)

n, 1 (k;βi) = 〈k, λ|
n∏
i=1

Φβi(∞, 0) |0〉

∣∣∣∣∣
tree

. (4.7)

2For example, if the m-particle phase space includes a momentum-conservation δ-function setting the

total final state energy to a fixed value µ, which is irrelevant in the present context, the constraint can

be implemented by shifting the origin of one of the two sets of Wilson lines on the r.h.s. of eq. (4.5) in

a timelike direction by an amount λ, and introducing a Fourier transform with a weight λµ. Notice that

operator products in all our matrix elements are understood to be time ordered when needed.
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Explicit calculation expanding the Wilson-line operators in powers of the coupling, or

directly with eikonal Feynman rules, easily yields the well-known result for the tree-level

soft-gluon emission current [22, 75]

J
µ (0)
S (k;βi) = gs

n∑
i=1

βµi
βi · k

Ti . (4.8)

Squaring the tree-level amplitude one finds the leading-power transition probability∑
λ

∣∣∣A(0)
n, 1(k, pi)

∣∣∣2 ' H(0) †
n (pi)S

(0)
n, 1 (k;βi) H(0)

n (pi)

= − 4παs

n∑
i,j=1

βi · βj
βi · k βj · k

A(0)†
n (pi)Ti ·Tj A(0)

n (pi) , (4.9)

where we used the fact that at tree level there is no need to distinguish between H(0)
n and

A(0)
n ; we recognise the colour-correlated Born probability, multiplied times the standard

eikonal prefactor. Multiple soft-particle radiation at tree level is similarly easy to compute:

for the case of two gluons, one directly recovers the result of [22]

[
J

(0)
S

]a1a2
µ1µ2

(k1, k2;βi) = 4παs

{
n∑
i=1

[
βi, µ1βi, µ2

(
T a2i T a1i

βi · k2 βi · (k1 + k2)
+ (1↔ 2)

)
− if a1a2

a T ai
βi · (k2 − k1) gµ1µ2 + 2βi, µ1k1, µ2 − 2βi, µ2k1, µ1

2k1 · k2 βi · (k1 + k2)

]
+

n∑
i=1

∑
j 6=i

T a1i T a2j
βi, µ1
βi · k1

βj, µ2
βj · k2

}
, (4.10)

with the last line representing uncorrelated emission from two different hard particles,

and the first two lines collecting terms arising from double emission from a single hard

particle. Currents corresponding to the radiation of soft quark-antiquark pairs, or for

emissions with higher multiplicity, can similarly be computed directly in Feynman gauge

in a straightforward manner.

At loop level, the organisation of counterterms becomes more interesting. Let us for

example consider single-gluon emission at one loop: expanding eq. (4.2) for m = 1 to first

non-trivial order we find

A(1)
n, 1 (k; pi) = S(0)

n, 1 (k;βi) H(1)
n (pi) + S(1)

n, 1 (k;βi) H(0)
n (pi) . (4.11)

The first term corresponds to a tree-level soft-gluon emission multiplying the finite part

of the one-loop correction to the Born process; in the second term the soft function is

evaluated at one-loop, and therefore has both explicit soft poles and singular factors from

single soft real radiation: it multiplies the Born amplitude. In this case, the proposed

factorisation appears to differ from the one proposed in [25], which reads

An, 1 (k; pi) ' ε∗ (λ)(k) · JCG (k, βi) An(pi) . (4.12)
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Here the Catani-Grazzini soft current JCG(k, βi) multiplies the full n-particle amplitude,

including loop corrections containing infrared poles, whereas in eq. (4.2) for m = 1 the hard

function Hn(pi) is finite. It is, however, easy to map the two calculations, using eq. (4.2)

for m = 0, and solving for the one-loop hard part H(1)
n (pi). One finds

H(1)
n (pi) = A(1)

n (pi)− S(1)
n (βi) A(0)

n (pi) , (4.13)

where we normalised S(0)
n to the identity operator in colour space. This leads to an expres-

sion for the Catani-Grazzini one-loop soft-gluon current in terms of eikonal form factors, as

ε∗ (λ)(k) · J (1)
CG (k, βi) = S(1)

n, 1 (k;βi) − S(0)
n, 1 (k;βi) S(1)

n (βi) . (4.14)

Comparing eq. (4.14) with the calculation in [25], one easily recognises that the same

combination of Feynman diagrams is involved, and one recovers the known result[
J

(1)
CG

]µ
a

(k, βi) = −αs
4π

1

ε2
Γ3(1− ε)Γ2(1 + ε)

Γ(1− 2ε)

× ifabc

n∑
i=1

∑
j 6=i

T bi T
c
j

(
βµi
βi · k

−
βµj
βj · k

)[
2πµ2 (−βi · βj)
βi · k βj · k

]ε
. (4.15)

