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ON THE MOORE-GIBSON-THOMPSON EQUATION
WITH MEMORY WITH NONCONVEX KERNELS

MONICA CONTI, LORENZO LIVERANI AND VITTORINO PATA

Abstract. We consider the MGT equation with memory

∂tttu+ α∂ttu− β∆∂tu− γ∆u+

∫ t

0

g(s)∆u(t− s)ds = 0.

We prove an existence and uniqueness result removing the convexity assumption on the
convolution kernel g, usually adopted in the literature. In the subcritical case αβ > γ, we
establish the exponential decay of the energy, without leaning on the classical differential
inequality involving g and its derivative g′, namely,

g′ + δg ≤ 0, δ > 0,

but only asking that g vanishes exponentially fast.

1. Preamble: The MGT Equation

Given a smooth bounded domain Ω ⊂ R
3, the Moore-Gibson-Thompson (MGT) equation

is the third-order PDE

(1.1) ∂tttu+ α∂ttu− β∆∂tu− γ∆u = 0,

ruling the evolution of the unknown variable u = u(x, t) : Ω × [0,∞) → R. Here, −∆ is
the Laplace-Dirichlet operator, while α, β, γ > 0 are fixed structural parameters.

From the physical viewpoint, (1.1) is a wave-type equation arising in the context of
acoustic wave propagation with the so-called second sound, being u the acoustic pressure,
where the paradox of the infinite speed of propagation is eliminated by replacing the
Fourier law by the Maxwell-Cattaneo one. Such a feature explains the presence of the
third-order derivative in time. The model equation first appeared in a very old paper
of Stokes [28], but it has received a considerable attention only in recent years, where a
number of authors devised many possible applications in nonlinear acoustic and in thermal
relaxation in viscous gases and fluids (see, e.g., [12, 13, 25, 29]).

The mathematical analysis of (1.1) is very intriguing, and it has been carried out in
several papers (see [2, 3, 9, 14, 15, 16, 17, 18, 24]). For all values of the positive parameters
α, β, γ, the (linear) equation turns out to generate a strongly continuous semigroup of
solutions on the phase space

H = H1
0 (Ω)×H1

0 (Ω)× L2(Ω).
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Here, L2(Ω) is the Lebesgue space of square summable functions on Ω, whereas H1
0 (Ω) is

the Sobolev space of square summable functions, along with their derivatives, with null
trace on the boundary ∂Ω. However, the asymptotic behavior of the solutions is strongly
influenced by the stability number

κ = β −
γ

α
.

Indeed, the picture is the following:

• If κ > 0 the solutions decay exponentially fast.

• If κ = 0 the energy of the system is conserved.

• If κ < 0 there are solutions with an exponential blow up.

For this reason, the regimes κ > 0, κ = 0 and κ < 0 are usually referred to in the
literature as subcritical, critical and supercritical, respectively. Quite interestingly, in the
subcritical case κ > 0, equation (1.1) serves also as a model for the description of linearly
viscoelastic solids (see [6, 9]).

2. Introduction

Lately, the following integral relaxation of the MGT equation (1.1) has been proposed:

∂tttu(t) + α∂ttu(t)− β∆∂tu(t)− γ∆u(t) +

∫ t

0

g(s)∆w(t− s)ds = 0,

where w is a linear combination of u and ∂tu, and g is a positive decreasing kernel.
The convolution term has been added in order to take into account molecular relaxation
phenomena, which introduce a sort of delay in the dynamics, producing nonlocal effects in
time [21, 26]. Loosely speaking, the outcome is that at any time t the system keeps memory
of (and it is influenced by) its past evolution. Depending on the physical properties of the
medium and the environment, the variable w(t) can fall into one of the following types:

w(t) =











u(t),

∂tu(t),

λu(t) + ∂tu(t), λ > 0.

The three situations above are usually named memory of type I, type II and type III,
respectively. For the cases of memory of type II and III, we address the reader to the
works [1, 8, 20].

In the present paper, we are interested to the case of memory of type I, which is
in a sense the most natural, and certainly the one that has received greater attention.
Accordingly, our equation reads

(2.1) ∂tttu(t) + α∂ttu(t)− β∆∂tu(t)− γ∆u(t) +

∫ t

0

g(s)∆u(t− s)ds = 0.

The two main issues concerning (2.1) are:

• Existence and uniqueness of weak solutions in the phase space H.
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• Uniform decay properties of the associated natural energy, given by1

E(t) = ‖∇u(t)‖2 + ‖∇∂tu(t)‖
2 + ‖∂ttu(t)‖

2 +

∫ t

0

−g′(s)‖∇u(t)−∇u(t− s)‖2ds.

Evidently, suitable hypotheses on the kernel g have to be made. The basic assumptions
on g, employed with no exception in the literature, are: g ∈ C1(R+) with g ≥ 0 and
g′ ≤ 0, both summable. Besides, the total mass of g is required to be strictly less than γ.

Within the further assumption that g is convex, existence and uniqueness of solutions
is proved in [20] for the subcritical case κ > 0, and in [1] for the critical case κ = 0 (but
asking also (2.2) below). Actually, by means of a “pumping” technique introduced in [9],
it is not hard to extend the result for all negative values of the stability number κ, hence
covering the supercritical case as well. In fact, the convexity of g plays a crucial role in
the well-posedness analysis. One exception is the paper [19] (see also [23]), where the
convexity of g is not required, but it is replaced by the rather restrictive condition

g(0) < α2
κ,

which clearly can take place only in the subcritical regime κ > 0.
As far as the uniform decay of the energy is concerned, here we are interested to ana-

lyze the exponential case, although other decay patterns are possible (such as polynomial),
depending on the form of g. A first observation is that the memory term in (2.1) intro-
duces an extra dissipation with respect to the one of the MGT equation (1.1). Hence, in
principle, one could expect (2.1) to exhibit stronger stability properties than (1.1). For
instance, one could think that the critical regime κ = 0 is driven into subcritical when
memory is added. This is utterly false (unless −∆ is replaced by a bounded operator),
even in the simplest possible case of the exponential kernel. A counterexample in that
direction is given in [7]. Accordingly, in order to hope for exponential stability, we shall
confine ourselves to the subcritical case κ > 0.

The exponential decay at infinity of the energy E(t) is always proved within the classical
assumption

(2.2) g′(s) + δg(s) ≤ 0,

for some δ > 0 (see [1, 19, 20, 22, 23]), implying in particular the exponential decay of
the kernel

g(s) ≤ g(0)e−δs.

