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Thermodynamical properties of black holes in gravitational theories without Local Lorentz invari-
ance have been subject to intense investigation in the past years due to the presence of universal
horizons, which are strong causal barriers even for superluminal signals. Here we present a novel
general method for deriving the Smarr formula for this class of theories: in particular we show that
the Smarr formulae for Einstein–Æther theory and infrared Hořava gravity follow from scale in-
variance. We not only reproduce straightforwardly previous findings for static black hole solutions,
but we are also able to generalise them to the case of stationary rotating black holes. Finally, we
apply our results to the rotating black holes with universal horizon as found in three dimensions,
from which we shall draw some lessons on the viability of black hole thermodynamics for black hole
solutions endowed with universal horizons.

I. Introduction

Revived by the overwhelming pressure of cosmologi-
cal observations — with their still puzzling dark sectors
required within General Relativity (GR) to fit the data
— modified theories of gravity have received a growing
attention in the last twenty years [1]. Among these, the-
ories where Local Lorentz Symmetry (LLS) is violated
have been enjoying a growing interest also for they rel-
evance for quantum gravity as well as as a test bed for
our understanding of black hole thermodynamics.

The easiest way to break LLS, while preserving general
covariance, is to introduce a dynamical preferred timelike
vector field. This is the strategy of Einstein–Æther (Æ)
theory [2], a vector–tensor theory of gravitation. The
theory is conceived as an effective modification of GR,
where only second order time derivatives in the EOM
are admitted. Hořava gravity [3] instead introduces a
preferred timelike foliation, which can be made dynami-
cal [4–6]. The aim is to provide an UV completion of GR,
in such a way that the resulting theory is renormalizable.
Indeed, power counting renormalizability of a subclass of
the theory was recently proved in [7].

In [8, 9] it was shown that Æ–theory is closely related
to the infrared limit of Hořava gravity, obtained by ne-
glecting more-than-second order operators in the Hořava
action. In particular, restricting the Æ field to be hyper-
surface orthogonal at the level of the action, the resulting
theory is equivalent to infrared Hořava gravity. Moreover
in [10] a formal algorithm to construct an Æ analog of
the full Hořava theory was also proposed.

The physics of stars and black holes represents an im-
portant arena where to test these theories, both observa-
tionally and theoretically. Astrophysical constraints for
compact objects were studied in [11–13, see also 2, 5, 14].
At the same time theoretical aspects have been investi-
gated, and in particular it became clear that Lorentz vio-
lation (LV) produces also novel causal structures [15, 16].
More specifically, a generalization of the concept of black
hole emerges, in which the usual Killing horizon coex-

ists with a new type of horizon, called universal horizon
(UH). The UH is an horizon which traps modes of arbi-
trary speed which are indeed allowed in these theories.
Therefore the existence of the UH provides a meaning-
ful notion of BH when LLS is broken. (For an extensive
treatment of causal structure in presence of Lorentz vio-
lation, and a formal treatment of Universal Horizons, see
[17].)

Among several theoretical aspects, much attention was
given to the issue of BH mechanics and thermodynam-
ics. Doubts that Killing Horizons have a meaningful BH
mechanics in LV theories were raised in [18]. On the
contrary, indications that universal horizons can have a
well defined mechanics came from [19, 20]: here two ex-
act 4–dimensional static asymptotically flat BH solutions
endowed with universal horizon were found, and the cor-
responding Smarr Formulas and First Laws were com-
puted.

Attempts to provide a thermodynamical interpretation
of the UH mechanics were pursued in [20–22] where a
temperature associated to such horizons was computed
via a tunnelling approach. The connection has been fur-
ther explored in [23, 24], where the UH tunnelling tem-
perature was related to an appropriate notion of sur-
face gravity. However contrasting results also exist [25],
claiming that the LLS breaking black holes still radi-
ate with the usual temperature associated to the Killing
Horizon, as in the Lorentz symmetric case.

All these analyses have been limited so far to static
BH solutions. Staticity is a high degree of symmetry
and can be a source of degeneracy, therefore the study
of rotating solutions would represent a potential resource
to remove ambiguities. Unfortunately no 4-dimensional
fully rotating BH solutions have been found so far, and
therefore this analysis is still precluded.

In this paper we make a step towards the extension of
LV BH mechanics beyond the static case. We present a
method for deriving a Smarr Formula in Æ–theory and
IR Hořava gravity, which relies on the fact that these
theories are scale invariant. The advantage of this new
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derivation is that it streamlines and simplifies the previ-
ous one [19, 20], based upon staticity, and it can be ap-
plied to more general solutions, including rotating BHs.
As an application, we compute the Smarr Formula of the
3–dimensional fully rotating solutions discovered in [26].

We organize the exposition as follows. Sec. II reviews
Æ–theory and fixes the notations and conventions. In
Sec. III A we derive the generalized Smarr Formula, and
in Sec. III B we clarify the role of scale invariance and
we comment about the inclusion of the cosmological con-
stant. Sec. III C shows that our Smarr Formula repro-
duces the one in [19], when restricted to the static case.
In Sec. IV we discuss the extension to the IR Hořava grav-
ity. Sec. V contanins an application of the above results
to the case of the rotating 3–dimensional BHs of [26].
Finally Sec. VI contains an overview of the results and
concluding remarks.

We use the conventions adapted to the mostly plus
metric signature (−+++). Moreover, in sections II–IV,
we work in generic D > 2 spacetime dimensions.

II. Review of Æ–theory

Æ–theory [2] is a generally covariant modification of
GR, in which a dynamical four-vector field ua (the
aether) is present, in addition to the usual metric tensor
gab. The aether ua is constrained to be unit-timelike,
and therefore its vacuum configuration defines a pre-
ferred timelike direction, thus breaking the original local
Lorentz symmetry present at the level of the action. The
theory is intended to be an effective description of pos-
sible Lorentz-violating physics in the gravity sector. In
this spirit, one writes the Æ action as the one contain-
ing all the possible terms giving rise to second order field
equations [2, 27]:

SÆ =
1

2κ

∫

dDx
√−g [R+ Lu] , κ = 8πG (1)

where

Lu = −Kab
cd∇au

c∇bu
d (2)

and

Kab
cd = c1g

abgcd + c2δ
a
c δ

b
d + c3δ

a
dδ

b
c − c4u

aubgcd. (3)

The Æ Lagrangian is more transparent when expressed
in the fluid form introduced in [9]. One can define the
expansion, the shear and the twist of the aether field by
using congruences of its flow–lines:

θ = ∇ · u expansion, (4a)

σab = ∇(aub)←−−−−
shear, (4b)

ωab = ∇[aub]←−−−−
twist, (4c)

where the under-left arrow indicates projection of the
indices on the tangent space orthogonal to ua.