Phrasing the calculation in terms of eikonal form factors allows for a straightforward and

systematic generalisation to higher orders. For example, expanding eq. (4.2), for m = 1,

to two loops, one finds

A(2)
n, 1 (k; pi) ' S(0)

n, 1 (k;βi) H(2)
n (pi) + S(1)

n, 1 (k;βi) H(1)
n (pi)

+S(2)
n, 1 (k;βi) H(0)

n (pi) . (4.16)

The expression for H(1)
n is given in eq. (4.13); furthermore, one can similarly derive an

expression for H(2)
n from the two-loop expansion of eq. (4.2) for m = 0, obtaining

H(2)
n (pi) = A(2)

n (pi)− S(1)
n (βi) A(1)

n (pi) +
[
S(1)
n (βi)

]2
A(0)
n (pi)

− S(2)
n (βi) A(0)

n (pi) . (4.17)

Substituting the expressions for the hard parts into eq. (4.16), and comparing with

eq. (4.12), one finds the two-loop soft-gluon current

ε∗ (λ)(k) · J (2)
CG (k, βi) = S(2)

n, 1 (k;βi)− S(1)
n, 1 (k;βi)S(1)

n (βi)

− S(0)
n, 1 (k;βi)

[
S(2)
n (βi)−

(
S(1)
n (βi)

)2
]
. (4.18)

Note that in expressions such as eq. (4.18) the ordering of factors is important, since the

form factors S are colour operators. Note also that all terms in eq. (4.18), except the

first one, are already known for general massless n-point Born processes. The two-loop

soft-gluon current was computed for n = 2 by extracting it from known two-loop matrix

elements in refs. [27, 28, 88]. Eq. (4.18) provides a precise framework for the calculation

for generic processes with n coloured particles at Born level. Clearly, it is not difficult to

derive expression similar to eq. (4.18) for the case of multiple soft-gluon radiation at the

desired loop level.
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5 Local counterterms for collinear real radiation

The strategy to define local collinear counterterms is very similar to the one adopted in

the soft case. We begin by allowing for further final-state radiation in the operator matrix

elements defining the jet functions in eq. (2.7) and eq. (2.9). This leads to the definition

of radiative jet functions, which are universal, but distinguish whether the emitting hard

parton is a quark or a gluon. In particular, let us consider first a final state with a hard

quark carrying momentum p and spin s, and radiating m gluons. In this case we define

us(p)Jq,m (k1, . . . , km; p, n) ≡ 〈p, s; k1, λ1; . . . ; km, λm|ψ(0) Φn(0,∞) |0〉

≡ us(p)
∞∑
p=0

J (p)
q,m (k1, . . . , km; p, n) , (5.1)

where we extracted the quark wave function, so that Jq, 0 coincides with the virtual quark

jet defined in eq. (2.7), and is normalised to unity at tree level. Gluon polarisation vectors,

on the other hand, are still included in the function Jq,m, and could be extracted to define

collinear currents in a manner analogous to what was done in eq. (4.1) for soft currents.

The radiative quark jet function is gauge invariant in the same way as the non-radiative

one discussed in section 2: it is a matrix element involving only physical states, where the

gauge transformation properties of the field operator are compensated by the Wilson line;

furthermore, like its non-radiative counterpart, it does not involve colour correlations with

the other hard partons in the process. The definition is valid to all orders in perturbation

theory, and the second line of eq. (5.1) gives the perturbative expansion, with J (p)
q,m propor-

tional to g 2p+m
s . Notice however that the gluon momenta in eq. (5.1) are unconstrained,

and collinear limits must be explicitly taken at a later stage in the calculation.

At cross-section level, the definition of radiative jet functions is slightly more elaborate

than was the case for soft functions, since one must allow for non-trivial momentum flow.

This can be done in a standard way by shifting the position of the quark field in the complex

conjugate amplitude, and then taking a Fourier transform in order to fix the total momen-

tum flowing into the final state, setting lµ = pµi +
∑m

i=1 k
µ
i . In the unpolarised case, one

may sum over polarisations and define the cross-section-level radiative quark jet function as

Jq,m (k1, . . . , km; l, p, n) ≡
∞∑
p=0

J (p)
q,m (k1, . . . , km; l, p, n) (5.2)

≡
∫
ddx eil·x

∑
{λj}

〈0|Φn(∞, x)ψ(x) |p, s; kj , λj〉 〈p, s; kj , λj |ψ(0) Φn(0,∞) |0〉 .

The perturbative coefficients J
(p)
q,m of the radiative jet function Jq,m, computed in the

collinear limit, provide natural candidates for collinear counterterms, to any order in per-

turbation theory, as will be illustrated below, in section 6 at NLO and in section 7 at NNLO.
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(a) (b) (c)

Figure 1. One-loop contributions to cross-section-level radiative quark jet function.