The differential inequality (2.2) is to some extent unsatisfactory, for it imposes severe
restrictions on the shape of the kernel, whereas the exponential decay of E(t) should be
reasonably expected if g is exponentially decaying solely, with no further information.

In light of the discussion above, the aim of the present paper is twofold:

• Prove an existence and uniqueness result removing the convexity assumption on g,
and requiring in place a much weaker condition: roughly speaking, the derivative
g′ cannot be “too small” where g is concave down.

• Prove the exponential decay of the energy in the subcritical regime κ > 0, assum-
ing only that g is controlled from above by a negative exponential.

1Here, ‖ · ‖ denotes the usual norm in L2(Ω) or in [L2(Ω)]3.



4 M. CONTI, L. LIVERANI AND V. PATA

Remark 2.1. In fact, by applying the trick devised in [9], our proof of the existence and
uniqueness result can be immediately extended to cover all the values of κ.

We finally mention that the idea of studying the exponential decay of the energy re-
laxing condition (2.2) has been first devised in the paper [4], in the context of linear
viscoelasticity. Nonetheless, our techniques can be applied to obtain also decay types
other than exponential (see e.g. [19, 22]), without assuming a differential inequality on g,
but only requiring a proper control from above, along the line of the recent work [5].

Plan of the paper. In the next Section 3 we stipulate the general assumptions, defining
the proper functional setting for our problem. The main results are stated in Section 4.
The remaining of the paper is devoted to the proofs. In Section 5 we study the semigroup
of right translations on a suitable memory space. This object is exploited in Section 6,
in the analysis of a certain family of approximated problems, depending on a smoothing
parameter ̺ > 0. The well-posedness of the ̺-problems, as well as their exponential
stability, are discussed in Sections 7, 8 and 9. In the final Section 10 we perform the limit
̺ → 0, concluding the proofs of the main results.

3. Functional Setting and Notation

Geometric spaces. Let (H, 〈·, ·〉, ‖ · ‖) be a real Hilbert space, and let A : H → H be
a strictly positive selfadjoint operator with domain D(A) ⊂ H . For σ ∈ R, we define the
hierarchy of (continuously) nested Hilbert spaces

Hσ = D(Aσ/2),

endowed with the scalar products and norms

〈u, v〉σ = 〈Aσ/2u,Aσ/2v〉 and ‖u‖σ = ‖Aσ/2u‖.

The index σ appearing in the scalar products and norms will be always omitted whenever
zero. For σ > 0, it is understood that H−σ denotes the completion of the domain, so that
H−σ is the dual space of Hσ. The symbol 〈·, ·〉 will also be used to denote the duality
pairing between H−σ and Hσ. Finally, we introduce the phase space of our problem,
namely, the product Hilbert space

H = H1 ×H1 ×H,

with the usual product norm

‖(u, v, w)‖2H = ‖u‖21 + ‖v‖21 + ‖w‖2.

Remark 3.1. For the concrete equation (2.1) of the previous section, A is the Laplace-
Dirichlet operator −∆ on H = L2(Ω), while H1 = H1

0 (Ω) and H2 = H2(Ω) ∩H1
0 (Ω).

Properties of the memory kernel. We assume that the memory kernel g is a nonnull
function defined on R

+ = (0,∞) satisfying the following set of hypotheses:

(g1) g and its derivative g′ are summable and absolutely continuous on R
+. Besides,

κ =

∫

∞

0

g(s)ds < γ.
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(g2) g(s) ≥ 0 and g′(s) ≤ 0 for every s > 0.

(g3) ∃ δ > 0 such that for a.e. s > 0

(α− δ)g′(s)− g′′(s) ≤ 0.

Without loss of generality we may (and do) assume δ < α.

Remark 3.2. Condition (g1) implies that

g(0) = lim
s→0

g(s) =

∫

∞

0

−g′(s)ds < ∞.

Remark 3.3. The derivative g′ can be unbounded about zero. In addition, condition (g3)
along with the fact that g′ is summable yield

lim
s→∞

g′(s) = 0.

The proof of this limit is a nice real analysis exercise, and is left to the interested reader.
Besides, knowing that g′ is differentiable almost everywhere, (g3) is completely equivalent
to require

(3.1) − g′(s+ t) ≤ −g′(s)e(α−δ)t,

for all s > 0 and t ≥ 0. Indeed, one implication follows from the Gronwall lemma, whereas

the converse is proved by performing the limit of the quotient g′(s+t)−g′(s)
t

as t → 0+.

Example 3.4. Taking without loss of generality α − δ = 1 and γ large enough, the
memory kernel

g(s) =
1

37
e−s

[

148 + 6 cos 6s+ sin 6s
]

is easily seen to satisfy (g1)-(g3). Indeed,

g′(s)− g′′(s) = −e−s
[

8 + 2 sin 6s− 6 cos 6s
]

≤ 0.

However, its derivative
g′(s) = −e−s

[

4 + sin 6s
]

is oscillating all over R+. Accordingly, g(s) is not convex, and not even ultimately convex
as s → ∞.

1 2 3 4
s

0.2

0.4

0.6

0.8

1.0

g(s)

1 2 3 4
s

-4

-3

-2

-1

g�(s)

fig. 1 Portraits of g(s) and g′(s)
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4. Statement of the Main Results

Let (g1)-(g3) hold. In greater generality, within the subcritical condition

(4.1) κ = β −
γ

α
> 0,

we will consider for t > 0 the equation

(4.2) ∂tttu(t) + α∂ttu(t) + βA∂tu(t) + γAu(t)−

∫ t

0

g(s)Au(t− s)ds = 0,

subject to the initial conditions

(4.3)











u(0) = u0,

∂tu(0) = v0,

∂ttu(0) = w0,

where (u0, v0, w0) is an arbitrarily given vector of H.

Definition 4.1. A function u is said to be a weak solution to problem (4.2)-(4.3) on the
time interval [0, T ] if:

(i) (u, ∂tu, ∂ttu) ∈ C([0, T ],H);

(ii) the initial conditions (4.3) are satisfied; and

(iii) for every test function ζ ∈ H1 and a.e. t ∈ [0, T ],

〈∂tttu(t), ζ〉+ α〈∂ttu(t), ζ〉+ β〈∂tu(t), ζ〉1 + γ〈u(t), ζ〉1 −

∫ t

0

g(s)〈u(t− s), ζ〉1ds = 0.

We also define the corresponding energy by

(4.4) E(t) = ‖u(t)‖21 + ‖∂tu(t)‖
2
1 + ‖∂ttu(t)‖

2 +

∫ t

0

−g′(s)‖u(t)− u(t− s)‖21ds.

