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1 Introduction

If supersymmetry exists, it appears it is broken at high energy scales. In string theory it
does play an important role, but nothing prevents it from being spontaneously broken at
the Planck scale.

Finding supersymmetric solutions, however, is still a lot easier than finding non-
supersymmetric ones. This is in part because the BPS equations provide a first-order
system of partial differential equations (PDEs). Moreover, these equations often have com-
pelling geometrical interpretations. These are revealed for example in the G-structure
formalism (starting with [1, 2]), and in more complicated cases by generalized complex
geometry methods [3].

Indeed the latter provide a system of “pure spinor equations” [3] that partially reduce
finding the most general Minkowski or AdS supersymmetric vacuum solution to a geomet-
rical problem. For Minkowski, for example, a condition that emerges is that the internal
space be “generalized complex”, an umbrella concept that contains complex and symplectic
manifolds. This is not enough to find a solution, but provides a convenient first step.
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It would be very useful to have similar methods for non-supersymmetric solutions.
Roughly speaking, the hope would be to modify the aforementioned first-order geometrical
systems, to obtain a new one that still implies the equations of motion (EoMs), when
supplemented with the Bianchi identities, but which is no longer equivalent to the BPS
conditions. This hope is partially inspired for example by the idea of fake superpotential
in lower-dimensional theories.

This has been attempted in the past; for example, [4] has parameterized the most
general deformation of the BPS system of [3], and has imposed the condition that such
a deformation implies the EoMs. This approach appears promising; unfortunately the
resulting constraints on the deformations are rather intricate, to the point where it is
currently a bit unpractical.

In this paper we reexamine the problem by looking at some specific classes of increasing
complexity. By a “class” we mean a set of supersymmetric solutions, where the metric,
dilaton and fluxes have been fixed, up to solving a system of PDEs. For each class we
provide a way to modify the PDEs by a supersymmetry-breaking parameter, so that the
new system of PDEs still implies the EoMs but not the BPS equations.

Let us give an example. The Imamura class [5] is a set of supersymmetric Mink6×M4
solutions, with fluxes F0, F2 and H. All fields are parameterized by a single function S,
obeying a single PDE1

43S + 1
2∂

2
zS

2 = 0 , (1.1)

valid away from sources.2 Here 43 is a Laplacian on three coordinates xi, that together
with z span the internal space M4. Originally in [5] this PDE was derived assuming SO(3)
invariance in the xi (or in other words dependence on r = √xixi only). Already with this
assumption this class is rather interesting: for example it was found in [6, 7] that in a limit
it generates the AdS7 solutions of IIA [8].

In this paper we check that (1.1) implies the BPS equations even without this symmetry
assumption. When liberated from this artificial constraint, this class reveals itself to be
even richer than previously thought; applying some standard techniques we find a lot of
local solutions, and at least one compact solution (building on [5, 9–11]) where M4 has the
topology of T 4, and contains O8-planes, and D6-branes, all localized and back-reacting on
the geometry.

Coming now to our supersymmetry-breaking technique, on the Imamura class we ob-
tain a new PDE that reads

43S + 1
2∂

2
zS

2 + c(c− 2∂zS) = 0 . (1.2)

For c = 0 this reduces to (1.1). For c 6= 0, we get a deformation of the Imamura equation
which still implies all the EoMs. While not all the techniques that work with (1.1) still
succeed with (1.2), at least one does, and again gives a class of compact solutions, this
time non-supersymmetric.

1This is generically true, namely for F0 6= 0; for F0 = 0, there are two functions, obeying two PDEs.
2The PDE is second-order because it is generated by acting with the Bianchi identity on the BPS

equations.
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The Imamura class is a rare case where all equations can be reduced to a single one.
(Another such class is N = 2 AdS5 solutions in eleven dimensions [12], where everything
is reduced to a single Toda equation, which in fact has some similarities to (1.1).) With
other classes, things are not so simple and one in general gets a system which is usually
let’s manageable then (1.1). Still, we manage to obtain similar results as (1.2) even in
more complicated cases. While we do not reach the point where we can give an algo-
rithmic procedure in full generality, we find patterns that we think might be useful for
further investigation.

In particular, in a certain sense we will specify better below, we are able to reverse-
engineer our supersymmetry-breaking results such as (1.2) to a specific modification of the
pure spinor equations of [3]. Namely, if we keep fixed the ansatz for the pure spinors in
a given supersymmetric class, the modification of the RR fluxes (and hence the Bianchi
identities) can be inferred from the usual pure spinor equation.

Although promising, our method has currently some limitations. First of all, as we
mentioned, while we do see some emerging patterns, at the present stage our procedure
is not fully algorithmic, and requires some guesswork which we have carried out case by
case. Second, in this paper we only looked at Minkowski solutions. In a next stage it
would be natural to try to apply it to solutions with cosmological constant; for example
for AdS solutions it would be interesting to see whether some of the supersymmetric vacua
one can obtain by consistent truncation (for example the non-BPS AdS7 solutions noticed
in [13]) can be generated in a similar way. Even better would be to be able to change
the cosmological constant in the process, perhaps generating dS vacua by breaking super-
symmetry in a Minkowski or AdS solution. Finally, the procedure suffers from a familiar
problem: if we try to embed these supergravity vacua in string theory, any surviving mod-
uli in the non-BPS solutions one generates this way are likely to get a non-zero potential
from quantum corrections. In the example (1.2), there is a new parameter c that naively
would even provide a new modulus; however in general this appears in a flux component,
and one can expect it to be discretized by flux quantization. Let us stress that our method
does not address this modulus problem, and it should be regarded as a solution-generating
technique in supergravity.

Besides the application to finding solutions, these methods can be conceptually useful
from several points of view. The pure spinor equations for BPS solutions have an inter-
pretation in terms of calibrations; one can thus expect that non-supersymmetric vacua
obtained with pure spinor methods might still have calibrated branes. This might also im-
ply good stability properties, since branes often provide non-perturbative decay channels
for non-supersymmetric vacua.

In section 2 we review the pure spinor equations; then we use them to rederive and
generalize some supersymmetric classes of solutions, including the Imamura class we men-
tioned around (1.1). In section 3 we will explain our strategy for breaking supersymmetry,
applying it to the previously introduced BPS classes. Finally in section 4 we will see
some examples, first in the BPS Imamura class and then in its supersymmetry-breaking
counterpart.
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2 Supersymmetry

We start in this section with the usual preliminaries, in particular reviewing very quickly
the pure spinor method in section 2.1. In subsequent subsections we will get more specific
and present some interesting subclasses of solutions, whose supersymmetry we will break
later in the paper.