For gluon-induced processes, we can proceed in the same way, starting with eq. (2.9),

and introducing the (amplitude-level) radiative gluon jet functions as

gs ε
∗ (λ)
µ (k)J µνg,m (k1, . . . , km; k, n) ≡ gs ε

∗ (λ)
µ (k)

∞∑
p=0

J (p), µν
g,m (k1, . . . , km; k, n) (5.3)

≡ 〈k, λ; k1, λ1; . . . ; km, λm|Φn(∞, 0) iDν Φn(0,∞) |0〉 ,

where again we are not displaying colour indices, and polarisation vectors for the radiated

gluons are included in the definition of J µνg,m. The definition (5.3) can be used to construct

a cross-section-level radiative gluon jet function, as was done for the quark. It reads

g2
s J

µν
g,m (k1, . . . , km; k, n) ≡ g2

s

∞∑
p=0

J (p), µν
g,m (k1, . . . km; l, k, n) (5.4)

≡
∫
ddx eil·x

∑
{λj}

〈0| [Φn(∞, x) iDµ Φn(x,∞)]† |k, λ; kj , λj〉

× 〈k, λ; kj , λj |Φn(∞, 0) iDν Φn(0,∞) |0〉 .

To illustrate the usefulness of radiative jet functions as collinear counterterms, let us focus,

as an example, on the quark-induced jet function. In analogy to what was done in the soft

sector, we note that summing over the number of radiated particles, and integrating over

their phase space, by completeness one finds

∞∑
m=0

∫
dΦm+1 Jq,m (k1, . . . , km; l, p, n)

= Disc

[∫
ddx eil·x 〈0|Φn(∞, x)ψ(x)ψ(0)Φn(0,∞) |0〉

]
. (5.5)

The r.h.s. of eq. (5.5) gives the imaginary part of a generalised two-point function, which

is a finite quantity, since it is fully inclusive in the final state. The m = 0 contribution

contains the virtual collinear poles associated with an outgoing quark of momentum p,

and therefore the real radiation contributions for m 6= 0, given by eq. (5.2), must cancel

those poles order by order in perturbation theory, as desired. Inclusive cross-section-level

jet functions such as the integrated quantity in eq. (5.5) have been used in the context of

threshold resummations for many years, starting with the seminal papers in refs. [89, 90].

We can perform a simple test of the correctness of our method by computing the

single-gluon radiative jet for an outgoing quark with momentum pµ. In Feynman gauge,
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(a) (b) (c)

Figure 2. One loop contributions to cross-section-level radiative gluon jet function.

the lowest perturbative order in the coupling constant receives contributions from three

different diagrams, shown in figure 1, which give the result∑
s

Jq, 1 (k; l, p, n) =
4παsCF

(l2)2
(2π)dδd (l − p− k)

×
[
−/lγµ/pγµ/l +

l2

k · n
(
/l /n/p+ /p/n/l

)]
, (5.6)

where p2 = k2 = 0, and up to corrections proportional to n2. It is easy to trace the

contributions of the three diagrams in figure 1 in the axial gauge calculation of ref. [22].

Notice however that in eq. (5.6) the collinear limit for k, corresponding to l2 → 0, has

not been taken yet. This is easily achieved by introducing a Sudakov parametrisation for

momenta pµ and kµ, and taking the k⊥ → 0 limit, setting

pµ = zlµ +O (l⊥) , kµ = (1− z)lµ +O (l⊥) , n2 = 0 . (5.7)

Due to the prefactor of order O
[
(l2⊥
)−1

], the leading behaviour in the l⊥ → 0 limit is

recovered by setting l⊥ = 0 in the square bracket. This yields∑
s

Jq, 1 (k; l, p, n) =
8παsCF

l2
(2π)d δd (l − p− k)

[
1 + z2

1− z
− ε (1− z)

]
, (5.8)

up to corrections of order l⊥. In the square bracket, as expected, we recognise the leading

order unpolarised DGLAP splitting function Pq→qg.

It is interesting to perform the same check for the cross-section-level radiative gluon jet

definition, which must reproduce the splitting kernel Pµνg→gg whenm = 1. The diagrammatic

contributions, in Feynman gauge, are similar to those in figure 1, and are displayed in

figure 2; in an axial gauge, n·A = 0, only the third graph, figure (2c), survives. In Feynman

gauge, at amplitude level, the single-radiative jet function defined in eq. (5.3) gives

ε∗(λ)
µ (k)J µν,ag,1 (k1;k,n) =

gs t
a

(k1 +k)2

(
−gµν +

nµ (k1 +k)ν

n ·(k1 +k)

)
(5.9)

×
[
2ε∗(k) ·k1 ε

∗
µ(k1)−2ε∗(k1) ·k ε∗µ(k)+ε∗(k1) ·ε∗(k)(k−k1)µ

]
,

which can be verified to be consistent with the computation performed in axial gauge.

