
Università degli Studi di Milano Bicocca
Department of Computer Science, Systems and Communication

PhD program in Computer Science Cycle XXXVI

Semantic Enrichment of Tabular Data with
Machine Learning Techniques

Supervisor:
Prof. Flavio De Paoli

Tutor:
Prof. Daniela Micucci

Candidate:
Roberto Avogadro

Coordinator: Prof. Leonardo Mariani

Contents

Abstract 1

Acknowledgments 2

1 Introduction 4
1.1 Contributions . 11
1.2 Thesis Structure . 12
1.3 Reproducibility . 14

2 Preliminaries 15
2.1 Knowledge Graph . 15
2.2 Information Retrieval . 17
2.3 Tables . 17

2.3.1 Simple Table . 18
2.3.2 Vertical Table . 19
2.3.3 Nested Table . 19
2.3.4 Relational Tables . 19

2.4 Semantic Table Interpretation (STI) . 20
2.5 Neural Networks . 22

2.5.1 Structure of Neural Networks . 22
2.5.2 Training of Neural Networks . 22
2.5.3 Applications of Neural Networks . 23
2.5.4 Diverse Types of Neural Networks: An Overview 23
2.5.5 Delving into Feedforward Neural Networks 23

2.6 Data Pipelines . 24
2.6.1 Components of a Data Pipeline . 24
2.6.2 Types of Data Pipelines . 24
2.6.3 Importance of Data Pipelines . 25

2.7 Data Pipeline Example . 25

3 Related work (SoTa) 26
3.1 Introduction . 26
3.2 ER: Entity Retrieval . 27
3.3 EL: Entity Linking . 31
3.4 NIL Entities Problem . 33
3.5 Human-in-the-Loop . 35

3.5.1 Introduction . 35
3.5.2 Research Trends and Classification 36

3.5.3 Types of Interactions . 36
3.5.4 Challenges and Limitations . 36
3.5.5 Conclusion . 37

3.6 Data Pipelines . 37
3.6.1 Scalability in Data Processing . 38
3.6.2 Architecture and Components . 38
3.6.3 Technologies, Methodologies, and Tools in Data Pipelines 39
3.6.4 Challenges and Limitations . 40
3.6.5 Summary . 40

4 Information Retrieval System 41
4.1 Knowledge Graph Indexing . 41
4.2 Data Retrieval . 42
4.3 Information Retrieval System for Dataset with LamAPI 43
4.4 Evaluation of LamAPI Performance . 49

5 Semantic Enrichment of Tabular Data 54
5.1 Overview of the Proposed Approach . 54

5.1.1 Data Preparation & Candidate Retrieval 55
5.1.2 The Entity Linking Algorithm . 56
5.1.3 Decision . 56

5.2 Entity Linking over Tabular Data . 57
5.2.1 Feature Engineering . 57
5.2.2 The Machine Learning Model . 62
5.2.3 Decision: Uncertainty Estimation and Metrics 64

5.3 Implementation and Evaluation of the Algorithms 66
5.3.1 The Experimental Campaign . 68
5.3.2 Examining Variations in Scores . 70
5.3.3 Further Discussion and Analyses of Score Distributions 71
5.3.4 Benchmarking Tools Across Tables 73

6 Human In The Loop (HITL) over Tabular Data 79
6.1 Interactive Human Revision . 79

6.1.1 User Review through a Jupyter Notebook 80
6.1.2 User Review through a User Interface 80

6.2 Types of Human Feedback . 86
6.2.1 Human’s Rules . 86
6.2.2 Decision Rule Revision . 87
6.2.3 Model Revision . 87

6.3 Feedback from Human Revision . 87
6.4 Validation of Human Feedback . 88

3

7 Entity Linking in Large-Scale Data Environments 95
7.1 Data Pipeline: An Overview . 95
7.2 Data pipelines . 96
7.3 Entity Linking at scale using Alligator Scalable Version 99
7.4 Evaluation of Alligator Scalable Version . 102

7.4.1 Evaluating Pipeline Stepwise Time Performance 104
7.4.2 Collection of Metrics for Pipeline Performance Evaluation 105
7.4.3 Assessing Pipeline Scalability . 105

8 Conclusion and Future Directions 108

Appendices 109

A First Appendix 110
A.1 F1 score and AUC curve for the all Datasets 110
A.2 Examining Variations in Scores over all Datasets 110
A.3 Examining Variations in Scores using Mammotab10K 113
A.4 Further Discussion and Analyses of Score Distributions 114

List of Figures

1.1 Motivations and research value of semantic table interpretation. 5
1.2 ChatGPT 4 output to request table annotation using Wikidata. 9
1.3 ChatGPT 4 output to request table annotation using Wikipedia. 10

2.1 An example of KG . 16
2.2 A subset of wikidata Knowledge Graph (KG) 17
2.3 Components of an information retrieval system 18
2.4 Skeleton of a table . 18
2.5 An example of annotated table . 21
2.6 A typical structure of a Feedforward Neural Network 24

3.1 Number of publications of paper related to Semantic Table Interpretation (STI)
[46]. 32

3.2 Distribution of the topics of the papers related to STI [46]. 32
3.3 Number of publications of paper related to NIL entities 33
3.4 The increasing research interest in the human-in-the-loop (image from [77]) . . 36

4.1 LamAPI documentation page . 43
4.2 LamAPI Lookup service . 44
4.3 The high level workflow to build LamAPI . 49
4.4 Coverage trends across different considered datasets 52
4.5 Average position of the correct candidate across different considered datasets . 53

5.1 Linking workflow with Human-In-The-Loop feedback. 54
5.2 Example of feature vector. 58
5.3 Overview of the Alligator Swagger Page . 67
5.4 Focus on the POST Method for Performing Entity Linking (EL) on Tabular Data

in Alligator . 67
5.5 Scores variations for HardTableR2 dataset . 76
5.6 Distribution of ρ and δ over HardTableR2 . 77
5.7 Benchmark comparison of various solutions across four distinct tables 78

6.1 Reconciled table displaying only Wikidata QIDs. 82
6.2 Reconciled table augmented with additional metadata: name, description, and

confidence score. 83
6.3 Display list of the tables within a dataset. For each table, it is possible to see

some statistics like the number of columns and rows. 84
6.4 Display page with content of a table. 84
6.5 Detailed page for the analysis result of reconciling a mention. 85

5

6.6 Page for downloading annotations in different formats. 85
6.7 Annotated table without threshold adjustment. 90
6.8 Annotated table with threshold value highlighted. 91
6.9 Annotated table after the application of the adjusted threshold. 92
6.10 F1 and AUC computed for the training dataset. 93
6.11 F1 and AUC computed for the test dataset. 93

7.1 Architecture of enRichMyData Toolbox . 98
7.2 Example of data pipeline combining different tools 101
7.3 Representation of the Alligator pipeline’s steps as visualized in the Argo Work-

flows interface. 103
7.4 Representation of the Alligator pipeline’s steps as observed from the command-

line interface (CLI). 103
7.5 Temporal distribution of each step in the Alligator pipeline, as visualized in the

Argo Workflows user interface. 104
7.6 Central Processing Unit (CPU) utilization during the complete dry run of the

Alligator pipeline. 105
7.7 Memory utilization during the complete dry run of the Alligator pipeline. . . . 106
7.8 Network bandwidth utilization during the complete dry run of the Alligator

pipeline. 106

A.1 F1 and AUC computed for train Round1 T2D and Round3 110
A.2 F1 and AUC computed for train 2T-2020 and Round4 111
A.3 F1 and AUC computed for train HardTableR2 and HardTableR3 111
A.4 F1 and AUC computed for test Round1 T2D and Round3 111
A.5 F1 and AUC computed for test 2T-2020 and Round4 112
A.6 F1 and AUC computed for test HardTableR2 and HardTableR3 112
A.7 Scores variations for Round1 T2D dataset . 115
A.8 Scores variations for Round3 dataset . 116
A.9 Scores variations for Round4 dataset . 117
A.10 Scores variations for 2T-2020 dataset . 118
A.11 Scores variations for HardTableR3 dataset . 119
A.12 Scores variations for Mammotab10K dataset using the model from Round1 T2D

dataset . 120
A.13 Scores variations for Mammotab10K dataset using model from Round3 dataset 121
A.14 Scores variations for Mammotab10K dataset using model from Round4 dataset 122
A.15 Scores variations for Mammotab10K dataset using model from 2T-2020 dataset 123
A.16 Scores variations for Mammotab10K dataset using model from HardTableR2

dataset . 124
A.17 Scores variations for Mammotab10K dataset using model from HardTableR3

dataset . 125

6

A.18 Distribution of ρ and δ over Round1 T2D dataset 126
A.19 Distribution of ρ and δ over Round3 . 126
A.20 Distribution of ρ and δ over Round4 . 128
A.21 Distribution of ρ and δ over 2T-2020 . 128
A.22 Distribution of ρ and δ over HardTableR3 . 129

Abstract

Semantic Table Interpretation (STI) is one of the most widely used methods for identifying
entities in tabular data. In this work, a methodology is delineated for implementing entity linking
on a large scale using machine learning techniques, focusing on the challenges and solutions
associated with handling vast amounts of data. The methodology is based on the concept of
table-to-Knowledge Graph (KG) matching, which is a key step to enrich and extend Knowledge
Graphs (KGs) from semi-structured data. Moreover, the intricacies of STI, EL, and the emerging
landscape of Large Language Models (LLMs) and their potential application in STI and EL have
also been touched upon. In addition, the impact of employing distinct KnowledgeGraphs, such
as Wikidata and Wikipedia, in the context of EL using ChatGPT 4 has been demonstrated. In
particular, the role of Human-in-the-Loop (HITL) techniques in enhancing model performance
is explored. This work outlines the foundational groundwork for the development of a scalable
approach that adapts the existing STI framework to handle enrichment pipelines in large-scale
data scenarios, thereby enhancing its operational efficiency and applicability.

1

Acknowledgments

This research journey began during my Bachelor’s degree and continued throughout my PhD,
spanning many years of dedicated focus on this topic. Over time, I have cultivated a deep
expertise in this area, thoroughly enjoying the process of delving into the intricate challenges it
presents.

I would like to express my gratitude to my supervisor, Prof. Flavio De Paoli. Special thanks
go to Prof. Michele Ciavotta and Prof. Matteo Palmonari, who have been excellent reference
points for me. I am also grateful to Prof. Dumitru Roman, who supervised my work during my
time abroad at SINTEF Digital in Oslo, Norway — a division of the largest independent research
organization in Scandinavia. His ability to stimulate my intellectual curiosity was invaluable.

My heartfelt appreciation goes to my family, sisters, and friends, who have provided unwa-
vering support throughout my academic journey.

Equally important, I wish to acknowledge the contributions of my colleagues in “the lab.”
Special thanks go to Marco Cremaschi for his consistent assistance, to David Chieregato for his
patience and invaluable advice, and to Fabio D’Adda for being a pleasant companion during
break times. I also extend my gratitude to Elia Guarnieri, aptly described as ‘the teacher,’ for
his pedagogical contributions. Lastly, I thank Stefano Fiorini and Riccardo Pozzi for being not
only thoughtful collaborators in academic discussions but also enjoyable companions outside of
the work environment.

This work received partial funding from InterTwino - National programme “European Re-
search Networks” by the Bulgarian Ministry of Education and Science - (grant number O1-
89/02.04.2021), and the European Commission Horizon 2020 enRichMyData project (grant
number 101070284).

2

Acronyms

AI Artificial Intelligence.

CEA Cell Entity Annotation.

CPA Column Property Annotation.

CR Candidate Retrieval.

CTA Column Type Annotation.

ED Entity Disambiguation.

EL Entity Linking.

IR Information Retrieval.

KG Knowledge Graph.

KGs Knowledge Graphs.

LLM Large Language Model.

ML Machine Learning.

NLP Natural Language Processing.

RDF Resource Description Format.

STI Semantic Table Interpretation.

UI User Interface.

3

1. Introduction

In the era of information, the large amounts of available data represent both a challenge and
an opportunity for organizations and researchers. These structured and unstructured data can
be used to create supervised ML models within the realm of Artificial Intelligence (AI), which
extract knowledge by identifying patterns and relationships in the data. However, to build ef-
fective models, it is important that the data is of good quality. Organizations must therefore pay
attention to data collection and management, with the ultimate goal of obtaining accurate and
reliable datasets.

In 2023, OpenAI released GPT-4, a large-scale multimodal language model trained using an
unprecedented scale of compute and data. Unlike GPT-3.5, this new version is more reliable,
creative, and capable of handling more complex user instructions. Although it does not yet
consider many real-world scenarios, GPT-4 shows performance comparable to that of a human
in various domains.

The construction and use of structured data in tables is common in multiple contexts; it is
worth noting that in the current version of Wikipedia, it is possible to identify 2,803,424 tables
[49]. This suggests that tables convey a huge amount of information that can be used in data
analytics or AI solutions.

The large amount of already available tables and datasets makes interoperability strategic,
and an answer is to identify the same entities across disparate datasets. The identification process
is known as the table-to-Knowledge Graph (KG) matching problem also referred to as Semantic
Table Interpretation (STI), which has recently received much attention in the research commu-
nity [38, 34, 12]. This is a key step to enrich data [13, 55] and construct and extend Knowledge
Graphs (KGs) from semi-structured data [75, 41]. The knowledge of entities with their types
and properties allows for further operations as illustrated in Figure 1.1. In this work we concen-
trate on data enrichment, which means being able to interpret (reconcile) a table using a KG to
enable for extension with information taken from the KG end/or from other tables.

STI is a research field in continuous evolution with increasing interest over time. The grow-
ing interest in the topic is proved by the international Semantic Web Challenge on Tabular Data
to Knowledge Graph Matching (SemTab) that has been proposed since 20181 [38, 34, 12]. This
challenge is repeated annually. Over the years, several approaches, datasets, and related Gold
Standards have been released. The outcomes of the various editions of the challenge, including
datasets with associated Gold Standard and the methods developed by participants, provide the
valuable framework to support and validate the work proposed in this thesis.

An example of a tabular data source is presented in Table 1.1. This table can be recon-
ciled against Wikidata as illustrated in Table 1.2. Wikidata is the largest collaboratively-edited
database of structured data that serves as a repository of general-purpose linked data. The rec-
onciliation process added Wikidata unique identifiers to movie titles, directors, and distributors,

1cs.ox.ac.uk/isg/challenges/sem-tab

4

https://www.cs.ox.ac.uk/isg/challenges/sem-tab/

KG
CONSTRUCTION

TABULAR
DATA ONTOLOGY NEW KG

DATA
ENRICHMENT

EXISTING
KG

TABULAR
DATA

EXTENDED
TABULAR

DATA

KG

KG
EXTENSION

TABULAR
DATA EXTENDED

KG

Figure 1.1: Motivations and research value of semantic table interpretation.

Table 1.1: An example of tabular data about movies

Title Director Release
date

Distributor Length
in min

Worldwide
gross (USD)

X-Men Bryan Singer 14/07/2000 Twentieth Century Fox 104 296300000
Batman Begins Christopher Nolan 17/06/2005 Warner Bros. 140 371853783
Superman Returns Bryan Singer 28/06/2006 Warner Bros. 154 391081192
Avatar James Cameron 15/01/2009 Twentieth Century Fox 162 2744336793
Jurassic World Colin Trevorrow 11/06/2015 Universal Pictures 124 1670400637

which enables for extensions as illustrated in Table 1.3. IMDb identifiers (with gray background
in the figure) are taken from Wikidata and used to extract further information, the genre in this
case (with pink background). IMDb (Internet Movie Database) is an example of a domain-
specific dataset that defines unique identifies without being a KG.

The example illustrates the effect of executing an enrichment pipeline that brings a table and,
after the application of a sequence of algorithms, produces a final result, the enriched table, as
the one in Table 1.3. The overall approach taken in this work foresees two phases: a preliminary
phase, and a production phase. In the former, a sample table is enriched by manually applying
algorithms and involving datasets to set up an enrichment pipeline, i.e., the sequence of actions

5

to be applied to get the final enriched table. In the latter, the defined pipeline is executed on the
full dataset at scale.

Table 1.2: An example of tabular data about movies (annotated using Wikidata)

Title Tittle
(QID)

Director Director
(QID)

Release
date

Distributor Distributor
(QID)

Length
in min

Worldwide
gross (USD)

X-Men Q106182
Bryan
Singer

Q220751 14/07/2000
Twentieth
Century Fox

Q434841 104 296,300,000

Batman
Begins

Q166262
Christopher
Nolan

Q25191 17/06/2005
Warner
Bros.

Q126399 140 371,853,783

Superman
Returns

Q166262
Bryan
Singer

Q220751 28/06/2006
Warner
Bros.

Q126399 154 391,081,192

Avatar Q24871
James
Cameron

Q42574 15/01/2009
Twentieth
Century Fox

Q434841 162 2,744,336,793

Jurassic
World

Q3512046
Colin
Trevorrow

Q5145625 11/06/2015
Universal
Pictures

Q168383 124 1,670,400,637

Table 1.3: An example of tabular data about movies (extended using IMDb)

Title Tittle
(QID)

Director Director
(QID)

Release date Distributor Distributor
(QID)

Length
in min

Worldwide
gross (USD)

IMDB ID Genre

X-Men Q106182
Bryan
Singer

Q220751 14/07/2000
Twentieth
Century Fox

Q434841 104 296300000 tt0120903
Action, Adventure,
Sci-Fi

Batman
Begins

Q166262
Christopher
Nolan

Q25191 17/06/2005
Warner
Bros.

Q126399 140 371853783 tt0372784
Action, Crime,
Drama

Superman
Returns

Q166262
Bryan
Singer

Q220751 28/06/2006
Warner
Bros.

Q126399 154 391081192 tt0348150
Action, Adventure,
Sci-Fi

Avatar Q24871
James
Cameron

Q42574 15/01/2009
Twentieth
Century Fox

Q434841 162 2744336793 tt0499549
Action, Adventure,
Fantasy

Jurassic
World

Q3512046
Colin
Trevorrow

Q5145625 11/06/2015
Universal
Pictures

Q168383 124 1670400637 tt0369610
Action, Adventure,
Sci-Fi

Most of the approaches proposed in the literature for entity linking and table interpretation
are based on the use of heuristics, which are techniques that involve the definition of matching
rules and similarity measures that are combined linearly or with different weights. These ap-
proaches are often manually adapted through the analysis of results or comparison with a Gold
Standard to annotate data from specific domains or cases. However, the inherent specificity of
these approaches gives rise to biases, limiting their ability to generalize effectively.

In general, the robustness and generalization of heuristic-based approaches are difficult to
assess, as it is not possible to understand how the approaches were adapted to achieve better
performance on a specific dataset. Supervised approaches, provided they have high-quality
training data, tend to be easily generalizable because of their ability to predict model update
cycles to reduce bias [45, 67].

In this work, an approach that combines heuristic-based and machine-learning-based (super-
vised) approaches has been adopted. Moreover, a human-in-the-loop approach is exploited to
assess the results of the automatic annotations to both modify incorrect annotations, and provide
feedback to fine-tune the algorithms.

6

A comprehensive STI approach must consider and adequately balance the different char-
acteristics of a table (or a set of tables). The annotation involves several key challenges: i)
disambiguation: the type of the entities described in a table are not known in advance, and those
entities may correspond to more than one type in the KG. ii) homonymy: this issue is related to
the presence of different entities with the same name and type. iii) matching: the mention in the
table may be syntactically different from the label of the entity in a KG (i.e. use of acronyms,
aliases, and typos). iv) NIL-mentions: the approach much also consider strings that refer to en-
tities for which a representation has not yet been created within the KG, namely NIL-mentions.
v) literal and named-entity: in a table, there can be columns that contain named-entity mentions
(NE-column) and columns containing strings (L-column). vi) missing context: it is often easier
to extract the context from textual documents than from tables due to the amount of content to
be processed. Moreover, the header, the first row of a table, which usually contains descriptive
attributes for the columns, may or may not be present. So, the relationships (properties) between
the columns are not known in advance. vii) amount of data: the approach must consider large
tables with many rows and columns, and tables with very few mentions. viii) different domains:
the tables can belong to generic of specific domains.

In STI, there are essentially three tasks: Column Type Annotation (CTA), Column Property
Annotation (CPA), and Cell Entity Annotation (CEA), where the last one represents the core
task. This task is referred to as Entity Linking (EL), which comes in different flavors depending
on the considered data formats but shares some common features. Due to the extensive search
space of entities, a majority of EL methodologies employ a two-step process. The first step
involves Candidate Retrieval (CR) [58], where potential entities corresponding to the input string
are gathered. The second step focuses on Entity Disambiguation (ED) [57], wherein one or none
of the candidate entities are ultimately selected to represent the input string. In general, CR
yields a ranked list of candidate entities, which is subsequently re-ranked during the ED phase.

The retrieval of a set of candidate entities is typically achieved through Information Retrieval
(IR) techniques. However, recent advancements have introduced dense approaches [76, 66] to
CR. These dense methods leverage dense vector representations to perform both retrieval and
ranking in a single step. This not only simplifies the process but also potentially enhances the
accuracy and efficiency of the system since the role of features is pivotal, as they serve as the
key elements that the model uses for both retrieval and ranking. Yet, these methods show some
limitations, since the representation of features in multi-dimensional spaces remains a critical
factor, and feature extraction often depends on reference knowledge graphs. Additionally, the
performance of these approaches is closely tied to the quality and quantity of the training data.

Classic IR approaches based on search engines still provide valuable solutions to support en-
tity search, mainly because they do not require training, can work with any KG, and easily adapt
to changes in the reference KG. Although IR-based entity search has been used extensively,
especially in table-to-kg matching, their use has been frequently left to custom optimisations
and not adequately discussed or documented in scientific papers [51, 44, 8, 63]. As a result,
such systems must be developed from scratch to address new problems, including data indexing
techniques, query formulation and service set-up.

7

Listing 1.1: Prompt used to request table annotation using Wikidata entities.
1 Title , Director , Release date , Distributor , Length in min , Worldwide gross

X-Men , Bryan Singer , 14/07/2000 , Twentieth Century Fox , 104, 296 ,300 ,000
3 Batman Begins , Christopher Nolan , 17/06/2005 , Warner Bros., 140, 371 ,853 ,783

Superman Returns , Bryan Singer , 28/06/2006 , Warner Bros., 154, 391 ,081 ,192
5 Avatar , James Cameron , 15/01/2009 , Twentieth Century Fox , 162, 2 ,744 ,336 ,793

Jurassic World , Colin Trevorrow , 11/06/2015 , Universal Pictures , 124, 1 ,670 ,400 ,637
7

Can you perform Entity Linking over the table above using Wikidata as
9 reference Knowledge Graph?

ED is central to an EL process, and various approaches exist that exploit different types of
format and features of the input [67]. However, to be successful, the correct candidate must be
included in the set of candidates returned by CR, but this is still a challenge. Moreover, although
it is theoretically possible to examine the list of candidates to an arbitrary depth, practical con-
siderations of computational efficiency necessitate to consider a limited number of candidates.

More recently, generative AI has introduced novel solutions to any search problems. Today,
many platforms allow the generation of texts, videos, and images based on textual input provided
by a user. The hype raised in the last months of 2022, thanks to some OpenAI products, Dall-E
and ChatGPT above all, is due to the curiosity effect triggered precisely by the ease of access and
use of these systems. ChatGPT can produce an almost perfect text from a reasonably detailed
request (the prompt). The user experience and the quality of the produced output have allowed
these systems to spread widely, even adopted by large organizations [69].

OpenAI released version 4 of GPT with the claim: ‘while [GPT-4 is] less capable than
humans in many real-world scenarios, exhibits human-level performance on various professional
and academic benchmarks. It passes a simulated bar exam with a score around the top 10% of
test takers2’. The GPT scores stand out in the top ranks for at least 34 tests of ability in fields
as diverse as macroeconomics, writing, math, and vinology [54]. The news that GPT-4 beats
90% of the lawyers trying to pass the bar caused a stir 3. If Large Language Model (LLM) are
used in disparate contexts, experiments relating to STI demonstrate that these models are not
always successful to annotate tabular data. For instance, considering the Table 1.1, providing
the prompt in the Listing 1.1, the result proposed by ChatGPT 4 is shown in Figure 1.2.

The evidence is that most of the proposed Wikidata IDs are incorrect: Q184923 refers to the
entity ‘Zeilhofen’, a human settlement in Germany; Q25188 to the movie ‘Inception’ (in this
case, at least the context is correct since it refer to a movie); Q16772644 is the Wikimedia cate-
gory ‘1983 in diving’. The only one which is correct is Q42574 that refers to the director ‘James
Cameron’ while Q46054 does not even exist. What is described is an example of using a off-
the-shelf LLM. The results can improve using an adequately trained LLM. However, obtaining
the levels of precision and recall of current STI approaches with these models is currently hard
to generalize.

In contrast with the previous observations, it is noteworthy that substantial improvements

2https://openai.com/research/gpt-4
3https://www.forbes.com/sites/johnkoetsier/2023/03/14/gpt-4-beats-90-of-lawyers-trying-to-pass-the-bar/

8

https://openai.com/research/gpt-4
https://www.forbes.com/sites/johnkoetsier/2023/03/14/gpt-4-beats-90-of-lawyers-trying-to-pass-the-bar/

Figure 1.2: ChatGPT 4 output to request table annotation using Wikidata.

are observed when utilizing Wikipedia as the reference Knowledge Graph instead of Wikidata
with ChatGPT-4. Listing 1.2 provides details of the employed prompt, and Figure 1.3 illustrates
the resulting output. Notably, in this instance, the request explicitly included a confidence score
for each annotation. Remarkably, the results achieved a perfect one hundred percent accuracy.

To summarize and conclude the discussion, ChatGPT-4 has shown considerable efficacy in
addressing the problem of entity linking from a human-understandability standpoint by provid-
ing Wikipedia links. However, it currently falls short in offering a machine-processable solution,
as it does not provide Wikidata IDs. This limitation highlights the need for further advancements
to bridge the gap between human-readable and machine-processable entity linking.

In this introductory chapter, the stage has been set for the exploration of the field encom-

Listing 1.2: Prompt used to request table annotation using Wikipedia entities.
1 Title , Director , Release date , Distributor , Length in min , Worldwide gross

X-Men , Bryan Singer , 14/07/2000 , Twentieth Century Fox , 104, 296 ,300 ,000
3 Batman Begins , Christopher Nolan , 17/06/2005 , Warner Bros., 140, 371 ,853 ,783

Superman Returns , Bryan Singer , 28/06/2006 , Warner Bros., 154, 391 ,081 ,192
5 Avatar , James Cameron , 15/01/2009 , Twentieth Century Fox , 162, 2 ,744 ,336 ,793

Jurassic World , Colin Trevorrow , 11/06/2015 , Universal Pictures , 124, 1 ,670 ,400 ,637
7

Can you perform Entity Linking over the table above using Wikipedia
9 as reference Knowledge Graph , providing a confidence score for each entity as well?

9

Figure 1.3: ChatGPT 4 output to request table annotation using Wikipedia.

passing Semantic Table Interpretation and Entity Linking. The significance of structured data,
particularly tables, within the contemporary data-driven landscape has been emphasized. The
proliferation of tables across diverse domains has prompted substantial interest in the challenge
of associating table mentions with entities present in Knowledge Graphs.

The introduction of the SemTab challenge, a recurring benchmark, has catalyzed research
and innovation in the field of STI.

Furthermore, the limitations of heuristic-based approaches and the need for techniques char-
acterized by enhanced robustness and generalization have been discussed. Supervised approaches
show promise in this context, depending on the availability of high-quality training data.

The evolving landscape of Large Language Models (LLMs) and their potential application in
STI and EL have also been touched upon. While LLMs like ChatGPT 4 offer impressive capa-
bilities, attaining precision and recall levels commensurate with state-of-the-art STI approaches
presents challenges.

Lastly, the impact of employing distinct Knowledge Graphs, such as Wikidata and Wikipedia,
in the context of EL using ChatGPT 4 has been demonstrated. This underscores the subtleties
and potential enhancements in performance.

With this foundational groundwork established, the subsequent chapters of this work will
delve into the intricacies of STI, EL, and the experimental outcomes, illuminating the strengths
and weaknesses inherent in various approaches. Comparative analyzes will be conducted, and
new perspectives within this rapidly evolving field will be explored.