As we anticipated in the introduction, we are interested in Minkd ×M10−d solutions
with d ≥ 4 in type II supergravity. The case d > 4 can be seen as a particular case of the
case d = 4, for which the metric reads

ds2
10 = e2Ads2(R1,3) + ds2(M6) . (2.1)

Solutions with higher-dimensional external space are included by further splitting M6:

ds2(M6) = e2Ads2(Rd) + ds2(M6−d) . (2.2)

In order to preserve the Poincaré isometries of Mink4, we have to assume that the
warping function A only depends on the six-dimensional manifold M6 (or on M6−d, if we
are considering the case (2.2)). Moreover, we have to require that fluxes have no legs along
R1,3 except for the volume form:

F = f + e4Avol(R1,3) ∧ ∗6λf . (2.3)

f is a form on M6 only, and λ is a sign defined by λ = (−)k(k−1)/2, where k is the form
degree. Notice that we are adopting the democratic formalism [14], in conventions however
where F = ∗λF . We also have to impose that the NSNS three form H is strictly a form on
M6. The Bianchi identities away from sources read dHF = 0, dH = 0, where dH ≡ d−H∧.

For supersymmetry, we also need to consider the fermionic parameters ε1,2. Poincaré
symmetry requires that they factorize in terms of a constant spinor ζ on R1,3 and a couple
of spinors η1,2 on M6

ε1,2 = ζ+ ⊗ η1,2
± + ζ− ⊗ η1,2

∓ , (2.4)

where the chirality +/− depends if we are in type IIA/IIB theory respectively, and we
chose the charge conjugation so that ζ+ = (ζ−) and η2

+ = (η2
−).

However, in this paper we will not use directly the spinorial formalism, but we will
appeal to the pure spinor method, which allows to reformulate the problem of finding
four-dimensional vacuum solutions.

2.1 Pure spinors

The pure spinor method [3, 15] provides a way to express the BPS conditions in terms of
forms; here we will give a lightning review of it, to set the stage for our supersymmetry-
breaking modification in the next sections.

In general a spinor is called pure if it annihilator in the Clifford algebra is the largest
possible, i.e. if it has half the dimension of spacetime. Actually the pure spinors we need
are polyforms, namely formal sums of various differential forms of different degrees. Indeed
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polyforms can be regarded as spinors for the “doubled” Clifford algebra, in our case Cl(6, 6).
Starting from the internal spinors η1,2 appearing in (2.4), we can form the bispinors

Φ+ = η1
+ ⊗ η2

+ , Φ+ = η1
+ ⊗ η2

− . (2.5)

Using Fierz identity and the Clifford map γm1...mk 7→ dxm1 ∧ . . . ∧ dxmk , these can be
interpreted as polyforms, and can be shown to be pure, basically because the η1,2

+ are
already pure as Cl(6) spinors. The + (−) label on Φ± indicates that all the forms appearing
in them have even (odd) degree.

The BPS equations are originally written in terms of the spinors η1,2, but it is possible
to reformulate them completely in terms of the Φ±. While not all differential forms are ten-
sor products of two spinors as in (2.5), that requirement is equivalent to the compatibility
conditions

(Φ−, γm · Φ+) = (Φ−,Φ+ · γm) = 0 ∀m,

(Φ−, γm · Φ+) = (Φ−,Φ+ · γm) = 0 ∀m ;

(Φ+,Φ+) = (Φ−,Φ−) = − i
8vol(M6) .

(2.6)

Here (α, β) ≡ (α ∧ λ(β))6 is the six-dimensional Chevalley-Mukai pairing and · is the
Clifford product acting on a differential form: γm· = dxm ∧ +ιm, ·γm = ±(dxm ∧ −ιm).
In other words, if these constraints are satisfied, there exist η1,2

± such that Φ± can be
written as (2.5).

The purity requirement and the compatibility constraints (2.6) are algebraic conditions,
whose general solution is known:3

Φ+ = 1
8e

1
2E3∧E3 ∧ (k⊥e−ij + ik‖ω) , Φ− = 1

8E3 ∧ (k‖e−ij − ik⊥ω) . (2.7)

where {E1, E2, E3} is a local complex vielbein and |k⊥|2 + |k‖|2 = 1, and j, ω define the
SU(2)-structure

j = i
2(E1 ∧ E1 + E2 ∧ E2) , ω = E1 ∧ E2 . (2.8)

Two interesting cases, which will play a role in this paper, are the SU(3)-structure case
k‖ = 0, k⊥ = −i, and the static SU(2)-structure case k⊥ = 0, k‖ = 1. (In terms of the η1,2,
these correspond to the case where they are proportional and orthogonal, respectively.)

Given this reformulation of the pair of spinors η1,2 in terms of the pair of pure polyforms
Φ±, one can rewrite the BPS conditions in terms of the Φ± [3]:

dH(e3A−φΦ±) = 0 , (2.9a)

dH(e2A−φReΦ∓) = 0 , (2.9b)

dH(e4A−φImΦ∓) = e4A

8 ∗6 λ(f) , (2.9c)

3Actually it is possible to consider also the twisted version of these pure spinors, but since a B-
transformation sends compatible pairs in compatible pairs, we can set B = 0.
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where the upper sign is for type IIA while the lower one for type IIB. (For simplicity, we
have restricted ourselves to the case where the spinor norms are equal, |η1

+| = |η2
+|; this is

believed to be necessary for compact solutions, for example.) The system of pure spinor
equations (2.9) is equivalent to the BPS equations; moreover, together with the Bianchi
identities for the RR fluxes, it implies all the other equations of motion.

For this system it was given an interpretation in terms of d = 4, N = 1 supergravity
in [16]. By introducing a suitable superpotential W , it was found there that (2.9a) is an
F-term equation resulting from varying W with respect to the moduli T corresponding to
deformations of Φ∓, (2.9c) results from varying W with respect to the moduli Z of Φ±,
and finally (2.9b) is a D-term equation. Summarizing:

eq. (2.9a) = ∂δΦ∓W , eq. (2.9b) = D , eq. (2.9c) = ∂δΦ±W . (2.10)

2.2 The Imamura class

Let us now apply the formalism of the previous section to a particular case of 1
4 -BPS system

of intersecting branes in type IIA supergravity. Specifically, we will consider a generaliza-
tion of the localized D6-D8-NS5 setup described in [5]4 in which we drop the spherical
symmetry ansatz on the internal space. (This generalization was also considered in [10].)

The class actually describes an R1,5×M4 space-time. The pure spinor equations (2.9)
assume a four-dimensional Minkowski space; if we want two extra flat directions, we have to
implement (2.2) for d = 2. This can be done in various ways, for example by imposing that
one of the forms of the complex vielbein is locally defined as eA(dy1 + i dy2). Alternatively,
we could use the system in [17], which is directly the analogue of (2.9) for Mink6 solutions.