Computing the single-radiative gluon jet function at cross-section level, we can use the

Sudakov parametrisation

kµ = zlµ + lµ⊥ −
l2⊥
z

nµ

2l · n
, kµ1 = (1− z)lµ − lµ⊥ −

l2⊥
(1− z)

nµ

2l · n
, (5.10)
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To leading power in l⊥, and setting n2 = 0, we end up with the expression∑
λi

Jµνg, 1 (k; l, k1, n) =
16παsCA

l2
(2π)d δd (l − k1 − k) (5.11)

×

[
−gµν

(
z

1− z
+

1− z
z

)
− 2 (1− ε) z(1− z)

lµ⊥l
ν
⊥

l2⊥
+

(
z

1− z
+

1− z
z

)
l{µnν}

l · n

]
.

The first two terms in the square bracket reproduce the expected splitting function; the

third term, where the braces denote index symmetrisation, is proportional to either lµ

or lν : in the collinear limit, these corrections vanish when contracted with the factorised

hard amplitude, which depends on the on-shell parent gluon momentum l. It is easy to

check, by considering a final-state qq̄ pair in eq. (5.3), that one may similarly recover

the appropriate splitting function Pµνg→qq̄; kernels for double collinear emission can be

reproduced with similar manipulations.

To complete our discussion, we note that the cross-section-level jet functions presented

in eq. (5.2) generate all collinear singularities, including soft-collinear ones. These are

therefore double counted, since they were already included in the soft region. In order to

avoid this issue, following the logic suggested by the factorisation of virtual corrections in

eq. (2.6), we may introduce radiative eikonal jet functions, defined by replacing the field

ψ(0) in eq. (5.1) with a Wilson line (in the same colour representation), oriented along the

hard parton direction βν = pν/µ. At cross-section level, this leads to the definition

JE,m (k1, . . . , km; l, β, n) ≡
∞∑
p=0

J
(p)
E,m (k1, . . . , km; l, β, n) (5.12)

≡
∫
ddx eil·x 〈0|Φn(∞, x)Φβ(x,∞) |kj , λj〉 〈kj , λj |Φβ(∞, 0)Φn(0,∞) |0〉 .

Notice that the radiative eikonal jet does not depend on the spin of the hard parton, so

that eq. (5.12) applies to gluons as well; the Fourier transform fixes lµ to be the total

momentum of the final state.

To test this definition, we compute the soft-collinear local counterterm for single radi-

ation, and we easily find∑
λ

JE, 1 (k; l, β, n) = g2
s Cr (2π)dδd(l − p) 2p · n

p · k n · k
. (5.13)

In the limit of pµ collinear to kµ, we can employ the relations

l2 = (p+ k)2 = 2 p · k , p · n = z l · n , k · n = (1− z) l · n , (5.14)

to obtain the explicit soft-collinear counterterm∑
λ

JE, 1 (k; l, β, n) =
8παsCr

l2
(2π)dδd(l − p) 2z

1− z
. (5.15)

We note that the factor 2z in the numerator is necessary to enforce the commutation

relation between soft and collinear limit at NLO: a basic feature that allows significant

simplifications in the subtraction procedure [73].
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6 Constructing counterterms at NLO

Our basic strategy for subtraction is to identify soft and collinear local counterterms start-

ing from the known expressions for the poles of virtual corrections. We now proceed to

illustrate how this works with the simple case of NLO massless final-states. Expanding

eq. (2.6) to NLO, and using the fact that virtual jet functions are normalised to equal

unity at tree level, we easily find

A(0)
n (pi) = S(0)

n (βi)H(0)
n (pi) ,

A(1)
n (pi) = S(1)

n (βi)H(0)
n (pi) + S(0)

n (βi)H(1)
n (pi)

+

n∑
i=1

(
J (1)
i (pi)− J (1)

i,E (βi)
)
S(0)
n (βi)H(0)

n (pi) , (6.1)

Using eq. (6.1), it is straigthforward to construct the NLO virtual correction Vn, entering

NLO distributions as in eq. (3.3), and to express it in terms of the cross-section-level soft

and jet virtual functions. One finds

Vn ≡ 2Re
[
A(0)∗
n A(1)

n

]
(6.2)

= H(0) †
n (pi)S

(1)
n, 0(βi)H(0)

n (pi) +

n∑
i=1

(
J

(1)
i, 0 (pi)− J (1)

i,E, 0(βi)
) ∣∣∣A(0)

n (pi)
∣∣∣2 + finite .

It is now a simple task to find local counterterms for these poles: one simply notices that

the soft completeness relation in eq. (4.5), at NLO, implies the cancellation

S
(1)
n,0 (βi) +

∫
dΦ1 S

(0)
n, 1(k, βi) = finite . (6.3)

Similarly, the collinear completeness relation in eq. (5.5), at NLO, implies the cancellation

J
(1)
i, 0 (l, p, n) +

∫
dΦ1 J

(0)
i, 1 (k; l, p, n) = finite , (6.4)

with a similar relation holding for the cross-section-level eikonal jets defined in eq. (5.12).