The first theorem concerns with the well-posedness of the problem. As previously
mentioned in the Introduction, such a result is not obvious at all, due to the lack of
convexity of the memory kernel g.

Theorem 4.2. For every set of initial data (u0, v0, w0) ∈ H, problem (4.2)-(4.3) admits a
unique global solution (i.e., defined for all T > 0) in the sense of Definition 4.1. Moreover,
there exists M ≥ 1, independent of the initial data, such that

(4.5) E(t) ≤ ME(0).

The next result is the exponential decay of the energy. We remark that such a decay
is obtained under the sole assumption that the memory kernel is exponentially decaying
as well.

Theorem 4.3. Assume that there exist Mg > 0 and ωg > 0 such that

(4.6) g(s) ≤ Mge
−ωgs.

Then there exist M ≥ 1 and ω > 0, both independent of the initial data, such that the
energy fulfills the exponential decay estimate

(4.7) E(t) ≤ ME(0)e−ωt.
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The kernel g of Example 3.4, although not convex, fulfills the condition (2.2) employed
in the earlier literature. Hence, in particular, it fulfills (4.6), so that Theorem 4.3 applies.
Nonetheless, it is possible to exhibit a nonconvex g satisfying (g1)-(g3) and (4.6), but
not (2.2), as the following construction shows.

Example 4.4. Without loss of generality, condition (g3) is here assumed with α− δ = 1.
Besides, we take γ ≥ 1. Let f be an absolutely continuous positive function satisfying
the following properties:

(i) 0 < f(s) ≤ e−s.

(ii) f(s) = εn + εn(s − n2) on any interval In = [n2, n2 + n + 1] with n ≥ 2 integer,

where εn = e−(n2+n+1)

n+2
.

(iii) f is decreasing outside the intervals In.

Then, define

g(s) =

∫

∞

s

f(y)dy.

Observe that g is not convex, since its derivative g′ = −f is decreasing on In. It is also
clear that (g1)-(g2) hold, and the same can be said of (4.6), due to (i). Condition (g3) is
trivially verified outside In, where g′ is negative and increasing, while on In we have

g′(s)− g′′(s) ≤ 0 = −
[

εn + εn(s− n2)
]

+ εn ≤ 0.

We are left to show that (2.2) fails to hold. By contradiction, suppose (2.2) true on every
interval [n2, n2 + 1] ⊂ In. In which case, for any τ ∈ [0, 1], we have

g′(n2 + τ) + δg(n2 + τ) = −εn(1 + τ) + δ

∫

∞

n2+τ

f(y)dy ≤ 0.

But
∫

∞

n2+τ

f(y)dy ≥

∫ n2+n+1

n2+1

f(y)dy ≥ nεn.

We conclude that

(δn− 2)εn ≤ −εn(1 + τ) + δnεn ≤ 0,

which is clearly false as n → ∞.

The rest of the paper is devoted to the proofs of Theorem 4.2 and Theorem 4.3. In
some sense, we may say that the strategy behind the proofs is classical: we use suitable
multipliers in order to obtain differential inequalities. However, the presence of the con-
volution integral introduces essential difficulties. Indeed, when performing the estimates,
integration by parts has to be exploited several times. This produces boundary terms
that cannot be possibly handled in any way. The only possibility is then working within
a regularization scheme, where these boundary terms simply disappear. Accordingly, we
will consider a family of regularized problems, depending on a small parameter ̺ > 0,
which converge to (4.2)-(4.3) in the limit ̺ → 0. In particular, this will allow us to
take advantage of some general technical tools developed in the study of equations with
memory in the past history framework.



8 M. CONTI, L. LIVERANI AND V. PATA

5. The Right-Translation Semigroup on the Memory Space

Within assumptions (g1)-(g3), we begin to analyze the strongly continuous semigroup
of right translations on a suitable Lebesgue space. This will play a crucial role in the
forthcoming proofs. To this end, let us introduce the space

M = L2
−g′(R

+;H1),

namely, the space of square summable functions η : R+ → H1 with respect to the measure
−g′(s)ds, endowed with the Hilbert scalar product and norm

〈η1, η2〉M =

∫

∞

0

−g′(s)〈η1(s), η2(s)〉1ds, ‖η‖2M =

∫

∞

0

−g′(s)‖η(s)‖21ds.

Next, we define the linear operator T : M → M acting as

Tη = −η′,

with domain
D(T) =

{

η ∈ M : η′ ∈ M, η(0) = 0
}

,

where η′ denotes the weak derivative of η = η(s) with respect to s, and η(0) stands for
the limit in H1 of η(s) as s → 0.

Before going any further, let us discover an important feature of T.

Lemma 5.1. For every η ∈ D(T) we have the equality

〈Tη, η〉M = −
1

2

∫

∞

0

g′′(s)‖η(s)‖21ds.

In particular, this means that the integral in the right-hand side exists whenever η ∈ D(T).

Proof. Since η ∈ D(T), the product 〈Tη, η〉M makes sense. By definition,

〈Tη, η〉M =

∫

∞

0

g′(s)
1

2

d

ds
‖η(s)‖21ds = lim

ν→0, N→∞

∫ N

ν

g′(s)
1

2

d

ds
‖η(s)‖21ds.

Therefore, integrating by parts,

〈Tη, η〉M = lim
ν→0, N→∞

1

2

[

g′(N)‖η(N)‖21 − g′(ν)‖η(ν)‖21 −

∫ N

ν

g′′(s)‖η(s)‖21ds

]

.

The conclusion is a consequence of the two limits

lim
ν→0

g′(ν)‖η(ν)‖21 = 0 and lim
N→∞

g′(N)‖η(N)‖21 = 0.

To prove the first limit, we use the Hölder inequality and (3.1), to get

−g′(ν)‖η(ν)‖21 ≤ −g′(ν)

[
∫ ν

0

‖η′(y)‖1dy

]2

≤ ν

∫ ν

0

−g′(y + ν − y)‖η′(y)‖21dy

≤ ν

∫ ν

0

−g′(y)e(α−δ)(ν−y)‖η′(y)‖21dy

≤ ν‖Tη‖2Me(α−δ)ν ,
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which tends to zero as ν → 0. Hence,

〈Tη, η〉M = lim
N→∞

1

2

[

g′(N)‖η(N)‖21 −

∫ N

0

g′′(s)‖η(s)‖21ds

]

.