10

1.1 Contributions

This thesis contributes to the advancement of Information Retrieval Systems in the context of
KG and STI, with a particular focus on the integration of Machine Learning (ML) techniques.
The work enriches existing methodologies in KG construction, KG extension, and data enrich-
ment, thereby extending the current state of the art.

The thesis contends that STI provides a crucial framework for facilitating user-assisted an-
notation, particularly in expansive data environments. The specific contributions of this research
are as follows:

1. Proposal and development of a generalized Information Retrieval System for datasets,
emphasizing KG:

• Introduction and definition of an innovative approach for indexing and retrieving
data across multiple datasets, with particular attention to the nuances of Knowledge
Graphs (KGs);

• Empirical validation of the proposed indexing approach through systematic testing
on benchmark datasets to demonstrate efficacy, efficiency and robustness.

2. Formulation and implementation of algorithms for annotation tasks in the context of STI:

• Design and definition of a novel EL algorithm that exploits ML methodologies,
aimed at improving existing approaches by generating human-interpretable confi-
dence scores;

• Design and definition of additional heuristic-based algorithms for Column Type An-
notation (CTA) and Column Property Annotation (CPA);

• Adoption of a data representation format for annotations to promote interoperability
among different outputs of STI annotation tools, namely adopting W3C standards;

• Foresee a human-in-the-loop approach to enable review cycles to refine the results
produced by the algorithms, and drive the refinement of algorithms toward domain
specialization;

• Empirical validation of the proposed algorithms, substantiated through experimen-
tation on benchmark datasets.

3. Implementation of the algorithms at scale

• Development of a scalable approach that adapts the existing STI framework to handle
enrichment pipelines in large-scale data scenarios, thereby enhancing its operational
efficiency and applicability.

11

1.2 Thesis Structure

This thesis is organized to provide a coherent and logical exposition of the research undertaken.
The document starts with an introductory chapter that sets the stage for the research questions
and objectives. This is followed by a review of the relevant literature, providing the theoretical
background necessary for the study. Subsequent chapters are dedicated to the presentation of the
research methodology, empirical findings, and analyses. The thesis concludes with a summary
chapter that synthesizes the key contributions and oulines future research activities.

Chapter 2: Preliminaries. This chapter serves as a foundational guide to the key concepts and
terminologies that are integral to the thesis. It introduces the reader to the essential definitions
and frameworks in the domains of Knowledge Graphs (KGs), Information Retrieval, Tables,
Semantic Table Interpretation (STI), Neural Networks, and Data Pipelines. Formal definitions
and structures are provided to offer a rigorous understanding of these areas. The chapter also
includes illustrative figures and examples to aid in conceptual clarity. This preparatory chapter
aims to equip the reader with the necessary background to engage deeply with the subsequent
chapters.

Chapter 3: Related Work. This chapter offers a comprehensive review of the state-of-the-
art methodologies and technologies that are relevant to the scope of this research. The chapter
commences with an introduction to Entity Retrieval, highlighting both conventional and con-
temporary strategies. Subsequently, the focus shifts to Entity Linking, particularly as it pertains
to Semantic Table Interpretation. Here, both heuristic-based and machine learning-based meth-
ods are summarized. The chapter also addresses the specific challenges and existing solutions
concerning NIL entities. Additionally, the role of Human-in-the-Loop (HITL) techniques in en-
hancing model performance is explored. The chapter concludes with an overview of current best
practices in the construction and management of data pipelines. Each section culminates with a
summary that outlines the advantages and limitations of the existing work in the respective area.

Chapter 4: Information Retrieval Systems. In this chapter, an approach is delineated for
data retrieval across diverse datasets, with a particular emphasis on Knowledge Graphs (KG).
The chapter concentrates on the nuances of entity retrieval, as well as the extraction of other
data types such as types associated with entities and relationships (properties) between them.
The research questions addressed in this chapter are:

Q4.1: What are the most effective methods for indexing a Knowledge Graph to optimize entity
retrieval?

Q4.2: What strategies can be employed to ensure that the correct candidate entity is consistently
included in the retrieval result set?

12

Q4.3: What validation methods can be applied to assess the reliability and effectiveness of the
proposed information retrieval system for Knowledge Graphs?

Chapter 5: Semantic Enrichment of Tabular Data. In this chapter, a methodology is out-
lined for performing entity linking in tabular data using machine learning techniques. The chap-
ter discusses how the problem has been addressed and concludes with the validation of the
methodology.
The research questions addressed in this chapter are:

Q5.1: How can machine learning techniques be effectively applied to the problem of entity link-
ing in tabular data?

Q5.2: What methodologies can be employed to optimize the ranking algorithm, such that the
correct candidate entity is most frequently positioned first?

Q5.3: What validation strategies can be implemented to ensure the robustness of the proposed
entity linking technique?

Chapter 6: Human In The Loop (HITL) over tabular data. This chapter discusses the role
of humans to review and assess uncertain annotations. In particular, the use of user feedback to
learn and improve the performance of the algorithms for future use in table of the same domain.
The research questions addressed in this chapter are:

Q6.1: Can the human effort be limited to ensure a feasible approach to uncertainty revision?

Q6.2: How can a feedback-driven life-cycle for annotations be designed to improve the algo-
rithms in domain-specific applications?

Chapter 7: Entity Linking in Large-Scale Data Environments. This chapter outlines a
methodology for implementing entity linking on a large scale, focusing on the challenges and
solutions associated with handling vast amounts of data. The chapter concludes with an empiri-
cal evaluation of the methodology’s time efficiency.
The research questions addressed in this chapter are:

Q7.1: How can entity linking be effectively scaled to handle large volumes of tabular data?

Q7.2: What validation metrics can be employed to assess the time efficiency gains of the pro-
posed large-scale entity linking methodology?

Chapter 8: Conclusions and Future Directions. This final chapter synthesizes the key find-
ings of the research, discussing their implications and contributions to the field. It also outlines
potential avenues for future research and provides a summary of the study’s limitations. The
chapter serves to encapsulate the research journey, offering a comprehensive view of its signifi-
cance and impact.

13

1.3 Reproducibility
Reproducibility is a fundamental aspect of scientific research, ensuring the validity and reliabil-
ity of findings [65]. The methodological approach used in this study is accessible for replication
and verification. The list of repositories, which contain the implementation details of the ap-
proaches proposed in this thesis, along with usage instructions, is provided as follows:

• LamAPI

[code]: https://bitbucket.org/disco unimib/lamapi

• Alligator (api version)

[code]: https://github.com/roby-avo/alligator

• Alligator (scalable version)

[code]: https://github.com/roby-avo/alligator-scalable

14

https://bitbucket.org/disco_unimib/lamapi
https://github.com/roby-avo/alligator
https://github.com/roby-avo/alligator-scalable

2. Preliminaries

In this chapter, we introduce fundamental definitions to enhance the reader’s understanding of
the topic. We will cover the concepts of knowledge graph (KG), table, semantic table interpre-
tation (STI), neural network, and data pipeline.

2.1 Knowledge Graph

A knowledge graph (KG) is a structured representation of knowledge that organizes information
about entities, their attributes, and relationships between them. It serves as a valuable resource
for capturing and representing real-world knowledge in a machine-readable format. In a knowl-
edge graph, entities are represented as nodes, while the relationships between entities are rep-
resented as edges connecting the nodes. Each entity and relationship typically have additional
attributes or properties associated with them, providing further context and descriptive infor-
mation. Knowledge graphs leverage semantic connections and ontological reasoning to enable
powerful information retrieval, inference, and knowledge discovery. By modeling knowledge
in a graph-like structure, knowledge graphs facilitate efficient data integration, knowledge rep-
resentation, and reasoning capabilities, enabling more effective analysis and interpretation of
complex information domains.

Within the context of a knowledge graph, an ontology refers to a formal representation of
domain knowledge, providing a conceptual framework for organizing and structuring knowl-
edge. An ontology defines a vocabulary of concepts and relationships that capture the entities
and their connections within the knowledge graph. It specifies the types of entities and relation-
ships that can exist in the graph, along with any constraints or rules governing their usage. By
incorporating an ontology into a knowledge graph, it enhances the semantic richness and enables
more precise querying, reasoning, and inferencing capabilities. Ontologies facilitate knowledge
representation, semantic connections, and logical deductions, serving as a foundational compo-
nent for knowledge-based systems and contributing to the overall structure and meaning within
a knowledge graph.

Let’s to introduce the formal definitions of Knowledge Graph and Ontology.
Definition 1 (Knowledge Graph) A knowledge graph, denoted as KG, is a directed graph

G = (V,E), where V represents a set of entities and E represents a set of directed edges. Each
entity v ∈V corresponds to a unique identifier and may have associated attributes or properties.
Each directed edge (vi,r,v j)∈ E represents a relationship r between entities vi and v j. Addition-
ally, each edge may have associated attributes or properties. The knowledge graph KG serves as
a structured representation of real-world knowledge, enabling efficient data integration, reason-
ing, and knowledge discovery.

Definition 2 (Ontology) An ontology, denoted as O, is a formal representation of domain
knowledge, providing a conceptual framework for organizing and structuring knowledge. An

15

ontology consists of a set of concepts, relationships, and axioms that define the vocabulary and
rules governing the domain. Formally, an ontology O is defined as a tuple O= (C,R,A), where C
represents a set of concepts, R represents a set of relationships, and A represents a set of axioms.
Each concept c ∈ C represents an entity or a class of entities in the domain. Each relationship
r ∈R represents a binary or n-ary association between concepts. Axioms in A define logical rules
or constraints governing the ontology. Ontologies facilitate knowledge representation, semantic
connections, and reasoning capabilities, serving as a foundation for knowledge-based systems
and knowledge graphs.

RDF (Resource Description Framework) is the most popular format to represents informa-
tion in the form of triples, which consist of < sub ject, predicate, ob ject > statements. For
example, < Da Vinci, painted, Mona Lisa >. RDF data forms a graph structure, where re-
sources are nodes, and relationships between them are edges. This graph model allows for the
representation of complex and interconnected data. A example of KG is illustrated in 2.1.

Figure 2.1: An example of KG

As of now, there is a rich landscape of knowledge graphs that exist, encompassing a diverse
range of domains and applications. These knowledge graphs serve as powerful resources for
organizing and representing structured information, enabling efficient data integration, semantic
connections, and knowledge discovery. Some notable examples include the Google Knowledge
Graph, DBpedia, Wikidata, YAGO and Freebase. Each of these knowledge graphs offers unique
characteristics and strengths, providing valuable insights into different aspects of the world’s
knowledge. Together, these knowledge graphs contribute to a growing interconnected web of
information, fueling advancements in various fields such as NLP, IR and AI. The continuous
evolution and expansion of these knowledge graphs demonstrate the ongoing efforts and collab-
orations in building comprehensive and accessible repositories of knowledge. In Figure 2.2, a
subset of the Wikidata Knowledge Graph (KG) is presented, which is derived from the annota-
tion process applied to Table 1.1.

16

Q3512046
(Universal Pictures)

Q5145625
(Colin Trevorrow)

Q3512046
(Jurassic World)

167040063712/06/2015 124

Q11424
(Film)

Q5
(Human)

Q1762059
(Film production

company)
Date Integer

P57 (director)

P577 (publication date)

P750 (distributed by)

P2047 (duration)

Integer

P2142 (box office)

Figure 2.2: A subset of wikidata KG

2.2 Information Retrieval

Information retrieval is a fundamental aspect of knowledge management and plays a crucial role
in extracting relevant and meaningful information from wide and diverse data sources. It en-
compasses the techniques and methodologies used to retrieve information that satisfies a user’s
information needs. The process involves matching user queries with indexed data or documents
and ranking the results based on their relevance. Figure 2.3 illustrates the typical components of
an information retrieval system. These include the user query, the indexing process, the retrieval
model, and the ranking algorithm. The indexing process involves analyzing and organizing the
data or documents into a searchable form, such as an inverted index. The retrieval model defines
the mathematical framework used to calculate the relevance between the user query and the in-
dexed data. The ranking algorithm determines the order in which the results are presented to the
user. Information retrieval techniques have been widely applied in various domains, including
web search engines, document retrieval systems, and recommendation systems.

2.3 Tables

A table is a mathematical structure consisting of a set of rows and a set of columns. It is denoted
as T = (R,C,D), where R represents the set of rows, C represents the set of columns, and D
represents the set of data values contained within the cells of the table. Each row in the table
is a sequence of values from a predetermined domain, and each column represents a distinct
attribute or field. The table structure is such that each cell in the table uniquely corresponds to
an intersection of a row and a column, containing a single data value. Tables provide a systematic
and organized way to represent and store data, facilitating efficient data retrieval, manipulation,

17

Figure 2.3: Components of an information retrieval system

and analysis. They serve as a fundamental data structure in various fields, including databases,
spreadsheets, and data analysis, enabling effective data organization and communication.

Figure 2.4: Skeleton of a table

Tables come in various forms and structures, each tailored to represent data in distinct ways.
This section will discuss and showcase a few examples of these different table types.

2.3.1 Simple Table

A simple table typically consists of rows and columns that represent data in a grid format. Each
cell in the grid contains a piece of information, as demonstrated in Table 2.1.

Table 2.1: Example of a Simple Table

Header1 Header2
Data1 Data2

18

2.3.2 Vertical Table

Vertical tables, often called transposed tables, have their headers on the left, running vertically.
Each row represents a different attribute or field, as illustrated in Table 2.2.

Table 2.2: Example of a Vertical Table

Header1 Data1
Header2 Data2

2.3.3 Nested Table

Nested tables involve having a table inside another table. This structure is used when one wants
to represent hierarchical or multi-part data within a single cell of the outer table, as presented in
Table 2.3.

Table 2.3: Example of a Nested Table

Header1 Header2

Data1
Nested1 Nested2
Nested3 Nested4

2.3.4 Relational Tables

Relational tables represent the foundation of relational databases. They consist of multiple ta-
bles interconnected through keys, ensuring data consistency and integrity. Tables 2.4 and 2.5
exemplify how the Users table and the Orders table are related through the UserID key.

Table 2.4: Users Table

UserID UserName
1 Alice
2 Bob

Table 2.5: Orders Table

OrderID UserID Product
001 1 Book
002 2 Pen
003 1 Notebook

19

While all these table types have their uses and significance in various scenarios, the primary
focus and interest lie in well-formed and relational tables due to their structured representation
and capacity to ensure data integrity.

2.4 Semantic Table Interpretation (STI)
STI algorithms include a variety of tasks designed to address different challenges, like iden-
tifying the subject column of a table (which describes the primary entities within the table),
determining the semantic types of columns, disambiguating values within cells, and recognizing
relationships between values in different columns.

Before describing the different tasks, a clear distinction about the possible semantic types
of a column is needed. For the proposed applications, the main distinction operated by STI is
the identification of three different kinds of columns, which are S-columns, NE-columns and
LIT-columns:

• Subject column (S-column): is the one that describes the primary entities or objects that
the table is primarily about. It is often the most important column in terms of conveying
the main focus or subject matter of the table. For example, in a table about films, the
subject column might be ‘Film Title’;

• Named-Entity column (NE-column): column that refer to specific, named concepts or en-
tities in the real world. These can include names of people, organizations, locations, dates,
product names, and more. Recognizing and categorizing named entities is crucial for un-
derstanding the structured data, extracting meaningful information from it, and reconciling
them against a KG;

• Literal column (LIT-column): columns that contains cells which are numerical values, date
values or generic text, for instance description text. These values are often descriptive or
quantitative in nature and don’t correspond to named entities or objects.

As shown in Figure 2.5, the identification of types (Column Type Annotation, CTA) is just
one of the possible tasks in the context of a STI application. An STI algorithm takes a table and
a reference KG as inputs, generating a set of annotations that elucidate the table’s semantics.
These annotations establish a mapping between the source table and the KG, usually referred to
as Semantic Table Annotations. These annotations can be categorized into two distinct levels:

• Instance-level annotation: which is mainly covered by entity linking algorithms for tables;
the instance-level annotation maps the disambiguated content of the table to entities in the
reference KG. The most used approaches to the instance-level annotation are: cell-based
annotation, where the content of a cell is mapped to an entity (e.g., given DBpedia as the
reference KG, the cells containing the labels Einstein and General Theory of Relativity
can be mapped to the entities Albert Einstein and General Relativity, respectively); and

20

row-based annotation, where a table row is mapped to an entity, usually referring to the
one-entity-per-row assumption;

• Schema-level annotation: arises from interpreting the table schema and mapping schema
elements to types and properties within the reference KG. Annotation strategies might
map column headers to classes and create associations between pairs of column headers
and properties. One possible strategy involves mapping the entire table to a type within
the ontology and associating each column header with a property from the ontology, par-
ticularly when operating under the one-entity-per-row assumption.

Title Director Release
date

Domestic
Distributor

length
in min

Worldwide
gross

Jurassic
World

Colin
Trevorrow

12/06/2015 Universal
Pictures

124 1670400637

Superman
Returns

Bryan Singer 21/06/2006 Warner
Bros.

154 391081192

Batman
Begins

Christopher
Nolan

15/06/2005 Warner
Bros.

140 371853783

Avatar James
Cameron

18/12/2009 20 Century
Fox

162 2744336793

Subject column (S-column)
Named-Entity column (NE-column)
Literal column (LIT-column)

Q3512046
(Universal Pictures)

Q5145625
(Colin Trevorrow)

Q3512046
(Jurassic World)

167040063712/06/2015 124

Q11424
(Film)

Q5
(Human)

Q1762059
(Film production

company)
Date Integer

P57 (director)

P577 (publication date)

P750 (distributed by)

P2047 (duration)

Integer

MAIN TASKS
CEA: Entity reconciliation - Cell Entity
Annotation
CPA: Identification of relationships -
Column Property Annotation
CTA: Identification of types - Column
Type Annotation

P2142 (box office)

Figure 2.5: An example of annotated table

Diverse annotations can arise from a single STI process, potentially leading to distinct output
based on the chosen strategy. A given STI approach might generate one or more of the afore-
mentioned annotations. Depending on the specific application context (for example, whether it
involves fully automated matching or interactive matching), the annotation tasks can be tackled
collectively, enabling mutual reinforcement and interaction between them. Approaches designed
to include all STI tasks often involve intricate pipelines to fine-tune the collection and propaga-
tion of evidence across these tasks. The typical procedure for such algorithms consists of three
primary steps:

1. Retrieval of Potential Candidates: this step involves identifying possible candidates that
align with KG facts;

2. Ranking of Retrieved Entities: the retrieved candidates are then ranked based on a scoring
mechanism or similarity measure;

21

3. Annotation Decision: the final step entails deciding whether to annotate an entity or not.
For instance, this decision could be made based on a threshold applied to the chosen
similarity measure.

These steps collectively form the standard procedure for these types of algorithms.

2.5 Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the human brain.
They are composed of interconnected processing elements, or ‘neurons’, which are used to
estimate functions that depend on a large number of inputs.

2.5.1 Structure of Neural Networks

A typical neural network consists of three types of layers: input, hidden, and output layers.

• The input layer receives various forms of input data. This layer passes the data onto the
hidden layers without any computation.

• The hidden layers perform computations and transfer information from the input nodes to
the output nodes. A network can have any number of hidden layers.

• The output layer provides the final output. It interprets and classifies the input pattern
appropriately.

Each neuron in a neural network uses a set of learnable weights and a bias to convert an
input into an output. This is typically done through a non-linear function known as an activation
function.

2.5.2 Training of Neural Networks

The training process of a neural network involves adjusting the weights and biases of the network
based on the error of the output. This error is calculated using a loss function, which measures
the difference between the predicted output and the actual output.

The most common training algorithm for neural networks is the backpropagation algorithm.
This involves propagating the error backwards through the network, starting from the output
layer and moving through each layer in reverse. At each layer, the weights and biases are
updated in a way that minimizes the loss function.

22

2.5.3 Applications of Neural Networks

Neural networks have a wide range of applications, including image recognition, speech recogni-
tion, natural language processing, and many others. They are also fundamental to deep learning,
a subfield of machine learning, where neural networks are expanded into neural architectures
that are several layers deep.

This is a very broad overview. Depending on your focus, you may want to add subsections
about specific types of neural networks (like Convolutional Neural Networks for image tasks,
Recurrent Neural Networks for sequence tasks, etc.), or about specific aspects of training (like
gradient descent, different types of loss functions, etc.).

2.5.4 Diverse Types of Neural Networks: An Overview

Neural networks come in various forms, each designed to address specific types of problems.
One of the simplest forms is the Feedforward Neural Network (FNN), where information flows
unidirectionally from the input layer to the output layer without any loops. Convolutional Neu-
ral Networks (CNNs) are predominantly used in image processing tasks, as they can identify
spatial hierarchies or patterns in the input data. Recurrent Neural Networks (RNNs) and their
advanced version, Long Short-Term Memory networks (LSTMs), excel at processing sequential
data, making them suitable for tasks such as language modeling or time series analysis. Autoen-
coders are specialized neural networks used for data compression, noise reduction, and feature
extraction. Generative Adversarial Networks (GANs) consist of two networks that compete with
each other to generate new data resembling the input data. This is just the tip of the iceberg;
numerous other specialized architectures continue to emerge in the ever-evolving field of neural
networks.

2.5.5 Delving into Feedforward Neural Networks

Feedforward Neural Networks, also referred to as ‘Multi-layer Perceptrons (MLP)’, are the sim-
plest type of artificial neural network. In a feedforward network, information moves in only
one direction, forward, from the input layer, through the hidden layers, and to the output layer.
There are no loops in the network; information is always fed forward, never fed back. Each neu-
ron in a layer is connected to all neurons located in the previous layer and the following layer.
Neurons in the same layer have no connections with each other. This type of network is widely
used in pattern recognition and classification tasks where the input data is stationary or does not
change with time, such as handwriting recognition or image recognition. Figure 2.6 provides an
illustrative example of a feedforward neural network:

23

Figure 2.6: A typical structure of a Feedforward Neural Network

2.6 Data Pipelines
Data pipelines are a sequence of data processing steps, where data is extracted from sources,
transformed into a format suitable for analysis, and loaded into a final storage destination.

2.6.1 Components of a Data Pipeline

The main components of a data pipeline are:

• Data Extraction: This involves gathering data from various sources such as databases,
servers, text files, APIs, or other data repositories.

• Data Transformation: The extracted data is transformed into a suitable format for anal-
ysis. This could involve data cleaning, normalization, aggregation, and data integration.

• Data Loading: This is the process of loading the transformed data into a final destination
like a data warehouse, database, or a data lake.

2.6.2 Types of Data Pipelines

Data pipelines can be categorized into two types:

• Batch Processing: Data is collected over time and processed all at once. This type of
processing is suitable for applications where real-time data processing is not required.

• Real-time Processing: Here, data is continuously processed and made available for analy-
sis almost instantly after being collected. This is suitable for applications where immediate
insight from data is crucial.

24

2.6.3 Importance of Data Pipelines

Data pipelines are an essential part of modern data architecture. They automate the data flow
process, making it faster and reducing the risk of errors. By ensuring that high-quality data is
always available for analysis, data pipelines enable organizations to make data-driven decisions,
forecast trends, and improve operational efficiency.

2.7 Data Pipeline Example
In the context of entity linking over tabular data, a typical data pipeline may include the follow-
ing steps:

1. Data Extraction: The initial step in any data pipeline involves extracting data from its
source. For tabular data, this source could be a relational database, a CSV file, an Excel
spreadsheet, or a Google Sheets document. During extraction, the raw data, comprising
both entities and the text where they’re mentioned, is collected.

2. Data Cleaning: Extracted data might not always be in a suitable format for processing.
As such, it becomes necessary to perform cleaning operations, such as converting text to
lowercase, removing punctuation or other special characters, and handling missing values.

3. Named Entity Recognition (NER): This process involves identifying the named entities
present in the text data. These entities can be organizations, persons, locations, expres-
sions of times, quantities, monetary values, percentages, etc.

4. Candidate Generation: For each identified entity, a list of candidate entities from the
knowledge graph is generated. These candidates, which could potentially correspond to
the mentioned entity, are identified through methods like looking for exact matches, partial
matches, or synonyms.

5. Feature Extraction: During this step, features are extracted for each candidate entity.
These features, which can aid in determining whether the candidate is a match for the
mentioned entity, could include text similarity between the candidate and the mention, the
candidate’s popularity in the knowledge graph, or other contextual clues.

6. Entity Linking: This step uses the extracted features to decide which candidate entity (if
any) is a match for each mentioned entity. This decision could be made using machine
learning models or heuristic methods.

7. Data Storing: Upon completion of the entity linking, the results are stored in a suitable
format for further analysis or usage. This storage could be a database, a file, or another
data storage system.

This structured approach to handling data ensures a systematic flow from raw data to mean-
ingful insights and serves as a robust foundation for any data-driven decision-making process.

25

3. Related work (SoTa)

3.1 Introduction
Given a KG containing a set of entities E and a collection of named-entity mentions M, the goal
of EL is to map each entity mention m ∈ M to its corresponding entity e ∈ E in the KG. As
described above, a typical EL service consists of the following modules [67]:

1. Candidate Retrieval (CR). In this module, for each entity mention m ∈ M, irrelevant enti-
ties in the KG are filtered out to return a set Em of candidate entities: entities that mention
m may refer to. To achieve this goal, state-of-the-art techniques have been used, such as
name dictionary-based techniques, surface form expansion from the local document, and
methods based on search engines.

2. Entity Disambiguation (ED). In this module, the entities in the set Em are more accurately
ranked to select the correct entity among the candidate ones. In practice, this is a re-
ranking activity that considers other information (e.g., contextual information) besides the
simple textual mention m used in the CR module.

According to the experiments conducted in [25, 14] and LamAPI [4], the role of the CR
module is critical since it should ensure the presence of the correct entity in the returned set to
let the ED module to find it. Hence, the main contribution of this work is to discuss retrieval
configurations, i.e., query and filtering strategies, for retrieving entities.

Name dictionary-based techniques are the main approaches to CR; such techniques leverage
different combinations of features (e.g., labels, alias, Wikipedia hyperlinks) to build an offline
dictionary D of links between string names and mapping entities to be used to generate the
set of candidate entities. The most straightforward approach considers exact matching between
the textual mention m and string names inside D. Partial matching (e.g., fuzzy and/or n-grams
search) can also be considered.

Besides pure string matching, type constraints (using types/classes of the KG) associated
with string mentions can be exploited to filter candidate entities. In such a case, the dictionary
needs to be augmented with types associated with linked entities to enable hard or soft filtering.
Listing 3.1 and 3.2 report an example of how type constraints can influence the result of the
candidate entity retrieval for ‘manchester’ textual mention. The former shows the result without
constraint: cities like Manchester situated in England or Parish in Jamaica are reported (note
the similarity score equal to 1.00). The latter shows the result when type constraints are ap-
plied: types like ‘SoccerClub’ and ‘SportsClub’ allows for the promotion of soccer clubs such
as ‘Manchester United F.C.’, which is now ranked first (similarity score 0.83).

Similar approaches have been proposed in this domain, such as the MTab [51] entity search,
where keyword search, fuzzy search and aggregation search are provided. Another relevant ap-
proach is EPGEL [44], where the candidate entity generation uses both a keyword and a fuzzy

26

search. This approach also uses BERT [21] to create a profile for each entity to improve the
search results. The LinkingPark [8] method proposes a weighted combination of keywords, tri-
grams and fuzzy search to maximise recall during the candidate generation process. In addition,
this approach involves verifying the presence of typos before generating candidates. Concerning
the other work, LamAPI provides a n-grams search and the possibility to include type constraints
in the candidate search to apply type/concept filtering in the CR. Furthermore, LamAPI provides
several services to help researchers in tasks like EL.

Listing 3.1: DBpedia lookup without type
constraints.

1 {
"id": Manchester

3 "label": Manchester
"type": City Settlement ...