The local phase space integrands in eq. (6.3) and eq. (6.4), multiplied times the appropriate,

finite, hard coefficients, must thus provide the necessary counterterms. In particular NLO

soft poles are cancelled by integrating the combination

K s
n+1 = H(0) †

n (pi)S
(0)
n, 1(k, βi)H(0)

n (pi) , (6.5)

over the single-particle soft phase space. Similarly, NLO collinear poles are cancelled by

integrating the combination

K c
n+1 =

n∑
i=1

J
(0)
i, 1 (ki; l, pi, ni)

∣∣∣A(0)
n (p1, . . . , pi−1, l, pi+1, . . . , pn)

∣∣∣2 ; (6.6)

note that, for gluons, the function Ji, 1 is a spin matrix acting on the spin-correlated

Born. The double subtraction of soft and collinear singularities overcounts the soft-collinear

regions: one must therefore add back a local soft-collinear counterterm, given by

K sc
n+1 =

n∑
i=1

J
(0)
i,E, 1(ki; l, βi, ni)

∣∣∣A(0)
n (p1, . . . , pi−1, l, pi+1, . . . , pn)

∣∣∣2 . (6.7)
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Using the tree-level results listed in section 4 and in section 5, it is easy to see that

eq. (6.5) and eq. (6.6) reproduce standard results for NLO subtraction. One should however

appreciate that the present approach provides a simple proof that the list of singular regions

for real radiation considered here is exhaustive, and collinear regions for radiation from

different outgoing hard particles do not interfere. While these facts are well-understood at

NLO, their generalisations at higher orders are much less obvious. On the other hand, we

note that these result do not yet constitute a subtraction algorithm at NLO: indeed, one

can see that the tree-level matrix elements appearing in eq. (6.6) involve particles that are

not on the mass-shell, except in the strict collinear limit, while momentum conservation is

not properly implemented in eq. (6.5), except in the strict soft limit. A practical algorithm

must provide a resolution of these issues, with the construction of suitable momentum

mappings between the Born and the radiative configurations, either with global treatment

of phase space, as done for example in [34], or with a decomposition into different singular

regions, as done for example in [33] and in [73].

7 Constructing counterterms at NNLO

Extending the procedure of section 6 to higher orders is in principle straightforward, but

it unveils and organises several non-trivial features of real radiation in singular regions of

phase space. Let us begin by extending eq. (6.1) by computing the expansion of the virtual

correction to the amplitude up to NNLO. The two-loop contributions can be written as

A(2)
n (pi) = S(0)

n (βi)H(2)
n (pi) + S(2)

n (βi)H(0)
n (pi) + S(1)

n (βi)H(1)
n (pi)

+
n∑
i=1

[
J (2)
i (pi)− J (2)

i,E (βi) − J (1)
i,E (βi)

(
J (1)
i (pi)− J (1)

i,E (βi)
)]
A(0)
n (pi)

+

n∑
i<j=1

(
J (1)
i (pi)− J (1)

i,E (βi)
)(
J (1)
j (pj)− J (1)

j,E(βj)
)
A(0)
n (pi) (7.1)

+
n∑
i=1

(
J (1)
i (pi)− J (1)

i,E (βi)
) [
S(1)
n (βi)H(0)

n (pi) + S(0)
n (βi)H(1)

n (pi)
]
.

Several comments are in order. We begin by noting that the first term on the first line is

finite, being given by the action of the finite tree-level soft operator on the two-loop finite

hard remainder. The second term contains two-loop soft and soft-collinear poles from the

soft operator, giving singularities up to the maximum allowed degree, 1/ε4. In the third

term the one-loop soft operator acts on the one-loop finite hard remainder, giving a single

soft pole and a double soft-collinear pole. The second line is the most interesting from the

point of view of factorisation: it contains all double hard-collinear poles arising from two-

loop virtual corrections associated with a single hard external leg, yielding singularities up

to 1/ε2. In particular, the second line does not generate any soft poles: indeed, while the

function J (2)
i (pi) contains up to two soft poles, generated by gluons that are both soft and

collinear to the i-th hard particle, the contributions in which both gluons are soft (on top

of being collinear) are cancelled by the second term in square bracket, J (2)
i,E (βi), and finally

the contributions in which only one of the two collinear gluons is soft are cancelled by the
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Figure 3. Cancellation of soft poles illustrated with sample representative diagrams.

last term in the square bracket. Notice the factorised form of that last term: when one

gluon is hard and the other one is soft, the soft gluon factorises from the matrix element in

the usual way. This cancellation mechanism is illustrated, for a sample diagram, in figure 3.