Then the Lagrangian Lu reads

Lu = −
[

cθ
D − 1

θ2 + cσ|σ|2 + cω|ω|2 − caa
2

]

, (5)

and the relation between the fluid coefficients and the
usual ones is

cθ = (D − 1)c2 + c13, cσ = c13, (6a)

cω = c1 − c3, ca = c14, (6b)

where we use the notation c13 = c1 + c3, etc.
In order to impose the unit–timelike constraint on ua,

the action (1) is supplied with a Lagrange multiplier, and
the total action becomes

S = SÆ +
1

2κ

∫

dDx
√−g λ

(

uaubg
ab + 1

)

. (7)

In this paper we will make use of the covariant symplec-
tic formalism for diffeoinvariant theories, as it was car-
ried out in [28–30]. Recall that, under a generic variation
δϕ of the dynamical fields {ϕ}, the variation of the La-
grangian D-form L can be expressed as a sum of a bulk
term plus a boundary one:

δL = Eϕδϕ+ dΘ(ϕ, δϕ) (8)

where the "symplectic potential" Θ is a (D − 1)-form
locally constructed out of ϕ and δϕ, and it’s linear and
homogeneous in δϕ. From (8) we read that the EOM
corrsponding to each ϕ are Eϕ = 0.

When we vary the action (7), there is an ambiguity
about which field to consider as independent: we choose
to vary w.r.t. gab and ua. The corresponding variation
of S is

δS =
1

2κ

∫

dDx
√−g

[

δgabEab + 2δua (Æa + λua)

+δλ(u2 + 1)
]

+ dΘ (9)

where

Æa =
1

2

δLu

δua
= c4 a

m∇aum +∇mY m
a , (10)

aa = ub∇bu
a is the aether acceleration, and Θ and Eab

are explicitated later.
Defining the two tensors

Y a
b = Kac

bd∇cu
d, (11a)

Xm
ab = umY(ab) + u(aY

m
b) − u(bY

m
a) , (11b)

the resulting EOM are

uaub g
ab = −1, (12a)

Æa + λua = 0, (12b)

Eab = Gab − T u
ab = 0, (12c)
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where Gab is the Einstein tensor and T u
ab is the aether

stress–energy tensor:

T u
ab =c1 (∇aum∇bu

m −∇mua∇mub) + c4aaab+

+∇mXm
ab + λuaub +

1

2
Lu gab.

(13)

Solving Eq. (12b) for λ, we obtain

λ = u ·Æ = c4a
2 + ua∇bY

b
a (14)

which can be finally replaced in Eq.s (13), in order to
express the EOM in terms of gab and ua only:

uaubg
ab = −1, (15a)

(δba + ubua)Æb = Æ←−a = 0, (15b)

Gab = c1(∇aum∇bu
m −∇mua∇mub) + c4aaab

+∇mXm
ab + (u ·Æ)uaub +

1

2
Lu gab.

(15c)

The covariant symplectic analysis of Æ–theory was car-
ried out in [18, 31]. The form Θ turns out to be

Θ(ϕ, δϕ) =
1

2κ

[

gab∇mδgab −∇aδg
ma +Xm

abδg
ab

−2Y m
a δu

a] ǫm. (16)

Here, and in the rest of the paper, we use the following
notation from [32]. Given a (D−n)-dimensional subman-
ifold of the starting D-dimensional manifold, the symbol
ǫa1...an

denotes the tensor-valued (D−n)-form defined as
ǫa1...an

= ǫ̂a1...an
ǭ, where ǫ̂a1...an

is the n-normal to the
submanifold, and ǭ is the induced volume form of the sub-
manifold. So, in particular, ǫ denotes the volume form
of the entire D-dimensional manifold, while ǫm in (16) is
the vector-valued volume form of a given hypersurface.

III. The Smarr Formula for Æ–theory

A. Derivation

As observed in [29, 30], diffeoinvariant theories have a
conserved Noether current (D− 1)–form J[ξ], associated
to the invariance w.r.t. any arbitrary vector field ξ,

J[ξ] = Θ(ϕ,£ξϕ)− ξ · L. (17)

J[ξ] is conserved on shell1:

dJ[ξ] = dΘ(ϕ,£ξϕ)− dξ · L = −Eϕ£ξϕ
.
= 0, (18)

and the conservation of J[ξ] implies the existence of a
(D − 2)-form Q[ξ] [29, 33]

J[ξ]
.
= dQ[ξ] , (19)

1We use an upper dot to indicate that an equality holds only
on shell, when Eϕ = 0.

called the “Noether charge” associated to ξ. For Æ–
theory Q[ξ] is [18, 31]

Q[ξ] =
−1
2κ

[

∇aξb + uaY b
c ξ

c + uaY b
c ξc + Y ab(u · ξ)

]

ǫab.

(20)
Now assume to pick up a solution {ϕ} of the theory

which possesses a dynamical symmetry ξ, meaning that
there exists a vector field ξ such that £ξϕ

.
= 0. It then

follows, from linearity and homogeneity w.r.t. δϕ, that
Θ(ϕ,£ξϕ)

.
= 0 and, consequently, J[ξ] + ξ · L .

= 0. Inte-
grating this last expression over an hypersurface Σ with
boundary ∂Σ and using (19), one then gets

0
.
=

∫

∂Σ

Q[ξ] +

∫

Σ

ξ · L. (21)

In [34] we observed that this equation can be used to
derive the Smarr Formula for black holes, if one chooses
∂Σ = S∞ ∪ SBH, and provided that the second integral
can be turned into a surface integral. We are going to
show that this last condition is always true, indepen-
dently from the solution, in the case of Æ–theory.