5 "ed_score": 1
},

7 {
"id": Manchester_Parish

9 "label": Manchester
"type": Settlement PopulatedPlace

11 "ed_score": 1
}

Listing 3.2: DBpedia lookup with type
constraints.
{

2 "id": Manchester_United_F.C.
"label": Manchester U

4 "type": SoccerClub SportsClub ...
"ed_score": 0.833

6 },
{

8 "id": Manchester_City_F.C.
"label": Manchester C

10 "type": SoccerClub SportsClub ...
"ed_score": 0.833

12 }

3.2 ER: Entity Retrieval

When it comes to performing data retrieval, several options are available as existing solutions.
These include:

• DBpedia SPARQL endpoint1: Allows performing SPARQL queries against the DBpedia
KG using full-text search capabilities through the ‘bif:contains’ operator;

• Wikidata SPARQL endpoint2: Allows performing SPARQL queries against the Wiki-
data KG using exact match of the string;

• DBpedia Lookup3: Full-text search service to perform lookup over DBpedia KG;

• Wikidata Lookup by Name4: Full-text search service to perform lookup over Wikidata
KG;

• Wikidata Reconciliation service5: Full-text search service to perform lookup over Wiki-
data KG made by W3C entity reconciliation group.

Regarding the existing solutions introduced above, it is important to consider some con-
siderations related to SPARQL endpoints such as DBpedia and Wikidata. These endpoints are

1https://dbpedia.org/sparql
2https://query.wikidata.org/
3https://dbpedia.org/sparql
4https://www.schemaapp.com/wikidata-lookup-by-name/
5https://wikidata.reconci.link/en/api

27

https://dbpedia.org/sparql
https://query.wikidata.org/
https://dbpedia.org/sparql
https://www.schemaapp.com/wikidata-lookup-by-name/
https://wikidata.reconci.link/en/api

primarily designed as triple storage systems and may not have robust full-text search capabil-
ities. In particular, Wikidata, being a large knowledge graph, does not provide operators like
‘bif:contains’ for performing full-text search.

The ‘bif:contains’ operator in SPARQL performs a basic full-text search by matching tokens
using OR or AND operations between them. However, it does not provide a specific ranking as
output. This means that the search results are not effectively ranked based on relevance or other
ranking algorithms, making it less effective compared to full-text search mechanisms that utilize
advanced ranking functions like BM25.

Therefore, while SPARQL endpoints like DBpedia and Wikidata can be useful for certain
types of queries and retrieval tasks, they may not be the most efficient or effective solutions
when it comes to comprehensive full-text search capabilities and ranking of search results.

The following example showcases SPARQL queries for DBpedia and Wikidata, specifically
targeting the mention ‘Albert Einstein’. Listings 3.3 and 3.4 provide a demonstration of these
queries.

It is essential to note that the ‘bif:contains’ operator, as mentioned before, is not considered
highly effective for comprehensive full-text search. Its functionality is limited and may not yield
desired or accurate results.

In the case of the Wikidata query, the expression <?item ?label ”Albert Einstein”@en >

denotes an exact match for the mention. It is important to highlight that this exact match is
case-sensitive. For example, attempting to match <?item ?label ”Albert einstein”@en > with
‘einstein’ in lowercase will not produce any results.

Listing 3.3: Search example using a SPARQL query with DBpedia enpoint.
SELECT * WHERE {

2 ?sub a dbo:Person .
?sub rdfs:label ?label.

4 ?label bif:contains "Albert AND Einstein" .
filter(langMatches(lang(?label), "en"))

6 }
LIMIT 100

Listing 3.4: Search example using a SPARQL query with Wikidata enpoint.
1 SELECT ?item ?itemLabel WHERE {

?item wdt:P31 wd:Q5.
3 ?item ?label "Albert Einstein"@en .

SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }
5 }

LIMIT 100

The W3C entity reconciliation specification6 defines the format for representing entities.
Each entity has a unique identifier (id), an official name (name), associated types with their
unique identifiers and labels, and a description.

To leverage the full-text search capability of the lookup endpoint, requests are executed in a
specific manner. For instance, when using the Wikidata Reconciliation Service, a GET request
is sent to a designated URL, optionally supplemented with parameters like ’type’ and ’limit’.
An example of such a request is as follows:

6reconciliation-api.github.io/specs/latest/

28

https://reconciliation-api.github.io/specs/latest/

https://wikidata.reconci.link/en/api?queries={"q0":{"query":"AlbertEinstein","type":"Q5","limit":100}}

The two examples below illustrate the results obtained from the Wikidata Reconciliation
service. In both listings, the objective is to reconcile the name ‘Albert Einstein.’ Listing 3.5
presents the reconciliation results without imposing any type constraint. In contrast, Listing 3.6
employs a type constraint of ‘Q5,’ which corresponds to ‘Human.’

A salient distinction is evident between the outcomes of the two listings, predominantly
due to the incorporation of the type constraint. Specifically, when the type constraint ‘Q5’
(Human) is applied, as in Listing 3.6, ‘Q937’ (indicative of ‘Albert Einstein’) appears as the
sole candidate, securing a score of 100. This score strongly suggests that the entity is the most
probable match in the context of human entities.

Listing 3.5: Lookup without type con-
straint: returned data from Wikidata.
{

2 "id": Q937 ,
"label": Albert Einstein ,

4 "description": German -born...,
"type": Q5,

6 "score": 100
},

8 {
"id": Q2253683 ,

10 "label": Albert Einstein ,
"description": train service ,

12 "type": Q753050 Q67454740 ...,
"score": 100

14 },
{

16 "id": Q13426745 ,
"label": Albert Einstein ,

18 "description": 2013 studio album...,
"type": Q482994 ,

20 "score": 100
}

Listing 3.6: Lookup with type constraint
(‘Q5’): returned data from Wikidata.

1 {
"id": Q937 ,

3 "label": Albert Einstein ,
"description": German -born...,

5 "type": Q5,
"score": 100

7 },
{

9 "id": Q123371 ,
"label": Hans Albert Einstein ,

11 "description": Swiss -American ...,
"type": Q5...,

13 "score": 86
},

15 {
"id": Q468357 ,

17 "label": Lieserl (Einstein),
"description": 2013 studio album...,

19 "type": Q482994 ,
"score": 52

21 }

Entity retrieval is a critical task in the field of information retrieval, which aims to identify
a set of candidate entities from a knowledge graph (KG) based on a given mention or query.
The task of entity retrieval is particularly challenging in large-scale knowledge graphs such as
Wikidata, where the number of entities is enormous and the structure of the graph is complex.

When it comes to retrieval from (semi-)structured data, including knowledge graphs (KGs),
two commonly used approaches are Information Retrieval (IR) and dense retrieval based on
embeddings. A recent survey conducted by [26] discusses the current state-of-the-art models,
including methods based on terms, semantic retrieval, and neural approaches. KGs play a crucial
role in this context because entity linking approaches heavily rely on structured data resources,
such as KGs, to perform effective linking. Let’s take a closer look at each approach:

1. Information Retrieval (IR): Information Retrieval is a traditional approach for data re-
trieval that focuses on matching query terms with the textual representation of data. In this
approach, documents or entities are represented as bags of words or terms. IR techniques use
various algorithms such as vector space models, Boolean models, or probabilistic models to
rank the documents or entities based on their relevance to a given query. In the context of
datasets or KGs, IR-based approaches typically involve indexing the textual information associ-
ated with the data, such as entity names, descriptions, or attributes. Queries are formulated using

29

https://wikidata.reconci.link/en/api?queries={"q0":{"query":"Albert Einstein","type":"Q5","limit":100}}

keywords or structured queries, and the retrieval process involves matching these queries against
the indexed data. The retrieved results are ranked based on their relevance scores, which are usu-
ally computed using techniques like TF-IDF (Term Frequency-Inverse Document Frequency) or
BM25 (Best Matching 25). Information retrieval (IR) techniques have reached a stage of being
well-established and standardized. However, the challenge lies in optimizing the indexing and
querying processes [5]. One approach that addresses this issue is LamAPI [4], which focuses
on studying the impact of various configurations. LamAPI aims to improve the efficiency and
effectiveness of indexing and querying by analyzing and experimenting with different setups

2. Dense Retrieval based on Embeddings: Dense retrieval is a relatively recent approach
that leverages the power of dense vector embeddings for data retrieval. In this approach, each
document or entity in the dataset is encoded into a dense vector representation (embedding)
in a high-dimensional space. These embeddings are learned using techniques like word2vec,
GloVe, or transformer-based models like BERT [[72] or GPT [22]. The retrieval process in
dense retrieval involves encoding the query into an embedding as well. Then, the similarity
between the query embedding and the document/entity embeddings is computed using metrics
like cosine similarity or dot product. The top-k most similar documents or entities are retrieved
based on their embedding similarities. Dense retrieval has gained popularity due to its ability
to capture semantic relationships and similarities between data elements. It can handle more
nuanced queries and is less reliant on exact keyword matches. Dense retrieval models can be
trained using large-scale datasets and can be fine-tuned or optimized for specific retrieval tasks.
In summary, Dense retrieval is currently a highly studied area of research. It has been extensively
utilized to support text linking algorithms such as BLINK [76] and GENRE [18]

There are several approaches to entity retrieval, including syntactic matching, knowledge-
based methods, and machine learning-based methods.

One of the most popular approaches for entity retrieval is based on information retrieval (IR)
techniques. In this approach, each entity in the KG is represented by a set of features, such as its
name, description, and attributes, and the query or mention is also represented in a similar way.
The matching between the query and the candidate entities is then performed using standard IR
techniques, such as cosine similarity or BM25. This approach has been widely used in many
entity retrieval systems, such as Spotlight7.

Another approach for entity retrieval is based on graph-based techniques. In this approach,
the KG is treated as a graph, where the entities are nodes and the relations between them are
edges. The candidate entities are then identified based on their proximity to the query node or
mention node in the graph. There have been several recent studies on the use of graph-based
techniques for entity retrieval. One such study is [20] which examines text-based approaches and
how they evolved to leverage entities and their relations in the retrieval process. The study cov-
ers multiple aspects of graph-based models for entity-oriented search, providing an overview on
link analysis and exploring graph-based text representation and retrieval, leveraging knowledge
graphs for document or entity retrieval, building entity graphs from text, using graph matching

7https://www.dbpedia-spotlight.org/api

30

https://www.dbpedia-spotlight.org/api

for querying with subgraphs, exploiting hypergraph-based representations, and ranking based
on random walks on graphs. Another study is [23] which shows that graph embeddings are
useful for entity-oriented search tasks. The study demonstrates empirically that encoding infor-
mation from the knowledge graph into (graph) embeddings contributes to a higher increase in
effectiveness of entity retrieval results than using plain word embeddings.

Recently, neural network-based approaches have shown promising results for entity retrieval.
In these approaches, the KG and the query are represented as embeddings in a continuous vector
space, and the matching between the query and the candidate entities is performed based on
their proximity in the embedding space. These approaches include models like KGEmb[6] and
K-Adapter[74].

Furthermore, some recent approaches leverage the context around the mention, such as the
sentence or the paragraph in which the mention appears, to improve entity retrieval performance.
These approaches, such as HIBERT[79] and HBM[47], use pre-trained language models such as
BERT to encode the context and combine it with the mention representation to identify candidate
entities.

Overall, entity retrieval is a challenging task that has received a significant amount of atten-
tion in recent years, and several approaches have been proposed to address it. Each approach
has its strengths and weaknesses, and the choice of approach depends on various factors, such
as the size of the KG, the type of queries, and the available computational resources.

3.3 EL: Entity Linking

According to [46], there has been a growing interest and popularity in Semantic Table Inter-
pretation over the years, as evidenced by Figure 3.1. Additionally, Figure 3.2illustrates the
distribution of papers by topic.

In the field of table annotation, various approaches have been proposed, which can be broadly
categorized into two main categories: heuristic-based and machine learning-based methods.
However, the most important task in table annotation is entity linking (CEA), which involves
associating a mention in a table with a corresponding entity in a knowledge graph.

Upon performing entity linking over mentions in tabular data, two critical annotations can
be obtained: Column Type Annotations (CTA) and Column Predicate Annotations (CPA). CTA
provides information about the types of entities extracted for each column, while CPA identifies
the predicates or relationships between the columns, which are extracted based on the relation-
ships between the entities.

In summary, entity linking is a crucial step in table annotation, providing valuable insights
into the data represented in the table. CTA and CPA can help us better understand the relation-
ships and connections between the entities represented in the table, supporting various tasks such
as information retrieval, data integration, and knowledge discovery. The STI approaches can be
split into two main categories as following: Heuristic based The majority of approaches are
children of the Semantic Table Interpretation Challenge and most of them address the problem

31

Figure 3.1: Number of publications of paper related to STI [46].

Figure 3.2: Distribution of the topics of the papers related to STI [46].

of column classification (CEA, CTA and CPA). Many approaches like [52, 31, 11, 8, 1, 68, 70]
have been proposed during international Semantic Web Challenge on Tabular Data to Knowl-
edge Graph Matching The most relevant is MTAB [52] that proposed an approach based on a
framework which consist in two phases Structural Annotations (identify structure of the table)
and Semantic Annotations (perform the annotation steps CEA, CTA and CPA). DAGOBAH [31]
proposes an approach that is a two-stages annotation system consisting of an entity lookup step,
followed by an entity scoring step. Finally, SELBAT [11] proposes an approach that basically
provides an iterative process that performs Entity Linking (EL) on tables. The approaches cited
above took part in different editions of the Semantic Web Challenge and improved their systems
as a result.

Machine learning based Most of the approaches discussed here benefit from recent progress

32

in machine learning and focus on column classification (task CTA). These approaches can also
be useful for obtaining preliminary schema annotations of a table.

Chen et al. [7] proposed ColNet an approach based on embeddings techniques to predict
the type annotations (CTA). This work uses a CNN to predict the type of a synthetic column,
inspired by its successful application in text classification [9]. [71] proposed a new framework
called Duduo for tabular column annotation, which achieved state-of-the-art performance on
two benchmark datasets. They used pre-trained Transformer language models and multi-task
learning to improve performance. Duduo was also shown to be data-efficient, achieving com-
petitive performance using only 8 tokens per column or about 50% of the training data. Their
approach outperformed previous state-of-the-art methods, including Sherlock [30], TURL [19]
and Sato [78].

A recent survey presented in [46] enumerates all the main STI approaches. Distinguishingly,
the approach presented in this thesis integrates both heuristic and machine learning methods,
aiming to capitalize on the strengths of each. Furthermore, the proposed method assigns a
confidence score, facilitating the interpretability of the method and allowing humans to actively
participate in the process by providing feedback.

3.4 NIL Entities Problem
When it comes entity linking another important aspect to consider is regarding the NIL entities
which are entities that are out of KG. Thus, it means that for those entities, representations are
not available in the KG that is being used. According to the bar plot reported in Figure 3.3 the
number of publications that taking into consideration this problem are significant over the years.

Figure 3.3: Number of publications of paper related to NIL entities

The problem regarding the terminology of NIL entities was first discussed by [32] in their

33

paper titled ‘The Role of Knowledge in Determining Identity of Long-Tail Entities’. This study
brought attention to NIL entities, which often pose unique challenges for entity linking systems
due to their absence from the system’s knowledge resources, their non-redundancy, lack of fre-
quency priors, potential for extreme ambiguity, and sheer numerosity. The author proposed an
innovative method to tackle these challenges, involving the imputation of identifying knowledge
to NIL entities from generalized characteristics. To do this, they utilized profile models based
on background knowledge from Wikidata, a substantial database of structured data. Two pro-
filing machines were developed using state-of-the-art neural models, a testament to the authors’
innovative approach to this problem. The study’s evaluation of these profiling machines, both in
terms of their intrinsic behavior and their impact on determining the identity of NIL entities, is
particularly noteworthy. Such insights are crucial for understanding the behavior of these mod-
els and their effectiveness in resolving NIL entities, and they represent a significant contribution
to the field.

Others very recent approaches are presented in [80, 28, 33, 62]. [80] offers a significant
contribution to the ongoing discourse on the challenges of NIL prediction in Entity Linking (EL).
Despite the impressive strides made in EL models with the use of pre-trained language models,
the issue of predicting NIL entities, which are mentions that do not correspond to an entity in
the knowledge base, remains insufficiently addressed. The authors take a novel approach to
this problem by dividing mentions linking to NIL into two categories: Missing Entity and Non-
Entity Phrase. They then introduce a new dataset, NEL, designed specifically to address the
NIL prediction problem. To assemble this dataset, they selected ambiguous entities as seeds
and gathered relevant mention context from the Wikipedia corpus. They ensured the inclusion
of mentions linking to NIL through a combination of human annotation and entity masking.
The study’s methodology involves conducting experiments using widely used bi-encoder and
cross-encoder EL models. The results shed light on the significant influence of both types of
NIL mentions in the training data on the accuracy of NIL prediction. Their work, including the
code and dataset, is openly accessible, providing valuable resources for further exploration in
this field.

As mentioned, a significant aspect of entity linking is the handling of NIL entities, text
mentions that do not have a corresponding entity in the associated knowledge base. This phe-
nomenon has two main sub-tasks: NIL-detection, which involves identifying NIL-mentions in
the text, and NIL-disambiguation, which seeks to ascertain if different NIL-mentions refer to
the same out-of-knowledge base entity. This is the focus of a novel study in [33] that introduced
a new dataset known as NILK for NIL-linking processing. The paper, deriving NILK from
WikiData and Wikipedia dumps from two different timestamps, offers a substantial contribution
to the NIL-linking task. In particular, it marks NIL-mentions for NIL-detection by extracting
mentions which are associated with entities added newly to the Wikipedia text. For the purpose
of NIL-disambiguation, it provides an entity label by marking NIL-mentions with WikiData IDs
from the newer dump. This represents a pioneering effort as while there exist multiple datasets
that can be adapted for NIL-detection, none of them sufficiently address the problem of NIL-
disambiguation. The availability of the annotated NILK dataset, along with the code, presents a

34

significant resource for researchers studying entity linking, particularly with regard to NIL en-
tities. The NILK dataset can be accessed at: https://zenodo.org/record/66075142. This
unique approach presented in the paper forms an integral part of the current state-of-the-art in
entity linking research, specifically concerning the handling of NIL entities.

The presence of unlinkable (NIL) entities poses a significant challenge to the performance
of Named Entity Linking methods and the downstream models that depend on them. While
there have been numerous approaches proposed to handle NIL entities, most have focused pri-
marily on clustering and prediction for general entities. However, the existence of NIL entities
is not limited to general domains but extends into specialized fields like biomedical sciences,
given the ever-expanding nature of scientific literature. This domain-specific challenge has
been the focus of a recent study by Ruas and Couto [62]. In this paper, the authors intro-
duce NILINKER, a model that incorporates a candidate retrieval module for biomedical NIL
entities, along with a neural network that exploits the attention mechanism to identify the top-k
relevant concepts from targeted Knowledge Bases (including MEDIC, CTD-Chemicals, ChEBI,
HP, CTD-Anatomy, and Gene Ontology-Biological Process) that may partially represent a given
NIL entity. In addition to NILINKER, the authors also present a new evaluation dataset named
EvaNIL, which is designed to train and evaluate models focusing on the NIL entity linking task.
This extensive dataset contains 846,165 documents (including abstracts and full-text biomedi-
cal articles), featuring 1,071,776 annotations across six different partitions: EvaNIL-MEDIC,
EvaNIL-CTD-Chemicals, EvaNIL-ChEBI, EvaNIL-HP, EvaNIL-CTD-Anatomy, and EvaNIL-
Gene Ontology-Biological Process. By integrating NILINKER into a graph-based Named Entity
Linking model (REEL), the authors demonstrate its effectiveness in enhancing the performance
of the Named Entity Linking model. This work provides valuable insights and resources for
tackling the challenge of NIL entities in specialized domains such as biomedical sciences.

3.5 Human-in-the-Loop

3.5.1 Introduction

Human-in-the-Loop (HITL) is an interdisciplinary field of research that intersects machine
learning, human-computer interaction, and data science. The core premise of HITL approaches
is the symbiotic relationship between humans and machine learning models, aiming to lever-
age human expertise for model improvement while also reducing the manual effort required for
tasks such as data labeling, validation, and interpretation. GPT models serve as a prime example
of HITL in action, where reinforcement learning techniques have been employed to fine-tune
the model using human feedback [22, 40]. The overarching objective is to create a harmonious
interplay between human expertise and machine efficiency, thereby achieving superior model
performance with minimized human effort.

35

https://zenodo.org/record/66075142

3.5.2 Research Trends and Classification

According to a recent survey [77], there has been a surge in research interest in HITL methodolo-
gies, as illustrated in Figure 3.4. The survey categorizes existing works into three progressively
related domains: (1) improving model performance through data processing, (2) enhancing
model performance via interventional model training, and (3) developing system-independent
human-in-the-loop approaches.

Figure 3.4: The increasing research interest in the human-in-the-loop (image from [77])

3.5.3 Types of Interactions

In a seminal paper [50], the authors delineate the various forms of interactions between humans
and machine learning algorithms. They classify these interactions into three categories based
on the locus of control in the learning process: (1) active learning, where the machine learning
system maintains control, (2) interactive machine learning, which involves a more collaborative
interaction between the human and the system, and (3) machine teaching, where human domain
experts exert control over the learning process.

3.5.4 Challenges and Limitations

HITL (Human-In-The-Loop) methodologies, while offering significant potential for enhancing
model performance, come with inherent challenges and limitations. One of the most prominent

36

concerns is scalability. The degree of human engagement required may not be sustainable, es-
pecially when dealing with extensive or intricately detailed datasets. Furthermore, integrating
human feedback into machine learning models opens the door to the incorporation of human
biases. This can inadvertently compromise the model’s fairness and its capacity to general-
ize across diverse scenarios. A particularly pressing challenge emerges when deploying HITL
techniques for domain-specific adaptation. In such cases, models are prone to the phenomenon
of ‘catastrophic forgetting’ This means that while the model becomes intensely attuned to the
specificities of a given domain, it risks overshadowing or losing previously acquired knowledge.
The model’s hyper-focus on domain-specific data can lead it to underperform even on datasets
where it had previously been trained effectively. [43, 42, 24, 56, 27].

3.5.5 Conclusion

In summary, the field of Human-in-the-Loop is gaining traction as a viable approach to enhance
machine learning models by incorporating human expertise. Various tools in data processing,
such as Trifacta Wrangler, KNIME, and Talend, are commonly used for tasks like data enrich-
ment. However, these tools often lack support for HITL methodologies, thereby limiting their
ability to fully leverage the benefits of human-machine collaboration. This has been acknowl-
edged as a significant challenge by both the data management and machine learning communi-
ties [77, 50].

3.6 Data Pipelines
Data pipelines serve as the backbone of modern data architectures, playing a pivotal role in
the orchestration of data flow across various stages of data processing and analytics. These
pipelines are instrumental in the transformation of raw unstructured data into a more organized
and usable form, enabling data-driven decision making processes [53, 2, 61]. The concept of
a data pipeline is not new; however, the advent of big data, cloud computing, and advanced
analytics has significantly expanded its scope and complexity. Today, data pipelines are not
merely a set of data movement and transformation operations, but are complex systems that
integrate various functionalities such as data ingestion, cleaning, transformation, enrichment,
storage, and analysis. They are often designed to be highly scalable, fault-tolerant, and capable
of handling a wide range of data types and formats [64, 10].

The importance of data pipelines is further accentuated by the increasing volume, veloc-
ity, and variety of data generated by a myriad of sources, including IoT devices, social media
platforms, and enterprise systems. As organizations strive to become more data-centric, the
role of data pipelines in automating labor-intensive tasks, ensuring data quality, and facilitating
real-time analytics has become indispensable.

This section aims to provide a comprehensive overview of the state-of-the-art in data pipeline
technologies, methodologies, and challenges, thus offering insight into the current landscape and
future directions of this critical field.

37

3.6.1 Scalability in Data Processing

Executing cleaning, transformation, and linking at a large scale requires infrastructural com-
ponents that allow for scalability. A definition of scalability is given by [29], which states that
“scalability is the ability of a system to sustain increasing workloads by making use of additional
resources.” The implementation of a system with this characteristic is an essential step in a big
data pipeline to avoid common performance bottlenecks. Usual issues arise in the following
three areas:

• CPU Usage: This is the most common bottleneck. This issue occurs when the pipeline
works correctly but the processing power of the CPU is not sufficient to handle the entire
process.

• Memory Usage: The server does not have enough memory to organize the pipeline flow.
This issue can also indicate a memory leak in the process.

• Disk Usage: This happens when the volume of disk space is fully occupied by the pro-
cessed data.

Another common reason for implementing a scalable process is the flexibility of the new
infrastructure. It allows one to change the priorities of the process, for example, by focusing
more on one step rather than another, without losing the initial investment. In addition, a scalable
process is future-proof for an eventual resize in the future.

After analyzing the need for a scalable process, there are two main ways of scaling:

• Scaling Up (Vertical Scaling): This means using more powerful hardware and more
memory. This method offers the best performance since everything works on the same
machine. A possible limitation could be related to the speed of growth of the process; for
a fast process, it represents just a short-term solution, and frequent updates become more
and more expensive due to hardware limitations.

• Scaling Out (Horizontal Scaling): This means adding new power across the infrastruc-
ture and not on the same machine. This solution uses parallel computing to increase the
performance of the infrastructure and is valid also in the long term. At the same time,
moving from a single machine to a distributed system leads to lower speed and higher
complexity.

3.6.2 Architecture and Components

Modern data pipelines are often designed as a series of interconnected stages, each responsible
for a specific task in the data processing workflow. These stages typically include:

38

1. Data Ingestion: The initial stage where data is collected from various sources. Technolo-
gies like Apache Kafka8, Amazon Kinesis9, and Flume10 are often used for real-time data
ingestion.

2. Data Storage: Once ingested, data is stored in a repository that could range from tradi-
tional databases like MySQL11 to distributed file systems like Hadoop HDFS12 or cloud-
based solutions like Amazon S313.

3. Data Processing: This stage involves the transformation of data, often using batch or
stream processing frameworks such as Apache Spark14 or Flink 15.

4. Data Analysis and Machine Learning: Advanced analytics and machine learning mod-
els may be applied to the processed data. Libraries like scikit-learn16, TensorFlow17, and
PyTorch18 are commonly used.

5. Data Visualization and Reporting: The final processed data is often visualized using
tools like Tableau19, Power BI20, or custom dashboards.

3.6.3 Technologies, Methodologies, and Tools in Data Pipelines

The landscape of data pipeline technologies is undergoing a significant transformation, primarily
driven by the adoption of cloud-native architectures and managed services. Major cloud service
providers, such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform,
offer specialized managed services for data pipelines—AWS Data Pipeline, Azure Data Factory,
and Google Cloud Dataflow, respectively. These managed services are designed to offer scal-
able, reliable, and efficient data processing capabilities, thereby reducing the operational burden
on organizations.

In terms of methodologies, the DevOps paradigm is increasingly influential in the develop-
ment and maintenance of data pipelines. This approach integrates software development (Dev)
and IT operations (Ops) to shorten the system development life cycle and provide continuous
delivery. Key practices within this methodology, such as Continuous Integration and Continuous

8https://kafka.apache.org
9https://aws.amazon.com/kinesis

10https://flume.apache.org
11https://www.mysql.com/
12https://hadoop.apache.org
13https://aws.amazon.com/s3
14https://spark.apache.org/
15https://flink.apache.org/
16https://scikit-learn.org/
17https://www.tensorflow.org
18https://pytorch.org
19https://www.tableau.com
20https://powerbi.microsoft.com

39

https://kafka.apache.org
https://aws.amazon.com/kinesis
https://flume.apache.org
https://www.mysql.com/
https://hadoop.apache.org
https://aws.amazon.com/s3
https://spark.apache.org/
https://flink.apache.org/
https://scikit-learn.org/
https://www.tensorflow.org
https://pytorch.org
https://www.tableau.com
https://powerbi.microsoft.com

Deployment (CI/CD), are being employed to facilitate rapid development cycles and to ensure
the reliability and robustness of deployed pipelines.

To further streamline the management of data pipeline infrastructure, Infrastructure as Code
(IaC) tools are gaining prominence. Tools like Terraform and Ansible enable the codification of
infrastructure, allowing for version control, repeatability, and automated provisioning and de-
provisioning of resources. This not only enhances the manageability of complex data pipeline
architectures but also introduces an additional layer of reliability and auditability.

In summary, the state-of-the-art in data pipeline technologies is marked by a synergistic
interplay between cloud-native solutions, DevOps methodologies, and Infrastructure as Code
tools. These elements collectively contribute to the creation of more scalable, reliable, and
manageable data pipelines.

3.6.4 Challenges and Limitations

Despite advancements, several challenges persist in the development and operation of data
pipelines:

1. Scalability: Handling large volumes of data in real-time remains a challenge, requiring
optimized algorithms and distributed computing resources.