The last two lines in eq. (7.1) have a simpler interpretation: the third line contains single

hard collinear poles arising simultaneously on two different hard legs, i and j; the fourth

line contains single hard collinear poles on the i-th hard leg, accompanied by a soft single

pole, or a soft-collinear double pole, or just multiplied times a finite correction.

The next step is to construct the virtual contributions to the squared amplitude at

NNLO. In order for our procedure to work, these must in turn be expressed in terms of the

cross-section-level virtual jet and soft functions, which is less than trivial since, at NNLO,

all functions involved receive contributions both from the interference between the Born

amplitude and the two-loop correction, and from the square of the one-loop amplitudes.

For example, the two-loop cross-section-level virtual soft function is given by

S(2)
n = S(0) †

n S(2)
n + S(2) †

n S(0)
n + S(1) †

n S(1)
n , (7.2)

while the two-loop unpolarised cross-section-level radiative jet function for a quark emitting

m gluons reads

J (2)
q,m =

∫
ddx eil·x

∑
{λj}

[
J (1) †
q,m (x) /pJ (1)

q,m(0) + J (0) †
q,m (x) /pJ (2)

q,m(0)

+J (0)
q,m(x) /pJ (2) †

q,m (0)

]
. (7.3)

It is relatively simple to organise the virtual poles in the real-virtual contribution to the

squared matrix element: this amounts essentially to a repetition of the NLO calculation,

with n+ 1 hard particles in the final state. One easily finds

RVn+1 ≡ 2Re
[
A(0)∗
n+1A

(1)
n+1

]
(7.4)

= H(0) †
n+1 S

(1)
n+1, 0H

(0)
n+1 +

n+1∑
i=1

(
J

(1)
i, 0 − J

(1)
i,E, 0

) ∣∣∣A(0)
n+1

∣∣∣2 + finite .

Double virtual poles, on the other hand, receive several non-trivial contributions, which

can be organised as follows:

V Vn ≡ (V V )(2s)
n + (V V )(1s)

n +
n∑
i=1

(V V )
(2hc)
n, i +

n∑
i<j=1

(V V )
(2hc)
n, ij

+

n∑
i=1

(V V )
(1hc, 1s)
n, i +

n∑
i=1

(V V )
(1hc)
n, i . (7.5)
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We will now go through the various contributions to the r.h.s. of eq. (7.5), identifying

in each case the real radiation counterterms that are needed to cancel the corresponding

virtual poles. The double-soft virtual contribution (V V )
(2s)
n , which, within our chosen

organisation of the matrix element, contains soft-collinear poles as well, is given by

(V V )(2s)
n = H(0) †

n S
(2)
n, 0H

(0)
n , (7.6)

where S
(2)
n, 0 was given in eq. (7.2). To give a complete picture of the soft sector, at this

point we also include in the discussion the single-soft virtual contribution (V V )
(1s)
n , which

is given by

(V V )(1s)
n = H(0) †

n S
(1)
n, 0H

(1)
n + H(1) †

n S
(1)
n, 0H

(0)
n , (7.7)

as well as the real-virtual soft poles in eq. (7.4). In order to cancel these poles, we need

the completeness relation for the soft sector to NNLO, which reads

S
(2)
n,0(βi) +

∫
dΦ1 S

(1)
n, 1(k, βi) +

∫
dΦ2 S

(0)
n, 2(k1, k2, βi) = finite . (7.8)

It is natural at this point to identify three separate soft counterterms, characterised by

their kinematic structure. The double-unresolved soft counterterm involves n-point hard

kinematics, and double soft radiation; it is given by

K
(2s)
n+2 = H(0) †

n S
(0)
n, 2H

(0)
n . (7.9)

The single-unresolved soft conterterm involves (n + 1)-point hard kinematics, and single

soft radiation; it is given by

K
(1, s)
n+2 = H(0) †

n+1 S
(0)
n+1, 1H

(0)
n+1 . (7.10)

Finally, the real-virtual soft counterterm involves n-point hard kinematics, and single soft

radiation; it contains all remaining terms that are required for finiteness according to

eqs. (6.3) and (7.8), which give

K
(RV, s)
n+1 = H(0) †

n S
(0)
n, 1H

(1)
n + H(1) †

n S
(0)
n, 1H

(0)
n + H(0) †

n S
(1)
n, 1H

(0)
n . (7.11)