Since the integral
∫

∞

0

g′(s)‖η(s)‖21ds

exists, setting h(s) = (α− δ)g′(s)− g′′(s), we learn that the limit

lim
N→∞

[

g′(N)‖η(N)‖21 +

∫ N

0

h(s)‖η(s)‖21ds

]

exists as well. On the other hand, we know from (g3) that h(s) ≤ 0. Accordingly,
both terms in the limit above are negative, hence the integral converges, being monotone
decreasing with respect to N → ∞. In turn

lim
N→∞

g′(N)‖η(N)‖21

must exists. But the function g′(s)‖η(s)‖21 is summable on R
+, which forces the latter

limit to be zero, as desired. �

Our aim is showing that T generates the right-translation semigroup R(t) onM, defined
as

[R(t)η](s) =

{

0 s ≤ t,

η(s− t) s > t.

Checking that R(t) is a strongly continuous semigroup of linear operators is standard
matter: the only nontrivial thing to observe is that R(t) maps M into M. Indeed, in
light of (3.1),

‖R(t)η‖2M =

∫

∞

t

−g′(s)‖η(s− t)‖21ds =

∫

∞

0

−g′(s+ t)‖η(s)‖21ds ≤ ‖η‖2Me(α−δ)t.

The characterization of the infinitesimal generator of R(t) is very well known when the
kernel appearing in the definition of M is a decreasing function. In which case, R(t)
turns out to be a contraction semigroup (see, e.g., [10]). However, here the kernel is
−g′(s), which in general is not decreasing. This translates into the fact that R(t) is not a
contraction semigroup (hence its infinitesimal generator is not dissipative). Nonetheless,
the following holds.

Theorem 5.2. The infinitesimal generator of the right-translation semigroup R(t) on M
is the linear operator T defined above.

Proof. Setting

ω =
α− δ

2
> 0,

we will equivalently prove that the linear operator

S = T− ωI, D(S) = D(T),
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is the infinitesimal generator of the semigroup

R∗(t) = e−ωtR(t).

We begin to show that S generates a contraction semigroup S(t). This will be done via
the Lumer-Phillips theorem (see [27]), by completing the following two steps.

(i) S is dissipative, i.e., 〈Sη, η〉M ≤ 0 for all η ∈ D(S).

(ii) Range(I− S) = M.

Point (i) is an immediate consequence of Lemma 5.1 and (g3). Indeed, given any η ∈ D(S),

〈Sη, η〉M =
1

2

∫

∞

0

[

(α− δ)g′(s)− g′′(s)
]

‖η(s)‖21ds ≤ 0.

To prove (ii), let ξ ∈ M be arbitrarily fixed. We verify that the equation

η − Sη = (1 + ω)η + η′ = ξ

has a solution η ∈ D(S). A straightforward integration, along with the requirement
η(0) = 0, entail

η(s) =

∫ s

0

e−(1+ω)(s−y)ξ(y)dy.

We need to prove that such an η belongs to M. Then, η′ ∈ M is obtained by comparison,
and we conclude that η ∈ D(S). To this aim, an exploitation of (3.1) yields

√

−g′(s)‖η(s)‖1 ≤

∫ s

0

e−(s−y)
√

−g′(s)e−2ω(s−y)‖ξ(y)‖1dy

≤

∫ s

0

e−(s−y)
√

−g′(y)‖ξ(y)‖1dy.

Denoting

E(s) = e−s and φ(s) =
√

−g′(s)‖ξ(s)‖1,

the latter integral is nothing but the convolution product2 in R
+

(E ∗ φ)(s) =

∫ s

0

E(s− y)φ(y)dy.

Since
‖E‖L1(R+) = 1 and ‖φ‖L2(R+) = ‖ξ‖M,

by a classical result of convolution theory (see, e.g. [11]), we draw the estimate

‖η‖M ≤ ‖E ∗ φ‖L2(R+) ≤ ‖E‖L1(R+)‖φ‖L2(R+) = ‖ξ‖M,

allowing us to conclude that η ∈ M. So far we only proved that S is the infinitesimal
generator of a contraction semigroup S(t). In order to prove the equality S(t) = R∗(t),
it is enough showing that the infinitesimal generator of the semigroup R∗(t), call it S∗, is
an extension of S. Fix then η ∈ D(S). We aim to prove that

∃ M- lim
t→0

R∗(t)η − η

t
(hence equal to S∗η).

2The convolution product f1 ∗ f2 in R
+ can be viewed as the convolution product f̂1 ∗ f̂2 in R, where

f̂j is the null extension of fj on R
−.
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Explicitly,

[R∗(t)η](s)− η(s)

t
=

{

−η(s)
t

s ≤ t,
e−ωtη(s−t)−η(s)

t
s > t.

By the very definition of D(S),

M- lim
t→0

e−ωtη(s− t)− η(s)

t
χ(t,∞) = −η′(s)− ωη(s).

Hence, we are done if we establish the convergence as t → 0

−
η(s)

t
χ(0,t) → 0 in M.

Indeed, making use of the Hölder inequality together with (3.1),

1

t2

∫ t

0

−g′(s)‖η(s)‖21 ≤
1

t

∫ t

0

−g′(s)

[
∫ s

0

‖η′(y)‖21dy

]

ds

=
1

t

∫ t

0

‖η′(y)‖21

[
∫ t

y

−g′(s)ds

]

dy

≤
1

t

∫ t

0

‖η′(y)‖21

[
∫ t

y

−g′(y)e2ω(s−y)ds

]

dy

≤ e2ωt
∫ t

0

−g′(y)‖η′(y)‖21dy.

Since η′ ∈ M, the latter term goes to zero when t → 0, as desired. It is worth noting
that, a posteriori, we learn that R∗(t) = e−ωtR(t) is a contraction semigroup. �

The nonhomogeneous Cauchy problem. For a fixed T > 0, let f ∈ L1(0, T ;H1).
Consider the nonhomogeneous Cauchy problem in M for the unknown variable ηt = ηt(s)
with initial datum η0 = η0(s) ∈ M







d

dt
ηt = Tηt + f(t), 0 < t ≤ T,

η0 = η0.

Note that f can be seen as an element (independent of s) of L1(0, T ;M). It is then well
known that the problem above admits a unique mild solution on [0, T ] given by

ηt = R(t)η0 +

∫ t

0

R(t− τ)f(τ)dτ.

Explicitly, we have the representation formula

ηt(s) =















∫ t

t−s

f(y)dy s ≤ t,

η0(s− t) +

∫ t

0

f(y)dy s > t.