The key point is the observation that the Æ La-
grangian is a total divergence on shell, i.e. when the EOM
are satisfied. This can be easily shown by tracing Eq.
(15c):
(

2−D

2

)

R = c4a
2 +∇m(gabXm

ab)− (u ·Æ) +
D

2
Lu

= ∇m(gabXm
ab)− ua∇mY m

a +
D

2
Lu

= ∇m(gabXm
ab − uaY m

a ) + Y m
a ∇mua +

D

2
Lu

= ∇m(gabXm
ab − uaY m

a ) +

(

D − 2

2

)

Lu,

(22)

from which

R+ Lu =

(

2

D − 2

)

∇m(Y m
a u

a − gabXm
ab )

=

(

2

D − 2

)

∇m(uaY m
a − umY a

a ).

(23)

Taking into account that the total Lagrangian is L =
R + Lu + λ(u2 − 1), and that the latter term vanishes
on shell, we have that the Lagrangian D–form is a total
divergence on shell, L

.
= dA, with

A =

(

2

D − 2

)

(uaY m
a − umY a

a )ǫm
2κ

. (24)

Now, since the fields are assumed to be invariant under
the flow of ξ, we have ξ · L = ξ · dA = £ξA− d(ξ · A) .

=
−d(ξ · A). Therefore the identity (21) becomes a pure
surface integral

0
.
=

∫

∂Σ

Q[ξ]− ξ · A (25)

as we meant to show.
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B. The role of scale invariance

In this subsection we show that Eq. (23) is a conse-
quence of a deeper property of Æ–theory, namely that it
is scale invariant. Consider the following constant dilata-
tions of the fields:

gab → Ω gab, (26a)

ua → Ω−1/2 ua, (26b)

λ→ Ω−1 λ, (26c)

with Ω a constant. Since the Christoffel symbol and the
Riemann tensor are unaffected by this transformation,
and since

√−g → ΩD/2√−g, the Æ Lagrangian D–form
transforms as

L→ ΩD−2/2 L, (27)

i.e. it experiences a constant rescaling itself: the theory is
thus scale invariant (this was already noted in [35], where
the parameter A there in Eq. (3) corresponds to our Ω).
Now consider the corresponding infinitesimal dilatation
around the identity, Ω ≈ 1 + ω,

δωgab = ω gab

δωu
a = −ω

2
ua

δωλ = −ωλ















=⇒ δL = ω

(

D − 2

2

)

L. (28)

From (8) and (16)

δL
.
= dΘ(ϕ, δωϕ) = ω

d
[(

Y m
a u

a − gabXm
ab

)

ǫm
]

2κ
, (29)

and using (28) we finally find

L
.
=

(

2

D − 2

)

d
[(

Y m
a u

a − gabXm
ab

)

ǫm
]

2κ
, (30)

in agreement with (23).
Accidentally, let us notice that for D = 2 scale invari-

ance would be an exact symmetry of the Lagrangian, as
it is clear form (28), and this would signal the appearance
of a conserved charge in the (1 + 1)-dimensional version
of the theory.

As a complement to our derivation, let us discuss the
inclusion of a cosmological constant. The Lagrangian
gets modified by the addition of a term proportional to
the volume element

L = LÆ + LΛ, LΛ = −Λǫ

κ
. (31)

This Lagrangian is no more scale invariant; indeed, under
the action of the infinitesimal transformation (28), we
have

δL = ω

(

D − 2

2

)

LÆ + ω
D

2
LΛ

= ω

(

D − 2

2

)

L+ ωLΛ.

(32)

Therefore, since the form Θ is not modified,

L
.
= dA−

(

2

D − 2

)

LΛ (33)

with the same A as before, and Eq. (21) becomes

0
.
=

∫

∂Σ

[Q[ξ]− ξ · A]−
(

2

D − 2

)
∫

Σ

ξ · LΛ

=

∫

∂Σ

[Q[ξ]− ξ · A] + 1

κ

(

2Λ

D − 2

)
∫

Σ

ξ · ǫ.
(34)

The last term is only apparently a volume integral. In-
deed, as pointed out in [36, 37], the Killing equation
£ξgab

.
= 0 gives ∇aξ

a = 0, which in turn implies
the existence of an antisymmetric tensor ξab such that
ξa = ∇bξ

ab. Therefore, using the identity

d (W a1...anǫa1...an
) = n

(

∇bW
a1...an−1b

)

ǫa1...an−1
, (35)

it follows that ξ ·ǫ .
= d(ξabǫab)/2, and the volume integral

can be turned into a surface one by the Gauss Theorem.
So we see that the inclusion of a cosmological constant
doesn’t invalidate our conclusion that (21) is a pure sur-
face integral.

It is clear from our derivation that diffeoinvariant La-
grangians, that are also scale invariant, are total deriva-
tives on shell. Therefore these theories are very good
candidates to possess a general Smarr Formula, because
the only other requirement that we ask is £ξϕ

.
= 0, which

is generically satisfied along the generators of the horizon
[29].

This should be contrasted with the general case, in
which you are not necessarily able to cast (21) as a purely
surface integral, and therefore to provide a general ex-
pression for the Smarr Formula independently of the so-
lution. For example in [34] we derived a Smarr Formula
for static Black Holes in Lovelock theory, using Eq. (21)
and a theorem which restricts the general form of the
static solutions.

C. Reduction to the static case

The Smarr Formula for static, 4–dimensional, spher-
ically symmetric, asymptotically flat Black Holes was
studied in [19]. The authors impose staticity from the
very beginning, and find that the Smarr Formula even-
tually follows from a divergence–free antisymmetric two–
tensor, ∇bFab .

= 0. Denoting sa the spherically symmet-
ric, unit spacelike, vector normal to ua, the tensor Fab is
(see Eq.s (33) and (34) in [19])

Fab = q(uasb − saub), (36)

with

q =−
(

1− ca
2

)

(u · t)(a · s) + (1− cσ)(s · t)(sasb∇aub)

+
c123
2

(s · t)(∇ · u),
(37)
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and ta is the Killing field associated to the time–
translational symmetries. Indeed our formalism allows
to re-derive, and interpret, this results in a natural way.

Let us start by noticing that the nullity of the di-
vergence of an antisymmetric two–tensor, ∇bFab .

=
0, is equivalent to the exactness of a (D − 2)–form,
d
(

Fabǫab
) .
= 0. Now, since Eq. (21) holds for any Σ,

we must have d(Q[ξ] − ξ · A) .
= 0; it is natural to con-

jecture that Fabǫab must be proportional to Q[t]− t · A,
once the latter is restricted to the spherically symmetric
case.