Let us now call E2 = w = w1 + iw2 and E3 = v = v1 + iv2, where {w1, w2, v1, v2} is a
complex vielbein on M4. Inserting in (2.7) k⊥ = 0, k‖ = 1 and

E1 = eA(dy1 + i dy2) (2.11)

inside (2.9) we get the two-form conditions

d(e4A−φw) = d(e4A−φv2) = d(e2A−φv1) = 0 , (2.12)

which can be solved introducing local coordinates:

w = e−4A+φ(dx1 + i dx2) , v = e−2A+φdz + i e−4A+φdx3 . (2.13)

This means that the metric can be written as

ds2
10 = e2Ads2(R1,5) + e−4A+2φdz2 + e−8A+2φds2(R3) , (2.14)

where R3 is spanned by {x1, x2, x3}.
If we introduce S ≡ e−4A and K ≡ e−6A+2φ, we now recover the metric in [5, (2.2)].

The metric factor become S−1/2, KS−1/2, KS1/2; the dilaton reads eφ = K1/2S−3/4. We
recognize the structure one would expect for an NS5-D6 brane system brane configuration;
moreover, since as in [5] we will include a non-zero F0, one might expect the possibility of
a D8 transverse to z. We summarize this in table 1.

4The system in [5] is itself a generalization of [9, section 3].
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0 1 2 3 y1 y2 z x1 x2 x3
NS5 ◦ ◦ ◦ ◦ ◦ ◦
D6 ◦ ◦ ◦ ◦ ◦ ◦ ◦
D8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Table 1. Localized D6-D8-NS5 brane system.

Turning now to the higher degree equations in (2.9), we see that they define the fluxes
in terms of A and φ as follows:

H = −1
2ε

ijkdz ∧ dxi ∧ dxj∂ke−6A+2φ + vol(R3)∂ze−10A+2φ , (2.15a)

F0 = 2e−2φ∂ze2A , (2.15b)

F2 = 1
2ε

ijkdxi ∧ dxj∂xk
e−4A , (2.15c)

F4 = 0 . (2.15d)

We took advantage of the explicit form of the metric to explicitly compute the Hodge dual
in (2.9c).

Notice that the functions A, φ can depend on all four coordinates; in this respect
our class is more general than the original one in [5], where both functions were taken to
depend on z and on a radial coordinate r ≡ (xixi)1/2, and so there was an additional SO(3)
symmetry we are not assuming here.

The original Imamura class with this SO(3) also emerged in [7, section 4.1], starting
from a SU(2)-structure bi-spinor ansatz which was reduced to an identity structure. This
reduction occurs when we impose that one of the complex directions which define j, ω

in (2.8) is actually part of the external space R1,5, as in (2.11). This is not the only way
to get an identity structure assuming a six-dimensional Minkowski space; however it was
found in [18] that these cases give rise to parametric deformations of the usual Imamura
solution which can be generated by chains of dualities. Since none of these dualities requires
the presence of the SO(3) symmetry in the co-dimensions of the D6-brane, we don’t expect
the discussion is much different dropping this assumption.

So far we have only imposed the pure spinor equations; we now turn to the Bianchi
identities. Since the Romans mass must be a constant

F0 = m, (2.16)

we have two different cases, depending on whether m is zero or non-zero.

2.2.1 Massive case

In this case we can use (2.15b) to write φ as a function of A:

e2φ = 2
m
∂ze2A. (2.17)

– 7 –
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This redefinition combined with the Bianchi identity for F2 gives the Imamura PDE

∆3e−4A + 1
2∂

2
ze−8A = 0 , (2.18)

where ∆3 = ∂2
x1 + ∂2

x2 + ∂2
x3 . The Bianchi identity for H gives ∂z of (2.18), and hence is

automatically implied by it.

2.2.2 Massless case

If F0 = 0, (2.15b) implies ∂ze2A = 0. The Bianchi identity for F2 now imposes

∆3e−4A = 0 . (2.19)

In this case the Bianchi identity for H is not automatically implied by the one for F2, so
it should be checked independently. One finds that it imposes:

∆3e−6A+2φ + e−4A∂2
ze−6A+2φ = 0 , (2.20)

which is a Youm-like condition [19].

2.3 A larger IIA system

In [18, appendix C] it was proven that the Imamura solution can be derived by a more
general R1,3×S2 solution of type IIA supergravity by imposing two isometric directions and
T-dualizing along them. In this section, we will generalize that result relaxing the rotational
symmetry ansatz, as done in the previous section. This will provide a generalization of the
class in [18, appendix C] that extends the class of subsection 2.2.

Since without any ansatz on the internal space it is impossible to get an identity
structure, we start by defining directly the six-dimensional complex vielbein in terms of
local coordinates as follows:

E1 = −e−A(dy1 + i dy2) ,
E2 = −e−2A+φ(dx2 − i dx3) , (2.21)
E3 = e−2A+φ(dx1 + i e2A+µdz) .

The functions are now chosen so that some of the pure spinor equations are automatically
satisfied. This gives the ten-dimensional metric

ds2 = e2Ads2(R1,3) + e−4A+2φds2(R3) + e−2Ads2(R2) + e2φ+2µdz2 , (2.22)

where yi ∈ R2 and xi ∈ R3. Notice that if we impose that ∂yi are two Killing direc-
tions and we T-dualize along them we exactly get the metric (2.14), thus recovering the
Imamura class.

The easiest generalization of [18, appendix C] is obtained by imposing that H has legs
only along R3 and z. It is now particularly easy to solve the pure spinor equations (2.9)
with the ansatz k⊥ = 0, k‖ = 1. We define

f = e−2A+2φ−µ ; (2.23)

– 8 –
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supersymmetry then imposes that f just depends on (z, x1, x2, x3), while µ = µ(z, y1, y2).
The fluxes read:

H = −1
2ε

ijkdz ∧ dxi ∧ dxj∂kf + vol(R3)e−µ∂z(e−4A−µf) , (2.24a)

F0 = 0 , (2.24b)

F2 = (∂y2eµdy1 − ∂y1eµdy2) ∧ dz − f−1∂ze−4Avol(R2) , (2.24c)

F4 = fvol(R3) ∧
(
∂y2e−4A−µdy1 − ∂y1e−4A−µdy2

)
+ 1

2ε
ijkdxi ∧ dxj ∧ vol(R2)∂xk

e−4A .

(2.24d)

The Bianchi identities reduce to

∂xi

(
f−1∂ze−4A

)
= 0 , (2.25a)

∂yi

(
e−µ∂z(fe−4A−µ)

)
= 0 , (2.25b)

which restrict the functional dependence of the various function in play, plus the PDEs

42eµ + ∂z
(
f−1∂ze−4A

)
= 0 , (2.26a)

43f + ∂z
(
e−µ∂z(fe−4A−µ)

)
= 0 , (2.26b)

f42e−4A−µ +43e−4A + f−1∂ze−4A
(
e−µ∂z(fe−4A−µ)

)
= 0 , (2.26c)

where 42 and 43 are the Laplacian on R2
y and R3

x respectively.

3 Supersymmetry breaking

In this section we will see that in some circumstances it is possible to extend the pure
spinor equations (2.9) to non-supersymmetric cases.