Moreover, if f ∈ C([0, T ], H1) and η0 ∈ D(T), then, due to the particular form of the
semigroup, we can conclude that ηt ∈ D(T) for every t ∈ [0, T ]. Hence, ηt is actually a
strong solution (see [27, Ch.4, Theorem 2.4]).



12 M. CONTI, L. LIVERANI AND V. PATA

6. The Approximated Problem

Let (g1)-(g3) and (4.1) hold. For an arbitrarily fixed ̺ > 0, we set

q̺(s) =











0 if s < ̺/2,
2s
̺
− 1 if ̺/2 ≤ s ≤ ̺,

1 if s > ̺,

and we define the (positive) function

Q̺(t) =

∫

∞

t

g(s)[1− q̺(s− t)]ds.

Observe that, as g is decreasing, we have the bound

(6.1) Q̺(t) ≤ ̺g(t).

Then, for any initial data (u0, v0, w0) ∈ H, we analyze the Cauchy problem

(6.2)



























∂tttu(t) + α∂ttu(t) + βA∂tu(t) + γAu(t)−

∫ t

0

g(s)Au(t− s)ds = Q̺(t)Au0,

u(0) = u0,

∂tu(0) = v0,

∂ttu(0) = w0.

This is a sort of a nonhomogeneous version of our original problem (4.2)-(4.3), with a
forcing term given by Q̺Au0, depending itself on (the first component of) the initial data.
On account of (6.1), problem (4.2)-(4.3) is formally recovered in the limit ̺ → 0.

Defining, for t ≥ 0 and s > 0, the function

(6.3) ηt(s) =

{

u(t)− u(t− s) s ≤ t,

u(t) + [q̺(s− t)− 1]u0 s > t,

the first equation of (6.2) becomes

(6.4) ∂tttu(t) + α∂ttu(t) + βA∂tu(t) + (γ − κ)Au(t) +

∫

∞

0

g(s)Aηt(s)ds = 0.

Indeed, using (g1),
∫

∞

0

g(s)Aηt(s)ds = κAu(t)−

∫ t

0

g(s)Au(t− s)ds+ Au0

∫

∞

t

g(s)[q̺(s− t)− 1]ds.

From our discussion in Section 5, assuming u to be known and such that ∂tu ∈ C([0, T ], H1),
the function ηt defined via the representation formula (6.3) is exactly the strong solution
on [0, T ] of the nonhomogeneous differential equation in M

(6.5)
d

dt
ηt = Tηt + ∂tu(t),

with initial datum
η0(s) = q̺(s)u0,

which is readily seen to belong to D(T).
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Remark 6.1. In particular, ηt ∈ D(T) for all t and Lemma 5.1 applies, so we have

(6.6) 〈Tηt, ηt〉M = −
1

2

∫

∞

0

g′′(s)‖ηt(s)‖21ds.

This is exactly the reason why we introduced the approximating ̺-problem: if ̺ = 0, and
the original equation is recovered, the initial datum of ηt becomes the constant function
u0, which does not belong to D(T), unless u0 = 0.

In spite of the complete equivalence between (6.2) and (6.4), the latter formulation
is much more efficient in order to obtain suitable bounds on the solutions (see the next
Section 8). To this purpose, we define the energy of the approximated problem to be

(6.7) E̺(t) = ‖u(t)‖21 + ‖∂tu(t)‖
2
1 + ‖∂ttu(t)‖

2 + ‖ηt‖2M.

Here, we highlighted the dependence on ̺, in order not to confuse this energy with the
energy E(t) of the original equation (4.2). In particular, since η0(s) = q̺(s)u0, and
recalling Remark 3.2,

(6.8) E̺(0) ≤ [1 + g(0)]‖u0‖
2
1 + ‖v0‖

2
1 + ‖w0‖

2.

7. The Approximated Problem: Existence and Uniqueness

The following theorem holds.

Theorem 7.1. Let ̺ > 0 be fixed. For every T > 0 and every initial data (u0, v0, w0) ∈ H,
the Cauchy problem (6.2) admits a unique weak solution u on the time interval [0, T ],
possessing the regularity

(u, ∂tu, ∂ttu) ∈ C([0, T ],H).

Proof. The argument, based on a Galerkin approximation procedure, is carried out in
four steps. The main ingredient is the basic energy inequality (8.6) of Remark 8.4, proved
in the next section.

I. Galerkin approximations. Let {xj}
∞
j=1 ⊂ H2 be an orthonormal basis of H . For

every n, we define the finite-dimensional space Hn = span{x1, ..., xn}, and we denote by
Pn : H → Hn the orthogonal projection of H onto Hn. We approximate the given initial
data (u0, v0, w0) ∈ H with a sequence

(u0n, v0n, w0n) = (Pnu0, Pnv0, Pnw0) → (u0, v0, w0) in H.

Then, there exists a function un ∈ C3([0, T ], Hn) of the form

un(t) =
n

∑

j=1

anj (t)xj

satisfying, for every test function ζ ∈ H1 and every t ∈ [0, T ],

〈∂tttun(t), ζ〉+ α〈∂ttun(t), ζ〉+ β〈∂tun(t), ζ〉1 + γ〈un(t), ζ〉1(7.1)

−

∫ t

0

g(s)〈un(t− s), ζ〉1ds = Q̺(t)〈u0n, ζ〉1,
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along with the initial conditions

(7.2)











un(0) = u0n,

∂tun(0) = v0n,

∂ttun(0) = w0n.

Indeed, choosing ζ = xj for any j ∈ {1, . . . , n}, everything boils down to a system of
n linear ordinary integro-differential equations3 in the unknowns anj , and the existence
(and uniqueness) of a solution on [0, T ] is guaranteed by a classical fixed point argument.
Moreover, calling for short zn = (un, ∂tun, ∂ttun), and making use of (8.6), with the aid
of (6.8), we have the uniform estimate

max
t∈[0,T ]

‖zn(t)‖H ≤ C‖z(0)‖H,

for some C ≥ 1 independent of n, ̺ and of the initial data. Here, it is important to point
out that (8.6) is obtained by considering the equation for un in the form (6.4). �

II. Passage to the limit. We claim that zn is a Cauchy sequence in C([0, T ],H). The
difference zn − zm solves exactly (7.1)-(7.2), but where every n-object is replaced by the
difference of the corresponding n-object and the m-object. Hence, a further application
of (8.6) yields

max
t∈[0,T ]

‖zn(t)− zm(t)‖H ≤ C‖zn(0)− zm(0)‖H,

and the latter norm goes to zero by construction when n,m → ∞. Accordingly, zn → z
in C([0, T ],H) for some z, which is readily seen to be of the form z = (u, ∂tu, ∂ttu). �

III. Existence. Let us prove that u is a solution to the Cauchy problem (6.2). First,
we observe that the desired initial conditions are satisfied by continuity. Thus, we are
left to verify that the differential equation in (6.2) holds true (in the weak sense). This is
obtained by letting n → ∞ in (7.1), just noting that

Q̺(t)〈u0n, ζ〉1 → Q̺(t)〈u0, ζ〉1,

for any given ζ ∈ H1 and every t ∈ [0, T ]. �

IV. Uniqueness. Let u1 and u2 be any two solutions to (6.2) originating from the same
initial data. Their difference u1 − u2 solves the Cauchy problem (6.2) with null initial
data. Invoking once more (8.6), we obtain that u1(t) = u2(t) for all t ∈ [0, T ]. �

8. The Approximated Problem: The Energy Inequality

Let ̺ > 0 be fixed. Along this section, u(t) will be any solution to (6.2), while C will
always denote a generic positive constant independent of ̺ and of the particular u(t).

3The equations are uncoupled if the vectors xj are also orthogonal in H1. This occurs for instance if
A has compact inverse. In which case, the xj are chosen to be the eigenvectors of A.
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Our goal is to establish the dissipative character of (6.2). To this end, considering the
equation in the form (6.4) with ηt given by (6.3), we introduce the energy-like functional

F̺(t) =
γ − κ

α
‖∂tu(t) + αu(t)‖21 +

κα + κ

α
‖∂tu(t)‖

2
1 + ‖∂ttu(t) + α∂tu(t)‖

2

+ ‖ηt‖2M + α

∫

∞

0

g(s)‖ηt(s)‖21ds+ 2

∫

∞

0

g(s)〈ηt(s), ∂tu(t)〉1ds,

keeping in mind that γ > κ and κ > 0. Offhand, it is not even clear whether F̺(t) is well
defined on the trajectories of (6.2). Indeed, this will be a consequence of the forthcoming
estimates. First, let us show that F̺(t) is “almost” equivalent to the energy E̺(t) given
by (6.7).

Lemma 8.1. There exists C ≥ 1 such that

(8.1)
1

C
E̺(t) ≤ F̺(t) ≤ C

(

E̺(t) +

∫

∞

0

g(s)‖ηt(s)‖21ds

)

.

Moreover, for a possibly bigger C,

(8.2) F̺(0) ≤ CE̺(0).

Proof. By means of the Hölder and the Young inequalities,
∣

∣

∣

∣

2

∫

∞

0

g(s)〈ηt(s), ∂tu(t)〉1ds

∣

∣

∣

∣

≤ α

∫

∞

0

g(s)‖ηt(s)‖21 +
κ

α
‖∂tu(t)‖

2
1.

Accordingly

F̺(t) ≥
γ − κ

α
‖∂tu(t) + αu(t)‖21 + κ‖∂tu(t)‖

2
1 + ‖∂ttu(t) + α∂tu(t)‖

2 + ‖ηt‖2M.

Since

(8.3) ‖(u, v, w)‖2∗ =
γ − κ

α
‖v + αu‖21 + κ‖v‖21 + ‖w + αv‖2

is readily seen to be an equivalent norm on H, we obtain the first bound in (8.1). The
second bound follows directly by the Hölder and the Young inequalities, together with
the continuous embedding H1 ⊂ H . Finally, recalling that η0(s) = q̺(s)u0, and using the
fact that 0 ≤ q̺ ≤ 1, we get

∫

∞

0

g(s)‖η0(s)‖21ds ≤ κ‖u0‖
2
1 ≤ κE̺(0),

implying the desired control (8.2) at t = 0. �

Remark 8.2. If the classical condition (2.2) on the kernel is also assumed, it is immedi-
ately seen that F̺(t) and E̺(t) are actually equivalent.

The next step is showing that F̺(t) is a decreasing function. This will be attained via a
differential inequality. Such an inequality will make sense for the Galerkin approximations
of u(t), i.e., the solutions un(t) to (7.1)-(7.2). Indeed, the scope of the inequality is twofold:
first, to produce a uniform estimate on the Galerkin approximations, and only in a second
moment to extend the very same estimate to the actual solution u(t). Accordingly, it is
understood that all the multiplications hereafter are carried out within the approximation
scheme.
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Theorem 8.3. The following inequality holds:

(8.4)
d

dt
F̺(t) + 2κα‖∂tu(t)‖

2
1 + δ‖ηt‖2M ≤ 0.

In particular, F̺(t) is decreasing.

Proof. In light of the equivalence between the differential equation in (6.2) and (6.4), we
multiply (6.4) by ∂ttu+ α∂tu in H , to get (omitting everywhere the dependence on t)

d

dt

(γ − κ

α
‖∂tu+ αu‖21 +

κα + κ

α
‖∂tu‖

2
1 + ‖∂ttu+ α∂tu‖

2
)

(8.5)

+ 2(κα + κ)‖∂tu‖
2
1 = I1 + I2,

where

I1 = −2

∫

∞

0

g(s)〈η(s), α∂tu〉1ds and I2 = −2

∫

∞

0

g(s)〈η(s), ∂ttu〉1ds.

Let us examine I1. Exploiting (6.5), we have

I1 = −
d

dt

(

α

∫

∞

0

g(s)‖η(s)‖21ds

)

+ 2α

∫

∞

0

g(s)〈Tη(s), η(s)〉1ds.

Besides,

2α

∫

∞

0

g(s)〈Tη(s), η(s)〉1ds = −α

∫

∞

0

g(s)
d

ds
‖η(s)‖21ds = α

∫

∞

0

g′(s)‖η(s)‖21ds.

The boundary terms of the latter integration by parts vanish. Indeed, for any fixed t > 0,
we infer from the representation formula (6.3) that

‖ηt(N)‖1 = ‖u(t)‖1 and ‖ηt(ν)‖1 = ‖u(t)− u(t− ν)‖1,

whenever N is large enough and ν small enough. Knowing that g(∞) = 0 and g(0) < ∞,
and by the time-continuity of u, we conclude that

lim
N→∞

g(N)‖η(N)‖21 = 0 and lim
ν→0

g(ν)‖η(ν)‖21 = 0.

In summary,

I1 = −
d

dt

(

α

∫

∞

0

g(s)‖η(s)‖21ds

)

+ α

∫

∞

0

g′(s)‖η(s)‖21ds.

By the same argument, we find

I2 = −
d

dt

(

2

∫

∞

0

g(s)〈η(s), ∂tu〉1ds

)

+ 2

∫

∞

0

g′(s)〈η(s), ∂tu〉1ds+ 2κ‖∂tu‖
2
1.