We now note that this procedure yields an expression for the complete double-unresolved

soft counterterm K
(2s)
n+2, but does not immediately distinguish between the two contributions

defined in eq. (3.7). It is however easy, in this context, to identify the desired partition of

the counterterm. Indeed, as discussed in ref. [73], the local counterterm K
(12)
n+2 is designed

to be integrated in two stages: the first integration, in a single-particle phase space, yields

the integrated counterterm I
(12)
n+1 , which must cancel the explicit poles of the real-virtual

counterterm K
(RV)
n+1 , given entirely by the last term in eq. (7.11). From the point of view

of factorisation, the desired function is then identified as follows. An explicit calculation

of S
(0)
n, 2 from its definition in eq. (4.4) yields the sum of two distinct contributions: one in

which the soft limits on the two radiated gluons are taken hierarchically, with one gluon

being much softer than the other one, and one in which the two gluons have a comparable

softness. This structure was identified in ref. [22], and is derived from eq. (4.10) by taking
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the limit in which k2 is much softer than k1, or viceversa. The hierarchical limit of K
(2s)
n+2 is

constructed essentially by treating one of the two soft radiated particles temporarily as a

hard one: it gives therefore precisely the desired function K
(12, 2s)
n+2 , which, upon integration,

will cancel the explicit double-soft poles of the real-virtual local counterterm. A similar

pattern can be replicated for the other double-unresolved local counterterms, in all cases

in which a hierarchy between the two unresolved particles can be identified.

Turning to hard collinear poles, we first tackle the contribution with two hard collinear

virtual gluons attached to the same hard outgoing leg. It is given by

(V V )
(2hc)
n, i =

[
J

(2)
i, 0 − J

(2)
i,E, 0 − J

(1)
i,E, 0

(
J

(1)
i, 0 − J

(1)
i,E, 0

)] ∣∣∣A(0)
n

∣∣∣2 . (7.12)

In order to cancel the poles of the first two terms in eq. (7.12), we can use the NNLO

expansion of eq. (5.5), which gives the finiteness condition

J
(2)
i,0 +

∫
dΦ1 J

(1)
i, 1 +

∫
dΦ2 J

(0)
i, 2 = finite , (7.13)

and the analogous expression for eikonal jets. The third term of eq. (7.12) has a different

structure, since it is a product of two one-loop functions. One can however cancel its poles

with the same general approach, by using the fact that[
J

(1)
i,E,0 +

∫
dΦ1 J

(0)
i,E, 1

] [
J

(1)
i,0 − J

(1)
i,E,0 +

∫
dΦ′1

(
J

(0)
i, 1 − J

(0)
i,E,1

)]
= finite . (7.14)

Once again, the contributions to different local counterterm functions can be identified by

their phase space structure. We define

K
(2hc)
n+2, i =

[
J

(0)
i, 2 − J

(0)
i,E, 2 − J

(0)
i,E, 1

(
J

(0)
i, 1 − J

(0)
i,E, 1

)] ∣∣∣A(0)
n

∣∣∣2 ,
K

(1, hc)
n+2, i =

(
J

(0)
i, 1 − J

(0)
i,E, 1

) ∣∣∣A(0)
n+1

∣∣∣2 , (7.15)

K
(RV, hc)
n+1, i =

[
J

(1)
i, 1 − J

(1)
i,E, 1 − J

(1)
i, 0J

(0)
i,E, 1 − J

(1)
i,E, 0J

(0)
i, 1 + 2J

(1)
i,E, 0J

(0)
i,E, 1

] ∣∣∣A(0)
n

∣∣∣2 .
The remaining singular virtual contibutions do not present new difficulties. Hard collinear

virtual poles associated with two different hard legs can be organised in the form

(V V )
(2hc)
n, ij =

(
J

(1)
i, 0 − J

(1)
i,E, 0

)(
J

(1)
j, 0 − J

(1)
j,E, 0

) ∣∣∣A(0)
n

∣∣∣2 . (7.16)

By using again the finiteness conditions stemming from eq. (5.5) (and its eikonal counter-

part), we can cancel these poles by integrating the local counterterms

K
(2hc)
n+2, ij =

(
J

(0)
i, 1 − J

(0)
i,E, 1

)(
J

(0)
j, 1 − J

(0)
j,E, 1

) ∣∣∣A(0)
n

∣∣∣2
K

(RV, hc)
n+1, ij =

[(
J

(1)
i, 0 − J

(1)
i,E, 0

)(
J

(0)
j, 1 − J

(0)
j,E, 1

)
+ (i↔ j)

] ∣∣∣A(0)
n

∣∣∣2 , (7.17)

while no single-unresolved counterterm in the (n+ 1)-particle phase space is required in

this case.
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We are left with single hard collinear virtual poles, accompanied by a single soft pole,

or by a finite factor. They are given by

(V V )
(1hc, 1s)
n, i =

(
J

(1)
i, 0 − J

(1)
i,E, 0

)
H(0) †
n S

(1)
n, 0H

(0)
n , (7.18)

(V V )
(1hc)
n, i =

(
J

(1)
i, 0 − J

(1)
i,E, 0

) (
H(0) †
n S

(0)
n, 0H

(1)
n + H(1) †

n S
(0)
n, 0H

(0)
n

)
.