First of all, observe that, using Eq.s (3), (11), (20) and
(24),

Q[ξ]− ξ · A = − 1

2κ

[

∇aξb + 2c13u
aξc∇(buc)+

− 2

D − 2

(

c123(∇ · u)uaξb + c14ξ
aab

)

+(ξ · u)(c1 − c3)∇aub − 2c4(ξ · u)uaab
]

ǫab, (38)

or, using the fluid coefficients (6),

Q[ξ]− ξ · A = − 1

2κ

[

∇aξb + 2cσu
aξc∇(buc)+

− 2

D − 2

(

c123(∇ · u)uaξb − caξ
aab

)

+ cσ(ξ · u)uaab

−2ca(ξ · u)uaab + (ξ · u)cω ωab
]

ǫab, (39)

where ωab is the previously introduced twist of ua.
For a spherically symmetric configuration this expres-

sion is simplified. First, the twist ωab is null because
spherical symmetry implies hypersurface orthogonality.
Second, the binormal to the spherically symmetric sec-
tions is ǫ̂ab = −u[asb]. Using ǫab = ǫ̂abǭ, with ǭ the
volume element of the spherical sections, we find:

Q[ξ]− ξ · A = − 1

2κ

[

∇aξbǫ̂ab + 2cσ(s · ξ)(sasb∇aub)

− 2c123
D − 2

(s · ξ)(∇ · u)− 2(D − 3)ca
D − 2

(u · ξ)(a · s)
]

ǭ.

(40)

Specifying to D=4, we have:

Q[ξ]− ξ · A =
1

κ

[

−
(

1− ca
2

)

(u · ξ)(a · s)

+(1− cσ)(s · ξ)(sasb∇aub) +
c123
2

(s · ξ)(∇ · u)
]

ǭ. (41)

Choosing ξa = ta and comparing (41) with Eq.s (36)–
(37), we see that Fabǫab is really proportional to Q[t] −
t · A, as we wanted to show.

Finally, in order to obtain the Smarr Formula, one sim-
ply integrates the identity d(Q[t] − t · A) .

= 0 over an
hypersurface Σ with boundaries ∂Σ = S∞ ∪ SBH.

IV. Extension to IR Hořava gravity

In [8] a variant of Æ–theory was introduced, in which
the aether is imposed to be hypersurface othogonal at the

level of the action:

ua = −N∇aT, N = (−∇aT ∇bT gab)−1/2. (42)

The unit–timelike constraint is implicit in the definition
(42), and the resulting action is

ST =
1

2κ

∫

dDx
√
−g [R + Lu] , (43)

with Lu the same as before, and where the dynamical
variables are now gab and the “aether time” T (from now
on in this section we regard ua as a function of gab and
T ).

It was shown in [8] that the action (43) is equivalent
to the IR limit of Hořava gravity, that was originally pre-
sented in a canonical form. Æ–theory (7) and IR Hořava
gravity (43) are also related by the fact that an hyper-
surface orthogonal solution of the former is always a so-
lution of the latter [8]; moreover they share all the static,
spherically symmetric, 4–dimensional BH solutions [38].
Therefore a discussion of the IR Hořava theory case nec-
essarily parallels that of Æ–theory.

The EOM of (43) are

∇a(NÆa

←−) = 0, (44a)

Gab = c1(∇aum∇bu
m −∇mua∇mub) + c4aaab

+∇mXm
ab − (u ·Æ)uaub − 2Æ(aub) +

1

2
Lu gab,

(44b)

where the underleft arrow now denotes projection onto
the constant T hypersurfaces.

The symplectic potential Θ is

Θ(ϕ, δϕ) =
1

2κ

[

gab∇mδgab −∇aδg
ma +Xm

abδg
ab

− 2Y m
a ub δg

ab − Y m
c u

cuaub δg
ab

+2NYm
a ∇aδT←−−−− 2NÆ←−

mδT
]

ǫm. (45)

Also the action (43) is scale invariant, under the scale
transformation

gab → Ω gab

T → Ω1/2 T

}

=⇒ L→ ΩD−2/2 L. (46)

Therefore, by repeating the same argument of Sec. III B,
we obtain

L
.
=

(

2

D − 2

) d
[(

Y m
a u

a − gabXm
ab −NÆ←−

m T
)

ǫm

]

2κ
.

(47)
Observe that the last term in the square brackets doesn’t
contribute on shell, because

d[(NÆ←−
m T )ǫm] = ∇m[NÆ←−

m T ]ǫ

= [∇m(NÆ←−
m)T +NÆ←−

m∇mT ]ǫ
.
= 0,

(48)
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and so the on–shell Lagrangian is identical to (30):

L
.
=

(

2

D − 2

)

d
[(

Y m
a u

a − gabXm
ab

)

ǫm
]

2κ
. (49)

However the requirement that £ξT
.
= 0 will be not sat-

isfied in many situations of interest. For example, if
we consider static, 4–dimensional, spherically symmetric,
asymptotically flat BH solutions [15], the Smarr Formula
is associated with the Killing vector ta ≡ (1, 0, 0, 0); but
since at infinity the aether vector ua is aligned with ta, it
follows that T does depend on t at least in a neighbour-
hood of spatial infinity; moreover, this in true everywhere
in the exact solutions presented in [19]. What is invari-
ant under the flow of ta in these solutions is the aether
vector ua.

The condition £ξua
.
= 0 corresponds to the preser-

vation of the foliation. Therefore, in a theory with a
preferred foliation, it seems natural to consider this re-
quirement as part of the definition of a Killing field. Let
us thus require £ξg

ab .
= 0 and £ξua

.
= 0. Then

Θ(ϕ,£ξϕ)
.
=

(u · ξ)Æ←−
mǫm

κ
. (50)

Proof. Since £ξg
ab .

= 0, we care only about the last two
terms in (45). Now £ξT = ξb∇bT = −(u · ξ)/N . There-
fore

κΘ(ϕ,£ξϕ) =
[

−Y ma∇a(u · ξ)←−−−−−−+ (u · ξ)Y ma∇a logN←−−−−−−
+Æ←−

m(u · ξ)
]

ǫm =

=
[

Y ma
(

(u · ξ)aa −∇a(u · ξ)←−−−−−−
)

+ Æ←−
m(u · ξ)

]

ǫm, (51)

where in the last line we used aa = ub∇bua = ∇a logN←−−−−−−.

Finally, it can be shown that (u · ξ)aa − ∇a(u · ξ)←−−−−−− =

−£ξua←−−−
. Hence, from £ξua

.
= 0, Eq. (50) follows.