Substituting now I1 and I2 into (8.5), we arrive at

d

dt
F̺ + 2κα‖∂tu‖

2
1 =

d

dt
‖η‖2M + α

∫

∞

0

g′(s)‖η(s)‖21ds+ 2

∫

∞

0

g′(s)〈η(s), ∂tu〉1ds.

At this point, we multiply equation (6.5) by η in M. On account of (6.6), this yields

d

dt
‖η‖2M = −

∫

∞

0

g′′(s)‖η(s)‖21ds− 2

∫

∞

0

g′(s)〈η(s), ∂tu〉1ds.
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Collecting the last two identities, we end up with

d

dt
F̺ + 2κα‖∂tu‖

2
1 =

∫

∞

0

[

αg′(s)− g′′(s)
]

‖η(s)‖21ds.

The desired inequality follows by assumption (g3) on the memory kernel. �

Remark 8.4. In particular, an integration in time of (8.4) together with Lemma 8.1
entail the (uniform) estimate

(8.6) ‖u(t)‖21 + ‖∂tu(t)‖
2
1 + ‖∂ttu(t)‖

2 ≤ E̺(t) ≤ CE̺(0),

for every t ≥ 0 and some C ≥ 1.

Remark 8.5. As mentioned in the Introduction, if we are only interested in proving the
existence of a solution on any interval [0, T ] to (6.2), and in turn to (4.2), we do not really
need assumption (4.1). Indeed, if (4.1) fails to hold, by adding the term m∂ttu to both
sides of (6.2), up to taking m > 0 large enough that

κm = β −
γ

α +m
> 0,

instead of (8.4) we find the estimate

d

dt
F̺(t) ≤ CE̺(t),

for some C > 0. This is enough to conclude that, for a possibly bigger C,

‖u(t)‖21 + ‖∂tu(t)‖
2
1 + ‖∂ttu(t)‖

2 ≤ E̺(t) ≤ CE̺(0)e
CT ,

for every t ∈ [0, T ].

9. The Approximated Problem: Exponential Decay of the Energy

We now dwell on the exponential decay of the energy E̺(t) of the approximated problem.
Again, in what follows, u(t) will be any solution to (6.2), for a fixed ̺ > 0.

Theorem 9.1. Let assumption (4.6) hold. Then there exist M0 ≥ 1 and ω > 0, both
independent of ̺ and of the initial data, such that the energy (6.7) fulfills the exponential
decay estimate

(9.1) E̺(t) ≤ M0E̺(0)e
−ωt.

The proof of the theorem requires a number of passages: the starting point is the
dissipative estimate (8.4), along with the controls provided by Lemma 8.1. However, such
an estimate alone is not enough to drive uniformly the energy to zero. Accordingly, we
need to introduce suitable auxiliary functionals, in order to attain an efficient differential
inequality. All the constants appearing in this section, such as the generic constant C > 0,
are understood to be independent of ̺ and of the particular solution u(t).

With reference to (4.6), let us denote

Θ(t) =

∫ t

0

e−ωg(t−s)‖u(s)‖21ds.

A preliminary lemma is needed.
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Lemma 9.2. There exists a functional Ψ(t) satisfying the differential inequality

(9.2)
d

dt
Ψ(t) + ϑF̺(t) ≤ C

[

‖∂tu(t)‖
2
1 + ‖ηt‖2M

]

,

along with the bounds

(9.3) − CE̺(t) ≤ Ψ(t) ≤ C
[

E̺(t) + E̺(0)e
−ωgt +Θ(t)

]

,

for some ϑ > 0 and C > 0.

Proof. Calling

G(s) =

∫

∞

s

g(y)dy,

we define our functional Ψ to be the sum

Ψ(t) = Ψ1(t) + Ψ2(t),

where

Ψ1(t) = −〈∂tu(t)− αu(t), ∂ttu(t) + α∂tu(t)〉,

Ψ2(t) =
α

2

∫

∞

0

G(s)‖ηt(s)− u(t)‖21ds.

For some C > 0, we have the inequalities

|Ψ1(t)| ≤ CE̺(t),(9.4)

0 ≤ Ψ2(t) ≤ C
[

E̺(0)e
−ωgt +Θ(t)

]

.(9.5)

Indeed, (9.4) is straightforward. Concerning (9.5), we first observe that the exponential
decay (4.6) of g implies that G(s) ≤ MGe

−ωgs, with MG = Mg/ωg. Hence, writing
explicitly ηt − u(t) via (6.3),

2

α
Ψ2(t) =

∫

∞

t

G(s)[q̺(s− t)− 1]2‖u0‖
2
1ds+

∫ t

0

G(t− s)‖u(s)‖21ds

≤
MG

ωg
E̺(0)e

−ωgt +MGΘ(t).

Collecting (9.4)-(9.5), the bounds (9.3) are established. We are left to prove (9.2). Ex-
ploiting (6.4), we compute the time-derivative of Ψ1 as (omitting the dependence on time)

d

dt
Ψ1 +

γ − κ

α
‖∂tu+ αu‖21 + ‖∂ttu+ α∂tu‖

2

=
2γ − 3κ− κα

α
〈∂tu+ αu, ∂tu〉1 + 2α〈∂ttu+ α∂tu, ∂tu〉+

2κ+ 2κα

α
‖∂tu‖

2
1

+

∫

∞

0

g(s)〈η(s), ∂tu〉1ds− α

∫

∞

0

g(s)〈η(s), u〉1ds.



MGT EQUATION WITH MEMORY WITH NONCONVEX KERNELS 19

By the Young and the Hölder inequalities, for some C > 0 large enough we obtain

d

dt
Ψ1 +

γ − κ

2α
‖∂tu+ αu‖21 +

1

2
‖∂ttu+ α∂tu‖

2

≤ C‖∂tu‖
2
1 +

α

4

∫

∞

0

g(s)‖η(s)‖21ds− α

∫

∞

0

g(s)〈η(s), u〉1ds.

The time-derivative of Ψ2, in light of (6.5), reads

d

dt
Ψ2 = −

α

2

∫

∞

0

g(s)‖η(s)‖21ds+ α

∫

∞

0

g(s)〈η(s), u〉1ds.

Here, an integration by parts is performed. Similarly to the previous cases, as we are work-
ing with the approximated problem, the boundary terms vanish. Summing the differential
inequalities for Ψ1 and Ψ2, we finally get

d

dt
Ψ+

γ − κ

2α
‖∂tu+ αu‖21 +

1

2
‖∂ttu+ α∂tu‖

2 +
α

4

∫

∞

0

g(s)‖η(s)‖21ds ≤ C‖∂tu‖
2
1.