2. Data Quality: Ensuring the accuracy and reliability of data as it moves through the
pipeline is crucial, necessitating robust data validation and cleansing mechanisms.

3. Security and Compliance: With increasing regulations around data privacy, pipelines
must incorporate strong security measures, including encryption and access controls.

4. Complexity: The growing complexity of data and analytics tasks requires sophisticated
pipeline architectures, which can be difficult to manage and maintain.

3.6.5 Summary

Data pipelines are a critical component in modern data architectures, enabling the efficient and
automated flow of data from source to insights. The state-of-the-art is characterized by cloud-
native technologies, DevOps methodologies, and a focus on scalability and reliability. However,
challenges related to data quality, security, and complexity remain areas for ongoing research
and development.

40

4. Information Retrieval System

As discussed in Chapter 1, entity linking relies on a reliable source of data for reconciliation.
In many cases, this data source is represented as a knowledge graph (KG). However, efficiently
accessing and retrieving information from a knowledge graph poses unique challenges. To ad-
dress these challenges, a robust information retrieval system specifically designed for knowledge
graphs is required. Such a system enables the indexing of data within the knowledge graph, fa-
cilitating efficient lookup and retrieval of entities and their associated information, including
relationships between graph elements.

This chapter focuses on the design and implementation of information retrieval systems
tailored to knowledge graphs. Various techniques were explored and methodologies for indexing
knowledge graph data, taking into consideration factors such as scalability, query performance,
and support for complex queries.

By the end of this chapter, readers will gain a comprehensive understanding of building
an information retrieval system for knowledge graphs. It will discuss the challenges involved
and the techniques used to overcome them. This knowledge will provide readers with insights
into the intricacies of information retrieval systems for knowledge graphs, enabling them to
navigate the complexities of building and optimizing such systems for efficient data retrieval
and knowledge exploration.

4.1 Knowledge Graph Indexing

The primary objective of indexing in Knowledge Graphs (KGs) is to facilitate efficient and accu-
rate data retrieval for Information Retrieval Systems. This section outlines a general methodol-
ogy that is adaptable to various types of KGs. The methodology focuses on two core challenges:
Entity Lookup by Name and Relationship Retrieval. While this section provides a foundational
understanding of the challenges in KG indexing, the subsequent section on Data Retrieval will
explore more advanced Information Retrieval techniques.

Entity Lookup by Name: One of the core challenges in KG indexing is the efficient lookup
of entities by their unique identifiers or names. Given the vast and heterogeneous nature of KGs,
traditional lookup methods may not suffice. Information Retrieval techniques offer a promising
avenue for addressing this challenge. For instance, an inverted index could serve as a foun-
dational layer for more advanced techniques, such as tokenization and n-grams, which will be
elaborated upon in the subsequent section.

Relationship Retrieval: Another significant challenge is the efficient retrieval of relationships
between entities. Relationships in KGs are multifaceted, often involving various types and layers
of connections. Efficiently indexing these relationships is crucial for any Information Retrieval

41

System tailored for KGs. As an example, one could employ an inverted index where each entity
is mapped to a list of connected entities, categorized by the type of relationship. This would
allow for quick, targeted queries, setting the stage for more advanced querying techniques.

4.2 Data Retrieval

Data retrieval plays a crucial role in performing entity linking tasks, especially when dealing
with knowledge graphs (KG). The primary objective of data retrieval is to obtain relevant can-
didates from a given dataset, which, in this case, constitutes a KG. This step serves as the
foundation for subsequent entity linking processes, allowing us to identify and associate textual
mentions with their corresponding entities in the KG.

In the context of entity linking within tabular data, data retrieval becomes even more sig-
nificant. Tabular data often contains structured information, such as columns and rows, and the
mentions to be linked are embedded within these tables. Therefore, the data retrieval process
involves searching and extracting relevant candidates from the tabular data based on the textual
mentions encountered.

When performing data retrieval, various types of queries can be employed. These queries
are designed to capture the essential characteristics of the textual mentions and locate potential
candidate entities within the KG. Depending on the specific requirements of the task, queries
can consider factors such as semantic similarity, contextual information, or domain-specific
knowledge.

One crucial consideration in data retrieval is the management of the output size. Retrieving
a large number of candidates can pose challenges in terms of processing time and computational
resources. Therefore, it is important to define an appropriate output size that can be effectively
managed and processed. This may involve setting limits on the number of candidates retrieved
or implementing filtering mechanisms to prioritize the most relevant and promising candidates.

It is worth noting that data retrieval is not limited to tabular data. It can also be applied to
structured and unstructured data in various domains. Whether dealing with textual documents,
web pages, or other types of structured data, the goal remains the same – to retrieve relevant
candidates that can be further processed and linked to entities in the KG.

Overall, data retrieval is a fundamental component of entity linking, enabling the identifica-
tion and retrieval of relevant candidates from a given dataset. By leveraging appropriate query-
ing techniques and considering output size limitations, data retrieval enhances the efficiency and
effectiveness of the entity linking process, leading to accurate and reliable results.

Now, let’s discuss the key characteristics in detail that define a data retrieval component:

• limit: An integer value that specifies the number of entities to retrieve. The default value
is 100, which has been empirically demonstrated to provide a good level of coverage;

• token: Represents a word or a piece of text. By default, a retrieval system performs an
exact match with the tokens of the input string.

42

• fuzzy: A common operator in data retrieval services that allows matching with a certain
error tolerance in the input string. It may require slightly more processing time compared
to exact token matching;

• n-grams: Given a value of ‘n,’ it represents a group of letters taken from a piece of text
in a way that each group has ‘n’ letters. For instance, with n = 3 and the input ‘albert
einstein,’ the text is split into [’alb’, ’lbe’, ’ber’, ’ert’, ...];

• description: Can be associated with an entity to provide additional context that can be
used at query time or later for better disambiguation;

• types: Associated with the mention and can be used at query time to filter out results, as
well as for better disambiguation in subsequent stages.

4.3 Information Retrieval System for Dataset with LamAPI

In this section, the proposed solution to the data retrieval problem is presented. Specifically, a
tool named LamAPI, which stands for Label Matching API, has been developed.

LamAPI is implemented in Python using ElasticSearch and MongoDB. It comes with a
Swagger documentation page for demonstration purposes, as shown in Figures 4.1 and 4.2.
The LamApi Repository1 is available, allowing the code to be downloaded and customized if
necessary.

Figure 4.1: LamAPI documentation page

1bitbucket.org/discounimib/lamapi

43

https://bitbucket.org/disco_unimib/lamapi

Figure 4.2: LamAPI Lookup service

For completeness, the list with the relative description of the LamAPI services is provided.
Types: given the unique id of an entity as input, it retrieves all the types of which the entity is
an instance. The service relies on vector similarity measures among the types in KG to compute
the answer. For DBpedia entities, the service returns both direct types, transitive types, and
Wikidata types of the related entity, while for Wikidata, it returns only the list of concepts/types
for the input entity.
Literals: given the unique id of an entity as input, it retrieves all relationships (predicates) and
literal values (objects) associated with that entity.
Predicates: given the unique id of two entities as input, it retrieves all the relationships (predi-
cates) between them.
Objects: given the unique id of an entity as input, it retrieves all related objects and predicates.
Labels: given the unique id of an entity as input, it retrieves all the related labels and aliases
(rdfs:label).
Literal Recognizer: Given an input array consisting of a collection of strings, this component
employs a series of regular expression rules in conjunction with the spaCy natural language pro-
cessing library2 to categorize each literal into its corresponding type. The types of literals recog-
nized include dates (e.g., 1997-08-26, 1997.08.26, 1997/08/26), numbers (e.g., 2,797,800,564,
25 thousand, +/- 34657, 2 km), URLs, email addresses, and times (e.g., 12:30 pm, 12 pm).
Fasttext: Given an array of strings as input, the endpoint generates and returns the correspond-
ing embedding representations using Fasttext vectors.

In Listing 4.1, the output of the lookup service is shown, displaying the first three candidates
for the mention ‘Jurassic World’, along with the values of their respective features provided
by LamAPI. As can be observed, LamAPI provides preliminary text-based features such as the
mention’s ntoken, the popularity of the entity derived from the KG, two features obtained from

2https://spacy.io/

44

https://spacy.io/

Elastic (pos score, es score), the Jaccard score (jaccard score and jaccardNgram score), and
finally, the cosine similarity.

Listing 4.1: Returned candidates for the mention Jurrasic World.
1 {

"id": "Q3512046",
3 "name": "Jurassic world",

"description": "2015 sci -fi adventure directed by Colin Trevorrow",
5 "types": [...] ,

"ambiguity_mention": 0.135,
7 "corrects_tokens": 1,

"ntoken_mention": 2,
9 "ntoken_entity": 2,

"length_mention": 14,
11 "length_entity": 14,

"popularity": 0.07,
13 "pos_score": 0.01,

"es_score": 1,
15 "ed_score": 1,

"jaccard_score": 1,
17 "jaccardNgram_score": 1,

"cosine_similarity": 1
19 },

{
21 "id": "Q21877685",

"name": "Jurassic World",
23 "description": "2018 5th Jurassic Park film directed by Juan Antonio",

"types": [...] ,
25 "ntoken": 2,

"ambiguity_mention": 0.135,
27 "corrects_tokens": 1,

"ntoken_mention": 2,
29 "ntoken_entity": 2,

"length_mention": 14,
31 "length_entity": 14,

"popularity": 0.05,
33 "pos_score": 0.03,

"es_score": 0.988,
35 "ed_score": 1,

"jaccard_score": 1,
37 "jaccardNgram_score": 1,

"cosine_similarity": 1
39 },

{
41 "id": "Q2336369",

"name": "Jurassic World",
43 "description": "American media franchise",

"types": [...] ,
45 "ntoken": 2,

"ambiguity_mention": 0.135,
47 "corrects_tokens": 1,

"ntoken_mention": 2,
49 "ntoken_entity": 2,

"length_mention": 14,
51 "length_entity": 14,

"popularity": 0.03,
53 "pos_score": 0.04,

"es_score": 0.985,
55 "ed_score": 1,

"jaccard_score": 1,
57 "jaccardNgram_score": 1,

"cosine_similarity": 1
59 }

In Listing 4.2, the output from the objects service is displayed. Specifically, this output
illustrates how relationships are structured. Within the ’objects’ dictionary, the dictionary’s keys
represent the objects of the relationships. For each key, the associated values are arrays that
enumerate the predicates corresponding to those relationships.

Listing 4.2: Returned relationships between candidate Q3512046 and other entities.
1 {

"wikidata": {
3 "Q3512046": {

"objects": {

45

5 "Q229390": [
"P31"

7],
"Q11424": [

9 "P31"
],

11 "Q261636": [
"P31"

13],
"Q5145625": [

15 "P57",
"P161",

17 "P58"
],

19 "Q471839": [
"P136"

21],
"Q319221": [

23 "P136"
],

25 "Q188473": [
"P136"

27],
"Q1077883": [

29 "P136"
],

31 "Q430": [
"P921"

33],
"Q17862144": [

35 "P179"
],

37 "Q1860": [
"P364"

39]
...

41 }
}

43 }
}

In Listing 4.3, the output from the literals service is displayed. Specifically, this output
illustrates how relationships are structured. Within the ’literals’ dictionary, the keys signify the
datatypes associated with the relationships. Each key has an array of values, highlighting the
literal values pertinent to those relationships.

Listing 4.3: Relationships: returned the relationships that candidate Q3512046 has with the
other literals values.
{

2 "wikidata": {
"Q3512046": {

4 "literals": {
"GEOSHAPE": {},

6 "DATETIME": {
"P577": [

8 "+2015 -06 -12 T00 :00:00Z",
"+2015 -06 -11 T00 :00:00Z",

10 "+2015 -06 -10 T00 :00:00Z",
"+2015 -05 -29 T00 :00:00Z"

12]
},

14 "MUSICAL_NOTATION": {},
"TABULAR_DATA": {},

16 "MATH": {},
"NUMBER": {

18 "P2047": [
"+124"

20],
"P2142": [

22 "+1670400637",
"+652270625"

24],
"P2130": [

26 "+150000000"
]

28 },

46

"STRING": {
30 "P345": [

"tt0369610"
32],

"P646": [
34 "/m/051179"

],
36 "P856": [

"http ://www.jurassicworld.com"
38],

"P1258": [
40 "m/jurassic_world"

],
42 "P373": [

"Jurassic World"
44],

"P1712": [
46 "movie/jurassic -world"

],
48 "P1562": [

"v576633"
50],

"P1237": [
52 "jurassicpark4"

],
54 ...

}
56 ...

}
58 }

}
60 }

Now, let’s delve into the workings of the Literals-recognizer. In Listing 4.4, the data
fed into the Literal Recognizer Service is illustrated. Subsequently, in Listing 4.5, the result
obtained when the service processes the data from Listing 4.4 is displayed.

Listing 4.4: Input to Literal Recognizer Service
{

2 "json": [
"50",

4 "12/11/1997",
"https :// www.unimib.it/",

6 "mario.rossi@gmail.it",
"Mount Blanc is located in Aosta Valley"

8]
}

Listing 4.5: Results from Literal Recognizer Service
1 {

"50": {
3 "datatype": "INTEGER",

"classification": "NUMBER",
5 "tag": "LIT",

"xml_datatype": "xsd:integer"
7 },

"12/11/1997": {
9 "datatype": "DATE",

"classification": "DATETIME",
11 "tag": "LIT",

"xml_datatype": "xsd:date"
13 },

"https ://www.unimib.it/": {
15 "datatype": "URL",

"classification": "STRING",
17 "tag": "LIT",

"xml_datatype": "xs:anyURI"
19 },

"mario.rossi@gmail.it": {
21 "datatype": "EMAIL",

"classification": "STRING",
23 "tag": "LIT",

"xml_datatype": "xsd:string"
25 },

"Mount Blanc is located in Aosta Valley": {

47

27 "datatype": "STRING",
"classification": "STRING",

29 "tag": "NE",
"xml_datatype": "xsd:string"

31 }
}

Figure 4.3 presents the comprehensive workflow of lamAPI construction. Initially, the pro-
cess begins with the large Wikidata dump which, when compressed, is approximately 77GB in
size. This data can be accessed at https://dumps.wikimedia.org/wikidatawiki/entities/.
This file is processed in its compressed form and the intermediate results are stored in a Mon-
goDB database. Subsequently, an index is created on the names of the entities in Elasticsearch.

Upon completion of these steps, several important services become available:

• Lookup: This service performs searches in the KG, taking a text string as input and
returning a set of candidate entities.

• Objects: This service reveals the relationships between entities in the KG.

• Literals: This service provides the relationships between entities and literal values, such
as numbers, dates, or text.

These services facilitate various operations over the knowledge graph, thereby enhancing
the utility and accessibility of the stored data.

DBpedia, Wikidata and the like are very large KGs that require an enormous amount of
time and resources to perform CR. Additionally, information available in turtle format is ex-
cellent for representing relationships among entities, but they are unsuitable for applying CR
algorithms. This issue has been tackled by devising a more condensed data representation by
utilizing MongoDB collections, which can be indexed for swift retrieval of the intended data.

For each indexed KG, the relative dump has been downloaded and parsed to store all triples
in a local copy. For Wikidata, a single file named ‘latest-all.json.bz2’ of size around 78 GB
has been parsed, while for DBpedia multiple turtle file have been parsed to create a complete
dump of the KG. Subsequently, an ElasticSearch3 index has been constructed, leveraging an
engine designed to search and analyze extensive data volumes in nearly real-time swiftly. These
customized local copies of the KGs are then used to create endpoints to provide EL retrieval
services. The advantage is that these services can work on partitions of the original KGs to
improve performance by saving time and using fewer resources.

The entire process illustrated in Figure 4.3 takes approximately 36 hours to complete. The
bulk of this time (around 31 hours) is spent processing the large Wikidata dump file. This
involves processing the compressed file line by line, decompressing a single line at a time, and
storing the results in the MongoDB database. The remaining 5 hours are used to create the
Elasticsearch index. This time investment ensures efficient and accurate operations over the
knowledge graph, thereby furnishing a comprehensive and searchable database.

3www.elastic.co

48

https://dumps.wikimedia.org/wikidatawiki/entities/
https://www.elastic.co/

124

Q35120246 1670400637

12/06/2015

Jurassic World
P2047 (duration)

P2047 (box office)

P577 (publication date)

Q35120246

Jurassic World Q1545625

Colin Trevorrow

Q3512046

Universal Pictures

P57 (director)

P750 (distributed by)

Q35120246

Jurassic World

Q55615459

Jurassic World: Fallen Kingdom

Q21877685

Jurassic World: The Ride

LamAPIIndex
for lookup

Storage of
KG data

Large
Dump file

Literals

Objects

Lookup

Output

Output

Output

Services
Output

Figure 4.3: The high level workflow to build LamAPI

4.4 Evaluation of LamAPI Performance
In this section, the analysis focused on evaluating the LamAPI output quality is presented.
Specifically, it scrutinizes the distribution of correct candidates across a variety of datasets de-
rived from the SemTab challenge. The datasets enlisted for the evaluation include Round1-T2D,
Round3, Round4, 2T, HardTableR2, and HardTableR3. Below, each dataset is elucidated in
greater detail:

• Round1-T2D [60]: extracted from the T2Dv2 Gold Standard, this dataset comprises man-
ually annotated correspondences such as row-to-instance, attribute-to-property, and table-
to-class, distributed across 779 web tables;

• Round3 [35]: this dataset stands out for featuring a substantial number of abbreviated
individual names, like ‘J. F. Kennedy’ introducing a nuanced layer of complexity to the
dataset;

• Round4 [37]: constructed during the SemTab 2020, it encompasses 22,207 tables, aver-
aging 21 rows per table;

• 2T (Tough Table) [17]: recognized for its high-quality tables which incorporate cells
with ambiguous identifiers, typos, and misspelled entity names, it houses approximately
70,000 unique cells in 180 tables. It supports the testing of CR with misspelled words and
offers the scope to carry out comparative analyses for both Wikidata and DBpedia KG
through identical tables;

• HardTableR2 [16]: a synthetic dataset characterized by an average of 16 rows per table
and mentions that predominantly consist of one or two tokens, introducing a considerable

49

degree of ambiguity and making the disambiguation process particularly challenging;

• HardTableR3 [16]: similar to HardTableR2 but distinguished by the fact that each table
contains only one NE-column, coupled with an average of 8 rows per table. This config-
uration makes the disambiguation process more challenging, primarily because the sole
reliance on a single NE-column can limit context and introduce ambiguity.

It is worth noting that the majority of the aforementioned datasets were formulated utilizing
an automated data generator operating through a SPARQL endpoint. The initiative behind this
approach was to generate tabular data resembling those found on the web while securing a
reasonable variation in terms of size and the span of classes and properties from diverse domains.

A comprehensive portrayal of these datasets, encapsulating a range of domains and accom-
panied by ground truths, is presented. Table 4.1 delineates the statistics concerning the six
datasets: Round1 T2D, Round3, Round4, 2T-2020, HardTableR2, and HardTableR3.

Table 4.1: Statistics of the Datasets Used in the Experiments

dataset table columns rows # entities (CEA) # classes (CTA) # predicates (CPA)
Round1 T2D 64 323 9089 8078 119 115

Round3 2161 9736 152753 390456 5761 7574
Round4 22207 78750 475897 994920 31921 56475
2T-2020 180 802 194438 667243 539 0

HardTableR2 1750 5589 29280 47439 2190 3835
HardTableR3 7207 17902 58949 58948 7206 10694

The validation process starts with a set of mentions M, and a number k of candidates asso-
ciated with each mention. The Lookup service returns a set of candidates Em that includes all
the candidates found. The returned set is then checked against the 2T to verify which among
the correct entities are present and in what position in the ranked results in Em. The coverage is
computed following this formula:

coverage =
candidates f ound

total candidates to f ind
(4.1)

Where # represents ‘number of’.
In Table 4.2 the various coverage values are presented for lookup based on label matching on
a mention by enabling fuzzy and n-grams searches. The experiments were conducted using 20
parallel processes on a server with 40 CPU(s) Intel Xeon Silver 4114 CPU @ 2.20GHz and
40GB RAM.

Table 4.3 and 4.4 show the coverage using the constraint on types. To select and expand
types, four methods were applied.

1. Type: This method considers only the type or set of types (seed types) indicated in the
call to the Lookup service, and it does not carry out any expansion of types.

50

2. Type Co-occurrency: For the seed types, it extracts additional types based on the co-
occurency of types in the KG. The co-occurency score represents the number of times
each type co-occurs with another type in a KG at entity level.

3. Type Cosine Similarity: The seed types are extended by the cosine similarity of RDF2Vec4.

4. Soft Inference: The seed types are extended using a Feed Forward Neural Network that
takes as input the RDF2Vec vector of an entity, linked to a mention and predicts the pos-
sible types for the input entity [15].

In Table 4.3, it is possible to notice that the first method achieves a higher coverage. The
best result is obtained by adding two types. Co-occurrencies and Type Cosine Similarity are both
idempotent methods. The Soft Inference technique uses the entities obtained by a prelinking.
Not all entity vectors are available, so extending the set of types is not always possible. In Table
4.4, the results for Wikidata are presented. Also, in this case, the best results here are achieved
using the first method. The achieved coverage is highest because this KG has a comprehensive
hierarchy with more detailed types.

Even if lower, the coverage values achieved with type expansion methods are promising.
It must be considered that the exact type to use as a filter is often not known a priori in real
scenarios. For instance, in order to select a type, a user needs to be familiar with the profile of
a KG and understand how it is utilized to describe entities. Owing to the methods described
above, the search results will include entities that belong to other types yet remain related to the
input.

Table 4.2: Coverage results and response times for different searches in Wikidata and DBpedia
v. 2022.03.01.

Methods
DBpedia Wikidata

Coverage Time Coverage Time
N-gram 0,842 228 s 0,787 649 s
Fuzzy 0,806 226 s 0,805 766 s
Token 0,561 227 s 0,530 230 s

N-gram + Fuzzy 0,891 267 s 0,926 1649 s
N-gram + Token 0,883 229 s 0,891 807 s
Fuzzy + Token 0,812 226 s 0,825 773 s

N-gram + Fuzzy + Token 0,895 270 s 0,929 1577 s

Table 4.3: Coverage results for 2T DBpedia.

Methods w/o type 1 type 2 types 3 4 5 6 7 8 9 10
Type 0,892 0,904 0,905 0,904 0,889 0,884 0,879 0,872 0,870 0,867 0,848
Type Co-occurency 0,892 0,886 0,896 0,886 0,856 0,884 0,830 0,834 0,834 0,833 0,823
Type Cosine Similarity 0,892 0,892 0,886 0,889 0,885 0,881 0,873 0,869 0,825 0,825 0,830
Soft Inference 0,892 0,885 0,872 0,884 0,882 0,879 0,885 0,886 0,878 0,874 0,869

4rdf2vec.org

51

http://rdf2vec.org/

Table 4.4: Coverage results for 2T Wikidata.

Methods w/o type 1 types 2 types 3 4 5 6 7 8 9 10
Type 0,929 0,941 0,939 0,946 0,946 0,947 0,947 0,945 0,945 0,943 0,944
Type Co-occurency 0,929 0,854 0,808 0,796 0,793 0,795 0,797 0,797 0,795 0,796 0,795
Type Cosine Similarity 0,929 0,853 0,853 0,852 0,851 0,850 0,849 0,849 0,848 0,847 0,845

The validation previously proposed referred to the results obtained through varying config-
urations while maintaining the constant use of the 2T-2020 dataset. Currently, a more general
validation is being introduced that takes into consideration different datasets to authenticate the
performance achieved by LamAPI in terms of coverage across diverse datasets.

Figure 4.4 depicts how the coverage score varies with the number of candidates. The results
reveal that for most datasets, the coverage remains consistently around 0.90 when the number
of candidates ranges from 20 to 30. Nevertheless, there are exceptions, notably in the case
of Round3 and HardTableR3, where the coverage reaches approximately 0.80 with a hundred
candidates. The primary factor contributing to this score in Round3 is the prevalence of name
abbreviations, making them challenging for LamAPI to be identified. In contrast, HardTableR3
faces disambiguation challenges, as most cells consist of only one token, providing a little con-
text for disambiguation.

Figure 4.4: Coverage trends across different considered datasets

The other experiment concerns the average position of the correct candidate across the dif-
ferent datasets. The Figure 4.5 shows the average position of the correct entity for each dataset.

52

HardTableR3 obtain the worst results because one-token mentions have a wide range of possible
candidates, so the correct candidates are often in the lower ranking position. Round3 is critical
for abbreviations of people names, but when the correct candidate is found, it is detected around
the 4-th position. Also 2T-2020 has an average position of the correct candidate higher (around
3) because this dataset is full of misspelled mentions, so it’s more complicated to retrieve the
correct candidate in the first position. HardTableR2, Round1 T2D and Round4 are easier since
they have fewer typos and misspelled mentions.

Figure 4.5: Average position of the correct candidate across different considered datasets

53

5. Semantic Enrichment of Tabular Data

The approach presented in this chapter addresses the task of entity linking by leveraging the
inherent structure and context of tabular data. It combines heuristic and machine learning tech-
niques to identify and link mentions in the table to corresponding entities in the knowledge graph
(KG). Additionally, the proposed approach incorporates a scoring mechanism that provides con-
fidence scores for the linked entities, facilitating result evaluation and interpretation.

A comprehensive analysis of the proposed algorithm is provided, examining its strengths,
limitations, and potential applications. Furthermore, a thorough evaluation of its performance
and effectiveness is conducted by comparing it against established benchmarks and state-of-the-
art approaches for entity linking. The evaluation process encompasses various metrics and a
large number of datasets, enabling a comprehensive assessment of the algorithm’s capabilities.

By the end of this chapter, readers will gain a thorough understanding of the proposed en-
tity linking algorithm for tabular data, its driving ideas, and its performance in comparison to
existing approaches. This knowledge will serve as a solid foundation for further advancements
in entity linking over tabular data, paving the way for improved data integration, knowledge
discovery, and information retrieval.

5.1 Overview of the Proposed Approach

Figure 5.1: Linking workflow with Human-In-The-Loop feedback.

The proposed linking process of a table T follows the workflow illustrated in Figure 5.1.
This workflow encompasses the following key steps:

1. Candidate retrieval: Here, the reference KG is queried to identify candidate entities
related to each mention in the table. The result is a weighted list of candidates, where the
(typically unbounded) weight represents the confidence in their quality.

54

2. Candidate Ranking: Employing a pretrained neural network with weights symbolized by
Θ, the ranking of candidates is a two-step process that generates normalized confidence
scores, initially denoted as ρ and subsequently as ρ ′. These scores are instrumental in
selecting the most suitable candidate for each mention

3. Uncertainty estimation and decision: This task involves the use of a score δ that con-
siders the distance between the scores of the top-two candidates for a mention, and the
confidence score ρ of that mention. The weighted sum of δ and ρ produces a global score
ω for ranking all candidates; A threshold σ discriminates between linked and unlinked
mentions.

4. Human revision: The human actor reviews the most uncertain links (also referred to as
annotations). The domain knowledge helps validate or correct the results. The review
process considers the mentions featuring candidates with progressively increasing values
of ω with the objective of improving the overall F1 measure.

By following this structured workflow, the approach ensures the effective linking to enti-
ties in the reference KG with their mentions in table T , combining learning-based automated
techniques with human expertise.

At the end of the linking process, human intervention is essential to improve the quality of
the results and, thus, the algorithm’s effectiveness. The essence of HITL (Human-in-the-Loop)
is to enhance the performance of a matching algorithm, specifically, an entity linking algorithm,
by necessitating a controlled level of user interaction. HITL matching usually considers two
aspects of the problem that can possibly be combined: how to identify uncertain links, which can
speed up the revision process by pinpointing mismatched mentions first, and how to maximize
the algorithm’s performance, simultaneously minimizing the user’s effort, measured in terms of
the percentage of links to review.

As illustrated in Figure 5.1, the user’s actions may be propagated back to Candidate ranking
and Uncertainty estimation and decision in the entity linking process. This effect could result in
a fine-tuned version of the neural network model for candidate ranking and a change in the rules
for uncertainty estimation and decision. For example, it may lead to the definition of revised
criteria to combine thresholds δ and scores ρ for selecting linked entities.