Proceeding as above, we find that these poles can be cancelled by integrating the local

counterterms

K
(1hc, 1s)
n+2, i =

(
J

(0)
i, 1 − J

(0)
i,E, 1

)
H(0) †
n S

(0)
n, 1H

(0)
n , (7.19)

K
(RV, 1hc, 1s)
n+1, i =

(
J

(1)
i, 0 − J

(1)
i,E, 0

)
H(0) †
n S

(0)
n, 1H

(0)
n +

(
J

(0)
i, 1 − J

(0)
i,E, 1

)
H(0) †
n S

(1)
n, 0H

(0)
n ,

K
(RV, 1hc)
n+1, i =

(
J

(0)
i, 1 − J

(0)
i,E, 1

)(
H(0) †
n S

(0)
n, 0H

(1)
n + H(1) †

n S
(0)
n, 0H

(0)
n

)
,

which completes the list of local counterterms needed for NNLO massless final state con-

figurations.

8 Conclusions

We have presented the outline of a general formalism to construct local counterterms for the

subtraction of soft and collinear singular configurations from real-radiation squared matrix

elements, using as an input the well-known factorised structure of infrared poles in virtual

corrections to scattering amplitudes. Virtual factorisation embodies highly non-trivial

structural features of infrared singularities: the colour-singlet nature of collinear poles,

the simple organisation of soft-collinear enhancements, the exponentiation of singularities

following from renormalisation group invariance. The hope, already partly realised in the

results presented here, is that these simplifying features will be reflected in a streamlined

and optimised structure of the subtraction procedure.

The main results of this paper are presented in section 4 and in section 5, where we give

general expressions for local counterterms for soft, collinear and soft-collinear configura-

tions, valid to all orders in perturbation theory, and constructed in terms of gauge-invariant

matrix elements of field operators and Wilson lines. The definitions are tested at low orders,

reproducing known results at NLO and NNLO and highlighting the simplifying features

that follow from virtual factorisation. In section 6 and in section 7 we apply the general

definitions to construct explicitly all counterterms required at NLO and at NNLO, re-

spectively, for the case of massless final state radiation. We emphasise that the expressions

given here are not yet directly suitable for implementation in a fully operational subtraction

algorithm: appropriate phase-space mappings, such as those detailed in [73], must still be

implemented in order to express all ingredients in terms of on-shell momentum-conserving

matrix elements; we note however that the list of counterterms presented is exhaustive,

and the treatment of soft-collinear double counting is highly streamlined.

The approach we have presented can be naturally generalised in several directions:

first of all, a detailed treatment of initial-state singularities can be developed, which in

principle does not present new theoretical difficulties. In this context, we note that we
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are not paying special attention to the issue of Glauber gluons and possible factorisation

violations: essentially, we are assuming that the formalism applies for sufficiently inclusive

observables, such that Glauber gluons do not result in uncancelled infrared singularities.

The issue is however very interesting from a theoretical point of view: infrared power

counting shows that Glauber gluons do not contribute to infrared singularities for fixed-

angle scattering amplitudes (see, for example, [91] for a recent discussion of leading regions

in coordinate space), but they can result in a breakdown of factorisation for insufficiently

inclusive hadronic cross sections, when real collinear radiation is integrated over unresolved

regions of phase space (see, for example, [92–94] for recent discussions). The tools developed

in this paper, which allow for the study of real infrared radiation at the level of differential

distributions, may in future help to shed light on the limits of factorisation theorems for

less inclusive collider observables.3

At the level of definitions of local counterterms, the extension to massive partons

(which is of obvious phenomenological interest, in view of top-quark-related observables,

and possibly b-quark mass effects) is not problematic: indeed, massive partons are not af-

fected by collinear divergences (although it may be of interest to resum collinear logarithms

of the quark mass), so that the structure of counterterms is in fact simpler when masses

are present. In the massive case, on the other hand, more work is needed to properly de-

fine the phase space mappings associated with branchings involving massive partons [96],

and to perform the corresponding integrations. On the other hand, the approach we have

presented here is likely to have a significant impact in the organisation of future N3LO sub-

traction algorithms: indeed, at N3LO, the combinatorics of overlapping singular regions

becomes considerably worse, and the impact of infrared exponentiation on subtraction is

bound to become stronger. Work on a detailed extension of the present work to N3LO is

in progress.

More generally, we hope that the present work will contribute to developing our knowl-

edge of the infrared behaviour of real radiation at the differential level, to all orders in

perturbation theory, bringing it to the same detailed level of understanding and control

currently enjoyed by virtual corrections to fixed-angle scattering amplitudes and by inclu-

sive cross sections.
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[65] G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at

NNLO: regularization of real-virtual emission, JHEP 01 (2007) 052 [hep-ph/0609043]

[INSPIRE].

[66] V. Del Duca, C. Duhr, A. Kardos, G. Somogyi and Z. Trócsányi, Three-jet production in
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