3.1 Breaking supersymmetry in the Imamura class

Let us start by considering the Imamura class we derived in section 2.2.
Since we would like to extend this class to a non-supersymmetric setting, let us relax

some of the conditions we found by imposing the pure spinor equations. In principle it
would be possible to relax all the equations and move to a completely different solution;
however, to fix ideas, we will keep the definition of the RR-fluxes and the metric, and not
impose anything else. We also require that F0 = m 6= 0. So far the background is simply
given by the usual Imamura metric (2.14),

ds2
10 = e2Ads2(R1,5) + e−4A+2Φdz2 + e−8A+2Φds2(R3) , (3.1)

with RR fluxes as in (2.15b)–(2.15d):

F0 = m, F4 = 0 ,

F2 = 1
2ε

ijkdxi ∧ dxj∂xk
e−4A .

(3.2)
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But instead of defining H as in (2.15a), we take the Bianchi identity for F2 as its
definition:

H = 1
m

dF2 . (3.3)

The expression for H can be simplified thanks to the external Einstein equation,
which reads

∆3e−4A + e−4A∂2
ze−4A + e−12A+2φm2 = 0 . (3.4)

Using this equation in (3.3) one gets

H = 1
2mεijkdz ∧ dxi ∧ dxj∂xk

∂ze−4A − 1
m

vol(R3)(e−4A∂2
ze−4A + e−12A+2φm2) . (3.5)

This definition of H turns out to be particularly useful when one has to compute the
equation of motion for the B-field:

d(e−2φ ∗H) = F0F8 . (3.6)

Thanks to the fact that we can explicitly write the potential for F8 = dC7

F8 = vol(R1,5) ∧ dz ∧ de−4A ⇒ C7 = e−4Avol(R1,5) ∧ dz (3.7)

we can reduce (3.6) to

d(e−2φ ∗H −mC7) = − 1
m

vol(R1,5) ∧ d
(
e12A−4φd(∂ze−4A)

)
(3.8)

which is solved by imposing that e12A−4φ can be written as a function of ∂ze−4A:5

e−6A+2φ = f(∂ze−4A) . (3.9)

This equation can be used to express φ in terms of A. A direct computation of the off-
diagonal components of the Einstein equation now leads to

mf ′ = ±1 . (3.10)

The sign can actually be absorbed by changing the sign of z; let us pick the sign − for
definiteness. This is solved by mf = c− ∂ze−4A; in other words,

e2φ = e6A

m

(
c− ∂ze−4A

)
. (3.11)

Thanks to this equation and (3.4), one gets that all the components of the Einstein and
the dilaton equations are automatically satisfied.

We have thus obtained a class of supergravity solutions which generalizes the Imamura
class. Let us analyze it a little further. Notice that if c = 0, we exactly recover the
supersymmetric case (2.17). H is modified as well when c is turned on and in particular
it reads

H = 1
2ε

ijkdz ∧ dxi ∧ dxj∂ke−6A+2φ + vol(R3)(∂ze−10A+2φ − c e−6A+2φ) . (3.12)

5If ∂ze−4A = 0, it is easy to check that the system collapses to the trivial solution A = constant.
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Finally, let us consider (3.4); using the definition of φ we get the following PDE

∆3e−4A + 1
2∂

2
ze−8A = −c

(
c− 2∂ze−4A

)
. (3.13)

which is exactly a modification of the Imamura equation (2.18). This is the only PDE one
has to solve for this non-supersymmetric class.

The parameter c leads to a generalization of the supersymmetric Imamura class of
section 2.2; the supersymmetric case is recovered by setting c = 0. Since we have found
this new class by partially keeping a (bi-)spinorial formalism, it is now possible (even if in
principle not necessary) to trace back the supersymmetry-breaking term to a modification
of the pure spinor equations. In particular, doing some reverse engineering, we get that
the modified pure spinor equations for the non-supersymmetric Imamura solution read:

dH(e3A−φΦ+) = 0 , (3.14a)

dH(e2A−φReΦ−) = c

8e8A−2φvol(M4) , (3.14b)

dH(e4A−φImΦ−) = e4A

8 ∗6 λ(F ) . (3.14c)

Equation (3.14c) is unchanged; this was to be expected, since we did not change the
expression of the RR fluxes with respect to the BPS class. The only equation which is
modified is (3.14b), thanks to the introduction of a term proportional to the volume form
of the four-dimensional internal space. This term is controlled by the supersymmetry-
breaking parameter c. Comparing with (2.10), we see that from a d = 4 perspective we
can call this an D-term supersymmetry breaking.

Eq. (3.14) should be used with care. If we take the same pure spinors Φ± as in
the Imamura class, and we change the definition of H as in (3.3), as we have explained,
then (3.14b) is satisfied, and (3.14c) determines all the RR fluxes and hence the modified
PDE (3.13).6

3.2 Larger IIA system

Since the supersymmetric Imamura class is a particular case of the class in section 2.3, one
can wonder if it is possible to break supersymmetry also for the latter.

As we mentioned earlier, the Imamura class is contained in the class of section 2.3
up to two T-dualities. Since vol(M4) in (3.14b) does not contain any legs along the
six-dimensional external space, the effect of the T-dualities is to transform vol(M4) into
vol(M6). For now, we will simply assume that (3.14) is modified to

dH(e3A−φΦ+) = 0 , (3.15a)

dH(e2A−φReΦ−) = h

8 e8A−4φvol(M6) , (3.15b)

dH(e4A−φImΦ−) = e4A

8 ∗6 λ(F ) , (3.15c)

6In the particular case of this section, it is also true that in fact H is determined by (3.14b) uniquely,
and that the RR fluxes are in fact unchanged in their functional dependence from A and φ. These latter
features are not maintained in our examples, but the general idea remains the same.
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remaining agnostic about the function h. The factor e8A−4φ is chosen so that the NSNS
three-form reads, once one has solved (3.15):

H = −1
2ε

ijkdz ∧ dxi ∧ dxj∂kf + vol(R3)(h+ e−µ∂z(e−4A−µf)) , (3.16)

so that the supersymmetry-breaking function h can be directly seen as a modification of
the vol(R3) term in (2.24a).