5.1.1 Data Preparation & Candidate Retrieval

Data preparation and candidate retrieval are crucial tasks that precede entity linking.
The data preparation task primarily involves identifying the most probable datatype of each

column. Special attention is accorded to columns containing Named Entities (NE) and Literals
(LIT). To distinguish between these two categories of columns, a synergistic approach involving
regular expressions and Natural Language Processing (NLP) techniques is utilized, as elaborated
in Section 4.3. In addition, data preparation also includes cleaning operations, such as converting
strings to lowercase, removing extra spaces, and eliminating problematic characters.

55

Candidate retrieval is done following the identification of the column data types. This step
encompasses the retrieval of candidates for all mentions in order to obtain a set of candidates.
Further details on this process are elaborated in Section 4.2.

5.1.2 The Entity Linking Algorithm

In the realm of entity linking, the primary goal is to address the challenge of linking ‘men-
tions’, defined as labels or strings found in cells within relational tables, to entities in a reference
Knowledge Graph (KG) like WikiData or DBPedia.

The task of entity linking comprises three main objectives: Cell Entity Annotation (CEA),
Column Type Annotation (CTA), and Column Property Annotation (CPA). The CEA objective
involves annotating table cells with entities from the reference KG. The CTA aims to detect the
semantic type of mentions within the same column. Lastly, the CPA aims to identify the semantic
relationship between the mentions in the same row and, subsequently, the relationship between
the columns containing those mentions. The CTA and CPA tasks are termed as ‘schema-level
annotations’, as they concern the analysis of the table’s schema.

The CEA task is central in entity linking, as it streamlines both CTA and CPA activities.
Upon obtaining mention annotations within the table through CEA, estimations for CTA and
CPA can be conducted. The estimation process for both tasks is executed by employing major-
ity voting across occurrences. In the context of the CTA task, type frequencies of the winning
candidates are aggregated, followed by majority voting to determine the prevailing type. Sim-
ilarly, for the CPA task, predicate frequencies of the winning candidates are gathered, and a
subsequent majority vote is conducted to ascertain the dominant predicate.

Finally, after obtaining a set of candidates for each mention through the data retrieval phase,
the objective of the entity linking algorithm is to provide a ranking of these candidates. That is,
each mention will be associated with a ranked list of candidates where the first candidate (top
one) is considered the most probable. This top candidate can be viewed as the winning candidate
for that mention.

An EL algorithm can employ ML techniques, rely solely on heuristic methods, or use a
combination of both. To compute the similarity between a mention and a candidate, the entity
linking algorithm needs a set of similarity measures, referred to as a set of features.

Using these features, the EL algorithm can compute a confidence score for each candidate,
which is then used to generate the final ranking. This confidence score can either be bounded
or unbounded, but a bounded score (for example, ranging from 0 to 1) is preferred because it
provides an interpretable measure of confidence.

5.1.3 Decision

In the Decision phase, strategies are employed to determine whether to establish a link. One ap-
proach involves setting a threshold for the confidence score (ρ) obtained from the entity linking
algorithm, below which a mention should be considered unlinked. Another strategy involves

56

considering the difference (δ) in confidence scores (ρ) between the top two candidates for a
mention. This measure helps to gauge the degree of uncertainty. Ultimately, various strategies
can be devised that incorporate both ρ and δ values to assess the level of uncertainty and make
the final decision regarding linking or not.

5.2 Entity Linking over Tabular Data
In this section, the proposed solution to address the challenge of entity linking over tabular data
is presented. A tool named Alligator has been developed, an acronym for Automated Learning
and Linking for Intelligent Graph-Based Association of Tabular Objects and Relationships.

The foundation of this approach is a feed-forward neural network, trained to excel in entity
linking tasks within the realm of tabular data.

To ensure the model’s effectiveness, the network is trained using a meticulously curated
dataset known as the Gold Standards (GS). This dataset serves as the gold standard for entity
linking, providing the model with a robust foundation for learning and making precise associa-
tions.

In addition to the training data, a set of well-crafted features has been created to feed the
model. These features play a pivotal role in enhancing the model’s capacity to extract valuable
information from the tabular data and the related candidates, enabling it to identify and link
entities with a high degree of precision.

The entity linking solution, anchored by this neural network and complemented by feature
engineering, represents a powerful tool for tackling the intricacies of entity linking in the context
of tabular data. It is this combination of advanced technology and carefully designed features
that empower the model to excel in this complex task.

5.2.1 Feature Engineering

As illustrated in Figure 5.2, three distinct vectors are defined: a vector corresponding to the
mention (V1), a vector corresponding to the combined mention and entity (V2), and a vector
corresponding to the entity alone (V3). Each vector encapsulates a specific set of features: Men-
tion, Mention-Entity, and Entity features, respectively. So, V1 pertains to the mention ‘Jurassic
World’ and encompasses features such as string length and token count. V2 is associated with
the composite of mention and entity, encapsulating features like Levenshtein distance and Jac-
card similarity coefficient. Lastly, V3 focuses solely on the entity and includes features such
as popularity and the token count of the entity’s label. These vectors (V1, V2, and V3) serve
as input to the machine learning model, which then generates a confidence score. This score
assesses the likelihood that the candidate Q3512046 is the correct entity to be linked to the
mention ‘Jurassic World.’

In particular, the ML model (also referred to as the Neural Ranker) will identify the weights
w1,w2, ...,wn to assign to the individual features, learning them from the correct candidates
observed during the training phase.

57

Title Director Release
date

Domestic
Distributor

length
in min

Worldwide
gross

Jurassic
World

Colin
Trevorrow 12/06/2015 Universal

Pictures 124 1670400637

<Jurassic World, Q3512046: Jurassic World >
M C1

fe1 fe2 … fen

V3
features for a candidate entity

fm1 fm2 … fmn

V1
features for a mention

TABLE KNOWLEDGE
GRAPH

ML model
(make a prediction)

Match probability of
candidate C1 with
mention M

fme1 fme2 … fmen

V2
features for mention - entity

Figure 5.2: Example of feature vector.

Table 5.1 lists all the features considered in this study. For each feature, it is specified
whether it is associated only with the mention, only with the candidate entity, or with both. The
features can exhibit different natures. Some features are directly tied to the Information Retrieval
(IR) system, meaning they depend on its characteristics. For example, if the scoring function
of the IR system is modified, these features will consequently change. Other features remain
stable, these include text similarity-based features such as edit distance or Jaccard similarity.
Additionally, there are features that are contingent on the Knowledge Graph (KG) being used.
This implies that as the KG improves or evolves, certain features may also improve, potentially
enhancing the system’s ability to disambiguate candidates in specific cases.

Below is a concise description of the various features utilized in the entity linking process:

• ambiguity mention: this feature quantifies the level of ambiguity associated with a given
mention. For example, a mention such as ‘Paris’ would yield a high ambiguity score,
approaching 1. The score is computed through a query to an Information Retrieval (IR)
system;

• correct token: this feature yields a score representing an estimation of the number of
accurately spelled tokens in the mention, serving as a proxy for spelling reliability. This
score is also computed through a query to an IR system;

• ntoken mention: the number of tokens in the mention m. This feature serves as an indi-
cation of the ambiguity of the mention;

• ntoken entity: this feature represents the number of tokens present in the entity’s name.
This feature serves as an indication of the ambiguity of the entity;

• length mention: this feature quantifies the length of the mention in terms of the number
of characters;

58

Table 5.1: Features Utilized in the Feature Vector

Name Range Feature Type
ambiguity mention [0, 1] Mention
correct token [0, 1] Mention
ntoken mention [0, ∞) Mention
ntoken entity [1, ∞) Entity
length mention [0, ∞) Mention
length entity [0, ∞) Entity
popularity [0, 1] Entity
pos score [0, 1] Mention-Entity
es score [0, 1] Mention-Entity
ed score [0, 1] Mention-Entity
jaccard score [0, 1] Mention-Entity
jaccardNgram score [0, 1] Mention-Entity
cosine similarity [0, 1] Mention-Entity
p subj ne [0, 1] Mention-Entity
p subj lit datatype [0, 1] Mention-Entity
p subj lit all datatype [0, 1] Mention-Entity
p subj lit row [0, 1] Mention-Entity
p obj ne [0, 1] Mention-Entity
desc [0, 1] Mention-Entity
descNgram [0, 1] Mention-Entity
cta t1 to cta t5 [0, 1] Mention-Entity
cpa t1 to cpa t5 [0, 1] Mention-Entity

• length entity: this feature quantifies the length of the entity’s name in terms of the number
of characters;

• popularity: the value of the number of site-links associated with entity e. This informa-
tion comes from Wikidata; This feature serves as an indicator of the entity’s popularity
and prominence in the digital domain;

• pos score: a positional score computed as follows: 1/i, where i is the position of the
candidate entity e in the LamAPI ranking. This feature captures the importance of the
candidate entity’s position in the IR system’s ranking.

• es score: a score computed internally by Elasticsearch. It comes from LamAPI and can
be considered as a pure syntactic match. This feature captures the score provided by the
Information Retrieval (IR) system;

• ed: is a measure of the similarity between two strings, calculated by determining the

59

minimum number of single-character edits required to transform one into the other. It
can be used to evaluate the similarity between the mention of an entity and its name in a
knowledge graph. This feature captures the similarity between the mention and name of
the candidate;

• jaccard: is a measure of the similarity between two strings, calculated by dividing the
number of matching tokens in the two strings by the total number of unique tokens. It
can be used to evaluate the similarity between the mention of an entity and its name in a
knowledge graph. This feature captures the similarity between the tokens in the mention
and the tokens in the name of the candidate entity;

• jaccardNgram: is a measure of the similarity between two strings, calculated by dividing
the number of matching n-grams in the two strings by the total number of unique n-grams.
It can be used to evaluate the similarity between the mention of an entity and its name in a
knowledge graph; This feature feature captures the similarity between the n-grams in the
mention and the n-grams in the name of the candidate entity. In this case, the value of n
is equal to 3. This feature captures the similarity between the n-grams in the mention and
the n-grams in the name of the candidate entity;

• cosine similarity: this score is computed by measuring the cosine similarity between the
vectors of the mention m and the name of the entity e. The vectors are computed using
the FastText library1. The cosine similarity measures the cosine of the angle between the
two vectors and ranges between -1 (opposite directions) to 1 (same direction). A higher
cosine similarity indicates a stronger semantic similarity between the mention and the
entity name. This feature captures the text similarity between the mention and the name
of the candidate entity by representing them as vectors and computing the cosine similarity
between these vectors;

• p subj ne: is a score that reflects the relationship between a current candidate for a Name
Entity (NE) cell and other candidate NE cells on the same row in a table. This task has
been implemented by retrieving relations among entities from LamAPI Objects endpoint.
This feature provides insights into the relation between the current candidate and other
candidates in the same row;

• p subj lit datatype : is a score that reflects the similarity between the literal values as-
sociated with a current candidate for a subject cell and the literal values on the same row
of the table. This task has been implemented by retrieving relations among entities and
Literals from LamAPI Literals endpoint; This feature captures the similarity between the
literal values associated with a current candidate for a subject cell and the literal values on
the same row of the table;

1https://fasttext.cc/

60

https://fasttext.cc/

• p subj lit all datatype: this feature generates a score based on the match between the
literal values associated with a given candidate entity and the literal values in the corre-
sponding row, irrespective of data type;

• p subj lit row: this feature calculates a score representing the degree of match between
the literal values associated with the candidate entity and the entire content of the corre-
sponding row;

• p obj ne : is a score that reflects the relationship between a current candidate for a Name
Entity (NE) cell and other candidate NE cells on the same row in a table, where the current
candidate is in a relationship as an object with the other candidate NE cells. This feature
captures the relationship between a current candidate for a Name Entity (NE) cell and
other candidate NE cells on the same row in a table, where the current candidate is in a
relationship as an object with the other candidate NE cells;

• desc: is a score that reflects the similarity between the content of a row in a table and the
description of a current candidate in a knowledge graph, using Jaccard similarity based on
tokens to compare the two strings; The feature feature provides insights into the similarity
between the tokens in the text of the row and the description of the current candidate. It
reflects the degree of resemblance or shared information between the two texts.

• descNgram: is a score that reflects the similarity between the content of a row in a table
and the description of a current candidate in a knowledge graph, using Jaccard similarity
based on 3-grams (also known as trigrams) to compare the two strings. This feature pro-
vides insights into the similarity between the n-grams (trigrams) in the text of the row and
the description of the current candidate. It reflects the degree of resemblance or shared
information between the two texts at a more granular level than token-level comparison;

• cta t1 to cta t5: These five distinct features are designed to capture information related to
types associated with the candidates. Each feature is computed as follows: based on the
estimated types for a column (represented as a dictionary of type frequencies), all the types
that belong to the candidate under consideration and are present in the types dictionary are
considered. These types are then sorted, with the most frequent type assigned to cta t1,
the second-most frequent to cta t2, and so on, up to cta t5. If it’s not possible to assign
values to all the cta features, the unassigned features will default to a value of 0.

• cpa t1 to cpa t5: Similar to cta t1 to cta t5, these five distinct features are designed to
capture information related to predicates associated with the candidates. Each feature is
computed as follows: based on the estimated predicates for a column (represented as a
dictionary of predicate frequencies), all the predicates that belong to the candidate under
consideration and are present in the predicates dictionary are taken into account. These
predicates are then sorted, with the most frequent predicate assigned to cpa t1, the second-
most frequent to cpa t2, and so on, up to cpa t5. If it’s not possible to assign values to all
the cpa features, the unassigned features will default to a value of 0.

61

Table 5.3 provides an example of annotations for the mentions in Table 1.1. For each men-
tion, three candidates are presented, along with their respective ρ and ρ ′ scores. Analyzing
these scores in conjunction with the type frequencies reported in Table 5.2, several observations
can be made. In general, candidates that align with the most frequent types in Table 5.2 tend
to have increased confidence scores (ρ ′) compared to the initial confidence scores (ρ). This
trend confirms the importance of aligning candidate types with dominant types in improving
confidence.

An exception is observed for the mention ‘Jurassic World,’ where the correct candidate
Q3512046 experiences a decrease in score from 0.996 (ρ) to 0.753 (ρ ′). Despite this decrease,
the correct candidate still maintains its position as the top-ranked candidate in the ranking. Con-
versely, for the mention ‘Avatar,’ the candidate Q83090, which does not align with the most
frequent types in Table 5.2, experiences a score decrease from 0.866 (ρ) to 0.778 (ρ ′). In con-
trast, Q1462437 shows an increase in score (ρ ′) and aligns with the type ‘video game,’ which
has a reported frequency of 0.6. These observations illustrate the interplay between candidate
types, confidence scores, and their impact on entity linking decisions.

One final observation pertains to the limited amount of context available, as Table 1.1 con-
tains only a few rows, providing minimal aggregation of results across rows, particularly in
terms of type consistency. However, it is noteworthy that despite this limited context, the correct
candidate consistently appears in the first position of the ranking for all mentions.

Table 5.2: Type Frequencies in Table 1.1 Column 1

Type Frequency
Q11424 (film) 0.6
Q7889 (video game) 0.6
Q229390 (3D film) 0.6
Q482994 (album) 0.4
Q24856 (film series) 0.2
Q14514600 (group of fictional characters) 0.2
Q14623646 (fictional organization) 0.2
Q111241092 (film reboot) 0.2
Q25110269 (live-action/animated film) 0.2
Q23847174 (religious concept) 0.2
Q261636 (sequel) 0.2
Q196600 (media franchise) 0.2

5.2.2 The Machine Learning Model

Once a set of candidates has been associated with each mention, a ranking algorithm is required
to prioritize and select the best options. In the proposed approach, a pretrained feed-forward
neural network is employed defined by a set of parameters Θ to perform the ranking task. This

62

Table 5.3: Entity Linking Confidence Scores for Table 1.1

mention id name description ρ ρ ′

X-Men Q106182 x-men 2000 american superhero film directed by bryan singer 1 1
X-Men Q2006869 x-men american superhero film series 0.981 0.932
X-Men Q3108064 x-men 1993 video game 0.036 0.554
Batman Begins Q166262 batman begins 2005 british-american superhero film directed by christopher nolan 0.995 0.996
Batman Begins Q2891561 batman begins video game based on the film of the same name 0.328 0.53
Batman Begins Q2401367 batman begins soundtrack album to the batman begins film 0.138 0.269
Superman Returns Q328695 superman returns 2006 superhero film directed by bryan singer 0.984 1
Superman Returns Q3977963 superman returns soundtrack album for the 2006 film of the same name 0.245 0.445
Superman Returns Q655031 superman returns video game loosely based on the movie of the same name 0.18 0.218
Avatar Q24871 avatar 2009 american epic science fiction film directed by james cameron 1 1
Avatar Q1462437 avatar video game 0.32 0.81
Avatar Q83090 avatar material appearance or incarnation of a deity on earth in hinduism 0.866 0.778
Jurassic World Q3512046 jurassic world 2015 american science fiction adventure film directed by colin trevorrow 0.996 0.753
Jurassic World Q21877685 jurassic world 2018 5th jurassic park film directed by juan antonio bayona 0.826 0.22
Jurassic World Q20647533 jurassic world film score 0.045 0.024

neural network calculates an accurate and normalized confidence score ρ for each candidate
entity. The confidence score represents the probability that an entity is the correct match for the
associated mention.

The reported experiments involved a neural model that was trained using the datasets from
the SemTab challenge that were introduced in Chapter 4 in Section 4.4. This choice was also
dictated by the need to obtain a model capable of good-quality results for tables with different
levels of data quality and belonging to different domains.

The information from these tables was used to create a specific training dataset for the binary
classification model. In this model, each candidate can be classified as either correct or incorrect
for a certain mention. For every mention, a query was made to the KG, and 11 candidates
were considered with different similarity scores, ensuring that the correct candidate was always
included. Consequently, each training example consists of one positive instance, representing
the correct entity to assign for a given mention, and ten negative instances, representing incorrect
candidates for the mention. The deliberate decision to include ten negative examples was aimed
at providing the model with a comprehensive understanding of what incorrect candidates entail.
By exposing the model to a diverse range of incorrect options, it is believed that a better grasp
of the variations and patterns that distinguish them from the correct entity would be achieved.

For each training example, a set of features is calculated. The considered features can be
classified into three groups: features for the mention, features for candidates, and features that
relate mentions to candidates. For mention-related features, only the tokens are considered.
This feature represents the number of tokens in the mention and aims to capture the ambiguity
associated with it.

For candidate features, the focus is on the popularity of the candidate in the KG reference.
This feature serves as an indication of the entity’s importance.

Regarding the features that relate the mention to candidates, there are three groups: text-
based features, semantic-based features, and context-based features. Text-based features cap-
ture the similarity between mentions using different criteria, such as Levenshtein distance and

63

token-based features like Jaccard similarity with n-grams (n=3). Semantic-based features con-
sider the semantic relations among candidates in different cells within the same row, leveraging
the semantic information of the table. Context-based features utilize the entire table context
and aggregate information such as types, predicates, and additional features related to the last
prediction. These features may include the prediction score and the difference between the top
two candidates. By incorporating these feature groups, The objective is to comprehensively cap-
ture various aspects of the problem, including textual, semantic, and contextual information, to
enhance the entity resolution process.

Table 5.4 provides details about the architecture of the neural network employed in this study.
It is a plain feed-forward neural network, whose hyper-parameters were determined through pre-
liminary experiments. In recent times, deep networks have demonstrated remarkable potential
in handling increasingly difficult and complex tasks, often rivaling or even surpassing human
capabilities. These networks are typically built using highly intricate architectures. However,
for this particular work, an approach prioritizing simplicity and speed was chosen, while still
maintaining strong learning capability and generalization. It is acknowledged that there is po-
tential for enhancing the network’s classification capability, devising an architecture optimized
for the candidate ranking task is beyond the scope and objectives of this work.

Table 5.4: Model Architecture

Layer (type) Output Shape Param # Connected to
dense (64,) 1344 (20,)
batch norm (64,) 256 (64,)
dense 1 (128,) 8320 (64,)
batch norm 1 (128,) 512 (128,)
dense 2 (256,) 33024 (128,)
batch norm 2 (256,) 1024 (256,)
dense 3 (128,) 32896 (256,)
batch norm 3 (128,) 512 (128,)
dense 4 (64,) 8256 (128,)
batch norm 4 (64,) 256 (64,)
dense 5 (2,) 130 (64,)

5.2.3 Decision: Uncertainty Estimation and Metrics

Uncertainty estimation in the decision-making process is comprised of two primary steps: firstly,
the calculation of an uncertainty measure, denoted as ω , for each candidate to facilitate the
ranking of all mentions; secondly, the setting of a threshold parameter σ (defaulted at 0.5) to
categorize each mention as either linked or unlinked. The parameter ω is obtained through a

64

linear combination of a confidence score, represented as ρ , and another parameter δ , defined as
the difference between the ρ scores of the top two candidates.

The formula for calculating the set Ω, which consists of the ω values for each i-th mention, is
expressed in Equation 5.1. Here, M represents the total number of mentions and k is a learnable
weight, which can be fine-tuned through Human-in-the-Loop (HITL) support, if necessary.

Ω = {ωi}M
i=1, ωi = (1− k)ρi + kδi (5.1)

After sorting the elements of Ω, a global ranking of candidates corresponding to mentions
is obtained. This ranking can then be employed to partition the set of mentions into subsets
denoted as linked and unlinked. Candidates with higher values of ω are presumed to be cor-
rect, while those with lower values are deemed uncertain and may require human review for
disambiguation.

To evaluate the effectiveness of the algorithm in correctly ranking candidates, standard met-
rics such as F1 score, Precision, and Recall are employed. These metrics are calculated based
on the first candidate in the ranking being considered as the correct candidate. The formulas
for calculating the F1 score are consistent with the definitions provided by the Semantic Tabular
Data Challenge (SemTab)2 and are specified in Equations 5.2, 5.3, and 5.4 as follows:

Precision =
Number of Correct Annotations

Number of Submitted Annotations
(5.2)

Recall =
Number of Correct Annotations

Number of Gold Standard Annotations
(5.3)

F1 =
2×Precision×Recall

Precision+Recall
(5.4)

These metrics provide a structured methodology for assessing algorithmic performance by
taking into account the number of correct annotations, submitted annotations, and ground truth
annotations present in the dataset.

Table 5.5 provides an example according to what was introduced previously. In detail, it
presents ρ and ρ ′ values provided by the ML models, δ which represents the distance in terms
of confidence between the top two candidates, and lastly, ω (with the value of k = 0.1) which
combines the confidence ρ and δ values in order to define the final ranking function.

The ω scoring function is designed to provide a measure of confidence for the corresponding
correct candidate. The motivation for choosing k= 0.1 is due to the low level of context available
in the considered table, so it is better to give more weight to the confidence (ρ) provided by the
ML model (In this case prefer more ρ over δ). The table has only a few rows, which limits
the effectiveness of δ as a disambiguation factor, resulting in a significant distance between the
confidence scores of the top two candidates.

The values in the table illustrate how the ω scoring function assigns high confidence to the
correct candidate in each case, despite the limited context. This demonstrates the effectiveness

2https://sem-tab-challenge.github.io/2023/

65

https://sem-tab-challenge.github.io/2023/

of the proposed approach in ranking candidates with confidence, even in scenarios with minimal
contextual information.

Table 5.5: Example with δ and ω values

mention id name description ρ ρ ′ δ ω

X-Men Q106182 x-men 2000 american superhero film directed by bryan singer 1 1 0.068 0.9068
X-Men Q2006869 x-men american superhero film series 0.981 0.932 0.068 0.8456
X-Men Q3108064 x-men 1993 video game 0.036 0.554 0.068 0.5054
Batman Begins Q166262 batman begins 2005 british-american superhero film directed by christopher nolan 0.995 0.996 0.466 0.943
Batman Begins Q2891561 batman begins video game based on the film of the same name 0.328 0.53 0.466 0.5236
Batman Begins Q2401367 batman begins soundtrack album to the batman begins film 0.138 0.269 0.466 0.2887
Superman Returns Q328695 superman returns 2006 superhero film directed by bryan singer 0.984 1 0.555 0.9555
Superman Returns Q3977963 superman returns soundtrack album for the 2006 film of the same name 0.245 0.445 0.555 0.456
Superman Returns Q655031 superman returns video game loosely based on the movie of the same name 0.18 0.218 0.555 0.2517
Avatar Q24871 avatar 2009 american epic science fiction film directed by james cameron 1 1 0.19 0.919
Avatar Q1462437 avatar video game 0.32 0.81 0.19 0.748
Avatar Q83090 avatar material appearance or incarnation of a deity on earth in hinduism 0.866 0.778 0.19 0.7192
Jurassic World Q3512046 jurassic world 2015 american science fiction adventure film directed by colin trevorrow 0.996 0.753 0.533 0.731
Jurassic World Q21877685 jurassic world 2018 5th jurassic park film directed by juan antonio bayona 0.826 0.22 0.533 0.2513
Jurassic World Q20647533 jurassic world film score 0.045 0.024 0.533 0.0749

5.3 Implementation and Evaluation of the Algorithms

In this section, the implementation of the proposed approach in a tool is outlined, providing a
description of the conducted experiments, and discuss the obtained results.

The proposed approach was implemented in Alligator3 a tool that is implemented in Python
and utilizes MongoDB. It conducts entity linking tasks over tabular data, supported by a machine
learning (ML) algorithm.

A public demonstration environment is available for testing purposes and is detailed on a
Swagger documentation page (see Figures 5.3 and 5.4). The Alligator’s repository is also pub-
licly accessible, making the code available for download and customization as needed.

3https://github.com/roby-avo/alligator

66

https://github.com/roby-avo/alligator

Figure 5.3: Overview of the Alligator Swagger Page

Figure 5.4: Focus on the POST Method for Performing EL on Tabular Data in Alligator

Listing 5.1: Example of input to Alligator API
[

2 {
"datasetName": "Dataset1",

4 "tableName": "TEST1",
"header": ["col1","col2","col3"],

6 "rows": [
{"idRow": 1, "data": [" Jurassic World", "Colin Trevorrow",

8 "12/06/2015", "Universal Pictures",
"124", "1670400637"]},

10 {"idRow": 2, "data": [" Superman Returns", "Bryan Singer",
"21/06/2006", "Warner Bros.",

12 "154", "391081192"]},
{"idRow": 3, "data": [" Batman Begins", "Christopher Nolan",

14 "15/06/2005", "Warner Bros.",

67

"140", "371853783"]}
16],

"semanticAnnotations": { "cea": [], "cpa": [], "cta": []},
18 "metadata": {

"column": [
20 {"idColumn": 0, "tag": "NE"},

{"idColumn": 1, "tag": "NE"},
22 {"idColumn": 2,"tag": "LIT", "datatype ": "NUMBER"},

{"idColumn": 3,"tag": "NE"}
24 {"idColumn": 4,"tag": "LIT", "datatype ": "NUMBER"},

{"idColumn": 5,"tag": "LIT", "datatype ": "NUMBER "}
26]

},
28 "kgReference": "wikidata"

},
30 {

"datasetName": "Dataset1",
32 "tableName": "TEST2",

"rows": [...] ,
34 ...

"kgReference": "wikidata"
36 }

]

Listing 5.2: Example of output to Alligator API
1 [

{
3 "datasetName": "Dataset1",

"tableName": "TEST1",
5 "rows": [...],

"semanticAnnotations": {
7 "cea": [

{
9 "idColumn": 0,

"idRow": 1,
11 "entity": [

{
13 "id": "Q3512046",

"name": "jurassic world",
15 "type": [{"id": "Q229390","name": "3D film"},

{"id": "Q11424","name": "film"},
17 {"id": "Q261636", "name": "sequel "}],

"description": "2015 american science fiction adventure
19 film directed by colin trevorrow",

"match": true ,
21 "score": 1.0

}
23]

}
25],

"cpa": [{"idSourceColumn": 0, "idTargetColumn": 0,"predicate": "P138"},
27 {"idSourceColumn": 0, "idTargetColumn": 1, "predicate": "P57"},

...
29],

"cta": [{"idColumn": 0, "types": ["Q229390"]},
31 {"idColumn": 1, "types": ["Q5"]}

],
33 "metadata": {

"column": [{"idColumn": 0, "tag": "NE"},
35 {"idColumn": 1, "tag": "NE"},

{"idColumn": 2,"tag": "LIT", "datatype": "NUMBER"}
37]

},
39 "kgReference": "wikidata"

"status": "DONE"
41 },

...
43]

5.3.1 The Experimental Campaign

The experiments are designed following the K-fold dataset validation process, with K = 6 [59].
In each experiment, a dataset is alternately used as the test set, while the remaining datasets are
utilized for training the neural network and learning the parameter k to compute Ω.