Moreover £ξua
.
= 0 also implies £ξA

.
= 0. Therefore

we see from (17) that

d(Q[ξ]− ξ · A) .
=

(u · ξ)Æ←−
mǫm

κ
(52)

and again the Smarr Formula is obtained by integrating
(52) over an appropriate hyeprsurface Σ. We stress that
the Noether form Q[ξ] for the action (43) is identical
to the one of Æ–theory (20), modulo regarding ua as a
function of T .

We conclude this section with some final considera-
tions. If you integrate (52) over a slice of the preferred
foliation, the term on the r.h.s. doesn’t contribute. The
same happens if the solution is also a solution of Æ–
theory, because (15b) holds. Finally the inclusion of a
cosmological constant goes exactly as in Sec. III B.

V. Smarr Formula for 3d rotating Black Holes

As we pointed out, the Smarr Formula (25) was dis-
cussed in connection with the mechanics of Universal
Horizons. The previous derivation [19, 20] relied upon
the assumption of staticity. Our work extends these re-
sults, in that expression (25) can be applied also to solu-
tions with non–zero angular momentum.

Slowly rotating solutions have been extensively covered
both in the IR Hořava case [39–41] and the Æ case [42].
However, since they are linear in the angular momentum,
and since deviations from the static case appear at the
quadratic order, we wouldn’t gain any clue from them.

On the other hand fully rotating solutions have been
found in three spacetime dimensions [26], restricted to
the parameter space c14 = 0. Although they are not
physical, they constitute an arena where to test the ef-
fects of rotation.

In this section, as an application of our work, we derive
a Smarr Fomula for these solutions. We remain open
minded, and we present the SF both at the Universal
and at the Killing Horizon.

A. The solutions

In [26] 3–dimensional exact fully rotating BH solutions
of IR Hořava theory were found in the parameter sub-
space c14 = 0, and assuming a non-null cosmological con-
stant Λ. They are also solutions of Æ–theory: to proove
this, it is sufficient to verify that the aether EOM (15b) is
satisfied, because then the metric EOM (15c) and (44b)
are automatically equivalent [8]. We explicitely checked
that Æ←−a = 0. In particular this means that the r.h.s. of

(52) vanishes.
The solutions are of the form

ds2 = −e(r)dt2 + dr2

e(r)
+ r2

(

dφ2 +Ω(r)dt2
)

, (53a)

ua =

(

(u · t),− (s · t)
e(r)

, 0

)

, (53b)

where ta = (1, 0, 0) is the time–translational Killing field,
and the constraint u2 = −1 imposes the consistency re-
lation (u · t)2 − (s · t)2 = e(r).

We also introduce the rotational Killing field φa =

(0, 0, 1), its normalization φ̂a = (0, 0, 1/r), and the space-
like unit–normal to ua and φa:

sa =

(

− (s · t)
e(r)

,−(u · t), 0
)

. (54)

The Killing vectors ta and φa are not linearly indepen-
dent, and they are related by

ta = −(u · t)ua + (s · t)sa +Ω(r)φa. (55)

The set of vectors (ua, sa, φ̂a) forms an orthonormal
triad:

gab = −uaub + sasb + φ̂aφ̂b (56)
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from which one can see that the acceleration vector aa =
ub∇bua is parallel to sa, i.e. aa = (a·s)sa. This is because
(u · φ) = 0 globally and φa is a Killing field: therefore
(a · φ) = φaub∇bua = ub∇b(u · φ)− uaub∇bφa = 0.

This is the general form of the solutions. The specific
expressions for metric functions e(r) and Ω(r) are

e(r) = −M+
J̄ 2

4r2
− Λ̄r2, (57a)

Ω(r) = − J
2r2

, (57b)

where

Λ̄ = Λ− b2(c13 + 2c2), (58a)

J̄ 2 = (1− c13)J 2 − 4c13 a
2, (58b)

andM, J , a and b are integration constants.
The aether functions (s · t) and (u · t) are respectively

(s · t) = br +
a

r
, (59a)

(u · t) = −
√

e(r) +
(

br +
a

r

)2

. (59b)

The parameter b determines the vacuum background of
the solutions: the effective cosmological constant Λ̄ can
be positive, negative or null, depending on the value of
b. Therefore, differently from GR, three–dimensional BH
solutions admit also flat and dS backgrounds, in addition
to the AdS one.

Observe that b also determines the misalignment at
spatial infinity between the aether vector ua and the vec-
tor ta; in particular if b = 0 then ua is completely aligned
with ta at spatial infinity.

From now on we restrict, for simplicity, to the case
b = 0.

Before continuing the description of the solutions,
we find appropriate to summarize the basic notions of
causality behind the definition of the Universal Horizon.
As explained in [17], a curve in the spacetime is said to be
causal iff its tangent vector points forward w.r.t. to the
aether vector ua. Therefore the causal cones degenerate
into local hypersurfaces orthogonal to ua. Now we see
that, if (u · t) = 0 over an hypersurface, the aether vector
points radially and we must distinguish two subcases: (i)
when ua points inward, i.e. in the verse of decreasing r,
then the configuration represents a Black Hole, because
no causal curve can reach spatial infinity; (ii) if ua points
outward in the direction of increasing r then the config-
uration represents a White Hole, because every causal
curve reaches spatial infinity.

Notice that, in the specific case (53), it is the sign of
(s · t)UH that determines the nature of the UH: if (s ·
t)UH > 0, the solution describes a Black Hole; viceversa,
if (s · t)UH < 0, the solution describes a White Hole.
When b = 0, these restrictions on the sign of (s · t)UH

translate in the sign of the integration constant a.
The requirements that a UH exists, and that the folia-

tion is well defined all the way from the center to infinity,

imposes restictions on the value of the parameter a; in
particular, as shown in [26], a must satisfy the relation

(1− c13)(J 2 + 4a2) = −M
2

Λ
, (60)

where we already implemented the restriction b = 0. We
assume both the requirements, and therefore from now
on we will view a as expressed in terms of the other pa-
rameters by Eq. (60). Consequently the location of the
Universal Horizon is:

r2UH = −M
2Λ

. (61)

Finally the location of the (outer) Killing Horizon, de-

fined by e(r)
KH
= 0, is

r2KH = −M
2Λ

[

1 +

√

1 +
ΛJ̄ 2

M2

]

, (62)

from which we immediately see that rKH > rUH.