Since (3.15) doesn’t introduce any variation in the one- and two form equations, the
metric is unchanged compared to the supersymmetric case (2.22). The RR fluxes can be
easily derived from (3.15c); the only modification is

F2 = (∂y2eµdy1 − ∂y1eµdy2) ∧ dz − f−1
(
∂ze−4A + e2µf−1h

)
vol(R2) , (3.17)

while F0 and F4 remain as in (2.24).
Let us now impose the Bianchi identities. Imposing dH = dHF = 0 strongly constrains

the functional form of h:
h = feµc(x1) , (3.18)

as well as giving the PDEs

∂xi

(
f−1

(
∂ze−4A + ceµ

))
= 0 , (3.19a)

∂yi

(
e−µ

(
∂z(fe−4A−µ) + cf

))
= 0 , (3.19b)

which modify (2.25), and

42eµ + ∂z
(
f−1

(
∂ze−4A + ceµ

))
= 0 , (3.20a)

43f + ∂z
(
e−µ

(
∂z(fe−4A−µ) + cf

))
= 0 , (3.20b)

f42e−4A−µ +43e−4A + f−1∂ze−4A
(
e−µ∂z(fe−4A−µ)

)
= −c2 − e4Af−1c∂z

(
e−8A−µf

)
(3.20c)

which modify (2.26). Imposing these PDEs is enough to solve the equation of motion for
H; however, the Einstein and dilaton equations impose the extra constraint

c′ = 0 . (3.21)

So c in (3.18) now becomes a constant.
Summing up all these conditions and using the expression (2.23) of φ in terms of f we

get that we can rewrite (3.15b) in term of c as follows:

dH(e2A−φReΦ−) = − c8e6A−2φvol(M6) (3.22)

where c is now constant. Notice that this is exactly (3.14b) up to two T-dualities.
Let us pause again to stress what (3.22) means, along the lines of the comment in the

last paragraph of section 3.1. We have kept the same pure spinors as in the supersymmetric
class of section 2.3, but we have changed H as in (3.16), which has been further fixed by
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its Bianchi identity as in (3.18), (3.21). Now the usual pure spinor equation (2.9b) gets
modified to (3.22); the new (2.9c) can now be used to derive modified RR fluxes, which
eventually lead to (3.19), (3.20).

Let us also stress that our Ansatz for H was not the most general one, in both the su-
persymmetric and non-supersymmetric case. For example, one can introduce an additional
term governed by the parameter g as following:

H = −1
2ε

ijkdz ∧ dxi ∧ dxj∂kf + vol(R3)(h+ e−µ∂z(e−4A−µf))− gdx1 ∧ vol(R2) (3.23)

and g must be a constant in order to satisfy the Bianchi identity for H. Now F2 becomes

F2 = (∂y2eµdy1 − ∂y1eµdy2) ∧ dz − f−1
(
∂ze−4A + e2µf−1h

)
vol(R2) + gdx2 ∧ dx3 , (3.24)

while the Bianchi identities are all untouched except for (3.20c), which reads:

f42e−4A−µ+43e−4A+f−1∂ze−4A
(
e−µ∂z(fe−4A−µ)

)
= −c2−g2−e4Af−1c ∂z

(
e−8A−µf

)
.

(3.25)
Imposing the Bianchi identities (while keeping c constant), one gets that all the EoMs are
satisfied. Of course the introduction of the extra parameter g also induces a modification
of the pure spinor equations, and in particular the second one becomes:

dH(e2A−φReΦ−) = −c− g8 e6A−2φvol(M6) . (3.26)

Notice that by setting c = g we can also choose to restore supersymmetry.

3.3 General R1,3 × S2 system

Inspired by the previous cases, let us see if it is possible to extend the supersymmetry
breaking procedure to other classes in type IIA supergravity.

The presence of an identity structure has played an important role in the previous
discussion, since it allowed to explicitly compute the EoMs and use them to constrain
the solution.

Natural candidates are the backgrounds contained in the R1,3 classification of [7, 20],
where the internal space is taken to be a warped product of a two-dimensional sphere with
an unconstrained four-dimensional manifold, M6 = S2×M4. In [18] it was proven that the
complete list of possible classes of this type in type II theories can be obtained, through a
web of duality, starting from two master classes: a conformal Calabi-Yau case in type IIB,
which we analyze in the next section, and the IIA solution discussed in [7, appendix C].

We did not describe this class in section 2 because it has already appeared in [7, 20];
so let us quickly review it here. Just like for the Imamura case, it is generated by an
SU(2)-structure where the vielbein in (2.7) is given by

E1 = iw , E2 = −eCd(α1 + iα2) + (α1 + iα2)v2 , E3 = eCdα3 − α3v2 + iv2 , (3.27)

where w = w1 + iw2 and v = v1 + iv2 are a complex vielbein on M4 while αi are the
embedding coordinates of S2 in R3, which must satisfy α2

1 +α2
2 +α2

3 = 1. With this choice,
the internal metric reads

ds2(M6) = e2Cds2(S2) + ds2(M4) . (3.28)
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Inserting this expression in (2.9) one gets that the identity structure on M4 can again
be rewritten in terms of local coordinates:

v1 = e2A−φdz +B0e−2A+φdr , v2 = −e−2A+φdr , w = e−A(dy1 + idy2) , (3.29)

and the function C is given by
r = e2A+C−φ . (3.30)

The names of these coordinates have been chosen so as to make contact with the notation
in previous subsections, with r being the radius of R3

x.
These equations imply the following form of the metric:

ds2 = e2Ads2(R1,3) + e−4A+2φ
(
dr2 + r2ds2(S2)

)
+ e−2A

(
dy2

1 + dy2
2

)
+ e4A−2φ

(
dz +B0e−4A+2φdr

)2
.

(3.31)

The NSNS two-form potential B can be written as

B = r2e−4A+2φB0Vol(S2) , (3.32)

where B0 should satisfy

∂r
(
e2A−2φ

)
= ∂z

(
e−2AB0

)
, (3.33a)

∂r
(
r2e−2AB0

)
= ∂z

(
r2e−6A+2φ(1 +B2

0)
)
. (3.33b)

The RR-fluxes are given by

F0 =0 ,

F2 =
(
∂y2(e2A−2φ)dy1 − ∂y1(e2A−2φ)dy2

)
∧ dz − ∂z(e−4A)dy1 ∧ dy2

+
(
∂y2(e−2AB0)dy1 − ∂y1(e−2AB0)dy2

)
∧ dr , (3.34)

F4 =B ∧ F2 + r2
[
− ∂r(e−4A)dy1 ∧ dy2 −

(
∂y2(e−2AB0)dy1 − ∂y1(e−2AB0)dy2

)
∧ dz

+
(
∂y2(e−6A+2φ(1 +B2

0))dy1 − ∂y1(e−6A+2φ(1 +B2
0))dy2

)
∧ dr

]
∧Vol(S2) .

Finally the Bianchi identities for the fluxes impose the following PDEs:

∂2
y1(e2A−2φ) + ∂2

y2(e2A−2φ) + ∂2
z (e−4A) = 0 ,

∂2
y1(e−2AB0) + ∂2

y2(e−2AB0) + ∂z∂r(e−4A) = 0 , (3.35)
∂2
y1(r2e−6A+2φ(1 +B2

0)) + ∂2
y2(r2e−6A+2φ(1 +B2

0)) + ∂r(r2∂r(e−4A)) = 0 .