68

Table 5.6 presents the results of the six experiments, showcasing the progressive increase
of the F1 score throughout the linking process (columns 1 to 3). It is worth noting that the
reported figures represent the results of automatic annotation prior to any decision or human
revision while the last column provides the highest-scoring entry for each table from the SemTab
challenge [39, 36, 16], serving as a benchmark for comparison.

The evidence is that F1 increases at every step for every experiment reaching for the full
approach (third column in boldface) results in line with the state-of-the-art.

In particular, PN ranking refers to the first prediction made by the model without consid-
ering any contextual information such as types and predicates. On the other hand, PN + RN
ranking with types corresponds to the second prediction made by the model, where informa-
tion about types (mostly) and predicates is taken into account.

Regarding candidate retrieval with indexing, this represents the ranking generated by the
Elasticsearch-based indexing technique using a scoring function. It’s important to note that this
ranking only relies on textual matches.

A more detailed analysis reveals a significant increase in F1 scores in the first two steps
(columns) for the 2T-2020 and HardTableR3 datasets. This improvement can be attributed to
the deliberate inclusion of numerous typos in the 2T-2020 dataset and the high ambiguity of
mentions in the HardTableR3 dataset. These deliberate challenges were introduced to test the
robustness of the annotation tools. Consequently, the Elasticsearch-based indexing technique
struggles to address the complexity of these specific test cases, while a more sophisticated ma-
chine learning model performs significantly better.

Two critical datasets, namely Round3 and HardTableR3, were specifically designed to present
challenges. The former contains a large number of person names written in an abbreviated form,
such as ‘JFK’ instead of ‘John Fitzgerald Kennedy’, as well as nicknames like ‘Doctor J’ instead
of ‘Julius Irving’. Differently, the latter dataset consists mostly of tables with a single entity col-
umn and several numeric columns, lacking the contextual information that could support the
linking process. As the neural network has primarily been trained on the remaining, more regu-
lar datasets, the obtained results are not comparable with the SemTab Top Scorer. Nevertheless,
it should be noted that these cases are outliers and significantly differ from real-world datasets,
limiting their practical applicability. In particular, it can observed for Round3 the best result (PN
+ RN ranking with types) is still a bit far away from the SemTab Top Scorer because specific
rules to address the abbreviation in person name are needed. While, regarding HardTableR3 is
even reached out the SemTab Top Scorer but it is possible to notice, how the result Retrieval
with indexing is very low, which means how much ambiguous are the mentions inside that
dataset.

In Table 5.6, an interesting observation concerning the 2T-2020 dataset is the decline in per-
formance when types are considered, evident from the difference between PN Ranking and PN
+ RN Ranking with Types. Upon investigation, it was found that the Neural Ranker struggles
to correctly annotate certain mentions such as ‘Halifax’ (Column 1) and ‘Canada’ (Column 2),
as illustrated in Table 5.7. Given that 2T-2020 contains several tables with numerous rows, these
inaccuracies contribute significantly to the final F1 score. A potential solution for this issue is

69

Table 5.6: F1 for each Step in the Linking Workflow

Test Dataset

Retrieval
with

indexing

PN
ranking

PN + RN
ranking

with types

SemTab
Top

Scorer
F1 F1 F1 F1

Round T2D 0.72 0.85 0.89 0.90
Round3 0.60 0.80 0.81 0.97
Round4 0.70 0.93 0.94 0.99
2T-2020 0.33 0.92 0.88 0.90
HardTableR2 0.68 0.94 0.97 0.98
HardTableR3 0.26 0.95 0.97 0.97

discussed in Section 6.1.

Table 5.7: Example Table from 2T-2020 Dataset Illustrating Name Variations

col0 col1 col2
Zooey Deschanel Los Angeles United States
Zooey Dechanel Los Angeles United States

Zooey Deschannel Los Angeles United States
Sarah Mclaughlinn Halifax Canada
Sarah Mclouglin Halifax Canada
Sarah Maclean Halifax Canada

Alanis Maurissette Ottawa Canada
Alanis Morrisetti Ottawa Canada

Alanis Morisa Ottawa Canada

5.3.2 Examining Variations in Scores

In this section, the nuances of how scores change with varying values of k are explored. Specif-
ically, the focus rests on the extreme values of k, namely when k = 0 and k = 1. In addition,
the analysis includes evaluating the scores using the learned values of k for each dataset, as
highlighted in the Appendix A.

The primary objective is to discern trends associated with both ‘WRONG’ and ‘CORRECT’
cases as the value of k increases. An expected outcome is a decrease in scores for the ‘WRONG’
cases. Simultaneously, it is imperative to maintain high scores for the ‘CORRECT’ cases, aim-
ing for minimal reduction in their scores. With this objective in focus, further investigation into
these score variations across different datasets is warranted, taking into account the various k
values outlined earlier.

70

To avoid overburdening this section, results for only the HardTableR2 dataset are presented
here. Comprehensive results across all datasets can be found in Appendix A.2.

In the HardTableR2 dataset, represented in Figure5.5, there’s a clear downward trend in
scores for the ‘WRONG’ cases at k = 0.4. At the extreme of k = 1, while many ‘WRONG’
cases descend in scores, a significant number of ‘CORRECT’ cases remain in their original
scoring bands.

In conclusion, after examining the score distributions for the ‘WRONG’ and ‘CORRECT’
cases across all datasets, the initial expectations have been largely confirmed. As the value of
k increases, the ‘WRONG’ cases consistently gravitate towards lower score values. However,
vigilance must be maintained concerning the ‘CORRECT’ cases to prevent excessive shifting
toward these lower scores. Therefore, a value of k = 1 is not recommended, as it results in an
undesirable migration of too many ‘CORRECT’ cases to lower score levels.

For the most part, this observation holds true across all datasets. An exception, however, is
observed with the 2T-2020 dataset. Here, an unusually large number of ‘CORRECT’ cases shift
to lower scores. As discussed in subsection 5.3.1, this anomaly can be attributed to the inherent
noise in the 2T-2020 dataset.

5.3.3 Further Discussion and Analyses of Score Distributions

In this context, additional analyses are conducted, leveraging the rankings generated by the
various models mentioned in Section 5.3.1.

In detail, an analysis was conducted for each dataset to examine the distribution of scores (ρ)
for the top one candidate and the difference in terms of score between the top one candidate and
the second candidate in the ranking (δ). Also here, like in the previous Section 5.3.2, in order to
avoid overburdening this section, results for only the HardTableR2 dataset are presented here.
Comprehensive results across all datasets can be found in Appendix A.4.

Figure 5.6 illustrates the results obtained for the HardTableR2 dataset. The findings are
highly encouraging, with the ‘CORRECT’ cases demonstrating a distribution of scores rang-
ing from 0.8 to 1. Additionally, the values of δ are primarily concentrated within the 0.8 to
1 range, indicating effective disambiguation for the ‘CORRECT’ cases. On the other hand,
the ‘WRONG’ cases exhibit a concentration of false positives of scores ranging from 0.8 to 1,
Additionally, the values of δ are primarily concentrated within the 0 to 0.3 range.

By examining the bar plots for each dataset, A potential correlation between the distributions
of scores and delta values for both ‘CORRECT’ and ‘WRONG’ cases is observed. For ‘COR-
RECT’ cases, higher scores are typically associated with candidates that exhibit a significant
difference in delta, indicating a successful disambiguation. Conversely, for ‘WRONG’ cases,
higher scores tend to be linked to candidates with a smaller difference in delta, suggesting a
more challenging disambiguation scenario.

To illustrate these observations, thresholds for the ρ and delta values are established for each
dataset. A reasonable choice is a ρ threshold of 0.7 and a δ threshold of 0.5. Consequently, the
following rules are defined:

71

• Rule1 for ‘CORRECT’ cases: If ρ > 0.7 and δ > 0.1;

• Rule2 for ‘WRONG’ cases: If ρ <= 0.7 and δ <= 0.1.

In accordance with the pre-established criteria, two metrics, denoted as #CORRECT and
#WRONG, are calculated using the ground truth of each dataset as a reference. The variable
NO RULE designates instances that neither comply with Rule 1 nor Rule 2 and have not been
compared against the ground truth, representing misclassified examples.

The metric #CORRECTis formally calculated as follows:

#CORRECT
#annotations conforming to Rule 1

Similarly, #WRONG is defined as:

#WRONG
#annotations conforming to Rule 2

By these definitions, #MISCLASSIFIED refers to instances that adhere to either Rule 1 or
Rule 2 but are inconsistent with the ground truth. Consequently, the sum of #CORRECT and
#MISCLASSIFIED is equal to 1.

In the case of NO RULE, only #MISCLASSIFIED exists, indicating that the annotation
does not comply with either Rule 1 or Rule 2. The computation for #MISCLASSIFIED under
NO RULE is formulated as:

#ann not in Rule 1 or 2
#Total ann

where #Total ann = #ann not in Rule 1 or 2+#ann in Rule 1+#ann in Rule 2.
The results are reported in Table 5.8.

Table 5.8: Statistic analysis considering thresholds reported above for ρ and δ over the different
datasets

Dataset
Rule1 Rule2 NO RULE

#CORRECT #MISSCLASSIFIED #WRONG #MISSCLASSIFIED #MISSCLASSIFIED
Round1 T2D 91.62% 8.38% 66.21% 33.79% 12.43%

Round3 88.34% 11.66% 74.61% 25.39% 18.77%
Round4 96.74% 3.26% 66.72% 33.28% 16.55%
2T-2020 95.55% 4.45% 83.81% 16.19% 43.71%

HardTableR2-2021 98.07% 1.93% 75.03% 24.97% 10.47%
HardTableR3-2021 72.12% 27.88% 87.10% 12.90% 19.74%

Furthermore, for each dataset utilized during the experiment, a version with NIL injections
was created. This involved removing approximately 10% of the correct candidates from the
ground truth and converting them into NIL annotations. This was achieved by eliminating the
correct candidates during the candidate retrieval phase. To determine which candidates to re-
move, the entities within each dataset were ordered based on their frequency of appearance, from
the most popular to the least. Subsequently, the bottom 10% of these entities were selected for

72

removal and treated as NIL entities. Upon the introduction of NIL cases, the expectation was that
the level of uncertainty within the dataset would increase. Specifically, in the context of Rule 2,
an increase in the #WRONG percentage was anticipated, aligning with the notion of heightened
uncertainty. Concurrently, for instances categorized under NO RULE, the #MISCLASSIFIED
percentage was expected to rise. In contrast, for Rule 1, a decrease in the #CORRECT percent-
age was projected (Table 5.9).

Table 5.9: Statistical analysis considering thresholds reported above for ρ and δ over different
datasets with NIL injections

Dataset
Rule1 Rule2 NO RULE

#CORRECT #MISCLASSIFIED #WRONG #MISCLASSIFIED #MISCLASSIFIED
Round1 T2D 87.47% 12.53% 83.30% 16.70% 14.92%

Round3 86.13% 13.87% 77.94% 22.06% 20.55%
Round4 95.14% 4.86% 78.74% 21.26% 19.26%
2T-2020 93.76% 6.24% 89.55% 10.45% 43.63%

HardTableR2 95.16% 4.84% 90.91% 9.09% 14.05%
HardTableR3 64.90% 35.10% 89.69% 10.31% 22.27%

In conclusion, Table 5.9 illustrates how the introduction of NIL entities resulted in increased
uncertainty, aligning with the initial expectations. The analysis confirmed that the proposed
approach is sensitive to NIL cases.

5.3.4 Benchmarking Tools Across Tables

In this section, a benchmark comparison of available online solutions is conducted. The ob-
jective was to evaluate the performance of these tools and subsequently discuss their respective
strengths and weaknesses.

In Figure 5.7, the benchmarking results are presented, comparing several tools that were
evaluated. Specifically, consideration was given to ChatGPT, notable for its significant pop-
ularity. Additionally, an examination was conducted on Mtab, a solution that emerged from
the SemTab challenge. OpenRefine, a renowned tool that handles various operations on struc-
tured data, including tabular data, was also explored. Finally, an evaluation was performed on
Alligator, the approach proposed in this thesis.

As illustrated in Figure 5.7, the performance of the proposed solution, Alligator, is com-
mendable. In particular, Alligator exhibits robust performance across various metrics. In the
following sections, a comparative analysis of the various approaches will be conducted, with a
focus on highlighting the strengths and weaknesses of each.

• chatGPT3.5 The results from chatGPT3.5 are impressive. However, the confidence scores
assigned by the model appear arbitrary and it’s susceptible to hallucination;

• MTab exhibits strong performance, even with noisy data. Its main drawbacks are the
occasional misidentification of column data types and the absence of confidence scores
for its annotations;

73

• OpenRefine is a versatile tool offering a plethora of operations. Nonetheless, its efficiency
wanes when dealing with unclean data;

• Alligator provides commendable performance across the board. It manages dirty data
effectively and additionally offers confidence scores for annotations.

Table 5.10 pertains to movies. It includes some misspelled text, and notably, the ‘Main
Actor’ column often lists two names. Regarding this specific column, ChaGPT successfully
identified both names, whereas other approaches typically recognized only one. There are also
disparities in the results generated by different algorithms. For instance, in the second row of the
‘Main Actor’ column, one algorithm identified ‘Tim Robbins’ while another detected ‘Morgan
Freeman’.

Table 5.10: Table movies with dirty data

Film Title Year Director Main Actor/Actress Description

Forset Gump 1994 Roberd Zemeckis Tom Hanks
A heartfelt stroy abuot a man with
low IQ navigating thourgh lige

The Shawshenk Redemtion 1994 Franik Darabont
Tim RObbins,
Morgna Freeman

Two inmets befriending each other in prison,
with a stunning twist at the end

Pulp Fictino 1994 Quetin Taratino
John Travota,
Samule L. JAckson

A non-chnorologically ordened movide
with volence and drma

The Dark Knght 2008 Christother Nolan
Christian Bale,
Heath Legder

A fantasic acion-movide with
a blakc-clad hero and iconic villian

Fightr Club 1999 Davied Fincher
Brad Pitt,
Ed Nortan

An existential and pscgholigcal thriller
about a secret underground fighting club

The table ‘movies with clean data’ refers to Table 1.1, and that table is straightforward and
provides ample information, aiding algorithms in their disambiguation efforts. Consequently,
algorithms generally perform exceptionally well on this table.

Table 5.11 presents data related to public bodies. This table comprises authentic data, and
the aim is to evaluate the proficiency of the algorithms in handling real-world data.

Table 5.12 pertains to places. Considering the limited information available within the table,
it is anticipated that the algorithms may face challenges in handling it.

74

Table 5.11: Table with SN data

buyer aug buyer name url postal town administrative
area level 2

administrative
area level 1

country

Allerdale
Borough Council

Allerdale
Borough Council

http://www.allerdale.gov.uk/ Workington Cumbria England
United
Kingdom

Be First
(Regeneration) Limited

Be First http://www.befirst.london/ Barking
Greater
London

England
United
Kingdom

Cleeve School &
Sixth Form Centre of Excellence

Cleeve School and
Sixth Form Centre
of Excellence

http://www.cleeveschool.net/ Cheltenham Gloucestershire England
United
Kingdom

CPD - Construction
Procurement Delivery (CPD)

Construction
https://www.finance-ni.gov.uk/
construction-
procurement-delivery

Belfast Belfast
Northern
Ireland

United
Kingdom

Defra Network &
eTendering Portal

Nobel House London
Greater
London

England
United
Kingdom

Driver and Vehicle
Licensing Agency

DVLA
https://www.gov.uk/
government/organisations/driver
-and-vehicle-licensing-agency

Swansea Swansea Wales
United
Kingdom

Table 5.12: Table two columns with ambiguous data

col0 col1
Park Palace 81
Park Avenue 100
Millennium Tower 103
The Parade 110
Bahia Center Tower C 111
Rita Tower 117
Standard Bank Building 139
El Gezira Tower Movenpick Hotel 142

75

Figure
5.5:Scores

variations
forH

ardTableR
2

dataset

76

M
ea

n:
 0

.9
3

M
ed

ia
n:

 0
.9

9
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.1
6

Va
ria

nc
e:

 0
.0

3

M
ea

n:
 0

.8
7

M
ed

ia
n:

 0
.9

7
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.2
3

Va
ria

nc
e:

 0
.0

5

M
ea

n:
 0

.5
M

ed
ia

n:
 0

.5
2

M
in

im
um

: 0
.0

M
ax

im
um

: 1
.0

S
ta

nd
ar

d
D

ev
ia

tio
n:

 0
.3

7
Va

ria
nc

e:
 0

.1
4

M
ea

n:
 0

.2
2

M
ed

ia
n:

 0
.1

M
in

im
um

: 0
.0

M
ax

im
um

: 1
.0

S
ta

nd
ar

d
D

ev
ia

tio
n:

 0
.2

7
Va

ria
nc

e:
 0

.0
7

Fi
gu

re
5.

6:
D

is
tr

ib
ut

io
n

of
ρ

an
d

δ
ov

er
H

ar
dT

ab
le

R
2

77

Figure 5.7: Benchmark comparison of various solutions across four distinct tables

78

6. Human In The Loop (HITL) over Tabular Data

Automated linking processes often face challenges in generating precise results, especially when
operating on diverse or complex datasets. While computational models can substantially auto-
mate these tasks, human expertise remains indispensable for resolving ambiguities and refining
the quality of the outputs.

In our experimental setups, two types of human intervention have been considered. Initially,
an oracle has been employed for model definition and fine-tuning, ensuring that the linking
process meets a predefined standard of accuracy. However, to deploy the model in real-world
scenarios, real user involvement is essential.

To facilitate this human-in-the-loop (HITL) paradigm, tools must be developed to stream-
line the user’s task. These tools can range from specialized user interfaces (UI) or customized
notebooks, aimed at enabling efficient and effective human intervention.

The incorporation of human feedback can lead to various types of refinement in the linking
process:

1. Human’s rules: Iterative updates based on human inputs can be stored for future use,
thereby improving the system’s adaptability.

2. Decision Rule Revision: Adjustments can be made to the decision-making rules, such as
modifying the threshold values or refining type-specific rules.

3. Model Revision: The parameters of the underlying model can be updated to better tune
its performance for specific tasks.

The remainder of this chapter will explore these aspects in greater detail, discussing frame-
works, workflows, and case studies relevant to the HITL approach over tabular data. A prelimi-
nary work was done in [3].

6.1 Interactive Human Revision
This section explores the integration of the Alligator algorithm within interactive environments
to elevate the data enrichment process. It highlights the value of interactive data analysis and
algorithmic fine-tuning, emphasizing the advantages offered by the integration of Alligator into
both Jupyter Notebooks and a dedicated user interface.

The utilization of Jupyter Notebooks provides data scientists and researchers with a dynamic
means to interact with the Alligator algorithm, enabling real-time adjustments and immediate vi-
sual feedback. A compelling case study in entity reconciliation serves as an illustrative example
of the power of this integration.

Additionally, the section delves into the user interface, known as semTUI (Semantic En-
richment of Tabular Data User Interface), designed to make the semantic enrichment process

79

accessible to both experts and non-experts. It addresses the crucial role of human intervention in
refining automated results, and semTUI bridges this gap effectively by allowing users to review,
interpret, and improve algorithmic outputs.

Explore the subsections below to understand the benefits of these interactive environments
and how they empower users in the data enrichment journey.

6.1.1 User Review through a Jupyter Notebook

The integration of the Alligator algorithm in a Jupyter Notebook environment offers significant
advantages in terms of interactive data analysis and algorithmic fine-tuning. This subsection
delineates the relevance of such integration by presenting a case study focused on entity recon-
ciliation in Table 1.1.

Jupyter Notebooks facilitate a more dynamic interaction with the algorithm, allowing for
real-time adjustments and immediate visual feedback. This interaction model is particularly
beneficial for data scientists and researchers who require a more hands-on approach to under-
standing the behavior and output of Alligator.

Figures 6.1 and 6.2 illustrate the outcome of applying the Alligator algorithm for entity rec-
onciliation on the aforementioned table. In Figure 6.1, the reconciled table displays solely the
Wikidata QIDs, presenting a streamlined overview. Conversely, Figure 6.2 offers an enriched
output by including additional metadata associated with each QID, namely the entity name, a
short description, and the confidence score generated by Alligator.

This modality of interaction allows users to customize their view based on specific require-
ments, thereby enhancing the usability and interpretability of the algorithm’s output. The incor-
poration of additional metadata, as seen in Figure 6.2, provides a more comprehensive context,
which can be instrumental in nuanced data analysis tasks.

6.1.2 User Review through a User Interface

So here it described how it is possible to call Alligator from an UI that is called semTUI1 which
is a fully modular framework for the Semantic Enrichment of Tabular Data, adoptable by both
experts and non-experts in the context of semantics. Nowadays, the enrichment task is at the core
of almost every data analytics pipeline, and at the same time, it proves to be also costly in both
time and money. For this reason, it is important to provide data scientists with tools that guide
them through the steps of the enrichment process, supporting them with interactive choices and
visualizations. Semantics can bridge the gap in finding links across datasets and find solutions
for the extension step, but it is important to include users in the annotation process. Indeed,
the extension step is strongly related to the semantic annotation, but automatic algorithms that
provide it can fail. However, if results are made available, interpretable, and editable, they can
be reviewed and improved by the human’s knowledge. A study and overview of state-of-the-art
tools for both the Semantic Interpretation and Enrichment task have highlighted some of their

1https://i2tunimib.github.io/I2T-docs/

80

https://i2tunimib.github.io/I2T-docs/

problems. They are limited by not supporting humans in the loop of the annotation process,
while also not fully providing extension steps necessary to complete the enrichment of tabular
data. Most of the related works also present an entry barrier for less experienced users.

So, in Figure 6.3 is possible to see the splash screen of semTUI with a list of tables inside a
dataset.

In Figure 6.4, it is possible to see the outcome result came from Alligator that has taken as
input that table showed.

81

Figure
6.1:R

econciled
table

displaying
only

W
ikidata

Q
ID

s.

82

Fi
gu

re
6.

2:
R

ec
on

ci
le

d
ta

bl
e

au
gm

en
te

d
w

ith
ad

di
tio

na
lm

et
ad

at
a:

na
m

e,
de

sc
ri

pt
io

n,
an

d
co

nfi
de

nc
e

sc
or

e.

83

Figure 6.3: Display list of the tables within a dataset. For each table, it is possible to see some
statistics like the number of columns and rows.

Figure 6.4: Display page with content of a table.

84

Fi
gu

re
6.

5:
D

et
ai

le
d

pa
ge

fo
rt

he
an

al
ys

is
re

su
lt

of
re

co
nc

ili
ng

a
m

en
tio

n.

Fi
gu

re
6.

6:
Pa

ge
fo

rd
ow

nl
oa

di
ng

an
no

ta
tio

ns
in

di
ff

er
en

tf
or

m
at

s.

85

semTUI is an open-source tool that provides ways to both annotate a raw table and easily
view data of semantically annotated tables, developed using React and Typescript2

6.2 Types of Human Feedback

This section elucidates the various types of human feedback and furnishes examples for each.
As introduced in the opening of this chapter, it is possible to consider three various types of re-
finement in the linking process: Human’s rules, Decision Rule Revision, and Model Revision.
These types of feedback are designed specifically to enhance performance in distinct domains.

6.2.1 Human’s Rules

Human’s Rules pertain to the dynamic extension of a knowledge base based on human-generated
feedback. Consider, for example, Table 1.1, where human feedback specifies that the entry
‘Bryan Singer’ in the second column refers to a director born in the United States, known for
his work on ‘X-men’ and ‘Jurassic World’ and associated with the Wikidata ID Q220751. This
feedback allows a formulation of an association, or rule, denoted as ‘Bryan Singer’ → Q220751.
Subsequently, the system can unambiguously identify the corresponding entity for any mention
of ‘Bryan Singer’ as it now contains this rule in its Human’s Rules.

The rule’s applicability is not limited to a particular domain but is also linked to specific
columns in a table, contingent upon their header labels. For example, Table 5.11 includes
columns labeled postal town and administrative area level 2. The term ‘Belfast’ appears in
both columns but holds divergent semantic meanings either as a town or an administrative area.
Consequently, two distinct Wikidata entities are involved: Q106863 and Q11401304.

As another illustration, consider a dataset focusing on European cities that frequently men-
tions the entity ‘Paris.’ In broader contexts, the term ‘Paris’ could correspond to various candi-
dates such as ‘Paris, France’ or ‘Paris, Texas.’ A user, after scrutinizing the dataset, decides that
within this European-centric dataset, ‘Paris’ should exclusively map to ‘Paris, France.’ This de-
cision culminates in the creation of a domain-specific rule, denoted as ‘Paris’ → Q90. This rule
is subsequently incorporated into the system’s Human’s Rules, ensuring that future mentions of
‘Paris’ in similar European contexts are automatically mapped to ‘Paris, France.’

In summary, Human’s Rules capitalize on the likelihood of repeated values within columns.
This feature is particularly advantageous when dealing with extensive datasets, as it facilitates
accurate entity linking via human-validated rules.

2https://github.com/I2Tunimib
3https://www.wikidata.org/wiki/Q10686
4https://www.wikidata.org/wiki/Q1140130

86

https://github.com/I2Tunimib
https://www.wikidata.org/wiki/Q10686
https://www.wikidata.org/wiki/Q1140130

6.2.2 Decision Rule Revision

This subsection delineates two primary strategies for revising decision rules: (i) adjusting a
threshold applied to confidence scores, and (ii) manipulating the most probable column types to
filter candidates.

For the first strategy, (i), Figures 6.7, 6.8, and 6.9 demonstrate a sequence of steps to identify
entities correctly. Specifically, using ‘Birmingham City Council’ as an example, altering the
threshold for confidence scores can expand the set of entities considered accurate. The optimal
threshold is typically determined by human expertise, which reviews annotations to provide
a score that maximizes the identification of accurate entities, even when they possess lower
confidence scores. The selection of this threshold may vary across different domains and is
highly dependent on the characteristics of the data.

Regarding the second strategy, (ii), a parallel can be drawn to the example described in
Section 6.2.1 concerning ‘Belfast’. If it is predetermined (like for instance a human can provide
it) that the column type pertains to cities or towns, one can apply a filtering mechanism to the
candidates, thus favoring the entity ‘Belfast’ (city) over ‘Belfast’ (area).

6.2.3 Model Revision

Model Revision pertains to the direct modification and refinement of the underlying model in
response to feedback targeting domain-specific performance. This feedback mechanism is vital
when dealing with specific domains, where a generalized model might not offer optimal results.
By revising the model according to the nuances of the domain, it ensures that the knowledge
learned is both relevant and precise. So, the objective is to specialize the model to specific data,
which means overfitting the data at the end.

However, the act of revising a model comes with inherent challenges. Two of the most salient
issues are ‘fine-tuning of the model’ and ‘catastrophic forgetting’.

Those two challenges are related to each others, the problem of fine-tunig the model is how
can we effectively tackling the problem of re-train the model on the specific data but at the
same time how to avoid the model loses too much generality then it means the model will under
perform even on the specific data where it was trained.

6.3 Feedback from Human Revision

An Oracle was employed to evaluate the candidate links, following the order proposed by the
uncertainty estimation module, as outlined in the ordered set Ω. This procedure is performed
for each test dataset, based on Formula 5.1. The weight value k, is learned on the training set
(fold) aiming to optimize the F1 score, while simultaneously minimizing effort by reducing the
percentage of candidates requiring review.

To assess performance, the AUC (Area Under the Curve) metric was utilized, which offers
a comprehensive measure of the model’s predictive quality, irrespective of the chosen classifi-

87

cation threshold. Fig. 6.10 shows the values of F1 calculated for different percentages of links
to be reviewed and different values of k. The embedded table reports the performance measures
AUC.

The figure refers to the experiment with the fold that excludes the HartTable-R2 dataset.
The evidence suggests that reviewing at most 20% of the training set to reach 0.98 for F1 and

that almost any value of k produces similar results. The best value for k is 0.9 with AUC=0.9840.
The learned value of k is finally applied to the test dataset to compute the F1 score and

confirm the effectiveness of the method. The result for the HartTable-R2 test dataset is reported
in Fig. 6.11 where the results obtained with k = 0.0 (i.e., considering only the ρ scores given by
the model), k = 1.0 (i.e., considering only the δ values), and a random selection of candidates
for review are also displayed.