On account of (8.1), and recalling that ‖ · ‖∗ defined in (8.3) is an equivalent norm on H,
the desired conclusion (9.2) follows by adding the term ‖∂tu‖

2
1 + ‖η‖2M to both sides of

the inequality. �

We can now proceed to the proof of the theorem.

Proof of Theorem 9.1. For ε > 0, we define the functional

Λ(t) = F̺(t) + εΨ(t).

Up to choosing ε small enough, we deduce from (9.3), together with the first inequality
in (8.1), the bounds

(9.6) εE̺(t) ≤ Λ(t) ≤ 2F̺(t) + E̺(0)e
−ωgt +Θ(t).

Besides, by possibly further reducing ε, collecting (8.4) and (9.2) we obtain

d

dt
Λ(t) + εϑF̺(t) ≤ 0.

We remark that ε has been chosen independently of ̺ and u(t). Leaning again on (8.1),
we can find µ > 0 such that, for every ω > 0 small,

d

dt
Λ(t) + 2ωF̺(t) ≤ −µ‖u(t)‖21.

At this point, we take advantage of (9.6), arriving at the inequality

d

dt
Λ(t) + ωΛ(t) ≤ ωE̺(0)e

−ωgt + ωΘ(t)− µ‖u(t)‖21.

Taking ω < ωg, an application of the Gronwall lemma, along with the first inequality
in (9.6), yield

εE̺(t) ≤ Λ(t) ≤
[

Λ(0) +
ω

ωg − ω
E̺(0) + I(t)

]

e−ωt,

where

I(t) = ω

∫ t

0

eωsΘ(s)ds− µ

∫ t

0

eωs‖u(s)‖21ds.
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Observe that, exchanging the order of integration,
∫ t

0

eωsΘ(s)ds =

∫ t

0

eωgs‖u(s)‖21

(
∫ t

s

e−(ωg−ω)ydy

)

ds ≤
1

ωg − ω

∫ t

0

eωs‖u(s)‖21ds.

Accordingly, choosing ω small enough that ω ≤ µ(ωg −ω), we have that I(t) ≤ 0. Hence,
we end up with the energy inequality

E̺(t) ≤
1

ε
Λ(t) ≤

1

ε

[

Λ(0) + µE̺(0)
]

e−ωt.

Noting that Λ(0) is bounded by a multiple of E̺(0), due to (9.6) and (8.2), the conclusion
follows. �

10. Proofs of the Main Results

We have now all the ingredients to prove Theorems 4.2 and 4.3. To this aim, for an
arbitrarily given vector (u0, v0, w0) ∈ H and any ̺ > 0, we denote by u̺ the solution to
the approximating problem (6.2).

I.We claim that, for every T > 0, the family z̺ = (u̺, ∂tu̺, ∂ttu̺) is Cauchy in C([0, T ],H)
as ̺ → 0. Indeed, take ̺1 ≤ ̺2, and consider the corresponding solutions u̺1 and u̺2

to (6.2). Observe that the two forcing terms in the equations are different, namely,
Q̺1(t)Au0 and Q̺2(t)Au0. Setting

ū(t) = u̺2(t)− u̺1(t),

we define

η̄t(s) =

{

ū(t)− ū(t− s) s ≤ t,

ū(t) + [q̺2(s− t)− q̺1(s− t)]u0 s > t.

Then ū solves the analogue of equation (6.4), i.e.,

∂tttū(t) + α∂ttū(t) + βA∂tū(t) + (γ − κ)Aū(t) +

∫

∞

0

g(s)Aη̄t(s)ds = 0,

but with null initial conditions

ū(0) = ∂tū(0) = ∂ttū(0) = 0.

At this point, defining the energy of the system above as

E̺1,̺2(t) = ‖ū(t)‖21 + ‖∂tū(t)‖
2
1 + ‖∂ttū(t)‖

2 + ‖η̄t‖2M,

the very same computations of Section 8 lead us to an inequality completely analogous
to (8.6), that is,

E̺1,̺2(t) ≤ CE̺1,̺2(0) = C‖η̄0‖2M,

for some C ≥ 1 independent of ̺1, ̺2. Since η̄0 is supported on the interval [̺1/2, ̺2] and
|q̺2 − q̺1 | ≤ 1,

‖η̄0‖2M =

∫ ̺2

̺1/2

−g′(s)[q̺2(s)− q̺1(s)]
2‖u0‖

2
1ds ≤ ‖u0‖

2
1

[

g(̺1/2)− g(̺2)
]

→ 0

as ̺1, ̺2 → 0. This establishes the claim. �

II. As a consequence, for every T > 0, we have the convergence z̺ → z in C([0, T ],H) as
̺ → 0, for some vector z = (u, ∂tu, ∂ttu). The next step is showing that u is a solution
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to the original Cauchy problem (4.2)-(4.3). The desired initial conditions are trivially
satisfied, so we are left to verify that (4.2) holds true in the weak sense. Since u̺ solves
the differential equation (6.2), the result follows by the convergence

lim
̺→0

Q̺(t)〈u0, ζ〉1 = 0,

for any given ζ ∈ H1 and every t ∈ [0, T ], clearly implied by the bound (6.1).

III. Exploiting the representation formula (6.3), we now write the energy E̺(t) of u̺,
defined in (6.7), in the equivalent form

E̺(t) = ‖u̺(t)‖
2
1 + ‖∂tu̺(t)‖

2
1 + ‖∂ttu̺(t)‖

2

+

∫ t

0

−g′(s)‖u̺(t− s)− u̺(t)‖
2
1ds+

∫

∞

t

−g′(s)‖u̺(t) + [q̺(s− t)− 1]u0‖
2
1ds.

The convergence z̺ → z in C([0, T ],H), for every T > 0, entails that

lim
̺→0

E̺(t) = E(t) + g(t)‖u(t)‖21, ∀t ≥ 0,

where E(t) is the energy of the original problem (4.2)-(4.3), defined in (4.4). Passing to the
limit in the energy inequality (8.6), we readily obtain (4.5) (recall that g(0) < ∞). This
finishes the proof of Theorem 4.2. By the same token, when (4.6) holds, the exponential
decay estimate (9.1) for E̺(t) of Theorem 9.1 yields in the limit (4.7) with

M = M0[1 + g(0)].

The proof of Theorem 4.3 is done. �
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