B. Mass and angular momentum

The aim of this section is to compute the mass and the
angular momentum of the 3–dimensional solution.

Since the Smarr Formula for a D–dimensional BH has
the form

(D − 3)M = (D − 2)TS + (D − 2)ΩJ + . . . (63)

we don’t need to know the exact expression of the mass
M when D = 3. However, we will compute it anyway for
pedagogical reasons, because it represents the first com-
putation of the mass in Hořava gravity and Æ–theory for
an AdS asymptotic infinity, and to illustrate the covari-
ant Hamiltonian subtraction scheme.

The Hamiltonian analysis of Hořava theory was carried
out in [43], where an expression for the energy of asymp-
totically flat (AF) configurations was also derived. It
agrees with the energy for AF spacetimes in Æ–theory, as
derived both in [18] using the covariant Hamiltonian for-
malism a la Wald, and in [44] using pseudotensor meth-
ods. Moreover in [45] a positivity theorem for such AF
energy was proven. Therefore the notion of energy in the
AF case is well established.

However we want to deal with the more general asymp-
totics of the previous solutions. We follow a different
strategy than those followed in the AF case. It consists
in a background subtraction procedure [46–48], using the
covariant Hamiltonian formalism [29, 30], in the form
that we already used in [34] to compute the mass of static
Lovelock Black Holes. This procedure can be seen as a
covariantization of the Regge–Teitelboim one.

Our starting point is the observation that, in general,
the background carries a non null total energy: therefore
the total mass of the BH is the excess of total energy
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w.r.t. to the background. At the same time, at spatial
infinity, a BH solution can be viewed as a linear pertur-
bation around the asymptotic background, and there is

an expression for the linear variation of the Hamiltonian
w.r.t. a given background solution: as shown in [29, 30],
the Hamilton equations relative to the flow of a generic
vector field ξ over an initial value surface Σ are given by

δH [ξ] =

∫

∂Σ

[δQ[ξ]− ξ ·Θ(ϕ0, δϕ)] (64)

where ϕ0 indicates the background fields and δϕ their
variations.

It is then natural to identify the variations of the en-
ergy as [29, 30]

δE =

∫

S∞

[δQ[t]− t ·Θ(ϕ0, δϕ)] , (65)

where S∞ is the outer boundary of ∂Σ, and ta is the
time–translational Killing field at infinity.

We adopt Eq. (65) as our definition of BH mass. For
simplicity we restrict to the case b = 0.

From (53b) the aether time T is

T = t−
∫ r

dr′
(s · t)

e(r)(u · t) , (66)

which in the case b = 0 reduces to

T = t− 1

3

a

(Λ)3/2 r3
+O

(

1

r5

)

. (67)

Therefore the partition between background fields and
perturbations at asymptotic infinity is:

ϕ0 =











e0(r) = −Λr2
Ω0(r) = 0

T0 = t

, (68)

δϕ =































δe(r) = −M+
J̄ 2

4r2

δΩ(r) = Ω(r) = − J
2r2

δT = −1

3

a

(Λ)3/2 r3
+O

(

1

r5

)

. (69)

From (68) we see that ϕ0 describes an AdS solution,
which is obtained by taking the limit M,J → 0 of the
full solution, as it is clear from (69) (recall that we regard
a as a function ofM and J ).

We are now ready to apply (65) to compute the total
mass. We computed the relevant integrals with Mathe-
matica, and here we just spell out the main steps. First
of all

∫

S∞

Q[t] = − lim
r→∞

Λr2

4G
+O

(

1

r2

)

, (70)

from which we see that
∫

S∞

δQ[t] = O

(

1

r2

)

. (71)

Second, the last term in (45) doesn’t contribute, be-
cause the solution satisfies also the Æ EOM Æ←−a = 0.

Moreover, since the binormal to the circular sections is
ǫ̂ab = −2u[asb] = −2δt[aδrb], then

∫

S∞

−t ·Θ =

∫

S∞

Θr ǭ (72)

where we have used the notation Θ = Θmǫm. The result
is

∫

S∞

−t ·Θ =
M
8G

. (73)

Putting together Eq.s (71) and (73) the total mass is

M =
M
8G

. (74)

The computation of the angular momentum J in much
easier: as shown in [29, 30] the total angular momentum
is just

J = −
∫

S∞

Q[φ], (75)

where φa is the rotational Killing field. In the present
case the result is

J = (1− c13)
J
8G

. (76)

C. The Smarr Formula

1. Smarr Formula at the Killing Horizon

The Smarr Formula at the Killing Horizon is given by
Eq. (34) for D = 3:

0 =

∫

∂Σ

[Q[ξ]− ξ · A] + 2Λ

κ

∫

Σ

ξ · ǫ, (77)

where Σ is an hypersurface with boundaries C∞ and
CKH, respectively the circular sections at asymptotic in-
finity and at the Killing Horizon.

The vector field ξa must be chosen as the Killing field
generating the KH:

ξa = ta +ΩKHφ
a, ΩKH = −Ω(rKH), (78)

where ΩKH is the frame–dragging angular velocity at the
KH.

Having identified ξa, we proceed to evaluate all the
terms in (77). The second term is simply

2Λ

κ

∫

Σ

ξ · ǫ = lim
r→∞

Λr2

4G
− Λ r2KH

4G
. (79)
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The divergent part is compensated by the first part in
∫

C∞

[Q[ξ]− ξ · A] = − lim
r→∞

Λr2

4G
− ΩKHJ . (80)

Finally, as shown in Appendix A,
∫

CKH

[Q[ξ]− ξ · A] =
(κKH

2π

) PKH

4G
− c13

4G

a2

r2KH

, (81)

where κKH and PKH are, respectively, the surface gravity
and the perimeter of the KH.

Therefore, putting togheter Eq.s (79)–(81), the Smarr
Formula at the KH becomes

0 ·M =
(κKH

2π

) PKH

4G
+ΩKHJ +

Λ r2KH

4G
− c13

4G

a2

r2KH

. (82)

2. Smarr Formula at the Universal Horizon

The Smarr Formula at the Universal Horizon is again
given by Eq. (77), where now ∂Σ = C∞ ∪ CUH.