We now try to break supersymmetry in the supersymmetric class we have just reviewed.
Following the strategy in the previous subsections, we again choose to impose all the one-
and two-form conditions which determine the identity structure, and therefore we fix the
metric to be as (3.31). Moreover, taking inspiration from the modified pure spinor system
in the Imamura class (3.14), we impose equations (2.9a) and (2.9c), which are enough to fix
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fluxes and moreover impose the first BPS condition of (3.33). Thanks to these constraints,
we have that only the six-form part of (2.9b) is undetermined, just like in (3.15).

This equation is necessary if one wants to impose supersymmetry, but it is not needed
to solve EoMs. We claim that we can get a solution, in general non-supersymmetric, just
by imposing the Bianchi identities and the pure spinor equations without the six-form part
of (2.9b), provided a certain condition on H is satisfied.

The proof of this requires heavy computations, which we will not report here. The
condition on H is that it should have at least a leg along dy1, dy2: in other words, recall-
ing (3.32),

∂y1,y2(e−4A+2φB0) (3.36)

should not be both zero. Let us sketch an explanation of why this condition is needed.
Of course it is not possible to solve in general Bianchi identities and the first BPS condi-
tion (3.33) since, even in the supersymmetric case, this class contains a lot of possible and
different subclasses (for example all the AdS6 and AdS7 solutions up to T-dualities). One
can try to re-express the EoMs in terms of the Bianchi identities, since both are a system
of second order PDEs in terms of the functions A, φ,B0. For example, it is easy to check
that the Bianchi identities imply the EoM for B; but not the ones for the dilaton and the
metric. However, the Bianchi identities do imply some third-order consistency conditions,
which can be obtained by deriving the Bianchi themselves and the first of (3.33). In fact
we found that, in a particular linear combination of these third-order equations, all third
order derivatives cancel; this gives an equation of the form

(a1∂y1(e−4A+2φB0) + a2∂y2(e−4A+2φB0))S = 0 , (3.37)

where S only contains first and second derivatives and a1, a2 are arbitrary functions. It
turns out that the Bianchi equations together with S = 0 now do imply the remaining
EoMs. However, if (3.36) are both zero, then the consistency constraint (3.37) is automat-
ically satisfied without imposing S = 0.

To summarize, the system

dH(e3A−φΦ+) = 0 , (3.38a)

dH(e2A−φReΦ−) = hvol(M6) , (3.38b)

dH(e4A−φImΦ−) = e4A

8 ∗6 λ(F ) , (3.38c)

where this time h is a general function, together with the Bianchi identities, implies all the
equations of motion, provided (3.36) are not both zero.

One might get the impression that this result is in tension with the discussion in
section 3.2. While there supersymmetry breaking was regulated by the constant c in (3.22),
in (3.38) we have the freedom of a function h. But notice that, even if in the discussion
of section 3.2 we impose a rotational symmetry in the R3

x directions, we do not get a
particular case of the discussion of this section. Indeed H in (3.16) has no legs along R2

y,
unlike d(3.32). This manifests itself in the fact that in section 3.2 the equations of motion
are not all implied by the Bianchi identities, unless c is a constant.
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It would be interesting to understand if (3.38) is valid also without the presence of the
S2, again with the condition that (3.36) is non-zero. However the introduction of the term
g in (3.23), which explicitly breaks the S2 isometries, doesn’t allow to relax in general the
six-form condition but just the specific modification in equation (3.26). This suggests that
to generalize this result without assuming the presence of the S2 some other condition on
H is needed.

We do not give a detailed analysis of (3.38) here; imposing the Bianchi identities gives
rise to a plethora of possibilities. For the remaining part of this section, we focus on an
example. We will explicitly turn on a supersymmetry breaking term and we will show
how this breaks the BPS conditions and changes the Bianchi identities. In principle any
variation is allowed, but not all of them lead to a nice-looking solution.

Taking again inspiration from (3.14),7 let us postulate

dH(e3A−φΦ+) = 0 , (3.39a)

dH(e2A−φReΦ−) = c

8e6A−2φvol(M6) , (3.39b)

dH(e4A−φImΦ−) = e4A

8 ∗6 λ(F ) . (3.39c)

As we anticipated, (3.33b) is modified by the introduction of a supersymmetry-
breaking term:

1
x2

2
∂r(r2e−2AB0) = ∂z(e−6A+2Φ(1 +B2

0))− c . (3.40)

Even if the pure spinor equation which defined the fluxes is untouched, the modification of
the BPS condition eventually leads to a different expression also for the RR-field

F0 = 0 .
F2 = (∂y2e2A−2φdy1 − ∂y1e2A−2φdy2) ∧ dz +

(
∂y2(e−2AB0)dy1

− ∂y1(e−2AB0)dy2
)
∧ dr −

(
∂z(e−4A)− ce2A−2φ)dy1 ∧ dy2 ,

F4 =B ∧ F2 − r2
((
∂y2(e−2AB0)dy1 − ∂y1(e−2AB0)dy2

)
∧ dz

+
(
∂y2(e−6A+2φ(1 +B2

0))dy1 − ∂y1(e−6A+2φ(1 +B2
0))dy2

)
∧ dr

−
(
∂r(e−4A)− ce2A−2φ)dy1 ∧ dy2

)
∧Vol(S2) ,

(3.41)

and, as a consequence, of the Bianchi identities:

∂2
y1(e2A−2φ) + ∂2

y2(e2A−2φ) + ∂2
z (e−4A) = c ∂ze2A−2φ, (3.42a)

∂2
y1(e−2AB0) + ∂2

y2(e−2AB0) + ∂z∂r(e−4A) = c ∂re2A−2φ, (3.42b)

∂2
y1(r2e−6A+2φ(1+B2

0))+∂2
y2(r2e−6A+2φ(1+B2

0))+∂r(r2∂r(e−4A)) = c ∂r(r2e−2AB0).
(3.42c)

7In particular, from the fact that the Imamura solution with spherical symmetry can be obtained from
this class after two T-dualities [18].
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We will not attempt a detailed analysis of these PDEs, but hopefully they do illustrate
that there are many possible ways of breaking supersymmetry even in the master class
discussed in [7, appendix C].

3.4 Comparison with the conformal Calabi-Yau class

What we have done in the previous sections has a famous analog in the type IIB conformal
Calabi-Yau class [21–24]. In this section we will review this class using the bi-spinorial
formalism following [4] and we will show how it relates to the supersymmetry-breaking
technique we have seen so far.

The conformal Calabi-Yau case is obtained by taking an SU(3)-structure, and hence
by fixing k‖ = 0 and k⊥ = −i in (2.7). Defining

Ω = e3A−φE1 ∧ E2 ∧ E3 , J = i
2e2A−φ

(
E1 ∧ E1 + E2 ∧ E2 + E3 ∧ E3

)
, (3.43)

the pure spinor equations (2.9) reduce to:

dJ = dΩ = 0 , H ∧ Ω = H ∧ J = 0 ,

∗6f1 = −1
2e−4Ad(eφJ2) , ∗6f3 = e−φH , ∗6f5 = e−4Ade−4A−φ .