The results provide evidence that the learned value of k demonstrates good performance on
the test dataset, achieving a remarkable AUC value of 0.984 and an F1 score above 0.98 after
examining 20% of the mentions.

Table 6.1 presents the results obtained from the experiments conducted on all datasets. The
outcomes are consistent with the aforementioned discussion. Specifically, it is evident that in
the case of outlier datasets, such as Round3, even with less than 20% of reviews, the F1 score
surpasses 0.90, whereas the performance of the highest-scoring participant in the Challenge
(refer to Table 5.6) is achieved with 40% of reviews. Moreover, for datasets with fewer typos,
the threshold of F1 > 0.95 is attained much earlier. As an illustration, the maximum F1 score
of 0.99 is accomplished after reviewing only 10% of the uncertain cases for the HardTableR2
dataset.

Table 6.1: F1 with HITL Incremental Percentage of Reviews

Test Dataset k
10% 20% 30% 40% 50%
F1 F1 F1 F1 F1

Round T2D 0.4 0.94 0.96 0.98 0.98 1.0
Round3 0.5 0.88 0.92 0.95 0.97 0.98
Round4 0.1 0.96 0.97 0.99 1.0 1.0
2T-2020 0.9 0.94 0.98 0.99 1.0 1.0
HardTableR2 0.9 0.99 1.0 1.0 1.0 1.0
HardTableR3 0.4 1.0 1.0 1.0 1.0 1.0

6.4 Validation of Human Feedback

In this section, the methodology employed for validating the Model Revision aspect of the re-
search is delineated. Specifically, it focuses on the simulation of human feedback using an

88

oracle, as discussed in Section 3.5. The challenge of ‘catastrophic forgetting’ (as outlined in
Section 3.5.4) is also addressed in the context of fine-tuning the model.

To comprehensively validate the Human-in-the-Loop (HITL) component and explore its po-
tential, experiments were conducted across all the datasets introduced earlier. These datasets in-
clude Round1 T2D, Round3, Round4, 2T-2020, HardTableR2, and HardTableR3. The primary
objective of these experiments was to assess the impact of model fine-tuning via (simulated)
human feedback.

In detail, different configurations were examined, and the results are presented in Tables 6.2,
6.3, 6.4, 6.5, 6.6, and 6.7. Each table displays the outcomes for a specific dataset. The two
headers in these tables serve distinct purposes: the first header (expressed as a percentage) over
the rows indicates the percentage of data that the Neural Ranker has been exposed to for fine-
tuning, a dataset that the model has never encountered before. The second header (referred to
as ‘factor’) over the columns represents a multiplier used to determine how many instances to
extract from the original training dataset to mitigate the catastrophic forgetting challenge.

To clarify, the number of instances to extract from the original training dataset is determined
by calculating a percentage of the total training instances, which is then multiplied by the factor.
For instance, if 5% of the training instances are considered, and there are 1000 instances in total,
the number of instances to use from the original training dataset is calculated as 1000 multiplied
by the factor. For example, with a factor of 2, 2000 instances from the previous training set are
considered.

The results from these experiments clearly indicate the successful adaptation of the model.
Furthermore, they highlight the importance of including a substantial number of instances from
the previous training dataset, with a factor of 2 being the optimal choice.

89

Figure
6.7:A

nnotated
table

w
ithoutthreshold

adjustm
ent.

90

Fi
gu

re
6.

8:
A

nn
ot

at
ed

ta
bl

e
w

ith
th

re
sh

ol
d

va
lu

e
hi

gh
lig

ht
ed

.

91

Figure
6.9:A

nnotated
table

afterthe
application

ofthe
adjusted

threshold.

92

Figure 6.10: F1 and AUC computed for the training dataset.

Figure 6.11: F1 and AUC computed for the test dataset.

93

Table 6.2: Result of Tuning on Round1 T2D

% vs factor 0.5 1 2
1% 0.880 0.850 0.886
3% 0.777 0.860 0.876
5% 0.815 0.858 0.880

10% 0.855 0.857 0.877
20% 0.882 0.894 0.892
30% 0.887 0.899 0.896

Table 6.3: Results of Tuning on Round3

% vs factor 0.5 1 2
1% 0.815 0.765 0.754
3% 0.762 0.742 0.790
5% 0.816 0.827 0.846
10% 0.825 0.865 0.871
20% 0.868 0.881 0.884
30% 0.887 0.890 0.896

Table 6.4: Results of Tuning on Round4

% vs factor 0.5 1 2
1% 0.905 0.929 0.913
3% 0.889 0.887 0.948
5% 0.941 0.926 0.958

10% 0.945 0.946 0.964
20% 0.958 0.966 0.960
30% 0.957 0.967 0.964

Table 6.5: Results of Tuning on 2T-2020

% vs factor 0.5 1 2
1% 0.785 0.900 0.929
3% 0.877 0.928 0.966
5% 0.917 0.970 0.971
10% 0.949 0.972 0.976
20% 0.974 0.978 0.980
30% 0.976 0.979 0.981

Table 6.6: Results of Tuning on HardTableR2

% vs factor 0.5 1 2
1% 0.938 0.932 0.935
3% 0.938 0.924 0.925
5% 0.947 0.942 0.942

10% 0.945 0.943 0.961
20% 0.948 0.963 0.970
30% 0.953 0.967 0.969

Table 6.7: Results of Tuning on HardTableR3

% vs factor 0.5 1 2
1% 0.807 0.836 0.928
3% 0.942 0.954 0.962
5% 0.964 0.969 0.949
10% 0.967 0.961 0.973
20% 0.970 0.970 0.976
30% 0.968 0.973 0.979

94

7. Entity Linking in Large-Scale Data Environments

In the context of STI, handling the substantial amounts of data inherent to the field represents a
significant challenge, often involving the reconciliation of numerous tables that can range in the
thousands or even millions. Developing an effective data pipeline strategy stands as a promising
solution.

This chapter outlines a prospective architecture of a data pipeline designed to aid the process
of large-scale data handling, consequently facilitating scalable and efficient entity linking. It
navigates through essential components and stages such as data ingestion, pre-processing, entity
recognition, candidate generation, and linking.

Furthermore, the chapter highlights the importance of implementing techniques to optimize
pipeline functionality, which includes the adaptation of strategies like parallelization, distributed
computing, and the utilization of cloud-based solutions. The text also underscores the necessity
for a consistent monitoring approach that encompasses aspects such as memory consumption,
CPU usage, and execution time, to garner useful insights into the operational processes within
the pipeline.

Concluding the chapter, readers will find themselves equipped with a foundational under-
standing of data pipeline architectures and their role in enhancing entity linking over large data
sets. It is intended to prepare individuals to navigate the hurdles associated with processing
large-scale data and to introduce strategies for scalable cloud solutions, thus setting the stage for
effective knowledge extraction and discovery in large-scale environments.

7.1 Data Pipeline: An Overview
In the realm of entity linking, the pathway data travels from ingestion to final processing deter-
mines the efficiency and scalability of the whole operation, particularly over massive datasets.
This overview provides a glimpse into what constitutes a data pipeline and its importance.

Why a Data Pipeline?

• Volume: Tabular data, especially from diverse sources, can accumulate rapidly. A struc-
tured pipeline helps manage and process this data without causing system inefficiencies.

• Flow: Data isn’t just static; it moves. From its raw state, through various stages of clean-
ing, processing, and linking, its transition needs management.

• Scalability: With increasing data, the system should be able to handle the growth without
compromising on performance.

Core Components

• Data Ingestion: The entry point, where data is sourced from diverse origins, be it databases,
files, or even real-time streams.

95

• Data Storage: Following ingestion, it’s imperative to store data efficiently. Storage isn’t
merely about saving data, but also ensuring its rapid retrieval.

• Data Preprocessing: Often, data isn’t in its most usable state. This phase ensures data
cleaning, normalization, and transformation.

• Entity Linking Stages: Specific to this context, these involve candidate retrieval and
resolution processes.

• Data Output: Post entity linking, the enriched data needs to be channeled either to other
systems or stored for subsequent usage.

Challenges

Every pipeline, especially when catering to vast datasets, encounters challenges:

• Scalability remains atop, alongside managing latency, maintaining data integrity, and
ensuring fault tolerance.

7.2 Data pipelines

In order to test the proposed solution, some data pipelines with multiple steps were needed.
Keeping this in mind, the data pipelines developed as part of the European project enRich-
MyData become useful. The enRichMyData project aims to provide a novel paradigm and a
toolbox for building rich, high-quality, and valuable datasets to feed Big Data Analytics and AI
applications1. It aims at facilitating the specification and scalable execution of data enrichment
pipelines, with a focus on supporting various data enrichment operations such as discovery,
understanding, selection, cleaning, transformation, integration of Big Data from a variety of
sources. enRichMyData makes this paradigm easily accessible to a wide range of large and
small organizations that encounter difficulties in delivering suitable data to feed their data an-
alytics solutions, due to the lack of specific tools and expertise to support cost-effective and
energy-efficient management of data enrichment pipelines.

In the context of the enRichMyData project, the application of data pipelines is limited
in the context of data enrichment procedures. The tools used in this toolbox must satisfy to
provide data enrichment solutions useful in several application domains, but also innovative in
the context of the vast and competitive landscape of data management solutions.

The project will deliver its capabilities in a set of interoperable tools and services that will
form the enRichMyData Toolbox, which will handle complex data enrichment scenarios. The
Toolbox’s conceptual architecture is centered around the data enrichment pipeline that receives

1https://enrichmydata.eu/

96

https://enrichmydata.eu/

input data to be enriched and data to enrich with, generating enriched data. The enrichment pro-
cess is supported by a set of functional capabilities related to supporting the design of pipelines
and non-functional capabilities related to supporting the effective and efficient deployment and
execution of pipelines. The main goals of the project are the following ones2:

• Discovery of potentially valuable data for data enrichment: improve data discovery and
profiling featuring search on data, ontologies, and semantic data profiles to identify po-
tentially valuable data for data enrichment;

• Wrapping data sources in different formats: improve wrapping of data sources in different
formats so they can be securely accessed as virtual semantic graphs and used more easily
for data enrichment;

• Simplified cleaning, linking and extension of data: simplify cleaning, linking (to reference
resources), and extension of structured and semi-structured data, featuring approaches that
enable users to specify such operations visually;

• Simplified annotation and classification of data: simplify annotation and classification of
textual data, featuring entity and concept extraction, feature extraction (via embeddings),
and classification with predefined and custom classifiers;

• Support the management of data enrichment pipelines: creation and operation of data
linking and extension services, a framework for deployment and execution of pipelines at
a large scale, and reuse and extension of existing pipelines to deliver a hub of data and
services for data enrichment;

• Support data streaming in data enrichment pipelines: featuring support for setting up
appropriate endpoints and ensuring high throughput during pipeline execution;

• Energy consumption reduction for data enrichment pipelines: monitor and reduce energy
consumption for executing data enrichment pipelines using models to estimate and track
their carbon footprint.

A better understanding of the mentioned process in described in the Figure 7.1 below.

The presented Toolbox4 consists of the joint work from 13 partners from 11 countries. Each
of them contributes to some extents at the development of the tools. The tools could be either
tools that provide functional capabilities needed to support the design of pipelines, or infrastruc-
ture services that provide non-functional capabilities needed to support the effective and efficient
deployment and execution of pipelines. In short, that is their main functionalities:

2https://enrichmydata.eu/about-2
4https://enrichmydata.github.io/toolbox

97

https://enrichmydata.eu/about-2
https://enrichmydata.github.io/toolbox

Figure 7.1: Architecture of enRichMyData Toolbox3

• DiscoverR enhances user access to datasets, ontologies, and enrichment services for pipelines.
Users can keyword search cataloged items, including metadata, formats, ontology terms,
and quality features, which encompass well-known knowledge bases and pipeline data.
DiscoverR employs semantic data profiling to enrich descriptions with metadata and on-
tology patterns, supporting FAIR principles;

• WrappR offers secure data access through a virtual semantic layer. It’s a semantic graph
database with efficient reasoning, cluster support, and external index synchronization.
WrappR provides diverse APIs, access methods, data federation, and virtualization op-
tions. It’s a practical, robust, and versatile tool for enhanced data accessibility through
semantic integration.;

• CleanR enables interactive specification of data cleaning and knowledge graph generation
from diverse formats. Specifications are stored for reuse. It offers AI-driven transforma-
tions, integrated with ResourcR. CleanR supports sharing, management, and integration
of operations in ScalR pipelines;

• LinkR annotates data using knowledge graphs (e.g., WikiData, DBpedia) and user-defined
graphs from ResourcR. ML algorithms recommend annotations, and a human-in-the-loop
approach ensures high-quality results with minimal user effort. Annotations become data
transformations for enrichment pipelines;

• StructR converts unstructured text into structured data through semantic annotation and
embedding. It identifies concepts, offers various pre-computed embeddings, and supports
custom annotation services through a user-friendly interface for building new annotation
models;

• ClassifiR complements StructR by providing document-level classification using standard
or custom labels. It offers an interactive interface for creating custom classifications and
automates the process through a unified endpoint, regardless of the classification method;

• ResourcR facilitates the creation of linking services and data access mechanisms for datasets.
It streamlines linking and search operations, offering search and linking APIs. When

98

combined with LinkR, it transforms toolbox-produced semantic data into readily reusable
resources;

• ScalR enables large-scale data operations via containerized pipelines, flexible procedure
management, and reusable templates. It promotes the deployable reuse of data enrichment
processes, avoiding non-reusable code fragments;

• ReusR facilitates asset search, login, access control, editing, and sharing for data enrich-
ment pipelines. It encourages pipeline editing and reuse across various use cases within
the enRichMyData toolkit;

• StreamR supports streaming in data enrichment pipelines by managing data streams be-
tween endpoints with high throughput. It offers configurable tools for creating custom
streams for different applications;

• GreenR monitors data enrichment pipelines for their environmental impact, tracking car-
bon footprints of pipeline components. It presents the results through a dashboard, allow-
ing users to manage and mitigate the environmental impact of resource-intensive compu-
tations.

Given the described tools, it was possible to define relevant data pipelines for both merging
technical functionalities and building a real-world application to satisfy the business cases of
the project. In this context, a data pipeline is an adhesive code between the data sources and
data enrichment algorithms used in the Toolbox. The data needs to be reconstructed, enriched
and conveyed before training of algorithms or analysis commences. A workflow is a feasible
solution for the definition of such pipelines, gathering and standardizing the required data. Since
the entire process is divided into numerous levels, parallelized computing procedures are used.
The pipeline workflow design is not an uncomplicated task; realizing the whole data process-
ing requires some boilerplate codes. Workflow builders standardize the orchestration of data
pipelines by using workflow engines and frameworks. Another best practice used for improving
the standardization of data pipelines is the usage of container-based technologies.

7.3 Entity Linking at scale using Alligator Scalable Version

In Figure 7.2, the complete and detailed pipeline employed in this study is presented. This
pipeline involves several distinct tools, namely Alligator, LamAPI, and the classifier. These
tools are categorized as follows, as introduced earlier in Section 7.2: Alligator belongs to the
category of LinkR, LamAPI is categorized as ResourceR, and the classifier belongs to the classi-
fiR category.

The Alligator pipeline consists of the following steps:

99

• Data Analysis & Pre-processing: in this initial phase, the columns are divided into NE-
columns, which contain potential entity mentions, and LIT-columns, which contain literal
values. All text data is transformed to lower case, and special characters (i.e. underscores
and extra spaces) are eliminated for cleaner, more uniform data;

• Entity lookup: this step involves entity retrieval. For each entity mention, a set of candi-
dates is derived via the LamAPI;

• Features extraction: for each candidate, a set of features is computed. These features are
used to identify the correct candidate and can be categorized into three types: mention
features, entity features, and mention-entity features. Some features focus only on text
similarity, while others consider the broader context;

• Initial predictions: the initial prediction is made using a Machine Learning model, result-
ing in a preliminary ranking of candidates;

• Features extraction revision: the initial predictions from the previous stage are used to
provide some context to the enrichment procedure. At this stage, the features that consider
the congruence of types and predicates collected from the candidates are refined;

• Final predictions: new predictions are made using the refined types and predicates data
from the previous step;

• API ClassifiR: application of the classifier tool from Expert.AI5 to enrich with tags the
descriptions of the identified entities;

• Export: this is the final step, where a decision is made for each mention about whether to
annotate it or not. This is based on the confidence score and the difference between the
top two candidates.

Since Alligator is a pipeline from the enRichMyData project, it uses some tools from the
project’s toolbox.

In particular, LamAPI (Label Matching API) the tool was described in Chapter 4. The
other external tool mentioned is the Expert.AI Platform Document Classification, capable
of analyzing text to label and identify media topics, emotional traits, geographical references,
and more. The document classification provided determines the subject of a text in terms of
categories within a taxonomy. Currently, there are five different available taxonomies, and it
supports five different languages.

The entire pipeline has been tested using Argo Workflows6, an open-source container-native
workflow engine designed for orchestrating parallel jobs on Kubernetes. Argo Workflows are
implemented as Kubernetes Custom Resource Definitions (CRDs).

5https://www.expert.ai/
6https://argoproj.github.io/argo-workflows/

100

https://www.expert.ai/
https://argoproj.github.io/argo-workflows/

KGs

Buyers data
(csv format) Alligator pipeline

LamAPI

Enriched with metadata Datatype for each column

Enriched with candidates

Column analysis

Data analysis & pre-processing

Entity lookup LamAPI

Enriched with initial features for each candidate

Enriched with first ranking of candidates

Enriched with features types and predicate for each
candidate

Enriched with second ranking of candidates, taking
advantage of information about types and predicates

Enriched with tags taking the descriptions of the
entities

Enriched final output

Object literals

Features extraction

Prediction

Features extraction revision

Prediction 2

API Classifier

Export

KGsLamAPI

Pre-trained ML model

Pre-trained ML model

Figure 7.2: Example of data pipeline combining different tools

101

7.4 Evaluation of Alligator Scalable Version
The results analyzed in this section refer to the run of the Alligator pipeline described above
using 75 rows of the dataset provided by Spend Network7. Spend Network is an open data
company that provides insight and analytics for public sector spending. It works with public
procurement and finance data to help suppliers and governments forge lasting partnerships. In
the context of the enRichMyData project, Spend Network represents one of the use cases of
the toolbox. In particular, as shown in Figure 7.2 the Alligator pipeline is applied to test the
capabilities of LinkR (implemented by Alligator) and ClassifiR in finding additional information
about companies using the Wikidata or Crunchbase8 knowledge graph. Although, in this chapter
only experiments with Wikidata KG will be presented, it is worth noting that the choice of the
KG has marginal impact on resource consumption.

7https://spendnetwork.com/
8https://www.crunchbase.com/

102

https://spendnetwork.com/
https://www.crunchbase.com/

Fi
gu

re
7.

3:
R

ep
re

se
nt

at
io

n
of

th
e
A
lli
ga
to
r

pi
pe

lin
e’

s
st

ep
s

as
vi

su
al

iz
ed

in
th

e
A

rg
o

W
or

kfl
ow

s
in

te
rf

ac
e.

Fi
gu

re
7.

4:
R

ep
re

se
nt

at
io

n
of

th
e
A
lli
ga
to
r

pi
pe

lin
e’

s
st

ep
s

as
ob

se
rv

ed
fr

om
th

e
co

m
m

an
d-

lin
e

in
te

rf
ac

e
(C

L
I)

.

103

As delineated in Figures 7.3 and 7.4, the Alligator pipeline is structured linearly, comprising
eight sequential steps. The SIM-PIPE framework affords flexibility in the deployment of the
pipeline, allowing for execution either through a graphical front-end interface, as evidenced
by Argo Workflows, or via a command-line interface (CLI). Regardless of the chosen mode
of execution, the pipeline results remain accessible through the Argo Workflows interface. It
should be noted that the partitioning of the pipeline into eight discrete steps was not driven by
architectural necessities, but rather implemented to enhance the interpretability of the pipeline’s
operation.

7.4.1 Evaluating Pipeline Stepwise Time Performance

An empirical evaluation was conducted to assess the time performance of each component
within the Alligator pipeline.

Figure 7.5: Temporal distribution of each step in the Alligator pipeline, as visualized in the Argo
Workflows user interface.

Table 7.1: Duration of each step in the Alligator pipeline.

Step Name Duration
Pre-processing 10s
Lookup 3m 11s
Features Extraction 19m 47s
Prediction 2m 15s
Features Extraction Revision 20s
Second Prediction 2m 31s
Classification 1m 4s
Export 14s

As delineated in Table 7.1 and visually represented in Figure 7.5, each pipeline step exhibits
a unique time footprint. The overall duration for executing the pipeline on the sample data
exceeds 31 minutes. A noteworthy observation is the disproportionate time allocation to the
’Features Extraction’ step, which accounts for more than half of the overall time.

Upon closer inspection, a discrepancy emerges between the aggregate time of individual
steps, which sums up to 29 minutes and 32 seconds, and the reported total execution time of

104

31 minutes and 13 seconds. This temporal gap can be attributed to the time elapsed between
the completion of one step and the initiation of the subsequent step. Each of these steps is
containerized within a distinct Docker container, contributing to this time differential.

7.4.2 Collection of Metrics for Pipeline Performance Evaluation

The performance of the Alligator pipeline was empirically evaluated using SIM-PIPE9, a spe-
cialized tool designed for the testing and assessment of data pipelines [73]. SIM-PIPE provides
detailed metrics on resource utilization, including CPU usage, memory allocation, and network
bandwidth consumption.

Figure 7.6: Central Processing Unit (CPU) utilization during the complete dry run of the Alli-
gator pipeline.

The data, represented in Figures 7.6, 7.7, and 7.8, elucidate the resource consumption pat-
terns across different stages of the Alligator pipeline. Most notably, the ’Features Extraction’
stage manifests as the most resource-intensive, particularly during its terminal phase where CPU
utilization reaches its maximum capacity of 100%. In contrast, the other stages did not demon-
strate any significant impact on CPU, memory, or network bandwidth.

7.4.3 Assessing Pipeline Scalability

A critical consideration in the deployment of any data processing system is its scalability. To
empirically assess the scalability of our pipeline for entity linking, we conducted an experiment
to examine how execution time is affected when varying the number of processing nodes.

9https://github.com/DataCloud-project/SIM-PIPE

105

https://github.com/DataCloud-project/SIM-PIPE

Figure 7.7: Memory utilization during the complete dry run of the Alligator pipeline.

Figure 7.8: Network bandwidth utilization during the complete dry run of the Alligator pipeline.

In this experiment, a reference sample size of 120 rows was considered. This sample was
then partitioned among the available processing nodes. For example, in a configuration with two
nodes, each node processed 60 rows. With four nodes, each node processed 30 rows, and so on.
The objective was to ascertain how well the system scales as the workload is distributed across
an increasing number of nodes.

As depicted in Table 7.2, the execution time shows a decreasing trend as the number of
processing nodes increases. Specifically, with 12 nodes each processing a partitioned sample

106

Table 7.2: Execution time as a function of the number of processing nodes and partitioned
sample size.

Partitioned Sample Size Number of Nodes Time (sec)
120 1 1113
60 2 614
30 4 373
20 6 304
15 8 271
12 10 261
10 12 253

size of 10 rows, the execution time reduces to 253 seconds. This represents an approximate
improvement by a factor of 4.4 compared to the time required for a single-node configuration
that processes the entire sample of 120 rows, which is 1113 seconds. These findings affirm that
the pipeline for entity linking is scalable and thus well-suited for large-scale data processing
tasks.

107

8. Conclusion and Future Directions

The theme of data preparation for downstream analysis and exploitation is difficult to carry on
manually, in particular when dealing with huge amount of, possibly unknown, data. In this thesis
the topic of automatic annotation of tabular data has been discussed to augment the mentions in
a table with links, types and properties found in a reference Knowledge Graph.

The adopted approach foresees a combination of heuristic-based and machine-learning-
based algorithms to provide a tool that can annotate relational tables. The proposed algo-
rithms have demonstrated to be effective with empirical validations over a set of general purpose
datasets.

The Human-In-The-Loop paradigm allows for enhancing the results by both correcting the
uncertain annotations and providing useful information to improve and specialize the algorithms
for a specific domain. The user feedback can have immediate effect by expanding the correc-
tions and changing the decision rules, and long-term effects by improving the model with the
discovered annotations.

The encouraging results suggests to continue the investigation of new features that can im-
prove the model to better support tailoring the solutions for specific domains. In such special-
ization activity, the role of the user need to be further investigated, in particular to fully exploit
feedback collected during the review process.

Another critical issue that should be further investigated deals with the candidate retrieval
activities that need to guarantee effectiveness, i.e., that the actual candidate is really present in
the candidate set for a mention, and sustainability, i.e., that the candidate set for a mention is
retrieved in a limited amount of time with minimal resource consumption.

108

Appendices

109

A. First Appendix

A.1 F1 score and AUC curve for the all Datasets
As depicted in Figures A.1, A.2, A.3, the results obtained for each dataset are displayed, follow-
ing the procedure delineated in the Chapter 5 in the Subsection For each dataset, the k values are
estimated using the other datasets. Subsequently, these deduced k values are applied to the test
dataset, as shown in Figures A.4, A.5, A.6.

In particular, Figures A.1, A.2, A.3 show that the values of AUC are very close to each other
then is means k is not so relevant. Nevertheless, another observation that can be made is that a k
value of 0 is not advisable, as illustrated by the graphs. Consequently, it would be reasonable to
select a k value greater than 0.5.

Figure A.1: F1 and AUC computed for train Round1 T2D and Round3

So in summary, how it is possible to see in the test results in Figures A.4, A.5, A.6 that is
observable that, as expected, opting for a random solution consistently yields the least favorable
outcome. Moreover, it is affirmed that selecting a k value of 0, as previously mentioned, is not a
prudent choice.

A.2 Examining Variations in Scores over all Datasets
Figure A.7 presents the score trends for the ‘WRONG’ and ‘CORRECT’ cases in the Round1 T2D
dataset. At k = 0.4, a significant downward shift in scores for the ‘WRONG’ cases is evident.
By k = 1, a majority of the ‘WRONG’ cases have transitioned to lower score values, with a
notable portion of ‘CORRECT’ cases also migrating towards these lower ranges.

In Figure A.8, the score trends for the Round3 dataset are displayed. At k = 0.5, there
is a prominent decrease in scores for the ‘WRONG’ cases. Conversely, when k = 1, while

110

Figure A.2: F1 and AUC computed for train 2T-2020 and Round4

Figure A.3: F1 and AUC computed for train HardTableR2 and HardTableR3

Figure A.4: F1 and AUC computed for test Round1 T2D and Round3

111

Figure A.5: F1 and AUC computed for test 2T-2020 and Round4

Figure A.6: F1 and AUC computed for test HardTableR2 and HardTableR3

112

the majority of ‘WRONG’ cases fall to lower values, many ‘CORRECT’ cases maintain their
original score positions.

Figure A.9 displays the trends in the Round4 dataset. At k = 0.1, scores for ‘WRONG’
cases considerably shift downwards. However, by k = 1, along with a significant portion of
‘WRONG’ cases transitioning to lower scores, a substantial number of ‘CORRECT’ cases also
move to these reduced score brackets.

For the 2T-2020 dataset, as shown in Figure A.10, at k = 0.9, both ‘WRONG’ and a subset
of ‘CORRECT’ cases experience a significant decline in scores. By the time k reaches 1, most
‘WRONG’ cases have decreased scores, but a sizeable fraction of ‘CORRECT’ cases also shifts
to these lower values.

Lastly, Figure A.11 showcases the trends for the HardTableR3 dataset. At k = 0.4, scores for
the ‘WRONG’ cases exhibit a notable decrease. When k is set to 1, along with most ‘WRONG’
cases shifting to lower values, a distinct subset of ‘CORRECT’ cases also adopts these dimin-
ished score levels.

A.3 Examining Variations in Scores using Mammotab10K

In Chapter 5 in Section 5.3.2, score variations among different datasets and the various models
employed were discussed. In this section, variations observed in the Mammotab10K dataset, a
subset of the larger Mammotab dataset [48], are explored. Models previously trained on other
datasets are utilized for this examination. This experiment serves to demonstrate the viability of
the approach even when applied to an unfamiliar dataset, such as Mammotab, not used during
the training phase. For the analysis, a k value of 0.6 is chosen. As established in Subsection
5.3.2 of Chapter 5, this choice is rational and also provides a consistent metric for cross-dataset
comparison.