There is an ambiguity in the choice of the vector field
ξ. Indeed the UH is defined by the equation (u ·t)UH = 0.
However, since (u ·φ) = 0 globally, any vector field of the
form ξa = ta+αφa, with α generic, satisfies the defining
equation (u · ξ)UH = 0. We proceed in analogy with the
KH, and we choose

ξa = ta +ΩUHφ
a, ΩUH = −Ω(rUH), (83)

where again ΩUH is the frame–dragging angular velocity
at the UH. From (55)

ξa
UH
= −(s · t)sa, (84)

and therefore ξa is also orthogonal to the circular cross
sections of the UH, analogously to what happens at the
KH.

Repeating the same steps as before, we have

2Λ

κ

∫

Σ

ξ · ǫ = lim
r→∞

Λr2

4G
− Λ r2UH

4G
(85)

and also
∫

C∞

[Q[ξ]− ξ · A] = − lim
r→∞

Λr2

4G
− ΩUHJ , (86)

from which we see the compensation of the divergent
parts. Finally, as shown in Appendix B,

∫

CUH

[Q[ξ]− ξ · A] = (1− c13)

4G

a2

r2UH

. (87)

Putting together Eq.s (85)–(87), the Smarr Formula at
the UH becomes2

0 ·M =
(1− c13)

4G

a2

r2UH

+ΩUHJ +
Λ r2UH

4G
. (88)

2In the limit J → 0 Eq. (4.24) of [49] is recovered.

3. Thermodynamical interpretation

In this section we want to comment about the pos-
sible thermodynamical interpretation of the two Smarr
Formulas (82) and (88). We start from the easier case,
the one at the Killing Horizon. The first three terms on
the r.h.s. of (82) can be immediately interpreted in the
following usual manner:

• κKH/2π is the Hawking temperature of the KH,
with associated entropy S = PKH/4G;

• ΩKHJ is the work term associated to the presence
of a non-zero angular momentum;

• Λr2KH/4G is in the form−2 pV , where p = −Λ/8πG
is the pressure of the cosmological fluid, while V =
πr2KH is the euclidean volume of the circle bounded
by the Killing Horizon. The presence of such a term
in the Smarr Formula is typical of Black Holes with
a cosmological constant [50, 51].

The last term, − c13
4G

a2

r2
KH

, can be viewed as an additional

work term originating from aether degrees of freedom.
While it would be beyond the scope of the present paper
an attempt to identify these possible degrees of freedom
we do think that this could be a relevant stream of in-
vestigation worth pursuing in the future.

The Universal Horizon case is a bit more subtle. First
of all, guided by the analogy with the KH, we split the
first term of (88) as follows:

0 ·M =
a2

4Gr2UH

+ΩUHJ +
Λ r2UH

4G
− c13

4G

a2

r2UH

, (89)

in such a way that the last three terms in (89) have the
same interpretation as their Killing counterparts: rota-
tional work term, pressure–volume term of the cosmolog-
ical fluid, and aether DOF work term.

What misses is to cast the first term in a TS form. This
in turn requires a notion of temperature of the Universal
Horizon, a subject that is currently under investigation:
let us therefore briefly sum up the status of the work so
far.

A candidate expression for the temperature of the UH
was first estimated in [21] via a tunnelling approach, by
computing the tunnelling probability across the UH of a
scalar field with a quadratic ultraviolet dispersion rela-
tion in the aether preferred frame

ω ∼ p2, (90)

such that the modes have the UH as their causal horizon.
The authors considered the two specific static BH exact
solutions of [19], finding the tunnelling temperature

TUH =
κUH

2π
, (91)

where the quantity κUH is defined as

κUH =
1

2
ua∇a(u · t)

∣

∣

∣

∣

UH

. (92)
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The computation was then generalized in [22] to more
general scaling dispersion relations3

ω ∼ pN , N > 1, (93)

finding the tunneling temperature

T
(N)
UH =

(

N − 1

N

)

κUH

π
, (94)

which is consistent with (91) for N = 2.
Moreover [23, 24] studied the peeling behaviour of the

modes (93) at the UH, finding that the peeling surface
gravity of the UH is

κ
(N)
peel =

(

N − 1

N

)

κUH. (95)

Therefore T
(N)
UH is related to the surface gravity of the UH

by

T
(N)
UH =

κ
(N)
peel

π
. (96)

(Notice a difference by a factor of 2 w.r.t. the Killing
horizon.)

From Eq. (94) it is apparent that T
(N)
UH depends on N ,

i.e. it depends on the specific dispersion relation of the
test field. This is disturbing, especially in consideration
of the fact that it seems to imply that the (would be)
entropy of the UH is species dependent, rather than being
universal.

However, this implication implicitly assumes knowl-
edge of UV completion of both gravity and matter sectors
as this will be always relevant at the UH. Since Æ–theory
is not UV complete, one cannot be sure that the N de-
pendence of the temperature is necessarily problematic,
as indeed the low energy component of the Hawking spec-
trum at infinity will be anyway heavily influenced by the
KH, while the UV part would be undetermined without
a UV completion of the gravity and matter sectors.

Hořava gravity, instead, aspires to be a UV complete
gravitational theory, to be eventually supported by a sim-
ilar completion in the matter sector, therefore we cannot
ignore the problem. A possible solution could be the re-
quirement of an extra symmetry, such as invariance of
the action under Lifshitz anisotropic scaling, that would
suffice to enforce a universal value of N .4

By the way, notice that in Ref. [52] static and rotating
universal horizons in (2+1) Hořava gravity where found,
in the version of the theory supplied with an extra U(1)
symmetry (see [6] for a review of the various versions of
the theory). The solutions are exact up to the ultravio-
let regime, therefore opening the possibility to study the

3
N = 1 is excluded because it corresponds to relativistic modes.

4We are grateful to D. Mattingly for having pointed this con-
sideration to us.

dependence of the scaling N in a UV universal horizon
background.

Alternatively, given a theory describing interacting
fields with modified dispersion relations at the tree level,
the dynamics could be such that radiative corrections will
equalise the UV behaviour of the dispersion relations.

Finally, if one embraces an EFT point of view, one
can arbitrarily expand the action in inverse powers of a
Lorentz breaking scale (assumed to be smaller of the UV
cutoff of the EFT), therefore effectively inducing N →∞
for all the species.

In conclusion, possible mechanisms that save the uni-
versality of (either a finite or infinite) N can be envisaged.
In what follows we shall assume that one of these is in-
deed realized, and hence adopt Eq. (94) as our definition
of UH temperature.