(3.44)

The conditions dΩ = 0 and dJ = 0, together with the compatibility condition J ∧ Ω = 0,
imply that the internal manifold is Kähler. However notice that the Calabi-Yau condition
is not met due to a conformal factor: J3 = ie−φ 3

4Ω ∧ Ω. Yau’s theorem still implies the
existence of a solution, however.

Let us rewrite the three-form field using the SL(2,R) covariant formalism and define

G = f3 − ie−φH . (3.45)

Thanks to (3.44), we see that G is imaginary self-dual:

∗6 G = iG . (3.46)

The action of the Hodge-star operator can be worked out using standard SU(3)-
structure identities:

∗6 Ω = −iΩ , ∗6α0
(2,1) = iα0

(2,1) , ∗6(α(0,1) ∧ J) = iα(0,1) ∧ J , (3.47)

where the superscript 0 indicates that the form is primitive (α0
(2,1) ∧ J = 0) while the

subscript (m,n) indicates the number of holomorphic and anti-holomorphic components
respectively. Since {Ω, α0

(2,1), α(0,1) ∧ J} span the space of all possible imaginary-self-dual
three-forms, G must be a linear combination of these three. However, the supersymmetry
constraints H ∧ J = H ∧ Ω = 0 in (3.44) imply that the components proportional to Ω
and α(0,1) ∧ J must be set to zero, which means that G is (2, 1) and primitive in order to
preserve supersymmetry.
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However, in [22], it was discovered that the imaginary-self-duality condition (3.46) is
enough to drop G out from all the EoM, and therefore we can find non-supersymmetric
solutions just by adding to G a (0, 3) or a α(0,1) ∧ J component:

G = GBPS + g Ω̄ + α(0,1) ∧ J . (3.48)

In terms of pure spinor equations, these two additional components arise from relaxing
the six-form part of (2.9a) and the five-form part of (2.9b). While the gΩ̄ possibility has
been widely used, the α(0,1) ∧ J component is usually not considered much because on a
compact Calabi-Yau there are no harmonic forms of this type, except for the case of a T 6

or T 2 ×K3. This second more exotic possibility is more similar to the ones we considered
in IIA, since it arises from modifying the top-form of (2.9b).

4 Examples

In this section we will discuss some particular solutions. Specifically, we are mostly inter-
ested in compact solutions which overcome the no-go theorem of [25]; we will see that this
will be possible thanks to the presence of localized O-plane sources. We will focus on the
Imamura class of section 2.2 and on its supersymmetry-breaking counterpart 3.1. In both
cases the problem of finding solutions is reduced to a single nonlinear PDE. To the best of
our knowledge, there are no general existence and uniqueness theorems for them. We will
hence consider a few possible ansaetze.8

4.1 Separation by sum

We reproduce here the Imamura equation (2.18)

4S + 1
2∂

2
zS

2 = 0 . (4.1)

where we have now defined S = e−4A.
In this section we consider an Ansatz where

S = S1(z) + S3(x1, x2, x3) . (4.2)

Eq. (4.1) immediately imposes that S1 should be linear; moreover, (2.17) fixes its slope in
terms of m. We define an integration constant by setting e−6A+2φ = g2

s , and we obtain

e−4A = −mg2
sz + S3(x1, x2, x3) . (4.3)

Eq. (4.1) then reduces to
43S3 +m2g4

s = 0 . (4.4)

If one is limited by SO(3)-invariance as in [5], then S3 should only depend on r = (xixi)1/2,
and (4.4) becomes an ODE; this results in

e−4A = 1−mg2
sz −

m2g4
s

6 r2 + Q

2r . (4.5)

8Some of the results in this subsection have been obtained in discussions with G. B. De Luca. We also
thank P. Tilli for correspondence about the general theory of the relevant equations.
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This reproduces the solution in [9, (26)], [5, (5.7)]. Strictly speaking this does not solve (4.1)
but its analogue with a delta function in r = 0. Since (4.1) arises in fact from the Bianchi
identity dF2 − F0H, this simply signals the presence of a source.

In light of this, it is tempting to interpret (4.5) as a D6 or O6 in presence of F0, perhaps
sourced by a far away D8 transverse to z. Indeed in [5] different copies of (4.5) were pieced
together, to obtain a solution with a D8 source. The position of that source was curved;
this might just be interpreted as an example of the usual bending of branes. However, the
interpretation of (4.5) does offer a few puzzles: notice for example that e−4A < 0 for large
r. If we take Q < 0 to describe an O6, e−4A also becomes negative at small r; while the
presence of such a “hole” is standard for O6-planes, it is less so that its size depends on z,
as it does in this case.9

Since in section 2.2 we have derived the Imamura equation (4.1) without the SO(3)
symmetry assumption of [5], we can now obtain more general solutions by solving (4.4)
without that symmetry. While we are at it, we can try to obtain a compact internal space
M4. Let us then periodically identify the xi ∼= xi + R to describe a torus T 3, and let us
introduce a source σ = 2πQδR(x1)δR(x2)δR(x3), where

δR(x) ≡
∑
k∈Z

δ(x− kR) = 1
R3

∑
k∈Z

exp
[2πi
R
kx

]
(4.6)

is the delta function on an S1. Then (4.4) is modified to

4S3 = −m2g4
s − σ . (4.7)

Integrating this over the T 3 we obtain 2πQ = −m2g4
sR

3; this tells us the source has negative
charge, and should be interpreted as an O6-plane. With this constraint, the combination
on the right-hand side of (4.7) is exactly such as to subtract the zero mode in the sum (4.6),
and the solution to S3 is10

S3 = s0 + Q

2πR
∑

~k∈Z3−{0}

1
k2 exp

[2πi
R
~k · ~x

]
, (4.8)

where k2 ≡ ~k ·~k. We can now make the solution fully compact by taking z to be periodically
identified to describe a circle S1, with z ∼= z + 2z0; in z ∈ [z, z0] we take the solution as
in (4.3), while in z ∈ [−z0, 0] we take (4.3) with m→ −m. At z = 0 and z = z0, the value
of F0 jumps; these loci can be interpreted as O8±-planes, a bit as in [27]. F0 = m is fixed
in the first copy of the solution to be m = 4−nD8

2π .
The solution represents now the backreaction on a T 4 with two O8-planes and an

O6-plane. The metric is

ds2
10 = S1/2ds2(R1,5) + S1/2g2

sdz2 + S−1/2g2
sds2(T 3) , (4.9)

9Perhaps this should not be cause for concern. The potential uneasiness comes from the fact that in many
situations, especially for numerical solutions, one often recognizes the presence of an O6 by the behavior of
the solution at the boundary of the hole, rather than at the “center” (in this case r = 0) where eA < 0 and
the solution is unphysical.