Figure A.12 displays the results obtained using the model tested on the Round1 T2D dataset.
The graphs indicate that with k = 0.6, a majority of the ‘WRONG’ labels shift towards lower
scores, while a significant portion of ‘CORRECT’ labels remain at higher score values. This
pattern is similarly observed even when k is set to 1.

Figures A.13, A.14, A.15, A.16, and A.17 all illustrate a similar trend. The ‘WRONG’ labels
predominantly shift towards the lower scores, and a considerable amount of ‘CORRECT’ labels
maintain their high score values. However, it’s worth noting that for the models tested on the
Round4 and 2T-2020 datasets, approximately 30% of the ‘CORRECT’ labels shift towards lower
scores when k is set to 1.

In conclusion, based on the graphs presented in this section, the models developed demon-
strate a commendable level of generality. Furthermore, there’s a noticeable agreement across
different datasets, with the k value of 0.6 proving to be an appropriate choice for all datasets
considered.

113

A.4 Further Discussion and Analyses of Score Distributions
Figure A.18 illustrates the results obtained for the Round1 T2D dataset. The findings are highly
encouraging, with the ‘CORRECT’ cases demonstrating a distribution of scores ranging from
0.7 to 1. Additionally, the values of δ are primarily concentrated within the 0.6 to 1 range, in-
dicating effective disambiguation for the ‘CORRECT’ cases. On the other hand, the ‘WRONG’
cases exhibit a concentration of false positives of scores ranging from 0.7 to 1, Additionally, the
values of δ are primarily concentrated within the 0 to 0.3 range.

114

Fi
gu

re
A

.7
:S

co
re

s
va

ri
at

io
ns

fo
rR

ou
nd

1
T

2D
da

ta
se

t

115

Figure
A

.8:Scores
variations

forR
ound3

dataset

116

Fi
gu

re
A

.9
:S

co
re

s
va

ri
at

io
ns

fo
rR

ou
nd

4
da

ta
se

t

117

Figure
A

.10:Scores
variations

for2T-2020
dataset

118

Fi
gu

re
A

.1
1:

Sc
or

es
va

ri
at

io
ns

fo
rH

ar
dT

ab
le

R
3

da
ta

se
t

119

Figure
A

.12:Scores
variations

forM
am

m
otab10K

datasetusing
the

m
odelfrom

R
ound1

T
2D

dataset

120

Fi
gu

re
A

.1
3:

Sc
or

es
va

ri
at

io
ns

fo
rM

am
m

ot
ab

10
K

da
ta

se
tu

si
ng

m
od

el
fr

om
R

ou
nd

3
da

ta
se

t

121

Figure
A

.14:Scores
variations

forM
am

m
otab10K

datasetusing
m

odelfrom
R

ound4
dataset

122

Fi
gu

re
A

.1
5:

Sc
or

es
va

ri
at

io
ns

fo
rM

am
m

ot
ab

10
K

da
ta

se
tu

si
ng

m
od

el
fr

om
2T

-2
02

0
da

ta
se

t

123

Figure
A

.16:Scores
variations

forM
am

m
otab10K

datasetusing
m

odelfrom
H

ardTableR
2

dataset

124

Fi
gu

re
A

.1
7:

Sc
or

es
va

ri
at

io
ns

fo
rM

am
m

ot
ab

10
K

da
ta

se
tu

si
ng

m
od

el
fr

om
H

ar
dT

ab
le

R
3

da
ta

se
t

125

M
ea

n:
 0

.9
1

M
ed

ia
n:

 0
.9

7
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.1
7

Va
ria

nc
e:

 0
.0

3

M
ea

n:
 0

.7
9

M
ed

ia
n:

 0
.9

M
in

im
um

: 0
.0

M
ax

im
um

: 1
.0

S
ta

nd
ar

d
D

ev
ia

tio
n:

 0
.2

6
Va

ria
nc

e:
 0

.0
7

M
ea

n:
 0

.7
2

M
ed

ia
n:

 0
.8

7
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.3
1

Va
ria

nc
e:

 0
.1

M
ea

n:
 0

.3
5

M
ed

ia
n:

 0
.2

6
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.3
2

Va
ria

nc
e:

 0
.1

Fi
gu

re
A

.1
8:

D
is

tr
ib

ut
io

n
of

ρ
an

d
δ

ov
er

R
ou

nd
1

T2
D

da
ta

se
t

M
ea

n:
 0

.9
M

ed
ia

n:
 0

.9
9

M
in

im
um

: 0
.0

M
ax

im
um

: 1
.0

S
ta

nd
ar

d
D

ev
ia

tio
n:

 0
.2

Va
ria

nc
e:

 0
.0

4

M
ea

n:
 0

.6
5

M
ed

ia
n:

 0
.8

M
in

im
um

: 0
.0

M
ax

im
um

: 1
.0

S
ta

nd
ar

d
D

ev
ia

tio
n:

 0
.3

5
Va

ria
nc

e:
 0

.1
2

M
ea

n:
 0

.2
6

M
ed

ia
n:

 0
.1

2
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.3
Va

ria
nc

e:
 0

.0
9

M
ea

n:
 0

.7
8

M
ed

ia
n:

 0
.9

4
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.3
1

Va
ria

nc
e:

 0
.0

9

Fi
gu

re
A

.1
9:

D
is

tr
ib

ut
io

n
of

ρ
an

d
δ

ov
er

R
ou

nd
3

126

Figure A.19 illustrates the results obtained for the Round3 dataset. The findings are highly
encouraging, with the ‘CORRECT’ cases demonstrating a distribution of scores ranging from
0.8 to 1. Additionally, the values of δ are primarily concentrated within the 0.8 to 1 range, in-
dicating effective disambiguation for the ‘CORRECT’ cases. On the other hand, the ‘WRONG’
cases exhibit a concentration of false positives of scores ranging from 0.8 to 1, Additionally, the
values of δ are primarily concentrated within the 0 to 0.3 range.

Figure A.20 illustrates the results obtained for the Round4 dataset. The findings are highly
encouraging, with the ‘CORRECT’ cases demonstrating a distribution of scores ranging from
0.8 to 1. Additionally, the values of δ are primarily concentrated within the 0.7 to 1 range, in-
dicating effective disambiguation for the ‘CORRECT’ cases. On the other hand, the ‘WRONG’
cases exhibit a concentration of false positives of scores ranging from 0.7 to 1, Additionally, the
values of δ are primarily concentrated within the 0 to 0.4 range.

127

M
ea

n:
 0

.8
9

M
ed

ia
n:

 0
.9

7
M

in
im

um
: 0

.0
1

M
ax

im
um

: 1
.0

S
ta

nd
ar

d
D

ev
ia

tio
n:

 0
.1

8
Va

ria
nc

e:
 0

.0
3

M
ea

n:
 0

.7
4

M
ed

ia
n:

 0
.8

6
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.2
7

Va
ria

nc
e:

 0
.0

7

M
ea

n:
 0

.7
4

M
ed

ia
n:

 0
.8

6
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.2
7

Va
ria

nc
e:

 0
.0

7

M
ea

n:
 0

.2
4

M
ed

ia
n:

 0
.1

3
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.2
6

Va
ria

nc
e:

 0
.0

7

Fi
gu

re
A

.2
0:

D
is

tr
ib

ut
io

n
of

ρ
an

d
δ

ov
er

R
ou

nd
4

M
ea

n:
 0

.9
9

M
ed

ia
n:

 1
.0

M
in

im
um

: 0
.0

M
ax

im
um

: 1
.0

S
ta

nd
ar

d
D

ev
ia

tio
n:

 0
.0

7
Va

ria
nc

e:
 0

.0
1

M
ea

n:
 0

.3
9

M
ed

ia
n:

 0
.2

5
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.3
8

Va
ria

nc
e:

 0
.1

5

M
ea

n:
 0

.8
3

M
ed

ia
n:

 1
.0

M
in

im
um

: 0
.0

M
ax

im
um

: 1
.0

S
ta

nd
ar

d
D

ev
ia

tio
n:

 0
.3

1
Va

ria
nc

e:
 0

.1

M
ea

n:
 0

.1
2

M
ed

ia
n:

 0
.0

2
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.2
2

Va
ria

nc
e:

 0
.0

5

Fi
gu

re
A

.2
1:

D
is

tr
ib

ut
io

n
of

ρ
an

d
δ

ov
er

2T
-2

02
0

128

M
ea

n:
 0

.9
2

M
ed

ia
n:

 0
.9

9
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.1
6

Va
ria

nc
e:

 0
.0

2

M
ea

n:
 0

.7
4

M
ed

ia
n:

 0
.8

9
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.3
Va

ria
nc

e:
 0

.0
9

M
ea

n:
 0

.4
1

M
ed

ia
n:

 0
.3

5
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.3
3

Va
ria

nc
e:

 0
.1

1

M
ea

n:
 0

.6
6

M
ed

ia
n:

 0
.7

8
M

in
im

um
: 0

.0
M

ax
im

um
: 1

.0
S

ta
nd

ar
d

D
ev

ia
tio

n:
 0

.3
3

Va
ria

nc
e:

 0
.1

1

Fi
gu

re
A

.2
2:

D
is

tr
ib

ut
io

n
of

ρ
an

d
δ

ov
er

H
ar

dT
ab

le
R

3

129

Figure A.21 illustrates the results obtained for the 2T dataset. The findings are highly en-
couraging, with the ‘CORRECT’ cases demonstrating a distribution of scores ranging from 0.9
to 1. Additionally, the values of δ are primarily concentrated within the 0 to 0.1 range, indicat-
ing a not effective disambiguation for the ‘CORRECT’ cases. On the other hand, the ‘WRONG’
cases exhibit a concentration of false positives of scores ranging from 0.7 to 1, Additionally, the
values of δ are primarily concentrated within the 0 to 0.4 range.

Figure A.22 illustrates the results obtained for the HardTableR3 dataset. The findings are
highly encouraging, with the ‘CORRECT’ cases demonstrating a distribution of scores rang-
ing from 0.8 to 1. Additionally, the values of δ are primarily concentrated within the 0.7 to
1 range, indicating effective disambiguation for the ‘CORRECT’ cases. On the other hand,
the ‘WRONG’ cases exhibit a concentration of false positives of scores ranging from 0.8 to 1,
Additionally, the values of δ are primarily concentrated within the 0 to 0.2 range.

130

Bibliography

[1] Nora Abdelmageed and Sirko Schindler. “Jentab: A toolkit for semantic table
annotations”. In: Second International Workshop on Knowledge Graph Construction.
2021, pp. 1–15.

[2] Claudio A Ardagna, Paolo Ceravolo, and Ernesto Damiani. “Big data analytics
as-a-service: Issues and challenges”. In: 2016 IEEE international conference on big data
(big data). IEEE. 2016, pp. 3638–3644.

[3] R. Avogadro et al. “Estimating Link Confidence for Human-in-the-loop Table
Annotation”. In: 2023 IEEE/WIC International Joint Conference on Web Intelligence
and Intelligent Agent Technology (WI-IAT). Venice,Italy, 2023.

[4] Roberto Avogadro et al. “LamAPI: a Comprehensive Tool for String-based Entity
Retrieval with Type-base Filters”. In: 17th ISWC workshop on ontology matching (OM).
2022.

[5] Hiteshwar Kumar Azad and Akshay Deepak. “Query expansion techniques for
information retrieval: a survey”. In: Information Processing & Management 56.5 (2019),
pp. 1698–1735.

[6] Ines Chami et al. “Low-dimensional hyperbolic knowledge graph embeddings”. In:
arXiv preprint arXiv:2005.00545 (2020).

[7] Jiaoyan Chen et al. “ColNet: Embedding the Semantics of Web Tables for Column Type
Prediction”. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 2019,
pp. 29–36.

[8] Shuang Chen et al. “LinkingPark: An automatic semantic table interpretation system”.
In: Journal of Web Semantics 74 (2022), p. 100733.

[9] Yahui Chen. “Convolutional neural network for sentence classification”. MA thesis.
University of Waterloo, 2015.

[10] Michele Ciavotta et al. “Supporting semantic data enrichment at scale”. In: Technologies
and Applications for Big Data Value. Springer, 2022, pp. 19–39.

[11] Marco Cremaschi, Roberto Avogadro, and David Chieregato. “s-elBat: a Semantic
Interpretation Approach for Messy taBle-s”. In: Semantic Web Challenge on Tabular
Data to Knowledge Graph Matching (SemTab), CEUR-WS. org (2022).

[12] V. Cutrona et al. “Results of SemTab 2021”. In: 20th International Semantic Web
Conference. Vol. 3103. CEUR Workshop Proceedings, 2022, pp. 1–12.

131

[13] Vincenzo Cutrona et al. “ASIA: a Tool for Assisted Semantic Interpretation and
Annotation of Tabular Data”. In: Proceedings of the ISWC 2019 Satellite Tracks.
Vol. 2456. CEUR Workshop Proceedings. CEUR-WS.org, 2019, pp. 209–212.

[14] Vincenzo Cutrona et al. “NEST: Neural Soft Type Constraints to Improve Entity Linking
in Tables.” In: SEMANTiCS. 2021, pp. 29–43.

[15] Vincenzo Cutrona et al. “NEST: Neural Soft Type Constraints to Improve Entity Linking
in Tables.” In: SEMANTiCS. 2021, pp. 29–43.

[16] Vincenzo Cutrona et al. “Results of semtab 2021”. In: Proceedings of the Semantic Web
Challenge on Tabular Data to Knowledge Graph Matching 3103 (2022), pp. 1–12.

[17] Vincenzo Cutrona et al. “Tough Tables: Carefully Evaluating Entity Linking for Tabular
Data”. In: The Semantic Web – ISWC 2020. Cham: Springer International Publishing,
2020, pp. 328–343. ISBN: 978-3-030-62466-8.

[18] Nicola De Cao et al. “Autoregressive entity retrieval”. In: arXiv preprint
arXiv:2010.00904 (2020).

[19] Xiang Deng et al. “Turl: Table understanding through representation learning”. In: ACM
SIGMOD Record 51.1 (2022), pp. 33–40.

[20] José Devezas and Sérgio Nunes. “A review of graph-based models for entity-oriented
search”. In: SN Computer Science 2.6 (2021), p. 437.

[21] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language
understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[22] Luciano Floridi and Massimo Chiriatti. “GPT-3: Its nature, scope, limits, and
consequences”. In: Minds and Machines 30 (2020), pp. 681–694.

[23] Emma J Gerritse, Faegheh Hasibi, and Arjen P de Vries. “Graph-embedding empowered
entity retrieval”. In: Advances in Information Retrieval: 42nd European Conference on
IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part I 42.
Springer. 2020, pp. 97–110.

[24] Ian J Goodfellow et al. “An empirical investigation of catastrophic forgetting in
gradient-based neural networks”. In: arXiv preprint arXiv:1312.6211 (2013).

[25] Ben Hachey et al. “Evaluating Entity Linking with Wikipedia”. In: Artificial Intelligence
194 (2013). Artificial Intelligence, Wikipedia and Semi-Structured Resources,
pp. 130–150.

[26] Kailash A Hambarde and Hugo Proenca. “Information Retrieval: Recent Advances and
Beyond”. In: arXiv preprint arXiv:2301.08801 (2023).

[27] Tyler L Hayes et al. “Remind your neural network to prevent catastrophic forgetting”.
In: European Conference on Computer Vision. Springer. 2020, pp. 466–483.

[28] Nicolas Heist and Heiko Paulheim. “NASTyLinker: NIL-Aware Scalable
Transformer-based Entity Linker”. In: arXiv preprint arXiv:2303.04426 (2023).

132

[29] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. “Elasticity in cloud
computing: What it is, and what it is not”. In: 10th international conference on
autonomic computing (ICAC 13). 2013, pp. 23–27.

[30] Madelon Hulsebos et al. “Sherlock: A deep learning approach to semantic data type
detection”. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2019, pp. 1500–1508.

[31] Viet-Phi Huynh et al. “From Heuristics to Language Models: A Journey Through the
Universe of Semantic Table Interpretation with DAGOBAH”. In: Semantic Web
Challenge on Tabular Data to Knowledge Graph Matching (SemTab) (2022).

[32] Filip Ilievski et al. “The role of knowledge in determining identity of long-tail entities”.
In: Journal of Web Semantics 61 (2020), p. 100565.

[33] Anastasiia Iurshina et al. “NILK: entity linking dataset targeting NIL-linking cases”. In:
Proceedings of the 31st ACM International Conference on Information & Knowledge
Management. 2022, pp. 4069–4073.

[34] E. Jimenez-Ruiz et al. “Results of SemTab 2020”. In: CEUR Workshop Proceedings
2775 (2020), pp. 1–8.

[35] Ernesto Jimenez-Ruiz et al. “SemTab 2019: Resources to Benchmark Tabular Data to
Knowledge Graph Matching Systems”. In: The Semantic Web. Cham: Springer
International Publishing, 2020, pp. 514–530.

[36] Ernesto Jiménez-Ruiz et al. “Results of SemTab 2020”. In: SemTab@ISWC. 2020.

[37] Ernesto Jiménez-Ruiz et al. “Results of semtab 2020”. In: CEUR Workshop
Proceedings. Vol. 2775. 2020, pp. 1–8.

[38] Ernesto Jiménez-Ruiz et al. “SemTab 2019: Resources to Benchmark Tabular Data to
Knowledge Graph Matching Systems”. In: The Semantic Web. Cham: Springer
International Publishing, 2020, pp. 514–530.

[39] Ernesto Jiménez-Ruiz et al. “Semtab 2019: Resources to benchmark tabular data to
knowledge graph matching systems”. In: The Semantic Web: 17th International
Conference, ESWC 2020, Heraklion, Crete, Greece, May 31–June 4, 2020, Proceedings
17. Springer. 2020, pp. 514–530.

[40] Daniel Martin Katz et al. “Gpt-4 passes the bar exam”. In: Available at SSRN 4389233
(2023).

[41] Mayank Kejriwal, Craig A Knoblock, and Pedro Szekely. Knowledge graphs:
Fundamentals, techniques, and applications. MIT Press, 2021.

[42] Ronald Kemker et al. “Measuring catastrophic forgetting in neural networks”. In:
Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

[43] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural networks”. In:
Proceedings of the national academy of sciences 114.13 (2017), pp. 3521–3526.

133

[44] Tuan Manh Lai, Heng Ji, and ChengXiang Zhai. “Improving candidate retrieval with
entity profile generation for wikidata entity linking”. In: arXiv preprint
arXiv:2202.13404 (2022).

[45] Xiuxing Li et al. Effective Few-Shot Named Entity Linking by Meta-Learning. 2022.

[46] Jixiong Liu et al. “From tabular data to knowledge graphs: A survey of semantic table
interpretation tasks and methods”. In: Journal of Web Semantics (2022), p. 100761.

[47] Jinghui Lu et al. “A sentence-level hierarchical bert model for document classification
with limited labelled data”. In: Discovery Science: 24th International Conference, DS
2021, Halifax, NS, Canada, October 11–13, 2021, Proceedings 24. Springer. 2021,
pp. 231–241.

[48] Mattia Marzocchi et al. “MammoTab: a giant and comprehensive dataset for Semantic
Table Interpretation”. In: Proceedings of the Semantic Web Challenge on Tabular Data
to Knowledge Graph Matching, SemTab2022 (2022).

[49] Mattia Marzocchi et al. “MammoTab: a giant and comprehensive dataset for Semantic
Table Interpretation”. In: CEUR WORKSHOP PROCEEDINGS. Vol. 3320. CEUR-WS.
2023, pp. 28–33.

[50] Eduardo Mosqueira-Rey et al. “Human-in-the-loop machine learning: A state of the art”.
In: Artificial Intelligence Review 56.4 (2023), pp. 3005–3054.

[51] Phuc Nguyen et al. “SemTab 2021: Tabular Data Annotation with MTab Tool.” In:
SemTab@ ISWC. 2021, pp. 92–101.

[52] Phuc Nguyen et al. “SemTab 2021: Tabular Data Annotation with MTab Tool.” In:
SemTab@ ISWC. 2021, pp. 92–101.

[53] Peter O’Donovan et al. “An industrial big data pipeline for data-driven analytics
maintenance applications in large-scale smart manufacturing facilities”. In: Journal of
big data 2.1 (2015), pp. 1–26.

[54] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[55] Matteo Palmonari et al. “EW-Shopp Project: Supporting Event and Weather-Based Data
Analytics and Marketing Along the Shopper Journey”. In: Advances in Service-Oriented
and Cloud Computing. Cham: Springer International Publishing, 2020, pp. 187–191.

[56] Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. “Effect of scale on
catastrophic forgetting in neural networks”. In: International Conference on Learning
Representations. 2021.

[57] Delip Rao, Paul McNamee, and Mark Dredze. “Entity Linking: Finding Extracted
Entities in a Knowledge Base”. In: Multi-source, Multilingual Information Extraction
and Summarization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 93–115.

134

https://arxiv.org/abs/2303.08774

[58] Lev Ratinov and Dan Roth. “Design Challenges and Misconceptions in Named Entity
Recognition”. In: Proceedings of the Thirteenth Conference on Computational Natural
Language Learning (CoNLL-2009). Boulder, Colorado: Association for Computational
Linguistics, June 2009, pp. 147–155.

[59] Payam Refaeilzadeh, Lei Tang, Huan Liu, et al. “Cross-validation.” In: Encyclopedia of
database systems 5 (2009), pp. 532–538.

[60] Dominique Ritze and Christian Bizer. “Matching Web Tables To DBpedia - A Feature
Utility Study”. In: 20th International Conference on Extending Database Technology,
EDBT 2017, Venice, Italy, March 21-24, 2017. Ed. by Volker Markl et al.
OpenProceedings.org, 2017, pp. 210–221.

[61] Dumitru Roman et al. “Big data pipelines on the computing continuum: tapping the dark
data”. In: Computer 55.11 (2022), pp. 74–84.

[62] Pedro Ruas and Francisco M Couto. “NILINKER: attention-based approach to NIL
entity linking”. In: Journal of Biomedical Informatics 132 (2022), p. 104137.

[63] Christophe Sarthou-Camy et al. “DAGOBAH UI: A New Hope for Semantic Table
Interpretation”. In: European Semantic Web Conference. Springer. 2022, pp. 107–111.

[64] Hiba Sebei, Mohamed Ali Hadj Taieb, and Mohamed Ben Aouicha. “Review of social
media analytics process and big data pipeline”. In: Social Network Analysis and Mining
8.1 (2018), p. 30.

[65] Harald Semmelrock et al. “Reproducibility in Machine Learning-Driven Research”. In:
arXiv preprint arXiv:2307.10320 (2023).

[66] Dahlia Shehata, Negar Arabzadeh, and Charles LA Clarke. “Early stage sparse retrieval
with entity linking”. In: Proceedings of the 31st ACM International Conference on
Information & Knowledge Management. 2022, pp. 4464–4469.

[67] Wei Shen, Jianyong Wang, and Jiawei Han. “Entity Linking with a Knowledge Base:
Issues, Techniques, and Solutions”. In: IEEE Transactions on Knowledge and Data
Engineering 27.2 (2015), pp. 443–460.

[68] Renat Shigapov et al. “bbw: Matching csv to wikidata via meta-lookup”. In: CEUR
Workshop Proceedings. Vol. 2775. RWTH Aachen. 2020, pp. 17–26.

[69] Shahab Saquib Sohail et al. “Decoding ChatGPT: a taxonomy of existing research,
current challenges, and possible future directions”. In: Journal of King Saud
University-Computer and Information Sciences (2023), p. 101675.

[70] Bram Steenwinckel, Filip De Turck, and Femke Ongenae. “MAGIC: Mining an
Augmented Graph using INK, starting from a CSV.” In: SemTab@ ISWC. 2021,
pp. 68–78.

135

[71] Yoshihiko Suhara et al. “Annotating columns with pre-trained language models”. In:
Proceedings of the 2022 International Conference on Management of Data. 2022,
pp. 1493–1503.

[72] Ian Tenney, Dipanjan Das, and Ellie Pavlick. “BERT rediscovers the classical NLP
pipeline”. In: arXiv preprint arXiv:1905.05950 (2019).

[73] Aleena Thomas et al. “SIM-PIPE DryRunner: An approach for testing container-based
big data pipelines and generating simulation data”. In: 2022 IEEE 46th Annual
Computers, Software, and Applications Conference (COMPSAC). IEEE. 2022,
pp. 1159–1164.

[74] Ruize Wang et al. “K-adapter: Infusing knowledge into pre-trained models with
adapters”. In: arXiv preprint arXiv:2002.01808 (2020).

[75] Gerhard Weikum et al. “Machine Knowledge: Creation and Curation of Comprehensive
Knowledge Bases”. In: Found. Trends Databases 10.2-4 (2021), pp. 108–490.

[76] Ledell Wu et al. “Scalable zero-shot entity linking with dense entity retrieval”. In: arXiv
preprint arXiv:1911.03814 (2019).

[77] Xingjiao Wu et al. “A survey of human-in-the-loop for machine learning”. In: Future
Generation Computer Systems (2022).

[78] Dan Zhang et al. “Sato: Contextual semantic type detection in tables”. In: arXiv preprint
arXiv:1911.06311 (2019).

[79] Xingxing Zhang, Furu Wei, and Ming Zhou. “HIBERT: Document level pre-training of
hierarchical bidirectional transformers for document summarization”. In: arXiv preprint
arXiv:1905.06566 (2019).

[80] Fangwei Zhu et al. “Learn to Not Link: Exploring NIL Prediction in Entity Linking”. In:
arXiv preprint arXiv:2305.15725 (2023).

136

	Abstract
	Acknowledgments
	Introduction
	Contributions
	Thesis Structure
	Reproducibility

	Preliminaries
	Knowledge Graph
	Information Retrieval
	Tables
	Simple Table
	Vertical Table
	Nested Table
	Relational Tables

	Semantic Table Interpretation (STI)
	Neural Networks
	Structure of Neural Networks
	Training of Neural Networks
	Applications of Neural Networks
	Diverse Types of Neural Networks: An Overview
	Delving into Feedforward Neural Networks

	Data Pipelines
	Components of a Data Pipeline
	Types of Data Pipelines
	Importance of Data Pipelines

	Data Pipeline Example

	Related work (SoTa)
	Introduction
	ER: Entity Retrieval
	EL: Entity Linking
	NIL Entities Problem
	Human-in-the-Loop
	Introduction
	Research Trends and Classification
	Types of Interactions
	Challenges and Limitations
	Conclusion

	Data Pipelines
	Scalability in Data Processing
	Architecture and Components
	Technologies, Methodologies, and Tools in Data Pipelines
	Challenges and Limitations
	Summary

	Information Retrieval System
	Knowledge Graph Indexing
	Data Retrieval
	Information Retrieval System for Dataset with LamAPI
	Evaluation of LamAPI Performance

	Semantic Enrichment of Tabular Data
	Overview of the Proposed Approach
	Data Preparation & Candidate Retrieval
	The Entity Linking Algorithm
	Decision

	Entity Linking over Tabular Data
	Feature Engineering
	The Machine Learning Model
	Decision: Uncertainty Estimation and Metrics

	Implementation and Evaluation of the Algorithms
	The Experimental Campaign
	Examining Variations in Scores
	Further Discussion and Analyses of Score Distributions
	Benchmarking Tools Across Tables

	Human In The Loop (HITL) over Tabular Data
	Interactive Human Revision
	User Review through a Jupyter Notebook
	User Review through a User Interface

	Types of Human Feedback
	Human's Rules
	Decision Rule Revision
	Model Revision

	Feedback from Human Revision
	Validation of Human Feedback

	Entity Linking in Large-Scale Data Environments
	Data Pipeline: An Overview
	Data pipelines
	Entity Linking at scale using Alligator Scalable Version
	Evaluation of Alligator Scalable Version
	Evaluating Pipeline Stepwise Time Performance
	Collection of Metrics for Pipeline Performance Evaluation
	Assessing Pipeline Scalability

	Conclusion and Future Directions
	Appendices
	First Appendix
	F1 score and AUC curve for the all Datasets
	Examining Variations in Scores over all Datasets
	Examining Variations in Scores using Mammotab10K
	Further Discussion and Analyses of Score Distributions