For the 3–dimensional solution considered in this sec-
tion, in the subcase b = 0, we have

κUH =
a
√
−Λ

rUH

. (97)

So we can rewrite the Smarr Formula (89) as

0·M = T
(N)
UH

(

π cN
4G

a√
−Λ rUH

)

+ΩUHJ+
Λ r2UH

4G
−c13
4G

a2

r2UH

,

(98)
where we defined cN = N/(N − 1), from which we ten-
tatively identify

S =
π cN
4G

a√
−Λ rUH

. (99)

Notice that S is not proportional to the perimeter PUH of
the UH in the fully rotating case, while it becomes such
in the static case J = 0:

lim
J→0

S =
cN PUH

8G
√
1− c13

. (100)

This concludes our thermodynamical interpretation of
the UH Smarr Formula (89).

It must be noted that the Smarr Formula is just a
consistency relation between the mass and the other pa-
rameters of the solution. It doesn’t say anything about
physical processes. In this respect a study of the First
Law of mechanics would be enlightening of the nature of
the various terms that we have tentatively identified in
this section. We reserve this investigation for a future
work [53].

VI. Conclusions

In this paper we presented a general method for de-
riving the Smarr Formula of Æ–theory and IR Hořava
gravity, which makes crucial use of the scale invariance
property of these theories.

Our derivation extends previous results [19, 20] that
were applicable only to static Black Hole configurations.
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This opens the possibility to study the SF of rotating
BHs, in order to gain some insight about their possible
thermodynamic behaviour.

As an application we analysed the Smarr Formula for
the 3–dimensional rotating BH solutions found in [26], in
the two cases in which the internal boundary is chosen
at the Universal Horizon or at the Killing Horizon. We
found that both the cases admit a possible thermody-
namical interpretation of the terms appearing in the SF,
which implies the appearance of extra work terms orig-
inating from aether degrees of freedom. The nature of
such terms surely deserves further investigation.

The above results are also interesting in view of the still
not solved controversy about which of the two horizons is
responsible for the thermodynamics [25]. More insights
in this subject can be obtained through the analysis of
First Laws corresponding to the above Smarr Formulas,
and we reserve this study to a subsequent paper.

Finally, although 4–dimensional fully rotating BH so-
lutions still don’t exist, we believe that, in future per-
spective, they represent the more promising research line
where the techniques presented in this paper can be even-
tually applied, to have a better understanding of the ther-
modynamics of Lorentz violating gravitational theories.
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Appendix A Computation of the Smarr Formula at

the KH

In this Appendix we prove Eq. (81). Recall that we are
working in the limit b = 0.

From Eq. (39), specifying to D = 3 and to c14 = 0, we
have

Q[ξ]− ξ · A = − 1

2κ

[

∇aξb + 2c13u
aξc∇(buc)

−2c123(∇ · u)uaξb + c13(u · ξ)uaab
]

ǫab. (101)

To manipulate the first term, observe that ǫab = ǫ̂abǭ

and, by definition of surface gravity, ∇aξbǫ̂ab
KH
= −2κKH;

therefore

Q[ξ]− ξ · A KH
=

κKHǭ

κ
− 1

2κ

[

2c13u
aξc∇(buc)

−2c123(∇ · u)uaξb + c13(u · ξ)uaab
]

ǫab. (102)

Then, using ǫ̂ab = −2u[asb], we can reduce also the re-

maining terms:

Q[ξ]− ξ · A KH
=

κKHǭ

κ
− 1

2κ

[

2c13s
aξb∇(aub)

−2c123(s · ξ)(∇ · u) + c13(u · ξ)(a · s)] ǭ. (103)

Now, from (55) and (78), ξa = −(u · t)ua +(s · t)sa, from
which it follows

Q[ξ]− ξ · A KH
=

κKHǭ

κ
− 1

κ

[

c13(s · t)
(

sasb∇aub

)

−c123(s · t)(∇ · u)] ǭ. (104)

A direct computations shows that, for b = 0,

(sasb∇aub) =
a

r2
and (∇ · u) = 0, (105)

and, since in the same limit (s · t) = a/r,

Q[ξ]− ξ · A KH
=

κKHǭ

κ
− c13 ǭ

κ

a2

r3KH

. (106)

The only part depending on the coordinate φ is the cir-
cular line element ǭ = rUHdφ. We can finally integrate
over CKH, thus obtaining

∫

CKH

[Q[ξ]− ξ · A] = κKH PKH

8πG
− c13

4G

a2

r2KH

. � (107)

Appendix B Computation of the Smarr Formula at

the UH

In this Appendix we prove Eq. (87).
From Eq. (39), specifying to D = 3 and to c14 = 0, and

using the fact that (u · ξ)UH = 0, we have

Q[ξ]− ξ · A UH
= − 1

2κ

[

∇aξb + 2c13u
aξc∇(buc)

−2c123(∇ · u)uaξb
]

ǫab. (108)

Using ǫab = −2u[asb]ǭ, it becomes

Q[ξ]− ξ · A UH
= − 1

2κ

[

2saub∇aξb + 2c13s
aξb∇(aub)

−2c123(s · ξ)(∇ · u)] ǭ, (109)

where in the first term inside the squared brackets we
used the Killing equation ∇aξb = ∇[aξb]. This term can
be further manipulated as follows:

saub∇aξb = sa∇a(u · ξ)− saξb∇aub; (110)

but (u · ξ) depends only on r, therefore the first term
on the r.h.s of (110) selects the radial part of sa, which

from (54) is zero at the UH. Therefore saub∇aξb
UH
=

−saξb∇aub, and (109) becomes

Q[ξ]− ξ · A UH
=

1

κ

[

saξb∇aub − c13s
aξb∇(aub)+

+c123(s · ξ)(∇ · u)] ǭ. (111)
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Now, using ξa
UH
= (s · t)sa, we have

Q[ξ]− ξ · A UH
=

1

κ

[

(1− c13) (s · t)
(

sasb∇aub

)

+c123(s · t)(∇ · u)] ǭ. (112)

Using (105) as before we obtain

Q[ξ]− ξ · A UH
=

ǭ

κ
(1− c13)

a2

r3UH

. (113)

Finally, integrating over CUH, we obtain

∫

CUH

[Q[ξ]− ξ · A] = (1− c13)

4G

a2

r2UH

. (114)

thus proving Eq. (81). �
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