10More rigorous expressions for this solution exist; see for example [26, section 3.2] for a recent discussion.
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reminiscent of a D6/O6 solution in flat space. Notice however that there is a non-zero
H flux; otherwise having an O6-branes without D6-branes would violate the F2 Bianchi
identity. Indeed from (2.15) we have

F0 = m, F2 = 1
2ε

ijkdxi ∧ dxj∂xk
S3 , H = −mg4

svol(T 3) . (4.10)

Flux quantization for H is 4π2N ≡
∫
T 3 H, and gives n0N = Q, which is −2 for an O6-

plane, where F0 = m = n0
2π , as familiar from other solutions with these ingredients. The

parameters gs and s0 are still free. Taking gs � 1 and s0 � 1 makes the solution weakly
coupled almost everywhere.

This solution appears in a slightly different guise in [10, 11]; there it is interpreted as a
domain wall for a seven-dimensional compactification relative to a vacuum solution Mink7
of [28].

4.2 Separation by product

Another possibility is to split

S = s(z)S3(x1, x2, x3) . (4.11)

Eq. (4.1) now implies
43S3 = kS2

3 , ∂2
zs

2 = −2ks . (4.12)

The equation on s can be solved analytically by exchanging the role of variable and function:
we get z′(s) = −

√
3s

2
√
c−ks3 for some constant c. For the equation on S3, there is an existence

theorem [29, section 8.5.2]: a non-zero solution exists, guaranteeing the existence of a
solution on a domain U ⊂ R3 with boundary condition S3 = 0 at the boundary ∂U . Since
we need S > 0, we have to take k < 0. If U is taken to be a disk, it is also easy to
study the solution numerically. Optimistically, such a solution might be interpreted as the
presence of an O6 boundary closing the disk into a three-sphere. We will not investigate
this further here.

4.3 Inverse hodograph transformation

A common way to linearize a nonlinear PDE is to exchange the role of dependent and
independent variables.

We will consider an Ansatz where two of the three coordinates of R2 are isometries,
say x2, x3. Then S = S(x1, z), and (4.1) reduces to11

∂2
x1S + 1

2∂
2
zS

2 = 0 . (4.13)

We now perform the change of variables

x1 ≡ ∂UV , z ≡ ∂SV , . (4.14)
11Eq. (4.13) can also be obtained by imposing time-independence on the dispersionless KP equation,

which plays a geometrical role in [30].
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This turns (4.13) to

∂2
SV + S∂2

UV = 0 . (4.15)

which is now linear. Notice that now S has become one of the coordinates. Eq. (4.15) is
known as Tricomi equation. It changes type from hyperbolic in the region S < 0 to elliptic
in the region S > 0. It plays a role in modeling the transition from subsonic to transonic
regime in fluid dynamics. For us S = e−4A should be positive, but this transition could
play a role if one wanted to analytically continue a solution inside the hole of an O6-plane,
although this is of dubious physical significance and will not be attempted here.

In the redefinition (4.14), the old coordinates x1 and z are simply the gradient of V
with respect to the new variables S and U . Such a transformation is often done in the
reverse, i.e. the new variables are taken to be the gradient of the function in the PDE with
respect to the old variables; that is called sometime a “hodograph” transformation. A very
similar trick was done in [31] to linearize the 2d Toda equation 42S + ∂2

zeS = 0 which
appears in the classification of N = 2 AdS5 solutions [12], and in [32] for the 1d Toda
equation. Eq. (4.15) is also a limit of the Chaplygin equation, which can be itself derived
as a hodograph transform of Euler’s equation for an irrotational fluid.

Solutions to the Tricomi equation (4.15) are easy to find. For example we can use
separation of variables to find

V = sin(U/R)Ai(R−2/3S) . (4.16)

There also exist many other solutions that look more elementary; for example we can take
an e−ipU instead of the sine and integrate over p to obtain V = S(9U2 + 4S3)−5/6. The
similar-looking solution V = (9U2 +4S3)−1/6 can be found in [19, eq. (12)]. There are also
many polynomial solutions.

In the new coordinates the metric reads

ds2 = 1√
S

(
ds2(R1,5) + 1

F0
∂2
UV

(
ds2(T 2)

(∂2
UV )2 + S−1(∂S∂UV )2 + (SdS2 + dU2)

))
(4.17)

and the dilaton is determined by

e2φ = S−3/2∂2
UV

F0(S(∂2
UV )2 + (∂S∂UV )2)

. (4.18)

It would be interesting to be able to make (4.17) compact. One possibility would be
to periodically identify U ∼ U + 2πR; this works for example with the solution (4.16)
above. However at this point it is not too clear how to make S compact. It is natural to
try an approach like that of section 4.1, where we glue two copies of one solution along
two O8-planes. However (4.1) was invariant under z → 2z0 − z, whereas now (4.15) is not
invariant under S → 2S0− S, as one would need for this strategy to work. There might of
course be other ideas to make (4.17) compact.
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4.4 Breaking supersymmetry

In the previous subsections we have considered several strategies to attack (4.1). Hopefully
that demonstrates that there is a potentially rich array of possibilities already in this case
alone, which was the simplest where we broke supersymmetry in section 3.

Now we are going to apply the same strategy to the supersymmetry-breaking counter-
part of (4.1), which we reproduce here:

43S + 1
2∂

2
zS

2 + c(c− 2∂zS) = 0 , (4.19)

where again we defined S = e−4A.
So we start with the Ansatz (4.2): S1 is restricted to be linear, (3.11) fixes the slope,

and we obtain
S = (c−mg2

s)z + S3(x1, x2, x3) , (4.20)

which replaces (4.3). Now (4.19) reduces again to (4.4), with c canceling out. From here
the discussion is similar to the one in section 4.1. For example in the compact case we
can keep for S3 the same solution to (4.4). What changes is the expression of e−4A = S,
which is modified as in (4.20), and consequently the expression of the dilaton, which is
again fixed by e−6A+2φ = g2

s . In particular now the coefficient of z in S can be considered
independent from gs.

An interesting particular case which becomes possible with the introduction of the
parameter c is

c = mg2
s . (4.21)

Looking at (4.9) and (4.20), we see that nothing now depends from the coordinate z. Hence
a Mink7 emerges, and z is an isometric direction. We can T-dualize along it and reduce
to type IIB. We can moreover T-dualize along the two spatial directions y1, y2 of R1,5.
After this chain of dualities we have a Mink4 solution where H = c2

mvol(T 3) remains the
same; F0 = m gives rise to F3 = mdz ∧ dy1 ∧ dy2; and F2 and F8 both contribute to
F5 = (1 + ∗)vol(R1,3) ∧ de−4A, where the Hodge star must be taken over the full ten-
dimensional space-time. These fluxes are exactly the ones of the conformal Calabi-Yau
class, as one can see from (3.44). Supersymmetry is broken by the J ∧ α0,1 term we saw
in (3.48).

Unfortunately the strategies of sections 4.2 and 4.3 don’t work for (4.19), but they
were already less successful for the supersymmetric case (4.1).
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